mm: remove unnecessary use of atomic
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include "internal.h"
51
52 #include <asm/uaccess.h>
53
54 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
55 #define MEM_CGROUP_RECLAIM_RETRIES 5
56 struct mem_cgroup *root_mem_cgroup __read_mostly;
57
58 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
59 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
60 int do_swap_account __read_mostly;
61 static int really_do_swap_account __initdata = 1; /* for remember boot option*/
62 #else
63 #define do_swap_account (0)
64 #endif
65
66 /*
67 * Per memcg event counter is incremented at every pagein/pageout. This counter
68 * is used for trigger some periodic events. This is straightforward and better
69 * than using jiffies etc. to handle periodic memcg event.
70 *
71 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
72 */
73 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
74 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
75
76 /*
77 * Statistics for memory cgroup.
78 */
79 enum mem_cgroup_stat_index {
80 /*
81 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
82 */
83 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
84 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
85 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
86 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
87 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
88 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
89 MEM_CGROUP_EVENTS, /* incremented at every pagein/pageout */
90
91 MEM_CGROUP_STAT_NSTATS,
92 };
93
94 struct mem_cgroup_stat_cpu {
95 s64 count[MEM_CGROUP_STAT_NSTATS];
96 };
97
98 /*
99 * per-zone information in memory controller.
100 */
101 struct mem_cgroup_per_zone {
102 /*
103 * spin_lock to protect the per cgroup LRU
104 */
105 struct list_head lists[NR_LRU_LISTS];
106 unsigned long count[NR_LRU_LISTS];
107
108 struct zone_reclaim_stat reclaim_stat;
109 struct rb_node tree_node; /* RB tree node */
110 unsigned long long usage_in_excess;/* Set to the value by which */
111 /* the soft limit is exceeded*/
112 bool on_tree;
113 struct mem_cgroup *mem; /* Back pointer, we cannot */
114 /* use container_of */
115 };
116 /* Macro for accessing counter */
117 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
118
119 struct mem_cgroup_per_node {
120 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
121 };
122
123 struct mem_cgroup_lru_info {
124 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
125 };
126
127 /*
128 * Cgroups above their limits are maintained in a RB-Tree, independent of
129 * their hierarchy representation
130 */
131
132 struct mem_cgroup_tree_per_zone {
133 struct rb_root rb_root;
134 spinlock_t lock;
135 };
136
137 struct mem_cgroup_tree_per_node {
138 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
139 };
140
141 struct mem_cgroup_tree {
142 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
143 };
144
145 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
146
147 struct mem_cgroup_threshold {
148 struct eventfd_ctx *eventfd;
149 u64 threshold;
150 };
151
152 /* For threshold */
153 struct mem_cgroup_threshold_ary {
154 /* An array index points to threshold just below usage. */
155 int current_threshold;
156 /* Size of entries[] */
157 unsigned int size;
158 /* Array of thresholds */
159 struct mem_cgroup_threshold entries[0];
160 };
161 /* for OOM */
162 struct mem_cgroup_eventfd_list {
163 struct list_head list;
164 struct eventfd_ctx *eventfd;
165 };
166
167 static void mem_cgroup_threshold(struct mem_cgroup *mem);
168 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
169
170 /*
171 * The memory controller data structure. The memory controller controls both
172 * page cache and RSS per cgroup. We would eventually like to provide
173 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
174 * to help the administrator determine what knobs to tune.
175 *
176 * TODO: Add a water mark for the memory controller. Reclaim will begin when
177 * we hit the water mark. May be even add a low water mark, such that
178 * no reclaim occurs from a cgroup at it's low water mark, this is
179 * a feature that will be implemented much later in the future.
180 */
181 struct mem_cgroup {
182 struct cgroup_subsys_state css;
183 /*
184 * the counter to account for memory usage
185 */
186 struct res_counter res;
187 /*
188 * the counter to account for mem+swap usage.
189 */
190 struct res_counter memsw;
191 /*
192 * Per cgroup active and inactive list, similar to the
193 * per zone LRU lists.
194 */
195 struct mem_cgroup_lru_info info;
196
197 /*
198 protect against reclaim related member.
199 */
200 spinlock_t reclaim_param_lock;
201
202 int prev_priority; /* for recording reclaim priority */
203
204 /*
205 * While reclaiming in a hierarchy, we cache the last child we
206 * reclaimed from.
207 */
208 int last_scanned_child;
209 /*
210 * Should the accounting and control be hierarchical, per subtree?
211 */
212 bool use_hierarchy;
213 atomic_t oom_lock;
214 atomic_t refcnt;
215
216 unsigned int swappiness;
217 /* OOM-Killer disable */
218 int oom_kill_disable;
219
220 /* set when res.limit == memsw.limit */
221 bool memsw_is_minimum;
222
223 /* protect arrays of thresholds */
224 struct mutex thresholds_lock;
225
226 /* thresholds for memory usage. RCU-protected */
227 struct mem_cgroup_threshold_ary *thresholds;
228
229 /* thresholds for mem+swap usage. RCU-protected */
230 struct mem_cgroup_threshold_ary *memsw_thresholds;
231
232 /* For oom notifier event fd */
233 struct list_head oom_notify;
234
235 /*
236 * Should we move charges of a task when a task is moved into this
237 * mem_cgroup ? And what type of charges should we move ?
238 */
239 unsigned long move_charge_at_immigrate;
240 /*
241 * percpu counter.
242 */
243 struct mem_cgroup_stat_cpu *stat;
244 };
245
246 /* Stuffs for move charges at task migration. */
247 /*
248 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
249 * left-shifted bitmap of these types.
250 */
251 enum move_type {
252 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
253 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
254 NR_MOVE_TYPE,
255 };
256
257 /* "mc" and its members are protected by cgroup_mutex */
258 static struct move_charge_struct {
259 struct mem_cgroup *from;
260 struct mem_cgroup *to;
261 unsigned long precharge;
262 unsigned long moved_charge;
263 unsigned long moved_swap;
264 struct task_struct *moving_task; /* a task moving charges */
265 wait_queue_head_t waitq; /* a waitq for other context */
266 } mc = {
267 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
268 };
269
270 static bool move_anon(void)
271 {
272 return test_bit(MOVE_CHARGE_TYPE_ANON,
273 &mc.to->move_charge_at_immigrate);
274 }
275
276 static bool move_file(void)
277 {
278 return test_bit(MOVE_CHARGE_TYPE_FILE,
279 &mc.to->move_charge_at_immigrate);
280 }
281
282 /*
283 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
284 * limit reclaim to prevent infinite loops, if they ever occur.
285 */
286 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
287 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
288
289 enum charge_type {
290 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
291 MEM_CGROUP_CHARGE_TYPE_MAPPED,
292 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
293 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
294 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
295 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
296 NR_CHARGE_TYPE,
297 };
298
299 /* only for here (for easy reading.) */
300 #define PCGF_CACHE (1UL << PCG_CACHE)
301 #define PCGF_USED (1UL << PCG_USED)
302 #define PCGF_LOCK (1UL << PCG_LOCK)
303 /* Not used, but added here for completeness */
304 #define PCGF_ACCT (1UL << PCG_ACCT)
305
306 /* for encoding cft->private value on file */
307 #define _MEM (0)
308 #define _MEMSWAP (1)
309 #define _OOM_TYPE (2)
310 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
311 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
312 #define MEMFILE_ATTR(val) ((val) & 0xffff)
313 /* Used for OOM nofiier */
314 #define OOM_CONTROL (0)
315
316 /*
317 * Reclaim flags for mem_cgroup_hierarchical_reclaim
318 */
319 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
320 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
321 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
322 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
323 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
324 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
325
326 static void mem_cgroup_get(struct mem_cgroup *mem);
327 static void mem_cgroup_put(struct mem_cgroup *mem);
328 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
329 static void drain_all_stock_async(void);
330
331 static struct mem_cgroup_per_zone *
332 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
333 {
334 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
335 }
336
337 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
338 {
339 return &mem->css;
340 }
341
342 static struct mem_cgroup_per_zone *
343 page_cgroup_zoneinfo(struct page_cgroup *pc)
344 {
345 struct mem_cgroup *mem = pc->mem_cgroup;
346 int nid = page_cgroup_nid(pc);
347 int zid = page_cgroup_zid(pc);
348
349 if (!mem)
350 return NULL;
351
352 return mem_cgroup_zoneinfo(mem, nid, zid);
353 }
354
355 static struct mem_cgroup_tree_per_zone *
356 soft_limit_tree_node_zone(int nid, int zid)
357 {
358 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
359 }
360
361 static struct mem_cgroup_tree_per_zone *
362 soft_limit_tree_from_page(struct page *page)
363 {
364 int nid = page_to_nid(page);
365 int zid = page_zonenum(page);
366
367 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
368 }
369
370 static void
371 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
372 struct mem_cgroup_per_zone *mz,
373 struct mem_cgroup_tree_per_zone *mctz,
374 unsigned long long new_usage_in_excess)
375 {
376 struct rb_node **p = &mctz->rb_root.rb_node;
377 struct rb_node *parent = NULL;
378 struct mem_cgroup_per_zone *mz_node;
379
380 if (mz->on_tree)
381 return;
382
383 mz->usage_in_excess = new_usage_in_excess;
384 if (!mz->usage_in_excess)
385 return;
386 while (*p) {
387 parent = *p;
388 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
389 tree_node);
390 if (mz->usage_in_excess < mz_node->usage_in_excess)
391 p = &(*p)->rb_left;
392 /*
393 * We can't avoid mem cgroups that are over their soft
394 * limit by the same amount
395 */
396 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
397 p = &(*p)->rb_right;
398 }
399 rb_link_node(&mz->tree_node, parent, p);
400 rb_insert_color(&mz->tree_node, &mctz->rb_root);
401 mz->on_tree = true;
402 }
403
404 static void
405 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
406 struct mem_cgroup_per_zone *mz,
407 struct mem_cgroup_tree_per_zone *mctz)
408 {
409 if (!mz->on_tree)
410 return;
411 rb_erase(&mz->tree_node, &mctz->rb_root);
412 mz->on_tree = false;
413 }
414
415 static void
416 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
417 struct mem_cgroup_per_zone *mz,
418 struct mem_cgroup_tree_per_zone *mctz)
419 {
420 spin_lock(&mctz->lock);
421 __mem_cgroup_remove_exceeded(mem, mz, mctz);
422 spin_unlock(&mctz->lock);
423 }
424
425
426 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
427 {
428 unsigned long long excess;
429 struct mem_cgroup_per_zone *mz;
430 struct mem_cgroup_tree_per_zone *mctz;
431 int nid = page_to_nid(page);
432 int zid = page_zonenum(page);
433 mctz = soft_limit_tree_from_page(page);
434
435 /*
436 * Necessary to update all ancestors when hierarchy is used.
437 * because their event counter is not touched.
438 */
439 for (; mem; mem = parent_mem_cgroup(mem)) {
440 mz = mem_cgroup_zoneinfo(mem, nid, zid);
441 excess = res_counter_soft_limit_excess(&mem->res);
442 /*
443 * We have to update the tree if mz is on RB-tree or
444 * mem is over its softlimit.
445 */
446 if (excess || mz->on_tree) {
447 spin_lock(&mctz->lock);
448 /* if on-tree, remove it */
449 if (mz->on_tree)
450 __mem_cgroup_remove_exceeded(mem, mz, mctz);
451 /*
452 * Insert again. mz->usage_in_excess will be updated.
453 * If excess is 0, no tree ops.
454 */
455 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
456 spin_unlock(&mctz->lock);
457 }
458 }
459 }
460
461 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
462 {
463 int node, zone;
464 struct mem_cgroup_per_zone *mz;
465 struct mem_cgroup_tree_per_zone *mctz;
466
467 for_each_node_state(node, N_POSSIBLE) {
468 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
469 mz = mem_cgroup_zoneinfo(mem, node, zone);
470 mctz = soft_limit_tree_node_zone(node, zone);
471 mem_cgroup_remove_exceeded(mem, mz, mctz);
472 }
473 }
474 }
475
476 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
477 {
478 return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
479 }
480
481 static struct mem_cgroup_per_zone *
482 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
483 {
484 struct rb_node *rightmost = NULL;
485 struct mem_cgroup_per_zone *mz;
486
487 retry:
488 mz = NULL;
489 rightmost = rb_last(&mctz->rb_root);
490 if (!rightmost)
491 goto done; /* Nothing to reclaim from */
492
493 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
494 /*
495 * Remove the node now but someone else can add it back,
496 * we will to add it back at the end of reclaim to its correct
497 * position in the tree.
498 */
499 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
500 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
501 !css_tryget(&mz->mem->css))
502 goto retry;
503 done:
504 return mz;
505 }
506
507 static struct mem_cgroup_per_zone *
508 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
509 {
510 struct mem_cgroup_per_zone *mz;
511
512 spin_lock(&mctz->lock);
513 mz = __mem_cgroup_largest_soft_limit_node(mctz);
514 spin_unlock(&mctz->lock);
515 return mz;
516 }
517
518 static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
519 enum mem_cgroup_stat_index idx)
520 {
521 int cpu;
522 s64 val = 0;
523
524 for_each_possible_cpu(cpu)
525 val += per_cpu(mem->stat->count[idx], cpu);
526 return val;
527 }
528
529 static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
530 {
531 s64 ret;
532
533 ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
534 ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
535 return ret;
536 }
537
538 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
539 bool charge)
540 {
541 int val = (charge) ? 1 : -1;
542 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
543 }
544
545 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
546 struct page_cgroup *pc,
547 bool charge)
548 {
549 int val = (charge) ? 1 : -1;
550
551 preempt_disable();
552
553 if (PageCgroupCache(pc))
554 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
555 else
556 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
557
558 if (charge)
559 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
560 else
561 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
562 __this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
563
564 preempt_enable();
565 }
566
567 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
568 enum lru_list idx)
569 {
570 int nid, zid;
571 struct mem_cgroup_per_zone *mz;
572 u64 total = 0;
573
574 for_each_online_node(nid)
575 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
576 mz = mem_cgroup_zoneinfo(mem, nid, zid);
577 total += MEM_CGROUP_ZSTAT(mz, idx);
578 }
579 return total;
580 }
581
582 static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
583 {
584 s64 val;
585
586 val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
587
588 return !(val & ((1 << event_mask_shift) - 1));
589 }
590
591 /*
592 * Check events in order.
593 *
594 */
595 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
596 {
597 /* threshold event is triggered in finer grain than soft limit */
598 if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
599 mem_cgroup_threshold(mem);
600 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
601 mem_cgroup_update_tree(mem, page);
602 }
603 }
604
605 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
606 {
607 return container_of(cgroup_subsys_state(cont,
608 mem_cgroup_subsys_id), struct mem_cgroup,
609 css);
610 }
611
612 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
613 {
614 /*
615 * mm_update_next_owner() may clear mm->owner to NULL
616 * if it races with swapoff, page migration, etc.
617 * So this can be called with p == NULL.
618 */
619 if (unlikely(!p))
620 return NULL;
621
622 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
623 struct mem_cgroup, css);
624 }
625
626 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
627 {
628 struct mem_cgroup *mem = NULL;
629
630 if (!mm)
631 return NULL;
632 /*
633 * Because we have no locks, mm->owner's may be being moved to other
634 * cgroup. We use css_tryget() here even if this looks
635 * pessimistic (rather than adding locks here).
636 */
637 rcu_read_lock();
638 do {
639 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
640 if (unlikely(!mem))
641 break;
642 } while (!css_tryget(&mem->css));
643 rcu_read_unlock();
644 return mem;
645 }
646
647 /*
648 * Call callback function against all cgroup under hierarchy tree.
649 */
650 static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
651 int (*func)(struct mem_cgroup *, void *))
652 {
653 int found, ret, nextid;
654 struct cgroup_subsys_state *css;
655 struct mem_cgroup *mem;
656
657 if (!root->use_hierarchy)
658 return (*func)(root, data);
659
660 nextid = 1;
661 do {
662 ret = 0;
663 mem = NULL;
664
665 rcu_read_lock();
666 css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
667 &found);
668 if (css && css_tryget(css))
669 mem = container_of(css, struct mem_cgroup, css);
670 rcu_read_unlock();
671
672 if (mem) {
673 ret = (*func)(mem, data);
674 css_put(&mem->css);
675 }
676 nextid = found + 1;
677 } while (!ret && css);
678
679 return ret;
680 }
681
682 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
683 {
684 return (mem == root_mem_cgroup);
685 }
686
687 /*
688 * Following LRU functions are allowed to be used without PCG_LOCK.
689 * Operations are called by routine of global LRU independently from memcg.
690 * What we have to take care of here is validness of pc->mem_cgroup.
691 *
692 * Changes to pc->mem_cgroup happens when
693 * 1. charge
694 * 2. moving account
695 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
696 * It is added to LRU before charge.
697 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
698 * When moving account, the page is not on LRU. It's isolated.
699 */
700
701 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
702 {
703 struct page_cgroup *pc;
704 struct mem_cgroup_per_zone *mz;
705
706 if (mem_cgroup_disabled())
707 return;
708 pc = lookup_page_cgroup(page);
709 /* can happen while we handle swapcache. */
710 if (!TestClearPageCgroupAcctLRU(pc))
711 return;
712 VM_BUG_ON(!pc->mem_cgroup);
713 /*
714 * We don't check PCG_USED bit. It's cleared when the "page" is finally
715 * removed from global LRU.
716 */
717 mz = page_cgroup_zoneinfo(pc);
718 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
719 if (mem_cgroup_is_root(pc->mem_cgroup))
720 return;
721 VM_BUG_ON(list_empty(&pc->lru));
722 list_del_init(&pc->lru);
723 return;
724 }
725
726 void mem_cgroup_del_lru(struct page *page)
727 {
728 mem_cgroup_del_lru_list(page, page_lru(page));
729 }
730
731 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
732 {
733 struct mem_cgroup_per_zone *mz;
734 struct page_cgroup *pc;
735
736 if (mem_cgroup_disabled())
737 return;
738
739 pc = lookup_page_cgroup(page);
740 /*
741 * Used bit is set without atomic ops but after smp_wmb().
742 * For making pc->mem_cgroup visible, insert smp_rmb() here.
743 */
744 smp_rmb();
745 /* unused or root page is not rotated. */
746 if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
747 return;
748 mz = page_cgroup_zoneinfo(pc);
749 list_move(&pc->lru, &mz->lists[lru]);
750 }
751
752 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
753 {
754 struct page_cgroup *pc;
755 struct mem_cgroup_per_zone *mz;
756
757 if (mem_cgroup_disabled())
758 return;
759 pc = lookup_page_cgroup(page);
760 VM_BUG_ON(PageCgroupAcctLRU(pc));
761 /*
762 * Used bit is set without atomic ops but after smp_wmb().
763 * For making pc->mem_cgroup visible, insert smp_rmb() here.
764 */
765 smp_rmb();
766 if (!PageCgroupUsed(pc))
767 return;
768
769 mz = page_cgroup_zoneinfo(pc);
770 MEM_CGROUP_ZSTAT(mz, lru) += 1;
771 SetPageCgroupAcctLRU(pc);
772 if (mem_cgroup_is_root(pc->mem_cgroup))
773 return;
774 list_add(&pc->lru, &mz->lists[lru]);
775 }
776
777 /*
778 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
779 * lru because the page may.be reused after it's fully uncharged (because of
780 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
781 * it again. This function is only used to charge SwapCache. It's done under
782 * lock_page and expected that zone->lru_lock is never held.
783 */
784 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
785 {
786 unsigned long flags;
787 struct zone *zone = page_zone(page);
788 struct page_cgroup *pc = lookup_page_cgroup(page);
789
790 spin_lock_irqsave(&zone->lru_lock, flags);
791 /*
792 * Forget old LRU when this page_cgroup is *not* used. This Used bit
793 * is guarded by lock_page() because the page is SwapCache.
794 */
795 if (!PageCgroupUsed(pc))
796 mem_cgroup_del_lru_list(page, page_lru(page));
797 spin_unlock_irqrestore(&zone->lru_lock, flags);
798 }
799
800 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
801 {
802 unsigned long flags;
803 struct zone *zone = page_zone(page);
804 struct page_cgroup *pc = lookup_page_cgroup(page);
805
806 spin_lock_irqsave(&zone->lru_lock, flags);
807 /* link when the page is linked to LRU but page_cgroup isn't */
808 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
809 mem_cgroup_add_lru_list(page, page_lru(page));
810 spin_unlock_irqrestore(&zone->lru_lock, flags);
811 }
812
813
814 void mem_cgroup_move_lists(struct page *page,
815 enum lru_list from, enum lru_list to)
816 {
817 if (mem_cgroup_disabled())
818 return;
819 mem_cgroup_del_lru_list(page, from);
820 mem_cgroup_add_lru_list(page, to);
821 }
822
823 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
824 {
825 int ret;
826 struct mem_cgroup *curr = NULL;
827
828 task_lock(task);
829 rcu_read_lock();
830 curr = try_get_mem_cgroup_from_mm(task->mm);
831 rcu_read_unlock();
832 task_unlock(task);
833 if (!curr)
834 return 0;
835 /*
836 * We should check use_hierarchy of "mem" not "curr". Because checking
837 * use_hierarchy of "curr" here make this function true if hierarchy is
838 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
839 * hierarchy(even if use_hierarchy is disabled in "mem").
840 */
841 if (mem->use_hierarchy)
842 ret = css_is_ancestor(&curr->css, &mem->css);
843 else
844 ret = (curr == mem);
845 css_put(&curr->css);
846 return ret;
847 }
848
849 /*
850 * prev_priority control...this will be used in memory reclaim path.
851 */
852 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
853 {
854 int prev_priority;
855
856 spin_lock(&mem->reclaim_param_lock);
857 prev_priority = mem->prev_priority;
858 spin_unlock(&mem->reclaim_param_lock);
859
860 return prev_priority;
861 }
862
863 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
864 {
865 spin_lock(&mem->reclaim_param_lock);
866 if (priority < mem->prev_priority)
867 mem->prev_priority = priority;
868 spin_unlock(&mem->reclaim_param_lock);
869 }
870
871 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
872 {
873 spin_lock(&mem->reclaim_param_lock);
874 mem->prev_priority = priority;
875 spin_unlock(&mem->reclaim_param_lock);
876 }
877
878 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
879 {
880 unsigned long active;
881 unsigned long inactive;
882 unsigned long gb;
883 unsigned long inactive_ratio;
884
885 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
886 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
887
888 gb = (inactive + active) >> (30 - PAGE_SHIFT);
889 if (gb)
890 inactive_ratio = int_sqrt(10 * gb);
891 else
892 inactive_ratio = 1;
893
894 if (present_pages) {
895 present_pages[0] = inactive;
896 present_pages[1] = active;
897 }
898
899 return inactive_ratio;
900 }
901
902 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
903 {
904 unsigned long active;
905 unsigned long inactive;
906 unsigned long present_pages[2];
907 unsigned long inactive_ratio;
908
909 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
910
911 inactive = present_pages[0];
912 active = present_pages[1];
913
914 if (inactive * inactive_ratio < active)
915 return 1;
916
917 return 0;
918 }
919
920 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
921 {
922 unsigned long active;
923 unsigned long inactive;
924
925 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
926 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
927
928 return (active > inactive);
929 }
930
931 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
932 struct zone *zone,
933 enum lru_list lru)
934 {
935 int nid = zone->zone_pgdat->node_id;
936 int zid = zone_idx(zone);
937 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
938
939 return MEM_CGROUP_ZSTAT(mz, lru);
940 }
941
942 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
943 struct zone *zone)
944 {
945 int nid = zone->zone_pgdat->node_id;
946 int zid = zone_idx(zone);
947 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
948
949 return &mz->reclaim_stat;
950 }
951
952 struct zone_reclaim_stat *
953 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
954 {
955 struct page_cgroup *pc;
956 struct mem_cgroup_per_zone *mz;
957
958 if (mem_cgroup_disabled())
959 return NULL;
960
961 pc = lookup_page_cgroup(page);
962 /*
963 * Used bit is set without atomic ops but after smp_wmb().
964 * For making pc->mem_cgroup visible, insert smp_rmb() here.
965 */
966 smp_rmb();
967 if (!PageCgroupUsed(pc))
968 return NULL;
969
970 mz = page_cgroup_zoneinfo(pc);
971 if (!mz)
972 return NULL;
973
974 return &mz->reclaim_stat;
975 }
976
977 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
978 struct list_head *dst,
979 unsigned long *scanned, int order,
980 int mode, struct zone *z,
981 struct mem_cgroup *mem_cont,
982 int active, int file)
983 {
984 unsigned long nr_taken = 0;
985 struct page *page;
986 unsigned long scan;
987 LIST_HEAD(pc_list);
988 struct list_head *src;
989 struct page_cgroup *pc, *tmp;
990 int nid = z->zone_pgdat->node_id;
991 int zid = zone_idx(z);
992 struct mem_cgroup_per_zone *mz;
993 int lru = LRU_FILE * file + active;
994 int ret;
995
996 BUG_ON(!mem_cont);
997 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
998 src = &mz->lists[lru];
999
1000 scan = 0;
1001 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1002 if (scan >= nr_to_scan)
1003 break;
1004
1005 page = pc->page;
1006 if (unlikely(!PageCgroupUsed(pc)))
1007 continue;
1008 if (unlikely(!PageLRU(page)))
1009 continue;
1010
1011 scan++;
1012 ret = __isolate_lru_page(page, mode, file);
1013 switch (ret) {
1014 case 0:
1015 list_move(&page->lru, dst);
1016 mem_cgroup_del_lru(page);
1017 nr_taken++;
1018 break;
1019 case -EBUSY:
1020 /* we don't affect global LRU but rotate in our LRU */
1021 mem_cgroup_rotate_lru_list(page, page_lru(page));
1022 break;
1023 default:
1024 break;
1025 }
1026 }
1027
1028 *scanned = scan;
1029 return nr_taken;
1030 }
1031
1032 #define mem_cgroup_from_res_counter(counter, member) \
1033 container_of(counter, struct mem_cgroup, member)
1034
1035 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1036 {
1037 if (do_swap_account) {
1038 if (res_counter_check_under_limit(&mem->res) &&
1039 res_counter_check_under_limit(&mem->memsw))
1040 return true;
1041 } else
1042 if (res_counter_check_under_limit(&mem->res))
1043 return true;
1044 return false;
1045 }
1046
1047 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1048 {
1049 struct cgroup *cgrp = memcg->css.cgroup;
1050 unsigned int swappiness;
1051
1052 /* root ? */
1053 if (cgrp->parent == NULL)
1054 return vm_swappiness;
1055
1056 spin_lock(&memcg->reclaim_param_lock);
1057 swappiness = memcg->swappiness;
1058 spin_unlock(&memcg->reclaim_param_lock);
1059
1060 return swappiness;
1061 }
1062
1063 static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
1064 {
1065 int *val = data;
1066 (*val)++;
1067 return 0;
1068 }
1069
1070 /**
1071 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1072 * @memcg: The memory cgroup that went over limit
1073 * @p: Task that is going to be killed
1074 *
1075 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1076 * enabled
1077 */
1078 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1079 {
1080 struct cgroup *task_cgrp;
1081 struct cgroup *mem_cgrp;
1082 /*
1083 * Need a buffer in BSS, can't rely on allocations. The code relies
1084 * on the assumption that OOM is serialized for memory controller.
1085 * If this assumption is broken, revisit this code.
1086 */
1087 static char memcg_name[PATH_MAX];
1088 int ret;
1089
1090 if (!memcg || !p)
1091 return;
1092
1093
1094 rcu_read_lock();
1095
1096 mem_cgrp = memcg->css.cgroup;
1097 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1098
1099 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1100 if (ret < 0) {
1101 /*
1102 * Unfortunately, we are unable to convert to a useful name
1103 * But we'll still print out the usage information
1104 */
1105 rcu_read_unlock();
1106 goto done;
1107 }
1108 rcu_read_unlock();
1109
1110 printk(KERN_INFO "Task in %s killed", memcg_name);
1111
1112 rcu_read_lock();
1113 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1114 if (ret < 0) {
1115 rcu_read_unlock();
1116 goto done;
1117 }
1118 rcu_read_unlock();
1119
1120 /*
1121 * Continues from above, so we don't need an KERN_ level
1122 */
1123 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1124 done:
1125
1126 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1127 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1128 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1129 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1130 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1131 "failcnt %llu\n",
1132 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1133 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1134 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1135 }
1136
1137 /*
1138 * This function returns the number of memcg under hierarchy tree. Returns
1139 * 1(self count) if no children.
1140 */
1141 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1142 {
1143 int num = 0;
1144 mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
1145 return num;
1146 }
1147
1148 /*
1149 * Visit the first child (need not be the first child as per the ordering
1150 * of the cgroup list, since we track last_scanned_child) of @mem and use
1151 * that to reclaim free pages from.
1152 */
1153 static struct mem_cgroup *
1154 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1155 {
1156 struct mem_cgroup *ret = NULL;
1157 struct cgroup_subsys_state *css;
1158 int nextid, found;
1159
1160 if (!root_mem->use_hierarchy) {
1161 css_get(&root_mem->css);
1162 ret = root_mem;
1163 }
1164
1165 while (!ret) {
1166 rcu_read_lock();
1167 nextid = root_mem->last_scanned_child + 1;
1168 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1169 &found);
1170 if (css && css_tryget(css))
1171 ret = container_of(css, struct mem_cgroup, css);
1172
1173 rcu_read_unlock();
1174 /* Updates scanning parameter */
1175 spin_lock(&root_mem->reclaim_param_lock);
1176 if (!css) {
1177 /* this means start scan from ID:1 */
1178 root_mem->last_scanned_child = 0;
1179 } else
1180 root_mem->last_scanned_child = found;
1181 spin_unlock(&root_mem->reclaim_param_lock);
1182 }
1183
1184 return ret;
1185 }
1186
1187 /*
1188 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1189 * we reclaimed from, so that we don't end up penalizing one child extensively
1190 * based on its position in the children list.
1191 *
1192 * root_mem is the original ancestor that we've been reclaim from.
1193 *
1194 * We give up and return to the caller when we visit root_mem twice.
1195 * (other groups can be removed while we're walking....)
1196 *
1197 * If shrink==true, for avoiding to free too much, this returns immedieately.
1198 */
1199 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1200 struct zone *zone,
1201 gfp_t gfp_mask,
1202 unsigned long reclaim_options)
1203 {
1204 struct mem_cgroup *victim;
1205 int ret, total = 0;
1206 int loop = 0;
1207 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1208 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1209 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1210 unsigned long excess = mem_cgroup_get_excess(root_mem);
1211
1212 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1213 if (root_mem->memsw_is_minimum)
1214 noswap = true;
1215
1216 while (1) {
1217 victim = mem_cgroup_select_victim(root_mem);
1218 if (victim == root_mem) {
1219 loop++;
1220 if (loop >= 1)
1221 drain_all_stock_async();
1222 if (loop >= 2) {
1223 /*
1224 * If we have not been able to reclaim
1225 * anything, it might because there are
1226 * no reclaimable pages under this hierarchy
1227 */
1228 if (!check_soft || !total) {
1229 css_put(&victim->css);
1230 break;
1231 }
1232 /*
1233 * We want to do more targetted reclaim.
1234 * excess >> 2 is not to excessive so as to
1235 * reclaim too much, nor too less that we keep
1236 * coming back to reclaim from this cgroup
1237 */
1238 if (total >= (excess >> 2) ||
1239 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1240 css_put(&victim->css);
1241 break;
1242 }
1243 }
1244 }
1245 if (!mem_cgroup_local_usage(victim)) {
1246 /* this cgroup's local usage == 0 */
1247 css_put(&victim->css);
1248 continue;
1249 }
1250 /* we use swappiness of local cgroup */
1251 if (check_soft)
1252 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1253 noswap, get_swappiness(victim), zone,
1254 zone->zone_pgdat->node_id);
1255 else
1256 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1257 noswap, get_swappiness(victim));
1258 css_put(&victim->css);
1259 /*
1260 * At shrinking usage, we can't check we should stop here or
1261 * reclaim more. It's depends on callers. last_scanned_child
1262 * will work enough for keeping fairness under tree.
1263 */
1264 if (shrink)
1265 return ret;
1266 total += ret;
1267 if (check_soft) {
1268 if (res_counter_check_under_soft_limit(&root_mem->res))
1269 return total;
1270 } else if (mem_cgroup_check_under_limit(root_mem))
1271 return 1 + total;
1272 }
1273 return total;
1274 }
1275
1276 static int mem_cgroup_oom_lock_cb(struct mem_cgroup *mem, void *data)
1277 {
1278 int *val = (int *)data;
1279 int x;
1280 /*
1281 * Logically, we can stop scanning immediately when we find
1282 * a memcg is already locked. But condidering unlock ops and
1283 * creation/removal of memcg, scan-all is simple operation.
1284 */
1285 x = atomic_inc_return(&mem->oom_lock);
1286 *val = max(x, *val);
1287 return 0;
1288 }
1289 /*
1290 * Check OOM-Killer is already running under our hierarchy.
1291 * If someone is running, return false.
1292 */
1293 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1294 {
1295 int lock_count = 0;
1296
1297 mem_cgroup_walk_tree(mem, &lock_count, mem_cgroup_oom_lock_cb);
1298
1299 if (lock_count == 1)
1300 return true;
1301 return false;
1302 }
1303
1304 static int mem_cgroup_oom_unlock_cb(struct mem_cgroup *mem, void *data)
1305 {
1306 /*
1307 * When a new child is created while the hierarchy is under oom,
1308 * mem_cgroup_oom_lock() may not be called. We have to use
1309 * atomic_add_unless() here.
1310 */
1311 atomic_add_unless(&mem->oom_lock, -1, 0);
1312 return 0;
1313 }
1314
1315 static void mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1316 {
1317 mem_cgroup_walk_tree(mem, NULL, mem_cgroup_oom_unlock_cb);
1318 }
1319
1320 static DEFINE_MUTEX(memcg_oom_mutex);
1321 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1322
1323 struct oom_wait_info {
1324 struct mem_cgroup *mem;
1325 wait_queue_t wait;
1326 };
1327
1328 static int memcg_oom_wake_function(wait_queue_t *wait,
1329 unsigned mode, int sync, void *arg)
1330 {
1331 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1332 struct oom_wait_info *oom_wait_info;
1333
1334 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1335
1336 if (oom_wait_info->mem == wake_mem)
1337 goto wakeup;
1338 /* if no hierarchy, no match */
1339 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1340 return 0;
1341 /*
1342 * Both of oom_wait_info->mem and wake_mem are stable under us.
1343 * Then we can use css_is_ancestor without taking care of RCU.
1344 */
1345 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1346 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1347 return 0;
1348
1349 wakeup:
1350 return autoremove_wake_function(wait, mode, sync, arg);
1351 }
1352
1353 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1354 {
1355 /* for filtering, pass "mem" as argument. */
1356 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1357 }
1358
1359 static void memcg_oom_recover(struct mem_cgroup *mem)
1360 {
1361 if (mem->oom_kill_disable && atomic_read(&mem->oom_lock))
1362 memcg_wakeup_oom(mem);
1363 }
1364
1365 /*
1366 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1367 */
1368 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1369 {
1370 struct oom_wait_info owait;
1371 bool locked, need_to_kill;
1372
1373 owait.mem = mem;
1374 owait.wait.flags = 0;
1375 owait.wait.func = memcg_oom_wake_function;
1376 owait.wait.private = current;
1377 INIT_LIST_HEAD(&owait.wait.task_list);
1378 need_to_kill = true;
1379 /* At first, try to OOM lock hierarchy under mem.*/
1380 mutex_lock(&memcg_oom_mutex);
1381 locked = mem_cgroup_oom_lock(mem);
1382 /*
1383 * Even if signal_pending(), we can't quit charge() loop without
1384 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1385 * under OOM is always welcomed, use TASK_KILLABLE here.
1386 */
1387 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1388 if (!locked || mem->oom_kill_disable)
1389 need_to_kill = false;
1390 if (locked)
1391 mem_cgroup_oom_notify(mem);
1392 mutex_unlock(&memcg_oom_mutex);
1393
1394 if (need_to_kill) {
1395 finish_wait(&memcg_oom_waitq, &owait.wait);
1396 mem_cgroup_out_of_memory(mem, mask);
1397 } else {
1398 schedule();
1399 finish_wait(&memcg_oom_waitq, &owait.wait);
1400 }
1401 mutex_lock(&memcg_oom_mutex);
1402 mem_cgroup_oom_unlock(mem);
1403 memcg_wakeup_oom(mem);
1404 mutex_unlock(&memcg_oom_mutex);
1405
1406 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1407 return false;
1408 /* Give chance to dying process */
1409 schedule_timeout(1);
1410 return true;
1411 }
1412
1413 /*
1414 * Currently used to update mapped file statistics, but the routine can be
1415 * generalized to update other statistics as well.
1416 */
1417 void mem_cgroup_update_file_mapped(struct page *page, int val)
1418 {
1419 struct mem_cgroup *mem;
1420 struct page_cgroup *pc;
1421
1422 pc = lookup_page_cgroup(page);
1423 if (unlikely(!pc))
1424 return;
1425
1426 lock_page_cgroup(pc);
1427 mem = pc->mem_cgroup;
1428 if (!mem || !PageCgroupUsed(pc))
1429 goto done;
1430
1431 /*
1432 * Preemption is already disabled. We can use __this_cpu_xxx
1433 */
1434 if (val > 0) {
1435 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1436 SetPageCgroupFileMapped(pc);
1437 } else {
1438 __this_cpu_dec(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1439 ClearPageCgroupFileMapped(pc);
1440 }
1441
1442 done:
1443 unlock_page_cgroup(pc);
1444 }
1445
1446 /*
1447 * size of first charge trial. "32" comes from vmscan.c's magic value.
1448 * TODO: maybe necessary to use big numbers in big irons.
1449 */
1450 #define CHARGE_SIZE (32 * PAGE_SIZE)
1451 struct memcg_stock_pcp {
1452 struct mem_cgroup *cached; /* this never be root cgroup */
1453 int charge;
1454 struct work_struct work;
1455 };
1456 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1457 static atomic_t memcg_drain_count;
1458
1459 /*
1460 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1461 * from local stock and true is returned. If the stock is 0 or charges from a
1462 * cgroup which is not current target, returns false. This stock will be
1463 * refilled.
1464 */
1465 static bool consume_stock(struct mem_cgroup *mem)
1466 {
1467 struct memcg_stock_pcp *stock;
1468 bool ret = true;
1469
1470 stock = &get_cpu_var(memcg_stock);
1471 if (mem == stock->cached && stock->charge)
1472 stock->charge -= PAGE_SIZE;
1473 else /* need to call res_counter_charge */
1474 ret = false;
1475 put_cpu_var(memcg_stock);
1476 return ret;
1477 }
1478
1479 /*
1480 * Returns stocks cached in percpu to res_counter and reset cached information.
1481 */
1482 static void drain_stock(struct memcg_stock_pcp *stock)
1483 {
1484 struct mem_cgroup *old = stock->cached;
1485
1486 if (stock->charge) {
1487 res_counter_uncharge(&old->res, stock->charge);
1488 if (do_swap_account)
1489 res_counter_uncharge(&old->memsw, stock->charge);
1490 }
1491 stock->cached = NULL;
1492 stock->charge = 0;
1493 }
1494
1495 /*
1496 * This must be called under preempt disabled or must be called by
1497 * a thread which is pinned to local cpu.
1498 */
1499 static void drain_local_stock(struct work_struct *dummy)
1500 {
1501 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1502 drain_stock(stock);
1503 }
1504
1505 /*
1506 * Cache charges(val) which is from res_counter, to local per_cpu area.
1507 * This will be consumed by consume_stock() function, later.
1508 */
1509 static void refill_stock(struct mem_cgroup *mem, int val)
1510 {
1511 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1512
1513 if (stock->cached != mem) { /* reset if necessary */
1514 drain_stock(stock);
1515 stock->cached = mem;
1516 }
1517 stock->charge += val;
1518 put_cpu_var(memcg_stock);
1519 }
1520
1521 /*
1522 * Tries to drain stocked charges in other cpus. This function is asynchronous
1523 * and just put a work per cpu for draining localy on each cpu. Caller can
1524 * expects some charges will be back to res_counter later but cannot wait for
1525 * it.
1526 */
1527 static void drain_all_stock_async(void)
1528 {
1529 int cpu;
1530 /* This function is for scheduling "drain" in asynchronous way.
1531 * The result of "drain" is not directly handled by callers. Then,
1532 * if someone is calling drain, we don't have to call drain more.
1533 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1534 * there is a race. We just do loose check here.
1535 */
1536 if (atomic_read(&memcg_drain_count))
1537 return;
1538 /* Notify other cpus that system-wide "drain" is running */
1539 atomic_inc(&memcg_drain_count);
1540 get_online_cpus();
1541 for_each_online_cpu(cpu) {
1542 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1543 schedule_work_on(cpu, &stock->work);
1544 }
1545 put_online_cpus();
1546 atomic_dec(&memcg_drain_count);
1547 /* We don't wait for flush_work */
1548 }
1549
1550 /* This is a synchronous drain interface. */
1551 static void drain_all_stock_sync(void)
1552 {
1553 /* called when force_empty is called */
1554 atomic_inc(&memcg_drain_count);
1555 schedule_on_each_cpu(drain_local_stock);
1556 atomic_dec(&memcg_drain_count);
1557 }
1558
1559 static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
1560 unsigned long action,
1561 void *hcpu)
1562 {
1563 int cpu = (unsigned long)hcpu;
1564 struct memcg_stock_pcp *stock;
1565
1566 if (action != CPU_DEAD)
1567 return NOTIFY_OK;
1568 stock = &per_cpu(memcg_stock, cpu);
1569 drain_stock(stock);
1570 return NOTIFY_OK;
1571 }
1572
1573 /*
1574 * Unlike exported interface, "oom" parameter is added. if oom==true,
1575 * oom-killer can be invoked.
1576 */
1577 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1578 gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
1579 {
1580 struct mem_cgroup *mem, *mem_over_limit;
1581 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1582 struct res_counter *fail_res;
1583 int csize = CHARGE_SIZE;
1584
1585 /*
1586 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1587 * in system level. So, allow to go ahead dying process in addition to
1588 * MEMDIE process.
1589 */
1590 if (unlikely(test_thread_flag(TIF_MEMDIE)
1591 || fatal_signal_pending(current)))
1592 goto bypass;
1593
1594 /*
1595 * We always charge the cgroup the mm_struct belongs to.
1596 * The mm_struct's mem_cgroup changes on task migration if the
1597 * thread group leader migrates. It's possible that mm is not
1598 * set, if so charge the init_mm (happens for pagecache usage).
1599 */
1600 mem = *memcg;
1601 if (likely(!mem)) {
1602 mem = try_get_mem_cgroup_from_mm(mm);
1603 *memcg = mem;
1604 } else {
1605 css_get(&mem->css);
1606 }
1607 if (unlikely(!mem))
1608 return 0;
1609
1610 VM_BUG_ON(css_is_removed(&mem->css));
1611 if (mem_cgroup_is_root(mem))
1612 goto done;
1613
1614 while (1) {
1615 int ret = 0;
1616 unsigned long flags = 0;
1617
1618 if (consume_stock(mem))
1619 goto done;
1620
1621 ret = res_counter_charge(&mem->res, csize, &fail_res);
1622 if (likely(!ret)) {
1623 if (!do_swap_account)
1624 break;
1625 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1626 if (likely(!ret))
1627 break;
1628 /* mem+swap counter fails */
1629 res_counter_uncharge(&mem->res, csize);
1630 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1631 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1632 memsw);
1633 } else
1634 /* mem counter fails */
1635 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1636 res);
1637
1638 /* reduce request size and retry */
1639 if (csize > PAGE_SIZE) {
1640 csize = PAGE_SIZE;
1641 continue;
1642 }
1643 if (!(gfp_mask & __GFP_WAIT))
1644 goto nomem;
1645
1646 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1647 gfp_mask, flags);
1648 if (ret)
1649 continue;
1650
1651 /*
1652 * try_to_free_mem_cgroup_pages() might not give us a full
1653 * picture of reclaim. Some pages are reclaimed and might be
1654 * moved to swap cache or just unmapped from the cgroup.
1655 * Check the limit again to see if the reclaim reduced the
1656 * current usage of the cgroup before giving up
1657 *
1658 */
1659 if (mem_cgroup_check_under_limit(mem_over_limit))
1660 continue;
1661
1662 /* try to avoid oom while someone is moving charge */
1663 if (mc.moving_task && current != mc.moving_task) {
1664 struct mem_cgroup *from, *to;
1665 bool do_continue = false;
1666 /*
1667 * There is a small race that "from" or "to" can be
1668 * freed by rmdir, so we use css_tryget().
1669 */
1670 from = mc.from;
1671 to = mc.to;
1672 if (from && css_tryget(&from->css)) {
1673 if (mem_over_limit->use_hierarchy)
1674 do_continue = css_is_ancestor(
1675 &from->css,
1676 &mem_over_limit->css);
1677 else
1678 do_continue = (from == mem_over_limit);
1679 css_put(&from->css);
1680 }
1681 if (!do_continue && to && css_tryget(&to->css)) {
1682 if (mem_over_limit->use_hierarchy)
1683 do_continue = css_is_ancestor(
1684 &to->css,
1685 &mem_over_limit->css);
1686 else
1687 do_continue = (to == mem_over_limit);
1688 css_put(&to->css);
1689 }
1690 if (do_continue) {
1691 DEFINE_WAIT(wait);
1692 prepare_to_wait(&mc.waitq, &wait,
1693 TASK_INTERRUPTIBLE);
1694 /* moving charge context might have finished. */
1695 if (mc.moving_task)
1696 schedule();
1697 finish_wait(&mc.waitq, &wait);
1698 continue;
1699 }
1700 }
1701
1702 if (!nr_retries--) {
1703 if (!oom)
1704 goto nomem;
1705 if (mem_cgroup_handle_oom(mem_over_limit, gfp_mask)) {
1706 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1707 continue;
1708 }
1709 /* When we reach here, current task is dying .*/
1710 css_put(&mem->css);
1711 goto bypass;
1712 }
1713 }
1714 if (csize > PAGE_SIZE)
1715 refill_stock(mem, csize - PAGE_SIZE);
1716 done:
1717 return 0;
1718 nomem:
1719 css_put(&mem->css);
1720 return -ENOMEM;
1721 bypass:
1722 *memcg = NULL;
1723 return 0;
1724 }
1725
1726 /*
1727 * Somemtimes we have to undo a charge we got by try_charge().
1728 * This function is for that and do uncharge, put css's refcnt.
1729 * gotten by try_charge().
1730 */
1731 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
1732 unsigned long count)
1733 {
1734 if (!mem_cgroup_is_root(mem)) {
1735 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
1736 if (do_swap_account)
1737 res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
1738 VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
1739 WARN_ON_ONCE(count > INT_MAX);
1740 __css_put(&mem->css, (int)count);
1741 }
1742 /* we don't need css_put for root */
1743 }
1744
1745 static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
1746 {
1747 __mem_cgroup_cancel_charge(mem, 1);
1748 }
1749
1750 /*
1751 * A helper function to get mem_cgroup from ID. must be called under
1752 * rcu_read_lock(). The caller must check css_is_removed() or some if
1753 * it's concern. (dropping refcnt from swap can be called against removed
1754 * memcg.)
1755 */
1756 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1757 {
1758 struct cgroup_subsys_state *css;
1759
1760 /* ID 0 is unused ID */
1761 if (!id)
1762 return NULL;
1763 css = css_lookup(&mem_cgroup_subsys, id);
1764 if (!css)
1765 return NULL;
1766 return container_of(css, struct mem_cgroup, css);
1767 }
1768
1769 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
1770 {
1771 struct mem_cgroup *mem = NULL;
1772 struct page_cgroup *pc;
1773 unsigned short id;
1774 swp_entry_t ent;
1775
1776 VM_BUG_ON(!PageLocked(page));
1777
1778 pc = lookup_page_cgroup(page);
1779 lock_page_cgroup(pc);
1780 if (PageCgroupUsed(pc)) {
1781 mem = pc->mem_cgroup;
1782 if (mem && !css_tryget(&mem->css))
1783 mem = NULL;
1784 } else if (PageSwapCache(page)) {
1785 ent.val = page_private(page);
1786 id = lookup_swap_cgroup(ent);
1787 rcu_read_lock();
1788 mem = mem_cgroup_lookup(id);
1789 if (mem && !css_tryget(&mem->css))
1790 mem = NULL;
1791 rcu_read_unlock();
1792 }
1793 unlock_page_cgroup(pc);
1794 return mem;
1795 }
1796
1797 /*
1798 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1799 * USED state. If already USED, uncharge and return.
1800 */
1801
1802 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1803 struct page_cgroup *pc,
1804 enum charge_type ctype)
1805 {
1806 /* try_charge() can return NULL to *memcg, taking care of it. */
1807 if (!mem)
1808 return;
1809
1810 lock_page_cgroup(pc);
1811 if (unlikely(PageCgroupUsed(pc))) {
1812 unlock_page_cgroup(pc);
1813 mem_cgroup_cancel_charge(mem);
1814 return;
1815 }
1816
1817 pc->mem_cgroup = mem;
1818 /*
1819 * We access a page_cgroup asynchronously without lock_page_cgroup().
1820 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
1821 * is accessed after testing USED bit. To make pc->mem_cgroup visible
1822 * before USED bit, we need memory barrier here.
1823 * See mem_cgroup_add_lru_list(), etc.
1824 */
1825 smp_wmb();
1826 switch (ctype) {
1827 case MEM_CGROUP_CHARGE_TYPE_CACHE:
1828 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
1829 SetPageCgroupCache(pc);
1830 SetPageCgroupUsed(pc);
1831 break;
1832 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1833 ClearPageCgroupCache(pc);
1834 SetPageCgroupUsed(pc);
1835 break;
1836 default:
1837 break;
1838 }
1839
1840 mem_cgroup_charge_statistics(mem, pc, true);
1841
1842 unlock_page_cgroup(pc);
1843 /*
1844 * "charge_statistics" updated event counter. Then, check it.
1845 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
1846 * if they exceeds softlimit.
1847 */
1848 memcg_check_events(mem, pc->page);
1849 }
1850
1851 /**
1852 * __mem_cgroup_move_account - move account of the page
1853 * @pc: page_cgroup of the page.
1854 * @from: mem_cgroup which the page is moved from.
1855 * @to: mem_cgroup which the page is moved to. @from != @to.
1856 * @uncharge: whether we should call uncharge and css_put against @from.
1857 *
1858 * The caller must confirm following.
1859 * - page is not on LRU (isolate_page() is useful.)
1860 * - the pc is locked, used, and ->mem_cgroup points to @from.
1861 *
1862 * This function doesn't do "charge" nor css_get to new cgroup. It should be
1863 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
1864 * true, this function does "uncharge" from old cgroup, but it doesn't if
1865 * @uncharge is false, so a caller should do "uncharge".
1866 */
1867
1868 static void __mem_cgroup_move_account(struct page_cgroup *pc,
1869 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1870 {
1871 VM_BUG_ON(from == to);
1872 VM_BUG_ON(PageLRU(pc->page));
1873 VM_BUG_ON(!PageCgroupLocked(pc));
1874 VM_BUG_ON(!PageCgroupUsed(pc));
1875 VM_BUG_ON(pc->mem_cgroup != from);
1876
1877 if (PageCgroupFileMapped(pc)) {
1878 /* Update mapped_file data for mem_cgroup */
1879 preempt_disable();
1880 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1881 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1882 preempt_enable();
1883 }
1884 mem_cgroup_charge_statistics(from, pc, false);
1885 if (uncharge)
1886 /* This is not "cancel", but cancel_charge does all we need. */
1887 mem_cgroup_cancel_charge(from);
1888
1889 /* caller should have done css_get */
1890 pc->mem_cgroup = to;
1891 mem_cgroup_charge_statistics(to, pc, true);
1892 /*
1893 * We charges against "to" which may not have any tasks. Then, "to"
1894 * can be under rmdir(). But in current implementation, caller of
1895 * this function is just force_empty() and move charge, so it's
1896 * garanteed that "to" is never removed. So, we don't check rmdir
1897 * status here.
1898 */
1899 }
1900
1901 /*
1902 * check whether the @pc is valid for moving account and call
1903 * __mem_cgroup_move_account()
1904 */
1905 static int mem_cgroup_move_account(struct page_cgroup *pc,
1906 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1907 {
1908 int ret = -EINVAL;
1909 lock_page_cgroup(pc);
1910 if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
1911 __mem_cgroup_move_account(pc, from, to, uncharge);
1912 ret = 0;
1913 }
1914 unlock_page_cgroup(pc);
1915 /*
1916 * check events
1917 */
1918 memcg_check_events(to, pc->page);
1919 memcg_check_events(from, pc->page);
1920 return ret;
1921 }
1922
1923 /*
1924 * move charges to its parent.
1925 */
1926
1927 static int mem_cgroup_move_parent(struct page_cgroup *pc,
1928 struct mem_cgroup *child,
1929 gfp_t gfp_mask)
1930 {
1931 struct page *page = pc->page;
1932 struct cgroup *cg = child->css.cgroup;
1933 struct cgroup *pcg = cg->parent;
1934 struct mem_cgroup *parent;
1935 int ret;
1936
1937 /* Is ROOT ? */
1938 if (!pcg)
1939 return -EINVAL;
1940
1941 ret = -EBUSY;
1942 if (!get_page_unless_zero(page))
1943 goto out;
1944 if (isolate_lru_page(page))
1945 goto put;
1946
1947 parent = mem_cgroup_from_cont(pcg);
1948 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
1949 if (ret || !parent)
1950 goto put_back;
1951
1952 ret = mem_cgroup_move_account(pc, child, parent, true);
1953 if (ret)
1954 mem_cgroup_cancel_charge(parent);
1955 put_back:
1956 putback_lru_page(page);
1957 put:
1958 put_page(page);
1959 out:
1960 return ret;
1961 }
1962
1963 /*
1964 * Charge the memory controller for page usage.
1965 * Return
1966 * 0 if the charge was successful
1967 * < 0 if the cgroup is over its limit
1968 */
1969 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1970 gfp_t gfp_mask, enum charge_type ctype,
1971 struct mem_cgroup *memcg)
1972 {
1973 struct mem_cgroup *mem;
1974 struct page_cgroup *pc;
1975 int ret;
1976
1977 pc = lookup_page_cgroup(page);
1978 /* can happen at boot */
1979 if (unlikely(!pc))
1980 return 0;
1981 prefetchw(pc);
1982
1983 mem = memcg;
1984 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1985 if (ret || !mem)
1986 return ret;
1987
1988 __mem_cgroup_commit_charge(mem, pc, ctype);
1989 return 0;
1990 }
1991
1992 int mem_cgroup_newpage_charge(struct page *page,
1993 struct mm_struct *mm, gfp_t gfp_mask)
1994 {
1995 if (mem_cgroup_disabled())
1996 return 0;
1997 if (PageCompound(page))
1998 return 0;
1999 /*
2000 * If already mapped, we don't have to account.
2001 * If page cache, page->mapping has address_space.
2002 * But page->mapping may have out-of-use anon_vma pointer,
2003 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2004 * is NULL.
2005 */
2006 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2007 return 0;
2008 if (unlikely(!mm))
2009 mm = &init_mm;
2010 return mem_cgroup_charge_common(page, mm, gfp_mask,
2011 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
2012 }
2013
2014 static void
2015 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2016 enum charge_type ctype);
2017
2018 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2019 gfp_t gfp_mask)
2020 {
2021 struct mem_cgroup *mem = NULL;
2022 int ret;
2023
2024 if (mem_cgroup_disabled())
2025 return 0;
2026 if (PageCompound(page))
2027 return 0;
2028 /*
2029 * Corner case handling. This is called from add_to_page_cache()
2030 * in usual. But some FS (shmem) precharges this page before calling it
2031 * and call add_to_page_cache() with GFP_NOWAIT.
2032 *
2033 * For GFP_NOWAIT case, the page may be pre-charged before calling
2034 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2035 * charge twice. (It works but has to pay a bit larger cost.)
2036 * And when the page is SwapCache, it should take swap information
2037 * into account. This is under lock_page() now.
2038 */
2039 if (!(gfp_mask & __GFP_WAIT)) {
2040 struct page_cgroup *pc;
2041
2042
2043 pc = lookup_page_cgroup(page);
2044 if (!pc)
2045 return 0;
2046 lock_page_cgroup(pc);
2047 if (PageCgroupUsed(pc)) {
2048 unlock_page_cgroup(pc);
2049 return 0;
2050 }
2051 unlock_page_cgroup(pc);
2052 }
2053
2054 if (unlikely(!mm && !mem))
2055 mm = &init_mm;
2056
2057 if (page_is_file_cache(page))
2058 return mem_cgroup_charge_common(page, mm, gfp_mask,
2059 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
2060
2061 /* shmem */
2062 if (PageSwapCache(page)) {
2063 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2064 if (!ret)
2065 __mem_cgroup_commit_charge_swapin(page, mem,
2066 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2067 } else
2068 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2069 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
2070
2071 return ret;
2072 }
2073
2074 /*
2075 * While swap-in, try_charge -> commit or cancel, the page is locked.
2076 * And when try_charge() successfully returns, one refcnt to memcg without
2077 * struct page_cgroup is acquired. This refcnt will be consumed by
2078 * "commit()" or removed by "cancel()"
2079 */
2080 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2081 struct page *page,
2082 gfp_t mask, struct mem_cgroup **ptr)
2083 {
2084 struct mem_cgroup *mem;
2085 int ret;
2086
2087 if (mem_cgroup_disabled())
2088 return 0;
2089
2090 if (!do_swap_account)
2091 goto charge_cur_mm;
2092 /*
2093 * A racing thread's fault, or swapoff, may have already updated
2094 * the pte, and even removed page from swap cache: in those cases
2095 * do_swap_page()'s pte_same() test will fail; but there's also a
2096 * KSM case which does need to charge the page.
2097 */
2098 if (!PageSwapCache(page))
2099 goto charge_cur_mm;
2100 mem = try_get_mem_cgroup_from_page(page);
2101 if (!mem)
2102 goto charge_cur_mm;
2103 *ptr = mem;
2104 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
2105 /* drop extra refcnt from tryget */
2106 css_put(&mem->css);
2107 return ret;
2108 charge_cur_mm:
2109 if (unlikely(!mm))
2110 mm = &init_mm;
2111 return __mem_cgroup_try_charge(mm, mask, ptr, true);
2112 }
2113
2114 static void
2115 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2116 enum charge_type ctype)
2117 {
2118 struct page_cgroup *pc;
2119
2120 if (mem_cgroup_disabled())
2121 return;
2122 if (!ptr)
2123 return;
2124 cgroup_exclude_rmdir(&ptr->css);
2125 pc = lookup_page_cgroup(page);
2126 mem_cgroup_lru_del_before_commit_swapcache(page);
2127 __mem_cgroup_commit_charge(ptr, pc, ctype);
2128 mem_cgroup_lru_add_after_commit_swapcache(page);
2129 /*
2130 * Now swap is on-memory. This means this page may be
2131 * counted both as mem and swap....double count.
2132 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2133 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2134 * may call delete_from_swap_cache() before reach here.
2135 */
2136 if (do_swap_account && PageSwapCache(page)) {
2137 swp_entry_t ent = {.val = page_private(page)};
2138 unsigned short id;
2139 struct mem_cgroup *memcg;
2140
2141 id = swap_cgroup_record(ent, 0);
2142 rcu_read_lock();
2143 memcg = mem_cgroup_lookup(id);
2144 if (memcg) {
2145 /*
2146 * This recorded memcg can be obsolete one. So, avoid
2147 * calling css_tryget
2148 */
2149 if (!mem_cgroup_is_root(memcg))
2150 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2151 mem_cgroup_swap_statistics(memcg, false);
2152 mem_cgroup_put(memcg);
2153 }
2154 rcu_read_unlock();
2155 }
2156 /*
2157 * At swapin, we may charge account against cgroup which has no tasks.
2158 * So, rmdir()->pre_destroy() can be called while we do this charge.
2159 * In that case, we need to call pre_destroy() again. check it here.
2160 */
2161 cgroup_release_and_wakeup_rmdir(&ptr->css);
2162 }
2163
2164 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2165 {
2166 __mem_cgroup_commit_charge_swapin(page, ptr,
2167 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2168 }
2169
2170 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2171 {
2172 if (mem_cgroup_disabled())
2173 return;
2174 if (!mem)
2175 return;
2176 mem_cgroup_cancel_charge(mem);
2177 }
2178
2179 static void
2180 __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
2181 {
2182 struct memcg_batch_info *batch = NULL;
2183 bool uncharge_memsw = true;
2184 /* If swapout, usage of swap doesn't decrease */
2185 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2186 uncharge_memsw = false;
2187
2188 batch = &current->memcg_batch;
2189 /*
2190 * In usual, we do css_get() when we remember memcg pointer.
2191 * But in this case, we keep res->usage until end of a series of
2192 * uncharges. Then, it's ok to ignore memcg's refcnt.
2193 */
2194 if (!batch->memcg)
2195 batch->memcg = mem;
2196 /*
2197 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2198 * In those cases, all pages freed continously can be expected to be in
2199 * the same cgroup and we have chance to coalesce uncharges.
2200 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2201 * because we want to do uncharge as soon as possible.
2202 */
2203
2204 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2205 goto direct_uncharge;
2206
2207 /*
2208 * In typical case, batch->memcg == mem. This means we can
2209 * merge a series of uncharges to an uncharge of res_counter.
2210 * If not, we uncharge res_counter ony by one.
2211 */
2212 if (batch->memcg != mem)
2213 goto direct_uncharge;
2214 /* remember freed charge and uncharge it later */
2215 batch->bytes += PAGE_SIZE;
2216 if (uncharge_memsw)
2217 batch->memsw_bytes += PAGE_SIZE;
2218 return;
2219 direct_uncharge:
2220 res_counter_uncharge(&mem->res, PAGE_SIZE);
2221 if (uncharge_memsw)
2222 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
2223 if (unlikely(batch->memcg != mem))
2224 memcg_oom_recover(mem);
2225 return;
2226 }
2227
2228 /*
2229 * uncharge if !page_mapped(page)
2230 */
2231 static struct mem_cgroup *
2232 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2233 {
2234 struct page_cgroup *pc;
2235 struct mem_cgroup *mem = NULL;
2236 struct mem_cgroup_per_zone *mz;
2237
2238 if (mem_cgroup_disabled())
2239 return NULL;
2240
2241 if (PageSwapCache(page))
2242 return NULL;
2243
2244 /*
2245 * Check if our page_cgroup is valid
2246 */
2247 pc = lookup_page_cgroup(page);
2248 if (unlikely(!pc || !PageCgroupUsed(pc)))
2249 return NULL;
2250
2251 lock_page_cgroup(pc);
2252
2253 mem = pc->mem_cgroup;
2254
2255 if (!PageCgroupUsed(pc))
2256 goto unlock_out;
2257
2258 switch (ctype) {
2259 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2260 case MEM_CGROUP_CHARGE_TYPE_DROP:
2261 if (page_mapped(page))
2262 goto unlock_out;
2263 break;
2264 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2265 if (!PageAnon(page)) { /* Shared memory */
2266 if (page->mapping && !page_is_file_cache(page))
2267 goto unlock_out;
2268 } else if (page_mapped(page)) /* Anon */
2269 goto unlock_out;
2270 break;
2271 default:
2272 break;
2273 }
2274
2275 if (!mem_cgroup_is_root(mem))
2276 __do_uncharge(mem, ctype);
2277 if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2278 mem_cgroup_swap_statistics(mem, true);
2279 mem_cgroup_charge_statistics(mem, pc, false);
2280
2281 ClearPageCgroupUsed(pc);
2282 /*
2283 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2284 * freed from LRU. This is safe because uncharged page is expected not
2285 * to be reused (freed soon). Exception is SwapCache, it's handled by
2286 * special functions.
2287 */
2288
2289 mz = page_cgroup_zoneinfo(pc);
2290 unlock_page_cgroup(pc);
2291
2292 memcg_check_events(mem, page);
2293 /* at swapout, this memcg will be accessed to record to swap */
2294 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2295 css_put(&mem->css);
2296
2297 return mem;
2298
2299 unlock_out:
2300 unlock_page_cgroup(pc);
2301 return NULL;
2302 }
2303
2304 void mem_cgroup_uncharge_page(struct page *page)
2305 {
2306 /* early check. */
2307 if (page_mapped(page))
2308 return;
2309 if (page->mapping && !PageAnon(page))
2310 return;
2311 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2312 }
2313
2314 void mem_cgroup_uncharge_cache_page(struct page *page)
2315 {
2316 VM_BUG_ON(page_mapped(page));
2317 VM_BUG_ON(page->mapping);
2318 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2319 }
2320
2321 /*
2322 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2323 * In that cases, pages are freed continuously and we can expect pages
2324 * are in the same memcg. All these calls itself limits the number of
2325 * pages freed at once, then uncharge_start/end() is called properly.
2326 * This may be called prural(2) times in a context,
2327 */
2328
2329 void mem_cgroup_uncharge_start(void)
2330 {
2331 current->memcg_batch.do_batch++;
2332 /* We can do nest. */
2333 if (current->memcg_batch.do_batch == 1) {
2334 current->memcg_batch.memcg = NULL;
2335 current->memcg_batch.bytes = 0;
2336 current->memcg_batch.memsw_bytes = 0;
2337 }
2338 }
2339
2340 void mem_cgroup_uncharge_end(void)
2341 {
2342 struct memcg_batch_info *batch = &current->memcg_batch;
2343
2344 if (!batch->do_batch)
2345 return;
2346
2347 batch->do_batch--;
2348 if (batch->do_batch) /* If stacked, do nothing. */
2349 return;
2350
2351 if (!batch->memcg)
2352 return;
2353 /*
2354 * This "batch->memcg" is valid without any css_get/put etc...
2355 * bacause we hide charges behind us.
2356 */
2357 if (batch->bytes)
2358 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2359 if (batch->memsw_bytes)
2360 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2361 memcg_oom_recover(batch->memcg);
2362 /* forget this pointer (for sanity check) */
2363 batch->memcg = NULL;
2364 }
2365
2366 #ifdef CONFIG_SWAP
2367 /*
2368 * called after __delete_from_swap_cache() and drop "page" account.
2369 * memcg information is recorded to swap_cgroup of "ent"
2370 */
2371 void
2372 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2373 {
2374 struct mem_cgroup *memcg;
2375 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2376
2377 if (!swapout) /* this was a swap cache but the swap is unused ! */
2378 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2379
2380 memcg = __mem_cgroup_uncharge_common(page, ctype);
2381
2382 /* record memcg information */
2383 if (do_swap_account && swapout && memcg) {
2384 swap_cgroup_record(ent, css_id(&memcg->css));
2385 mem_cgroup_get(memcg);
2386 }
2387 if (swapout && memcg)
2388 css_put(&memcg->css);
2389 }
2390 #endif
2391
2392 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2393 /*
2394 * called from swap_entry_free(). remove record in swap_cgroup and
2395 * uncharge "memsw" account.
2396 */
2397 void mem_cgroup_uncharge_swap(swp_entry_t ent)
2398 {
2399 struct mem_cgroup *memcg;
2400 unsigned short id;
2401
2402 if (!do_swap_account)
2403 return;
2404
2405 id = swap_cgroup_record(ent, 0);
2406 rcu_read_lock();
2407 memcg = mem_cgroup_lookup(id);
2408 if (memcg) {
2409 /*
2410 * We uncharge this because swap is freed.
2411 * This memcg can be obsolete one. We avoid calling css_tryget
2412 */
2413 if (!mem_cgroup_is_root(memcg))
2414 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2415 mem_cgroup_swap_statistics(memcg, false);
2416 mem_cgroup_put(memcg);
2417 }
2418 rcu_read_unlock();
2419 }
2420
2421 /**
2422 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2423 * @entry: swap entry to be moved
2424 * @from: mem_cgroup which the entry is moved from
2425 * @to: mem_cgroup which the entry is moved to
2426 * @need_fixup: whether we should fixup res_counters and refcounts.
2427 *
2428 * It succeeds only when the swap_cgroup's record for this entry is the same
2429 * as the mem_cgroup's id of @from.
2430 *
2431 * Returns 0 on success, -EINVAL on failure.
2432 *
2433 * The caller must have charged to @to, IOW, called res_counter_charge() about
2434 * both res and memsw, and called css_get().
2435 */
2436 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2437 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2438 {
2439 unsigned short old_id, new_id;
2440
2441 old_id = css_id(&from->css);
2442 new_id = css_id(&to->css);
2443
2444 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2445 mem_cgroup_swap_statistics(from, false);
2446 mem_cgroup_swap_statistics(to, true);
2447 /*
2448 * This function is only called from task migration context now.
2449 * It postpones res_counter and refcount handling till the end
2450 * of task migration(mem_cgroup_clear_mc()) for performance
2451 * improvement. But we cannot postpone mem_cgroup_get(to)
2452 * because if the process that has been moved to @to does
2453 * swap-in, the refcount of @to might be decreased to 0.
2454 */
2455 mem_cgroup_get(to);
2456 if (need_fixup) {
2457 if (!mem_cgroup_is_root(from))
2458 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2459 mem_cgroup_put(from);
2460 /*
2461 * we charged both to->res and to->memsw, so we should
2462 * uncharge to->res.
2463 */
2464 if (!mem_cgroup_is_root(to))
2465 res_counter_uncharge(&to->res, PAGE_SIZE);
2466 css_put(&to->css);
2467 }
2468 return 0;
2469 }
2470 return -EINVAL;
2471 }
2472 #else
2473 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2474 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2475 {
2476 return -EINVAL;
2477 }
2478 #endif
2479
2480 /*
2481 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2482 * page belongs to.
2483 */
2484 int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
2485 {
2486 struct page_cgroup *pc;
2487 struct mem_cgroup *mem = NULL;
2488 int ret = 0;
2489
2490 if (mem_cgroup_disabled())
2491 return 0;
2492
2493 pc = lookup_page_cgroup(page);
2494 lock_page_cgroup(pc);
2495 if (PageCgroupUsed(pc)) {
2496 mem = pc->mem_cgroup;
2497 css_get(&mem->css);
2498 }
2499 unlock_page_cgroup(pc);
2500
2501 *ptr = mem;
2502 if (mem) {
2503 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false);
2504 css_put(&mem->css);
2505 }
2506 return ret;
2507 }
2508
2509 /* remove redundant charge if migration failed*/
2510 void mem_cgroup_end_migration(struct mem_cgroup *mem,
2511 struct page *oldpage, struct page *newpage)
2512 {
2513 struct page *target, *unused;
2514 struct page_cgroup *pc;
2515 enum charge_type ctype;
2516
2517 if (!mem)
2518 return;
2519 cgroup_exclude_rmdir(&mem->css);
2520 /* at migration success, oldpage->mapping is NULL. */
2521 if (oldpage->mapping) {
2522 target = oldpage;
2523 unused = NULL;
2524 } else {
2525 target = newpage;
2526 unused = oldpage;
2527 }
2528
2529 if (PageAnon(target))
2530 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2531 else if (page_is_file_cache(target))
2532 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2533 else
2534 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2535
2536 /* unused page is not on radix-tree now. */
2537 if (unused)
2538 __mem_cgroup_uncharge_common(unused, ctype);
2539
2540 pc = lookup_page_cgroup(target);
2541 /*
2542 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
2543 * So, double-counting is effectively avoided.
2544 */
2545 __mem_cgroup_commit_charge(mem, pc, ctype);
2546
2547 /*
2548 * Both of oldpage and newpage are still under lock_page().
2549 * Then, we don't have to care about race in radix-tree.
2550 * But we have to be careful that this page is unmapped or not.
2551 *
2552 * There is a case for !page_mapped(). At the start of
2553 * migration, oldpage was mapped. But now, it's zapped.
2554 * But we know *target* page is not freed/reused under us.
2555 * mem_cgroup_uncharge_page() does all necessary checks.
2556 */
2557 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2558 mem_cgroup_uncharge_page(target);
2559 /*
2560 * At migration, we may charge account against cgroup which has no tasks
2561 * So, rmdir()->pre_destroy() can be called while we do this charge.
2562 * In that case, we need to call pre_destroy() again. check it here.
2563 */
2564 cgroup_release_and_wakeup_rmdir(&mem->css);
2565 }
2566
2567 /*
2568 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2569 * Calling hierarchical_reclaim is not enough because we should update
2570 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2571 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2572 * not from the memcg which this page would be charged to.
2573 * try_charge_swapin does all of these works properly.
2574 */
2575 int mem_cgroup_shmem_charge_fallback(struct page *page,
2576 struct mm_struct *mm,
2577 gfp_t gfp_mask)
2578 {
2579 struct mem_cgroup *mem = NULL;
2580 int ret;
2581
2582 if (mem_cgroup_disabled())
2583 return 0;
2584
2585 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2586 if (!ret)
2587 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2588
2589 return ret;
2590 }
2591
2592 static DEFINE_MUTEX(set_limit_mutex);
2593
2594 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2595 unsigned long long val)
2596 {
2597 int retry_count;
2598 u64 memswlimit, memlimit;
2599 int ret = 0;
2600 int children = mem_cgroup_count_children(memcg);
2601 u64 curusage, oldusage;
2602 int enlarge;
2603
2604 /*
2605 * For keeping hierarchical_reclaim simple, how long we should retry
2606 * is depends on callers. We set our retry-count to be function
2607 * of # of children which we should visit in this loop.
2608 */
2609 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2610
2611 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2612
2613 enlarge = 0;
2614 while (retry_count) {
2615 if (signal_pending(current)) {
2616 ret = -EINTR;
2617 break;
2618 }
2619 /*
2620 * Rather than hide all in some function, I do this in
2621 * open coded manner. You see what this really does.
2622 * We have to guarantee mem->res.limit < mem->memsw.limit.
2623 */
2624 mutex_lock(&set_limit_mutex);
2625 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2626 if (memswlimit < val) {
2627 ret = -EINVAL;
2628 mutex_unlock(&set_limit_mutex);
2629 break;
2630 }
2631
2632 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2633 if (memlimit < val)
2634 enlarge = 1;
2635
2636 ret = res_counter_set_limit(&memcg->res, val);
2637 if (!ret) {
2638 if (memswlimit == val)
2639 memcg->memsw_is_minimum = true;
2640 else
2641 memcg->memsw_is_minimum = false;
2642 }
2643 mutex_unlock(&set_limit_mutex);
2644
2645 if (!ret)
2646 break;
2647
2648 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2649 MEM_CGROUP_RECLAIM_SHRINK);
2650 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2651 /* Usage is reduced ? */
2652 if (curusage >= oldusage)
2653 retry_count--;
2654 else
2655 oldusage = curusage;
2656 }
2657 if (!ret && enlarge)
2658 memcg_oom_recover(memcg);
2659
2660 return ret;
2661 }
2662
2663 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2664 unsigned long long val)
2665 {
2666 int retry_count;
2667 u64 memlimit, memswlimit, oldusage, curusage;
2668 int children = mem_cgroup_count_children(memcg);
2669 int ret = -EBUSY;
2670 int enlarge = 0;
2671
2672 /* see mem_cgroup_resize_res_limit */
2673 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
2674 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2675 while (retry_count) {
2676 if (signal_pending(current)) {
2677 ret = -EINTR;
2678 break;
2679 }
2680 /*
2681 * Rather than hide all in some function, I do this in
2682 * open coded manner. You see what this really does.
2683 * We have to guarantee mem->res.limit < mem->memsw.limit.
2684 */
2685 mutex_lock(&set_limit_mutex);
2686 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2687 if (memlimit > val) {
2688 ret = -EINVAL;
2689 mutex_unlock(&set_limit_mutex);
2690 break;
2691 }
2692 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2693 if (memswlimit < val)
2694 enlarge = 1;
2695 ret = res_counter_set_limit(&memcg->memsw, val);
2696 if (!ret) {
2697 if (memlimit == val)
2698 memcg->memsw_is_minimum = true;
2699 else
2700 memcg->memsw_is_minimum = false;
2701 }
2702 mutex_unlock(&set_limit_mutex);
2703
2704 if (!ret)
2705 break;
2706
2707 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2708 MEM_CGROUP_RECLAIM_NOSWAP |
2709 MEM_CGROUP_RECLAIM_SHRINK);
2710 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2711 /* Usage is reduced ? */
2712 if (curusage >= oldusage)
2713 retry_count--;
2714 else
2715 oldusage = curusage;
2716 }
2717 if (!ret && enlarge)
2718 memcg_oom_recover(memcg);
2719 return ret;
2720 }
2721
2722 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2723 gfp_t gfp_mask, int nid,
2724 int zid)
2725 {
2726 unsigned long nr_reclaimed = 0;
2727 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2728 unsigned long reclaimed;
2729 int loop = 0;
2730 struct mem_cgroup_tree_per_zone *mctz;
2731 unsigned long long excess;
2732
2733 if (order > 0)
2734 return 0;
2735
2736 mctz = soft_limit_tree_node_zone(nid, zid);
2737 /*
2738 * This loop can run a while, specially if mem_cgroup's continuously
2739 * keep exceeding their soft limit and putting the system under
2740 * pressure
2741 */
2742 do {
2743 if (next_mz)
2744 mz = next_mz;
2745 else
2746 mz = mem_cgroup_largest_soft_limit_node(mctz);
2747 if (!mz)
2748 break;
2749
2750 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
2751 gfp_mask,
2752 MEM_CGROUP_RECLAIM_SOFT);
2753 nr_reclaimed += reclaimed;
2754 spin_lock(&mctz->lock);
2755
2756 /*
2757 * If we failed to reclaim anything from this memory cgroup
2758 * it is time to move on to the next cgroup
2759 */
2760 next_mz = NULL;
2761 if (!reclaimed) {
2762 do {
2763 /*
2764 * Loop until we find yet another one.
2765 *
2766 * By the time we get the soft_limit lock
2767 * again, someone might have aded the
2768 * group back on the RB tree. Iterate to
2769 * make sure we get a different mem.
2770 * mem_cgroup_largest_soft_limit_node returns
2771 * NULL if no other cgroup is present on
2772 * the tree
2773 */
2774 next_mz =
2775 __mem_cgroup_largest_soft_limit_node(mctz);
2776 if (next_mz == mz) {
2777 css_put(&next_mz->mem->css);
2778 next_mz = NULL;
2779 } else /* next_mz == NULL or other memcg */
2780 break;
2781 } while (1);
2782 }
2783 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
2784 excess = res_counter_soft_limit_excess(&mz->mem->res);
2785 /*
2786 * One school of thought says that we should not add
2787 * back the node to the tree if reclaim returns 0.
2788 * But our reclaim could return 0, simply because due
2789 * to priority we are exposing a smaller subset of
2790 * memory to reclaim from. Consider this as a longer
2791 * term TODO.
2792 */
2793 /* If excess == 0, no tree ops */
2794 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
2795 spin_unlock(&mctz->lock);
2796 css_put(&mz->mem->css);
2797 loop++;
2798 /*
2799 * Could not reclaim anything and there are no more
2800 * mem cgroups to try or we seem to be looping without
2801 * reclaiming anything.
2802 */
2803 if (!nr_reclaimed &&
2804 (next_mz == NULL ||
2805 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2806 break;
2807 } while (!nr_reclaimed);
2808 if (next_mz)
2809 css_put(&next_mz->mem->css);
2810 return nr_reclaimed;
2811 }
2812
2813 /*
2814 * This routine traverse page_cgroup in given list and drop them all.
2815 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
2816 */
2817 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
2818 int node, int zid, enum lru_list lru)
2819 {
2820 struct zone *zone;
2821 struct mem_cgroup_per_zone *mz;
2822 struct page_cgroup *pc, *busy;
2823 unsigned long flags, loop;
2824 struct list_head *list;
2825 int ret = 0;
2826
2827 zone = &NODE_DATA(node)->node_zones[zid];
2828 mz = mem_cgroup_zoneinfo(mem, node, zid);
2829 list = &mz->lists[lru];
2830
2831 loop = MEM_CGROUP_ZSTAT(mz, lru);
2832 /* give some margin against EBUSY etc...*/
2833 loop += 256;
2834 busy = NULL;
2835 while (loop--) {
2836 ret = 0;
2837 spin_lock_irqsave(&zone->lru_lock, flags);
2838 if (list_empty(list)) {
2839 spin_unlock_irqrestore(&zone->lru_lock, flags);
2840 break;
2841 }
2842 pc = list_entry(list->prev, struct page_cgroup, lru);
2843 if (busy == pc) {
2844 list_move(&pc->lru, list);
2845 busy = NULL;
2846 spin_unlock_irqrestore(&zone->lru_lock, flags);
2847 continue;
2848 }
2849 spin_unlock_irqrestore(&zone->lru_lock, flags);
2850
2851 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2852 if (ret == -ENOMEM)
2853 break;
2854
2855 if (ret == -EBUSY || ret == -EINVAL) {
2856 /* found lock contention or "pc" is obsolete. */
2857 busy = pc;
2858 cond_resched();
2859 } else
2860 busy = NULL;
2861 }
2862
2863 if (!ret && !list_empty(list))
2864 return -EBUSY;
2865 return ret;
2866 }
2867
2868 /*
2869 * make mem_cgroup's charge to be 0 if there is no task.
2870 * This enables deleting this mem_cgroup.
2871 */
2872 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
2873 {
2874 int ret;
2875 int node, zid, shrink;
2876 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2877 struct cgroup *cgrp = mem->css.cgroup;
2878
2879 css_get(&mem->css);
2880
2881 shrink = 0;
2882 /* should free all ? */
2883 if (free_all)
2884 goto try_to_free;
2885 move_account:
2886 do {
2887 ret = -EBUSY;
2888 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
2889 goto out;
2890 ret = -EINTR;
2891 if (signal_pending(current))
2892 goto out;
2893 /* This is for making all *used* pages to be on LRU. */
2894 lru_add_drain_all();
2895 drain_all_stock_sync();
2896 ret = 0;
2897 for_each_node_state(node, N_HIGH_MEMORY) {
2898 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
2899 enum lru_list l;
2900 for_each_lru(l) {
2901 ret = mem_cgroup_force_empty_list(mem,
2902 node, zid, l);
2903 if (ret)
2904 break;
2905 }
2906 }
2907 if (ret)
2908 break;
2909 }
2910 memcg_oom_recover(mem);
2911 /* it seems parent cgroup doesn't have enough mem */
2912 if (ret == -ENOMEM)
2913 goto try_to_free;
2914 cond_resched();
2915 /* "ret" should also be checked to ensure all lists are empty. */
2916 } while (mem->res.usage > 0 || ret);
2917 out:
2918 css_put(&mem->css);
2919 return ret;
2920
2921 try_to_free:
2922 /* returns EBUSY if there is a task or if we come here twice. */
2923 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
2924 ret = -EBUSY;
2925 goto out;
2926 }
2927 /* we call try-to-free pages for make this cgroup empty */
2928 lru_add_drain_all();
2929 /* try to free all pages in this cgroup */
2930 shrink = 1;
2931 while (nr_retries && mem->res.usage > 0) {
2932 int progress;
2933
2934 if (signal_pending(current)) {
2935 ret = -EINTR;
2936 goto out;
2937 }
2938 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
2939 false, get_swappiness(mem));
2940 if (!progress) {
2941 nr_retries--;
2942 /* maybe some writeback is necessary */
2943 congestion_wait(BLK_RW_ASYNC, HZ/10);
2944 }
2945
2946 }
2947 lru_add_drain();
2948 /* try move_account...there may be some *locked* pages. */
2949 goto move_account;
2950 }
2951
2952 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
2953 {
2954 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
2955 }
2956
2957
2958 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
2959 {
2960 return mem_cgroup_from_cont(cont)->use_hierarchy;
2961 }
2962
2963 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
2964 u64 val)
2965 {
2966 int retval = 0;
2967 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2968 struct cgroup *parent = cont->parent;
2969 struct mem_cgroup *parent_mem = NULL;
2970
2971 if (parent)
2972 parent_mem = mem_cgroup_from_cont(parent);
2973
2974 cgroup_lock();
2975 /*
2976 * If parent's use_hierarchy is set, we can't make any modifications
2977 * in the child subtrees. If it is unset, then the change can
2978 * occur, provided the current cgroup has no children.
2979 *
2980 * For the root cgroup, parent_mem is NULL, we allow value to be
2981 * set if there are no children.
2982 */
2983 if ((!parent_mem || !parent_mem->use_hierarchy) &&
2984 (val == 1 || val == 0)) {
2985 if (list_empty(&cont->children))
2986 mem->use_hierarchy = val;
2987 else
2988 retval = -EBUSY;
2989 } else
2990 retval = -EINVAL;
2991 cgroup_unlock();
2992
2993 return retval;
2994 }
2995
2996 struct mem_cgroup_idx_data {
2997 s64 val;
2998 enum mem_cgroup_stat_index idx;
2999 };
3000
3001 static int
3002 mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
3003 {
3004 struct mem_cgroup_idx_data *d = data;
3005 d->val += mem_cgroup_read_stat(mem, d->idx);
3006 return 0;
3007 }
3008
3009 static void
3010 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3011 enum mem_cgroup_stat_index idx, s64 *val)
3012 {
3013 struct mem_cgroup_idx_data d;
3014 d.idx = idx;
3015 d.val = 0;
3016 mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
3017 *val = d.val;
3018 }
3019
3020 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3021 {
3022 u64 idx_val, val;
3023
3024 if (!mem_cgroup_is_root(mem)) {
3025 if (!swap)
3026 return res_counter_read_u64(&mem->res, RES_USAGE);
3027 else
3028 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3029 }
3030
3031 mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE, &idx_val);
3032 val = idx_val;
3033 mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS, &idx_val);
3034 val += idx_val;
3035
3036 if (swap) {
3037 mem_cgroup_get_recursive_idx_stat(mem,
3038 MEM_CGROUP_STAT_SWAPOUT, &idx_val);
3039 val += idx_val;
3040 }
3041
3042 return val << PAGE_SHIFT;
3043 }
3044
3045 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3046 {
3047 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3048 u64 val;
3049 int type, name;
3050
3051 type = MEMFILE_TYPE(cft->private);
3052 name = MEMFILE_ATTR(cft->private);
3053 switch (type) {
3054 case _MEM:
3055 if (name == RES_USAGE)
3056 val = mem_cgroup_usage(mem, false);
3057 else
3058 val = res_counter_read_u64(&mem->res, name);
3059 break;
3060 case _MEMSWAP:
3061 if (name == RES_USAGE)
3062 val = mem_cgroup_usage(mem, true);
3063 else
3064 val = res_counter_read_u64(&mem->memsw, name);
3065 break;
3066 default:
3067 BUG();
3068 break;
3069 }
3070 return val;
3071 }
3072 /*
3073 * The user of this function is...
3074 * RES_LIMIT.
3075 */
3076 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3077 const char *buffer)
3078 {
3079 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3080 int type, name;
3081 unsigned long long val;
3082 int ret;
3083
3084 type = MEMFILE_TYPE(cft->private);
3085 name = MEMFILE_ATTR(cft->private);
3086 switch (name) {
3087 case RES_LIMIT:
3088 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3089 ret = -EINVAL;
3090 break;
3091 }
3092 /* This function does all necessary parse...reuse it */
3093 ret = res_counter_memparse_write_strategy(buffer, &val);
3094 if (ret)
3095 break;
3096 if (type == _MEM)
3097 ret = mem_cgroup_resize_limit(memcg, val);
3098 else
3099 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3100 break;
3101 case RES_SOFT_LIMIT:
3102 ret = res_counter_memparse_write_strategy(buffer, &val);
3103 if (ret)
3104 break;
3105 /*
3106 * For memsw, soft limits are hard to implement in terms
3107 * of semantics, for now, we support soft limits for
3108 * control without swap
3109 */
3110 if (type == _MEM)
3111 ret = res_counter_set_soft_limit(&memcg->res, val);
3112 else
3113 ret = -EINVAL;
3114 break;
3115 default:
3116 ret = -EINVAL; /* should be BUG() ? */
3117 break;
3118 }
3119 return ret;
3120 }
3121
3122 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3123 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3124 {
3125 struct cgroup *cgroup;
3126 unsigned long long min_limit, min_memsw_limit, tmp;
3127
3128 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3129 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3130 cgroup = memcg->css.cgroup;
3131 if (!memcg->use_hierarchy)
3132 goto out;
3133
3134 while (cgroup->parent) {
3135 cgroup = cgroup->parent;
3136 memcg = mem_cgroup_from_cont(cgroup);
3137 if (!memcg->use_hierarchy)
3138 break;
3139 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3140 min_limit = min(min_limit, tmp);
3141 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3142 min_memsw_limit = min(min_memsw_limit, tmp);
3143 }
3144 out:
3145 *mem_limit = min_limit;
3146 *memsw_limit = min_memsw_limit;
3147 return;
3148 }
3149
3150 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3151 {
3152 struct mem_cgroup *mem;
3153 int type, name;
3154
3155 mem = mem_cgroup_from_cont(cont);
3156 type = MEMFILE_TYPE(event);
3157 name = MEMFILE_ATTR(event);
3158 switch (name) {
3159 case RES_MAX_USAGE:
3160 if (type == _MEM)
3161 res_counter_reset_max(&mem->res);
3162 else
3163 res_counter_reset_max(&mem->memsw);
3164 break;
3165 case RES_FAILCNT:
3166 if (type == _MEM)
3167 res_counter_reset_failcnt(&mem->res);
3168 else
3169 res_counter_reset_failcnt(&mem->memsw);
3170 break;
3171 }
3172
3173 return 0;
3174 }
3175
3176 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3177 struct cftype *cft)
3178 {
3179 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3180 }
3181
3182 #ifdef CONFIG_MMU
3183 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3184 struct cftype *cft, u64 val)
3185 {
3186 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3187
3188 if (val >= (1 << NR_MOVE_TYPE))
3189 return -EINVAL;
3190 /*
3191 * We check this value several times in both in can_attach() and
3192 * attach(), so we need cgroup lock to prevent this value from being
3193 * inconsistent.
3194 */
3195 cgroup_lock();
3196 mem->move_charge_at_immigrate = val;
3197 cgroup_unlock();
3198
3199 return 0;
3200 }
3201 #else
3202 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3203 struct cftype *cft, u64 val)
3204 {
3205 return -ENOSYS;
3206 }
3207 #endif
3208
3209
3210 /* For read statistics */
3211 enum {
3212 MCS_CACHE,
3213 MCS_RSS,
3214 MCS_FILE_MAPPED,
3215 MCS_PGPGIN,
3216 MCS_PGPGOUT,
3217 MCS_SWAP,
3218 MCS_INACTIVE_ANON,
3219 MCS_ACTIVE_ANON,
3220 MCS_INACTIVE_FILE,
3221 MCS_ACTIVE_FILE,
3222 MCS_UNEVICTABLE,
3223 NR_MCS_STAT,
3224 };
3225
3226 struct mcs_total_stat {
3227 s64 stat[NR_MCS_STAT];
3228 };
3229
3230 struct {
3231 char *local_name;
3232 char *total_name;
3233 } memcg_stat_strings[NR_MCS_STAT] = {
3234 {"cache", "total_cache"},
3235 {"rss", "total_rss"},
3236 {"mapped_file", "total_mapped_file"},
3237 {"pgpgin", "total_pgpgin"},
3238 {"pgpgout", "total_pgpgout"},
3239 {"swap", "total_swap"},
3240 {"inactive_anon", "total_inactive_anon"},
3241 {"active_anon", "total_active_anon"},
3242 {"inactive_file", "total_inactive_file"},
3243 {"active_file", "total_active_file"},
3244 {"unevictable", "total_unevictable"}
3245 };
3246
3247
3248 static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
3249 {
3250 struct mcs_total_stat *s = data;
3251 s64 val;
3252
3253 /* per cpu stat */
3254 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3255 s->stat[MCS_CACHE] += val * PAGE_SIZE;
3256 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3257 s->stat[MCS_RSS] += val * PAGE_SIZE;
3258 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3259 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3260 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3261 s->stat[MCS_PGPGIN] += val;
3262 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3263 s->stat[MCS_PGPGOUT] += val;
3264 if (do_swap_account) {
3265 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3266 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3267 }
3268
3269 /* per zone stat */
3270 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3271 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3272 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3273 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3274 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3275 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3276 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3277 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3278 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3279 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3280 return 0;
3281 }
3282
3283 static void
3284 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3285 {
3286 mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
3287 }
3288
3289 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3290 struct cgroup_map_cb *cb)
3291 {
3292 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3293 struct mcs_total_stat mystat;
3294 int i;
3295
3296 memset(&mystat, 0, sizeof(mystat));
3297 mem_cgroup_get_local_stat(mem_cont, &mystat);
3298
3299 for (i = 0; i < NR_MCS_STAT; i++) {
3300 if (i == MCS_SWAP && !do_swap_account)
3301 continue;
3302 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3303 }
3304
3305 /* Hierarchical information */
3306 {
3307 unsigned long long limit, memsw_limit;
3308 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3309 cb->fill(cb, "hierarchical_memory_limit", limit);
3310 if (do_swap_account)
3311 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3312 }
3313
3314 memset(&mystat, 0, sizeof(mystat));
3315 mem_cgroup_get_total_stat(mem_cont, &mystat);
3316 for (i = 0; i < NR_MCS_STAT; i++) {
3317 if (i == MCS_SWAP && !do_swap_account)
3318 continue;
3319 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3320 }
3321
3322 #ifdef CONFIG_DEBUG_VM
3323 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3324
3325 {
3326 int nid, zid;
3327 struct mem_cgroup_per_zone *mz;
3328 unsigned long recent_rotated[2] = {0, 0};
3329 unsigned long recent_scanned[2] = {0, 0};
3330
3331 for_each_online_node(nid)
3332 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3333 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3334
3335 recent_rotated[0] +=
3336 mz->reclaim_stat.recent_rotated[0];
3337 recent_rotated[1] +=
3338 mz->reclaim_stat.recent_rotated[1];
3339 recent_scanned[0] +=
3340 mz->reclaim_stat.recent_scanned[0];
3341 recent_scanned[1] +=
3342 mz->reclaim_stat.recent_scanned[1];
3343 }
3344 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3345 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3346 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3347 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3348 }
3349 #endif
3350
3351 return 0;
3352 }
3353
3354 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3355 {
3356 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3357
3358 return get_swappiness(memcg);
3359 }
3360
3361 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3362 u64 val)
3363 {
3364 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3365 struct mem_cgroup *parent;
3366
3367 if (val > 100)
3368 return -EINVAL;
3369
3370 if (cgrp->parent == NULL)
3371 return -EINVAL;
3372
3373 parent = mem_cgroup_from_cont(cgrp->parent);
3374
3375 cgroup_lock();
3376
3377 /* If under hierarchy, only empty-root can set this value */
3378 if ((parent->use_hierarchy) ||
3379 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3380 cgroup_unlock();
3381 return -EINVAL;
3382 }
3383
3384 spin_lock(&memcg->reclaim_param_lock);
3385 memcg->swappiness = val;
3386 spin_unlock(&memcg->reclaim_param_lock);
3387
3388 cgroup_unlock();
3389
3390 return 0;
3391 }
3392
3393 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3394 {
3395 struct mem_cgroup_threshold_ary *t;
3396 u64 usage;
3397 int i;
3398
3399 rcu_read_lock();
3400 if (!swap)
3401 t = rcu_dereference(memcg->thresholds);
3402 else
3403 t = rcu_dereference(memcg->memsw_thresholds);
3404
3405 if (!t)
3406 goto unlock;
3407
3408 usage = mem_cgroup_usage(memcg, swap);
3409
3410 /*
3411 * current_threshold points to threshold just below usage.
3412 * If it's not true, a threshold was crossed after last
3413 * call of __mem_cgroup_threshold().
3414 */
3415 i = t->current_threshold;
3416
3417 /*
3418 * Iterate backward over array of thresholds starting from
3419 * current_threshold and check if a threshold is crossed.
3420 * If none of thresholds below usage is crossed, we read
3421 * only one element of the array here.
3422 */
3423 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3424 eventfd_signal(t->entries[i].eventfd, 1);
3425
3426 /* i = current_threshold + 1 */
3427 i++;
3428
3429 /*
3430 * Iterate forward over array of thresholds starting from
3431 * current_threshold+1 and check if a threshold is crossed.
3432 * If none of thresholds above usage is crossed, we read
3433 * only one element of the array here.
3434 */
3435 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3436 eventfd_signal(t->entries[i].eventfd, 1);
3437
3438 /* Update current_threshold */
3439 t->current_threshold = i - 1;
3440 unlock:
3441 rcu_read_unlock();
3442 }
3443
3444 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3445 {
3446 __mem_cgroup_threshold(memcg, false);
3447 if (do_swap_account)
3448 __mem_cgroup_threshold(memcg, true);
3449 }
3450
3451 static int compare_thresholds(const void *a, const void *b)
3452 {
3453 const struct mem_cgroup_threshold *_a = a;
3454 const struct mem_cgroup_threshold *_b = b;
3455
3456 return _a->threshold - _b->threshold;
3457 }
3458
3459 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem, void *data)
3460 {
3461 struct mem_cgroup_eventfd_list *ev;
3462
3463 list_for_each_entry(ev, &mem->oom_notify, list)
3464 eventfd_signal(ev->eventfd, 1);
3465 return 0;
3466 }
3467
3468 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3469 {
3470 mem_cgroup_walk_tree(mem, NULL, mem_cgroup_oom_notify_cb);
3471 }
3472
3473 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3474 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3475 {
3476 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3477 struct mem_cgroup_threshold_ary *thresholds, *thresholds_new;
3478 int type = MEMFILE_TYPE(cft->private);
3479 u64 threshold, usage;
3480 int size;
3481 int i, ret;
3482
3483 ret = res_counter_memparse_write_strategy(args, &threshold);
3484 if (ret)
3485 return ret;
3486
3487 mutex_lock(&memcg->thresholds_lock);
3488 if (type == _MEM)
3489 thresholds = memcg->thresholds;
3490 else if (type == _MEMSWAP)
3491 thresholds = memcg->memsw_thresholds;
3492 else
3493 BUG();
3494
3495 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3496
3497 /* Check if a threshold crossed before adding a new one */
3498 if (thresholds)
3499 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3500
3501 if (thresholds)
3502 size = thresholds->size + 1;
3503 else
3504 size = 1;
3505
3506 /* Allocate memory for new array of thresholds */
3507 thresholds_new = kmalloc(sizeof(*thresholds_new) +
3508 size * sizeof(struct mem_cgroup_threshold),
3509 GFP_KERNEL);
3510 if (!thresholds_new) {
3511 ret = -ENOMEM;
3512 goto unlock;
3513 }
3514 thresholds_new->size = size;
3515
3516 /* Copy thresholds (if any) to new array */
3517 if (thresholds)
3518 memcpy(thresholds_new->entries, thresholds->entries,
3519 thresholds->size *
3520 sizeof(struct mem_cgroup_threshold));
3521 /* Add new threshold */
3522 thresholds_new->entries[size - 1].eventfd = eventfd;
3523 thresholds_new->entries[size - 1].threshold = threshold;
3524
3525 /* Sort thresholds. Registering of new threshold isn't time-critical */
3526 sort(thresholds_new->entries, size,
3527 sizeof(struct mem_cgroup_threshold),
3528 compare_thresholds, NULL);
3529
3530 /* Find current threshold */
3531 thresholds_new->current_threshold = -1;
3532 for (i = 0; i < size; i++) {
3533 if (thresholds_new->entries[i].threshold < usage) {
3534 /*
3535 * thresholds_new->current_threshold will not be used
3536 * until rcu_assign_pointer(), so it's safe to increment
3537 * it here.
3538 */
3539 ++thresholds_new->current_threshold;
3540 }
3541 }
3542
3543 if (type == _MEM)
3544 rcu_assign_pointer(memcg->thresholds, thresholds_new);
3545 else
3546 rcu_assign_pointer(memcg->memsw_thresholds, thresholds_new);
3547
3548 /* To be sure that nobody uses thresholds before freeing it */
3549 synchronize_rcu();
3550
3551 kfree(thresholds);
3552 unlock:
3553 mutex_unlock(&memcg->thresholds_lock);
3554
3555 return ret;
3556 }
3557
3558 static int mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
3559 struct cftype *cft, struct eventfd_ctx *eventfd)
3560 {
3561 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3562 struct mem_cgroup_threshold_ary *thresholds, *thresholds_new;
3563 int type = MEMFILE_TYPE(cft->private);
3564 u64 usage;
3565 int size = 0;
3566 int i, j, ret;
3567
3568 mutex_lock(&memcg->thresholds_lock);
3569 if (type == _MEM)
3570 thresholds = memcg->thresholds;
3571 else if (type == _MEMSWAP)
3572 thresholds = memcg->memsw_thresholds;
3573 else
3574 BUG();
3575
3576 /*
3577 * Something went wrong if we trying to unregister a threshold
3578 * if we don't have thresholds
3579 */
3580 BUG_ON(!thresholds);
3581
3582 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3583
3584 /* Check if a threshold crossed before removing */
3585 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3586
3587 /* Calculate new number of threshold */
3588 for (i = 0; i < thresholds->size; i++) {
3589 if (thresholds->entries[i].eventfd != eventfd)
3590 size++;
3591 }
3592
3593 /* Set thresholds array to NULL if we don't have thresholds */
3594 if (!size) {
3595 thresholds_new = NULL;
3596 goto assign;
3597 }
3598
3599 /* Allocate memory for new array of thresholds */
3600 thresholds_new = kmalloc(sizeof(*thresholds_new) +
3601 size * sizeof(struct mem_cgroup_threshold),
3602 GFP_KERNEL);
3603 if (!thresholds_new) {
3604 ret = -ENOMEM;
3605 goto unlock;
3606 }
3607 thresholds_new->size = size;
3608
3609 /* Copy thresholds and find current threshold */
3610 thresholds_new->current_threshold = -1;
3611 for (i = 0, j = 0; i < thresholds->size; i++) {
3612 if (thresholds->entries[i].eventfd == eventfd)
3613 continue;
3614
3615 thresholds_new->entries[j] = thresholds->entries[i];
3616 if (thresholds_new->entries[j].threshold < usage) {
3617 /*
3618 * thresholds_new->current_threshold will not be used
3619 * until rcu_assign_pointer(), so it's safe to increment
3620 * it here.
3621 */
3622 ++thresholds_new->current_threshold;
3623 }
3624 j++;
3625 }
3626
3627 assign:
3628 if (type == _MEM)
3629 rcu_assign_pointer(memcg->thresholds, thresholds_new);
3630 else
3631 rcu_assign_pointer(memcg->memsw_thresholds, thresholds_new);
3632
3633 /* To be sure that nobody uses thresholds before freeing it */
3634 synchronize_rcu();
3635
3636 kfree(thresholds);
3637 unlock:
3638 mutex_unlock(&memcg->thresholds_lock);
3639
3640 return ret;
3641 }
3642
3643 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
3644 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3645 {
3646 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3647 struct mem_cgroup_eventfd_list *event;
3648 int type = MEMFILE_TYPE(cft->private);
3649
3650 BUG_ON(type != _OOM_TYPE);
3651 event = kmalloc(sizeof(*event), GFP_KERNEL);
3652 if (!event)
3653 return -ENOMEM;
3654
3655 mutex_lock(&memcg_oom_mutex);
3656
3657 event->eventfd = eventfd;
3658 list_add(&event->list, &memcg->oom_notify);
3659
3660 /* already in OOM ? */
3661 if (atomic_read(&memcg->oom_lock))
3662 eventfd_signal(eventfd, 1);
3663 mutex_unlock(&memcg_oom_mutex);
3664
3665 return 0;
3666 }
3667
3668 static int mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
3669 struct cftype *cft, struct eventfd_ctx *eventfd)
3670 {
3671 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3672 struct mem_cgroup_eventfd_list *ev, *tmp;
3673 int type = MEMFILE_TYPE(cft->private);
3674
3675 BUG_ON(type != _OOM_TYPE);
3676
3677 mutex_lock(&memcg_oom_mutex);
3678
3679 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
3680 if (ev->eventfd == eventfd) {
3681 list_del(&ev->list);
3682 kfree(ev);
3683 }
3684 }
3685
3686 mutex_unlock(&memcg_oom_mutex);
3687
3688 return 0;
3689 }
3690
3691 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
3692 struct cftype *cft, struct cgroup_map_cb *cb)
3693 {
3694 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3695
3696 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
3697
3698 if (atomic_read(&mem->oom_lock))
3699 cb->fill(cb, "under_oom", 1);
3700 else
3701 cb->fill(cb, "under_oom", 0);
3702 return 0;
3703 }
3704
3705 /*
3706 */
3707 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
3708 struct cftype *cft, u64 val)
3709 {
3710 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3711 struct mem_cgroup *parent;
3712
3713 /* cannot set to root cgroup and only 0 and 1 are allowed */
3714 if (!cgrp->parent || !((val == 0) || (val == 1)))
3715 return -EINVAL;
3716
3717 parent = mem_cgroup_from_cont(cgrp->parent);
3718
3719 cgroup_lock();
3720 /* oom-kill-disable is a flag for subhierarchy. */
3721 if ((parent->use_hierarchy) ||
3722 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
3723 cgroup_unlock();
3724 return -EINVAL;
3725 }
3726 mem->oom_kill_disable = val;
3727 cgroup_unlock();
3728 return 0;
3729 }
3730
3731 static struct cftype mem_cgroup_files[] = {
3732 {
3733 .name = "usage_in_bytes",
3734 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3735 .read_u64 = mem_cgroup_read,
3736 .register_event = mem_cgroup_usage_register_event,
3737 .unregister_event = mem_cgroup_usage_unregister_event,
3738 },
3739 {
3740 .name = "max_usage_in_bytes",
3741 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3742 .trigger = mem_cgroup_reset,
3743 .read_u64 = mem_cgroup_read,
3744 },
3745 {
3746 .name = "limit_in_bytes",
3747 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3748 .write_string = mem_cgroup_write,
3749 .read_u64 = mem_cgroup_read,
3750 },
3751 {
3752 .name = "soft_limit_in_bytes",
3753 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3754 .write_string = mem_cgroup_write,
3755 .read_u64 = mem_cgroup_read,
3756 },
3757 {
3758 .name = "failcnt",
3759 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3760 .trigger = mem_cgroup_reset,
3761 .read_u64 = mem_cgroup_read,
3762 },
3763 {
3764 .name = "stat",
3765 .read_map = mem_control_stat_show,
3766 },
3767 {
3768 .name = "force_empty",
3769 .trigger = mem_cgroup_force_empty_write,
3770 },
3771 {
3772 .name = "use_hierarchy",
3773 .write_u64 = mem_cgroup_hierarchy_write,
3774 .read_u64 = mem_cgroup_hierarchy_read,
3775 },
3776 {
3777 .name = "swappiness",
3778 .read_u64 = mem_cgroup_swappiness_read,
3779 .write_u64 = mem_cgroup_swappiness_write,
3780 },
3781 {
3782 .name = "move_charge_at_immigrate",
3783 .read_u64 = mem_cgroup_move_charge_read,
3784 .write_u64 = mem_cgroup_move_charge_write,
3785 },
3786 {
3787 .name = "oom_control",
3788 .read_map = mem_cgroup_oom_control_read,
3789 .write_u64 = mem_cgroup_oom_control_write,
3790 .register_event = mem_cgroup_oom_register_event,
3791 .unregister_event = mem_cgroup_oom_unregister_event,
3792 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3793 },
3794 };
3795
3796 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3797 static struct cftype memsw_cgroup_files[] = {
3798 {
3799 .name = "memsw.usage_in_bytes",
3800 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
3801 .read_u64 = mem_cgroup_read,
3802 .register_event = mem_cgroup_usage_register_event,
3803 .unregister_event = mem_cgroup_usage_unregister_event,
3804 },
3805 {
3806 .name = "memsw.max_usage_in_bytes",
3807 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
3808 .trigger = mem_cgroup_reset,
3809 .read_u64 = mem_cgroup_read,
3810 },
3811 {
3812 .name = "memsw.limit_in_bytes",
3813 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
3814 .write_string = mem_cgroup_write,
3815 .read_u64 = mem_cgroup_read,
3816 },
3817 {
3818 .name = "memsw.failcnt",
3819 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
3820 .trigger = mem_cgroup_reset,
3821 .read_u64 = mem_cgroup_read,
3822 },
3823 };
3824
3825 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3826 {
3827 if (!do_swap_account)
3828 return 0;
3829 return cgroup_add_files(cont, ss, memsw_cgroup_files,
3830 ARRAY_SIZE(memsw_cgroup_files));
3831 };
3832 #else
3833 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3834 {
3835 return 0;
3836 }
3837 #endif
3838
3839 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3840 {
3841 struct mem_cgroup_per_node *pn;
3842 struct mem_cgroup_per_zone *mz;
3843 enum lru_list l;
3844 int zone, tmp = node;
3845 /*
3846 * This routine is called against possible nodes.
3847 * But it's BUG to call kmalloc() against offline node.
3848 *
3849 * TODO: this routine can waste much memory for nodes which will
3850 * never be onlined. It's better to use memory hotplug callback
3851 * function.
3852 */
3853 if (!node_state(node, N_NORMAL_MEMORY))
3854 tmp = -1;
3855 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
3856 if (!pn)
3857 return 1;
3858
3859 mem->info.nodeinfo[node] = pn;
3860 memset(pn, 0, sizeof(*pn));
3861
3862 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3863 mz = &pn->zoneinfo[zone];
3864 for_each_lru(l)
3865 INIT_LIST_HEAD(&mz->lists[l]);
3866 mz->usage_in_excess = 0;
3867 mz->on_tree = false;
3868 mz->mem = mem;
3869 }
3870 return 0;
3871 }
3872
3873 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3874 {
3875 kfree(mem->info.nodeinfo[node]);
3876 }
3877
3878 static struct mem_cgroup *mem_cgroup_alloc(void)
3879 {
3880 struct mem_cgroup *mem;
3881 int size = sizeof(struct mem_cgroup);
3882
3883 /* Can be very big if MAX_NUMNODES is very big */
3884 if (size < PAGE_SIZE)
3885 mem = kmalloc(size, GFP_KERNEL);
3886 else
3887 mem = vmalloc(size);
3888
3889 if (!mem)
3890 return NULL;
3891
3892 memset(mem, 0, size);
3893 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
3894 if (!mem->stat) {
3895 if (size < PAGE_SIZE)
3896 kfree(mem);
3897 else
3898 vfree(mem);
3899 mem = NULL;
3900 }
3901 return mem;
3902 }
3903
3904 /*
3905 * At destroying mem_cgroup, references from swap_cgroup can remain.
3906 * (scanning all at force_empty is too costly...)
3907 *
3908 * Instead of clearing all references at force_empty, we remember
3909 * the number of reference from swap_cgroup and free mem_cgroup when
3910 * it goes down to 0.
3911 *
3912 * Removal of cgroup itself succeeds regardless of refs from swap.
3913 */
3914
3915 static void __mem_cgroup_free(struct mem_cgroup *mem)
3916 {
3917 int node;
3918
3919 mem_cgroup_remove_from_trees(mem);
3920 free_css_id(&mem_cgroup_subsys, &mem->css);
3921
3922 for_each_node_state(node, N_POSSIBLE)
3923 free_mem_cgroup_per_zone_info(mem, node);
3924
3925 free_percpu(mem->stat);
3926 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
3927 kfree(mem);
3928 else
3929 vfree(mem);
3930 }
3931
3932 static void mem_cgroup_get(struct mem_cgroup *mem)
3933 {
3934 atomic_inc(&mem->refcnt);
3935 }
3936
3937 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
3938 {
3939 if (atomic_sub_and_test(count, &mem->refcnt)) {
3940 struct mem_cgroup *parent = parent_mem_cgroup(mem);
3941 __mem_cgroup_free(mem);
3942 if (parent)
3943 mem_cgroup_put(parent);
3944 }
3945 }
3946
3947 static void mem_cgroup_put(struct mem_cgroup *mem)
3948 {
3949 __mem_cgroup_put(mem, 1);
3950 }
3951
3952 /*
3953 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
3954 */
3955 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
3956 {
3957 if (!mem->res.parent)
3958 return NULL;
3959 return mem_cgroup_from_res_counter(mem->res.parent, res);
3960 }
3961
3962 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3963 static void __init enable_swap_cgroup(void)
3964 {
3965 if (!mem_cgroup_disabled() && really_do_swap_account)
3966 do_swap_account = 1;
3967 }
3968 #else
3969 static void __init enable_swap_cgroup(void)
3970 {
3971 }
3972 #endif
3973
3974 static int mem_cgroup_soft_limit_tree_init(void)
3975 {
3976 struct mem_cgroup_tree_per_node *rtpn;
3977 struct mem_cgroup_tree_per_zone *rtpz;
3978 int tmp, node, zone;
3979
3980 for_each_node_state(node, N_POSSIBLE) {
3981 tmp = node;
3982 if (!node_state(node, N_NORMAL_MEMORY))
3983 tmp = -1;
3984 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
3985 if (!rtpn)
3986 return 1;
3987
3988 soft_limit_tree.rb_tree_per_node[node] = rtpn;
3989
3990 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3991 rtpz = &rtpn->rb_tree_per_zone[zone];
3992 rtpz->rb_root = RB_ROOT;
3993 spin_lock_init(&rtpz->lock);
3994 }
3995 }
3996 return 0;
3997 }
3998
3999 static struct cgroup_subsys_state * __ref
4000 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4001 {
4002 struct mem_cgroup *mem, *parent;
4003 long error = -ENOMEM;
4004 int node;
4005
4006 mem = mem_cgroup_alloc();
4007 if (!mem)
4008 return ERR_PTR(error);
4009
4010 for_each_node_state(node, N_POSSIBLE)
4011 if (alloc_mem_cgroup_per_zone_info(mem, node))
4012 goto free_out;
4013
4014 /* root ? */
4015 if (cont->parent == NULL) {
4016 int cpu;
4017 enable_swap_cgroup();
4018 parent = NULL;
4019 root_mem_cgroup = mem;
4020 if (mem_cgroup_soft_limit_tree_init())
4021 goto free_out;
4022 for_each_possible_cpu(cpu) {
4023 struct memcg_stock_pcp *stock =
4024 &per_cpu(memcg_stock, cpu);
4025 INIT_WORK(&stock->work, drain_local_stock);
4026 }
4027 hotcpu_notifier(memcg_stock_cpu_callback, 0);
4028 } else {
4029 parent = mem_cgroup_from_cont(cont->parent);
4030 mem->use_hierarchy = parent->use_hierarchy;
4031 mem->oom_kill_disable = parent->oom_kill_disable;
4032 }
4033
4034 if (parent && parent->use_hierarchy) {
4035 res_counter_init(&mem->res, &parent->res);
4036 res_counter_init(&mem->memsw, &parent->memsw);
4037 /*
4038 * We increment refcnt of the parent to ensure that we can
4039 * safely access it on res_counter_charge/uncharge.
4040 * This refcnt will be decremented when freeing this
4041 * mem_cgroup(see mem_cgroup_put).
4042 */
4043 mem_cgroup_get(parent);
4044 } else {
4045 res_counter_init(&mem->res, NULL);
4046 res_counter_init(&mem->memsw, NULL);
4047 }
4048 mem->last_scanned_child = 0;
4049 spin_lock_init(&mem->reclaim_param_lock);
4050 INIT_LIST_HEAD(&mem->oom_notify);
4051
4052 if (parent)
4053 mem->swappiness = get_swappiness(parent);
4054 atomic_set(&mem->refcnt, 1);
4055 mem->move_charge_at_immigrate = 0;
4056 mutex_init(&mem->thresholds_lock);
4057 return &mem->css;
4058 free_out:
4059 __mem_cgroup_free(mem);
4060 root_mem_cgroup = NULL;
4061 return ERR_PTR(error);
4062 }
4063
4064 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4065 struct cgroup *cont)
4066 {
4067 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4068
4069 return mem_cgroup_force_empty(mem, false);
4070 }
4071
4072 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4073 struct cgroup *cont)
4074 {
4075 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4076
4077 mem_cgroup_put(mem);
4078 }
4079
4080 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4081 struct cgroup *cont)
4082 {
4083 int ret;
4084
4085 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4086 ARRAY_SIZE(mem_cgroup_files));
4087
4088 if (!ret)
4089 ret = register_memsw_files(cont, ss);
4090 return ret;
4091 }
4092
4093 #ifdef CONFIG_MMU
4094 /* Handlers for move charge at task migration. */
4095 #define PRECHARGE_COUNT_AT_ONCE 256
4096 static int mem_cgroup_do_precharge(unsigned long count)
4097 {
4098 int ret = 0;
4099 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4100 struct mem_cgroup *mem = mc.to;
4101
4102 if (mem_cgroup_is_root(mem)) {
4103 mc.precharge += count;
4104 /* we don't need css_get for root */
4105 return ret;
4106 }
4107 /* try to charge at once */
4108 if (count > 1) {
4109 struct res_counter *dummy;
4110 /*
4111 * "mem" cannot be under rmdir() because we've already checked
4112 * by cgroup_lock_live_cgroup() that it is not removed and we
4113 * are still under the same cgroup_mutex. So we can postpone
4114 * css_get().
4115 */
4116 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4117 goto one_by_one;
4118 if (do_swap_account && res_counter_charge(&mem->memsw,
4119 PAGE_SIZE * count, &dummy)) {
4120 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4121 goto one_by_one;
4122 }
4123 mc.precharge += count;
4124 VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
4125 WARN_ON_ONCE(count > INT_MAX);
4126 __css_get(&mem->css, (int)count);
4127 return ret;
4128 }
4129 one_by_one:
4130 /* fall back to one by one charge */
4131 while (count--) {
4132 if (signal_pending(current)) {
4133 ret = -EINTR;
4134 break;
4135 }
4136 if (!batch_count--) {
4137 batch_count = PRECHARGE_COUNT_AT_ONCE;
4138 cond_resched();
4139 }
4140 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
4141 if (ret || !mem)
4142 /* mem_cgroup_clear_mc() will do uncharge later */
4143 return -ENOMEM;
4144 mc.precharge++;
4145 }
4146 return ret;
4147 }
4148
4149 /**
4150 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4151 * @vma: the vma the pte to be checked belongs
4152 * @addr: the address corresponding to the pte to be checked
4153 * @ptent: the pte to be checked
4154 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4155 *
4156 * Returns
4157 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4158 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4159 * move charge. if @target is not NULL, the page is stored in target->page
4160 * with extra refcnt got(Callers should handle it).
4161 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4162 * target for charge migration. if @target is not NULL, the entry is stored
4163 * in target->ent.
4164 *
4165 * Called with pte lock held.
4166 */
4167 union mc_target {
4168 struct page *page;
4169 swp_entry_t ent;
4170 };
4171
4172 enum mc_target_type {
4173 MC_TARGET_NONE, /* not used */
4174 MC_TARGET_PAGE,
4175 MC_TARGET_SWAP,
4176 };
4177
4178 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4179 unsigned long addr, pte_t ptent)
4180 {
4181 struct page *page = vm_normal_page(vma, addr, ptent);
4182
4183 if (!page || !page_mapped(page))
4184 return NULL;
4185 if (PageAnon(page)) {
4186 /* we don't move shared anon */
4187 if (!move_anon() || page_mapcount(page) > 2)
4188 return NULL;
4189 } else if (!move_file())
4190 /* we ignore mapcount for file pages */
4191 return NULL;
4192 if (!get_page_unless_zero(page))
4193 return NULL;
4194
4195 return page;
4196 }
4197
4198 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4199 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4200 {
4201 int usage_count;
4202 struct page *page = NULL;
4203 swp_entry_t ent = pte_to_swp_entry(ptent);
4204
4205 if (!move_anon() || non_swap_entry(ent))
4206 return NULL;
4207 usage_count = mem_cgroup_count_swap_user(ent, &page);
4208 if (usage_count > 1) { /* we don't move shared anon */
4209 if (page)
4210 put_page(page);
4211 return NULL;
4212 }
4213 if (do_swap_account)
4214 entry->val = ent.val;
4215
4216 return page;
4217 }
4218
4219 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4220 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4221 {
4222 struct page *page = NULL;
4223 struct inode *inode;
4224 struct address_space *mapping;
4225 pgoff_t pgoff;
4226
4227 if (!vma->vm_file) /* anonymous vma */
4228 return NULL;
4229 if (!move_file())
4230 return NULL;
4231
4232 inode = vma->vm_file->f_path.dentry->d_inode;
4233 mapping = vma->vm_file->f_mapping;
4234 if (pte_none(ptent))
4235 pgoff = linear_page_index(vma, addr);
4236 else /* pte_file(ptent) is true */
4237 pgoff = pte_to_pgoff(ptent);
4238
4239 /* page is moved even if it's not RSS of this task(page-faulted). */
4240 if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4241 page = find_get_page(mapping, pgoff);
4242 } else { /* shmem/tmpfs file. we should take account of swap too. */
4243 swp_entry_t ent;
4244 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4245 if (do_swap_account)
4246 entry->val = ent.val;
4247 }
4248
4249 return page;
4250 }
4251
4252 static int is_target_pte_for_mc(struct vm_area_struct *vma,
4253 unsigned long addr, pte_t ptent, union mc_target *target)
4254 {
4255 struct page *page = NULL;
4256 struct page_cgroup *pc;
4257 int ret = 0;
4258 swp_entry_t ent = { .val = 0 };
4259
4260 if (pte_present(ptent))
4261 page = mc_handle_present_pte(vma, addr, ptent);
4262 else if (is_swap_pte(ptent))
4263 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4264 else if (pte_none(ptent) || pte_file(ptent))
4265 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4266
4267 if (!page && !ent.val)
4268 return 0;
4269 if (page) {
4270 pc = lookup_page_cgroup(page);
4271 /*
4272 * Do only loose check w/o page_cgroup lock.
4273 * mem_cgroup_move_account() checks the pc is valid or not under
4274 * the lock.
4275 */
4276 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4277 ret = MC_TARGET_PAGE;
4278 if (target)
4279 target->page = page;
4280 }
4281 if (!ret || !target)
4282 put_page(page);
4283 }
4284 /* There is a swap entry and a page doesn't exist or isn't charged */
4285 if (ent.val && !ret &&
4286 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4287 ret = MC_TARGET_SWAP;
4288 if (target)
4289 target->ent = ent;
4290 }
4291 return ret;
4292 }
4293
4294 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4295 unsigned long addr, unsigned long end,
4296 struct mm_walk *walk)
4297 {
4298 struct vm_area_struct *vma = walk->private;
4299 pte_t *pte;
4300 spinlock_t *ptl;
4301
4302 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4303 for (; addr != end; pte++, addr += PAGE_SIZE)
4304 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4305 mc.precharge++; /* increment precharge temporarily */
4306 pte_unmap_unlock(pte - 1, ptl);
4307 cond_resched();
4308
4309 return 0;
4310 }
4311
4312 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4313 {
4314 unsigned long precharge;
4315 struct vm_area_struct *vma;
4316
4317 down_read(&mm->mmap_sem);
4318 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4319 struct mm_walk mem_cgroup_count_precharge_walk = {
4320 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4321 .mm = mm,
4322 .private = vma,
4323 };
4324 if (is_vm_hugetlb_page(vma))
4325 continue;
4326 walk_page_range(vma->vm_start, vma->vm_end,
4327 &mem_cgroup_count_precharge_walk);
4328 }
4329 up_read(&mm->mmap_sem);
4330
4331 precharge = mc.precharge;
4332 mc.precharge = 0;
4333
4334 return precharge;
4335 }
4336
4337 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4338 {
4339 return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4340 }
4341
4342 static void mem_cgroup_clear_mc(void)
4343 {
4344 /* we must uncharge all the leftover precharges from mc.to */
4345 if (mc.precharge) {
4346 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4347 mc.precharge = 0;
4348 memcg_oom_recover(mc.to);
4349 }
4350 /*
4351 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4352 * we must uncharge here.
4353 */
4354 if (mc.moved_charge) {
4355 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4356 mc.moved_charge = 0;
4357 memcg_oom_recover(mc.from);
4358 }
4359 /* we must fixup refcnts and charges */
4360 if (mc.moved_swap) {
4361 WARN_ON_ONCE(mc.moved_swap > INT_MAX);
4362 /* uncharge swap account from the old cgroup */
4363 if (!mem_cgroup_is_root(mc.from))
4364 res_counter_uncharge(&mc.from->memsw,
4365 PAGE_SIZE * mc.moved_swap);
4366 __mem_cgroup_put(mc.from, mc.moved_swap);
4367
4368 if (!mem_cgroup_is_root(mc.to)) {
4369 /*
4370 * we charged both to->res and to->memsw, so we should
4371 * uncharge to->res.
4372 */
4373 res_counter_uncharge(&mc.to->res,
4374 PAGE_SIZE * mc.moved_swap);
4375 VM_BUG_ON(test_bit(CSS_ROOT, &mc.to->css.flags));
4376 __css_put(&mc.to->css, mc.moved_swap);
4377 }
4378 /* we've already done mem_cgroup_get(mc.to) */
4379
4380 mc.moved_swap = 0;
4381 }
4382 mc.from = NULL;
4383 mc.to = NULL;
4384 mc.moving_task = NULL;
4385 wake_up_all(&mc.waitq);
4386 }
4387
4388 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4389 struct cgroup *cgroup,
4390 struct task_struct *p,
4391 bool threadgroup)
4392 {
4393 int ret = 0;
4394 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4395
4396 if (mem->move_charge_at_immigrate) {
4397 struct mm_struct *mm;
4398 struct mem_cgroup *from = mem_cgroup_from_task(p);
4399
4400 VM_BUG_ON(from == mem);
4401
4402 mm = get_task_mm(p);
4403 if (!mm)
4404 return 0;
4405 /* We move charges only when we move a owner of the mm */
4406 if (mm->owner == p) {
4407 VM_BUG_ON(mc.from);
4408 VM_BUG_ON(mc.to);
4409 VM_BUG_ON(mc.precharge);
4410 VM_BUG_ON(mc.moved_charge);
4411 VM_BUG_ON(mc.moved_swap);
4412 VM_BUG_ON(mc.moving_task);
4413 mc.from = from;
4414 mc.to = mem;
4415 mc.precharge = 0;
4416 mc.moved_charge = 0;
4417 mc.moved_swap = 0;
4418 mc.moving_task = current;
4419
4420 ret = mem_cgroup_precharge_mc(mm);
4421 if (ret)
4422 mem_cgroup_clear_mc();
4423 }
4424 mmput(mm);
4425 }
4426 return ret;
4427 }
4428
4429 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4430 struct cgroup *cgroup,
4431 struct task_struct *p,
4432 bool threadgroup)
4433 {
4434 mem_cgroup_clear_mc();
4435 }
4436
4437 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4438 unsigned long addr, unsigned long end,
4439 struct mm_walk *walk)
4440 {
4441 int ret = 0;
4442 struct vm_area_struct *vma = walk->private;
4443 pte_t *pte;
4444 spinlock_t *ptl;
4445
4446 retry:
4447 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4448 for (; addr != end; addr += PAGE_SIZE) {
4449 pte_t ptent = *(pte++);
4450 union mc_target target;
4451 int type;
4452 struct page *page;
4453 struct page_cgroup *pc;
4454 swp_entry_t ent;
4455
4456 if (!mc.precharge)
4457 break;
4458
4459 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4460 switch (type) {
4461 case MC_TARGET_PAGE:
4462 page = target.page;
4463 if (isolate_lru_page(page))
4464 goto put;
4465 pc = lookup_page_cgroup(page);
4466 if (!mem_cgroup_move_account(pc,
4467 mc.from, mc.to, false)) {
4468 mc.precharge--;
4469 /* we uncharge from mc.from later. */
4470 mc.moved_charge++;
4471 }
4472 putback_lru_page(page);
4473 put: /* is_target_pte_for_mc() gets the page */
4474 put_page(page);
4475 break;
4476 case MC_TARGET_SWAP:
4477 ent = target.ent;
4478 if (!mem_cgroup_move_swap_account(ent,
4479 mc.from, mc.to, false)) {
4480 mc.precharge--;
4481 /* we fixup refcnts and charges later. */
4482 mc.moved_swap++;
4483 }
4484 break;
4485 default:
4486 break;
4487 }
4488 }
4489 pte_unmap_unlock(pte - 1, ptl);
4490 cond_resched();
4491
4492 if (addr != end) {
4493 /*
4494 * We have consumed all precharges we got in can_attach().
4495 * We try charge one by one, but don't do any additional
4496 * charges to mc.to if we have failed in charge once in attach()
4497 * phase.
4498 */
4499 ret = mem_cgroup_do_precharge(1);
4500 if (!ret)
4501 goto retry;
4502 }
4503
4504 return ret;
4505 }
4506
4507 static void mem_cgroup_move_charge(struct mm_struct *mm)
4508 {
4509 struct vm_area_struct *vma;
4510
4511 lru_add_drain_all();
4512 down_read(&mm->mmap_sem);
4513 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4514 int ret;
4515 struct mm_walk mem_cgroup_move_charge_walk = {
4516 .pmd_entry = mem_cgroup_move_charge_pte_range,
4517 .mm = mm,
4518 .private = vma,
4519 };
4520 if (is_vm_hugetlb_page(vma))
4521 continue;
4522 ret = walk_page_range(vma->vm_start, vma->vm_end,
4523 &mem_cgroup_move_charge_walk);
4524 if (ret)
4525 /*
4526 * means we have consumed all precharges and failed in
4527 * doing additional charge. Just abandon here.
4528 */
4529 break;
4530 }
4531 up_read(&mm->mmap_sem);
4532 }
4533
4534 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4535 struct cgroup *cont,
4536 struct cgroup *old_cont,
4537 struct task_struct *p,
4538 bool threadgroup)
4539 {
4540 struct mm_struct *mm;
4541
4542 if (!mc.to)
4543 /* no need to move charge */
4544 return;
4545
4546 mm = get_task_mm(p);
4547 if (mm) {
4548 mem_cgroup_move_charge(mm);
4549 mmput(mm);
4550 }
4551 mem_cgroup_clear_mc();
4552 }
4553 #else /* !CONFIG_MMU */
4554 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4555 struct cgroup *cgroup,
4556 struct task_struct *p,
4557 bool threadgroup)
4558 {
4559 return 0;
4560 }
4561 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4562 struct cgroup *cgroup,
4563 struct task_struct *p,
4564 bool threadgroup)
4565 {
4566 }
4567 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4568 struct cgroup *cont,
4569 struct cgroup *old_cont,
4570 struct task_struct *p,
4571 bool threadgroup)
4572 {
4573 }
4574 #endif
4575
4576 struct cgroup_subsys mem_cgroup_subsys = {
4577 .name = "memory",
4578 .subsys_id = mem_cgroup_subsys_id,
4579 .create = mem_cgroup_create,
4580 .pre_destroy = mem_cgroup_pre_destroy,
4581 .destroy = mem_cgroup_destroy,
4582 .populate = mem_cgroup_populate,
4583 .can_attach = mem_cgroup_can_attach,
4584 .cancel_attach = mem_cgroup_cancel_attach,
4585 .attach = mem_cgroup_move_task,
4586 .early_init = 0,
4587 .use_id = 1,
4588 };
4589
4590 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4591
4592 static int __init disable_swap_account(char *s)
4593 {
4594 really_do_swap_account = 0;
4595 return 1;
4596 }
4597 __setup("noswapaccount", disable_swap_account);
4598 #endif
This page took 0.129733 seconds and 5 git commands to generate.