9e170d3c71e5f246bbc2f428126228d7a696f39f
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/page-flags.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bit_spinlock.h>
28 #include <linux/rcupdate.h>
29 #include <linux/swap.h>
30 #include <linux/spinlock.h>
31 #include <linux/fs.h>
32 #include <linux/seq_file.h>
33
34 #include <asm/uaccess.h>
35
36 struct cgroup_subsys mem_cgroup_subsys;
37 static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
38
39 /*
40 * Statistics for memory cgroup.
41 */
42 enum mem_cgroup_stat_index {
43 /*
44 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
45 */
46 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
47 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
48
49 MEM_CGROUP_STAT_NSTATS,
50 };
51
52 struct mem_cgroup_stat_cpu {
53 s64 count[MEM_CGROUP_STAT_NSTATS];
54 } ____cacheline_aligned_in_smp;
55
56 struct mem_cgroup_stat {
57 struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
58 };
59
60 /*
61 * For accounting under irq disable, no need for increment preempt count.
62 */
63 static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat,
64 enum mem_cgroup_stat_index idx, int val)
65 {
66 int cpu = smp_processor_id();
67 stat->cpustat[cpu].count[idx] += val;
68 }
69
70 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
71 enum mem_cgroup_stat_index idx)
72 {
73 int cpu;
74 s64 ret = 0;
75 for_each_possible_cpu(cpu)
76 ret += stat->cpustat[cpu].count[idx];
77 return ret;
78 }
79
80 /*
81 * per-zone information in memory controller.
82 */
83
84 enum mem_cgroup_zstat_index {
85 MEM_CGROUP_ZSTAT_ACTIVE,
86 MEM_CGROUP_ZSTAT_INACTIVE,
87
88 NR_MEM_CGROUP_ZSTAT,
89 };
90
91 struct mem_cgroup_per_zone {
92 /*
93 * spin_lock to protect the per cgroup LRU
94 */
95 spinlock_t lru_lock;
96 struct list_head active_list;
97 struct list_head inactive_list;
98 unsigned long count[NR_MEM_CGROUP_ZSTAT];
99 };
100 /* Macro for accessing counter */
101 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
102
103 struct mem_cgroup_per_node {
104 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
105 };
106
107 struct mem_cgroup_lru_info {
108 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
109 };
110
111 /*
112 * The memory controller data structure. The memory controller controls both
113 * page cache and RSS per cgroup. We would eventually like to provide
114 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
115 * to help the administrator determine what knobs to tune.
116 *
117 * TODO: Add a water mark for the memory controller. Reclaim will begin when
118 * we hit the water mark. May be even add a low water mark, such that
119 * no reclaim occurs from a cgroup at it's low water mark, this is
120 * a feature that will be implemented much later in the future.
121 */
122 struct mem_cgroup {
123 struct cgroup_subsys_state css;
124 /*
125 * the counter to account for memory usage
126 */
127 struct res_counter res;
128 /*
129 * Per cgroup active and inactive list, similar to the
130 * per zone LRU lists.
131 */
132 struct mem_cgroup_lru_info info;
133
134 int prev_priority; /* for recording reclaim priority */
135 /*
136 * statistics.
137 */
138 struct mem_cgroup_stat stat;
139 };
140
141 /*
142 * We use the lower bit of the page->page_cgroup pointer as a bit spin
143 * lock. We need to ensure that page->page_cgroup is at least two
144 * byte aligned (based on comments from Nick Piggin). But since
145 * bit_spin_lock doesn't actually set that lock bit in a non-debug
146 * uniprocessor kernel, we should avoid setting it here too.
147 */
148 #define PAGE_CGROUP_LOCK_BIT 0x0
149 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK)
150 #define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
151 #else
152 #define PAGE_CGROUP_LOCK 0x0
153 #endif
154
155 /*
156 * A page_cgroup page is associated with every page descriptor. The
157 * page_cgroup helps us identify information about the cgroup
158 */
159 struct page_cgroup {
160 struct list_head lru; /* per cgroup LRU list */
161 struct page *page;
162 struct mem_cgroup *mem_cgroup;
163 atomic_t ref_cnt; /* Helpful when pages move b/w */
164 /* mapped and cached states */
165 int flags;
166 };
167 #define PAGE_CGROUP_FLAG_CACHE (0x1) /* charged as cache */
168 #define PAGE_CGROUP_FLAG_ACTIVE (0x2) /* page is active in this cgroup */
169
170 static inline int page_cgroup_nid(struct page_cgroup *pc)
171 {
172 return page_to_nid(pc->page);
173 }
174
175 static inline enum zone_type page_cgroup_zid(struct page_cgroup *pc)
176 {
177 return page_zonenum(pc->page);
178 }
179
180 enum {
181 MEM_CGROUP_TYPE_UNSPEC = 0,
182 MEM_CGROUP_TYPE_MAPPED,
183 MEM_CGROUP_TYPE_CACHED,
184 MEM_CGROUP_TYPE_ALL,
185 MEM_CGROUP_TYPE_MAX,
186 };
187
188 enum charge_type {
189 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
190 MEM_CGROUP_CHARGE_TYPE_MAPPED,
191 };
192
193
194 /*
195 * Always modified under lru lock. Then, not necessary to preempt_disable()
196 */
197 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags,
198 bool charge)
199 {
200 int val = (charge)? 1 : -1;
201 struct mem_cgroup_stat *stat = &mem->stat;
202 VM_BUG_ON(!irqs_disabled());
203
204 if (flags & PAGE_CGROUP_FLAG_CACHE)
205 __mem_cgroup_stat_add_safe(stat,
206 MEM_CGROUP_STAT_CACHE, val);
207 else
208 __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val);
209 }
210
211 static inline struct mem_cgroup_per_zone *
212 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
213 {
214 BUG_ON(!mem->info.nodeinfo[nid]);
215 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
216 }
217
218 static inline struct mem_cgroup_per_zone *
219 page_cgroup_zoneinfo(struct page_cgroup *pc)
220 {
221 struct mem_cgroup *mem = pc->mem_cgroup;
222 int nid = page_cgroup_nid(pc);
223 int zid = page_cgroup_zid(pc);
224
225 return mem_cgroup_zoneinfo(mem, nid, zid);
226 }
227
228 static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
229 enum mem_cgroup_zstat_index idx)
230 {
231 int nid, zid;
232 struct mem_cgroup_per_zone *mz;
233 u64 total = 0;
234
235 for_each_online_node(nid)
236 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
237 mz = mem_cgroup_zoneinfo(mem, nid, zid);
238 total += MEM_CGROUP_ZSTAT(mz, idx);
239 }
240 return total;
241 }
242
243 static struct mem_cgroup init_mem_cgroup;
244
245 static inline
246 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
247 {
248 return container_of(cgroup_subsys_state(cont,
249 mem_cgroup_subsys_id), struct mem_cgroup,
250 css);
251 }
252
253 static inline
254 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
255 {
256 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
257 struct mem_cgroup, css);
258 }
259
260 void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p)
261 {
262 struct mem_cgroup *mem;
263
264 mem = mem_cgroup_from_task(p);
265 css_get(&mem->css);
266 mm->mem_cgroup = mem;
267 }
268
269 void mm_free_cgroup(struct mm_struct *mm)
270 {
271 css_put(&mm->mem_cgroup->css);
272 }
273
274 static inline int page_cgroup_locked(struct page *page)
275 {
276 return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT,
277 &page->page_cgroup);
278 }
279
280 static void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
281 {
282 VM_BUG_ON(!page_cgroup_locked(page));
283 page->page_cgroup = ((unsigned long)pc | PAGE_CGROUP_LOCK);
284 }
285
286 struct page_cgroup *page_get_page_cgroup(struct page *page)
287 {
288 return (struct page_cgroup *)
289 (page->page_cgroup & ~PAGE_CGROUP_LOCK);
290 }
291
292 static void __always_inline lock_page_cgroup(struct page *page)
293 {
294 bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
295 VM_BUG_ON(!page_cgroup_locked(page));
296 }
297
298 static void __always_inline unlock_page_cgroup(struct page *page)
299 {
300 bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
301 }
302
303 /*
304 * Tie new page_cgroup to struct page under lock_page_cgroup()
305 * This can fail if the page has been tied to a page_cgroup.
306 * If success, returns 0.
307 */
308 static int page_cgroup_assign_new_page_cgroup(struct page *page,
309 struct page_cgroup *pc)
310 {
311 int ret = 0;
312
313 lock_page_cgroup(page);
314 if (!page_get_page_cgroup(page))
315 page_assign_page_cgroup(page, pc);
316 else /* A page is tied to other pc. */
317 ret = 1;
318 unlock_page_cgroup(page);
319 return ret;
320 }
321
322 /*
323 * Clear page->page_cgroup member under lock_page_cgroup().
324 * If given "pc" value is different from one page->page_cgroup,
325 * page->cgroup is not cleared.
326 * Returns a value of page->page_cgroup at lock taken.
327 * A can can detect failure of clearing by following
328 * clear_page_cgroup(page, pc) == pc
329 */
330
331 static struct page_cgroup *clear_page_cgroup(struct page *page,
332 struct page_cgroup *pc)
333 {
334 struct page_cgroup *ret;
335 /* lock and clear */
336 lock_page_cgroup(page);
337 ret = page_get_page_cgroup(page);
338 if (likely(ret == pc))
339 page_assign_page_cgroup(page, NULL);
340 unlock_page_cgroup(page);
341 return ret;
342 }
343
344 static void __mem_cgroup_remove_list(struct page_cgroup *pc)
345 {
346 int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
347 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
348
349 if (from)
350 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
351 else
352 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
353
354 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false);
355 list_del_init(&pc->lru);
356 }
357
358 static void __mem_cgroup_add_list(struct page_cgroup *pc)
359 {
360 int to = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
361 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
362
363 if (!to) {
364 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
365 list_add(&pc->lru, &mz->inactive_list);
366 } else {
367 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
368 list_add(&pc->lru, &mz->active_list);
369 }
370 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true);
371 }
372
373 static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
374 {
375 int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
376 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
377
378 if (from)
379 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
380 else
381 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
382
383 if (active) {
384 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
385 pc->flags |= PAGE_CGROUP_FLAG_ACTIVE;
386 list_move(&pc->lru, &mz->active_list);
387 } else {
388 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
389 pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE;
390 list_move(&pc->lru, &mz->inactive_list);
391 }
392 }
393
394 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
395 {
396 int ret;
397
398 task_lock(task);
399 ret = task->mm && mm_match_cgroup(task->mm, mem);
400 task_unlock(task);
401 return ret;
402 }
403
404 /*
405 * This routine assumes that the appropriate zone's lru lock is already held
406 */
407 void mem_cgroup_move_lists(struct page *page, bool active)
408 {
409 struct page_cgroup *pc;
410 struct mem_cgroup_per_zone *mz;
411 unsigned long flags;
412
413 pc = page_get_page_cgroup(page);
414 if (!pc)
415 return;
416
417 mz = page_cgroup_zoneinfo(pc);
418 spin_lock_irqsave(&mz->lru_lock, flags);
419 __mem_cgroup_move_lists(pc, active);
420 spin_unlock_irqrestore(&mz->lru_lock, flags);
421 }
422
423 /*
424 * Calculate mapped_ratio under memory controller. This will be used in
425 * vmscan.c for deteremining we have to reclaim mapped pages.
426 */
427 int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
428 {
429 long total, rss;
430
431 /*
432 * usage is recorded in bytes. But, here, we assume the number of
433 * physical pages can be represented by "long" on any arch.
434 */
435 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
436 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
437 return (int)((rss * 100L) / total);
438 }
439 /*
440 * This function is called from vmscan.c. In page reclaiming loop. balance
441 * between active and inactive list is calculated. For memory controller
442 * page reclaiming, we should use using mem_cgroup's imbalance rather than
443 * zone's global lru imbalance.
444 */
445 long mem_cgroup_reclaim_imbalance(struct mem_cgroup *mem)
446 {
447 unsigned long active, inactive;
448 /* active and inactive are the number of pages. 'long' is ok.*/
449 active = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_ACTIVE);
450 inactive = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_INACTIVE);
451 return (long) (active / (inactive + 1));
452 }
453
454 /*
455 * prev_priority control...this will be used in memory reclaim path.
456 */
457 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
458 {
459 return mem->prev_priority;
460 }
461
462 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
463 {
464 if (priority < mem->prev_priority)
465 mem->prev_priority = priority;
466 }
467
468 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
469 {
470 mem->prev_priority = priority;
471 }
472
473 /*
474 * Calculate # of pages to be scanned in this priority/zone.
475 * See also vmscan.c
476 *
477 * priority starts from "DEF_PRIORITY" and decremented in each loop.
478 * (see include/linux/mmzone.h)
479 */
480
481 long mem_cgroup_calc_reclaim_active(struct mem_cgroup *mem,
482 struct zone *zone, int priority)
483 {
484 long nr_active;
485 int nid = zone->zone_pgdat->node_id;
486 int zid = zone_idx(zone);
487 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
488
489 nr_active = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE);
490 return (nr_active >> priority);
491 }
492
493 long mem_cgroup_calc_reclaim_inactive(struct mem_cgroup *mem,
494 struct zone *zone, int priority)
495 {
496 long nr_inactive;
497 int nid = zone->zone_pgdat->node_id;
498 int zid = zone_idx(zone);
499 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
500
501 nr_inactive = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE);
502
503 return (nr_inactive >> priority);
504 }
505
506 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
507 struct list_head *dst,
508 unsigned long *scanned, int order,
509 int mode, struct zone *z,
510 struct mem_cgroup *mem_cont,
511 int active)
512 {
513 unsigned long nr_taken = 0;
514 struct page *page;
515 unsigned long scan;
516 LIST_HEAD(pc_list);
517 struct list_head *src;
518 struct page_cgroup *pc, *tmp;
519 int nid = z->zone_pgdat->node_id;
520 int zid = zone_idx(z);
521 struct mem_cgroup_per_zone *mz;
522
523 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
524 if (active)
525 src = &mz->active_list;
526 else
527 src = &mz->inactive_list;
528
529
530 spin_lock(&mz->lru_lock);
531 scan = 0;
532 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
533 if (scan >= nr_to_scan)
534 break;
535 page = pc->page;
536
537 if (unlikely(!PageLRU(page)))
538 continue;
539
540 if (PageActive(page) && !active) {
541 __mem_cgroup_move_lists(pc, true);
542 continue;
543 }
544 if (!PageActive(page) && active) {
545 __mem_cgroup_move_lists(pc, false);
546 continue;
547 }
548
549 scan++;
550 list_move(&pc->lru, &pc_list);
551
552 if (__isolate_lru_page(page, mode) == 0) {
553 list_move(&page->lru, dst);
554 nr_taken++;
555 }
556 }
557
558 list_splice(&pc_list, src);
559 spin_unlock(&mz->lru_lock);
560
561 *scanned = scan;
562 return nr_taken;
563 }
564
565 /*
566 * Charge the memory controller for page usage.
567 * Return
568 * 0 if the charge was successful
569 * < 0 if the cgroup is over its limit
570 */
571 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
572 gfp_t gfp_mask, enum charge_type ctype)
573 {
574 struct mem_cgroup *mem;
575 struct page_cgroup *pc;
576 unsigned long flags;
577 unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
578 struct mem_cgroup_per_zone *mz;
579
580 /*
581 * Should page_cgroup's go to their own slab?
582 * One could optimize the performance of the charging routine
583 * by saving a bit in the page_flags and using it as a lock
584 * to see if the cgroup page already has a page_cgroup associated
585 * with it
586 */
587 retry:
588 if (page) {
589 lock_page_cgroup(page);
590 pc = page_get_page_cgroup(page);
591 /*
592 * The page_cgroup exists and
593 * the page has already been accounted.
594 */
595 if (pc) {
596 if (unlikely(!atomic_inc_not_zero(&pc->ref_cnt))) {
597 /* this page is under being uncharged ? */
598 unlock_page_cgroup(page);
599 cpu_relax();
600 goto retry;
601 } else {
602 unlock_page_cgroup(page);
603 goto done;
604 }
605 }
606 unlock_page_cgroup(page);
607 }
608
609 pc = kzalloc(sizeof(struct page_cgroup), gfp_mask);
610 if (pc == NULL)
611 goto err;
612
613 /*
614 * We always charge the cgroup the mm_struct belongs to.
615 * The mm_struct's mem_cgroup changes on task migration if the
616 * thread group leader migrates. It's possible that mm is not
617 * set, if so charge the init_mm (happens for pagecache usage).
618 */
619 if (!mm)
620 mm = &init_mm;
621
622 rcu_read_lock();
623 mem = rcu_dereference(mm->mem_cgroup);
624 /*
625 * For every charge from the cgroup, increment reference
626 * count
627 */
628 css_get(&mem->css);
629 rcu_read_unlock();
630
631 /*
632 * If we created the page_cgroup, we should free it on exceeding
633 * the cgroup limit.
634 */
635 while (res_counter_charge(&mem->res, PAGE_SIZE)) {
636 if (!(gfp_mask & __GFP_WAIT))
637 goto out;
638
639 if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
640 continue;
641
642 /*
643 * try_to_free_mem_cgroup_pages() might not give us a full
644 * picture of reclaim. Some pages are reclaimed and might be
645 * moved to swap cache or just unmapped from the cgroup.
646 * Check the limit again to see if the reclaim reduced the
647 * current usage of the cgroup before giving up
648 */
649 if (res_counter_check_under_limit(&mem->res))
650 continue;
651
652 if (!nr_retries--) {
653 mem_cgroup_out_of_memory(mem, gfp_mask);
654 goto out;
655 }
656 congestion_wait(WRITE, HZ/10);
657 }
658
659 atomic_set(&pc->ref_cnt, 1);
660 pc->mem_cgroup = mem;
661 pc->page = page;
662 pc->flags = PAGE_CGROUP_FLAG_ACTIVE;
663 if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
664 pc->flags |= PAGE_CGROUP_FLAG_CACHE;
665
666 if (!page || page_cgroup_assign_new_page_cgroup(page, pc)) {
667 /*
668 * Another charge has been added to this page already.
669 * We take lock_page_cgroup(page) again and read
670 * page->cgroup, increment refcnt.... just retry is OK.
671 */
672 res_counter_uncharge(&mem->res, PAGE_SIZE);
673 css_put(&mem->css);
674 kfree(pc);
675 if (!page)
676 goto done;
677 goto retry;
678 }
679
680 mz = page_cgroup_zoneinfo(pc);
681 spin_lock_irqsave(&mz->lru_lock, flags);
682 /* Update statistics vector */
683 __mem_cgroup_add_list(pc);
684 spin_unlock_irqrestore(&mz->lru_lock, flags);
685
686 done:
687 return 0;
688 out:
689 css_put(&mem->css);
690 kfree(pc);
691 err:
692 return -ENOMEM;
693 }
694
695 int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
696 gfp_t gfp_mask)
697 {
698 return mem_cgroup_charge_common(page, mm, gfp_mask,
699 MEM_CGROUP_CHARGE_TYPE_MAPPED);
700 }
701
702 /*
703 * See if the cached pages should be charged at all?
704 */
705 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
706 gfp_t gfp_mask)
707 {
708 int ret = 0;
709 if (!mm)
710 mm = &init_mm;
711
712 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
713 MEM_CGROUP_CHARGE_TYPE_CACHE);
714 return ret;
715 }
716
717 /*
718 * Uncharging is always a welcome operation, we never complain, simply
719 * uncharge. This routine should be called with lock_page_cgroup held
720 */
721 void mem_cgroup_uncharge(struct page_cgroup *pc)
722 {
723 struct mem_cgroup *mem;
724 struct mem_cgroup_per_zone *mz;
725 struct page *page;
726 unsigned long flags;
727
728 /*
729 * Check if our page_cgroup is valid
730 */
731 if (!pc)
732 return;
733
734 if (atomic_dec_and_test(&pc->ref_cnt)) {
735 page = pc->page;
736 mz = page_cgroup_zoneinfo(pc);
737 /*
738 * get page->cgroup and clear it under lock.
739 * force_empty can drop page->cgroup without checking refcnt.
740 */
741 unlock_page_cgroup(page);
742 if (clear_page_cgroup(page, pc) == pc) {
743 mem = pc->mem_cgroup;
744 css_put(&mem->css);
745 res_counter_uncharge(&mem->res, PAGE_SIZE);
746 spin_lock_irqsave(&mz->lru_lock, flags);
747 __mem_cgroup_remove_list(pc);
748 spin_unlock_irqrestore(&mz->lru_lock, flags);
749 kfree(pc);
750 }
751 lock_page_cgroup(page);
752 }
753 }
754
755 void mem_cgroup_uncharge_page(struct page *page)
756 {
757 lock_page_cgroup(page);
758 mem_cgroup_uncharge(page_get_page_cgroup(page));
759 unlock_page_cgroup(page);
760 }
761
762 /*
763 * Returns non-zero if a page (under migration) has valid page_cgroup member.
764 * Refcnt of page_cgroup is incremented.
765 */
766
767 int mem_cgroup_prepare_migration(struct page *page)
768 {
769 struct page_cgroup *pc;
770 int ret = 0;
771 lock_page_cgroup(page);
772 pc = page_get_page_cgroup(page);
773 if (pc && atomic_inc_not_zero(&pc->ref_cnt))
774 ret = 1;
775 unlock_page_cgroup(page);
776 return ret;
777 }
778
779 void mem_cgroup_end_migration(struct page *page)
780 {
781 struct page_cgroup *pc;
782
783 lock_page_cgroup(page);
784 pc = page_get_page_cgroup(page);
785 mem_cgroup_uncharge(pc);
786 unlock_page_cgroup(page);
787 }
788 /*
789 * We know both *page* and *newpage* are now not-on-LRU and Pg_locked.
790 * And no race with uncharge() routines because page_cgroup for *page*
791 * has extra one reference by mem_cgroup_prepare_migration.
792 */
793
794 void mem_cgroup_page_migration(struct page *page, struct page *newpage)
795 {
796 struct page_cgroup *pc;
797 struct mem_cgroup *mem;
798 unsigned long flags;
799 struct mem_cgroup_per_zone *mz;
800 retry:
801 pc = page_get_page_cgroup(page);
802 if (!pc)
803 return;
804 mem = pc->mem_cgroup;
805 mz = page_cgroup_zoneinfo(pc);
806 if (clear_page_cgroup(page, pc) != pc)
807 goto retry;
808 spin_lock_irqsave(&mz->lru_lock, flags);
809
810 __mem_cgroup_remove_list(pc);
811 spin_unlock_irqrestore(&mz->lru_lock, flags);
812
813 pc->page = newpage;
814 lock_page_cgroup(newpage);
815 page_assign_page_cgroup(newpage, pc);
816 unlock_page_cgroup(newpage);
817
818 mz = page_cgroup_zoneinfo(pc);
819 spin_lock_irqsave(&mz->lru_lock, flags);
820 __mem_cgroup_add_list(pc);
821 spin_unlock_irqrestore(&mz->lru_lock, flags);
822 return;
823 }
824
825 /*
826 * This routine traverse page_cgroup in given list and drop them all.
827 * This routine ignores page_cgroup->ref_cnt.
828 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
829 */
830 #define FORCE_UNCHARGE_BATCH (128)
831 static void
832 mem_cgroup_force_empty_list(struct mem_cgroup *mem,
833 struct mem_cgroup_per_zone *mz,
834 int active)
835 {
836 struct page_cgroup *pc;
837 struct page *page;
838 int count;
839 unsigned long flags;
840 struct list_head *list;
841
842 if (active)
843 list = &mz->active_list;
844 else
845 list = &mz->inactive_list;
846
847 if (list_empty(list))
848 return;
849 retry:
850 count = FORCE_UNCHARGE_BATCH;
851 spin_lock_irqsave(&mz->lru_lock, flags);
852
853 while (--count && !list_empty(list)) {
854 pc = list_entry(list->prev, struct page_cgroup, lru);
855 page = pc->page;
856 /* Avoid race with charge */
857 atomic_set(&pc->ref_cnt, 0);
858 if (clear_page_cgroup(page, pc) == pc) {
859 css_put(&mem->css);
860 res_counter_uncharge(&mem->res, PAGE_SIZE);
861 __mem_cgroup_remove_list(pc);
862 kfree(pc);
863 } else /* being uncharged ? ...do relax */
864 break;
865 }
866 spin_unlock_irqrestore(&mz->lru_lock, flags);
867 if (!list_empty(list)) {
868 cond_resched();
869 goto retry;
870 }
871 return;
872 }
873
874 /*
875 * make mem_cgroup's charge to be 0 if there is no task.
876 * This enables deleting this mem_cgroup.
877 */
878
879 int mem_cgroup_force_empty(struct mem_cgroup *mem)
880 {
881 int ret = -EBUSY;
882 int node, zid;
883 css_get(&mem->css);
884 /*
885 * page reclaim code (kswapd etc..) will move pages between
886 ` * active_list <-> inactive_list while we don't take a lock.
887 * So, we have to do loop here until all lists are empty.
888 */
889 while (mem->res.usage > 0) {
890 if (atomic_read(&mem->css.cgroup->count) > 0)
891 goto out;
892 for_each_node_state(node, N_POSSIBLE)
893 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
894 struct mem_cgroup_per_zone *mz;
895 mz = mem_cgroup_zoneinfo(mem, node, zid);
896 /* drop all page_cgroup in active_list */
897 mem_cgroup_force_empty_list(mem, mz, 1);
898 /* drop all page_cgroup in inactive_list */
899 mem_cgroup_force_empty_list(mem, mz, 0);
900 }
901 }
902 ret = 0;
903 out:
904 css_put(&mem->css);
905 return ret;
906 }
907
908
909
910 int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
911 {
912 *tmp = memparse(buf, &buf);
913 if (*buf != '\0')
914 return -EINVAL;
915
916 /*
917 * Round up the value to the closest page size
918 */
919 *tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
920 return 0;
921 }
922
923 static ssize_t mem_cgroup_read(struct cgroup *cont,
924 struct cftype *cft, struct file *file,
925 char __user *userbuf, size_t nbytes, loff_t *ppos)
926 {
927 return res_counter_read(&mem_cgroup_from_cont(cont)->res,
928 cft->private, userbuf, nbytes, ppos,
929 NULL);
930 }
931
932 static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
933 struct file *file, const char __user *userbuf,
934 size_t nbytes, loff_t *ppos)
935 {
936 return res_counter_write(&mem_cgroup_from_cont(cont)->res,
937 cft->private, userbuf, nbytes, ppos,
938 mem_cgroup_write_strategy);
939 }
940
941 static ssize_t mem_force_empty_write(struct cgroup *cont,
942 struct cftype *cft, struct file *file,
943 const char __user *userbuf,
944 size_t nbytes, loff_t *ppos)
945 {
946 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
947 int ret;
948 ret = mem_cgroup_force_empty(mem);
949 if (!ret)
950 ret = nbytes;
951 return ret;
952 }
953
954 /*
955 * Note: This should be removed if cgroup supports write-only file.
956 */
957
958 static ssize_t mem_force_empty_read(struct cgroup *cont,
959 struct cftype *cft,
960 struct file *file, char __user *userbuf,
961 size_t nbytes, loff_t *ppos)
962 {
963 return -EINVAL;
964 }
965
966
967 static const struct mem_cgroup_stat_desc {
968 const char *msg;
969 u64 unit;
970 } mem_cgroup_stat_desc[] = {
971 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
972 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
973 };
974
975 static int mem_control_stat_show(struct seq_file *m, void *arg)
976 {
977 struct cgroup *cont = m->private;
978 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
979 struct mem_cgroup_stat *stat = &mem_cont->stat;
980 int i;
981
982 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
983 s64 val;
984
985 val = mem_cgroup_read_stat(stat, i);
986 val *= mem_cgroup_stat_desc[i].unit;
987 seq_printf(m, "%s %lld\n", mem_cgroup_stat_desc[i].msg,
988 (long long)val);
989 }
990 /* showing # of active pages */
991 {
992 unsigned long active, inactive;
993
994 inactive = mem_cgroup_get_all_zonestat(mem_cont,
995 MEM_CGROUP_ZSTAT_INACTIVE);
996 active = mem_cgroup_get_all_zonestat(mem_cont,
997 MEM_CGROUP_ZSTAT_ACTIVE);
998 seq_printf(m, "active %ld\n", (active) * PAGE_SIZE);
999 seq_printf(m, "inactive %ld\n", (inactive) * PAGE_SIZE);
1000 }
1001 return 0;
1002 }
1003
1004 static const struct file_operations mem_control_stat_file_operations = {
1005 .read = seq_read,
1006 .llseek = seq_lseek,
1007 .release = single_release,
1008 };
1009
1010 static int mem_control_stat_open(struct inode *unused, struct file *file)
1011 {
1012 /* XXX __d_cont */
1013 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
1014
1015 file->f_op = &mem_control_stat_file_operations;
1016 return single_open(file, mem_control_stat_show, cont);
1017 }
1018
1019
1020
1021 static struct cftype mem_cgroup_files[] = {
1022 {
1023 .name = "usage_in_bytes",
1024 .private = RES_USAGE,
1025 .read = mem_cgroup_read,
1026 },
1027 {
1028 .name = "limit_in_bytes",
1029 .private = RES_LIMIT,
1030 .write = mem_cgroup_write,
1031 .read = mem_cgroup_read,
1032 },
1033 {
1034 .name = "failcnt",
1035 .private = RES_FAILCNT,
1036 .read = mem_cgroup_read,
1037 },
1038 {
1039 .name = "force_empty",
1040 .write = mem_force_empty_write,
1041 .read = mem_force_empty_read,
1042 },
1043 {
1044 .name = "stat",
1045 .open = mem_control_stat_open,
1046 },
1047 };
1048
1049 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1050 {
1051 struct mem_cgroup_per_node *pn;
1052 struct mem_cgroup_per_zone *mz;
1053 int zone;
1054 /*
1055 * This routine is called against possible nodes.
1056 * But it's BUG to call kmalloc() against offline node.
1057 *
1058 * TODO: this routine can waste much memory for nodes which will
1059 * never be onlined. It's better to use memory hotplug callback
1060 * function.
1061 */
1062 if (node_state(node, N_HIGH_MEMORY))
1063 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, node);
1064 else
1065 pn = kmalloc(sizeof(*pn), GFP_KERNEL);
1066 if (!pn)
1067 return 1;
1068
1069 mem->info.nodeinfo[node] = pn;
1070 memset(pn, 0, sizeof(*pn));
1071
1072 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
1073 mz = &pn->zoneinfo[zone];
1074 INIT_LIST_HEAD(&mz->active_list);
1075 INIT_LIST_HEAD(&mz->inactive_list);
1076 spin_lock_init(&mz->lru_lock);
1077 }
1078 return 0;
1079 }
1080
1081 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1082 {
1083 kfree(mem->info.nodeinfo[node]);
1084 }
1085
1086
1087 static struct mem_cgroup init_mem_cgroup;
1088
1089 static struct cgroup_subsys_state *
1090 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
1091 {
1092 struct mem_cgroup *mem;
1093 int node;
1094
1095 if (unlikely((cont->parent) == NULL)) {
1096 mem = &init_mem_cgroup;
1097 init_mm.mem_cgroup = mem;
1098 } else
1099 mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);
1100
1101 if (mem == NULL)
1102 return ERR_PTR(-ENOMEM);
1103
1104 res_counter_init(&mem->res);
1105
1106 memset(&mem->info, 0, sizeof(mem->info));
1107
1108 for_each_node_state(node, N_POSSIBLE)
1109 if (alloc_mem_cgroup_per_zone_info(mem, node))
1110 goto free_out;
1111
1112 return &mem->css;
1113 free_out:
1114 for_each_node_state(node, N_POSSIBLE)
1115 free_mem_cgroup_per_zone_info(mem, node);
1116 if (cont->parent != NULL)
1117 kfree(mem);
1118 return ERR_PTR(-ENOMEM);
1119 }
1120
1121 static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
1122 struct cgroup *cont)
1123 {
1124 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1125 mem_cgroup_force_empty(mem);
1126 }
1127
1128 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
1129 struct cgroup *cont)
1130 {
1131 int node;
1132 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1133
1134 for_each_node_state(node, N_POSSIBLE)
1135 free_mem_cgroup_per_zone_info(mem, node);
1136
1137 kfree(mem_cgroup_from_cont(cont));
1138 }
1139
1140 static int mem_cgroup_populate(struct cgroup_subsys *ss,
1141 struct cgroup *cont)
1142 {
1143 return cgroup_add_files(cont, ss, mem_cgroup_files,
1144 ARRAY_SIZE(mem_cgroup_files));
1145 }
1146
1147 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
1148 struct cgroup *cont,
1149 struct cgroup *old_cont,
1150 struct task_struct *p)
1151 {
1152 struct mm_struct *mm;
1153 struct mem_cgroup *mem, *old_mem;
1154
1155 mm = get_task_mm(p);
1156 if (mm == NULL)
1157 return;
1158
1159 mem = mem_cgroup_from_cont(cont);
1160 old_mem = mem_cgroup_from_cont(old_cont);
1161
1162 if (mem == old_mem)
1163 goto out;
1164
1165 /*
1166 * Only thread group leaders are allowed to migrate, the mm_struct is
1167 * in effect owned by the leader
1168 */
1169 if (p->tgid != p->pid)
1170 goto out;
1171
1172 css_get(&mem->css);
1173 rcu_assign_pointer(mm->mem_cgroup, mem);
1174 css_put(&old_mem->css);
1175
1176 out:
1177 mmput(mm);
1178 return;
1179 }
1180
1181 struct cgroup_subsys mem_cgroup_subsys = {
1182 .name = "memory",
1183 .subsys_id = mem_cgroup_subsys_id,
1184 .create = mem_cgroup_create,
1185 .pre_destroy = mem_cgroup_pre_destroy,
1186 .destroy = mem_cgroup_destroy,
1187 .populate = mem_cgroup_populate,
1188 .attach = mem_cgroup_move_task,
1189 .early_init = 0,
1190 };
This page took 0.078613 seconds and 4 git commands to generate.