memcg: enhance memcg iterator to support predicates
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/slab.h>
43 #include <linux/swap.h>
44 #include <linux/swapops.h>
45 #include <linux/spinlock.h>
46 #include <linux/eventfd.h>
47 #include <linux/sort.h>
48 #include <linux/fs.h>
49 #include <linux/seq_file.h>
50 #include <linux/vmalloc.h>
51 #include <linux/vmpressure.h>
52 #include <linux/mm_inline.h>
53 #include <linux/page_cgroup.h>
54 #include <linux/cpu.h>
55 #include <linux/oom.h>
56 #include "internal.h"
57 #include <net/sock.h>
58 #include <net/ip.h>
59 #include <net/tcp_memcontrol.h>
60
61 #include <asm/uaccess.h>
62
63 #include <trace/events/vmscan.h>
64
65 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
66 EXPORT_SYMBOL(mem_cgroup_subsys);
67
68 #define MEM_CGROUP_RECLAIM_RETRIES 5
69 static struct mem_cgroup *root_mem_cgroup __read_mostly;
70
71 #ifdef CONFIG_MEMCG_SWAP
72 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
73 int do_swap_account __read_mostly;
74
75 /* for remember boot option*/
76 #ifdef CONFIG_MEMCG_SWAP_ENABLED
77 static int really_do_swap_account __initdata = 1;
78 #else
79 static int really_do_swap_account __initdata = 0;
80 #endif
81
82 #else
83 #define do_swap_account 0
84 #endif
85
86
87 /*
88 * Statistics for memory cgroup.
89 */
90 enum mem_cgroup_stat_index {
91 /*
92 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
93 */
94 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
95 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
96 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */
97 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
98 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
99 MEM_CGROUP_STAT_NSTATS,
100 };
101
102 static const char * const mem_cgroup_stat_names[] = {
103 "cache",
104 "rss",
105 "rss_huge",
106 "mapped_file",
107 "swap",
108 };
109
110 enum mem_cgroup_events_index {
111 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
112 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
113 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
114 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
115 MEM_CGROUP_EVENTS_NSTATS,
116 };
117
118 static const char * const mem_cgroup_events_names[] = {
119 "pgpgin",
120 "pgpgout",
121 "pgfault",
122 "pgmajfault",
123 };
124
125 static const char * const mem_cgroup_lru_names[] = {
126 "inactive_anon",
127 "active_anon",
128 "inactive_file",
129 "active_file",
130 "unevictable",
131 };
132
133 /*
134 * Per memcg event counter is incremented at every pagein/pageout. With THP,
135 * it will be incremated by the number of pages. This counter is used for
136 * for trigger some periodic events. This is straightforward and better
137 * than using jiffies etc. to handle periodic memcg event.
138 */
139 enum mem_cgroup_events_target {
140 MEM_CGROUP_TARGET_THRESH,
141 MEM_CGROUP_TARGET_NUMAINFO,
142 MEM_CGROUP_NTARGETS,
143 };
144 #define THRESHOLDS_EVENTS_TARGET 128
145 #define SOFTLIMIT_EVENTS_TARGET 1024
146 #define NUMAINFO_EVENTS_TARGET 1024
147
148 struct mem_cgroup_stat_cpu {
149 long count[MEM_CGROUP_STAT_NSTATS];
150 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
151 unsigned long nr_page_events;
152 unsigned long targets[MEM_CGROUP_NTARGETS];
153 };
154
155 struct mem_cgroup_reclaim_iter {
156 /*
157 * last scanned hierarchy member. Valid only if last_dead_count
158 * matches memcg->dead_count of the hierarchy root group.
159 */
160 struct mem_cgroup *last_visited;
161 unsigned long last_dead_count;
162
163 /* scan generation, increased every round-trip */
164 unsigned int generation;
165 };
166
167 /*
168 * per-zone information in memory controller.
169 */
170 struct mem_cgroup_per_zone {
171 struct lruvec lruvec;
172 unsigned long lru_size[NR_LRU_LISTS];
173
174 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
175
176 struct mem_cgroup *memcg; /* Back pointer, we cannot */
177 /* use container_of */
178 };
179
180 struct mem_cgroup_per_node {
181 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
182 };
183
184 struct mem_cgroup_threshold {
185 struct eventfd_ctx *eventfd;
186 u64 threshold;
187 };
188
189 /* For threshold */
190 struct mem_cgroup_threshold_ary {
191 /* An array index points to threshold just below or equal to usage. */
192 int current_threshold;
193 /* Size of entries[] */
194 unsigned int size;
195 /* Array of thresholds */
196 struct mem_cgroup_threshold entries[0];
197 };
198
199 struct mem_cgroup_thresholds {
200 /* Primary thresholds array */
201 struct mem_cgroup_threshold_ary *primary;
202 /*
203 * Spare threshold array.
204 * This is needed to make mem_cgroup_unregister_event() "never fail".
205 * It must be able to store at least primary->size - 1 entries.
206 */
207 struct mem_cgroup_threshold_ary *spare;
208 };
209
210 /* for OOM */
211 struct mem_cgroup_eventfd_list {
212 struct list_head list;
213 struct eventfd_ctx *eventfd;
214 };
215
216 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
217 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
218
219 /*
220 * The memory controller data structure. The memory controller controls both
221 * page cache and RSS per cgroup. We would eventually like to provide
222 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
223 * to help the administrator determine what knobs to tune.
224 *
225 * TODO: Add a water mark for the memory controller. Reclaim will begin when
226 * we hit the water mark. May be even add a low water mark, such that
227 * no reclaim occurs from a cgroup at it's low water mark, this is
228 * a feature that will be implemented much later in the future.
229 */
230 struct mem_cgroup {
231 struct cgroup_subsys_state css;
232 /*
233 * the counter to account for memory usage
234 */
235 struct res_counter res;
236
237 /* vmpressure notifications */
238 struct vmpressure vmpressure;
239
240 /*
241 * the counter to account for mem+swap usage.
242 */
243 struct res_counter memsw;
244
245 /*
246 * the counter to account for kernel memory usage.
247 */
248 struct res_counter kmem;
249 /*
250 * Should the accounting and control be hierarchical, per subtree?
251 */
252 bool use_hierarchy;
253 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
254
255 bool oom_lock;
256 atomic_t under_oom;
257
258 int swappiness;
259 /* OOM-Killer disable */
260 int oom_kill_disable;
261
262 /* set when res.limit == memsw.limit */
263 bool memsw_is_minimum;
264
265 /* protect arrays of thresholds */
266 struct mutex thresholds_lock;
267
268 /* thresholds for memory usage. RCU-protected */
269 struct mem_cgroup_thresholds thresholds;
270
271 /* thresholds for mem+swap usage. RCU-protected */
272 struct mem_cgroup_thresholds memsw_thresholds;
273
274 /* For oom notifier event fd */
275 struct list_head oom_notify;
276
277 /*
278 * Should we move charges of a task when a task is moved into this
279 * mem_cgroup ? And what type of charges should we move ?
280 */
281 unsigned long move_charge_at_immigrate;
282 /*
283 * set > 0 if pages under this cgroup are moving to other cgroup.
284 */
285 atomic_t moving_account;
286 /* taken only while moving_account > 0 */
287 spinlock_t move_lock;
288 /*
289 * percpu counter.
290 */
291 struct mem_cgroup_stat_cpu __percpu *stat;
292 /*
293 * used when a cpu is offlined or other synchronizations
294 * See mem_cgroup_read_stat().
295 */
296 struct mem_cgroup_stat_cpu nocpu_base;
297 spinlock_t pcp_counter_lock;
298
299 atomic_t dead_count;
300 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
301 struct tcp_memcontrol tcp_mem;
302 #endif
303 #if defined(CONFIG_MEMCG_KMEM)
304 /* analogous to slab_common's slab_caches list. per-memcg */
305 struct list_head memcg_slab_caches;
306 /* Not a spinlock, we can take a lot of time walking the list */
307 struct mutex slab_caches_mutex;
308 /* Index in the kmem_cache->memcg_params->memcg_caches array */
309 int kmemcg_id;
310 #endif
311
312 int last_scanned_node;
313 #if MAX_NUMNODES > 1
314 nodemask_t scan_nodes;
315 atomic_t numainfo_events;
316 atomic_t numainfo_updating;
317 #endif
318
319 struct mem_cgroup_per_node *nodeinfo[0];
320 /* WARNING: nodeinfo must be the last member here */
321 };
322
323 static size_t memcg_size(void)
324 {
325 return sizeof(struct mem_cgroup) +
326 nr_node_ids * sizeof(struct mem_cgroup_per_node);
327 }
328
329 /* internal only representation about the status of kmem accounting. */
330 enum {
331 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
332 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
333 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
334 };
335
336 /* We account when limit is on, but only after call sites are patched */
337 #define KMEM_ACCOUNTED_MASK \
338 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
339
340 #ifdef CONFIG_MEMCG_KMEM
341 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
342 {
343 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
344 }
345
346 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
347 {
348 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
349 }
350
351 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
352 {
353 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
354 }
355
356 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
357 {
358 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
359 }
360
361 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
362 {
363 /*
364 * Our caller must use css_get() first, because memcg_uncharge_kmem()
365 * will call css_put() if it sees the memcg is dead.
366 */
367 smp_wmb();
368 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
369 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
370 }
371
372 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
373 {
374 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
375 &memcg->kmem_account_flags);
376 }
377 #endif
378
379 /* Stuffs for move charges at task migration. */
380 /*
381 * Types of charges to be moved. "move_charge_at_immitgrate" and
382 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
383 */
384 enum move_type {
385 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
386 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
387 NR_MOVE_TYPE,
388 };
389
390 /* "mc" and its members are protected by cgroup_mutex */
391 static struct move_charge_struct {
392 spinlock_t lock; /* for from, to */
393 struct mem_cgroup *from;
394 struct mem_cgroup *to;
395 unsigned long immigrate_flags;
396 unsigned long precharge;
397 unsigned long moved_charge;
398 unsigned long moved_swap;
399 struct task_struct *moving_task; /* a task moving charges */
400 wait_queue_head_t waitq; /* a waitq for other context */
401 } mc = {
402 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
403 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
404 };
405
406 static bool move_anon(void)
407 {
408 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
409 }
410
411 static bool move_file(void)
412 {
413 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
414 }
415
416 /*
417 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
418 * limit reclaim to prevent infinite loops, if they ever occur.
419 */
420 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
421
422 enum charge_type {
423 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
424 MEM_CGROUP_CHARGE_TYPE_ANON,
425 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
426 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
427 NR_CHARGE_TYPE,
428 };
429
430 /* for encoding cft->private value on file */
431 enum res_type {
432 _MEM,
433 _MEMSWAP,
434 _OOM_TYPE,
435 _KMEM,
436 };
437
438 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
439 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
440 #define MEMFILE_ATTR(val) ((val) & 0xffff)
441 /* Used for OOM nofiier */
442 #define OOM_CONTROL (0)
443
444 /*
445 * Reclaim flags for mem_cgroup_hierarchical_reclaim
446 */
447 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
448 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
449 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
450 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
451
452 /*
453 * The memcg_create_mutex will be held whenever a new cgroup is created.
454 * As a consequence, any change that needs to protect against new child cgroups
455 * appearing has to hold it as well.
456 */
457 static DEFINE_MUTEX(memcg_create_mutex);
458
459 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
460 {
461 return s ? container_of(s, struct mem_cgroup, css) : NULL;
462 }
463
464 /* Some nice accessors for the vmpressure. */
465 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
466 {
467 if (!memcg)
468 memcg = root_mem_cgroup;
469 return &memcg->vmpressure;
470 }
471
472 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
473 {
474 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
475 }
476
477 struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
478 {
479 return &mem_cgroup_from_css(css)->vmpressure;
480 }
481
482 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
483 {
484 return (memcg == root_mem_cgroup);
485 }
486
487 /* Writing them here to avoid exposing memcg's inner layout */
488 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
489
490 void sock_update_memcg(struct sock *sk)
491 {
492 if (mem_cgroup_sockets_enabled) {
493 struct mem_cgroup *memcg;
494 struct cg_proto *cg_proto;
495
496 BUG_ON(!sk->sk_prot->proto_cgroup);
497
498 /* Socket cloning can throw us here with sk_cgrp already
499 * filled. It won't however, necessarily happen from
500 * process context. So the test for root memcg given
501 * the current task's memcg won't help us in this case.
502 *
503 * Respecting the original socket's memcg is a better
504 * decision in this case.
505 */
506 if (sk->sk_cgrp) {
507 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
508 css_get(&sk->sk_cgrp->memcg->css);
509 return;
510 }
511
512 rcu_read_lock();
513 memcg = mem_cgroup_from_task(current);
514 cg_proto = sk->sk_prot->proto_cgroup(memcg);
515 if (!mem_cgroup_is_root(memcg) &&
516 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
517 sk->sk_cgrp = cg_proto;
518 }
519 rcu_read_unlock();
520 }
521 }
522 EXPORT_SYMBOL(sock_update_memcg);
523
524 void sock_release_memcg(struct sock *sk)
525 {
526 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
527 struct mem_cgroup *memcg;
528 WARN_ON(!sk->sk_cgrp->memcg);
529 memcg = sk->sk_cgrp->memcg;
530 css_put(&sk->sk_cgrp->memcg->css);
531 }
532 }
533
534 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
535 {
536 if (!memcg || mem_cgroup_is_root(memcg))
537 return NULL;
538
539 return &memcg->tcp_mem.cg_proto;
540 }
541 EXPORT_SYMBOL(tcp_proto_cgroup);
542
543 static void disarm_sock_keys(struct mem_cgroup *memcg)
544 {
545 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
546 return;
547 static_key_slow_dec(&memcg_socket_limit_enabled);
548 }
549 #else
550 static void disarm_sock_keys(struct mem_cgroup *memcg)
551 {
552 }
553 #endif
554
555 #ifdef CONFIG_MEMCG_KMEM
556 /*
557 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
558 * There are two main reasons for not using the css_id for this:
559 * 1) this works better in sparse environments, where we have a lot of memcgs,
560 * but only a few kmem-limited. Or also, if we have, for instance, 200
561 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
562 * 200 entry array for that.
563 *
564 * 2) In order not to violate the cgroup API, we would like to do all memory
565 * allocation in ->create(). At that point, we haven't yet allocated the
566 * css_id. Having a separate index prevents us from messing with the cgroup
567 * core for this
568 *
569 * The current size of the caches array is stored in
570 * memcg_limited_groups_array_size. It will double each time we have to
571 * increase it.
572 */
573 static DEFINE_IDA(kmem_limited_groups);
574 int memcg_limited_groups_array_size;
575
576 /*
577 * MIN_SIZE is different than 1, because we would like to avoid going through
578 * the alloc/free process all the time. In a small machine, 4 kmem-limited
579 * cgroups is a reasonable guess. In the future, it could be a parameter or
580 * tunable, but that is strictly not necessary.
581 *
582 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
583 * this constant directly from cgroup, but it is understandable that this is
584 * better kept as an internal representation in cgroup.c. In any case, the
585 * css_id space is not getting any smaller, and we don't have to necessarily
586 * increase ours as well if it increases.
587 */
588 #define MEMCG_CACHES_MIN_SIZE 4
589 #define MEMCG_CACHES_MAX_SIZE 65535
590
591 /*
592 * A lot of the calls to the cache allocation functions are expected to be
593 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
594 * conditional to this static branch, we'll have to allow modules that does
595 * kmem_cache_alloc and the such to see this symbol as well
596 */
597 struct static_key memcg_kmem_enabled_key;
598 EXPORT_SYMBOL(memcg_kmem_enabled_key);
599
600 static void disarm_kmem_keys(struct mem_cgroup *memcg)
601 {
602 if (memcg_kmem_is_active(memcg)) {
603 static_key_slow_dec(&memcg_kmem_enabled_key);
604 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
605 }
606 /*
607 * This check can't live in kmem destruction function,
608 * since the charges will outlive the cgroup
609 */
610 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
611 }
612 #else
613 static void disarm_kmem_keys(struct mem_cgroup *memcg)
614 {
615 }
616 #endif /* CONFIG_MEMCG_KMEM */
617
618 static void disarm_static_keys(struct mem_cgroup *memcg)
619 {
620 disarm_sock_keys(memcg);
621 disarm_kmem_keys(memcg);
622 }
623
624 static void drain_all_stock_async(struct mem_cgroup *memcg);
625
626 static struct mem_cgroup_per_zone *
627 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
628 {
629 VM_BUG_ON((unsigned)nid >= nr_node_ids);
630 return &memcg->nodeinfo[nid]->zoneinfo[zid];
631 }
632
633 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
634 {
635 return &memcg->css;
636 }
637
638 static struct mem_cgroup_per_zone *
639 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
640 {
641 int nid = page_to_nid(page);
642 int zid = page_zonenum(page);
643
644 return mem_cgroup_zoneinfo(memcg, nid, zid);
645 }
646
647 /*
648 * Implementation Note: reading percpu statistics for memcg.
649 *
650 * Both of vmstat[] and percpu_counter has threshold and do periodic
651 * synchronization to implement "quick" read. There are trade-off between
652 * reading cost and precision of value. Then, we may have a chance to implement
653 * a periodic synchronizion of counter in memcg's counter.
654 *
655 * But this _read() function is used for user interface now. The user accounts
656 * memory usage by memory cgroup and he _always_ requires exact value because
657 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
658 * have to visit all online cpus and make sum. So, for now, unnecessary
659 * synchronization is not implemented. (just implemented for cpu hotplug)
660 *
661 * If there are kernel internal actions which can make use of some not-exact
662 * value, and reading all cpu value can be performance bottleneck in some
663 * common workload, threashold and synchonization as vmstat[] should be
664 * implemented.
665 */
666 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
667 enum mem_cgroup_stat_index idx)
668 {
669 long val = 0;
670 int cpu;
671
672 get_online_cpus();
673 for_each_online_cpu(cpu)
674 val += per_cpu(memcg->stat->count[idx], cpu);
675 #ifdef CONFIG_HOTPLUG_CPU
676 spin_lock(&memcg->pcp_counter_lock);
677 val += memcg->nocpu_base.count[idx];
678 spin_unlock(&memcg->pcp_counter_lock);
679 #endif
680 put_online_cpus();
681 return val;
682 }
683
684 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
685 bool charge)
686 {
687 int val = (charge) ? 1 : -1;
688 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
689 }
690
691 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
692 enum mem_cgroup_events_index idx)
693 {
694 unsigned long val = 0;
695 int cpu;
696
697 for_each_online_cpu(cpu)
698 val += per_cpu(memcg->stat->events[idx], cpu);
699 #ifdef CONFIG_HOTPLUG_CPU
700 spin_lock(&memcg->pcp_counter_lock);
701 val += memcg->nocpu_base.events[idx];
702 spin_unlock(&memcg->pcp_counter_lock);
703 #endif
704 return val;
705 }
706
707 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
708 struct page *page,
709 bool anon, int nr_pages)
710 {
711 preempt_disable();
712
713 /*
714 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
715 * counted as CACHE even if it's on ANON LRU.
716 */
717 if (anon)
718 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
719 nr_pages);
720 else
721 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
722 nr_pages);
723
724 if (PageTransHuge(page))
725 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
726 nr_pages);
727
728 /* pagein of a big page is an event. So, ignore page size */
729 if (nr_pages > 0)
730 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
731 else {
732 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
733 nr_pages = -nr_pages; /* for event */
734 }
735
736 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
737
738 preempt_enable();
739 }
740
741 unsigned long
742 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
743 {
744 struct mem_cgroup_per_zone *mz;
745
746 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
747 return mz->lru_size[lru];
748 }
749
750 static unsigned long
751 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
752 unsigned int lru_mask)
753 {
754 struct mem_cgroup_per_zone *mz;
755 enum lru_list lru;
756 unsigned long ret = 0;
757
758 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
759
760 for_each_lru(lru) {
761 if (BIT(lru) & lru_mask)
762 ret += mz->lru_size[lru];
763 }
764 return ret;
765 }
766
767 static unsigned long
768 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
769 int nid, unsigned int lru_mask)
770 {
771 u64 total = 0;
772 int zid;
773
774 for (zid = 0; zid < MAX_NR_ZONES; zid++)
775 total += mem_cgroup_zone_nr_lru_pages(memcg,
776 nid, zid, lru_mask);
777
778 return total;
779 }
780
781 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
782 unsigned int lru_mask)
783 {
784 int nid;
785 u64 total = 0;
786
787 for_each_node_state(nid, N_MEMORY)
788 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
789 return total;
790 }
791
792 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
793 enum mem_cgroup_events_target target)
794 {
795 unsigned long val, next;
796
797 val = __this_cpu_read(memcg->stat->nr_page_events);
798 next = __this_cpu_read(memcg->stat->targets[target]);
799 /* from time_after() in jiffies.h */
800 if ((long)next - (long)val < 0) {
801 switch (target) {
802 case MEM_CGROUP_TARGET_THRESH:
803 next = val + THRESHOLDS_EVENTS_TARGET;
804 break;
805 case MEM_CGROUP_TARGET_NUMAINFO:
806 next = val + NUMAINFO_EVENTS_TARGET;
807 break;
808 default:
809 break;
810 }
811 __this_cpu_write(memcg->stat->targets[target], next);
812 return true;
813 }
814 return false;
815 }
816
817 /*
818 * Check events in order.
819 *
820 */
821 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
822 {
823 preempt_disable();
824 /* threshold event is triggered in finer grain than soft limit */
825 if (unlikely(mem_cgroup_event_ratelimit(memcg,
826 MEM_CGROUP_TARGET_THRESH))) {
827 bool do_numainfo __maybe_unused;
828
829 #if MAX_NUMNODES > 1
830 do_numainfo = mem_cgroup_event_ratelimit(memcg,
831 MEM_CGROUP_TARGET_NUMAINFO);
832 #endif
833 preempt_enable();
834
835 mem_cgroup_threshold(memcg);
836 #if MAX_NUMNODES > 1
837 if (unlikely(do_numainfo))
838 atomic_inc(&memcg->numainfo_events);
839 #endif
840 } else
841 preempt_enable();
842 }
843
844 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
845 {
846 /*
847 * mm_update_next_owner() may clear mm->owner to NULL
848 * if it races with swapoff, page migration, etc.
849 * So this can be called with p == NULL.
850 */
851 if (unlikely(!p))
852 return NULL;
853
854 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
855 }
856
857 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
858 {
859 struct mem_cgroup *memcg = NULL;
860
861 if (!mm)
862 return NULL;
863 /*
864 * Because we have no locks, mm->owner's may be being moved to other
865 * cgroup. We use css_tryget() here even if this looks
866 * pessimistic (rather than adding locks here).
867 */
868 rcu_read_lock();
869 do {
870 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
871 if (unlikely(!memcg))
872 break;
873 } while (!css_tryget(&memcg->css));
874 rcu_read_unlock();
875 return memcg;
876 }
877
878 static enum mem_cgroup_filter_t
879 mem_cgroup_filter(struct mem_cgroup *memcg, struct mem_cgroup *root,
880 mem_cgroup_iter_filter cond)
881 {
882 if (!cond)
883 return VISIT;
884 return cond(memcg, root);
885 }
886
887 /*
888 * Returns a next (in a pre-order walk) alive memcg (with elevated css
889 * ref. count) or NULL if the whole root's subtree has been visited.
890 *
891 * helper function to be used by mem_cgroup_iter
892 */
893 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
894 struct mem_cgroup *last_visited, mem_cgroup_iter_filter cond)
895 {
896 struct cgroup_subsys_state *prev_css, *next_css;
897
898 prev_css = last_visited ? &last_visited->css : NULL;
899 skip_node:
900 next_css = css_next_descendant_pre(prev_css, &root->css);
901
902 /*
903 * Even if we found a group we have to make sure it is
904 * alive. css && !memcg means that the groups should be
905 * skipped and we should continue the tree walk.
906 * last_visited css is safe to use because it is
907 * protected by css_get and the tree walk is rcu safe.
908 */
909 if (next_css) {
910 struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
911
912 switch (mem_cgroup_filter(mem, root, cond)) {
913 case SKIP:
914 prev_css = next_css;
915 goto skip_node;
916 case SKIP_TREE:
917 if (mem == root)
918 return NULL;
919 /*
920 * css_rightmost_descendant is not an optimal way to
921 * skip through a subtree (especially for imbalanced
922 * trees leaning to right) but that's what we have right
923 * now. More effective solution would be traversing
924 * right-up for first non-NULL without calling
925 * css_next_descendant_pre afterwards.
926 */
927 prev_css = css_rightmost_descendant(next_css);
928 goto skip_node;
929 case VISIT:
930 if (css_tryget(&mem->css))
931 return mem;
932 else {
933 prev_css = next_css;
934 goto skip_node;
935 }
936 break;
937 }
938 }
939
940 return NULL;
941 }
942
943 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
944 {
945 /*
946 * When a group in the hierarchy below root is destroyed, the
947 * hierarchy iterator can no longer be trusted since it might
948 * have pointed to the destroyed group. Invalidate it.
949 */
950 atomic_inc(&root->dead_count);
951 }
952
953 static struct mem_cgroup *
954 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
955 struct mem_cgroup *root,
956 int *sequence)
957 {
958 struct mem_cgroup *position = NULL;
959 /*
960 * A cgroup destruction happens in two stages: offlining and
961 * release. They are separated by a RCU grace period.
962 *
963 * If the iterator is valid, we may still race with an
964 * offlining. The RCU lock ensures the object won't be
965 * released, tryget will fail if we lost the race.
966 */
967 *sequence = atomic_read(&root->dead_count);
968 if (iter->last_dead_count == *sequence) {
969 smp_rmb();
970 position = iter->last_visited;
971 if (position && !css_tryget(&position->css))
972 position = NULL;
973 }
974 return position;
975 }
976
977 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
978 struct mem_cgroup *last_visited,
979 struct mem_cgroup *new_position,
980 int sequence)
981 {
982 if (last_visited)
983 css_put(&last_visited->css);
984 /*
985 * We store the sequence count from the time @last_visited was
986 * loaded successfully instead of rereading it here so that we
987 * don't lose destruction events in between. We could have
988 * raced with the destruction of @new_position after all.
989 */
990 iter->last_visited = new_position;
991 smp_wmb();
992 iter->last_dead_count = sequence;
993 }
994
995 /**
996 * mem_cgroup_iter - iterate over memory cgroup hierarchy
997 * @root: hierarchy root
998 * @prev: previously returned memcg, NULL on first invocation
999 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1000 * @cond: filter for visited nodes, NULL for no filter
1001 *
1002 * Returns references to children of the hierarchy below @root, or
1003 * @root itself, or %NULL after a full round-trip.
1004 *
1005 * Caller must pass the return value in @prev on subsequent
1006 * invocations for reference counting, or use mem_cgroup_iter_break()
1007 * to cancel a hierarchy walk before the round-trip is complete.
1008 *
1009 * Reclaimers can specify a zone and a priority level in @reclaim to
1010 * divide up the memcgs in the hierarchy among all concurrent
1011 * reclaimers operating on the same zone and priority.
1012 */
1013 struct mem_cgroup *mem_cgroup_iter_cond(struct mem_cgroup *root,
1014 struct mem_cgroup *prev,
1015 struct mem_cgroup_reclaim_cookie *reclaim,
1016 mem_cgroup_iter_filter cond)
1017 {
1018 struct mem_cgroup *memcg = NULL;
1019 struct mem_cgroup *last_visited = NULL;
1020
1021 if (mem_cgroup_disabled()) {
1022 /* first call must return non-NULL, second return NULL */
1023 return (struct mem_cgroup *)(unsigned long)!prev;
1024 }
1025
1026 if (!root)
1027 root = root_mem_cgroup;
1028
1029 if (prev && !reclaim)
1030 last_visited = prev;
1031
1032 if (!root->use_hierarchy && root != root_mem_cgroup) {
1033 if (prev)
1034 goto out_css_put;
1035 if (mem_cgroup_filter(root, root, cond) == VISIT)
1036 return root;
1037 return NULL;
1038 }
1039
1040 rcu_read_lock();
1041 while (!memcg) {
1042 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1043 int uninitialized_var(seq);
1044
1045 if (reclaim) {
1046 int nid = zone_to_nid(reclaim->zone);
1047 int zid = zone_idx(reclaim->zone);
1048 struct mem_cgroup_per_zone *mz;
1049
1050 mz = mem_cgroup_zoneinfo(root, nid, zid);
1051 iter = &mz->reclaim_iter[reclaim->priority];
1052 if (prev && reclaim->generation != iter->generation) {
1053 iter->last_visited = NULL;
1054 goto out_unlock;
1055 }
1056
1057 last_visited = mem_cgroup_iter_load(iter, root, &seq);
1058 }
1059
1060 memcg = __mem_cgroup_iter_next(root, last_visited, cond);
1061
1062 if (reclaim) {
1063 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1064
1065 if (!memcg)
1066 iter->generation++;
1067 else if (!prev && memcg)
1068 reclaim->generation = iter->generation;
1069 }
1070
1071 /*
1072 * We have finished the whole tree walk or no group has been
1073 * visited because filter told us to skip the root node.
1074 */
1075 if (!memcg && (prev || (cond && !last_visited)))
1076 goto out_unlock;
1077 }
1078 out_unlock:
1079 rcu_read_unlock();
1080 out_css_put:
1081 if (prev && prev != root)
1082 css_put(&prev->css);
1083
1084 return memcg;
1085 }
1086
1087 /**
1088 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1089 * @root: hierarchy root
1090 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1091 */
1092 void mem_cgroup_iter_break(struct mem_cgroup *root,
1093 struct mem_cgroup *prev)
1094 {
1095 if (!root)
1096 root = root_mem_cgroup;
1097 if (prev && prev != root)
1098 css_put(&prev->css);
1099 }
1100
1101 /*
1102 * Iteration constructs for visiting all cgroups (under a tree). If
1103 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1104 * be used for reference counting.
1105 */
1106 #define for_each_mem_cgroup_tree(iter, root) \
1107 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1108 iter != NULL; \
1109 iter = mem_cgroup_iter(root, iter, NULL))
1110
1111 #define for_each_mem_cgroup(iter) \
1112 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1113 iter != NULL; \
1114 iter = mem_cgroup_iter(NULL, iter, NULL))
1115
1116 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1117 {
1118 struct mem_cgroup *memcg;
1119
1120 rcu_read_lock();
1121 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1122 if (unlikely(!memcg))
1123 goto out;
1124
1125 switch (idx) {
1126 case PGFAULT:
1127 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1128 break;
1129 case PGMAJFAULT:
1130 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1131 break;
1132 default:
1133 BUG();
1134 }
1135 out:
1136 rcu_read_unlock();
1137 }
1138 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1139
1140 /**
1141 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1142 * @zone: zone of the wanted lruvec
1143 * @memcg: memcg of the wanted lruvec
1144 *
1145 * Returns the lru list vector holding pages for the given @zone and
1146 * @mem. This can be the global zone lruvec, if the memory controller
1147 * is disabled.
1148 */
1149 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1150 struct mem_cgroup *memcg)
1151 {
1152 struct mem_cgroup_per_zone *mz;
1153 struct lruvec *lruvec;
1154
1155 if (mem_cgroup_disabled()) {
1156 lruvec = &zone->lruvec;
1157 goto out;
1158 }
1159
1160 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1161 lruvec = &mz->lruvec;
1162 out:
1163 /*
1164 * Since a node can be onlined after the mem_cgroup was created,
1165 * we have to be prepared to initialize lruvec->zone here;
1166 * and if offlined then reonlined, we need to reinitialize it.
1167 */
1168 if (unlikely(lruvec->zone != zone))
1169 lruvec->zone = zone;
1170 return lruvec;
1171 }
1172
1173 /*
1174 * Following LRU functions are allowed to be used without PCG_LOCK.
1175 * Operations are called by routine of global LRU independently from memcg.
1176 * What we have to take care of here is validness of pc->mem_cgroup.
1177 *
1178 * Changes to pc->mem_cgroup happens when
1179 * 1. charge
1180 * 2. moving account
1181 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1182 * It is added to LRU before charge.
1183 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1184 * When moving account, the page is not on LRU. It's isolated.
1185 */
1186
1187 /**
1188 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1189 * @page: the page
1190 * @zone: zone of the page
1191 */
1192 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1193 {
1194 struct mem_cgroup_per_zone *mz;
1195 struct mem_cgroup *memcg;
1196 struct page_cgroup *pc;
1197 struct lruvec *lruvec;
1198
1199 if (mem_cgroup_disabled()) {
1200 lruvec = &zone->lruvec;
1201 goto out;
1202 }
1203
1204 pc = lookup_page_cgroup(page);
1205 memcg = pc->mem_cgroup;
1206
1207 /*
1208 * Surreptitiously switch any uncharged offlist page to root:
1209 * an uncharged page off lru does nothing to secure
1210 * its former mem_cgroup from sudden removal.
1211 *
1212 * Our caller holds lru_lock, and PageCgroupUsed is updated
1213 * under page_cgroup lock: between them, they make all uses
1214 * of pc->mem_cgroup safe.
1215 */
1216 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1217 pc->mem_cgroup = memcg = root_mem_cgroup;
1218
1219 mz = page_cgroup_zoneinfo(memcg, page);
1220 lruvec = &mz->lruvec;
1221 out:
1222 /*
1223 * Since a node can be onlined after the mem_cgroup was created,
1224 * we have to be prepared to initialize lruvec->zone here;
1225 * and if offlined then reonlined, we need to reinitialize it.
1226 */
1227 if (unlikely(lruvec->zone != zone))
1228 lruvec->zone = zone;
1229 return lruvec;
1230 }
1231
1232 /**
1233 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1234 * @lruvec: mem_cgroup per zone lru vector
1235 * @lru: index of lru list the page is sitting on
1236 * @nr_pages: positive when adding or negative when removing
1237 *
1238 * This function must be called when a page is added to or removed from an
1239 * lru list.
1240 */
1241 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1242 int nr_pages)
1243 {
1244 struct mem_cgroup_per_zone *mz;
1245 unsigned long *lru_size;
1246
1247 if (mem_cgroup_disabled())
1248 return;
1249
1250 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1251 lru_size = mz->lru_size + lru;
1252 *lru_size += nr_pages;
1253 VM_BUG_ON((long)(*lru_size) < 0);
1254 }
1255
1256 /*
1257 * Checks whether given mem is same or in the root_mem_cgroup's
1258 * hierarchy subtree
1259 */
1260 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1261 struct mem_cgroup *memcg)
1262 {
1263 if (root_memcg == memcg)
1264 return true;
1265 if (!root_memcg->use_hierarchy || !memcg)
1266 return false;
1267 return css_is_ancestor(&memcg->css, &root_memcg->css);
1268 }
1269
1270 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1271 struct mem_cgroup *memcg)
1272 {
1273 bool ret;
1274
1275 rcu_read_lock();
1276 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1277 rcu_read_unlock();
1278 return ret;
1279 }
1280
1281 bool task_in_mem_cgroup(struct task_struct *task,
1282 const struct mem_cgroup *memcg)
1283 {
1284 struct mem_cgroup *curr = NULL;
1285 struct task_struct *p;
1286 bool ret;
1287
1288 p = find_lock_task_mm(task);
1289 if (p) {
1290 curr = try_get_mem_cgroup_from_mm(p->mm);
1291 task_unlock(p);
1292 } else {
1293 /*
1294 * All threads may have already detached their mm's, but the oom
1295 * killer still needs to detect if they have already been oom
1296 * killed to prevent needlessly killing additional tasks.
1297 */
1298 rcu_read_lock();
1299 curr = mem_cgroup_from_task(task);
1300 if (curr)
1301 css_get(&curr->css);
1302 rcu_read_unlock();
1303 }
1304 if (!curr)
1305 return false;
1306 /*
1307 * We should check use_hierarchy of "memcg" not "curr". Because checking
1308 * use_hierarchy of "curr" here make this function true if hierarchy is
1309 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1310 * hierarchy(even if use_hierarchy is disabled in "memcg").
1311 */
1312 ret = mem_cgroup_same_or_subtree(memcg, curr);
1313 css_put(&curr->css);
1314 return ret;
1315 }
1316
1317 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1318 {
1319 unsigned long inactive_ratio;
1320 unsigned long inactive;
1321 unsigned long active;
1322 unsigned long gb;
1323
1324 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1325 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1326
1327 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1328 if (gb)
1329 inactive_ratio = int_sqrt(10 * gb);
1330 else
1331 inactive_ratio = 1;
1332
1333 return inactive * inactive_ratio < active;
1334 }
1335
1336 #define mem_cgroup_from_res_counter(counter, member) \
1337 container_of(counter, struct mem_cgroup, member)
1338
1339 /**
1340 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1341 * @memcg: the memory cgroup
1342 *
1343 * Returns the maximum amount of memory @mem can be charged with, in
1344 * pages.
1345 */
1346 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1347 {
1348 unsigned long long margin;
1349
1350 margin = res_counter_margin(&memcg->res);
1351 if (do_swap_account)
1352 margin = min(margin, res_counter_margin(&memcg->memsw));
1353 return margin >> PAGE_SHIFT;
1354 }
1355
1356 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1357 {
1358 /* root ? */
1359 if (!css_parent(&memcg->css))
1360 return vm_swappiness;
1361
1362 return memcg->swappiness;
1363 }
1364
1365 /*
1366 * memcg->moving_account is used for checking possibility that some thread is
1367 * calling move_account(). When a thread on CPU-A starts moving pages under
1368 * a memcg, other threads should check memcg->moving_account under
1369 * rcu_read_lock(), like this:
1370 *
1371 * CPU-A CPU-B
1372 * rcu_read_lock()
1373 * memcg->moving_account+1 if (memcg->mocing_account)
1374 * take heavy locks.
1375 * synchronize_rcu() update something.
1376 * rcu_read_unlock()
1377 * start move here.
1378 */
1379
1380 /* for quick checking without looking up memcg */
1381 atomic_t memcg_moving __read_mostly;
1382
1383 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1384 {
1385 atomic_inc(&memcg_moving);
1386 atomic_inc(&memcg->moving_account);
1387 synchronize_rcu();
1388 }
1389
1390 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1391 {
1392 /*
1393 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1394 * We check NULL in callee rather than caller.
1395 */
1396 if (memcg) {
1397 atomic_dec(&memcg_moving);
1398 atomic_dec(&memcg->moving_account);
1399 }
1400 }
1401
1402 /*
1403 * 2 routines for checking "mem" is under move_account() or not.
1404 *
1405 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1406 * is used for avoiding races in accounting. If true,
1407 * pc->mem_cgroup may be overwritten.
1408 *
1409 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1410 * under hierarchy of moving cgroups. This is for
1411 * waiting at hith-memory prressure caused by "move".
1412 */
1413
1414 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1415 {
1416 VM_BUG_ON(!rcu_read_lock_held());
1417 return atomic_read(&memcg->moving_account) > 0;
1418 }
1419
1420 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1421 {
1422 struct mem_cgroup *from;
1423 struct mem_cgroup *to;
1424 bool ret = false;
1425 /*
1426 * Unlike task_move routines, we access mc.to, mc.from not under
1427 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1428 */
1429 spin_lock(&mc.lock);
1430 from = mc.from;
1431 to = mc.to;
1432 if (!from)
1433 goto unlock;
1434
1435 ret = mem_cgroup_same_or_subtree(memcg, from)
1436 || mem_cgroup_same_or_subtree(memcg, to);
1437 unlock:
1438 spin_unlock(&mc.lock);
1439 return ret;
1440 }
1441
1442 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1443 {
1444 if (mc.moving_task && current != mc.moving_task) {
1445 if (mem_cgroup_under_move(memcg)) {
1446 DEFINE_WAIT(wait);
1447 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1448 /* moving charge context might have finished. */
1449 if (mc.moving_task)
1450 schedule();
1451 finish_wait(&mc.waitq, &wait);
1452 return true;
1453 }
1454 }
1455 return false;
1456 }
1457
1458 /*
1459 * Take this lock when
1460 * - a code tries to modify page's memcg while it's USED.
1461 * - a code tries to modify page state accounting in a memcg.
1462 * see mem_cgroup_stolen(), too.
1463 */
1464 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1465 unsigned long *flags)
1466 {
1467 spin_lock_irqsave(&memcg->move_lock, *flags);
1468 }
1469
1470 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1471 unsigned long *flags)
1472 {
1473 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1474 }
1475
1476 #define K(x) ((x) << (PAGE_SHIFT-10))
1477 /**
1478 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1479 * @memcg: The memory cgroup that went over limit
1480 * @p: Task that is going to be killed
1481 *
1482 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1483 * enabled
1484 */
1485 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1486 {
1487 struct cgroup *task_cgrp;
1488 struct cgroup *mem_cgrp;
1489 /*
1490 * Need a buffer in BSS, can't rely on allocations. The code relies
1491 * on the assumption that OOM is serialized for memory controller.
1492 * If this assumption is broken, revisit this code.
1493 */
1494 static char memcg_name[PATH_MAX];
1495 int ret;
1496 struct mem_cgroup *iter;
1497 unsigned int i;
1498
1499 if (!p)
1500 return;
1501
1502 rcu_read_lock();
1503
1504 mem_cgrp = memcg->css.cgroup;
1505 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1506
1507 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1508 if (ret < 0) {
1509 /*
1510 * Unfortunately, we are unable to convert to a useful name
1511 * But we'll still print out the usage information
1512 */
1513 rcu_read_unlock();
1514 goto done;
1515 }
1516 rcu_read_unlock();
1517
1518 pr_info("Task in %s killed", memcg_name);
1519
1520 rcu_read_lock();
1521 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1522 if (ret < 0) {
1523 rcu_read_unlock();
1524 goto done;
1525 }
1526 rcu_read_unlock();
1527
1528 /*
1529 * Continues from above, so we don't need an KERN_ level
1530 */
1531 pr_cont(" as a result of limit of %s\n", memcg_name);
1532 done:
1533
1534 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1535 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1536 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1537 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1538 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1539 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1540 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1541 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1542 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1543 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1544 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1545 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1546
1547 for_each_mem_cgroup_tree(iter, memcg) {
1548 pr_info("Memory cgroup stats");
1549
1550 rcu_read_lock();
1551 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1552 if (!ret)
1553 pr_cont(" for %s", memcg_name);
1554 rcu_read_unlock();
1555 pr_cont(":");
1556
1557 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1558 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1559 continue;
1560 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1561 K(mem_cgroup_read_stat(iter, i)));
1562 }
1563
1564 for (i = 0; i < NR_LRU_LISTS; i++)
1565 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1566 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1567
1568 pr_cont("\n");
1569 }
1570 }
1571
1572 /*
1573 * This function returns the number of memcg under hierarchy tree. Returns
1574 * 1(self count) if no children.
1575 */
1576 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1577 {
1578 int num = 0;
1579 struct mem_cgroup *iter;
1580
1581 for_each_mem_cgroup_tree(iter, memcg)
1582 num++;
1583 return num;
1584 }
1585
1586 /*
1587 * Return the memory (and swap, if configured) limit for a memcg.
1588 */
1589 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1590 {
1591 u64 limit;
1592
1593 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1594
1595 /*
1596 * Do not consider swap space if we cannot swap due to swappiness
1597 */
1598 if (mem_cgroup_swappiness(memcg)) {
1599 u64 memsw;
1600
1601 limit += total_swap_pages << PAGE_SHIFT;
1602 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1603
1604 /*
1605 * If memsw is finite and limits the amount of swap space
1606 * available to this memcg, return that limit.
1607 */
1608 limit = min(limit, memsw);
1609 }
1610
1611 return limit;
1612 }
1613
1614 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1615 int order)
1616 {
1617 struct mem_cgroup *iter;
1618 unsigned long chosen_points = 0;
1619 unsigned long totalpages;
1620 unsigned int points = 0;
1621 struct task_struct *chosen = NULL;
1622
1623 /*
1624 * If current has a pending SIGKILL or is exiting, then automatically
1625 * select it. The goal is to allow it to allocate so that it may
1626 * quickly exit and free its memory.
1627 */
1628 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1629 set_thread_flag(TIF_MEMDIE);
1630 return;
1631 }
1632
1633 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1634 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1635 for_each_mem_cgroup_tree(iter, memcg) {
1636 struct css_task_iter it;
1637 struct task_struct *task;
1638
1639 css_task_iter_start(&iter->css, &it);
1640 while ((task = css_task_iter_next(&it))) {
1641 switch (oom_scan_process_thread(task, totalpages, NULL,
1642 false)) {
1643 case OOM_SCAN_SELECT:
1644 if (chosen)
1645 put_task_struct(chosen);
1646 chosen = task;
1647 chosen_points = ULONG_MAX;
1648 get_task_struct(chosen);
1649 /* fall through */
1650 case OOM_SCAN_CONTINUE:
1651 continue;
1652 case OOM_SCAN_ABORT:
1653 css_task_iter_end(&it);
1654 mem_cgroup_iter_break(memcg, iter);
1655 if (chosen)
1656 put_task_struct(chosen);
1657 return;
1658 case OOM_SCAN_OK:
1659 break;
1660 };
1661 points = oom_badness(task, memcg, NULL, totalpages);
1662 if (points > chosen_points) {
1663 if (chosen)
1664 put_task_struct(chosen);
1665 chosen = task;
1666 chosen_points = points;
1667 get_task_struct(chosen);
1668 }
1669 }
1670 css_task_iter_end(&it);
1671 }
1672
1673 if (!chosen)
1674 return;
1675 points = chosen_points * 1000 / totalpages;
1676 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1677 NULL, "Memory cgroup out of memory");
1678 }
1679
1680 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1681 gfp_t gfp_mask,
1682 unsigned long flags)
1683 {
1684 unsigned long total = 0;
1685 bool noswap = false;
1686 int loop;
1687
1688 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1689 noswap = true;
1690 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1691 noswap = true;
1692
1693 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1694 if (loop)
1695 drain_all_stock_async(memcg);
1696 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1697 /*
1698 * Allow limit shrinkers, which are triggered directly
1699 * by userspace, to catch signals and stop reclaim
1700 * after minimal progress, regardless of the margin.
1701 */
1702 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1703 break;
1704 if (mem_cgroup_margin(memcg))
1705 break;
1706 /*
1707 * If nothing was reclaimed after two attempts, there
1708 * may be no reclaimable pages in this hierarchy.
1709 */
1710 if (loop && !total)
1711 break;
1712 }
1713 return total;
1714 }
1715
1716 #if MAX_NUMNODES > 1
1717 /**
1718 * test_mem_cgroup_node_reclaimable
1719 * @memcg: the target memcg
1720 * @nid: the node ID to be checked.
1721 * @noswap : specify true here if the user wants flle only information.
1722 *
1723 * This function returns whether the specified memcg contains any
1724 * reclaimable pages on a node. Returns true if there are any reclaimable
1725 * pages in the node.
1726 */
1727 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1728 int nid, bool noswap)
1729 {
1730 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1731 return true;
1732 if (noswap || !total_swap_pages)
1733 return false;
1734 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1735 return true;
1736 return false;
1737
1738 }
1739
1740 /*
1741 * Always updating the nodemask is not very good - even if we have an empty
1742 * list or the wrong list here, we can start from some node and traverse all
1743 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1744 *
1745 */
1746 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1747 {
1748 int nid;
1749 /*
1750 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1751 * pagein/pageout changes since the last update.
1752 */
1753 if (!atomic_read(&memcg->numainfo_events))
1754 return;
1755 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1756 return;
1757
1758 /* make a nodemask where this memcg uses memory from */
1759 memcg->scan_nodes = node_states[N_MEMORY];
1760
1761 for_each_node_mask(nid, node_states[N_MEMORY]) {
1762
1763 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1764 node_clear(nid, memcg->scan_nodes);
1765 }
1766
1767 atomic_set(&memcg->numainfo_events, 0);
1768 atomic_set(&memcg->numainfo_updating, 0);
1769 }
1770
1771 /*
1772 * Selecting a node where we start reclaim from. Because what we need is just
1773 * reducing usage counter, start from anywhere is O,K. Considering
1774 * memory reclaim from current node, there are pros. and cons.
1775 *
1776 * Freeing memory from current node means freeing memory from a node which
1777 * we'll use or we've used. So, it may make LRU bad. And if several threads
1778 * hit limits, it will see a contention on a node. But freeing from remote
1779 * node means more costs for memory reclaim because of memory latency.
1780 *
1781 * Now, we use round-robin. Better algorithm is welcomed.
1782 */
1783 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1784 {
1785 int node;
1786
1787 mem_cgroup_may_update_nodemask(memcg);
1788 node = memcg->last_scanned_node;
1789
1790 node = next_node(node, memcg->scan_nodes);
1791 if (node == MAX_NUMNODES)
1792 node = first_node(memcg->scan_nodes);
1793 /*
1794 * We call this when we hit limit, not when pages are added to LRU.
1795 * No LRU may hold pages because all pages are UNEVICTABLE or
1796 * memcg is too small and all pages are not on LRU. In that case,
1797 * we use curret node.
1798 */
1799 if (unlikely(node == MAX_NUMNODES))
1800 node = numa_node_id();
1801
1802 memcg->last_scanned_node = node;
1803 return node;
1804 }
1805
1806 #else
1807 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1808 {
1809 return 0;
1810 }
1811
1812 #endif
1813
1814 /*
1815 * A group is eligible for the soft limit reclaim under the given root
1816 * hierarchy if
1817 * a) it is over its soft limit
1818 * b) any parent up the hierarchy is over its soft limit
1819 */
1820 enum mem_cgroup_filter_t
1821 mem_cgroup_soft_reclaim_eligible(struct mem_cgroup *memcg,
1822 struct mem_cgroup *root)
1823 {
1824 struct mem_cgroup *parent = memcg;
1825
1826 if (res_counter_soft_limit_excess(&memcg->res))
1827 return VISIT;
1828
1829 /*
1830 * If any parent up to the root in the hierarchy is over its soft limit
1831 * then we have to obey and reclaim from this group as well.
1832 */
1833 while((parent = parent_mem_cgroup(parent))) {
1834 if (res_counter_soft_limit_excess(&parent->res))
1835 return VISIT;
1836 if (parent == root)
1837 break;
1838 }
1839
1840 return SKIP;
1841 }
1842
1843 /*
1844 * Check OOM-Killer is already running under our hierarchy.
1845 * If someone is running, return false.
1846 * Has to be called with memcg_oom_lock
1847 */
1848 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1849 {
1850 struct mem_cgroup *iter, *failed = NULL;
1851
1852 for_each_mem_cgroup_tree(iter, memcg) {
1853 if (iter->oom_lock) {
1854 /*
1855 * this subtree of our hierarchy is already locked
1856 * so we cannot give a lock.
1857 */
1858 failed = iter;
1859 mem_cgroup_iter_break(memcg, iter);
1860 break;
1861 } else
1862 iter->oom_lock = true;
1863 }
1864
1865 if (!failed)
1866 return true;
1867
1868 /*
1869 * OK, we failed to lock the whole subtree so we have to clean up
1870 * what we set up to the failing subtree
1871 */
1872 for_each_mem_cgroup_tree(iter, memcg) {
1873 if (iter == failed) {
1874 mem_cgroup_iter_break(memcg, iter);
1875 break;
1876 }
1877 iter->oom_lock = false;
1878 }
1879 return false;
1880 }
1881
1882 /*
1883 * Has to be called with memcg_oom_lock
1884 */
1885 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1886 {
1887 struct mem_cgroup *iter;
1888
1889 for_each_mem_cgroup_tree(iter, memcg)
1890 iter->oom_lock = false;
1891 return 0;
1892 }
1893
1894 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1895 {
1896 struct mem_cgroup *iter;
1897
1898 for_each_mem_cgroup_tree(iter, memcg)
1899 atomic_inc(&iter->under_oom);
1900 }
1901
1902 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1903 {
1904 struct mem_cgroup *iter;
1905
1906 /*
1907 * When a new child is created while the hierarchy is under oom,
1908 * mem_cgroup_oom_lock() may not be called. We have to use
1909 * atomic_add_unless() here.
1910 */
1911 for_each_mem_cgroup_tree(iter, memcg)
1912 atomic_add_unless(&iter->under_oom, -1, 0);
1913 }
1914
1915 static DEFINE_SPINLOCK(memcg_oom_lock);
1916 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1917
1918 struct oom_wait_info {
1919 struct mem_cgroup *memcg;
1920 wait_queue_t wait;
1921 };
1922
1923 static int memcg_oom_wake_function(wait_queue_t *wait,
1924 unsigned mode, int sync, void *arg)
1925 {
1926 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1927 struct mem_cgroup *oom_wait_memcg;
1928 struct oom_wait_info *oom_wait_info;
1929
1930 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1931 oom_wait_memcg = oom_wait_info->memcg;
1932
1933 /*
1934 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1935 * Then we can use css_is_ancestor without taking care of RCU.
1936 */
1937 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1938 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1939 return 0;
1940 return autoremove_wake_function(wait, mode, sync, arg);
1941 }
1942
1943 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1944 {
1945 /* for filtering, pass "memcg" as argument. */
1946 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1947 }
1948
1949 static void memcg_oom_recover(struct mem_cgroup *memcg)
1950 {
1951 if (memcg && atomic_read(&memcg->under_oom))
1952 memcg_wakeup_oom(memcg);
1953 }
1954
1955 /*
1956 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1957 */
1958 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1959 int order)
1960 {
1961 struct oom_wait_info owait;
1962 bool locked, need_to_kill;
1963
1964 owait.memcg = memcg;
1965 owait.wait.flags = 0;
1966 owait.wait.func = memcg_oom_wake_function;
1967 owait.wait.private = current;
1968 INIT_LIST_HEAD(&owait.wait.task_list);
1969 need_to_kill = true;
1970 mem_cgroup_mark_under_oom(memcg);
1971
1972 /* At first, try to OOM lock hierarchy under memcg.*/
1973 spin_lock(&memcg_oom_lock);
1974 locked = mem_cgroup_oom_lock(memcg);
1975 /*
1976 * Even if signal_pending(), we can't quit charge() loop without
1977 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1978 * under OOM is always welcomed, use TASK_KILLABLE here.
1979 */
1980 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1981 if (!locked || memcg->oom_kill_disable)
1982 need_to_kill = false;
1983 if (locked)
1984 mem_cgroup_oom_notify(memcg);
1985 spin_unlock(&memcg_oom_lock);
1986
1987 if (need_to_kill) {
1988 finish_wait(&memcg_oom_waitq, &owait.wait);
1989 mem_cgroup_out_of_memory(memcg, mask, order);
1990 } else {
1991 schedule();
1992 finish_wait(&memcg_oom_waitq, &owait.wait);
1993 }
1994 spin_lock(&memcg_oom_lock);
1995 if (locked)
1996 mem_cgroup_oom_unlock(memcg);
1997 memcg_wakeup_oom(memcg);
1998 spin_unlock(&memcg_oom_lock);
1999
2000 mem_cgroup_unmark_under_oom(memcg);
2001
2002 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2003 return false;
2004 /* Give chance to dying process */
2005 schedule_timeout_uninterruptible(1);
2006 return true;
2007 }
2008
2009 /*
2010 * Currently used to update mapped file statistics, but the routine can be
2011 * generalized to update other statistics as well.
2012 *
2013 * Notes: Race condition
2014 *
2015 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2016 * it tends to be costly. But considering some conditions, we doesn't need
2017 * to do so _always_.
2018 *
2019 * Considering "charge", lock_page_cgroup() is not required because all
2020 * file-stat operations happen after a page is attached to radix-tree. There
2021 * are no race with "charge".
2022 *
2023 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2024 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2025 * if there are race with "uncharge". Statistics itself is properly handled
2026 * by flags.
2027 *
2028 * Considering "move", this is an only case we see a race. To make the race
2029 * small, we check mm->moving_account and detect there are possibility of race
2030 * If there is, we take a lock.
2031 */
2032
2033 void __mem_cgroup_begin_update_page_stat(struct page *page,
2034 bool *locked, unsigned long *flags)
2035 {
2036 struct mem_cgroup *memcg;
2037 struct page_cgroup *pc;
2038
2039 pc = lookup_page_cgroup(page);
2040 again:
2041 memcg = pc->mem_cgroup;
2042 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2043 return;
2044 /*
2045 * If this memory cgroup is not under account moving, we don't
2046 * need to take move_lock_mem_cgroup(). Because we already hold
2047 * rcu_read_lock(), any calls to move_account will be delayed until
2048 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2049 */
2050 if (!mem_cgroup_stolen(memcg))
2051 return;
2052
2053 move_lock_mem_cgroup(memcg, flags);
2054 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2055 move_unlock_mem_cgroup(memcg, flags);
2056 goto again;
2057 }
2058 *locked = true;
2059 }
2060
2061 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2062 {
2063 struct page_cgroup *pc = lookup_page_cgroup(page);
2064
2065 /*
2066 * It's guaranteed that pc->mem_cgroup never changes while
2067 * lock is held because a routine modifies pc->mem_cgroup
2068 * should take move_lock_mem_cgroup().
2069 */
2070 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2071 }
2072
2073 void mem_cgroup_update_page_stat(struct page *page,
2074 enum mem_cgroup_page_stat_item idx, int val)
2075 {
2076 struct mem_cgroup *memcg;
2077 struct page_cgroup *pc = lookup_page_cgroup(page);
2078 unsigned long uninitialized_var(flags);
2079
2080 if (mem_cgroup_disabled())
2081 return;
2082
2083 memcg = pc->mem_cgroup;
2084 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2085 return;
2086
2087 switch (idx) {
2088 case MEMCG_NR_FILE_MAPPED:
2089 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2090 break;
2091 default:
2092 BUG();
2093 }
2094
2095 this_cpu_add(memcg->stat->count[idx], val);
2096 }
2097
2098 /*
2099 * size of first charge trial. "32" comes from vmscan.c's magic value.
2100 * TODO: maybe necessary to use big numbers in big irons.
2101 */
2102 #define CHARGE_BATCH 32U
2103 struct memcg_stock_pcp {
2104 struct mem_cgroup *cached; /* this never be root cgroup */
2105 unsigned int nr_pages;
2106 struct work_struct work;
2107 unsigned long flags;
2108 #define FLUSHING_CACHED_CHARGE 0
2109 };
2110 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2111 static DEFINE_MUTEX(percpu_charge_mutex);
2112
2113 /**
2114 * consume_stock: Try to consume stocked charge on this cpu.
2115 * @memcg: memcg to consume from.
2116 * @nr_pages: how many pages to charge.
2117 *
2118 * The charges will only happen if @memcg matches the current cpu's memcg
2119 * stock, and at least @nr_pages are available in that stock. Failure to
2120 * service an allocation will refill the stock.
2121 *
2122 * returns true if successful, false otherwise.
2123 */
2124 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2125 {
2126 struct memcg_stock_pcp *stock;
2127 bool ret = true;
2128
2129 if (nr_pages > CHARGE_BATCH)
2130 return false;
2131
2132 stock = &get_cpu_var(memcg_stock);
2133 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2134 stock->nr_pages -= nr_pages;
2135 else /* need to call res_counter_charge */
2136 ret = false;
2137 put_cpu_var(memcg_stock);
2138 return ret;
2139 }
2140
2141 /*
2142 * Returns stocks cached in percpu to res_counter and reset cached information.
2143 */
2144 static void drain_stock(struct memcg_stock_pcp *stock)
2145 {
2146 struct mem_cgroup *old = stock->cached;
2147
2148 if (stock->nr_pages) {
2149 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2150
2151 res_counter_uncharge(&old->res, bytes);
2152 if (do_swap_account)
2153 res_counter_uncharge(&old->memsw, bytes);
2154 stock->nr_pages = 0;
2155 }
2156 stock->cached = NULL;
2157 }
2158
2159 /*
2160 * This must be called under preempt disabled or must be called by
2161 * a thread which is pinned to local cpu.
2162 */
2163 static void drain_local_stock(struct work_struct *dummy)
2164 {
2165 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2166 drain_stock(stock);
2167 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2168 }
2169
2170 static void __init memcg_stock_init(void)
2171 {
2172 int cpu;
2173
2174 for_each_possible_cpu(cpu) {
2175 struct memcg_stock_pcp *stock =
2176 &per_cpu(memcg_stock, cpu);
2177 INIT_WORK(&stock->work, drain_local_stock);
2178 }
2179 }
2180
2181 /*
2182 * Cache charges(val) which is from res_counter, to local per_cpu area.
2183 * This will be consumed by consume_stock() function, later.
2184 */
2185 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2186 {
2187 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2188
2189 if (stock->cached != memcg) { /* reset if necessary */
2190 drain_stock(stock);
2191 stock->cached = memcg;
2192 }
2193 stock->nr_pages += nr_pages;
2194 put_cpu_var(memcg_stock);
2195 }
2196
2197 /*
2198 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2199 * of the hierarchy under it. sync flag says whether we should block
2200 * until the work is done.
2201 */
2202 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2203 {
2204 int cpu, curcpu;
2205
2206 /* Notify other cpus that system-wide "drain" is running */
2207 get_online_cpus();
2208 curcpu = get_cpu();
2209 for_each_online_cpu(cpu) {
2210 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2211 struct mem_cgroup *memcg;
2212
2213 memcg = stock->cached;
2214 if (!memcg || !stock->nr_pages)
2215 continue;
2216 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2217 continue;
2218 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2219 if (cpu == curcpu)
2220 drain_local_stock(&stock->work);
2221 else
2222 schedule_work_on(cpu, &stock->work);
2223 }
2224 }
2225 put_cpu();
2226
2227 if (!sync)
2228 goto out;
2229
2230 for_each_online_cpu(cpu) {
2231 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2232 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2233 flush_work(&stock->work);
2234 }
2235 out:
2236 put_online_cpus();
2237 }
2238
2239 /*
2240 * Tries to drain stocked charges in other cpus. This function is asynchronous
2241 * and just put a work per cpu for draining localy on each cpu. Caller can
2242 * expects some charges will be back to res_counter later but cannot wait for
2243 * it.
2244 */
2245 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2246 {
2247 /*
2248 * If someone calls draining, avoid adding more kworker runs.
2249 */
2250 if (!mutex_trylock(&percpu_charge_mutex))
2251 return;
2252 drain_all_stock(root_memcg, false);
2253 mutex_unlock(&percpu_charge_mutex);
2254 }
2255
2256 /* This is a synchronous drain interface. */
2257 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2258 {
2259 /* called when force_empty is called */
2260 mutex_lock(&percpu_charge_mutex);
2261 drain_all_stock(root_memcg, true);
2262 mutex_unlock(&percpu_charge_mutex);
2263 }
2264
2265 /*
2266 * This function drains percpu counter value from DEAD cpu and
2267 * move it to local cpu. Note that this function can be preempted.
2268 */
2269 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2270 {
2271 int i;
2272
2273 spin_lock(&memcg->pcp_counter_lock);
2274 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2275 long x = per_cpu(memcg->stat->count[i], cpu);
2276
2277 per_cpu(memcg->stat->count[i], cpu) = 0;
2278 memcg->nocpu_base.count[i] += x;
2279 }
2280 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2281 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2282
2283 per_cpu(memcg->stat->events[i], cpu) = 0;
2284 memcg->nocpu_base.events[i] += x;
2285 }
2286 spin_unlock(&memcg->pcp_counter_lock);
2287 }
2288
2289 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2290 unsigned long action,
2291 void *hcpu)
2292 {
2293 int cpu = (unsigned long)hcpu;
2294 struct memcg_stock_pcp *stock;
2295 struct mem_cgroup *iter;
2296
2297 if (action == CPU_ONLINE)
2298 return NOTIFY_OK;
2299
2300 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2301 return NOTIFY_OK;
2302
2303 for_each_mem_cgroup(iter)
2304 mem_cgroup_drain_pcp_counter(iter, cpu);
2305
2306 stock = &per_cpu(memcg_stock, cpu);
2307 drain_stock(stock);
2308 return NOTIFY_OK;
2309 }
2310
2311
2312 /* See __mem_cgroup_try_charge() for details */
2313 enum {
2314 CHARGE_OK, /* success */
2315 CHARGE_RETRY, /* need to retry but retry is not bad */
2316 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2317 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2318 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2319 };
2320
2321 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2322 unsigned int nr_pages, unsigned int min_pages,
2323 bool oom_check)
2324 {
2325 unsigned long csize = nr_pages * PAGE_SIZE;
2326 struct mem_cgroup *mem_over_limit;
2327 struct res_counter *fail_res;
2328 unsigned long flags = 0;
2329 int ret;
2330
2331 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2332
2333 if (likely(!ret)) {
2334 if (!do_swap_account)
2335 return CHARGE_OK;
2336 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2337 if (likely(!ret))
2338 return CHARGE_OK;
2339
2340 res_counter_uncharge(&memcg->res, csize);
2341 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2342 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2343 } else
2344 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2345 /*
2346 * Never reclaim on behalf of optional batching, retry with a
2347 * single page instead.
2348 */
2349 if (nr_pages > min_pages)
2350 return CHARGE_RETRY;
2351
2352 if (!(gfp_mask & __GFP_WAIT))
2353 return CHARGE_WOULDBLOCK;
2354
2355 if (gfp_mask & __GFP_NORETRY)
2356 return CHARGE_NOMEM;
2357
2358 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2359 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2360 return CHARGE_RETRY;
2361 /*
2362 * Even though the limit is exceeded at this point, reclaim
2363 * may have been able to free some pages. Retry the charge
2364 * before killing the task.
2365 *
2366 * Only for regular pages, though: huge pages are rather
2367 * unlikely to succeed so close to the limit, and we fall back
2368 * to regular pages anyway in case of failure.
2369 */
2370 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2371 return CHARGE_RETRY;
2372
2373 /*
2374 * At task move, charge accounts can be doubly counted. So, it's
2375 * better to wait until the end of task_move if something is going on.
2376 */
2377 if (mem_cgroup_wait_acct_move(mem_over_limit))
2378 return CHARGE_RETRY;
2379
2380 /* If we don't need to call oom-killer at el, return immediately */
2381 if (!oom_check)
2382 return CHARGE_NOMEM;
2383 /* check OOM */
2384 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2385 return CHARGE_OOM_DIE;
2386
2387 return CHARGE_RETRY;
2388 }
2389
2390 /*
2391 * __mem_cgroup_try_charge() does
2392 * 1. detect memcg to be charged against from passed *mm and *ptr,
2393 * 2. update res_counter
2394 * 3. call memory reclaim if necessary.
2395 *
2396 * In some special case, if the task is fatal, fatal_signal_pending() or
2397 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2398 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2399 * as possible without any hazards. 2: all pages should have a valid
2400 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2401 * pointer, that is treated as a charge to root_mem_cgroup.
2402 *
2403 * So __mem_cgroup_try_charge() will return
2404 * 0 ... on success, filling *ptr with a valid memcg pointer.
2405 * -ENOMEM ... charge failure because of resource limits.
2406 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2407 *
2408 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2409 * the oom-killer can be invoked.
2410 */
2411 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2412 gfp_t gfp_mask,
2413 unsigned int nr_pages,
2414 struct mem_cgroup **ptr,
2415 bool oom)
2416 {
2417 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2418 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2419 struct mem_cgroup *memcg = NULL;
2420 int ret;
2421
2422 /*
2423 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2424 * in system level. So, allow to go ahead dying process in addition to
2425 * MEMDIE process.
2426 */
2427 if (unlikely(test_thread_flag(TIF_MEMDIE)
2428 || fatal_signal_pending(current)))
2429 goto bypass;
2430
2431 /*
2432 * We always charge the cgroup the mm_struct belongs to.
2433 * The mm_struct's mem_cgroup changes on task migration if the
2434 * thread group leader migrates. It's possible that mm is not
2435 * set, if so charge the root memcg (happens for pagecache usage).
2436 */
2437 if (!*ptr && !mm)
2438 *ptr = root_mem_cgroup;
2439 again:
2440 if (*ptr) { /* css should be a valid one */
2441 memcg = *ptr;
2442 if (mem_cgroup_is_root(memcg))
2443 goto done;
2444 if (consume_stock(memcg, nr_pages))
2445 goto done;
2446 css_get(&memcg->css);
2447 } else {
2448 struct task_struct *p;
2449
2450 rcu_read_lock();
2451 p = rcu_dereference(mm->owner);
2452 /*
2453 * Because we don't have task_lock(), "p" can exit.
2454 * In that case, "memcg" can point to root or p can be NULL with
2455 * race with swapoff. Then, we have small risk of mis-accouning.
2456 * But such kind of mis-account by race always happens because
2457 * we don't have cgroup_mutex(). It's overkill and we allo that
2458 * small race, here.
2459 * (*) swapoff at el will charge against mm-struct not against
2460 * task-struct. So, mm->owner can be NULL.
2461 */
2462 memcg = mem_cgroup_from_task(p);
2463 if (!memcg)
2464 memcg = root_mem_cgroup;
2465 if (mem_cgroup_is_root(memcg)) {
2466 rcu_read_unlock();
2467 goto done;
2468 }
2469 if (consume_stock(memcg, nr_pages)) {
2470 /*
2471 * It seems dagerous to access memcg without css_get().
2472 * But considering how consume_stok works, it's not
2473 * necessary. If consume_stock success, some charges
2474 * from this memcg are cached on this cpu. So, we
2475 * don't need to call css_get()/css_tryget() before
2476 * calling consume_stock().
2477 */
2478 rcu_read_unlock();
2479 goto done;
2480 }
2481 /* after here, we may be blocked. we need to get refcnt */
2482 if (!css_tryget(&memcg->css)) {
2483 rcu_read_unlock();
2484 goto again;
2485 }
2486 rcu_read_unlock();
2487 }
2488
2489 do {
2490 bool oom_check;
2491
2492 /* If killed, bypass charge */
2493 if (fatal_signal_pending(current)) {
2494 css_put(&memcg->css);
2495 goto bypass;
2496 }
2497
2498 oom_check = false;
2499 if (oom && !nr_oom_retries) {
2500 oom_check = true;
2501 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2502 }
2503
2504 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2505 oom_check);
2506 switch (ret) {
2507 case CHARGE_OK:
2508 break;
2509 case CHARGE_RETRY: /* not in OOM situation but retry */
2510 batch = nr_pages;
2511 css_put(&memcg->css);
2512 memcg = NULL;
2513 goto again;
2514 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2515 css_put(&memcg->css);
2516 goto nomem;
2517 case CHARGE_NOMEM: /* OOM routine works */
2518 if (!oom) {
2519 css_put(&memcg->css);
2520 goto nomem;
2521 }
2522 /* If oom, we never return -ENOMEM */
2523 nr_oom_retries--;
2524 break;
2525 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2526 css_put(&memcg->css);
2527 goto bypass;
2528 }
2529 } while (ret != CHARGE_OK);
2530
2531 if (batch > nr_pages)
2532 refill_stock(memcg, batch - nr_pages);
2533 css_put(&memcg->css);
2534 done:
2535 *ptr = memcg;
2536 return 0;
2537 nomem:
2538 *ptr = NULL;
2539 return -ENOMEM;
2540 bypass:
2541 *ptr = root_mem_cgroup;
2542 return -EINTR;
2543 }
2544
2545 /*
2546 * Somemtimes we have to undo a charge we got by try_charge().
2547 * This function is for that and do uncharge, put css's refcnt.
2548 * gotten by try_charge().
2549 */
2550 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2551 unsigned int nr_pages)
2552 {
2553 if (!mem_cgroup_is_root(memcg)) {
2554 unsigned long bytes = nr_pages * PAGE_SIZE;
2555
2556 res_counter_uncharge(&memcg->res, bytes);
2557 if (do_swap_account)
2558 res_counter_uncharge(&memcg->memsw, bytes);
2559 }
2560 }
2561
2562 /*
2563 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2564 * This is useful when moving usage to parent cgroup.
2565 */
2566 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2567 unsigned int nr_pages)
2568 {
2569 unsigned long bytes = nr_pages * PAGE_SIZE;
2570
2571 if (mem_cgroup_is_root(memcg))
2572 return;
2573
2574 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2575 if (do_swap_account)
2576 res_counter_uncharge_until(&memcg->memsw,
2577 memcg->memsw.parent, bytes);
2578 }
2579
2580 /*
2581 * A helper function to get mem_cgroup from ID. must be called under
2582 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2583 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2584 * called against removed memcg.)
2585 */
2586 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2587 {
2588 struct cgroup_subsys_state *css;
2589
2590 /* ID 0 is unused ID */
2591 if (!id)
2592 return NULL;
2593 css = css_lookup(&mem_cgroup_subsys, id);
2594 if (!css)
2595 return NULL;
2596 return mem_cgroup_from_css(css);
2597 }
2598
2599 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2600 {
2601 struct mem_cgroup *memcg = NULL;
2602 struct page_cgroup *pc;
2603 unsigned short id;
2604 swp_entry_t ent;
2605
2606 VM_BUG_ON(!PageLocked(page));
2607
2608 pc = lookup_page_cgroup(page);
2609 lock_page_cgroup(pc);
2610 if (PageCgroupUsed(pc)) {
2611 memcg = pc->mem_cgroup;
2612 if (memcg && !css_tryget(&memcg->css))
2613 memcg = NULL;
2614 } else if (PageSwapCache(page)) {
2615 ent.val = page_private(page);
2616 id = lookup_swap_cgroup_id(ent);
2617 rcu_read_lock();
2618 memcg = mem_cgroup_lookup(id);
2619 if (memcg && !css_tryget(&memcg->css))
2620 memcg = NULL;
2621 rcu_read_unlock();
2622 }
2623 unlock_page_cgroup(pc);
2624 return memcg;
2625 }
2626
2627 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2628 struct page *page,
2629 unsigned int nr_pages,
2630 enum charge_type ctype,
2631 bool lrucare)
2632 {
2633 struct page_cgroup *pc = lookup_page_cgroup(page);
2634 struct zone *uninitialized_var(zone);
2635 struct lruvec *lruvec;
2636 bool was_on_lru = false;
2637 bool anon;
2638
2639 lock_page_cgroup(pc);
2640 VM_BUG_ON(PageCgroupUsed(pc));
2641 /*
2642 * we don't need page_cgroup_lock about tail pages, becase they are not
2643 * accessed by any other context at this point.
2644 */
2645
2646 /*
2647 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2648 * may already be on some other mem_cgroup's LRU. Take care of it.
2649 */
2650 if (lrucare) {
2651 zone = page_zone(page);
2652 spin_lock_irq(&zone->lru_lock);
2653 if (PageLRU(page)) {
2654 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2655 ClearPageLRU(page);
2656 del_page_from_lru_list(page, lruvec, page_lru(page));
2657 was_on_lru = true;
2658 }
2659 }
2660
2661 pc->mem_cgroup = memcg;
2662 /*
2663 * We access a page_cgroup asynchronously without lock_page_cgroup().
2664 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2665 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2666 * before USED bit, we need memory barrier here.
2667 * See mem_cgroup_add_lru_list(), etc.
2668 */
2669 smp_wmb();
2670 SetPageCgroupUsed(pc);
2671
2672 if (lrucare) {
2673 if (was_on_lru) {
2674 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2675 VM_BUG_ON(PageLRU(page));
2676 SetPageLRU(page);
2677 add_page_to_lru_list(page, lruvec, page_lru(page));
2678 }
2679 spin_unlock_irq(&zone->lru_lock);
2680 }
2681
2682 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2683 anon = true;
2684 else
2685 anon = false;
2686
2687 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2688 unlock_page_cgroup(pc);
2689
2690 /*
2691 * "charge_statistics" updated event counter.
2692 */
2693 memcg_check_events(memcg, page);
2694 }
2695
2696 static DEFINE_MUTEX(set_limit_mutex);
2697
2698 #ifdef CONFIG_MEMCG_KMEM
2699 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2700 {
2701 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2702 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2703 }
2704
2705 /*
2706 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2707 * in the memcg_cache_params struct.
2708 */
2709 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2710 {
2711 struct kmem_cache *cachep;
2712
2713 VM_BUG_ON(p->is_root_cache);
2714 cachep = p->root_cache;
2715 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2716 }
2717
2718 #ifdef CONFIG_SLABINFO
2719 static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
2720 struct cftype *cft, struct seq_file *m)
2721 {
2722 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2723 struct memcg_cache_params *params;
2724
2725 if (!memcg_can_account_kmem(memcg))
2726 return -EIO;
2727
2728 print_slabinfo_header(m);
2729
2730 mutex_lock(&memcg->slab_caches_mutex);
2731 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2732 cache_show(memcg_params_to_cache(params), m);
2733 mutex_unlock(&memcg->slab_caches_mutex);
2734
2735 return 0;
2736 }
2737 #endif
2738
2739 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2740 {
2741 struct res_counter *fail_res;
2742 struct mem_cgroup *_memcg;
2743 int ret = 0;
2744 bool may_oom;
2745
2746 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2747 if (ret)
2748 return ret;
2749
2750 /*
2751 * Conditions under which we can wait for the oom_killer. Those are
2752 * the same conditions tested by the core page allocator
2753 */
2754 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2755
2756 _memcg = memcg;
2757 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2758 &_memcg, may_oom);
2759
2760 if (ret == -EINTR) {
2761 /*
2762 * __mem_cgroup_try_charge() chosed to bypass to root due to
2763 * OOM kill or fatal signal. Since our only options are to
2764 * either fail the allocation or charge it to this cgroup, do
2765 * it as a temporary condition. But we can't fail. From a
2766 * kmem/slab perspective, the cache has already been selected,
2767 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2768 * our minds.
2769 *
2770 * This condition will only trigger if the task entered
2771 * memcg_charge_kmem in a sane state, but was OOM-killed during
2772 * __mem_cgroup_try_charge() above. Tasks that were already
2773 * dying when the allocation triggers should have been already
2774 * directed to the root cgroup in memcontrol.h
2775 */
2776 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2777 if (do_swap_account)
2778 res_counter_charge_nofail(&memcg->memsw, size,
2779 &fail_res);
2780 ret = 0;
2781 } else if (ret)
2782 res_counter_uncharge(&memcg->kmem, size);
2783
2784 return ret;
2785 }
2786
2787 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2788 {
2789 res_counter_uncharge(&memcg->res, size);
2790 if (do_swap_account)
2791 res_counter_uncharge(&memcg->memsw, size);
2792
2793 /* Not down to 0 */
2794 if (res_counter_uncharge(&memcg->kmem, size))
2795 return;
2796
2797 /*
2798 * Releases a reference taken in kmem_cgroup_css_offline in case
2799 * this last uncharge is racing with the offlining code or it is
2800 * outliving the memcg existence.
2801 *
2802 * The memory barrier imposed by test&clear is paired with the
2803 * explicit one in memcg_kmem_mark_dead().
2804 */
2805 if (memcg_kmem_test_and_clear_dead(memcg))
2806 css_put(&memcg->css);
2807 }
2808
2809 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
2810 {
2811 if (!memcg)
2812 return;
2813
2814 mutex_lock(&memcg->slab_caches_mutex);
2815 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
2816 mutex_unlock(&memcg->slab_caches_mutex);
2817 }
2818
2819 /*
2820 * helper for acessing a memcg's index. It will be used as an index in the
2821 * child cache array in kmem_cache, and also to derive its name. This function
2822 * will return -1 when this is not a kmem-limited memcg.
2823 */
2824 int memcg_cache_id(struct mem_cgroup *memcg)
2825 {
2826 return memcg ? memcg->kmemcg_id : -1;
2827 }
2828
2829 /*
2830 * This ends up being protected by the set_limit mutex, during normal
2831 * operation, because that is its main call site.
2832 *
2833 * But when we create a new cache, we can call this as well if its parent
2834 * is kmem-limited. That will have to hold set_limit_mutex as well.
2835 */
2836 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
2837 {
2838 int num, ret;
2839
2840 num = ida_simple_get(&kmem_limited_groups,
2841 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2842 if (num < 0)
2843 return num;
2844 /*
2845 * After this point, kmem_accounted (that we test atomically in
2846 * the beginning of this conditional), is no longer 0. This
2847 * guarantees only one process will set the following boolean
2848 * to true. We don't need test_and_set because we're protected
2849 * by the set_limit_mutex anyway.
2850 */
2851 memcg_kmem_set_activated(memcg);
2852
2853 ret = memcg_update_all_caches(num+1);
2854 if (ret) {
2855 ida_simple_remove(&kmem_limited_groups, num);
2856 memcg_kmem_clear_activated(memcg);
2857 return ret;
2858 }
2859
2860 memcg->kmemcg_id = num;
2861 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
2862 mutex_init(&memcg->slab_caches_mutex);
2863 return 0;
2864 }
2865
2866 static size_t memcg_caches_array_size(int num_groups)
2867 {
2868 ssize_t size;
2869 if (num_groups <= 0)
2870 return 0;
2871
2872 size = 2 * num_groups;
2873 if (size < MEMCG_CACHES_MIN_SIZE)
2874 size = MEMCG_CACHES_MIN_SIZE;
2875 else if (size > MEMCG_CACHES_MAX_SIZE)
2876 size = MEMCG_CACHES_MAX_SIZE;
2877
2878 return size;
2879 }
2880
2881 /*
2882 * We should update the current array size iff all caches updates succeed. This
2883 * can only be done from the slab side. The slab mutex needs to be held when
2884 * calling this.
2885 */
2886 void memcg_update_array_size(int num)
2887 {
2888 if (num > memcg_limited_groups_array_size)
2889 memcg_limited_groups_array_size = memcg_caches_array_size(num);
2890 }
2891
2892 static void kmem_cache_destroy_work_func(struct work_struct *w);
2893
2894 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
2895 {
2896 struct memcg_cache_params *cur_params = s->memcg_params;
2897
2898 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
2899
2900 if (num_groups > memcg_limited_groups_array_size) {
2901 int i;
2902 ssize_t size = memcg_caches_array_size(num_groups);
2903
2904 size *= sizeof(void *);
2905 size += offsetof(struct memcg_cache_params, memcg_caches);
2906
2907 s->memcg_params = kzalloc(size, GFP_KERNEL);
2908 if (!s->memcg_params) {
2909 s->memcg_params = cur_params;
2910 return -ENOMEM;
2911 }
2912
2913 s->memcg_params->is_root_cache = true;
2914
2915 /*
2916 * There is the chance it will be bigger than
2917 * memcg_limited_groups_array_size, if we failed an allocation
2918 * in a cache, in which case all caches updated before it, will
2919 * have a bigger array.
2920 *
2921 * But if that is the case, the data after
2922 * memcg_limited_groups_array_size is certainly unused
2923 */
2924 for (i = 0; i < memcg_limited_groups_array_size; i++) {
2925 if (!cur_params->memcg_caches[i])
2926 continue;
2927 s->memcg_params->memcg_caches[i] =
2928 cur_params->memcg_caches[i];
2929 }
2930
2931 /*
2932 * Ideally, we would wait until all caches succeed, and only
2933 * then free the old one. But this is not worth the extra
2934 * pointer per-cache we'd have to have for this.
2935 *
2936 * It is not a big deal if some caches are left with a size
2937 * bigger than the others. And all updates will reset this
2938 * anyway.
2939 */
2940 kfree(cur_params);
2941 }
2942 return 0;
2943 }
2944
2945 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
2946 struct kmem_cache *root_cache)
2947 {
2948 size_t size;
2949
2950 if (!memcg_kmem_enabled())
2951 return 0;
2952
2953 if (!memcg) {
2954 size = offsetof(struct memcg_cache_params, memcg_caches);
2955 size += memcg_limited_groups_array_size * sizeof(void *);
2956 } else
2957 size = sizeof(struct memcg_cache_params);
2958
2959 s->memcg_params = kzalloc(size, GFP_KERNEL);
2960 if (!s->memcg_params)
2961 return -ENOMEM;
2962
2963 if (memcg) {
2964 s->memcg_params->memcg = memcg;
2965 s->memcg_params->root_cache = root_cache;
2966 INIT_WORK(&s->memcg_params->destroy,
2967 kmem_cache_destroy_work_func);
2968 } else
2969 s->memcg_params->is_root_cache = true;
2970
2971 return 0;
2972 }
2973
2974 void memcg_release_cache(struct kmem_cache *s)
2975 {
2976 struct kmem_cache *root;
2977 struct mem_cgroup *memcg;
2978 int id;
2979
2980 /*
2981 * This happens, for instance, when a root cache goes away before we
2982 * add any memcg.
2983 */
2984 if (!s->memcg_params)
2985 return;
2986
2987 if (s->memcg_params->is_root_cache)
2988 goto out;
2989
2990 memcg = s->memcg_params->memcg;
2991 id = memcg_cache_id(memcg);
2992
2993 root = s->memcg_params->root_cache;
2994 root->memcg_params->memcg_caches[id] = NULL;
2995
2996 mutex_lock(&memcg->slab_caches_mutex);
2997 list_del(&s->memcg_params->list);
2998 mutex_unlock(&memcg->slab_caches_mutex);
2999
3000 css_put(&memcg->css);
3001 out:
3002 kfree(s->memcg_params);
3003 }
3004
3005 /*
3006 * During the creation a new cache, we need to disable our accounting mechanism
3007 * altogether. This is true even if we are not creating, but rather just
3008 * enqueing new caches to be created.
3009 *
3010 * This is because that process will trigger allocations; some visible, like
3011 * explicit kmallocs to auxiliary data structures, name strings and internal
3012 * cache structures; some well concealed, like INIT_WORK() that can allocate
3013 * objects during debug.
3014 *
3015 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3016 * to it. This may not be a bounded recursion: since the first cache creation
3017 * failed to complete (waiting on the allocation), we'll just try to create the
3018 * cache again, failing at the same point.
3019 *
3020 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3021 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3022 * inside the following two functions.
3023 */
3024 static inline void memcg_stop_kmem_account(void)
3025 {
3026 VM_BUG_ON(!current->mm);
3027 current->memcg_kmem_skip_account++;
3028 }
3029
3030 static inline void memcg_resume_kmem_account(void)
3031 {
3032 VM_BUG_ON(!current->mm);
3033 current->memcg_kmem_skip_account--;
3034 }
3035
3036 static void kmem_cache_destroy_work_func(struct work_struct *w)
3037 {
3038 struct kmem_cache *cachep;
3039 struct memcg_cache_params *p;
3040
3041 p = container_of(w, struct memcg_cache_params, destroy);
3042
3043 cachep = memcg_params_to_cache(p);
3044
3045 /*
3046 * If we get down to 0 after shrink, we could delete right away.
3047 * However, memcg_release_pages() already puts us back in the workqueue
3048 * in that case. If we proceed deleting, we'll get a dangling
3049 * reference, and removing the object from the workqueue in that case
3050 * is unnecessary complication. We are not a fast path.
3051 *
3052 * Note that this case is fundamentally different from racing with
3053 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3054 * kmem_cache_shrink, not only we would be reinserting a dead cache
3055 * into the queue, but doing so from inside the worker racing to
3056 * destroy it.
3057 *
3058 * So if we aren't down to zero, we'll just schedule a worker and try
3059 * again
3060 */
3061 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3062 kmem_cache_shrink(cachep);
3063 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3064 return;
3065 } else
3066 kmem_cache_destroy(cachep);
3067 }
3068
3069 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3070 {
3071 if (!cachep->memcg_params->dead)
3072 return;
3073
3074 /*
3075 * There are many ways in which we can get here.
3076 *
3077 * We can get to a memory-pressure situation while the delayed work is
3078 * still pending to run. The vmscan shrinkers can then release all
3079 * cache memory and get us to destruction. If this is the case, we'll
3080 * be executed twice, which is a bug (the second time will execute over
3081 * bogus data). In this case, cancelling the work should be fine.
3082 *
3083 * But we can also get here from the worker itself, if
3084 * kmem_cache_shrink is enough to shake all the remaining objects and
3085 * get the page count to 0. In this case, we'll deadlock if we try to
3086 * cancel the work (the worker runs with an internal lock held, which
3087 * is the same lock we would hold for cancel_work_sync().)
3088 *
3089 * Since we can't possibly know who got us here, just refrain from
3090 * running if there is already work pending
3091 */
3092 if (work_pending(&cachep->memcg_params->destroy))
3093 return;
3094 /*
3095 * We have to defer the actual destroying to a workqueue, because
3096 * we might currently be in a context that cannot sleep.
3097 */
3098 schedule_work(&cachep->memcg_params->destroy);
3099 }
3100
3101 /*
3102 * This lock protects updaters, not readers. We want readers to be as fast as
3103 * they can, and they will either see NULL or a valid cache value. Our model
3104 * allow them to see NULL, in which case the root memcg will be selected.
3105 *
3106 * We need this lock because multiple allocations to the same cache from a non
3107 * will span more than one worker. Only one of them can create the cache.
3108 */
3109 static DEFINE_MUTEX(memcg_cache_mutex);
3110
3111 /*
3112 * Called with memcg_cache_mutex held
3113 */
3114 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3115 struct kmem_cache *s)
3116 {
3117 struct kmem_cache *new;
3118 static char *tmp_name = NULL;
3119
3120 lockdep_assert_held(&memcg_cache_mutex);
3121
3122 /*
3123 * kmem_cache_create_memcg duplicates the given name and
3124 * cgroup_name for this name requires RCU context.
3125 * This static temporary buffer is used to prevent from
3126 * pointless shortliving allocation.
3127 */
3128 if (!tmp_name) {
3129 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3130 if (!tmp_name)
3131 return NULL;
3132 }
3133
3134 rcu_read_lock();
3135 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3136 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3137 rcu_read_unlock();
3138
3139 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3140 (s->flags & ~SLAB_PANIC), s->ctor, s);
3141
3142 if (new)
3143 new->allocflags |= __GFP_KMEMCG;
3144
3145 return new;
3146 }
3147
3148 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3149 struct kmem_cache *cachep)
3150 {
3151 struct kmem_cache *new_cachep;
3152 int idx;
3153
3154 BUG_ON(!memcg_can_account_kmem(memcg));
3155
3156 idx = memcg_cache_id(memcg);
3157
3158 mutex_lock(&memcg_cache_mutex);
3159 new_cachep = cachep->memcg_params->memcg_caches[idx];
3160 if (new_cachep) {
3161 css_put(&memcg->css);
3162 goto out;
3163 }
3164
3165 new_cachep = kmem_cache_dup(memcg, cachep);
3166 if (new_cachep == NULL) {
3167 new_cachep = cachep;
3168 css_put(&memcg->css);
3169 goto out;
3170 }
3171
3172 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3173
3174 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3175 /*
3176 * the readers won't lock, make sure everybody sees the updated value,
3177 * so they won't put stuff in the queue again for no reason
3178 */
3179 wmb();
3180 out:
3181 mutex_unlock(&memcg_cache_mutex);
3182 return new_cachep;
3183 }
3184
3185 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3186 {
3187 struct kmem_cache *c;
3188 int i;
3189
3190 if (!s->memcg_params)
3191 return;
3192 if (!s->memcg_params->is_root_cache)
3193 return;
3194
3195 /*
3196 * If the cache is being destroyed, we trust that there is no one else
3197 * requesting objects from it. Even if there are, the sanity checks in
3198 * kmem_cache_destroy should caught this ill-case.
3199 *
3200 * Still, we don't want anyone else freeing memcg_caches under our
3201 * noses, which can happen if a new memcg comes to life. As usual,
3202 * we'll take the set_limit_mutex to protect ourselves against this.
3203 */
3204 mutex_lock(&set_limit_mutex);
3205 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3206 c = s->memcg_params->memcg_caches[i];
3207 if (!c)
3208 continue;
3209
3210 /*
3211 * We will now manually delete the caches, so to avoid races
3212 * we need to cancel all pending destruction workers and
3213 * proceed with destruction ourselves.
3214 *
3215 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3216 * and that could spawn the workers again: it is likely that
3217 * the cache still have active pages until this very moment.
3218 * This would lead us back to mem_cgroup_destroy_cache.
3219 *
3220 * But that will not execute at all if the "dead" flag is not
3221 * set, so flip it down to guarantee we are in control.
3222 */
3223 c->memcg_params->dead = false;
3224 cancel_work_sync(&c->memcg_params->destroy);
3225 kmem_cache_destroy(c);
3226 }
3227 mutex_unlock(&set_limit_mutex);
3228 }
3229
3230 struct create_work {
3231 struct mem_cgroup *memcg;
3232 struct kmem_cache *cachep;
3233 struct work_struct work;
3234 };
3235
3236 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3237 {
3238 struct kmem_cache *cachep;
3239 struct memcg_cache_params *params;
3240
3241 if (!memcg_kmem_is_active(memcg))
3242 return;
3243
3244 mutex_lock(&memcg->slab_caches_mutex);
3245 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3246 cachep = memcg_params_to_cache(params);
3247 cachep->memcg_params->dead = true;
3248 schedule_work(&cachep->memcg_params->destroy);
3249 }
3250 mutex_unlock(&memcg->slab_caches_mutex);
3251 }
3252
3253 static void memcg_create_cache_work_func(struct work_struct *w)
3254 {
3255 struct create_work *cw;
3256
3257 cw = container_of(w, struct create_work, work);
3258 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3259 kfree(cw);
3260 }
3261
3262 /*
3263 * Enqueue the creation of a per-memcg kmem_cache.
3264 */
3265 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3266 struct kmem_cache *cachep)
3267 {
3268 struct create_work *cw;
3269
3270 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3271 if (cw == NULL) {
3272 css_put(&memcg->css);
3273 return;
3274 }
3275
3276 cw->memcg = memcg;
3277 cw->cachep = cachep;
3278
3279 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3280 schedule_work(&cw->work);
3281 }
3282
3283 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3284 struct kmem_cache *cachep)
3285 {
3286 /*
3287 * We need to stop accounting when we kmalloc, because if the
3288 * corresponding kmalloc cache is not yet created, the first allocation
3289 * in __memcg_create_cache_enqueue will recurse.
3290 *
3291 * However, it is better to enclose the whole function. Depending on
3292 * the debugging options enabled, INIT_WORK(), for instance, can
3293 * trigger an allocation. This too, will make us recurse. Because at
3294 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3295 * the safest choice is to do it like this, wrapping the whole function.
3296 */
3297 memcg_stop_kmem_account();
3298 __memcg_create_cache_enqueue(memcg, cachep);
3299 memcg_resume_kmem_account();
3300 }
3301 /*
3302 * Return the kmem_cache we're supposed to use for a slab allocation.
3303 * We try to use the current memcg's version of the cache.
3304 *
3305 * If the cache does not exist yet, if we are the first user of it,
3306 * we either create it immediately, if possible, or create it asynchronously
3307 * in a workqueue.
3308 * In the latter case, we will let the current allocation go through with
3309 * the original cache.
3310 *
3311 * Can't be called in interrupt context or from kernel threads.
3312 * This function needs to be called with rcu_read_lock() held.
3313 */
3314 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3315 gfp_t gfp)
3316 {
3317 struct mem_cgroup *memcg;
3318 int idx;
3319
3320 VM_BUG_ON(!cachep->memcg_params);
3321 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3322
3323 if (!current->mm || current->memcg_kmem_skip_account)
3324 return cachep;
3325
3326 rcu_read_lock();
3327 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3328
3329 if (!memcg_can_account_kmem(memcg))
3330 goto out;
3331
3332 idx = memcg_cache_id(memcg);
3333
3334 /*
3335 * barrier to mare sure we're always seeing the up to date value. The
3336 * code updating memcg_caches will issue a write barrier to match this.
3337 */
3338 read_barrier_depends();
3339 if (likely(cachep->memcg_params->memcg_caches[idx])) {
3340 cachep = cachep->memcg_params->memcg_caches[idx];
3341 goto out;
3342 }
3343
3344 /* The corresponding put will be done in the workqueue. */
3345 if (!css_tryget(&memcg->css))
3346 goto out;
3347 rcu_read_unlock();
3348
3349 /*
3350 * If we are in a safe context (can wait, and not in interrupt
3351 * context), we could be be predictable and return right away.
3352 * This would guarantee that the allocation being performed
3353 * already belongs in the new cache.
3354 *
3355 * However, there are some clashes that can arrive from locking.
3356 * For instance, because we acquire the slab_mutex while doing
3357 * kmem_cache_dup, this means no further allocation could happen
3358 * with the slab_mutex held.
3359 *
3360 * Also, because cache creation issue get_online_cpus(), this
3361 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3362 * that ends up reversed during cpu hotplug. (cpuset allocates
3363 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3364 * better to defer everything.
3365 */
3366 memcg_create_cache_enqueue(memcg, cachep);
3367 return cachep;
3368 out:
3369 rcu_read_unlock();
3370 return cachep;
3371 }
3372 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3373
3374 /*
3375 * We need to verify if the allocation against current->mm->owner's memcg is
3376 * possible for the given order. But the page is not allocated yet, so we'll
3377 * need a further commit step to do the final arrangements.
3378 *
3379 * It is possible for the task to switch cgroups in this mean time, so at
3380 * commit time, we can't rely on task conversion any longer. We'll then use
3381 * the handle argument to return to the caller which cgroup we should commit
3382 * against. We could also return the memcg directly and avoid the pointer
3383 * passing, but a boolean return value gives better semantics considering
3384 * the compiled-out case as well.
3385 *
3386 * Returning true means the allocation is possible.
3387 */
3388 bool
3389 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3390 {
3391 struct mem_cgroup *memcg;
3392 int ret;
3393
3394 *_memcg = NULL;
3395
3396 /*
3397 * Disabling accounting is only relevant for some specific memcg
3398 * internal allocations. Therefore we would initially not have such
3399 * check here, since direct calls to the page allocator that are marked
3400 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3401 * concerned with cache allocations, and by having this test at
3402 * memcg_kmem_get_cache, we are already able to relay the allocation to
3403 * the root cache and bypass the memcg cache altogether.
3404 *
3405 * There is one exception, though: the SLUB allocator does not create
3406 * large order caches, but rather service large kmallocs directly from
3407 * the page allocator. Therefore, the following sequence when backed by
3408 * the SLUB allocator:
3409 *
3410 * memcg_stop_kmem_account();
3411 * kmalloc(<large_number>)
3412 * memcg_resume_kmem_account();
3413 *
3414 * would effectively ignore the fact that we should skip accounting,
3415 * since it will drive us directly to this function without passing
3416 * through the cache selector memcg_kmem_get_cache. Such large
3417 * allocations are extremely rare but can happen, for instance, for the
3418 * cache arrays. We bring this test here.
3419 */
3420 if (!current->mm || current->memcg_kmem_skip_account)
3421 return true;
3422
3423 memcg = try_get_mem_cgroup_from_mm(current->mm);
3424
3425 /*
3426 * very rare case described in mem_cgroup_from_task. Unfortunately there
3427 * isn't much we can do without complicating this too much, and it would
3428 * be gfp-dependent anyway. Just let it go
3429 */
3430 if (unlikely(!memcg))
3431 return true;
3432
3433 if (!memcg_can_account_kmem(memcg)) {
3434 css_put(&memcg->css);
3435 return true;
3436 }
3437
3438 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3439 if (!ret)
3440 *_memcg = memcg;
3441
3442 css_put(&memcg->css);
3443 return (ret == 0);
3444 }
3445
3446 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3447 int order)
3448 {
3449 struct page_cgroup *pc;
3450
3451 VM_BUG_ON(mem_cgroup_is_root(memcg));
3452
3453 /* The page allocation failed. Revert */
3454 if (!page) {
3455 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3456 return;
3457 }
3458
3459 pc = lookup_page_cgroup(page);
3460 lock_page_cgroup(pc);
3461 pc->mem_cgroup = memcg;
3462 SetPageCgroupUsed(pc);
3463 unlock_page_cgroup(pc);
3464 }
3465
3466 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3467 {
3468 struct mem_cgroup *memcg = NULL;
3469 struct page_cgroup *pc;
3470
3471
3472 pc = lookup_page_cgroup(page);
3473 /*
3474 * Fast unlocked return. Theoretically might have changed, have to
3475 * check again after locking.
3476 */
3477 if (!PageCgroupUsed(pc))
3478 return;
3479
3480 lock_page_cgroup(pc);
3481 if (PageCgroupUsed(pc)) {
3482 memcg = pc->mem_cgroup;
3483 ClearPageCgroupUsed(pc);
3484 }
3485 unlock_page_cgroup(pc);
3486
3487 /*
3488 * We trust that only if there is a memcg associated with the page, it
3489 * is a valid allocation
3490 */
3491 if (!memcg)
3492 return;
3493
3494 VM_BUG_ON(mem_cgroup_is_root(memcg));
3495 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3496 }
3497 #else
3498 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3499 {
3500 }
3501 #endif /* CONFIG_MEMCG_KMEM */
3502
3503 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3504
3505 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3506 /*
3507 * Because tail pages are not marked as "used", set it. We're under
3508 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3509 * charge/uncharge will be never happen and move_account() is done under
3510 * compound_lock(), so we don't have to take care of races.
3511 */
3512 void mem_cgroup_split_huge_fixup(struct page *head)
3513 {
3514 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3515 struct page_cgroup *pc;
3516 struct mem_cgroup *memcg;
3517 int i;
3518
3519 if (mem_cgroup_disabled())
3520 return;
3521
3522 memcg = head_pc->mem_cgroup;
3523 for (i = 1; i < HPAGE_PMD_NR; i++) {
3524 pc = head_pc + i;
3525 pc->mem_cgroup = memcg;
3526 smp_wmb();/* see __commit_charge() */
3527 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3528 }
3529 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3530 HPAGE_PMD_NR);
3531 }
3532 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3533
3534 /**
3535 * mem_cgroup_move_account - move account of the page
3536 * @page: the page
3537 * @nr_pages: number of regular pages (>1 for huge pages)
3538 * @pc: page_cgroup of the page.
3539 * @from: mem_cgroup which the page is moved from.
3540 * @to: mem_cgroup which the page is moved to. @from != @to.
3541 *
3542 * The caller must confirm following.
3543 * - page is not on LRU (isolate_page() is useful.)
3544 * - compound_lock is held when nr_pages > 1
3545 *
3546 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3547 * from old cgroup.
3548 */
3549 static int mem_cgroup_move_account(struct page *page,
3550 unsigned int nr_pages,
3551 struct page_cgroup *pc,
3552 struct mem_cgroup *from,
3553 struct mem_cgroup *to)
3554 {
3555 unsigned long flags;
3556 int ret;
3557 bool anon = PageAnon(page);
3558
3559 VM_BUG_ON(from == to);
3560 VM_BUG_ON(PageLRU(page));
3561 /*
3562 * The page is isolated from LRU. So, collapse function
3563 * will not handle this page. But page splitting can happen.
3564 * Do this check under compound_page_lock(). The caller should
3565 * hold it.
3566 */
3567 ret = -EBUSY;
3568 if (nr_pages > 1 && !PageTransHuge(page))
3569 goto out;
3570
3571 lock_page_cgroup(pc);
3572
3573 ret = -EINVAL;
3574 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3575 goto unlock;
3576
3577 move_lock_mem_cgroup(from, &flags);
3578
3579 if (!anon && page_mapped(page)) {
3580 /* Update mapped_file data for mem_cgroup */
3581 preempt_disable();
3582 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3583 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3584 preempt_enable();
3585 }
3586 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3587
3588 /* caller should have done css_get */
3589 pc->mem_cgroup = to;
3590 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3591 move_unlock_mem_cgroup(from, &flags);
3592 ret = 0;
3593 unlock:
3594 unlock_page_cgroup(pc);
3595 /*
3596 * check events
3597 */
3598 memcg_check_events(to, page);
3599 memcg_check_events(from, page);
3600 out:
3601 return ret;
3602 }
3603
3604 /**
3605 * mem_cgroup_move_parent - moves page to the parent group
3606 * @page: the page to move
3607 * @pc: page_cgroup of the page
3608 * @child: page's cgroup
3609 *
3610 * move charges to its parent or the root cgroup if the group has no
3611 * parent (aka use_hierarchy==0).
3612 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3613 * mem_cgroup_move_account fails) the failure is always temporary and
3614 * it signals a race with a page removal/uncharge or migration. In the
3615 * first case the page is on the way out and it will vanish from the LRU
3616 * on the next attempt and the call should be retried later.
3617 * Isolation from the LRU fails only if page has been isolated from
3618 * the LRU since we looked at it and that usually means either global
3619 * reclaim or migration going on. The page will either get back to the
3620 * LRU or vanish.
3621 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3622 * (!PageCgroupUsed) or moved to a different group. The page will
3623 * disappear in the next attempt.
3624 */
3625 static int mem_cgroup_move_parent(struct page *page,
3626 struct page_cgroup *pc,
3627 struct mem_cgroup *child)
3628 {
3629 struct mem_cgroup *parent;
3630 unsigned int nr_pages;
3631 unsigned long uninitialized_var(flags);
3632 int ret;
3633
3634 VM_BUG_ON(mem_cgroup_is_root(child));
3635
3636 ret = -EBUSY;
3637 if (!get_page_unless_zero(page))
3638 goto out;
3639 if (isolate_lru_page(page))
3640 goto put;
3641
3642 nr_pages = hpage_nr_pages(page);
3643
3644 parent = parent_mem_cgroup(child);
3645 /*
3646 * If no parent, move charges to root cgroup.
3647 */
3648 if (!parent)
3649 parent = root_mem_cgroup;
3650
3651 if (nr_pages > 1) {
3652 VM_BUG_ON(!PageTransHuge(page));
3653 flags = compound_lock_irqsave(page);
3654 }
3655
3656 ret = mem_cgroup_move_account(page, nr_pages,
3657 pc, child, parent);
3658 if (!ret)
3659 __mem_cgroup_cancel_local_charge(child, nr_pages);
3660
3661 if (nr_pages > 1)
3662 compound_unlock_irqrestore(page, flags);
3663 putback_lru_page(page);
3664 put:
3665 put_page(page);
3666 out:
3667 return ret;
3668 }
3669
3670 /*
3671 * Charge the memory controller for page usage.
3672 * Return
3673 * 0 if the charge was successful
3674 * < 0 if the cgroup is over its limit
3675 */
3676 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3677 gfp_t gfp_mask, enum charge_type ctype)
3678 {
3679 struct mem_cgroup *memcg = NULL;
3680 unsigned int nr_pages = 1;
3681 bool oom = true;
3682 int ret;
3683
3684 if (PageTransHuge(page)) {
3685 nr_pages <<= compound_order(page);
3686 VM_BUG_ON(!PageTransHuge(page));
3687 /*
3688 * Never OOM-kill a process for a huge page. The
3689 * fault handler will fall back to regular pages.
3690 */
3691 oom = false;
3692 }
3693
3694 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3695 if (ret == -ENOMEM)
3696 return ret;
3697 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3698 return 0;
3699 }
3700
3701 int mem_cgroup_newpage_charge(struct page *page,
3702 struct mm_struct *mm, gfp_t gfp_mask)
3703 {
3704 if (mem_cgroup_disabled())
3705 return 0;
3706 VM_BUG_ON(page_mapped(page));
3707 VM_BUG_ON(page->mapping && !PageAnon(page));
3708 VM_BUG_ON(!mm);
3709 return mem_cgroup_charge_common(page, mm, gfp_mask,
3710 MEM_CGROUP_CHARGE_TYPE_ANON);
3711 }
3712
3713 /*
3714 * While swap-in, try_charge -> commit or cancel, the page is locked.
3715 * And when try_charge() successfully returns, one refcnt to memcg without
3716 * struct page_cgroup is acquired. This refcnt will be consumed by
3717 * "commit()" or removed by "cancel()"
3718 */
3719 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3720 struct page *page,
3721 gfp_t mask,
3722 struct mem_cgroup **memcgp)
3723 {
3724 struct mem_cgroup *memcg;
3725 struct page_cgroup *pc;
3726 int ret;
3727
3728 pc = lookup_page_cgroup(page);
3729 /*
3730 * Every swap fault against a single page tries to charge the
3731 * page, bail as early as possible. shmem_unuse() encounters
3732 * already charged pages, too. The USED bit is protected by
3733 * the page lock, which serializes swap cache removal, which
3734 * in turn serializes uncharging.
3735 */
3736 if (PageCgroupUsed(pc))
3737 return 0;
3738 if (!do_swap_account)
3739 goto charge_cur_mm;
3740 memcg = try_get_mem_cgroup_from_page(page);
3741 if (!memcg)
3742 goto charge_cur_mm;
3743 *memcgp = memcg;
3744 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3745 css_put(&memcg->css);
3746 if (ret == -EINTR)
3747 ret = 0;
3748 return ret;
3749 charge_cur_mm:
3750 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3751 if (ret == -EINTR)
3752 ret = 0;
3753 return ret;
3754 }
3755
3756 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3757 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3758 {
3759 *memcgp = NULL;
3760 if (mem_cgroup_disabled())
3761 return 0;
3762 /*
3763 * A racing thread's fault, or swapoff, may have already
3764 * updated the pte, and even removed page from swap cache: in
3765 * those cases unuse_pte()'s pte_same() test will fail; but
3766 * there's also a KSM case which does need to charge the page.
3767 */
3768 if (!PageSwapCache(page)) {
3769 int ret;
3770
3771 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
3772 if (ret == -EINTR)
3773 ret = 0;
3774 return ret;
3775 }
3776 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3777 }
3778
3779 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3780 {
3781 if (mem_cgroup_disabled())
3782 return;
3783 if (!memcg)
3784 return;
3785 __mem_cgroup_cancel_charge(memcg, 1);
3786 }
3787
3788 static void
3789 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
3790 enum charge_type ctype)
3791 {
3792 if (mem_cgroup_disabled())
3793 return;
3794 if (!memcg)
3795 return;
3796
3797 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3798 /*
3799 * Now swap is on-memory. This means this page may be
3800 * counted both as mem and swap....double count.
3801 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3802 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3803 * may call delete_from_swap_cache() before reach here.
3804 */
3805 if (do_swap_account && PageSwapCache(page)) {
3806 swp_entry_t ent = {.val = page_private(page)};
3807 mem_cgroup_uncharge_swap(ent);
3808 }
3809 }
3810
3811 void mem_cgroup_commit_charge_swapin(struct page *page,
3812 struct mem_cgroup *memcg)
3813 {
3814 __mem_cgroup_commit_charge_swapin(page, memcg,
3815 MEM_CGROUP_CHARGE_TYPE_ANON);
3816 }
3817
3818 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
3819 gfp_t gfp_mask)
3820 {
3821 struct mem_cgroup *memcg = NULL;
3822 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3823 int ret;
3824
3825 if (mem_cgroup_disabled())
3826 return 0;
3827 if (PageCompound(page))
3828 return 0;
3829
3830 if (!PageSwapCache(page))
3831 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
3832 else { /* page is swapcache/shmem */
3833 ret = __mem_cgroup_try_charge_swapin(mm, page,
3834 gfp_mask, &memcg);
3835 if (!ret)
3836 __mem_cgroup_commit_charge_swapin(page, memcg, type);
3837 }
3838 return ret;
3839 }
3840
3841 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3842 unsigned int nr_pages,
3843 const enum charge_type ctype)
3844 {
3845 struct memcg_batch_info *batch = NULL;
3846 bool uncharge_memsw = true;
3847
3848 /* If swapout, usage of swap doesn't decrease */
3849 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3850 uncharge_memsw = false;
3851
3852 batch = &current->memcg_batch;
3853 /*
3854 * In usual, we do css_get() when we remember memcg pointer.
3855 * But in this case, we keep res->usage until end of a series of
3856 * uncharges. Then, it's ok to ignore memcg's refcnt.
3857 */
3858 if (!batch->memcg)
3859 batch->memcg = memcg;
3860 /*
3861 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
3862 * In those cases, all pages freed continuously can be expected to be in
3863 * the same cgroup and we have chance to coalesce uncharges.
3864 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3865 * because we want to do uncharge as soon as possible.
3866 */
3867
3868 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
3869 goto direct_uncharge;
3870
3871 if (nr_pages > 1)
3872 goto direct_uncharge;
3873
3874 /*
3875 * In typical case, batch->memcg == mem. This means we can
3876 * merge a series of uncharges to an uncharge of res_counter.
3877 * If not, we uncharge res_counter ony by one.
3878 */
3879 if (batch->memcg != memcg)
3880 goto direct_uncharge;
3881 /* remember freed charge and uncharge it later */
3882 batch->nr_pages++;
3883 if (uncharge_memsw)
3884 batch->memsw_nr_pages++;
3885 return;
3886 direct_uncharge:
3887 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3888 if (uncharge_memsw)
3889 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3890 if (unlikely(batch->memcg != memcg))
3891 memcg_oom_recover(memcg);
3892 }
3893
3894 /*
3895 * uncharge if !page_mapped(page)
3896 */
3897 static struct mem_cgroup *
3898 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
3899 bool end_migration)
3900 {
3901 struct mem_cgroup *memcg = NULL;
3902 unsigned int nr_pages = 1;
3903 struct page_cgroup *pc;
3904 bool anon;
3905
3906 if (mem_cgroup_disabled())
3907 return NULL;
3908
3909 if (PageTransHuge(page)) {
3910 nr_pages <<= compound_order(page);
3911 VM_BUG_ON(!PageTransHuge(page));
3912 }
3913 /*
3914 * Check if our page_cgroup is valid
3915 */
3916 pc = lookup_page_cgroup(page);
3917 if (unlikely(!PageCgroupUsed(pc)))
3918 return NULL;
3919
3920 lock_page_cgroup(pc);
3921
3922 memcg = pc->mem_cgroup;
3923
3924 if (!PageCgroupUsed(pc))
3925 goto unlock_out;
3926
3927 anon = PageAnon(page);
3928
3929 switch (ctype) {
3930 case MEM_CGROUP_CHARGE_TYPE_ANON:
3931 /*
3932 * Generally PageAnon tells if it's the anon statistics to be
3933 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3934 * used before page reached the stage of being marked PageAnon.
3935 */
3936 anon = true;
3937 /* fallthrough */
3938 case MEM_CGROUP_CHARGE_TYPE_DROP:
3939 /* See mem_cgroup_prepare_migration() */
3940 if (page_mapped(page))
3941 goto unlock_out;
3942 /*
3943 * Pages under migration may not be uncharged. But
3944 * end_migration() /must/ be the one uncharging the
3945 * unused post-migration page and so it has to call
3946 * here with the migration bit still set. See the
3947 * res_counter handling below.
3948 */
3949 if (!end_migration && PageCgroupMigration(pc))
3950 goto unlock_out;
3951 break;
3952 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3953 if (!PageAnon(page)) { /* Shared memory */
3954 if (page->mapping && !page_is_file_cache(page))
3955 goto unlock_out;
3956 } else if (page_mapped(page)) /* Anon */
3957 goto unlock_out;
3958 break;
3959 default:
3960 break;
3961 }
3962
3963 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
3964
3965 ClearPageCgroupUsed(pc);
3966 /*
3967 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3968 * freed from LRU. This is safe because uncharged page is expected not
3969 * to be reused (freed soon). Exception is SwapCache, it's handled by
3970 * special functions.
3971 */
3972
3973 unlock_page_cgroup(pc);
3974 /*
3975 * even after unlock, we have memcg->res.usage here and this memcg
3976 * will never be freed, so it's safe to call css_get().
3977 */
3978 memcg_check_events(memcg, page);
3979 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3980 mem_cgroup_swap_statistics(memcg, true);
3981 css_get(&memcg->css);
3982 }
3983 /*
3984 * Migration does not charge the res_counter for the
3985 * replacement page, so leave it alone when phasing out the
3986 * page that is unused after the migration.
3987 */
3988 if (!end_migration && !mem_cgroup_is_root(memcg))
3989 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3990
3991 return memcg;
3992
3993 unlock_out:
3994 unlock_page_cgroup(pc);
3995 return NULL;
3996 }
3997
3998 void mem_cgroup_uncharge_page(struct page *page)
3999 {
4000 /* early check. */
4001 if (page_mapped(page))
4002 return;
4003 VM_BUG_ON(page->mapping && !PageAnon(page));
4004 /*
4005 * If the page is in swap cache, uncharge should be deferred
4006 * to the swap path, which also properly accounts swap usage
4007 * and handles memcg lifetime.
4008 *
4009 * Note that this check is not stable and reclaim may add the
4010 * page to swap cache at any time after this. However, if the
4011 * page is not in swap cache by the time page->mapcount hits
4012 * 0, there won't be any page table references to the swap
4013 * slot, and reclaim will free it and not actually write the
4014 * page to disk.
4015 */
4016 if (PageSwapCache(page))
4017 return;
4018 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4019 }
4020
4021 void mem_cgroup_uncharge_cache_page(struct page *page)
4022 {
4023 VM_BUG_ON(page_mapped(page));
4024 VM_BUG_ON(page->mapping);
4025 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4026 }
4027
4028 /*
4029 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4030 * In that cases, pages are freed continuously and we can expect pages
4031 * are in the same memcg. All these calls itself limits the number of
4032 * pages freed at once, then uncharge_start/end() is called properly.
4033 * This may be called prural(2) times in a context,
4034 */
4035
4036 void mem_cgroup_uncharge_start(void)
4037 {
4038 current->memcg_batch.do_batch++;
4039 /* We can do nest. */
4040 if (current->memcg_batch.do_batch == 1) {
4041 current->memcg_batch.memcg = NULL;
4042 current->memcg_batch.nr_pages = 0;
4043 current->memcg_batch.memsw_nr_pages = 0;
4044 }
4045 }
4046
4047 void mem_cgroup_uncharge_end(void)
4048 {
4049 struct memcg_batch_info *batch = &current->memcg_batch;
4050
4051 if (!batch->do_batch)
4052 return;
4053
4054 batch->do_batch--;
4055 if (batch->do_batch) /* If stacked, do nothing. */
4056 return;
4057
4058 if (!batch->memcg)
4059 return;
4060 /*
4061 * This "batch->memcg" is valid without any css_get/put etc...
4062 * bacause we hide charges behind us.
4063 */
4064 if (batch->nr_pages)
4065 res_counter_uncharge(&batch->memcg->res,
4066 batch->nr_pages * PAGE_SIZE);
4067 if (batch->memsw_nr_pages)
4068 res_counter_uncharge(&batch->memcg->memsw,
4069 batch->memsw_nr_pages * PAGE_SIZE);
4070 memcg_oom_recover(batch->memcg);
4071 /* forget this pointer (for sanity check) */
4072 batch->memcg = NULL;
4073 }
4074
4075 #ifdef CONFIG_SWAP
4076 /*
4077 * called after __delete_from_swap_cache() and drop "page" account.
4078 * memcg information is recorded to swap_cgroup of "ent"
4079 */
4080 void
4081 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4082 {
4083 struct mem_cgroup *memcg;
4084 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4085
4086 if (!swapout) /* this was a swap cache but the swap is unused ! */
4087 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4088
4089 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4090
4091 /*
4092 * record memcg information, if swapout && memcg != NULL,
4093 * css_get() was called in uncharge().
4094 */
4095 if (do_swap_account && swapout && memcg)
4096 swap_cgroup_record(ent, css_id(&memcg->css));
4097 }
4098 #endif
4099
4100 #ifdef CONFIG_MEMCG_SWAP
4101 /*
4102 * called from swap_entry_free(). remove record in swap_cgroup and
4103 * uncharge "memsw" account.
4104 */
4105 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4106 {
4107 struct mem_cgroup *memcg;
4108 unsigned short id;
4109
4110 if (!do_swap_account)
4111 return;
4112
4113 id = swap_cgroup_record(ent, 0);
4114 rcu_read_lock();
4115 memcg = mem_cgroup_lookup(id);
4116 if (memcg) {
4117 /*
4118 * We uncharge this because swap is freed.
4119 * This memcg can be obsolete one. We avoid calling css_tryget
4120 */
4121 if (!mem_cgroup_is_root(memcg))
4122 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4123 mem_cgroup_swap_statistics(memcg, false);
4124 css_put(&memcg->css);
4125 }
4126 rcu_read_unlock();
4127 }
4128
4129 /**
4130 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4131 * @entry: swap entry to be moved
4132 * @from: mem_cgroup which the entry is moved from
4133 * @to: mem_cgroup which the entry is moved to
4134 *
4135 * It succeeds only when the swap_cgroup's record for this entry is the same
4136 * as the mem_cgroup's id of @from.
4137 *
4138 * Returns 0 on success, -EINVAL on failure.
4139 *
4140 * The caller must have charged to @to, IOW, called res_counter_charge() about
4141 * both res and memsw, and called css_get().
4142 */
4143 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4144 struct mem_cgroup *from, struct mem_cgroup *to)
4145 {
4146 unsigned short old_id, new_id;
4147
4148 old_id = css_id(&from->css);
4149 new_id = css_id(&to->css);
4150
4151 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4152 mem_cgroup_swap_statistics(from, false);
4153 mem_cgroup_swap_statistics(to, true);
4154 /*
4155 * This function is only called from task migration context now.
4156 * It postpones res_counter and refcount handling till the end
4157 * of task migration(mem_cgroup_clear_mc()) for performance
4158 * improvement. But we cannot postpone css_get(to) because if
4159 * the process that has been moved to @to does swap-in, the
4160 * refcount of @to might be decreased to 0.
4161 *
4162 * We are in attach() phase, so the cgroup is guaranteed to be
4163 * alive, so we can just call css_get().
4164 */
4165 css_get(&to->css);
4166 return 0;
4167 }
4168 return -EINVAL;
4169 }
4170 #else
4171 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4172 struct mem_cgroup *from, struct mem_cgroup *to)
4173 {
4174 return -EINVAL;
4175 }
4176 #endif
4177
4178 /*
4179 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4180 * page belongs to.
4181 */
4182 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4183 struct mem_cgroup **memcgp)
4184 {
4185 struct mem_cgroup *memcg = NULL;
4186 unsigned int nr_pages = 1;
4187 struct page_cgroup *pc;
4188 enum charge_type ctype;
4189
4190 *memcgp = NULL;
4191
4192 if (mem_cgroup_disabled())
4193 return;
4194
4195 if (PageTransHuge(page))
4196 nr_pages <<= compound_order(page);
4197
4198 pc = lookup_page_cgroup(page);
4199 lock_page_cgroup(pc);
4200 if (PageCgroupUsed(pc)) {
4201 memcg = pc->mem_cgroup;
4202 css_get(&memcg->css);
4203 /*
4204 * At migrating an anonymous page, its mapcount goes down
4205 * to 0 and uncharge() will be called. But, even if it's fully
4206 * unmapped, migration may fail and this page has to be
4207 * charged again. We set MIGRATION flag here and delay uncharge
4208 * until end_migration() is called
4209 *
4210 * Corner Case Thinking
4211 * A)
4212 * When the old page was mapped as Anon and it's unmap-and-freed
4213 * while migration was ongoing.
4214 * If unmap finds the old page, uncharge() of it will be delayed
4215 * until end_migration(). If unmap finds a new page, it's
4216 * uncharged when it make mapcount to be 1->0. If unmap code
4217 * finds swap_migration_entry, the new page will not be mapped
4218 * and end_migration() will find it(mapcount==0).
4219 *
4220 * B)
4221 * When the old page was mapped but migraion fails, the kernel
4222 * remaps it. A charge for it is kept by MIGRATION flag even
4223 * if mapcount goes down to 0. We can do remap successfully
4224 * without charging it again.
4225 *
4226 * C)
4227 * The "old" page is under lock_page() until the end of
4228 * migration, so, the old page itself will not be swapped-out.
4229 * If the new page is swapped out before end_migraton, our
4230 * hook to usual swap-out path will catch the event.
4231 */
4232 if (PageAnon(page))
4233 SetPageCgroupMigration(pc);
4234 }
4235 unlock_page_cgroup(pc);
4236 /*
4237 * If the page is not charged at this point,
4238 * we return here.
4239 */
4240 if (!memcg)
4241 return;
4242
4243 *memcgp = memcg;
4244 /*
4245 * We charge new page before it's used/mapped. So, even if unlock_page()
4246 * is called before end_migration, we can catch all events on this new
4247 * page. In the case new page is migrated but not remapped, new page's
4248 * mapcount will be finally 0 and we call uncharge in end_migration().
4249 */
4250 if (PageAnon(page))
4251 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4252 else
4253 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4254 /*
4255 * The page is committed to the memcg, but it's not actually
4256 * charged to the res_counter since we plan on replacing the
4257 * old one and only one page is going to be left afterwards.
4258 */
4259 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4260 }
4261
4262 /* remove redundant charge if migration failed*/
4263 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4264 struct page *oldpage, struct page *newpage, bool migration_ok)
4265 {
4266 struct page *used, *unused;
4267 struct page_cgroup *pc;
4268 bool anon;
4269
4270 if (!memcg)
4271 return;
4272
4273 if (!migration_ok) {
4274 used = oldpage;
4275 unused = newpage;
4276 } else {
4277 used = newpage;
4278 unused = oldpage;
4279 }
4280 anon = PageAnon(used);
4281 __mem_cgroup_uncharge_common(unused,
4282 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4283 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4284 true);
4285 css_put(&memcg->css);
4286 /*
4287 * We disallowed uncharge of pages under migration because mapcount
4288 * of the page goes down to zero, temporarly.
4289 * Clear the flag and check the page should be charged.
4290 */
4291 pc = lookup_page_cgroup(oldpage);
4292 lock_page_cgroup(pc);
4293 ClearPageCgroupMigration(pc);
4294 unlock_page_cgroup(pc);
4295
4296 /*
4297 * If a page is a file cache, radix-tree replacement is very atomic
4298 * and we can skip this check. When it was an Anon page, its mapcount
4299 * goes down to 0. But because we added MIGRATION flage, it's not
4300 * uncharged yet. There are several case but page->mapcount check
4301 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4302 * check. (see prepare_charge() also)
4303 */
4304 if (anon)
4305 mem_cgroup_uncharge_page(used);
4306 }
4307
4308 /*
4309 * At replace page cache, newpage is not under any memcg but it's on
4310 * LRU. So, this function doesn't touch res_counter but handles LRU
4311 * in correct way. Both pages are locked so we cannot race with uncharge.
4312 */
4313 void mem_cgroup_replace_page_cache(struct page *oldpage,
4314 struct page *newpage)
4315 {
4316 struct mem_cgroup *memcg = NULL;
4317 struct page_cgroup *pc;
4318 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4319
4320 if (mem_cgroup_disabled())
4321 return;
4322
4323 pc = lookup_page_cgroup(oldpage);
4324 /* fix accounting on old pages */
4325 lock_page_cgroup(pc);
4326 if (PageCgroupUsed(pc)) {
4327 memcg = pc->mem_cgroup;
4328 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4329 ClearPageCgroupUsed(pc);
4330 }
4331 unlock_page_cgroup(pc);
4332
4333 /*
4334 * When called from shmem_replace_page(), in some cases the
4335 * oldpage has already been charged, and in some cases not.
4336 */
4337 if (!memcg)
4338 return;
4339 /*
4340 * Even if newpage->mapping was NULL before starting replacement,
4341 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4342 * LRU while we overwrite pc->mem_cgroup.
4343 */
4344 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4345 }
4346
4347 #ifdef CONFIG_DEBUG_VM
4348 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4349 {
4350 struct page_cgroup *pc;
4351
4352 pc = lookup_page_cgroup(page);
4353 /*
4354 * Can be NULL while feeding pages into the page allocator for
4355 * the first time, i.e. during boot or memory hotplug;
4356 * or when mem_cgroup_disabled().
4357 */
4358 if (likely(pc) && PageCgroupUsed(pc))
4359 return pc;
4360 return NULL;
4361 }
4362
4363 bool mem_cgroup_bad_page_check(struct page *page)
4364 {
4365 if (mem_cgroup_disabled())
4366 return false;
4367
4368 return lookup_page_cgroup_used(page) != NULL;
4369 }
4370
4371 void mem_cgroup_print_bad_page(struct page *page)
4372 {
4373 struct page_cgroup *pc;
4374
4375 pc = lookup_page_cgroup_used(page);
4376 if (pc) {
4377 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4378 pc, pc->flags, pc->mem_cgroup);
4379 }
4380 }
4381 #endif
4382
4383 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4384 unsigned long long val)
4385 {
4386 int retry_count;
4387 u64 memswlimit, memlimit;
4388 int ret = 0;
4389 int children = mem_cgroup_count_children(memcg);
4390 u64 curusage, oldusage;
4391 int enlarge;
4392
4393 /*
4394 * For keeping hierarchical_reclaim simple, how long we should retry
4395 * is depends on callers. We set our retry-count to be function
4396 * of # of children which we should visit in this loop.
4397 */
4398 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4399
4400 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4401
4402 enlarge = 0;
4403 while (retry_count) {
4404 if (signal_pending(current)) {
4405 ret = -EINTR;
4406 break;
4407 }
4408 /*
4409 * Rather than hide all in some function, I do this in
4410 * open coded manner. You see what this really does.
4411 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4412 */
4413 mutex_lock(&set_limit_mutex);
4414 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4415 if (memswlimit < val) {
4416 ret = -EINVAL;
4417 mutex_unlock(&set_limit_mutex);
4418 break;
4419 }
4420
4421 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4422 if (memlimit < val)
4423 enlarge = 1;
4424
4425 ret = res_counter_set_limit(&memcg->res, val);
4426 if (!ret) {
4427 if (memswlimit == val)
4428 memcg->memsw_is_minimum = true;
4429 else
4430 memcg->memsw_is_minimum = false;
4431 }
4432 mutex_unlock(&set_limit_mutex);
4433
4434 if (!ret)
4435 break;
4436
4437 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4438 MEM_CGROUP_RECLAIM_SHRINK);
4439 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4440 /* Usage is reduced ? */
4441 if (curusage >= oldusage)
4442 retry_count--;
4443 else
4444 oldusage = curusage;
4445 }
4446 if (!ret && enlarge)
4447 memcg_oom_recover(memcg);
4448
4449 return ret;
4450 }
4451
4452 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4453 unsigned long long val)
4454 {
4455 int retry_count;
4456 u64 memlimit, memswlimit, oldusage, curusage;
4457 int children = mem_cgroup_count_children(memcg);
4458 int ret = -EBUSY;
4459 int enlarge = 0;
4460
4461 /* see mem_cgroup_resize_res_limit */
4462 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4463 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4464 while (retry_count) {
4465 if (signal_pending(current)) {
4466 ret = -EINTR;
4467 break;
4468 }
4469 /*
4470 * Rather than hide all in some function, I do this in
4471 * open coded manner. You see what this really does.
4472 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4473 */
4474 mutex_lock(&set_limit_mutex);
4475 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4476 if (memlimit > val) {
4477 ret = -EINVAL;
4478 mutex_unlock(&set_limit_mutex);
4479 break;
4480 }
4481 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4482 if (memswlimit < val)
4483 enlarge = 1;
4484 ret = res_counter_set_limit(&memcg->memsw, val);
4485 if (!ret) {
4486 if (memlimit == val)
4487 memcg->memsw_is_minimum = true;
4488 else
4489 memcg->memsw_is_minimum = false;
4490 }
4491 mutex_unlock(&set_limit_mutex);
4492
4493 if (!ret)
4494 break;
4495
4496 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4497 MEM_CGROUP_RECLAIM_NOSWAP |
4498 MEM_CGROUP_RECLAIM_SHRINK);
4499 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4500 /* Usage is reduced ? */
4501 if (curusage >= oldusage)
4502 retry_count--;
4503 else
4504 oldusage = curusage;
4505 }
4506 if (!ret && enlarge)
4507 memcg_oom_recover(memcg);
4508 return ret;
4509 }
4510
4511 /**
4512 * mem_cgroup_force_empty_list - clears LRU of a group
4513 * @memcg: group to clear
4514 * @node: NUMA node
4515 * @zid: zone id
4516 * @lru: lru to to clear
4517 *
4518 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4519 * reclaim the pages page themselves - pages are moved to the parent (or root)
4520 * group.
4521 */
4522 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4523 int node, int zid, enum lru_list lru)
4524 {
4525 struct lruvec *lruvec;
4526 unsigned long flags;
4527 struct list_head *list;
4528 struct page *busy;
4529 struct zone *zone;
4530
4531 zone = &NODE_DATA(node)->node_zones[zid];
4532 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4533 list = &lruvec->lists[lru];
4534
4535 busy = NULL;
4536 do {
4537 struct page_cgroup *pc;
4538 struct page *page;
4539
4540 spin_lock_irqsave(&zone->lru_lock, flags);
4541 if (list_empty(list)) {
4542 spin_unlock_irqrestore(&zone->lru_lock, flags);
4543 break;
4544 }
4545 page = list_entry(list->prev, struct page, lru);
4546 if (busy == page) {
4547 list_move(&page->lru, list);
4548 busy = NULL;
4549 spin_unlock_irqrestore(&zone->lru_lock, flags);
4550 continue;
4551 }
4552 spin_unlock_irqrestore(&zone->lru_lock, flags);
4553
4554 pc = lookup_page_cgroup(page);
4555
4556 if (mem_cgroup_move_parent(page, pc, memcg)) {
4557 /* found lock contention or "pc" is obsolete. */
4558 busy = page;
4559 cond_resched();
4560 } else
4561 busy = NULL;
4562 } while (!list_empty(list));
4563 }
4564
4565 /*
4566 * make mem_cgroup's charge to be 0 if there is no task by moving
4567 * all the charges and pages to the parent.
4568 * This enables deleting this mem_cgroup.
4569 *
4570 * Caller is responsible for holding css reference on the memcg.
4571 */
4572 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4573 {
4574 int node, zid;
4575 u64 usage;
4576
4577 do {
4578 /* This is for making all *used* pages to be on LRU. */
4579 lru_add_drain_all();
4580 drain_all_stock_sync(memcg);
4581 mem_cgroup_start_move(memcg);
4582 for_each_node_state(node, N_MEMORY) {
4583 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4584 enum lru_list lru;
4585 for_each_lru(lru) {
4586 mem_cgroup_force_empty_list(memcg,
4587 node, zid, lru);
4588 }
4589 }
4590 }
4591 mem_cgroup_end_move(memcg);
4592 memcg_oom_recover(memcg);
4593 cond_resched();
4594
4595 /*
4596 * Kernel memory may not necessarily be trackable to a specific
4597 * process. So they are not migrated, and therefore we can't
4598 * expect their value to drop to 0 here.
4599 * Having res filled up with kmem only is enough.
4600 *
4601 * This is a safety check because mem_cgroup_force_empty_list
4602 * could have raced with mem_cgroup_replace_page_cache callers
4603 * so the lru seemed empty but the page could have been added
4604 * right after the check. RES_USAGE should be safe as we always
4605 * charge before adding to the LRU.
4606 */
4607 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4608 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4609 } while (usage > 0);
4610 }
4611
4612 /*
4613 * This mainly exists for tests during the setting of set of use_hierarchy.
4614 * Since this is the very setting we are changing, the current hierarchy value
4615 * is meaningless
4616 */
4617 static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4618 {
4619 struct cgroup_subsys_state *pos;
4620
4621 /* bounce at first found */
4622 css_for_each_child(pos, &memcg->css)
4623 return true;
4624 return false;
4625 }
4626
4627 /*
4628 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4629 * to be already dead (as in mem_cgroup_force_empty, for instance). This is
4630 * from mem_cgroup_count_children(), in the sense that we don't really care how
4631 * many children we have; we only need to know if we have any. It also counts
4632 * any memcg without hierarchy as infertile.
4633 */
4634 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4635 {
4636 return memcg->use_hierarchy && __memcg_has_children(memcg);
4637 }
4638
4639 /*
4640 * Reclaims as many pages from the given memcg as possible and moves
4641 * the rest to the parent.
4642 *
4643 * Caller is responsible for holding css reference for memcg.
4644 */
4645 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4646 {
4647 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4648 struct cgroup *cgrp = memcg->css.cgroup;
4649
4650 /* returns EBUSY if there is a task or if we come here twice. */
4651 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4652 return -EBUSY;
4653
4654 /* we call try-to-free pages for make this cgroup empty */
4655 lru_add_drain_all();
4656 /* try to free all pages in this cgroup */
4657 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4658 int progress;
4659
4660 if (signal_pending(current))
4661 return -EINTR;
4662
4663 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4664 false);
4665 if (!progress) {
4666 nr_retries--;
4667 /* maybe some writeback is necessary */
4668 congestion_wait(BLK_RW_ASYNC, HZ/10);
4669 }
4670
4671 }
4672 lru_add_drain();
4673 mem_cgroup_reparent_charges(memcg);
4674
4675 return 0;
4676 }
4677
4678 static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
4679 unsigned int event)
4680 {
4681 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4682
4683 if (mem_cgroup_is_root(memcg))
4684 return -EINVAL;
4685 return mem_cgroup_force_empty(memcg);
4686 }
4687
4688 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
4689 struct cftype *cft)
4690 {
4691 return mem_cgroup_from_css(css)->use_hierarchy;
4692 }
4693
4694 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
4695 struct cftype *cft, u64 val)
4696 {
4697 int retval = 0;
4698 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4699 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
4700
4701 mutex_lock(&memcg_create_mutex);
4702
4703 if (memcg->use_hierarchy == val)
4704 goto out;
4705
4706 /*
4707 * If parent's use_hierarchy is set, we can't make any modifications
4708 * in the child subtrees. If it is unset, then the change can
4709 * occur, provided the current cgroup has no children.
4710 *
4711 * For the root cgroup, parent_mem is NULL, we allow value to be
4712 * set if there are no children.
4713 */
4714 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4715 (val == 1 || val == 0)) {
4716 if (!__memcg_has_children(memcg))
4717 memcg->use_hierarchy = val;
4718 else
4719 retval = -EBUSY;
4720 } else
4721 retval = -EINVAL;
4722
4723 out:
4724 mutex_unlock(&memcg_create_mutex);
4725
4726 return retval;
4727 }
4728
4729
4730 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4731 enum mem_cgroup_stat_index idx)
4732 {
4733 struct mem_cgroup *iter;
4734 long val = 0;
4735
4736 /* Per-cpu values can be negative, use a signed accumulator */
4737 for_each_mem_cgroup_tree(iter, memcg)
4738 val += mem_cgroup_read_stat(iter, idx);
4739
4740 if (val < 0) /* race ? */
4741 val = 0;
4742 return val;
4743 }
4744
4745 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4746 {
4747 u64 val;
4748
4749 if (!mem_cgroup_is_root(memcg)) {
4750 if (!swap)
4751 return res_counter_read_u64(&memcg->res, RES_USAGE);
4752 else
4753 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4754 }
4755
4756 /*
4757 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
4758 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
4759 */
4760 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4761 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4762
4763 if (swap)
4764 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4765
4766 return val << PAGE_SHIFT;
4767 }
4768
4769 static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
4770 struct cftype *cft, struct file *file,
4771 char __user *buf, size_t nbytes, loff_t *ppos)
4772 {
4773 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4774 char str[64];
4775 u64 val;
4776 int name, len;
4777 enum res_type type;
4778
4779 type = MEMFILE_TYPE(cft->private);
4780 name = MEMFILE_ATTR(cft->private);
4781
4782 switch (type) {
4783 case _MEM:
4784 if (name == RES_USAGE)
4785 val = mem_cgroup_usage(memcg, false);
4786 else
4787 val = res_counter_read_u64(&memcg->res, name);
4788 break;
4789 case _MEMSWAP:
4790 if (name == RES_USAGE)
4791 val = mem_cgroup_usage(memcg, true);
4792 else
4793 val = res_counter_read_u64(&memcg->memsw, name);
4794 break;
4795 case _KMEM:
4796 val = res_counter_read_u64(&memcg->kmem, name);
4797 break;
4798 default:
4799 BUG();
4800 }
4801
4802 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
4803 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
4804 }
4805
4806 static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
4807 {
4808 int ret = -EINVAL;
4809 #ifdef CONFIG_MEMCG_KMEM
4810 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4811 /*
4812 * For simplicity, we won't allow this to be disabled. It also can't
4813 * be changed if the cgroup has children already, or if tasks had
4814 * already joined.
4815 *
4816 * If tasks join before we set the limit, a person looking at
4817 * kmem.usage_in_bytes will have no way to determine when it took
4818 * place, which makes the value quite meaningless.
4819 *
4820 * After it first became limited, changes in the value of the limit are
4821 * of course permitted.
4822 */
4823 mutex_lock(&memcg_create_mutex);
4824 mutex_lock(&set_limit_mutex);
4825 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
4826 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
4827 ret = -EBUSY;
4828 goto out;
4829 }
4830 ret = res_counter_set_limit(&memcg->kmem, val);
4831 VM_BUG_ON(ret);
4832
4833 ret = memcg_update_cache_sizes(memcg);
4834 if (ret) {
4835 res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
4836 goto out;
4837 }
4838 static_key_slow_inc(&memcg_kmem_enabled_key);
4839 /*
4840 * setting the active bit after the inc will guarantee no one
4841 * starts accounting before all call sites are patched
4842 */
4843 memcg_kmem_set_active(memcg);
4844 } else
4845 ret = res_counter_set_limit(&memcg->kmem, val);
4846 out:
4847 mutex_unlock(&set_limit_mutex);
4848 mutex_unlock(&memcg_create_mutex);
4849 #endif
4850 return ret;
4851 }
4852
4853 #ifdef CONFIG_MEMCG_KMEM
4854 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
4855 {
4856 int ret = 0;
4857 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4858 if (!parent)
4859 goto out;
4860
4861 memcg->kmem_account_flags = parent->kmem_account_flags;
4862 /*
4863 * When that happen, we need to disable the static branch only on those
4864 * memcgs that enabled it. To achieve this, we would be forced to
4865 * complicate the code by keeping track of which memcgs were the ones
4866 * that actually enabled limits, and which ones got it from its
4867 * parents.
4868 *
4869 * It is a lot simpler just to do static_key_slow_inc() on every child
4870 * that is accounted.
4871 */
4872 if (!memcg_kmem_is_active(memcg))
4873 goto out;
4874
4875 /*
4876 * __mem_cgroup_free() will issue static_key_slow_dec() because this
4877 * memcg is active already. If the later initialization fails then the
4878 * cgroup core triggers the cleanup so we do not have to do it here.
4879 */
4880 static_key_slow_inc(&memcg_kmem_enabled_key);
4881
4882 mutex_lock(&set_limit_mutex);
4883 memcg_stop_kmem_account();
4884 ret = memcg_update_cache_sizes(memcg);
4885 memcg_resume_kmem_account();
4886 mutex_unlock(&set_limit_mutex);
4887 out:
4888 return ret;
4889 }
4890 #endif /* CONFIG_MEMCG_KMEM */
4891
4892 /*
4893 * The user of this function is...
4894 * RES_LIMIT.
4895 */
4896 static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
4897 const char *buffer)
4898 {
4899 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4900 enum res_type type;
4901 int name;
4902 unsigned long long val;
4903 int ret;
4904
4905 type = MEMFILE_TYPE(cft->private);
4906 name = MEMFILE_ATTR(cft->private);
4907
4908 switch (name) {
4909 case RES_LIMIT:
4910 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4911 ret = -EINVAL;
4912 break;
4913 }
4914 /* This function does all necessary parse...reuse it */
4915 ret = res_counter_memparse_write_strategy(buffer, &val);
4916 if (ret)
4917 break;
4918 if (type == _MEM)
4919 ret = mem_cgroup_resize_limit(memcg, val);
4920 else if (type == _MEMSWAP)
4921 ret = mem_cgroup_resize_memsw_limit(memcg, val);
4922 else if (type == _KMEM)
4923 ret = memcg_update_kmem_limit(css, val);
4924 else
4925 return -EINVAL;
4926 break;
4927 case RES_SOFT_LIMIT:
4928 ret = res_counter_memparse_write_strategy(buffer, &val);
4929 if (ret)
4930 break;
4931 /*
4932 * For memsw, soft limits are hard to implement in terms
4933 * of semantics, for now, we support soft limits for
4934 * control without swap
4935 */
4936 if (type == _MEM)
4937 ret = res_counter_set_soft_limit(&memcg->res, val);
4938 else
4939 ret = -EINVAL;
4940 break;
4941 default:
4942 ret = -EINVAL; /* should be BUG() ? */
4943 break;
4944 }
4945 return ret;
4946 }
4947
4948 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4949 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4950 {
4951 unsigned long long min_limit, min_memsw_limit, tmp;
4952
4953 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4954 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4955 if (!memcg->use_hierarchy)
4956 goto out;
4957
4958 while (css_parent(&memcg->css)) {
4959 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
4960 if (!memcg->use_hierarchy)
4961 break;
4962 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4963 min_limit = min(min_limit, tmp);
4964 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4965 min_memsw_limit = min(min_memsw_limit, tmp);
4966 }
4967 out:
4968 *mem_limit = min_limit;
4969 *memsw_limit = min_memsw_limit;
4970 }
4971
4972 static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
4973 {
4974 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4975 int name;
4976 enum res_type type;
4977
4978 type = MEMFILE_TYPE(event);
4979 name = MEMFILE_ATTR(event);
4980
4981 switch (name) {
4982 case RES_MAX_USAGE:
4983 if (type == _MEM)
4984 res_counter_reset_max(&memcg->res);
4985 else if (type == _MEMSWAP)
4986 res_counter_reset_max(&memcg->memsw);
4987 else if (type == _KMEM)
4988 res_counter_reset_max(&memcg->kmem);
4989 else
4990 return -EINVAL;
4991 break;
4992 case RES_FAILCNT:
4993 if (type == _MEM)
4994 res_counter_reset_failcnt(&memcg->res);
4995 else if (type == _MEMSWAP)
4996 res_counter_reset_failcnt(&memcg->memsw);
4997 else if (type == _KMEM)
4998 res_counter_reset_failcnt(&memcg->kmem);
4999 else
5000 return -EINVAL;
5001 break;
5002 }
5003
5004 return 0;
5005 }
5006
5007 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5008 struct cftype *cft)
5009 {
5010 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5011 }
5012
5013 #ifdef CONFIG_MMU
5014 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5015 struct cftype *cft, u64 val)
5016 {
5017 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5018
5019 if (val >= (1 << NR_MOVE_TYPE))
5020 return -EINVAL;
5021
5022 /*
5023 * No kind of locking is needed in here, because ->can_attach() will
5024 * check this value once in the beginning of the process, and then carry
5025 * on with stale data. This means that changes to this value will only
5026 * affect task migrations starting after the change.
5027 */
5028 memcg->move_charge_at_immigrate = val;
5029 return 0;
5030 }
5031 #else
5032 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5033 struct cftype *cft, u64 val)
5034 {
5035 return -ENOSYS;
5036 }
5037 #endif
5038
5039 #ifdef CONFIG_NUMA
5040 static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
5041 struct cftype *cft, struct seq_file *m)
5042 {
5043 int nid;
5044 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5045 unsigned long node_nr;
5046 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5047
5048 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5049 seq_printf(m, "total=%lu", total_nr);
5050 for_each_node_state(nid, N_MEMORY) {
5051 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5052 seq_printf(m, " N%d=%lu", nid, node_nr);
5053 }
5054 seq_putc(m, '\n');
5055
5056 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5057 seq_printf(m, "file=%lu", file_nr);
5058 for_each_node_state(nid, N_MEMORY) {
5059 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5060 LRU_ALL_FILE);
5061 seq_printf(m, " N%d=%lu", nid, node_nr);
5062 }
5063 seq_putc(m, '\n');
5064
5065 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5066 seq_printf(m, "anon=%lu", anon_nr);
5067 for_each_node_state(nid, N_MEMORY) {
5068 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5069 LRU_ALL_ANON);
5070 seq_printf(m, " N%d=%lu", nid, node_nr);
5071 }
5072 seq_putc(m, '\n');
5073
5074 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5075 seq_printf(m, "unevictable=%lu", unevictable_nr);
5076 for_each_node_state(nid, N_MEMORY) {
5077 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5078 BIT(LRU_UNEVICTABLE));
5079 seq_printf(m, " N%d=%lu", nid, node_nr);
5080 }
5081 seq_putc(m, '\n');
5082 return 0;
5083 }
5084 #endif /* CONFIG_NUMA */
5085
5086 static inline void mem_cgroup_lru_names_not_uptodate(void)
5087 {
5088 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5089 }
5090
5091 static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5092 struct seq_file *m)
5093 {
5094 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5095 struct mem_cgroup *mi;
5096 unsigned int i;
5097
5098 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5099 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5100 continue;
5101 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5102 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5103 }
5104
5105 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5106 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5107 mem_cgroup_read_events(memcg, i));
5108
5109 for (i = 0; i < NR_LRU_LISTS; i++)
5110 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5111 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5112
5113 /* Hierarchical information */
5114 {
5115 unsigned long long limit, memsw_limit;
5116 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5117 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5118 if (do_swap_account)
5119 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5120 memsw_limit);
5121 }
5122
5123 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5124 long long val = 0;
5125
5126 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5127 continue;
5128 for_each_mem_cgroup_tree(mi, memcg)
5129 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5130 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5131 }
5132
5133 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5134 unsigned long long val = 0;
5135
5136 for_each_mem_cgroup_tree(mi, memcg)
5137 val += mem_cgroup_read_events(mi, i);
5138 seq_printf(m, "total_%s %llu\n",
5139 mem_cgroup_events_names[i], val);
5140 }
5141
5142 for (i = 0; i < NR_LRU_LISTS; i++) {
5143 unsigned long long val = 0;
5144
5145 for_each_mem_cgroup_tree(mi, memcg)
5146 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5147 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5148 }
5149
5150 #ifdef CONFIG_DEBUG_VM
5151 {
5152 int nid, zid;
5153 struct mem_cgroup_per_zone *mz;
5154 struct zone_reclaim_stat *rstat;
5155 unsigned long recent_rotated[2] = {0, 0};
5156 unsigned long recent_scanned[2] = {0, 0};
5157
5158 for_each_online_node(nid)
5159 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5160 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5161 rstat = &mz->lruvec.reclaim_stat;
5162
5163 recent_rotated[0] += rstat->recent_rotated[0];
5164 recent_rotated[1] += rstat->recent_rotated[1];
5165 recent_scanned[0] += rstat->recent_scanned[0];
5166 recent_scanned[1] += rstat->recent_scanned[1];
5167 }
5168 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5169 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5170 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5171 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5172 }
5173 #endif
5174
5175 return 0;
5176 }
5177
5178 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5179 struct cftype *cft)
5180 {
5181 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5182
5183 return mem_cgroup_swappiness(memcg);
5184 }
5185
5186 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5187 struct cftype *cft, u64 val)
5188 {
5189 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5190 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5191
5192 if (val > 100 || !parent)
5193 return -EINVAL;
5194
5195 mutex_lock(&memcg_create_mutex);
5196
5197 /* If under hierarchy, only empty-root can set this value */
5198 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5199 mutex_unlock(&memcg_create_mutex);
5200 return -EINVAL;
5201 }
5202
5203 memcg->swappiness = val;
5204
5205 mutex_unlock(&memcg_create_mutex);
5206
5207 return 0;
5208 }
5209
5210 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5211 {
5212 struct mem_cgroup_threshold_ary *t;
5213 u64 usage;
5214 int i;
5215
5216 rcu_read_lock();
5217 if (!swap)
5218 t = rcu_dereference(memcg->thresholds.primary);
5219 else
5220 t = rcu_dereference(memcg->memsw_thresholds.primary);
5221
5222 if (!t)
5223 goto unlock;
5224
5225 usage = mem_cgroup_usage(memcg, swap);
5226
5227 /*
5228 * current_threshold points to threshold just below or equal to usage.
5229 * If it's not true, a threshold was crossed after last
5230 * call of __mem_cgroup_threshold().
5231 */
5232 i = t->current_threshold;
5233
5234 /*
5235 * Iterate backward over array of thresholds starting from
5236 * current_threshold and check if a threshold is crossed.
5237 * If none of thresholds below usage is crossed, we read
5238 * only one element of the array here.
5239 */
5240 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5241 eventfd_signal(t->entries[i].eventfd, 1);
5242
5243 /* i = current_threshold + 1 */
5244 i++;
5245
5246 /*
5247 * Iterate forward over array of thresholds starting from
5248 * current_threshold+1 and check if a threshold is crossed.
5249 * If none of thresholds above usage is crossed, we read
5250 * only one element of the array here.
5251 */
5252 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5253 eventfd_signal(t->entries[i].eventfd, 1);
5254
5255 /* Update current_threshold */
5256 t->current_threshold = i - 1;
5257 unlock:
5258 rcu_read_unlock();
5259 }
5260
5261 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5262 {
5263 while (memcg) {
5264 __mem_cgroup_threshold(memcg, false);
5265 if (do_swap_account)
5266 __mem_cgroup_threshold(memcg, true);
5267
5268 memcg = parent_mem_cgroup(memcg);
5269 }
5270 }
5271
5272 static int compare_thresholds(const void *a, const void *b)
5273 {
5274 const struct mem_cgroup_threshold *_a = a;
5275 const struct mem_cgroup_threshold *_b = b;
5276
5277 if (_a->threshold > _b->threshold)
5278 return 1;
5279
5280 if (_a->threshold < _b->threshold)
5281 return -1;
5282
5283 return 0;
5284 }
5285
5286 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5287 {
5288 struct mem_cgroup_eventfd_list *ev;
5289
5290 list_for_each_entry(ev, &memcg->oom_notify, list)
5291 eventfd_signal(ev->eventfd, 1);
5292 return 0;
5293 }
5294
5295 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5296 {
5297 struct mem_cgroup *iter;
5298
5299 for_each_mem_cgroup_tree(iter, memcg)
5300 mem_cgroup_oom_notify_cb(iter);
5301 }
5302
5303 static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
5304 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5305 {
5306 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5307 struct mem_cgroup_thresholds *thresholds;
5308 struct mem_cgroup_threshold_ary *new;
5309 enum res_type type = MEMFILE_TYPE(cft->private);
5310 u64 threshold, usage;
5311 int i, size, ret;
5312
5313 ret = res_counter_memparse_write_strategy(args, &threshold);
5314 if (ret)
5315 return ret;
5316
5317 mutex_lock(&memcg->thresholds_lock);
5318
5319 if (type == _MEM)
5320 thresholds = &memcg->thresholds;
5321 else if (type == _MEMSWAP)
5322 thresholds = &memcg->memsw_thresholds;
5323 else
5324 BUG();
5325
5326 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5327
5328 /* Check if a threshold crossed before adding a new one */
5329 if (thresholds->primary)
5330 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5331
5332 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5333
5334 /* Allocate memory for new array of thresholds */
5335 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5336 GFP_KERNEL);
5337 if (!new) {
5338 ret = -ENOMEM;
5339 goto unlock;
5340 }
5341 new->size = size;
5342
5343 /* Copy thresholds (if any) to new array */
5344 if (thresholds->primary) {
5345 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5346 sizeof(struct mem_cgroup_threshold));
5347 }
5348
5349 /* Add new threshold */
5350 new->entries[size - 1].eventfd = eventfd;
5351 new->entries[size - 1].threshold = threshold;
5352
5353 /* Sort thresholds. Registering of new threshold isn't time-critical */
5354 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5355 compare_thresholds, NULL);
5356
5357 /* Find current threshold */
5358 new->current_threshold = -1;
5359 for (i = 0; i < size; i++) {
5360 if (new->entries[i].threshold <= usage) {
5361 /*
5362 * new->current_threshold will not be used until
5363 * rcu_assign_pointer(), so it's safe to increment
5364 * it here.
5365 */
5366 ++new->current_threshold;
5367 } else
5368 break;
5369 }
5370
5371 /* Free old spare buffer and save old primary buffer as spare */
5372 kfree(thresholds->spare);
5373 thresholds->spare = thresholds->primary;
5374
5375 rcu_assign_pointer(thresholds->primary, new);
5376
5377 /* To be sure that nobody uses thresholds */
5378 synchronize_rcu();
5379
5380 unlock:
5381 mutex_unlock(&memcg->thresholds_lock);
5382
5383 return ret;
5384 }
5385
5386 static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
5387 struct cftype *cft, struct eventfd_ctx *eventfd)
5388 {
5389 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5390 struct mem_cgroup_thresholds *thresholds;
5391 struct mem_cgroup_threshold_ary *new;
5392 enum res_type type = MEMFILE_TYPE(cft->private);
5393 u64 usage;
5394 int i, j, size;
5395
5396 mutex_lock(&memcg->thresholds_lock);
5397 if (type == _MEM)
5398 thresholds = &memcg->thresholds;
5399 else if (type == _MEMSWAP)
5400 thresholds = &memcg->memsw_thresholds;
5401 else
5402 BUG();
5403
5404 if (!thresholds->primary)
5405 goto unlock;
5406
5407 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5408
5409 /* Check if a threshold crossed before removing */
5410 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5411
5412 /* Calculate new number of threshold */
5413 size = 0;
5414 for (i = 0; i < thresholds->primary->size; i++) {
5415 if (thresholds->primary->entries[i].eventfd != eventfd)
5416 size++;
5417 }
5418
5419 new = thresholds->spare;
5420
5421 /* Set thresholds array to NULL if we don't have thresholds */
5422 if (!size) {
5423 kfree(new);
5424 new = NULL;
5425 goto swap_buffers;
5426 }
5427
5428 new->size = size;
5429
5430 /* Copy thresholds and find current threshold */
5431 new->current_threshold = -1;
5432 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5433 if (thresholds->primary->entries[i].eventfd == eventfd)
5434 continue;
5435
5436 new->entries[j] = thresholds->primary->entries[i];
5437 if (new->entries[j].threshold <= usage) {
5438 /*
5439 * new->current_threshold will not be used
5440 * until rcu_assign_pointer(), so it's safe to increment
5441 * it here.
5442 */
5443 ++new->current_threshold;
5444 }
5445 j++;
5446 }
5447
5448 swap_buffers:
5449 /* Swap primary and spare array */
5450 thresholds->spare = thresholds->primary;
5451 /* If all events are unregistered, free the spare array */
5452 if (!new) {
5453 kfree(thresholds->spare);
5454 thresholds->spare = NULL;
5455 }
5456
5457 rcu_assign_pointer(thresholds->primary, new);
5458
5459 /* To be sure that nobody uses thresholds */
5460 synchronize_rcu();
5461 unlock:
5462 mutex_unlock(&memcg->thresholds_lock);
5463 }
5464
5465 static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
5466 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5467 {
5468 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5469 struct mem_cgroup_eventfd_list *event;
5470 enum res_type type = MEMFILE_TYPE(cft->private);
5471
5472 BUG_ON(type != _OOM_TYPE);
5473 event = kmalloc(sizeof(*event), GFP_KERNEL);
5474 if (!event)
5475 return -ENOMEM;
5476
5477 spin_lock(&memcg_oom_lock);
5478
5479 event->eventfd = eventfd;
5480 list_add(&event->list, &memcg->oom_notify);
5481
5482 /* already in OOM ? */
5483 if (atomic_read(&memcg->under_oom))
5484 eventfd_signal(eventfd, 1);
5485 spin_unlock(&memcg_oom_lock);
5486
5487 return 0;
5488 }
5489
5490 static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
5491 struct cftype *cft, struct eventfd_ctx *eventfd)
5492 {
5493 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5494 struct mem_cgroup_eventfd_list *ev, *tmp;
5495 enum res_type type = MEMFILE_TYPE(cft->private);
5496
5497 BUG_ON(type != _OOM_TYPE);
5498
5499 spin_lock(&memcg_oom_lock);
5500
5501 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5502 if (ev->eventfd == eventfd) {
5503 list_del(&ev->list);
5504 kfree(ev);
5505 }
5506 }
5507
5508 spin_unlock(&memcg_oom_lock);
5509 }
5510
5511 static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5512 struct cftype *cft, struct cgroup_map_cb *cb)
5513 {
5514 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5515
5516 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5517
5518 if (atomic_read(&memcg->under_oom))
5519 cb->fill(cb, "under_oom", 1);
5520 else
5521 cb->fill(cb, "under_oom", 0);
5522 return 0;
5523 }
5524
5525 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5526 struct cftype *cft, u64 val)
5527 {
5528 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5529 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5530
5531 /* cannot set to root cgroup and only 0 and 1 are allowed */
5532 if (!parent || !((val == 0) || (val == 1)))
5533 return -EINVAL;
5534
5535 mutex_lock(&memcg_create_mutex);
5536 /* oom-kill-disable is a flag for subhierarchy. */
5537 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5538 mutex_unlock(&memcg_create_mutex);
5539 return -EINVAL;
5540 }
5541 memcg->oom_kill_disable = val;
5542 if (!val)
5543 memcg_oom_recover(memcg);
5544 mutex_unlock(&memcg_create_mutex);
5545 return 0;
5546 }
5547
5548 #ifdef CONFIG_MEMCG_KMEM
5549 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5550 {
5551 int ret;
5552
5553 memcg->kmemcg_id = -1;
5554 ret = memcg_propagate_kmem(memcg);
5555 if (ret)
5556 return ret;
5557
5558 return mem_cgroup_sockets_init(memcg, ss);
5559 }
5560
5561 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5562 {
5563 mem_cgroup_sockets_destroy(memcg);
5564 }
5565
5566 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5567 {
5568 if (!memcg_kmem_is_active(memcg))
5569 return;
5570
5571 /*
5572 * kmem charges can outlive the cgroup. In the case of slab
5573 * pages, for instance, a page contain objects from various
5574 * processes. As we prevent from taking a reference for every
5575 * such allocation we have to be careful when doing uncharge
5576 * (see memcg_uncharge_kmem) and here during offlining.
5577 *
5578 * The idea is that that only the _last_ uncharge which sees
5579 * the dead memcg will drop the last reference. An additional
5580 * reference is taken here before the group is marked dead
5581 * which is then paired with css_put during uncharge resp. here.
5582 *
5583 * Although this might sound strange as this path is called from
5584 * css_offline() when the referencemight have dropped down to 0
5585 * and shouldn't be incremented anymore (css_tryget would fail)
5586 * we do not have other options because of the kmem allocations
5587 * lifetime.
5588 */
5589 css_get(&memcg->css);
5590
5591 memcg_kmem_mark_dead(memcg);
5592
5593 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5594 return;
5595
5596 if (memcg_kmem_test_and_clear_dead(memcg))
5597 css_put(&memcg->css);
5598 }
5599 #else
5600 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5601 {
5602 return 0;
5603 }
5604
5605 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5606 {
5607 }
5608
5609 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5610 {
5611 }
5612 #endif
5613
5614 static struct cftype mem_cgroup_files[] = {
5615 {
5616 .name = "usage_in_bytes",
5617 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5618 .read = mem_cgroup_read,
5619 .register_event = mem_cgroup_usage_register_event,
5620 .unregister_event = mem_cgroup_usage_unregister_event,
5621 },
5622 {
5623 .name = "max_usage_in_bytes",
5624 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5625 .trigger = mem_cgroup_reset,
5626 .read = mem_cgroup_read,
5627 },
5628 {
5629 .name = "limit_in_bytes",
5630 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5631 .write_string = mem_cgroup_write,
5632 .read = mem_cgroup_read,
5633 },
5634 {
5635 .name = "soft_limit_in_bytes",
5636 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5637 .write_string = mem_cgroup_write,
5638 .read = mem_cgroup_read,
5639 },
5640 {
5641 .name = "failcnt",
5642 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5643 .trigger = mem_cgroup_reset,
5644 .read = mem_cgroup_read,
5645 },
5646 {
5647 .name = "stat",
5648 .read_seq_string = memcg_stat_show,
5649 },
5650 {
5651 .name = "force_empty",
5652 .trigger = mem_cgroup_force_empty_write,
5653 },
5654 {
5655 .name = "use_hierarchy",
5656 .flags = CFTYPE_INSANE,
5657 .write_u64 = mem_cgroup_hierarchy_write,
5658 .read_u64 = mem_cgroup_hierarchy_read,
5659 },
5660 {
5661 .name = "swappiness",
5662 .read_u64 = mem_cgroup_swappiness_read,
5663 .write_u64 = mem_cgroup_swappiness_write,
5664 },
5665 {
5666 .name = "move_charge_at_immigrate",
5667 .read_u64 = mem_cgroup_move_charge_read,
5668 .write_u64 = mem_cgroup_move_charge_write,
5669 },
5670 {
5671 .name = "oom_control",
5672 .read_map = mem_cgroup_oom_control_read,
5673 .write_u64 = mem_cgroup_oom_control_write,
5674 .register_event = mem_cgroup_oom_register_event,
5675 .unregister_event = mem_cgroup_oom_unregister_event,
5676 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5677 },
5678 {
5679 .name = "pressure_level",
5680 .register_event = vmpressure_register_event,
5681 .unregister_event = vmpressure_unregister_event,
5682 },
5683 #ifdef CONFIG_NUMA
5684 {
5685 .name = "numa_stat",
5686 .read_seq_string = memcg_numa_stat_show,
5687 },
5688 #endif
5689 #ifdef CONFIG_MEMCG_KMEM
5690 {
5691 .name = "kmem.limit_in_bytes",
5692 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5693 .write_string = mem_cgroup_write,
5694 .read = mem_cgroup_read,
5695 },
5696 {
5697 .name = "kmem.usage_in_bytes",
5698 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5699 .read = mem_cgroup_read,
5700 },
5701 {
5702 .name = "kmem.failcnt",
5703 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5704 .trigger = mem_cgroup_reset,
5705 .read = mem_cgroup_read,
5706 },
5707 {
5708 .name = "kmem.max_usage_in_bytes",
5709 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5710 .trigger = mem_cgroup_reset,
5711 .read = mem_cgroup_read,
5712 },
5713 #ifdef CONFIG_SLABINFO
5714 {
5715 .name = "kmem.slabinfo",
5716 .read_seq_string = mem_cgroup_slabinfo_read,
5717 },
5718 #endif
5719 #endif
5720 { }, /* terminate */
5721 };
5722
5723 #ifdef CONFIG_MEMCG_SWAP
5724 static struct cftype memsw_cgroup_files[] = {
5725 {
5726 .name = "memsw.usage_in_bytes",
5727 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5728 .read = mem_cgroup_read,
5729 .register_event = mem_cgroup_usage_register_event,
5730 .unregister_event = mem_cgroup_usage_unregister_event,
5731 },
5732 {
5733 .name = "memsw.max_usage_in_bytes",
5734 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5735 .trigger = mem_cgroup_reset,
5736 .read = mem_cgroup_read,
5737 },
5738 {
5739 .name = "memsw.limit_in_bytes",
5740 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5741 .write_string = mem_cgroup_write,
5742 .read = mem_cgroup_read,
5743 },
5744 {
5745 .name = "memsw.failcnt",
5746 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5747 .trigger = mem_cgroup_reset,
5748 .read = mem_cgroup_read,
5749 },
5750 { }, /* terminate */
5751 };
5752 #endif
5753 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5754 {
5755 struct mem_cgroup_per_node *pn;
5756 struct mem_cgroup_per_zone *mz;
5757 int zone, tmp = node;
5758 /*
5759 * This routine is called against possible nodes.
5760 * But it's BUG to call kmalloc() against offline node.
5761 *
5762 * TODO: this routine can waste much memory for nodes which will
5763 * never be onlined. It's better to use memory hotplug callback
5764 * function.
5765 */
5766 if (!node_state(node, N_NORMAL_MEMORY))
5767 tmp = -1;
5768 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5769 if (!pn)
5770 return 1;
5771
5772 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5773 mz = &pn->zoneinfo[zone];
5774 lruvec_init(&mz->lruvec);
5775 mz->memcg = memcg;
5776 }
5777 memcg->nodeinfo[node] = pn;
5778 return 0;
5779 }
5780
5781 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5782 {
5783 kfree(memcg->nodeinfo[node]);
5784 }
5785
5786 static struct mem_cgroup *mem_cgroup_alloc(void)
5787 {
5788 struct mem_cgroup *memcg;
5789 size_t size = memcg_size();
5790
5791 /* Can be very big if nr_node_ids is very big */
5792 if (size < PAGE_SIZE)
5793 memcg = kzalloc(size, GFP_KERNEL);
5794 else
5795 memcg = vzalloc(size);
5796
5797 if (!memcg)
5798 return NULL;
5799
5800 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
5801 if (!memcg->stat)
5802 goto out_free;
5803 spin_lock_init(&memcg->pcp_counter_lock);
5804 return memcg;
5805
5806 out_free:
5807 if (size < PAGE_SIZE)
5808 kfree(memcg);
5809 else
5810 vfree(memcg);
5811 return NULL;
5812 }
5813
5814 /*
5815 * At destroying mem_cgroup, references from swap_cgroup can remain.
5816 * (scanning all at force_empty is too costly...)
5817 *
5818 * Instead of clearing all references at force_empty, we remember
5819 * the number of reference from swap_cgroup and free mem_cgroup when
5820 * it goes down to 0.
5821 *
5822 * Removal of cgroup itself succeeds regardless of refs from swap.
5823 */
5824
5825 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5826 {
5827 int node;
5828 size_t size = memcg_size();
5829
5830 free_css_id(&mem_cgroup_subsys, &memcg->css);
5831
5832 for_each_node(node)
5833 free_mem_cgroup_per_zone_info(memcg, node);
5834
5835 free_percpu(memcg->stat);
5836
5837 /*
5838 * We need to make sure that (at least for now), the jump label
5839 * destruction code runs outside of the cgroup lock. This is because
5840 * get_online_cpus(), which is called from the static_branch update,
5841 * can't be called inside the cgroup_lock. cpusets are the ones
5842 * enforcing this dependency, so if they ever change, we might as well.
5843 *
5844 * schedule_work() will guarantee this happens. Be careful if you need
5845 * to move this code around, and make sure it is outside
5846 * the cgroup_lock.
5847 */
5848 disarm_static_keys(memcg);
5849 if (size < PAGE_SIZE)
5850 kfree(memcg);
5851 else
5852 vfree(memcg);
5853 }
5854
5855 /*
5856 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
5857 */
5858 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
5859 {
5860 if (!memcg->res.parent)
5861 return NULL;
5862 return mem_cgroup_from_res_counter(memcg->res.parent, res);
5863 }
5864 EXPORT_SYMBOL(parent_mem_cgroup);
5865
5866 static struct cgroup_subsys_state * __ref
5867 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5868 {
5869 struct mem_cgroup *memcg;
5870 long error = -ENOMEM;
5871 int node;
5872
5873 memcg = mem_cgroup_alloc();
5874 if (!memcg)
5875 return ERR_PTR(error);
5876
5877 for_each_node(node)
5878 if (alloc_mem_cgroup_per_zone_info(memcg, node))
5879 goto free_out;
5880
5881 /* root ? */
5882 if (parent_css == NULL) {
5883 root_mem_cgroup = memcg;
5884 res_counter_init(&memcg->res, NULL);
5885 res_counter_init(&memcg->memsw, NULL);
5886 res_counter_init(&memcg->kmem, NULL);
5887 }
5888
5889 memcg->last_scanned_node = MAX_NUMNODES;
5890 INIT_LIST_HEAD(&memcg->oom_notify);
5891 memcg->move_charge_at_immigrate = 0;
5892 mutex_init(&memcg->thresholds_lock);
5893 spin_lock_init(&memcg->move_lock);
5894 vmpressure_init(&memcg->vmpressure);
5895
5896 return &memcg->css;
5897
5898 free_out:
5899 __mem_cgroup_free(memcg);
5900 return ERR_PTR(error);
5901 }
5902
5903 static int
5904 mem_cgroup_css_online(struct cgroup_subsys_state *css)
5905 {
5906 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5907 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
5908 int error = 0;
5909
5910 if (!parent)
5911 return 0;
5912
5913 mutex_lock(&memcg_create_mutex);
5914
5915 memcg->use_hierarchy = parent->use_hierarchy;
5916 memcg->oom_kill_disable = parent->oom_kill_disable;
5917 memcg->swappiness = mem_cgroup_swappiness(parent);
5918
5919 if (parent->use_hierarchy) {
5920 res_counter_init(&memcg->res, &parent->res);
5921 res_counter_init(&memcg->memsw, &parent->memsw);
5922 res_counter_init(&memcg->kmem, &parent->kmem);
5923
5924 /*
5925 * No need to take a reference to the parent because cgroup
5926 * core guarantees its existence.
5927 */
5928 } else {
5929 res_counter_init(&memcg->res, NULL);
5930 res_counter_init(&memcg->memsw, NULL);
5931 res_counter_init(&memcg->kmem, NULL);
5932 /*
5933 * Deeper hierachy with use_hierarchy == false doesn't make
5934 * much sense so let cgroup subsystem know about this
5935 * unfortunate state in our controller.
5936 */
5937 if (parent != root_mem_cgroup)
5938 mem_cgroup_subsys.broken_hierarchy = true;
5939 }
5940
5941 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
5942 mutex_unlock(&memcg_create_mutex);
5943 return error;
5944 }
5945
5946 /*
5947 * Announce all parents that a group from their hierarchy is gone.
5948 */
5949 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
5950 {
5951 struct mem_cgroup *parent = memcg;
5952
5953 while ((parent = parent_mem_cgroup(parent)))
5954 mem_cgroup_iter_invalidate(parent);
5955
5956 /*
5957 * if the root memcg is not hierarchical we have to check it
5958 * explicitely.
5959 */
5960 if (!root_mem_cgroup->use_hierarchy)
5961 mem_cgroup_iter_invalidate(root_mem_cgroup);
5962 }
5963
5964 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5965 {
5966 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5967
5968 kmem_cgroup_css_offline(memcg);
5969
5970 mem_cgroup_invalidate_reclaim_iterators(memcg);
5971 mem_cgroup_reparent_charges(memcg);
5972 mem_cgroup_destroy_all_caches(memcg);
5973 vmpressure_cleanup(&memcg->vmpressure);
5974 }
5975
5976 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5977 {
5978 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5979
5980 memcg_destroy_kmem(memcg);
5981 __mem_cgroup_free(memcg);
5982 }
5983
5984 #ifdef CONFIG_MMU
5985 /* Handlers for move charge at task migration. */
5986 #define PRECHARGE_COUNT_AT_ONCE 256
5987 static int mem_cgroup_do_precharge(unsigned long count)
5988 {
5989 int ret = 0;
5990 int batch_count = PRECHARGE_COUNT_AT_ONCE;
5991 struct mem_cgroup *memcg = mc.to;
5992
5993 if (mem_cgroup_is_root(memcg)) {
5994 mc.precharge += count;
5995 /* we don't need css_get for root */
5996 return ret;
5997 }
5998 /* try to charge at once */
5999 if (count > 1) {
6000 struct res_counter *dummy;
6001 /*
6002 * "memcg" cannot be under rmdir() because we've already checked
6003 * by cgroup_lock_live_cgroup() that it is not removed and we
6004 * are still under the same cgroup_mutex. So we can postpone
6005 * css_get().
6006 */
6007 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6008 goto one_by_one;
6009 if (do_swap_account && res_counter_charge(&memcg->memsw,
6010 PAGE_SIZE * count, &dummy)) {
6011 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6012 goto one_by_one;
6013 }
6014 mc.precharge += count;
6015 return ret;
6016 }
6017 one_by_one:
6018 /* fall back to one by one charge */
6019 while (count--) {
6020 if (signal_pending(current)) {
6021 ret = -EINTR;
6022 break;
6023 }
6024 if (!batch_count--) {
6025 batch_count = PRECHARGE_COUNT_AT_ONCE;
6026 cond_resched();
6027 }
6028 ret = __mem_cgroup_try_charge(NULL,
6029 GFP_KERNEL, 1, &memcg, false);
6030 if (ret)
6031 /* mem_cgroup_clear_mc() will do uncharge later */
6032 return ret;
6033 mc.precharge++;
6034 }
6035 return ret;
6036 }
6037
6038 /**
6039 * get_mctgt_type - get target type of moving charge
6040 * @vma: the vma the pte to be checked belongs
6041 * @addr: the address corresponding to the pte to be checked
6042 * @ptent: the pte to be checked
6043 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6044 *
6045 * Returns
6046 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6047 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6048 * move charge. if @target is not NULL, the page is stored in target->page
6049 * with extra refcnt got(Callers should handle it).
6050 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6051 * target for charge migration. if @target is not NULL, the entry is stored
6052 * in target->ent.
6053 *
6054 * Called with pte lock held.
6055 */
6056 union mc_target {
6057 struct page *page;
6058 swp_entry_t ent;
6059 };
6060
6061 enum mc_target_type {
6062 MC_TARGET_NONE = 0,
6063 MC_TARGET_PAGE,
6064 MC_TARGET_SWAP,
6065 };
6066
6067 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6068 unsigned long addr, pte_t ptent)
6069 {
6070 struct page *page = vm_normal_page(vma, addr, ptent);
6071
6072 if (!page || !page_mapped(page))
6073 return NULL;
6074 if (PageAnon(page)) {
6075 /* we don't move shared anon */
6076 if (!move_anon())
6077 return NULL;
6078 } else if (!move_file())
6079 /* we ignore mapcount for file pages */
6080 return NULL;
6081 if (!get_page_unless_zero(page))
6082 return NULL;
6083
6084 return page;
6085 }
6086
6087 #ifdef CONFIG_SWAP
6088 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6089 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6090 {
6091 struct page *page = NULL;
6092 swp_entry_t ent = pte_to_swp_entry(ptent);
6093
6094 if (!move_anon() || non_swap_entry(ent))
6095 return NULL;
6096 /*
6097 * Because lookup_swap_cache() updates some statistics counter,
6098 * we call find_get_page() with swapper_space directly.
6099 */
6100 page = find_get_page(swap_address_space(ent), ent.val);
6101 if (do_swap_account)
6102 entry->val = ent.val;
6103
6104 return page;
6105 }
6106 #else
6107 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6108 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6109 {
6110 return NULL;
6111 }
6112 #endif
6113
6114 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6115 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6116 {
6117 struct page *page = NULL;
6118 struct address_space *mapping;
6119 pgoff_t pgoff;
6120
6121 if (!vma->vm_file) /* anonymous vma */
6122 return NULL;
6123 if (!move_file())
6124 return NULL;
6125
6126 mapping = vma->vm_file->f_mapping;
6127 if (pte_none(ptent))
6128 pgoff = linear_page_index(vma, addr);
6129 else /* pte_file(ptent) is true */
6130 pgoff = pte_to_pgoff(ptent);
6131
6132 /* page is moved even if it's not RSS of this task(page-faulted). */
6133 page = find_get_page(mapping, pgoff);
6134
6135 #ifdef CONFIG_SWAP
6136 /* shmem/tmpfs may report page out on swap: account for that too. */
6137 if (radix_tree_exceptional_entry(page)) {
6138 swp_entry_t swap = radix_to_swp_entry(page);
6139 if (do_swap_account)
6140 *entry = swap;
6141 page = find_get_page(swap_address_space(swap), swap.val);
6142 }
6143 #endif
6144 return page;
6145 }
6146
6147 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6148 unsigned long addr, pte_t ptent, union mc_target *target)
6149 {
6150 struct page *page = NULL;
6151 struct page_cgroup *pc;
6152 enum mc_target_type ret = MC_TARGET_NONE;
6153 swp_entry_t ent = { .val = 0 };
6154
6155 if (pte_present(ptent))
6156 page = mc_handle_present_pte(vma, addr, ptent);
6157 else if (is_swap_pte(ptent))
6158 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6159 else if (pte_none(ptent) || pte_file(ptent))
6160 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6161
6162 if (!page && !ent.val)
6163 return ret;
6164 if (page) {
6165 pc = lookup_page_cgroup(page);
6166 /*
6167 * Do only loose check w/o page_cgroup lock.
6168 * mem_cgroup_move_account() checks the pc is valid or not under
6169 * the lock.
6170 */
6171 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6172 ret = MC_TARGET_PAGE;
6173 if (target)
6174 target->page = page;
6175 }
6176 if (!ret || !target)
6177 put_page(page);
6178 }
6179 /* There is a swap entry and a page doesn't exist or isn't charged */
6180 if (ent.val && !ret &&
6181 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6182 ret = MC_TARGET_SWAP;
6183 if (target)
6184 target->ent = ent;
6185 }
6186 return ret;
6187 }
6188
6189 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6190 /*
6191 * We don't consider swapping or file mapped pages because THP does not
6192 * support them for now.
6193 * Caller should make sure that pmd_trans_huge(pmd) is true.
6194 */
6195 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6196 unsigned long addr, pmd_t pmd, union mc_target *target)
6197 {
6198 struct page *page = NULL;
6199 struct page_cgroup *pc;
6200 enum mc_target_type ret = MC_TARGET_NONE;
6201
6202 page = pmd_page(pmd);
6203 VM_BUG_ON(!page || !PageHead(page));
6204 if (!move_anon())
6205 return ret;
6206 pc = lookup_page_cgroup(page);
6207 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6208 ret = MC_TARGET_PAGE;
6209 if (target) {
6210 get_page(page);
6211 target->page = page;
6212 }
6213 }
6214 return ret;
6215 }
6216 #else
6217 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6218 unsigned long addr, pmd_t pmd, union mc_target *target)
6219 {
6220 return MC_TARGET_NONE;
6221 }
6222 #endif
6223
6224 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6225 unsigned long addr, unsigned long end,
6226 struct mm_walk *walk)
6227 {
6228 struct vm_area_struct *vma = walk->private;
6229 pte_t *pte;
6230 spinlock_t *ptl;
6231
6232 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6233 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6234 mc.precharge += HPAGE_PMD_NR;
6235 spin_unlock(&vma->vm_mm->page_table_lock);
6236 return 0;
6237 }
6238
6239 if (pmd_trans_unstable(pmd))
6240 return 0;
6241 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6242 for (; addr != end; pte++, addr += PAGE_SIZE)
6243 if (get_mctgt_type(vma, addr, *pte, NULL))
6244 mc.precharge++; /* increment precharge temporarily */
6245 pte_unmap_unlock(pte - 1, ptl);
6246 cond_resched();
6247
6248 return 0;
6249 }
6250
6251 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6252 {
6253 unsigned long precharge;
6254 struct vm_area_struct *vma;
6255
6256 down_read(&mm->mmap_sem);
6257 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6258 struct mm_walk mem_cgroup_count_precharge_walk = {
6259 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6260 .mm = mm,
6261 .private = vma,
6262 };
6263 if (is_vm_hugetlb_page(vma))
6264 continue;
6265 walk_page_range(vma->vm_start, vma->vm_end,
6266 &mem_cgroup_count_precharge_walk);
6267 }
6268 up_read(&mm->mmap_sem);
6269
6270 precharge = mc.precharge;
6271 mc.precharge = 0;
6272
6273 return precharge;
6274 }
6275
6276 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6277 {
6278 unsigned long precharge = mem_cgroup_count_precharge(mm);
6279
6280 VM_BUG_ON(mc.moving_task);
6281 mc.moving_task = current;
6282 return mem_cgroup_do_precharge(precharge);
6283 }
6284
6285 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6286 static void __mem_cgroup_clear_mc(void)
6287 {
6288 struct mem_cgroup *from = mc.from;
6289 struct mem_cgroup *to = mc.to;
6290 int i;
6291
6292 /* we must uncharge all the leftover precharges from mc.to */
6293 if (mc.precharge) {
6294 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6295 mc.precharge = 0;
6296 }
6297 /*
6298 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6299 * we must uncharge here.
6300 */
6301 if (mc.moved_charge) {
6302 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6303 mc.moved_charge = 0;
6304 }
6305 /* we must fixup refcnts and charges */
6306 if (mc.moved_swap) {
6307 /* uncharge swap account from the old cgroup */
6308 if (!mem_cgroup_is_root(mc.from))
6309 res_counter_uncharge(&mc.from->memsw,
6310 PAGE_SIZE * mc.moved_swap);
6311
6312 for (i = 0; i < mc.moved_swap; i++)
6313 css_put(&mc.from->css);
6314
6315 if (!mem_cgroup_is_root(mc.to)) {
6316 /*
6317 * we charged both to->res and to->memsw, so we should
6318 * uncharge to->res.
6319 */
6320 res_counter_uncharge(&mc.to->res,
6321 PAGE_SIZE * mc.moved_swap);
6322 }
6323 /* we've already done css_get(mc.to) */
6324 mc.moved_swap = 0;
6325 }
6326 memcg_oom_recover(from);
6327 memcg_oom_recover(to);
6328 wake_up_all(&mc.waitq);
6329 }
6330
6331 static void mem_cgroup_clear_mc(void)
6332 {
6333 struct mem_cgroup *from = mc.from;
6334
6335 /*
6336 * we must clear moving_task before waking up waiters at the end of
6337 * task migration.
6338 */
6339 mc.moving_task = NULL;
6340 __mem_cgroup_clear_mc();
6341 spin_lock(&mc.lock);
6342 mc.from = NULL;
6343 mc.to = NULL;
6344 spin_unlock(&mc.lock);
6345 mem_cgroup_end_move(from);
6346 }
6347
6348 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6349 struct cgroup_taskset *tset)
6350 {
6351 struct task_struct *p = cgroup_taskset_first(tset);
6352 int ret = 0;
6353 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6354 unsigned long move_charge_at_immigrate;
6355
6356 /*
6357 * We are now commited to this value whatever it is. Changes in this
6358 * tunable will only affect upcoming migrations, not the current one.
6359 * So we need to save it, and keep it going.
6360 */
6361 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6362 if (move_charge_at_immigrate) {
6363 struct mm_struct *mm;
6364 struct mem_cgroup *from = mem_cgroup_from_task(p);
6365
6366 VM_BUG_ON(from == memcg);
6367
6368 mm = get_task_mm(p);
6369 if (!mm)
6370 return 0;
6371 /* We move charges only when we move a owner of the mm */
6372 if (mm->owner == p) {
6373 VM_BUG_ON(mc.from);
6374 VM_BUG_ON(mc.to);
6375 VM_BUG_ON(mc.precharge);
6376 VM_BUG_ON(mc.moved_charge);
6377 VM_BUG_ON(mc.moved_swap);
6378 mem_cgroup_start_move(from);
6379 spin_lock(&mc.lock);
6380 mc.from = from;
6381 mc.to = memcg;
6382 mc.immigrate_flags = move_charge_at_immigrate;
6383 spin_unlock(&mc.lock);
6384 /* We set mc.moving_task later */
6385
6386 ret = mem_cgroup_precharge_mc(mm);
6387 if (ret)
6388 mem_cgroup_clear_mc();
6389 }
6390 mmput(mm);
6391 }
6392 return ret;
6393 }
6394
6395 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6396 struct cgroup_taskset *tset)
6397 {
6398 mem_cgroup_clear_mc();
6399 }
6400
6401 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6402 unsigned long addr, unsigned long end,
6403 struct mm_walk *walk)
6404 {
6405 int ret = 0;
6406 struct vm_area_struct *vma = walk->private;
6407 pte_t *pte;
6408 spinlock_t *ptl;
6409 enum mc_target_type target_type;
6410 union mc_target target;
6411 struct page *page;
6412 struct page_cgroup *pc;
6413
6414 /*
6415 * We don't take compound_lock() here but no race with splitting thp
6416 * happens because:
6417 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6418 * under splitting, which means there's no concurrent thp split,
6419 * - if another thread runs into split_huge_page() just after we
6420 * entered this if-block, the thread must wait for page table lock
6421 * to be unlocked in __split_huge_page_splitting(), where the main
6422 * part of thp split is not executed yet.
6423 */
6424 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6425 if (mc.precharge < HPAGE_PMD_NR) {
6426 spin_unlock(&vma->vm_mm->page_table_lock);
6427 return 0;
6428 }
6429 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6430 if (target_type == MC_TARGET_PAGE) {
6431 page = target.page;
6432 if (!isolate_lru_page(page)) {
6433 pc = lookup_page_cgroup(page);
6434 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6435 pc, mc.from, mc.to)) {
6436 mc.precharge -= HPAGE_PMD_NR;
6437 mc.moved_charge += HPAGE_PMD_NR;
6438 }
6439 putback_lru_page(page);
6440 }
6441 put_page(page);
6442 }
6443 spin_unlock(&vma->vm_mm->page_table_lock);
6444 return 0;
6445 }
6446
6447 if (pmd_trans_unstable(pmd))
6448 return 0;
6449 retry:
6450 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6451 for (; addr != end; addr += PAGE_SIZE) {
6452 pte_t ptent = *(pte++);
6453 swp_entry_t ent;
6454
6455 if (!mc.precharge)
6456 break;
6457
6458 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6459 case MC_TARGET_PAGE:
6460 page = target.page;
6461 if (isolate_lru_page(page))
6462 goto put;
6463 pc = lookup_page_cgroup(page);
6464 if (!mem_cgroup_move_account(page, 1, pc,
6465 mc.from, mc.to)) {
6466 mc.precharge--;
6467 /* we uncharge from mc.from later. */
6468 mc.moved_charge++;
6469 }
6470 putback_lru_page(page);
6471 put: /* get_mctgt_type() gets the page */
6472 put_page(page);
6473 break;
6474 case MC_TARGET_SWAP:
6475 ent = target.ent;
6476 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6477 mc.precharge--;
6478 /* we fixup refcnts and charges later. */
6479 mc.moved_swap++;
6480 }
6481 break;
6482 default:
6483 break;
6484 }
6485 }
6486 pte_unmap_unlock(pte - 1, ptl);
6487 cond_resched();
6488
6489 if (addr != end) {
6490 /*
6491 * We have consumed all precharges we got in can_attach().
6492 * We try charge one by one, but don't do any additional
6493 * charges to mc.to if we have failed in charge once in attach()
6494 * phase.
6495 */
6496 ret = mem_cgroup_do_precharge(1);
6497 if (!ret)
6498 goto retry;
6499 }
6500
6501 return ret;
6502 }
6503
6504 static void mem_cgroup_move_charge(struct mm_struct *mm)
6505 {
6506 struct vm_area_struct *vma;
6507
6508 lru_add_drain_all();
6509 retry:
6510 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6511 /*
6512 * Someone who are holding the mmap_sem might be waiting in
6513 * waitq. So we cancel all extra charges, wake up all waiters,
6514 * and retry. Because we cancel precharges, we might not be able
6515 * to move enough charges, but moving charge is a best-effort
6516 * feature anyway, so it wouldn't be a big problem.
6517 */
6518 __mem_cgroup_clear_mc();
6519 cond_resched();
6520 goto retry;
6521 }
6522 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6523 int ret;
6524 struct mm_walk mem_cgroup_move_charge_walk = {
6525 .pmd_entry = mem_cgroup_move_charge_pte_range,
6526 .mm = mm,
6527 .private = vma,
6528 };
6529 if (is_vm_hugetlb_page(vma))
6530 continue;
6531 ret = walk_page_range(vma->vm_start, vma->vm_end,
6532 &mem_cgroup_move_charge_walk);
6533 if (ret)
6534 /*
6535 * means we have consumed all precharges and failed in
6536 * doing additional charge. Just abandon here.
6537 */
6538 break;
6539 }
6540 up_read(&mm->mmap_sem);
6541 }
6542
6543 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6544 struct cgroup_taskset *tset)
6545 {
6546 struct task_struct *p = cgroup_taskset_first(tset);
6547 struct mm_struct *mm = get_task_mm(p);
6548
6549 if (mm) {
6550 if (mc.to)
6551 mem_cgroup_move_charge(mm);
6552 mmput(mm);
6553 }
6554 if (mc.to)
6555 mem_cgroup_clear_mc();
6556 }
6557 #else /* !CONFIG_MMU */
6558 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6559 struct cgroup_taskset *tset)
6560 {
6561 return 0;
6562 }
6563 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6564 struct cgroup_taskset *tset)
6565 {
6566 }
6567 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6568 struct cgroup_taskset *tset)
6569 {
6570 }
6571 #endif
6572
6573 /*
6574 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6575 * to verify sane_behavior flag on each mount attempt.
6576 */
6577 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6578 {
6579 /*
6580 * use_hierarchy is forced with sane_behavior. cgroup core
6581 * guarantees that @root doesn't have any children, so turning it
6582 * on for the root memcg is enough.
6583 */
6584 if (cgroup_sane_behavior(root_css->cgroup))
6585 mem_cgroup_from_css(root_css)->use_hierarchy = true;
6586 }
6587
6588 struct cgroup_subsys mem_cgroup_subsys = {
6589 .name = "memory",
6590 .subsys_id = mem_cgroup_subsys_id,
6591 .css_alloc = mem_cgroup_css_alloc,
6592 .css_online = mem_cgroup_css_online,
6593 .css_offline = mem_cgroup_css_offline,
6594 .css_free = mem_cgroup_css_free,
6595 .can_attach = mem_cgroup_can_attach,
6596 .cancel_attach = mem_cgroup_cancel_attach,
6597 .attach = mem_cgroup_move_task,
6598 .bind = mem_cgroup_bind,
6599 .base_cftypes = mem_cgroup_files,
6600 .early_init = 0,
6601 .use_id = 1,
6602 };
6603
6604 #ifdef CONFIG_MEMCG_SWAP
6605 static int __init enable_swap_account(char *s)
6606 {
6607 if (!strcmp(s, "1"))
6608 really_do_swap_account = 1;
6609 else if (!strcmp(s, "0"))
6610 really_do_swap_account = 0;
6611 return 1;
6612 }
6613 __setup("swapaccount=", enable_swap_account);
6614
6615 static void __init memsw_file_init(void)
6616 {
6617 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6618 }
6619
6620 static void __init enable_swap_cgroup(void)
6621 {
6622 if (!mem_cgroup_disabled() && really_do_swap_account) {
6623 do_swap_account = 1;
6624 memsw_file_init();
6625 }
6626 }
6627
6628 #else
6629 static void __init enable_swap_cgroup(void)
6630 {
6631 }
6632 #endif
6633
6634 /*
6635 * subsys_initcall() for memory controller.
6636 *
6637 * Some parts like hotcpu_notifier() have to be initialized from this context
6638 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6639 * everything that doesn't depend on a specific mem_cgroup structure should
6640 * be initialized from here.
6641 */
6642 static int __init mem_cgroup_init(void)
6643 {
6644 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6645 enable_swap_cgroup();
6646 memcg_stock_init();
6647 return 0;
6648 }
6649 subsys_initcall(mem_cgroup_init);
This page took 0.206791 seconds and 5 git commands to generate.