net/netfilter: rename random32() to prandom_u32()
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/sort.h>
49 #include <linux/fs.h>
50 #include <linux/seq_file.h>
51 #include <linux/vmalloc.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include "internal.h"
58 #include <net/sock.h>
59 #include <net/ip.h>
60 #include <net/tcp_memcontrol.h>
61
62 #include <asm/uaccess.h>
63
64 #include <trace/events/vmscan.h>
65
66 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
67 EXPORT_SYMBOL(mem_cgroup_subsys);
68
69 #define MEM_CGROUP_RECLAIM_RETRIES 5
70 static struct mem_cgroup *root_mem_cgroup __read_mostly;
71
72 #ifdef CONFIG_MEMCG_SWAP
73 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
74 int do_swap_account __read_mostly;
75
76 /* for remember boot option*/
77 #ifdef CONFIG_MEMCG_SWAP_ENABLED
78 static int really_do_swap_account __initdata = 1;
79 #else
80 static int really_do_swap_account __initdata = 0;
81 #endif
82
83 #else
84 #define do_swap_account 0
85 #endif
86
87
88 /*
89 * Statistics for memory cgroup.
90 */
91 enum mem_cgroup_stat_index {
92 /*
93 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
94 */
95 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
96 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
97 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
98 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
99 MEM_CGROUP_STAT_NSTATS,
100 };
101
102 static const char * const mem_cgroup_stat_names[] = {
103 "cache",
104 "rss",
105 "mapped_file",
106 "swap",
107 };
108
109 enum mem_cgroup_events_index {
110 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
111 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
112 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
113 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
114 MEM_CGROUP_EVENTS_NSTATS,
115 };
116
117 static const char * const mem_cgroup_events_names[] = {
118 "pgpgin",
119 "pgpgout",
120 "pgfault",
121 "pgmajfault",
122 };
123
124 static const char * const mem_cgroup_lru_names[] = {
125 "inactive_anon",
126 "active_anon",
127 "inactive_file",
128 "active_file",
129 "unevictable",
130 };
131
132 /*
133 * Per memcg event counter is incremented at every pagein/pageout. With THP,
134 * it will be incremated by the number of pages. This counter is used for
135 * for trigger some periodic events. This is straightforward and better
136 * than using jiffies etc. to handle periodic memcg event.
137 */
138 enum mem_cgroup_events_target {
139 MEM_CGROUP_TARGET_THRESH,
140 MEM_CGROUP_TARGET_SOFTLIMIT,
141 MEM_CGROUP_TARGET_NUMAINFO,
142 MEM_CGROUP_NTARGETS,
143 };
144 #define THRESHOLDS_EVENTS_TARGET 128
145 #define SOFTLIMIT_EVENTS_TARGET 1024
146 #define NUMAINFO_EVENTS_TARGET 1024
147
148 struct mem_cgroup_stat_cpu {
149 long count[MEM_CGROUP_STAT_NSTATS];
150 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
151 unsigned long nr_page_events;
152 unsigned long targets[MEM_CGROUP_NTARGETS];
153 };
154
155 struct mem_cgroup_reclaim_iter {
156 /*
157 * last scanned hierarchy member. Valid only if last_dead_count
158 * matches memcg->dead_count of the hierarchy root group.
159 */
160 struct mem_cgroup *last_visited;
161 unsigned long last_dead_count;
162
163 /* scan generation, increased every round-trip */
164 unsigned int generation;
165 };
166
167 /*
168 * per-zone information in memory controller.
169 */
170 struct mem_cgroup_per_zone {
171 struct lruvec lruvec;
172 unsigned long lru_size[NR_LRU_LISTS];
173
174 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
175
176 struct rb_node tree_node; /* RB tree node */
177 unsigned long long usage_in_excess;/* Set to the value by which */
178 /* the soft limit is exceeded*/
179 bool on_tree;
180 struct mem_cgroup *memcg; /* Back pointer, we cannot */
181 /* use container_of */
182 };
183
184 struct mem_cgroup_per_node {
185 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
186 };
187
188 struct mem_cgroup_lru_info {
189 struct mem_cgroup_per_node *nodeinfo[0];
190 };
191
192 /*
193 * Cgroups above their limits are maintained in a RB-Tree, independent of
194 * their hierarchy representation
195 */
196
197 struct mem_cgroup_tree_per_zone {
198 struct rb_root rb_root;
199 spinlock_t lock;
200 };
201
202 struct mem_cgroup_tree_per_node {
203 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
204 };
205
206 struct mem_cgroup_tree {
207 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
208 };
209
210 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
211
212 struct mem_cgroup_threshold {
213 struct eventfd_ctx *eventfd;
214 u64 threshold;
215 };
216
217 /* For threshold */
218 struct mem_cgroup_threshold_ary {
219 /* An array index points to threshold just below or equal to usage. */
220 int current_threshold;
221 /* Size of entries[] */
222 unsigned int size;
223 /* Array of thresholds */
224 struct mem_cgroup_threshold entries[0];
225 };
226
227 struct mem_cgroup_thresholds {
228 /* Primary thresholds array */
229 struct mem_cgroup_threshold_ary *primary;
230 /*
231 * Spare threshold array.
232 * This is needed to make mem_cgroup_unregister_event() "never fail".
233 * It must be able to store at least primary->size - 1 entries.
234 */
235 struct mem_cgroup_threshold_ary *spare;
236 };
237
238 /* for OOM */
239 struct mem_cgroup_eventfd_list {
240 struct list_head list;
241 struct eventfd_ctx *eventfd;
242 };
243
244 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
245 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
246
247 /*
248 * The memory controller data structure. The memory controller controls both
249 * page cache and RSS per cgroup. We would eventually like to provide
250 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
251 * to help the administrator determine what knobs to tune.
252 *
253 * TODO: Add a water mark for the memory controller. Reclaim will begin when
254 * we hit the water mark. May be even add a low water mark, such that
255 * no reclaim occurs from a cgroup at it's low water mark, this is
256 * a feature that will be implemented much later in the future.
257 */
258 struct mem_cgroup {
259 struct cgroup_subsys_state css;
260 /*
261 * the counter to account for memory usage
262 */
263 struct res_counter res;
264
265 /* vmpressure notifications */
266 struct vmpressure vmpressure;
267
268 union {
269 /*
270 * the counter to account for mem+swap usage.
271 */
272 struct res_counter memsw;
273
274 /*
275 * rcu_freeing is used only when freeing struct mem_cgroup,
276 * so put it into a union to avoid wasting more memory.
277 * It must be disjoint from the css field. It could be
278 * in a union with the res field, but res plays a much
279 * larger part in mem_cgroup life than memsw, and might
280 * be of interest, even at time of free, when debugging.
281 * So share rcu_head with the less interesting memsw.
282 */
283 struct rcu_head rcu_freeing;
284 /*
285 * We also need some space for a worker in deferred freeing.
286 * By the time we call it, rcu_freeing is no longer in use.
287 */
288 struct work_struct work_freeing;
289 };
290
291 /*
292 * the counter to account for kernel memory usage.
293 */
294 struct res_counter kmem;
295 /*
296 * Should the accounting and control be hierarchical, per subtree?
297 */
298 bool use_hierarchy;
299 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
300
301 bool oom_lock;
302 atomic_t under_oom;
303
304 atomic_t refcnt;
305
306 int swappiness;
307 /* OOM-Killer disable */
308 int oom_kill_disable;
309
310 /* set when res.limit == memsw.limit */
311 bool memsw_is_minimum;
312
313 /* protect arrays of thresholds */
314 struct mutex thresholds_lock;
315
316 /* thresholds for memory usage. RCU-protected */
317 struct mem_cgroup_thresholds thresholds;
318
319 /* thresholds for mem+swap usage. RCU-protected */
320 struct mem_cgroup_thresholds memsw_thresholds;
321
322 /* For oom notifier event fd */
323 struct list_head oom_notify;
324
325 /*
326 * Should we move charges of a task when a task is moved into this
327 * mem_cgroup ? And what type of charges should we move ?
328 */
329 unsigned long move_charge_at_immigrate;
330 /*
331 * set > 0 if pages under this cgroup are moving to other cgroup.
332 */
333 atomic_t moving_account;
334 /* taken only while moving_account > 0 */
335 spinlock_t move_lock;
336 /*
337 * percpu counter.
338 */
339 struct mem_cgroup_stat_cpu __percpu *stat;
340 /*
341 * used when a cpu is offlined or other synchronizations
342 * See mem_cgroup_read_stat().
343 */
344 struct mem_cgroup_stat_cpu nocpu_base;
345 spinlock_t pcp_counter_lock;
346
347 atomic_t dead_count;
348 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
349 struct tcp_memcontrol tcp_mem;
350 #endif
351 #if defined(CONFIG_MEMCG_KMEM)
352 /* analogous to slab_common's slab_caches list. per-memcg */
353 struct list_head memcg_slab_caches;
354 /* Not a spinlock, we can take a lot of time walking the list */
355 struct mutex slab_caches_mutex;
356 /* Index in the kmem_cache->memcg_params->memcg_caches array */
357 int kmemcg_id;
358 #endif
359
360 int last_scanned_node;
361 #if MAX_NUMNODES > 1
362 nodemask_t scan_nodes;
363 atomic_t numainfo_events;
364 atomic_t numainfo_updating;
365 #endif
366
367 /*
368 * Per cgroup active and inactive list, similar to the
369 * per zone LRU lists.
370 *
371 * WARNING: This has to be the last element of the struct. Don't
372 * add new fields after this point.
373 */
374 struct mem_cgroup_lru_info info;
375 };
376
377 static size_t memcg_size(void)
378 {
379 return sizeof(struct mem_cgroup) +
380 nr_node_ids * sizeof(struct mem_cgroup_per_node);
381 }
382
383 /* internal only representation about the status of kmem accounting. */
384 enum {
385 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
386 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
387 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
388 };
389
390 /* We account when limit is on, but only after call sites are patched */
391 #define KMEM_ACCOUNTED_MASK \
392 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
393
394 #ifdef CONFIG_MEMCG_KMEM
395 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
396 {
397 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
398 }
399
400 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
401 {
402 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
403 }
404
405 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
406 {
407 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
408 }
409
410 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
411 {
412 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
413 }
414
415 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
416 {
417 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
418 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
419 }
420
421 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
422 {
423 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
424 &memcg->kmem_account_flags);
425 }
426 #endif
427
428 /* Stuffs for move charges at task migration. */
429 /*
430 * Types of charges to be moved. "move_charge_at_immitgrate" and
431 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
432 */
433 enum move_type {
434 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
435 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
436 NR_MOVE_TYPE,
437 };
438
439 /* "mc" and its members are protected by cgroup_mutex */
440 static struct move_charge_struct {
441 spinlock_t lock; /* for from, to */
442 struct mem_cgroup *from;
443 struct mem_cgroup *to;
444 unsigned long immigrate_flags;
445 unsigned long precharge;
446 unsigned long moved_charge;
447 unsigned long moved_swap;
448 struct task_struct *moving_task; /* a task moving charges */
449 wait_queue_head_t waitq; /* a waitq for other context */
450 } mc = {
451 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
452 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
453 };
454
455 static bool move_anon(void)
456 {
457 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
458 }
459
460 static bool move_file(void)
461 {
462 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
463 }
464
465 /*
466 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
467 * limit reclaim to prevent infinite loops, if they ever occur.
468 */
469 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
470 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
471
472 enum charge_type {
473 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
474 MEM_CGROUP_CHARGE_TYPE_ANON,
475 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
476 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
477 NR_CHARGE_TYPE,
478 };
479
480 /* for encoding cft->private value on file */
481 enum res_type {
482 _MEM,
483 _MEMSWAP,
484 _OOM_TYPE,
485 _KMEM,
486 };
487
488 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
489 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
490 #define MEMFILE_ATTR(val) ((val) & 0xffff)
491 /* Used for OOM nofiier */
492 #define OOM_CONTROL (0)
493
494 /*
495 * Reclaim flags for mem_cgroup_hierarchical_reclaim
496 */
497 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
498 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
499 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
500 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
501
502 /*
503 * The memcg_create_mutex will be held whenever a new cgroup is created.
504 * As a consequence, any change that needs to protect against new child cgroups
505 * appearing has to hold it as well.
506 */
507 static DEFINE_MUTEX(memcg_create_mutex);
508
509 static void mem_cgroup_get(struct mem_cgroup *memcg);
510 static void mem_cgroup_put(struct mem_cgroup *memcg);
511
512 static inline
513 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
514 {
515 return container_of(s, struct mem_cgroup, css);
516 }
517
518 /* Some nice accessors for the vmpressure. */
519 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
520 {
521 if (!memcg)
522 memcg = root_mem_cgroup;
523 return &memcg->vmpressure;
524 }
525
526 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
527 {
528 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
529 }
530
531 struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
532 {
533 return &mem_cgroup_from_css(css)->vmpressure;
534 }
535
536 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
537 {
538 return (memcg == root_mem_cgroup);
539 }
540
541 /* Writing them here to avoid exposing memcg's inner layout */
542 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
543
544 void sock_update_memcg(struct sock *sk)
545 {
546 if (mem_cgroup_sockets_enabled) {
547 struct mem_cgroup *memcg;
548 struct cg_proto *cg_proto;
549
550 BUG_ON(!sk->sk_prot->proto_cgroup);
551
552 /* Socket cloning can throw us here with sk_cgrp already
553 * filled. It won't however, necessarily happen from
554 * process context. So the test for root memcg given
555 * the current task's memcg won't help us in this case.
556 *
557 * Respecting the original socket's memcg is a better
558 * decision in this case.
559 */
560 if (sk->sk_cgrp) {
561 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
562 mem_cgroup_get(sk->sk_cgrp->memcg);
563 return;
564 }
565
566 rcu_read_lock();
567 memcg = mem_cgroup_from_task(current);
568 cg_proto = sk->sk_prot->proto_cgroup(memcg);
569 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
570 mem_cgroup_get(memcg);
571 sk->sk_cgrp = cg_proto;
572 }
573 rcu_read_unlock();
574 }
575 }
576 EXPORT_SYMBOL(sock_update_memcg);
577
578 void sock_release_memcg(struct sock *sk)
579 {
580 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
581 struct mem_cgroup *memcg;
582 WARN_ON(!sk->sk_cgrp->memcg);
583 memcg = sk->sk_cgrp->memcg;
584 mem_cgroup_put(memcg);
585 }
586 }
587
588 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
589 {
590 if (!memcg || mem_cgroup_is_root(memcg))
591 return NULL;
592
593 return &memcg->tcp_mem.cg_proto;
594 }
595 EXPORT_SYMBOL(tcp_proto_cgroup);
596
597 static void disarm_sock_keys(struct mem_cgroup *memcg)
598 {
599 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
600 return;
601 static_key_slow_dec(&memcg_socket_limit_enabled);
602 }
603 #else
604 static void disarm_sock_keys(struct mem_cgroup *memcg)
605 {
606 }
607 #endif
608
609 #ifdef CONFIG_MEMCG_KMEM
610 /*
611 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
612 * There are two main reasons for not using the css_id for this:
613 * 1) this works better in sparse environments, where we have a lot of memcgs,
614 * but only a few kmem-limited. Or also, if we have, for instance, 200
615 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
616 * 200 entry array for that.
617 *
618 * 2) In order not to violate the cgroup API, we would like to do all memory
619 * allocation in ->create(). At that point, we haven't yet allocated the
620 * css_id. Having a separate index prevents us from messing with the cgroup
621 * core for this
622 *
623 * The current size of the caches array is stored in
624 * memcg_limited_groups_array_size. It will double each time we have to
625 * increase it.
626 */
627 static DEFINE_IDA(kmem_limited_groups);
628 int memcg_limited_groups_array_size;
629
630 /*
631 * MIN_SIZE is different than 1, because we would like to avoid going through
632 * the alloc/free process all the time. In a small machine, 4 kmem-limited
633 * cgroups is a reasonable guess. In the future, it could be a parameter or
634 * tunable, but that is strictly not necessary.
635 *
636 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
637 * this constant directly from cgroup, but it is understandable that this is
638 * better kept as an internal representation in cgroup.c. In any case, the
639 * css_id space is not getting any smaller, and we don't have to necessarily
640 * increase ours as well if it increases.
641 */
642 #define MEMCG_CACHES_MIN_SIZE 4
643 #define MEMCG_CACHES_MAX_SIZE 65535
644
645 /*
646 * A lot of the calls to the cache allocation functions are expected to be
647 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
648 * conditional to this static branch, we'll have to allow modules that does
649 * kmem_cache_alloc and the such to see this symbol as well
650 */
651 struct static_key memcg_kmem_enabled_key;
652 EXPORT_SYMBOL(memcg_kmem_enabled_key);
653
654 static void disarm_kmem_keys(struct mem_cgroup *memcg)
655 {
656 if (memcg_kmem_is_active(memcg)) {
657 static_key_slow_dec(&memcg_kmem_enabled_key);
658 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
659 }
660 /*
661 * This check can't live in kmem destruction function,
662 * since the charges will outlive the cgroup
663 */
664 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
665 }
666 #else
667 static void disarm_kmem_keys(struct mem_cgroup *memcg)
668 {
669 }
670 #endif /* CONFIG_MEMCG_KMEM */
671
672 static void disarm_static_keys(struct mem_cgroup *memcg)
673 {
674 disarm_sock_keys(memcg);
675 disarm_kmem_keys(memcg);
676 }
677
678 static void drain_all_stock_async(struct mem_cgroup *memcg);
679
680 static struct mem_cgroup_per_zone *
681 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
682 {
683 VM_BUG_ON((unsigned)nid >= nr_node_ids);
684 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
685 }
686
687 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
688 {
689 return &memcg->css;
690 }
691
692 static struct mem_cgroup_per_zone *
693 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
694 {
695 int nid = page_to_nid(page);
696 int zid = page_zonenum(page);
697
698 return mem_cgroup_zoneinfo(memcg, nid, zid);
699 }
700
701 static struct mem_cgroup_tree_per_zone *
702 soft_limit_tree_node_zone(int nid, int zid)
703 {
704 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
705 }
706
707 static struct mem_cgroup_tree_per_zone *
708 soft_limit_tree_from_page(struct page *page)
709 {
710 int nid = page_to_nid(page);
711 int zid = page_zonenum(page);
712
713 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
714 }
715
716 static void
717 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
718 struct mem_cgroup_per_zone *mz,
719 struct mem_cgroup_tree_per_zone *mctz,
720 unsigned long long new_usage_in_excess)
721 {
722 struct rb_node **p = &mctz->rb_root.rb_node;
723 struct rb_node *parent = NULL;
724 struct mem_cgroup_per_zone *mz_node;
725
726 if (mz->on_tree)
727 return;
728
729 mz->usage_in_excess = new_usage_in_excess;
730 if (!mz->usage_in_excess)
731 return;
732 while (*p) {
733 parent = *p;
734 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
735 tree_node);
736 if (mz->usage_in_excess < mz_node->usage_in_excess)
737 p = &(*p)->rb_left;
738 /*
739 * We can't avoid mem cgroups that are over their soft
740 * limit by the same amount
741 */
742 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
743 p = &(*p)->rb_right;
744 }
745 rb_link_node(&mz->tree_node, parent, p);
746 rb_insert_color(&mz->tree_node, &mctz->rb_root);
747 mz->on_tree = true;
748 }
749
750 static void
751 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
752 struct mem_cgroup_per_zone *mz,
753 struct mem_cgroup_tree_per_zone *mctz)
754 {
755 if (!mz->on_tree)
756 return;
757 rb_erase(&mz->tree_node, &mctz->rb_root);
758 mz->on_tree = false;
759 }
760
761 static void
762 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
763 struct mem_cgroup_per_zone *mz,
764 struct mem_cgroup_tree_per_zone *mctz)
765 {
766 spin_lock(&mctz->lock);
767 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
768 spin_unlock(&mctz->lock);
769 }
770
771
772 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
773 {
774 unsigned long long excess;
775 struct mem_cgroup_per_zone *mz;
776 struct mem_cgroup_tree_per_zone *mctz;
777 int nid = page_to_nid(page);
778 int zid = page_zonenum(page);
779 mctz = soft_limit_tree_from_page(page);
780
781 /*
782 * Necessary to update all ancestors when hierarchy is used.
783 * because their event counter is not touched.
784 */
785 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
786 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
787 excess = res_counter_soft_limit_excess(&memcg->res);
788 /*
789 * We have to update the tree if mz is on RB-tree or
790 * mem is over its softlimit.
791 */
792 if (excess || mz->on_tree) {
793 spin_lock(&mctz->lock);
794 /* if on-tree, remove it */
795 if (mz->on_tree)
796 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
797 /*
798 * Insert again. mz->usage_in_excess will be updated.
799 * If excess is 0, no tree ops.
800 */
801 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
802 spin_unlock(&mctz->lock);
803 }
804 }
805 }
806
807 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
808 {
809 int node, zone;
810 struct mem_cgroup_per_zone *mz;
811 struct mem_cgroup_tree_per_zone *mctz;
812
813 for_each_node(node) {
814 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
815 mz = mem_cgroup_zoneinfo(memcg, node, zone);
816 mctz = soft_limit_tree_node_zone(node, zone);
817 mem_cgroup_remove_exceeded(memcg, mz, mctz);
818 }
819 }
820 }
821
822 static struct mem_cgroup_per_zone *
823 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
824 {
825 struct rb_node *rightmost = NULL;
826 struct mem_cgroup_per_zone *mz;
827
828 retry:
829 mz = NULL;
830 rightmost = rb_last(&mctz->rb_root);
831 if (!rightmost)
832 goto done; /* Nothing to reclaim from */
833
834 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
835 /*
836 * Remove the node now but someone else can add it back,
837 * we will to add it back at the end of reclaim to its correct
838 * position in the tree.
839 */
840 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
841 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
842 !css_tryget(&mz->memcg->css))
843 goto retry;
844 done:
845 return mz;
846 }
847
848 static struct mem_cgroup_per_zone *
849 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
850 {
851 struct mem_cgroup_per_zone *mz;
852
853 spin_lock(&mctz->lock);
854 mz = __mem_cgroup_largest_soft_limit_node(mctz);
855 spin_unlock(&mctz->lock);
856 return mz;
857 }
858
859 /*
860 * Implementation Note: reading percpu statistics for memcg.
861 *
862 * Both of vmstat[] and percpu_counter has threshold and do periodic
863 * synchronization to implement "quick" read. There are trade-off between
864 * reading cost and precision of value. Then, we may have a chance to implement
865 * a periodic synchronizion of counter in memcg's counter.
866 *
867 * But this _read() function is used for user interface now. The user accounts
868 * memory usage by memory cgroup and he _always_ requires exact value because
869 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
870 * have to visit all online cpus and make sum. So, for now, unnecessary
871 * synchronization is not implemented. (just implemented for cpu hotplug)
872 *
873 * If there are kernel internal actions which can make use of some not-exact
874 * value, and reading all cpu value can be performance bottleneck in some
875 * common workload, threashold and synchonization as vmstat[] should be
876 * implemented.
877 */
878 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
879 enum mem_cgroup_stat_index idx)
880 {
881 long val = 0;
882 int cpu;
883
884 get_online_cpus();
885 for_each_online_cpu(cpu)
886 val += per_cpu(memcg->stat->count[idx], cpu);
887 #ifdef CONFIG_HOTPLUG_CPU
888 spin_lock(&memcg->pcp_counter_lock);
889 val += memcg->nocpu_base.count[idx];
890 spin_unlock(&memcg->pcp_counter_lock);
891 #endif
892 put_online_cpus();
893 return val;
894 }
895
896 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
897 bool charge)
898 {
899 int val = (charge) ? 1 : -1;
900 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
901 }
902
903 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
904 enum mem_cgroup_events_index idx)
905 {
906 unsigned long val = 0;
907 int cpu;
908
909 for_each_online_cpu(cpu)
910 val += per_cpu(memcg->stat->events[idx], cpu);
911 #ifdef CONFIG_HOTPLUG_CPU
912 spin_lock(&memcg->pcp_counter_lock);
913 val += memcg->nocpu_base.events[idx];
914 spin_unlock(&memcg->pcp_counter_lock);
915 #endif
916 return val;
917 }
918
919 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
920 bool anon, int nr_pages)
921 {
922 preempt_disable();
923
924 /*
925 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
926 * counted as CACHE even if it's on ANON LRU.
927 */
928 if (anon)
929 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
930 nr_pages);
931 else
932 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
933 nr_pages);
934
935 /* pagein of a big page is an event. So, ignore page size */
936 if (nr_pages > 0)
937 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
938 else {
939 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
940 nr_pages = -nr_pages; /* for event */
941 }
942
943 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
944
945 preempt_enable();
946 }
947
948 unsigned long
949 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
950 {
951 struct mem_cgroup_per_zone *mz;
952
953 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
954 return mz->lru_size[lru];
955 }
956
957 static unsigned long
958 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
959 unsigned int lru_mask)
960 {
961 struct mem_cgroup_per_zone *mz;
962 enum lru_list lru;
963 unsigned long ret = 0;
964
965 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
966
967 for_each_lru(lru) {
968 if (BIT(lru) & lru_mask)
969 ret += mz->lru_size[lru];
970 }
971 return ret;
972 }
973
974 static unsigned long
975 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
976 int nid, unsigned int lru_mask)
977 {
978 u64 total = 0;
979 int zid;
980
981 for (zid = 0; zid < MAX_NR_ZONES; zid++)
982 total += mem_cgroup_zone_nr_lru_pages(memcg,
983 nid, zid, lru_mask);
984
985 return total;
986 }
987
988 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
989 unsigned int lru_mask)
990 {
991 int nid;
992 u64 total = 0;
993
994 for_each_node_state(nid, N_MEMORY)
995 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
996 return total;
997 }
998
999 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1000 enum mem_cgroup_events_target target)
1001 {
1002 unsigned long val, next;
1003
1004 val = __this_cpu_read(memcg->stat->nr_page_events);
1005 next = __this_cpu_read(memcg->stat->targets[target]);
1006 /* from time_after() in jiffies.h */
1007 if ((long)next - (long)val < 0) {
1008 switch (target) {
1009 case MEM_CGROUP_TARGET_THRESH:
1010 next = val + THRESHOLDS_EVENTS_TARGET;
1011 break;
1012 case MEM_CGROUP_TARGET_SOFTLIMIT:
1013 next = val + SOFTLIMIT_EVENTS_TARGET;
1014 break;
1015 case MEM_CGROUP_TARGET_NUMAINFO:
1016 next = val + NUMAINFO_EVENTS_TARGET;
1017 break;
1018 default:
1019 break;
1020 }
1021 __this_cpu_write(memcg->stat->targets[target], next);
1022 return true;
1023 }
1024 return false;
1025 }
1026
1027 /*
1028 * Check events in order.
1029 *
1030 */
1031 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1032 {
1033 preempt_disable();
1034 /* threshold event is triggered in finer grain than soft limit */
1035 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1036 MEM_CGROUP_TARGET_THRESH))) {
1037 bool do_softlimit;
1038 bool do_numainfo __maybe_unused;
1039
1040 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1041 MEM_CGROUP_TARGET_SOFTLIMIT);
1042 #if MAX_NUMNODES > 1
1043 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1044 MEM_CGROUP_TARGET_NUMAINFO);
1045 #endif
1046 preempt_enable();
1047
1048 mem_cgroup_threshold(memcg);
1049 if (unlikely(do_softlimit))
1050 mem_cgroup_update_tree(memcg, page);
1051 #if MAX_NUMNODES > 1
1052 if (unlikely(do_numainfo))
1053 atomic_inc(&memcg->numainfo_events);
1054 #endif
1055 } else
1056 preempt_enable();
1057 }
1058
1059 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
1060 {
1061 return mem_cgroup_from_css(
1062 cgroup_subsys_state(cont, mem_cgroup_subsys_id));
1063 }
1064
1065 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1066 {
1067 /*
1068 * mm_update_next_owner() may clear mm->owner to NULL
1069 * if it races with swapoff, page migration, etc.
1070 * So this can be called with p == NULL.
1071 */
1072 if (unlikely(!p))
1073 return NULL;
1074
1075 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
1076 }
1077
1078 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1079 {
1080 struct mem_cgroup *memcg = NULL;
1081
1082 if (!mm)
1083 return NULL;
1084 /*
1085 * Because we have no locks, mm->owner's may be being moved to other
1086 * cgroup. We use css_tryget() here even if this looks
1087 * pessimistic (rather than adding locks here).
1088 */
1089 rcu_read_lock();
1090 do {
1091 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1092 if (unlikely(!memcg))
1093 break;
1094 } while (!css_tryget(&memcg->css));
1095 rcu_read_unlock();
1096 return memcg;
1097 }
1098
1099 /*
1100 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1101 * ref. count) or NULL if the whole root's subtree has been visited.
1102 *
1103 * helper function to be used by mem_cgroup_iter
1104 */
1105 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1106 struct mem_cgroup *last_visited)
1107 {
1108 struct cgroup *prev_cgroup, *next_cgroup;
1109
1110 /*
1111 * Root is not visited by cgroup iterators so it needs an
1112 * explicit visit.
1113 */
1114 if (!last_visited)
1115 return root;
1116
1117 prev_cgroup = (last_visited == root) ? NULL
1118 : last_visited->css.cgroup;
1119 skip_node:
1120 next_cgroup = cgroup_next_descendant_pre(
1121 prev_cgroup, root->css.cgroup);
1122
1123 /*
1124 * Even if we found a group we have to make sure it is
1125 * alive. css && !memcg means that the groups should be
1126 * skipped and we should continue the tree walk.
1127 * last_visited css is safe to use because it is
1128 * protected by css_get and the tree walk is rcu safe.
1129 */
1130 if (next_cgroup) {
1131 struct mem_cgroup *mem = mem_cgroup_from_cont(
1132 next_cgroup);
1133 if (css_tryget(&mem->css))
1134 return mem;
1135 else {
1136 prev_cgroup = next_cgroup;
1137 goto skip_node;
1138 }
1139 }
1140
1141 return NULL;
1142 }
1143
1144 /**
1145 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1146 * @root: hierarchy root
1147 * @prev: previously returned memcg, NULL on first invocation
1148 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1149 *
1150 * Returns references to children of the hierarchy below @root, or
1151 * @root itself, or %NULL after a full round-trip.
1152 *
1153 * Caller must pass the return value in @prev on subsequent
1154 * invocations for reference counting, or use mem_cgroup_iter_break()
1155 * to cancel a hierarchy walk before the round-trip is complete.
1156 *
1157 * Reclaimers can specify a zone and a priority level in @reclaim to
1158 * divide up the memcgs in the hierarchy among all concurrent
1159 * reclaimers operating on the same zone and priority.
1160 */
1161 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1162 struct mem_cgroup *prev,
1163 struct mem_cgroup_reclaim_cookie *reclaim)
1164 {
1165 struct mem_cgroup *memcg = NULL;
1166 struct mem_cgroup *last_visited = NULL;
1167 unsigned long uninitialized_var(dead_count);
1168
1169 if (mem_cgroup_disabled())
1170 return NULL;
1171
1172 if (!root)
1173 root = root_mem_cgroup;
1174
1175 if (prev && !reclaim)
1176 last_visited = prev;
1177
1178 if (!root->use_hierarchy && root != root_mem_cgroup) {
1179 if (prev)
1180 goto out_css_put;
1181 return root;
1182 }
1183
1184 rcu_read_lock();
1185 while (!memcg) {
1186 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1187
1188 if (reclaim) {
1189 int nid = zone_to_nid(reclaim->zone);
1190 int zid = zone_idx(reclaim->zone);
1191 struct mem_cgroup_per_zone *mz;
1192
1193 mz = mem_cgroup_zoneinfo(root, nid, zid);
1194 iter = &mz->reclaim_iter[reclaim->priority];
1195 last_visited = iter->last_visited;
1196 if (prev && reclaim->generation != iter->generation) {
1197 iter->last_visited = NULL;
1198 goto out_unlock;
1199 }
1200
1201 /*
1202 * If the dead_count mismatches, a destruction
1203 * has happened or is happening concurrently.
1204 * If the dead_count matches, a destruction
1205 * might still happen concurrently, but since
1206 * we checked under RCU, that destruction
1207 * won't free the object until we release the
1208 * RCU reader lock. Thus, the dead_count
1209 * check verifies the pointer is still valid,
1210 * css_tryget() verifies the cgroup pointed to
1211 * is alive.
1212 */
1213 dead_count = atomic_read(&root->dead_count);
1214 smp_rmb();
1215 last_visited = iter->last_visited;
1216 if (last_visited) {
1217 if ((dead_count != iter->last_dead_count) ||
1218 !css_tryget(&last_visited->css)) {
1219 last_visited = NULL;
1220 }
1221 }
1222 }
1223
1224 memcg = __mem_cgroup_iter_next(root, last_visited);
1225
1226 if (reclaim) {
1227 if (last_visited)
1228 css_put(&last_visited->css);
1229
1230 iter->last_visited = memcg;
1231 smp_wmb();
1232 iter->last_dead_count = dead_count;
1233
1234 if (!memcg)
1235 iter->generation++;
1236 else if (!prev && memcg)
1237 reclaim->generation = iter->generation;
1238 }
1239
1240 if (prev && !memcg)
1241 goto out_unlock;
1242 }
1243 out_unlock:
1244 rcu_read_unlock();
1245 out_css_put:
1246 if (prev && prev != root)
1247 css_put(&prev->css);
1248
1249 return memcg;
1250 }
1251
1252 /**
1253 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1254 * @root: hierarchy root
1255 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1256 */
1257 void mem_cgroup_iter_break(struct mem_cgroup *root,
1258 struct mem_cgroup *prev)
1259 {
1260 if (!root)
1261 root = root_mem_cgroup;
1262 if (prev && prev != root)
1263 css_put(&prev->css);
1264 }
1265
1266 /*
1267 * Iteration constructs for visiting all cgroups (under a tree). If
1268 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1269 * be used for reference counting.
1270 */
1271 #define for_each_mem_cgroup_tree(iter, root) \
1272 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1273 iter != NULL; \
1274 iter = mem_cgroup_iter(root, iter, NULL))
1275
1276 #define for_each_mem_cgroup(iter) \
1277 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1278 iter != NULL; \
1279 iter = mem_cgroup_iter(NULL, iter, NULL))
1280
1281 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1282 {
1283 struct mem_cgroup *memcg;
1284
1285 rcu_read_lock();
1286 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1287 if (unlikely(!memcg))
1288 goto out;
1289
1290 switch (idx) {
1291 case PGFAULT:
1292 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1293 break;
1294 case PGMAJFAULT:
1295 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1296 break;
1297 default:
1298 BUG();
1299 }
1300 out:
1301 rcu_read_unlock();
1302 }
1303 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1304
1305 /**
1306 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1307 * @zone: zone of the wanted lruvec
1308 * @memcg: memcg of the wanted lruvec
1309 *
1310 * Returns the lru list vector holding pages for the given @zone and
1311 * @mem. This can be the global zone lruvec, if the memory controller
1312 * is disabled.
1313 */
1314 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1315 struct mem_cgroup *memcg)
1316 {
1317 struct mem_cgroup_per_zone *mz;
1318 struct lruvec *lruvec;
1319
1320 if (mem_cgroup_disabled()) {
1321 lruvec = &zone->lruvec;
1322 goto out;
1323 }
1324
1325 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1326 lruvec = &mz->lruvec;
1327 out:
1328 /*
1329 * Since a node can be onlined after the mem_cgroup was created,
1330 * we have to be prepared to initialize lruvec->zone here;
1331 * and if offlined then reonlined, we need to reinitialize it.
1332 */
1333 if (unlikely(lruvec->zone != zone))
1334 lruvec->zone = zone;
1335 return lruvec;
1336 }
1337
1338 /*
1339 * Following LRU functions are allowed to be used without PCG_LOCK.
1340 * Operations are called by routine of global LRU independently from memcg.
1341 * What we have to take care of here is validness of pc->mem_cgroup.
1342 *
1343 * Changes to pc->mem_cgroup happens when
1344 * 1. charge
1345 * 2. moving account
1346 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1347 * It is added to LRU before charge.
1348 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1349 * When moving account, the page is not on LRU. It's isolated.
1350 */
1351
1352 /**
1353 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1354 * @page: the page
1355 * @zone: zone of the page
1356 */
1357 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1358 {
1359 struct mem_cgroup_per_zone *mz;
1360 struct mem_cgroup *memcg;
1361 struct page_cgroup *pc;
1362 struct lruvec *lruvec;
1363
1364 if (mem_cgroup_disabled()) {
1365 lruvec = &zone->lruvec;
1366 goto out;
1367 }
1368
1369 pc = lookup_page_cgroup(page);
1370 memcg = pc->mem_cgroup;
1371
1372 /*
1373 * Surreptitiously switch any uncharged offlist page to root:
1374 * an uncharged page off lru does nothing to secure
1375 * its former mem_cgroup from sudden removal.
1376 *
1377 * Our caller holds lru_lock, and PageCgroupUsed is updated
1378 * under page_cgroup lock: between them, they make all uses
1379 * of pc->mem_cgroup safe.
1380 */
1381 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1382 pc->mem_cgroup = memcg = root_mem_cgroup;
1383
1384 mz = page_cgroup_zoneinfo(memcg, page);
1385 lruvec = &mz->lruvec;
1386 out:
1387 /*
1388 * Since a node can be onlined after the mem_cgroup was created,
1389 * we have to be prepared to initialize lruvec->zone here;
1390 * and if offlined then reonlined, we need to reinitialize it.
1391 */
1392 if (unlikely(lruvec->zone != zone))
1393 lruvec->zone = zone;
1394 return lruvec;
1395 }
1396
1397 /**
1398 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1399 * @lruvec: mem_cgroup per zone lru vector
1400 * @lru: index of lru list the page is sitting on
1401 * @nr_pages: positive when adding or negative when removing
1402 *
1403 * This function must be called when a page is added to or removed from an
1404 * lru list.
1405 */
1406 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1407 int nr_pages)
1408 {
1409 struct mem_cgroup_per_zone *mz;
1410 unsigned long *lru_size;
1411
1412 if (mem_cgroup_disabled())
1413 return;
1414
1415 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1416 lru_size = mz->lru_size + lru;
1417 *lru_size += nr_pages;
1418 VM_BUG_ON((long)(*lru_size) < 0);
1419 }
1420
1421 /*
1422 * Checks whether given mem is same or in the root_mem_cgroup's
1423 * hierarchy subtree
1424 */
1425 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1426 struct mem_cgroup *memcg)
1427 {
1428 if (root_memcg == memcg)
1429 return true;
1430 if (!root_memcg->use_hierarchy || !memcg)
1431 return false;
1432 return css_is_ancestor(&memcg->css, &root_memcg->css);
1433 }
1434
1435 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1436 struct mem_cgroup *memcg)
1437 {
1438 bool ret;
1439
1440 rcu_read_lock();
1441 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1442 rcu_read_unlock();
1443 return ret;
1444 }
1445
1446 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1447 {
1448 int ret;
1449 struct mem_cgroup *curr = NULL;
1450 struct task_struct *p;
1451
1452 p = find_lock_task_mm(task);
1453 if (p) {
1454 curr = try_get_mem_cgroup_from_mm(p->mm);
1455 task_unlock(p);
1456 } else {
1457 /*
1458 * All threads may have already detached their mm's, but the oom
1459 * killer still needs to detect if they have already been oom
1460 * killed to prevent needlessly killing additional tasks.
1461 */
1462 task_lock(task);
1463 curr = mem_cgroup_from_task(task);
1464 if (curr)
1465 css_get(&curr->css);
1466 task_unlock(task);
1467 }
1468 if (!curr)
1469 return 0;
1470 /*
1471 * We should check use_hierarchy of "memcg" not "curr". Because checking
1472 * use_hierarchy of "curr" here make this function true if hierarchy is
1473 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1474 * hierarchy(even if use_hierarchy is disabled in "memcg").
1475 */
1476 ret = mem_cgroup_same_or_subtree(memcg, curr);
1477 css_put(&curr->css);
1478 return ret;
1479 }
1480
1481 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1482 {
1483 unsigned long inactive_ratio;
1484 unsigned long inactive;
1485 unsigned long active;
1486 unsigned long gb;
1487
1488 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1489 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1490
1491 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1492 if (gb)
1493 inactive_ratio = int_sqrt(10 * gb);
1494 else
1495 inactive_ratio = 1;
1496
1497 return inactive * inactive_ratio < active;
1498 }
1499
1500 #define mem_cgroup_from_res_counter(counter, member) \
1501 container_of(counter, struct mem_cgroup, member)
1502
1503 /**
1504 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1505 * @memcg: the memory cgroup
1506 *
1507 * Returns the maximum amount of memory @mem can be charged with, in
1508 * pages.
1509 */
1510 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1511 {
1512 unsigned long long margin;
1513
1514 margin = res_counter_margin(&memcg->res);
1515 if (do_swap_account)
1516 margin = min(margin, res_counter_margin(&memcg->memsw));
1517 return margin >> PAGE_SHIFT;
1518 }
1519
1520 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1521 {
1522 struct cgroup *cgrp = memcg->css.cgroup;
1523
1524 /* root ? */
1525 if (cgrp->parent == NULL)
1526 return vm_swappiness;
1527
1528 return memcg->swappiness;
1529 }
1530
1531 /*
1532 * memcg->moving_account is used for checking possibility that some thread is
1533 * calling move_account(). When a thread on CPU-A starts moving pages under
1534 * a memcg, other threads should check memcg->moving_account under
1535 * rcu_read_lock(), like this:
1536 *
1537 * CPU-A CPU-B
1538 * rcu_read_lock()
1539 * memcg->moving_account+1 if (memcg->mocing_account)
1540 * take heavy locks.
1541 * synchronize_rcu() update something.
1542 * rcu_read_unlock()
1543 * start move here.
1544 */
1545
1546 /* for quick checking without looking up memcg */
1547 atomic_t memcg_moving __read_mostly;
1548
1549 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1550 {
1551 atomic_inc(&memcg_moving);
1552 atomic_inc(&memcg->moving_account);
1553 synchronize_rcu();
1554 }
1555
1556 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1557 {
1558 /*
1559 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1560 * We check NULL in callee rather than caller.
1561 */
1562 if (memcg) {
1563 atomic_dec(&memcg_moving);
1564 atomic_dec(&memcg->moving_account);
1565 }
1566 }
1567
1568 /*
1569 * 2 routines for checking "mem" is under move_account() or not.
1570 *
1571 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1572 * is used for avoiding races in accounting. If true,
1573 * pc->mem_cgroup may be overwritten.
1574 *
1575 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1576 * under hierarchy of moving cgroups. This is for
1577 * waiting at hith-memory prressure caused by "move".
1578 */
1579
1580 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1581 {
1582 VM_BUG_ON(!rcu_read_lock_held());
1583 return atomic_read(&memcg->moving_account) > 0;
1584 }
1585
1586 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1587 {
1588 struct mem_cgroup *from;
1589 struct mem_cgroup *to;
1590 bool ret = false;
1591 /*
1592 * Unlike task_move routines, we access mc.to, mc.from not under
1593 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1594 */
1595 spin_lock(&mc.lock);
1596 from = mc.from;
1597 to = mc.to;
1598 if (!from)
1599 goto unlock;
1600
1601 ret = mem_cgroup_same_or_subtree(memcg, from)
1602 || mem_cgroup_same_or_subtree(memcg, to);
1603 unlock:
1604 spin_unlock(&mc.lock);
1605 return ret;
1606 }
1607
1608 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1609 {
1610 if (mc.moving_task && current != mc.moving_task) {
1611 if (mem_cgroup_under_move(memcg)) {
1612 DEFINE_WAIT(wait);
1613 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1614 /* moving charge context might have finished. */
1615 if (mc.moving_task)
1616 schedule();
1617 finish_wait(&mc.waitq, &wait);
1618 return true;
1619 }
1620 }
1621 return false;
1622 }
1623
1624 /*
1625 * Take this lock when
1626 * - a code tries to modify page's memcg while it's USED.
1627 * - a code tries to modify page state accounting in a memcg.
1628 * see mem_cgroup_stolen(), too.
1629 */
1630 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1631 unsigned long *flags)
1632 {
1633 spin_lock_irqsave(&memcg->move_lock, *flags);
1634 }
1635
1636 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1637 unsigned long *flags)
1638 {
1639 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1640 }
1641
1642 #define K(x) ((x) << (PAGE_SHIFT-10))
1643 /**
1644 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1645 * @memcg: The memory cgroup that went over limit
1646 * @p: Task that is going to be killed
1647 *
1648 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1649 * enabled
1650 */
1651 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1652 {
1653 struct cgroup *task_cgrp;
1654 struct cgroup *mem_cgrp;
1655 /*
1656 * Need a buffer in BSS, can't rely on allocations. The code relies
1657 * on the assumption that OOM is serialized for memory controller.
1658 * If this assumption is broken, revisit this code.
1659 */
1660 static char memcg_name[PATH_MAX];
1661 int ret;
1662 struct mem_cgroup *iter;
1663 unsigned int i;
1664
1665 if (!p)
1666 return;
1667
1668 rcu_read_lock();
1669
1670 mem_cgrp = memcg->css.cgroup;
1671 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1672
1673 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1674 if (ret < 0) {
1675 /*
1676 * Unfortunately, we are unable to convert to a useful name
1677 * But we'll still print out the usage information
1678 */
1679 rcu_read_unlock();
1680 goto done;
1681 }
1682 rcu_read_unlock();
1683
1684 pr_info("Task in %s killed", memcg_name);
1685
1686 rcu_read_lock();
1687 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1688 if (ret < 0) {
1689 rcu_read_unlock();
1690 goto done;
1691 }
1692 rcu_read_unlock();
1693
1694 /*
1695 * Continues from above, so we don't need an KERN_ level
1696 */
1697 pr_cont(" as a result of limit of %s\n", memcg_name);
1698 done:
1699
1700 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1701 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1702 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1703 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1704 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1705 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1706 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1707 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1708 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1709 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1710 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1711 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1712
1713 for_each_mem_cgroup_tree(iter, memcg) {
1714 pr_info("Memory cgroup stats");
1715
1716 rcu_read_lock();
1717 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1718 if (!ret)
1719 pr_cont(" for %s", memcg_name);
1720 rcu_read_unlock();
1721 pr_cont(":");
1722
1723 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1724 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1725 continue;
1726 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1727 K(mem_cgroup_read_stat(iter, i)));
1728 }
1729
1730 for (i = 0; i < NR_LRU_LISTS; i++)
1731 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1732 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1733
1734 pr_cont("\n");
1735 }
1736 }
1737
1738 /*
1739 * This function returns the number of memcg under hierarchy tree. Returns
1740 * 1(self count) if no children.
1741 */
1742 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1743 {
1744 int num = 0;
1745 struct mem_cgroup *iter;
1746
1747 for_each_mem_cgroup_tree(iter, memcg)
1748 num++;
1749 return num;
1750 }
1751
1752 /*
1753 * Return the memory (and swap, if configured) limit for a memcg.
1754 */
1755 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1756 {
1757 u64 limit;
1758
1759 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1760
1761 /*
1762 * Do not consider swap space if we cannot swap due to swappiness
1763 */
1764 if (mem_cgroup_swappiness(memcg)) {
1765 u64 memsw;
1766
1767 limit += total_swap_pages << PAGE_SHIFT;
1768 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1769
1770 /*
1771 * If memsw is finite and limits the amount of swap space
1772 * available to this memcg, return that limit.
1773 */
1774 limit = min(limit, memsw);
1775 }
1776
1777 return limit;
1778 }
1779
1780 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1781 int order)
1782 {
1783 struct mem_cgroup *iter;
1784 unsigned long chosen_points = 0;
1785 unsigned long totalpages;
1786 unsigned int points = 0;
1787 struct task_struct *chosen = NULL;
1788
1789 /*
1790 * If current has a pending SIGKILL or is exiting, then automatically
1791 * select it. The goal is to allow it to allocate so that it may
1792 * quickly exit and free its memory.
1793 */
1794 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1795 set_thread_flag(TIF_MEMDIE);
1796 return;
1797 }
1798
1799 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1800 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1801 for_each_mem_cgroup_tree(iter, memcg) {
1802 struct cgroup *cgroup = iter->css.cgroup;
1803 struct cgroup_iter it;
1804 struct task_struct *task;
1805
1806 cgroup_iter_start(cgroup, &it);
1807 while ((task = cgroup_iter_next(cgroup, &it))) {
1808 switch (oom_scan_process_thread(task, totalpages, NULL,
1809 false)) {
1810 case OOM_SCAN_SELECT:
1811 if (chosen)
1812 put_task_struct(chosen);
1813 chosen = task;
1814 chosen_points = ULONG_MAX;
1815 get_task_struct(chosen);
1816 /* fall through */
1817 case OOM_SCAN_CONTINUE:
1818 continue;
1819 case OOM_SCAN_ABORT:
1820 cgroup_iter_end(cgroup, &it);
1821 mem_cgroup_iter_break(memcg, iter);
1822 if (chosen)
1823 put_task_struct(chosen);
1824 return;
1825 case OOM_SCAN_OK:
1826 break;
1827 };
1828 points = oom_badness(task, memcg, NULL, totalpages);
1829 if (points > chosen_points) {
1830 if (chosen)
1831 put_task_struct(chosen);
1832 chosen = task;
1833 chosen_points = points;
1834 get_task_struct(chosen);
1835 }
1836 }
1837 cgroup_iter_end(cgroup, &it);
1838 }
1839
1840 if (!chosen)
1841 return;
1842 points = chosen_points * 1000 / totalpages;
1843 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1844 NULL, "Memory cgroup out of memory");
1845 }
1846
1847 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1848 gfp_t gfp_mask,
1849 unsigned long flags)
1850 {
1851 unsigned long total = 0;
1852 bool noswap = false;
1853 int loop;
1854
1855 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1856 noswap = true;
1857 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1858 noswap = true;
1859
1860 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1861 if (loop)
1862 drain_all_stock_async(memcg);
1863 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1864 /*
1865 * Allow limit shrinkers, which are triggered directly
1866 * by userspace, to catch signals and stop reclaim
1867 * after minimal progress, regardless of the margin.
1868 */
1869 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1870 break;
1871 if (mem_cgroup_margin(memcg))
1872 break;
1873 /*
1874 * If nothing was reclaimed after two attempts, there
1875 * may be no reclaimable pages in this hierarchy.
1876 */
1877 if (loop && !total)
1878 break;
1879 }
1880 return total;
1881 }
1882
1883 /**
1884 * test_mem_cgroup_node_reclaimable
1885 * @memcg: the target memcg
1886 * @nid: the node ID to be checked.
1887 * @noswap : specify true here if the user wants flle only information.
1888 *
1889 * This function returns whether the specified memcg contains any
1890 * reclaimable pages on a node. Returns true if there are any reclaimable
1891 * pages in the node.
1892 */
1893 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1894 int nid, bool noswap)
1895 {
1896 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1897 return true;
1898 if (noswap || !total_swap_pages)
1899 return false;
1900 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1901 return true;
1902 return false;
1903
1904 }
1905 #if MAX_NUMNODES > 1
1906
1907 /*
1908 * Always updating the nodemask is not very good - even if we have an empty
1909 * list or the wrong list here, we can start from some node and traverse all
1910 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1911 *
1912 */
1913 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1914 {
1915 int nid;
1916 /*
1917 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1918 * pagein/pageout changes since the last update.
1919 */
1920 if (!atomic_read(&memcg->numainfo_events))
1921 return;
1922 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1923 return;
1924
1925 /* make a nodemask where this memcg uses memory from */
1926 memcg->scan_nodes = node_states[N_MEMORY];
1927
1928 for_each_node_mask(nid, node_states[N_MEMORY]) {
1929
1930 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1931 node_clear(nid, memcg->scan_nodes);
1932 }
1933
1934 atomic_set(&memcg->numainfo_events, 0);
1935 atomic_set(&memcg->numainfo_updating, 0);
1936 }
1937
1938 /*
1939 * Selecting a node where we start reclaim from. Because what we need is just
1940 * reducing usage counter, start from anywhere is O,K. Considering
1941 * memory reclaim from current node, there are pros. and cons.
1942 *
1943 * Freeing memory from current node means freeing memory from a node which
1944 * we'll use or we've used. So, it may make LRU bad. And if several threads
1945 * hit limits, it will see a contention on a node. But freeing from remote
1946 * node means more costs for memory reclaim because of memory latency.
1947 *
1948 * Now, we use round-robin. Better algorithm is welcomed.
1949 */
1950 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1951 {
1952 int node;
1953
1954 mem_cgroup_may_update_nodemask(memcg);
1955 node = memcg->last_scanned_node;
1956
1957 node = next_node(node, memcg->scan_nodes);
1958 if (node == MAX_NUMNODES)
1959 node = first_node(memcg->scan_nodes);
1960 /*
1961 * We call this when we hit limit, not when pages are added to LRU.
1962 * No LRU may hold pages because all pages are UNEVICTABLE or
1963 * memcg is too small and all pages are not on LRU. In that case,
1964 * we use curret node.
1965 */
1966 if (unlikely(node == MAX_NUMNODES))
1967 node = numa_node_id();
1968
1969 memcg->last_scanned_node = node;
1970 return node;
1971 }
1972
1973 /*
1974 * Check all nodes whether it contains reclaimable pages or not.
1975 * For quick scan, we make use of scan_nodes. This will allow us to skip
1976 * unused nodes. But scan_nodes is lazily updated and may not cotain
1977 * enough new information. We need to do double check.
1978 */
1979 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1980 {
1981 int nid;
1982
1983 /*
1984 * quick check...making use of scan_node.
1985 * We can skip unused nodes.
1986 */
1987 if (!nodes_empty(memcg->scan_nodes)) {
1988 for (nid = first_node(memcg->scan_nodes);
1989 nid < MAX_NUMNODES;
1990 nid = next_node(nid, memcg->scan_nodes)) {
1991
1992 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1993 return true;
1994 }
1995 }
1996 /*
1997 * Check rest of nodes.
1998 */
1999 for_each_node_state(nid, N_MEMORY) {
2000 if (node_isset(nid, memcg->scan_nodes))
2001 continue;
2002 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2003 return true;
2004 }
2005 return false;
2006 }
2007
2008 #else
2009 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2010 {
2011 return 0;
2012 }
2013
2014 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2015 {
2016 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2017 }
2018 #endif
2019
2020 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2021 struct zone *zone,
2022 gfp_t gfp_mask,
2023 unsigned long *total_scanned)
2024 {
2025 struct mem_cgroup *victim = NULL;
2026 int total = 0;
2027 int loop = 0;
2028 unsigned long excess;
2029 unsigned long nr_scanned;
2030 struct mem_cgroup_reclaim_cookie reclaim = {
2031 .zone = zone,
2032 .priority = 0,
2033 };
2034
2035 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2036
2037 while (1) {
2038 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2039 if (!victim) {
2040 loop++;
2041 if (loop >= 2) {
2042 /*
2043 * If we have not been able to reclaim
2044 * anything, it might because there are
2045 * no reclaimable pages under this hierarchy
2046 */
2047 if (!total)
2048 break;
2049 /*
2050 * We want to do more targeted reclaim.
2051 * excess >> 2 is not to excessive so as to
2052 * reclaim too much, nor too less that we keep
2053 * coming back to reclaim from this cgroup
2054 */
2055 if (total >= (excess >> 2) ||
2056 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2057 break;
2058 }
2059 continue;
2060 }
2061 if (!mem_cgroup_reclaimable(victim, false))
2062 continue;
2063 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2064 zone, &nr_scanned);
2065 *total_scanned += nr_scanned;
2066 if (!res_counter_soft_limit_excess(&root_memcg->res))
2067 break;
2068 }
2069 mem_cgroup_iter_break(root_memcg, victim);
2070 return total;
2071 }
2072
2073 /*
2074 * Check OOM-Killer is already running under our hierarchy.
2075 * If someone is running, return false.
2076 * Has to be called with memcg_oom_lock
2077 */
2078 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
2079 {
2080 struct mem_cgroup *iter, *failed = NULL;
2081
2082 for_each_mem_cgroup_tree(iter, memcg) {
2083 if (iter->oom_lock) {
2084 /*
2085 * this subtree of our hierarchy is already locked
2086 * so we cannot give a lock.
2087 */
2088 failed = iter;
2089 mem_cgroup_iter_break(memcg, iter);
2090 break;
2091 } else
2092 iter->oom_lock = true;
2093 }
2094
2095 if (!failed)
2096 return true;
2097
2098 /*
2099 * OK, we failed to lock the whole subtree so we have to clean up
2100 * what we set up to the failing subtree
2101 */
2102 for_each_mem_cgroup_tree(iter, memcg) {
2103 if (iter == failed) {
2104 mem_cgroup_iter_break(memcg, iter);
2105 break;
2106 }
2107 iter->oom_lock = false;
2108 }
2109 return false;
2110 }
2111
2112 /*
2113 * Has to be called with memcg_oom_lock
2114 */
2115 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2116 {
2117 struct mem_cgroup *iter;
2118
2119 for_each_mem_cgroup_tree(iter, memcg)
2120 iter->oom_lock = false;
2121 return 0;
2122 }
2123
2124 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2125 {
2126 struct mem_cgroup *iter;
2127
2128 for_each_mem_cgroup_tree(iter, memcg)
2129 atomic_inc(&iter->under_oom);
2130 }
2131
2132 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2133 {
2134 struct mem_cgroup *iter;
2135
2136 /*
2137 * When a new child is created while the hierarchy is under oom,
2138 * mem_cgroup_oom_lock() may not be called. We have to use
2139 * atomic_add_unless() here.
2140 */
2141 for_each_mem_cgroup_tree(iter, memcg)
2142 atomic_add_unless(&iter->under_oom, -1, 0);
2143 }
2144
2145 static DEFINE_SPINLOCK(memcg_oom_lock);
2146 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2147
2148 struct oom_wait_info {
2149 struct mem_cgroup *memcg;
2150 wait_queue_t wait;
2151 };
2152
2153 static int memcg_oom_wake_function(wait_queue_t *wait,
2154 unsigned mode, int sync, void *arg)
2155 {
2156 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2157 struct mem_cgroup *oom_wait_memcg;
2158 struct oom_wait_info *oom_wait_info;
2159
2160 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2161 oom_wait_memcg = oom_wait_info->memcg;
2162
2163 /*
2164 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2165 * Then we can use css_is_ancestor without taking care of RCU.
2166 */
2167 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2168 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2169 return 0;
2170 return autoremove_wake_function(wait, mode, sync, arg);
2171 }
2172
2173 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2174 {
2175 /* for filtering, pass "memcg" as argument. */
2176 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2177 }
2178
2179 static void memcg_oom_recover(struct mem_cgroup *memcg)
2180 {
2181 if (memcg && atomic_read(&memcg->under_oom))
2182 memcg_wakeup_oom(memcg);
2183 }
2184
2185 /*
2186 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
2187 */
2188 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
2189 int order)
2190 {
2191 struct oom_wait_info owait;
2192 bool locked, need_to_kill;
2193
2194 owait.memcg = memcg;
2195 owait.wait.flags = 0;
2196 owait.wait.func = memcg_oom_wake_function;
2197 owait.wait.private = current;
2198 INIT_LIST_HEAD(&owait.wait.task_list);
2199 need_to_kill = true;
2200 mem_cgroup_mark_under_oom(memcg);
2201
2202 /* At first, try to OOM lock hierarchy under memcg.*/
2203 spin_lock(&memcg_oom_lock);
2204 locked = mem_cgroup_oom_lock(memcg);
2205 /*
2206 * Even if signal_pending(), we can't quit charge() loop without
2207 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
2208 * under OOM is always welcomed, use TASK_KILLABLE here.
2209 */
2210 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2211 if (!locked || memcg->oom_kill_disable)
2212 need_to_kill = false;
2213 if (locked)
2214 mem_cgroup_oom_notify(memcg);
2215 spin_unlock(&memcg_oom_lock);
2216
2217 if (need_to_kill) {
2218 finish_wait(&memcg_oom_waitq, &owait.wait);
2219 mem_cgroup_out_of_memory(memcg, mask, order);
2220 } else {
2221 schedule();
2222 finish_wait(&memcg_oom_waitq, &owait.wait);
2223 }
2224 spin_lock(&memcg_oom_lock);
2225 if (locked)
2226 mem_cgroup_oom_unlock(memcg);
2227 memcg_wakeup_oom(memcg);
2228 spin_unlock(&memcg_oom_lock);
2229
2230 mem_cgroup_unmark_under_oom(memcg);
2231
2232 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2233 return false;
2234 /* Give chance to dying process */
2235 schedule_timeout_uninterruptible(1);
2236 return true;
2237 }
2238
2239 /*
2240 * Currently used to update mapped file statistics, but the routine can be
2241 * generalized to update other statistics as well.
2242 *
2243 * Notes: Race condition
2244 *
2245 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2246 * it tends to be costly. But considering some conditions, we doesn't need
2247 * to do so _always_.
2248 *
2249 * Considering "charge", lock_page_cgroup() is not required because all
2250 * file-stat operations happen after a page is attached to radix-tree. There
2251 * are no race with "charge".
2252 *
2253 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2254 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2255 * if there are race with "uncharge". Statistics itself is properly handled
2256 * by flags.
2257 *
2258 * Considering "move", this is an only case we see a race. To make the race
2259 * small, we check mm->moving_account and detect there are possibility of race
2260 * If there is, we take a lock.
2261 */
2262
2263 void __mem_cgroup_begin_update_page_stat(struct page *page,
2264 bool *locked, unsigned long *flags)
2265 {
2266 struct mem_cgroup *memcg;
2267 struct page_cgroup *pc;
2268
2269 pc = lookup_page_cgroup(page);
2270 again:
2271 memcg = pc->mem_cgroup;
2272 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2273 return;
2274 /*
2275 * If this memory cgroup is not under account moving, we don't
2276 * need to take move_lock_mem_cgroup(). Because we already hold
2277 * rcu_read_lock(), any calls to move_account will be delayed until
2278 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2279 */
2280 if (!mem_cgroup_stolen(memcg))
2281 return;
2282
2283 move_lock_mem_cgroup(memcg, flags);
2284 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2285 move_unlock_mem_cgroup(memcg, flags);
2286 goto again;
2287 }
2288 *locked = true;
2289 }
2290
2291 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2292 {
2293 struct page_cgroup *pc = lookup_page_cgroup(page);
2294
2295 /*
2296 * It's guaranteed that pc->mem_cgroup never changes while
2297 * lock is held because a routine modifies pc->mem_cgroup
2298 * should take move_lock_mem_cgroup().
2299 */
2300 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2301 }
2302
2303 void mem_cgroup_update_page_stat(struct page *page,
2304 enum mem_cgroup_page_stat_item idx, int val)
2305 {
2306 struct mem_cgroup *memcg;
2307 struct page_cgroup *pc = lookup_page_cgroup(page);
2308 unsigned long uninitialized_var(flags);
2309
2310 if (mem_cgroup_disabled())
2311 return;
2312
2313 memcg = pc->mem_cgroup;
2314 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2315 return;
2316
2317 switch (idx) {
2318 case MEMCG_NR_FILE_MAPPED:
2319 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2320 break;
2321 default:
2322 BUG();
2323 }
2324
2325 this_cpu_add(memcg->stat->count[idx], val);
2326 }
2327
2328 /*
2329 * size of first charge trial. "32" comes from vmscan.c's magic value.
2330 * TODO: maybe necessary to use big numbers in big irons.
2331 */
2332 #define CHARGE_BATCH 32U
2333 struct memcg_stock_pcp {
2334 struct mem_cgroup *cached; /* this never be root cgroup */
2335 unsigned int nr_pages;
2336 struct work_struct work;
2337 unsigned long flags;
2338 #define FLUSHING_CACHED_CHARGE 0
2339 };
2340 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2341 static DEFINE_MUTEX(percpu_charge_mutex);
2342
2343 /**
2344 * consume_stock: Try to consume stocked charge on this cpu.
2345 * @memcg: memcg to consume from.
2346 * @nr_pages: how many pages to charge.
2347 *
2348 * The charges will only happen if @memcg matches the current cpu's memcg
2349 * stock, and at least @nr_pages are available in that stock. Failure to
2350 * service an allocation will refill the stock.
2351 *
2352 * returns true if successful, false otherwise.
2353 */
2354 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2355 {
2356 struct memcg_stock_pcp *stock;
2357 bool ret = true;
2358
2359 if (nr_pages > CHARGE_BATCH)
2360 return false;
2361
2362 stock = &get_cpu_var(memcg_stock);
2363 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2364 stock->nr_pages -= nr_pages;
2365 else /* need to call res_counter_charge */
2366 ret = false;
2367 put_cpu_var(memcg_stock);
2368 return ret;
2369 }
2370
2371 /*
2372 * Returns stocks cached in percpu to res_counter and reset cached information.
2373 */
2374 static void drain_stock(struct memcg_stock_pcp *stock)
2375 {
2376 struct mem_cgroup *old = stock->cached;
2377
2378 if (stock->nr_pages) {
2379 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2380
2381 res_counter_uncharge(&old->res, bytes);
2382 if (do_swap_account)
2383 res_counter_uncharge(&old->memsw, bytes);
2384 stock->nr_pages = 0;
2385 }
2386 stock->cached = NULL;
2387 }
2388
2389 /*
2390 * This must be called under preempt disabled or must be called by
2391 * a thread which is pinned to local cpu.
2392 */
2393 static void drain_local_stock(struct work_struct *dummy)
2394 {
2395 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2396 drain_stock(stock);
2397 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2398 }
2399
2400 static void __init memcg_stock_init(void)
2401 {
2402 int cpu;
2403
2404 for_each_possible_cpu(cpu) {
2405 struct memcg_stock_pcp *stock =
2406 &per_cpu(memcg_stock, cpu);
2407 INIT_WORK(&stock->work, drain_local_stock);
2408 }
2409 }
2410
2411 /*
2412 * Cache charges(val) which is from res_counter, to local per_cpu area.
2413 * This will be consumed by consume_stock() function, later.
2414 */
2415 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2416 {
2417 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2418
2419 if (stock->cached != memcg) { /* reset if necessary */
2420 drain_stock(stock);
2421 stock->cached = memcg;
2422 }
2423 stock->nr_pages += nr_pages;
2424 put_cpu_var(memcg_stock);
2425 }
2426
2427 /*
2428 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2429 * of the hierarchy under it. sync flag says whether we should block
2430 * until the work is done.
2431 */
2432 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2433 {
2434 int cpu, curcpu;
2435
2436 /* Notify other cpus that system-wide "drain" is running */
2437 get_online_cpus();
2438 curcpu = get_cpu();
2439 for_each_online_cpu(cpu) {
2440 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2441 struct mem_cgroup *memcg;
2442
2443 memcg = stock->cached;
2444 if (!memcg || !stock->nr_pages)
2445 continue;
2446 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2447 continue;
2448 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2449 if (cpu == curcpu)
2450 drain_local_stock(&stock->work);
2451 else
2452 schedule_work_on(cpu, &stock->work);
2453 }
2454 }
2455 put_cpu();
2456
2457 if (!sync)
2458 goto out;
2459
2460 for_each_online_cpu(cpu) {
2461 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2462 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2463 flush_work(&stock->work);
2464 }
2465 out:
2466 put_online_cpus();
2467 }
2468
2469 /*
2470 * Tries to drain stocked charges in other cpus. This function is asynchronous
2471 * and just put a work per cpu for draining localy on each cpu. Caller can
2472 * expects some charges will be back to res_counter later but cannot wait for
2473 * it.
2474 */
2475 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2476 {
2477 /*
2478 * If someone calls draining, avoid adding more kworker runs.
2479 */
2480 if (!mutex_trylock(&percpu_charge_mutex))
2481 return;
2482 drain_all_stock(root_memcg, false);
2483 mutex_unlock(&percpu_charge_mutex);
2484 }
2485
2486 /* This is a synchronous drain interface. */
2487 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2488 {
2489 /* called when force_empty is called */
2490 mutex_lock(&percpu_charge_mutex);
2491 drain_all_stock(root_memcg, true);
2492 mutex_unlock(&percpu_charge_mutex);
2493 }
2494
2495 /*
2496 * This function drains percpu counter value from DEAD cpu and
2497 * move it to local cpu. Note that this function can be preempted.
2498 */
2499 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2500 {
2501 int i;
2502
2503 spin_lock(&memcg->pcp_counter_lock);
2504 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2505 long x = per_cpu(memcg->stat->count[i], cpu);
2506
2507 per_cpu(memcg->stat->count[i], cpu) = 0;
2508 memcg->nocpu_base.count[i] += x;
2509 }
2510 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2511 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2512
2513 per_cpu(memcg->stat->events[i], cpu) = 0;
2514 memcg->nocpu_base.events[i] += x;
2515 }
2516 spin_unlock(&memcg->pcp_counter_lock);
2517 }
2518
2519 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2520 unsigned long action,
2521 void *hcpu)
2522 {
2523 int cpu = (unsigned long)hcpu;
2524 struct memcg_stock_pcp *stock;
2525 struct mem_cgroup *iter;
2526
2527 if (action == CPU_ONLINE)
2528 return NOTIFY_OK;
2529
2530 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2531 return NOTIFY_OK;
2532
2533 for_each_mem_cgroup(iter)
2534 mem_cgroup_drain_pcp_counter(iter, cpu);
2535
2536 stock = &per_cpu(memcg_stock, cpu);
2537 drain_stock(stock);
2538 return NOTIFY_OK;
2539 }
2540
2541
2542 /* See __mem_cgroup_try_charge() for details */
2543 enum {
2544 CHARGE_OK, /* success */
2545 CHARGE_RETRY, /* need to retry but retry is not bad */
2546 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2547 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2548 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2549 };
2550
2551 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2552 unsigned int nr_pages, unsigned int min_pages,
2553 bool oom_check)
2554 {
2555 unsigned long csize = nr_pages * PAGE_SIZE;
2556 struct mem_cgroup *mem_over_limit;
2557 struct res_counter *fail_res;
2558 unsigned long flags = 0;
2559 int ret;
2560
2561 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2562
2563 if (likely(!ret)) {
2564 if (!do_swap_account)
2565 return CHARGE_OK;
2566 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2567 if (likely(!ret))
2568 return CHARGE_OK;
2569
2570 res_counter_uncharge(&memcg->res, csize);
2571 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2572 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2573 } else
2574 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2575 /*
2576 * Never reclaim on behalf of optional batching, retry with a
2577 * single page instead.
2578 */
2579 if (nr_pages > min_pages)
2580 return CHARGE_RETRY;
2581
2582 if (!(gfp_mask & __GFP_WAIT))
2583 return CHARGE_WOULDBLOCK;
2584
2585 if (gfp_mask & __GFP_NORETRY)
2586 return CHARGE_NOMEM;
2587
2588 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2589 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2590 return CHARGE_RETRY;
2591 /*
2592 * Even though the limit is exceeded at this point, reclaim
2593 * may have been able to free some pages. Retry the charge
2594 * before killing the task.
2595 *
2596 * Only for regular pages, though: huge pages are rather
2597 * unlikely to succeed so close to the limit, and we fall back
2598 * to regular pages anyway in case of failure.
2599 */
2600 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2601 return CHARGE_RETRY;
2602
2603 /*
2604 * At task move, charge accounts can be doubly counted. So, it's
2605 * better to wait until the end of task_move if something is going on.
2606 */
2607 if (mem_cgroup_wait_acct_move(mem_over_limit))
2608 return CHARGE_RETRY;
2609
2610 /* If we don't need to call oom-killer at el, return immediately */
2611 if (!oom_check)
2612 return CHARGE_NOMEM;
2613 /* check OOM */
2614 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2615 return CHARGE_OOM_DIE;
2616
2617 return CHARGE_RETRY;
2618 }
2619
2620 /*
2621 * __mem_cgroup_try_charge() does
2622 * 1. detect memcg to be charged against from passed *mm and *ptr,
2623 * 2. update res_counter
2624 * 3. call memory reclaim if necessary.
2625 *
2626 * In some special case, if the task is fatal, fatal_signal_pending() or
2627 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2628 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2629 * as possible without any hazards. 2: all pages should have a valid
2630 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2631 * pointer, that is treated as a charge to root_mem_cgroup.
2632 *
2633 * So __mem_cgroup_try_charge() will return
2634 * 0 ... on success, filling *ptr with a valid memcg pointer.
2635 * -ENOMEM ... charge failure because of resource limits.
2636 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2637 *
2638 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2639 * the oom-killer can be invoked.
2640 */
2641 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2642 gfp_t gfp_mask,
2643 unsigned int nr_pages,
2644 struct mem_cgroup **ptr,
2645 bool oom)
2646 {
2647 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2648 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2649 struct mem_cgroup *memcg = NULL;
2650 int ret;
2651
2652 /*
2653 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2654 * in system level. So, allow to go ahead dying process in addition to
2655 * MEMDIE process.
2656 */
2657 if (unlikely(test_thread_flag(TIF_MEMDIE)
2658 || fatal_signal_pending(current)))
2659 goto bypass;
2660
2661 /*
2662 * We always charge the cgroup the mm_struct belongs to.
2663 * The mm_struct's mem_cgroup changes on task migration if the
2664 * thread group leader migrates. It's possible that mm is not
2665 * set, if so charge the root memcg (happens for pagecache usage).
2666 */
2667 if (!*ptr && !mm)
2668 *ptr = root_mem_cgroup;
2669 again:
2670 if (*ptr) { /* css should be a valid one */
2671 memcg = *ptr;
2672 if (mem_cgroup_is_root(memcg))
2673 goto done;
2674 if (consume_stock(memcg, nr_pages))
2675 goto done;
2676 css_get(&memcg->css);
2677 } else {
2678 struct task_struct *p;
2679
2680 rcu_read_lock();
2681 p = rcu_dereference(mm->owner);
2682 /*
2683 * Because we don't have task_lock(), "p" can exit.
2684 * In that case, "memcg" can point to root or p can be NULL with
2685 * race with swapoff. Then, we have small risk of mis-accouning.
2686 * But such kind of mis-account by race always happens because
2687 * we don't have cgroup_mutex(). It's overkill and we allo that
2688 * small race, here.
2689 * (*) swapoff at el will charge against mm-struct not against
2690 * task-struct. So, mm->owner can be NULL.
2691 */
2692 memcg = mem_cgroup_from_task(p);
2693 if (!memcg)
2694 memcg = root_mem_cgroup;
2695 if (mem_cgroup_is_root(memcg)) {
2696 rcu_read_unlock();
2697 goto done;
2698 }
2699 if (consume_stock(memcg, nr_pages)) {
2700 /*
2701 * It seems dagerous to access memcg without css_get().
2702 * But considering how consume_stok works, it's not
2703 * necessary. If consume_stock success, some charges
2704 * from this memcg are cached on this cpu. So, we
2705 * don't need to call css_get()/css_tryget() before
2706 * calling consume_stock().
2707 */
2708 rcu_read_unlock();
2709 goto done;
2710 }
2711 /* after here, we may be blocked. we need to get refcnt */
2712 if (!css_tryget(&memcg->css)) {
2713 rcu_read_unlock();
2714 goto again;
2715 }
2716 rcu_read_unlock();
2717 }
2718
2719 do {
2720 bool oom_check;
2721
2722 /* If killed, bypass charge */
2723 if (fatal_signal_pending(current)) {
2724 css_put(&memcg->css);
2725 goto bypass;
2726 }
2727
2728 oom_check = false;
2729 if (oom && !nr_oom_retries) {
2730 oom_check = true;
2731 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2732 }
2733
2734 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2735 oom_check);
2736 switch (ret) {
2737 case CHARGE_OK:
2738 break;
2739 case CHARGE_RETRY: /* not in OOM situation but retry */
2740 batch = nr_pages;
2741 css_put(&memcg->css);
2742 memcg = NULL;
2743 goto again;
2744 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2745 css_put(&memcg->css);
2746 goto nomem;
2747 case CHARGE_NOMEM: /* OOM routine works */
2748 if (!oom) {
2749 css_put(&memcg->css);
2750 goto nomem;
2751 }
2752 /* If oom, we never return -ENOMEM */
2753 nr_oom_retries--;
2754 break;
2755 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2756 css_put(&memcg->css);
2757 goto bypass;
2758 }
2759 } while (ret != CHARGE_OK);
2760
2761 if (batch > nr_pages)
2762 refill_stock(memcg, batch - nr_pages);
2763 css_put(&memcg->css);
2764 done:
2765 *ptr = memcg;
2766 return 0;
2767 nomem:
2768 *ptr = NULL;
2769 return -ENOMEM;
2770 bypass:
2771 *ptr = root_mem_cgroup;
2772 return -EINTR;
2773 }
2774
2775 /*
2776 * Somemtimes we have to undo a charge we got by try_charge().
2777 * This function is for that and do uncharge, put css's refcnt.
2778 * gotten by try_charge().
2779 */
2780 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2781 unsigned int nr_pages)
2782 {
2783 if (!mem_cgroup_is_root(memcg)) {
2784 unsigned long bytes = nr_pages * PAGE_SIZE;
2785
2786 res_counter_uncharge(&memcg->res, bytes);
2787 if (do_swap_account)
2788 res_counter_uncharge(&memcg->memsw, bytes);
2789 }
2790 }
2791
2792 /*
2793 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2794 * This is useful when moving usage to parent cgroup.
2795 */
2796 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2797 unsigned int nr_pages)
2798 {
2799 unsigned long bytes = nr_pages * PAGE_SIZE;
2800
2801 if (mem_cgroup_is_root(memcg))
2802 return;
2803
2804 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2805 if (do_swap_account)
2806 res_counter_uncharge_until(&memcg->memsw,
2807 memcg->memsw.parent, bytes);
2808 }
2809
2810 /*
2811 * A helper function to get mem_cgroup from ID. must be called under
2812 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2813 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2814 * called against removed memcg.)
2815 */
2816 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2817 {
2818 struct cgroup_subsys_state *css;
2819
2820 /* ID 0 is unused ID */
2821 if (!id)
2822 return NULL;
2823 css = css_lookup(&mem_cgroup_subsys, id);
2824 if (!css)
2825 return NULL;
2826 return mem_cgroup_from_css(css);
2827 }
2828
2829 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2830 {
2831 struct mem_cgroup *memcg = NULL;
2832 struct page_cgroup *pc;
2833 unsigned short id;
2834 swp_entry_t ent;
2835
2836 VM_BUG_ON(!PageLocked(page));
2837
2838 pc = lookup_page_cgroup(page);
2839 lock_page_cgroup(pc);
2840 if (PageCgroupUsed(pc)) {
2841 memcg = pc->mem_cgroup;
2842 if (memcg && !css_tryget(&memcg->css))
2843 memcg = NULL;
2844 } else if (PageSwapCache(page)) {
2845 ent.val = page_private(page);
2846 id = lookup_swap_cgroup_id(ent);
2847 rcu_read_lock();
2848 memcg = mem_cgroup_lookup(id);
2849 if (memcg && !css_tryget(&memcg->css))
2850 memcg = NULL;
2851 rcu_read_unlock();
2852 }
2853 unlock_page_cgroup(pc);
2854 return memcg;
2855 }
2856
2857 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2858 struct page *page,
2859 unsigned int nr_pages,
2860 enum charge_type ctype,
2861 bool lrucare)
2862 {
2863 struct page_cgroup *pc = lookup_page_cgroup(page);
2864 struct zone *uninitialized_var(zone);
2865 struct lruvec *lruvec;
2866 bool was_on_lru = false;
2867 bool anon;
2868
2869 lock_page_cgroup(pc);
2870 VM_BUG_ON(PageCgroupUsed(pc));
2871 /*
2872 * we don't need page_cgroup_lock about tail pages, becase they are not
2873 * accessed by any other context at this point.
2874 */
2875
2876 /*
2877 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2878 * may already be on some other mem_cgroup's LRU. Take care of it.
2879 */
2880 if (lrucare) {
2881 zone = page_zone(page);
2882 spin_lock_irq(&zone->lru_lock);
2883 if (PageLRU(page)) {
2884 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2885 ClearPageLRU(page);
2886 del_page_from_lru_list(page, lruvec, page_lru(page));
2887 was_on_lru = true;
2888 }
2889 }
2890
2891 pc->mem_cgroup = memcg;
2892 /*
2893 * We access a page_cgroup asynchronously without lock_page_cgroup().
2894 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2895 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2896 * before USED bit, we need memory barrier here.
2897 * See mem_cgroup_add_lru_list(), etc.
2898 */
2899 smp_wmb();
2900 SetPageCgroupUsed(pc);
2901
2902 if (lrucare) {
2903 if (was_on_lru) {
2904 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2905 VM_BUG_ON(PageLRU(page));
2906 SetPageLRU(page);
2907 add_page_to_lru_list(page, lruvec, page_lru(page));
2908 }
2909 spin_unlock_irq(&zone->lru_lock);
2910 }
2911
2912 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2913 anon = true;
2914 else
2915 anon = false;
2916
2917 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2918 unlock_page_cgroup(pc);
2919
2920 /*
2921 * "charge_statistics" updated event counter. Then, check it.
2922 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2923 * if they exceeds softlimit.
2924 */
2925 memcg_check_events(memcg, page);
2926 }
2927
2928 static DEFINE_MUTEX(set_limit_mutex);
2929
2930 #ifdef CONFIG_MEMCG_KMEM
2931 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2932 {
2933 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2934 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2935 }
2936
2937 /*
2938 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2939 * in the memcg_cache_params struct.
2940 */
2941 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2942 {
2943 struct kmem_cache *cachep;
2944
2945 VM_BUG_ON(p->is_root_cache);
2946 cachep = p->root_cache;
2947 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2948 }
2949
2950 #ifdef CONFIG_SLABINFO
2951 static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
2952 struct seq_file *m)
2953 {
2954 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2955 struct memcg_cache_params *params;
2956
2957 if (!memcg_can_account_kmem(memcg))
2958 return -EIO;
2959
2960 print_slabinfo_header(m);
2961
2962 mutex_lock(&memcg->slab_caches_mutex);
2963 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2964 cache_show(memcg_params_to_cache(params), m);
2965 mutex_unlock(&memcg->slab_caches_mutex);
2966
2967 return 0;
2968 }
2969 #endif
2970
2971 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2972 {
2973 struct res_counter *fail_res;
2974 struct mem_cgroup *_memcg;
2975 int ret = 0;
2976 bool may_oom;
2977
2978 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2979 if (ret)
2980 return ret;
2981
2982 /*
2983 * Conditions under which we can wait for the oom_killer. Those are
2984 * the same conditions tested by the core page allocator
2985 */
2986 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2987
2988 _memcg = memcg;
2989 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2990 &_memcg, may_oom);
2991
2992 if (ret == -EINTR) {
2993 /*
2994 * __mem_cgroup_try_charge() chosed to bypass to root due to
2995 * OOM kill or fatal signal. Since our only options are to
2996 * either fail the allocation or charge it to this cgroup, do
2997 * it as a temporary condition. But we can't fail. From a
2998 * kmem/slab perspective, the cache has already been selected,
2999 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3000 * our minds.
3001 *
3002 * This condition will only trigger if the task entered
3003 * memcg_charge_kmem in a sane state, but was OOM-killed during
3004 * __mem_cgroup_try_charge() above. Tasks that were already
3005 * dying when the allocation triggers should have been already
3006 * directed to the root cgroup in memcontrol.h
3007 */
3008 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3009 if (do_swap_account)
3010 res_counter_charge_nofail(&memcg->memsw, size,
3011 &fail_res);
3012 ret = 0;
3013 } else if (ret)
3014 res_counter_uncharge(&memcg->kmem, size);
3015
3016 return ret;
3017 }
3018
3019 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3020 {
3021 res_counter_uncharge(&memcg->res, size);
3022 if (do_swap_account)
3023 res_counter_uncharge(&memcg->memsw, size);
3024
3025 /* Not down to 0 */
3026 if (res_counter_uncharge(&memcg->kmem, size))
3027 return;
3028
3029 if (memcg_kmem_test_and_clear_dead(memcg))
3030 mem_cgroup_put(memcg);
3031 }
3032
3033 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3034 {
3035 if (!memcg)
3036 return;
3037
3038 mutex_lock(&memcg->slab_caches_mutex);
3039 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3040 mutex_unlock(&memcg->slab_caches_mutex);
3041 }
3042
3043 /*
3044 * helper for acessing a memcg's index. It will be used as an index in the
3045 * child cache array in kmem_cache, and also to derive its name. This function
3046 * will return -1 when this is not a kmem-limited memcg.
3047 */
3048 int memcg_cache_id(struct mem_cgroup *memcg)
3049 {
3050 return memcg ? memcg->kmemcg_id : -1;
3051 }
3052
3053 /*
3054 * This ends up being protected by the set_limit mutex, during normal
3055 * operation, because that is its main call site.
3056 *
3057 * But when we create a new cache, we can call this as well if its parent
3058 * is kmem-limited. That will have to hold set_limit_mutex as well.
3059 */
3060 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3061 {
3062 int num, ret;
3063
3064 num = ida_simple_get(&kmem_limited_groups,
3065 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3066 if (num < 0)
3067 return num;
3068 /*
3069 * After this point, kmem_accounted (that we test atomically in
3070 * the beginning of this conditional), is no longer 0. This
3071 * guarantees only one process will set the following boolean
3072 * to true. We don't need test_and_set because we're protected
3073 * by the set_limit_mutex anyway.
3074 */
3075 memcg_kmem_set_activated(memcg);
3076
3077 ret = memcg_update_all_caches(num+1);
3078 if (ret) {
3079 ida_simple_remove(&kmem_limited_groups, num);
3080 memcg_kmem_clear_activated(memcg);
3081 return ret;
3082 }
3083
3084 memcg->kmemcg_id = num;
3085 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3086 mutex_init(&memcg->slab_caches_mutex);
3087 return 0;
3088 }
3089
3090 static size_t memcg_caches_array_size(int num_groups)
3091 {
3092 ssize_t size;
3093 if (num_groups <= 0)
3094 return 0;
3095
3096 size = 2 * num_groups;
3097 if (size < MEMCG_CACHES_MIN_SIZE)
3098 size = MEMCG_CACHES_MIN_SIZE;
3099 else if (size > MEMCG_CACHES_MAX_SIZE)
3100 size = MEMCG_CACHES_MAX_SIZE;
3101
3102 return size;
3103 }
3104
3105 /*
3106 * We should update the current array size iff all caches updates succeed. This
3107 * can only be done from the slab side. The slab mutex needs to be held when
3108 * calling this.
3109 */
3110 void memcg_update_array_size(int num)
3111 {
3112 if (num > memcg_limited_groups_array_size)
3113 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3114 }
3115
3116 static void kmem_cache_destroy_work_func(struct work_struct *w);
3117
3118 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3119 {
3120 struct memcg_cache_params *cur_params = s->memcg_params;
3121
3122 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3123
3124 if (num_groups > memcg_limited_groups_array_size) {
3125 int i;
3126 ssize_t size = memcg_caches_array_size(num_groups);
3127
3128 size *= sizeof(void *);
3129 size += sizeof(struct memcg_cache_params);
3130
3131 s->memcg_params = kzalloc(size, GFP_KERNEL);
3132 if (!s->memcg_params) {
3133 s->memcg_params = cur_params;
3134 return -ENOMEM;
3135 }
3136
3137 INIT_WORK(&s->memcg_params->destroy,
3138 kmem_cache_destroy_work_func);
3139 s->memcg_params->is_root_cache = true;
3140
3141 /*
3142 * There is the chance it will be bigger than
3143 * memcg_limited_groups_array_size, if we failed an allocation
3144 * in a cache, in which case all caches updated before it, will
3145 * have a bigger array.
3146 *
3147 * But if that is the case, the data after
3148 * memcg_limited_groups_array_size is certainly unused
3149 */
3150 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3151 if (!cur_params->memcg_caches[i])
3152 continue;
3153 s->memcg_params->memcg_caches[i] =
3154 cur_params->memcg_caches[i];
3155 }
3156
3157 /*
3158 * Ideally, we would wait until all caches succeed, and only
3159 * then free the old one. But this is not worth the extra
3160 * pointer per-cache we'd have to have for this.
3161 *
3162 * It is not a big deal if some caches are left with a size
3163 * bigger than the others. And all updates will reset this
3164 * anyway.
3165 */
3166 kfree(cur_params);
3167 }
3168 return 0;
3169 }
3170
3171 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3172 struct kmem_cache *root_cache)
3173 {
3174 size_t size = sizeof(struct memcg_cache_params);
3175
3176 if (!memcg_kmem_enabled())
3177 return 0;
3178
3179 if (!memcg)
3180 size += memcg_limited_groups_array_size * sizeof(void *);
3181
3182 s->memcg_params = kzalloc(size, GFP_KERNEL);
3183 if (!s->memcg_params)
3184 return -ENOMEM;
3185
3186 INIT_WORK(&s->memcg_params->destroy,
3187 kmem_cache_destroy_work_func);
3188 if (memcg) {
3189 s->memcg_params->memcg = memcg;
3190 s->memcg_params->root_cache = root_cache;
3191 } else
3192 s->memcg_params->is_root_cache = true;
3193
3194 return 0;
3195 }
3196
3197 void memcg_release_cache(struct kmem_cache *s)
3198 {
3199 struct kmem_cache *root;
3200 struct mem_cgroup *memcg;
3201 int id;
3202
3203 /*
3204 * This happens, for instance, when a root cache goes away before we
3205 * add any memcg.
3206 */
3207 if (!s->memcg_params)
3208 return;
3209
3210 if (s->memcg_params->is_root_cache)
3211 goto out;
3212
3213 memcg = s->memcg_params->memcg;
3214 id = memcg_cache_id(memcg);
3215
3216 root = s->memcg_params->root_cache;
3217 root->memcg_params->memcg_caches[id] = NULL;
3218
3219 mutex_lock(&memcg->slab_caches_mutex);
3220 list_del(&s->memcg_params->list);
3221 mutex_unlock(&memcg->slab_caches_mutex);
3222
3223 mem_cgroup_put(memcg);
3224 out:
3225 kfree(s->memcg_params);
3226 }
3227
3228 /*
3229 * During the creation a new cache, we need to disable our accounting mechanism
3230 * altogether. This is true even if we are not creating, but rather just
3231 * enqueing new caches to be created.
3232 *
3233 * This is because that process will trigger allocations; some visible, like
3234 * explicit kmallocs to auxiliary data structures, name strings and internal
3235 * cache structures; some well concealed, like INIT_WORK() that can allocate
3236 * objects during debug.
3237 *
3238 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3239 * to it. This may not be a bounded recursion: since the first cache creation
3240 * failed to complete (waiting on the allocation), we'll just try to create the
3241 * cache again, failing at the same point.
3242 *
3243 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3244 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3245 * inside the following two functions.
3246 */
3247 static inline void memcg_stop_kmem_account(void)
3248 {
3249 VM_BUG_ON(!current->mm);
3250 current->memcg_kmem_skip_account++;
3251 }
3252
3253 static inline void memcg_resume_kmem_account(void)
3254 {
3255 VM_BUG_ON(!current->mm);
3256 current->memcg_kmem_skip_account--;
3257 }
3258
3259 static void kmem_cache_destroy_work_func(struct work_struct *w)
3260 {
3261 struct kmem_cache *cachep;
3262 struct memcg_cache_params *p;
3263
3264 p = container_of(w, struct memcg_cache_params, destroy);
3265
3266 cachep = memcg_params_to_cache(p);
3267
3268 /*
3269 * If we get down to 0 after shrink, we could delete right away.
3270 * However, memcg_release_pages() already puts us back in the workqueue
3271 * in that case. If we proceed deleting, we'll get a dangling
3272 * reference, and removing the object from the workqueue in that case
3273 * is unnecessary complication. We are not a fast path.
3274 *
3275 * Note that this case is fundamentally different from racing with
3276 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3277 * kmem_cache_shrink, not only we would be reinserting a dead cache
3278 * into the queue, but doing so from inside the worker racing to
3279 * destroy it.
3280 *
3281 * So if we aren't down to zero, we'll just schedule a worker and try
3282 * again
3283 */
3284 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3285 kmem_cache_shrink(cachep);
3286 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3287 return;
3288 } else
3289 kmem_cache_destroy(cachep);
3290 }
3291
3292 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3293 {
3294 if (!cachep->memcg_params->dead)
3295 return;
3296
3297 /*
3298 * There are many ways in which we can get here.
3299 *
3300 * We can get to a memory-pressure situation while the delayed work is
3301 * still pending to run. The vmscan shrinkers can then release all
3302 * cache memory and get us to destruction. If this is the case, we'll
3303 * be executed twice, which is a bug (the second time will execute over
3304 * bogus data). In this case, cancelling the work should be fine.
3305 *
3306 * But we can also get here from the worker itself, if
3307 * kmem_cache_shrink is enough to shake all the remaining objects and
3308 * get the page count to 0. In this case, we'll deadlock if we try to
3309 * cancel the work (the worker runs with an internal lock held, which
3310 * is the same lock we would hold for cancel_work_sync().)
3311 *
3312 * Since we can't possibly know who got us here, just refrain from
3313 * running if there is already work pending
3314 */
3315 if (work_pending(&cachep->memcg_params->destroy))
3316 return;
3317 /*
3318 * We have to defer the actual destroying to a workqueue, because
3319 * we might currently be in a context that cannot sleep.
3320 */
3321 schedule_work(&cachep->memcg_params->destroy);
3322 }
3323
3324 static char *memcg_cache_name(struct mem_cgroup *memcg, struct kmem_cache *s)
3325 {
3326 char *name;
3327 struct dentry *dentry;
3328
3329 rcu_read_lock();
3330 dentry = rcu_dereference(memcg->css.cgroup->dentry);
3331 rcu_read_unlock();
3332
3333 BUG_ON(dentry == NULL);
3334
3335 name = kasprintf(GFP_KERNEL, "%s(%d:%s)", s->name,
3336 memcg_cache_id(memcg), dentry->d_name.name);
3337
3338 return name;
3339 }
3340
3341 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3342 struct kmem_cache *s)
3343 {
3344 char *name;
3345 struct kmem_cache *new;
3346
3347 name = memcg_cache_name(memcg, s);
3348 if (!name)
3349 return NULL;
3350
3351 new = kmem_cache_create_memcg(memcg, name, s->object_size, s->align,
3352 (s->flags & ~SLAB_PANIC), s->ctor, s);
3353
3354 if (new)
3355 new->allocflags |= __GFP_KMEMCG;
3356
3357 kfree(name);
3358 return new;
3359 }
3360
3361 /*
3362 * This lock protects updaters, not readers. We want readers to be as fast as
3363 * they can, and they will either see NULL or a valid cache value. Our model
3364 * allow them to see NULL, in which case the root memcg will be selected.
3365 *
3366 * We need this lock because multiple allocations to the same cache from a non
3367 * will span more than one worker. Only one of them can create the cache.
3368 */
3369 static DEFINE_MUTEX(memcg_cache_mutex);
3370 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3371 struct kmem_cache *cachep)
3372 {
3373 struct kmem_cache *new_cachep;
3374 int idx;
3375
3376 BUG_ON(!memcg_can_account_kmem(memcg));
3377
3378 idx = memcg_cache_id(memcg);
3379
3380 mutex_lock(&memcg_cache_mutex);
3381 new_cachep = cachep->memcg_params->memcg_caches[idx];
3382 if (new_cachep)
3383 goto out;
3384
3385 new_cachep = kmem_cache_dup(memcg, cachep);
3386 if (new_cachep == NULL) {
3387 new_cachep = cachep;
3388 goto out;
3389 }
3390
3391 mem_cgroup_get(memcg);
3392 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3393
3394 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3395 /*
3396 * the readers won't lock, make sure everybody sees the updated value,
3397 * so they won't put stuff in the queue again for no reason
3398 */
3399 wmb();
3400 out:
3401 mutex_unlock(&memcg_cache_mutex);
3402 return new_cachep;
3403 }
3404
3405 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3406 {
3407 struct kmem_cache *c;
3408 int i;
3409
3410 if (!s->memcg_params)
3411 return;
3412 if (!s->memcg_params->is_root_cache)
3413 return;
3414
3415 /*
3416 * If the cache is being destroyed, we trust that there is no one else
3417 * requesting objects from it. Even if there are, the sanity checks in
3418 * kmem_cache_destroy should caught this ill-case.
3419 *
3420 * Still, we don't want anyone else freeing memcg_caches under our
3421 * noses, which can happen if a new memcg comes to life. As usual,
3422 * we'll take the set_limit_mutex to protect ourselves against this.
3423 */
3424 mutex_lock(&set_limit_mutex);
3425 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3426 c = s->memcg_params->memcg_caches[i];
3427 if (!c)
3428 continue;
3429
3430 /*
3431 * We will now manually delete the caches, so to avoid races
3432 * we need to cancel all pending destruction workers and
3433 * proceed with destruction ourselves.
3434 *
3435 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3436 * and that could spawn the workers again: it is likely that
3437 * the cache still have active pages until this very moment.
3438 * This would lead us back to mem_cgroup_destroy_cache.
3439 *
3440 * But that will not execute at all if the "dead" flag is not
3441 * set, so flip it down to guarantee we are in control.
3442 */
3443 c->memcg_params->dead = false;
3444 cancel_work_sync(&c->memcg_params->destroy);
3445 kmem_cache_destroy(c);
3446 }
3447 mutex_unlock(&set_limit_mutex);
3448 }
3449
3450 struct create_work {
3451 struct mem_cgroup *memcg;
3452 struct kmem_cache *cachep;
3453 struct work_struct work;
3454 };
3455
3456 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3457 {
3458 struct kmem_cache *cachep;
3459 struct memcg_cache_params *params;
3460
3461 if (!memcg_kmem_is_active(memcg))
3462 return;
3463
3464 mutex_lock(&memcg->slab_caches_mutex);
3465 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3466 cachep = memcg_params_to_cache(params);
3467 cachep->memcg_params->dead = true;
3468 schedule_work(&cachep->memcg_params->destroy);
3469 }
3470 mutex_unlock(&memcg->slab_caches_mutex);
3471 }
3472
3473 static void memcg_create_cache_work_func(struct work_struct *w)
3474 {
3475 struct create_work *cw;
3476
3477 cw = container_of(w, struct create_work, work);
3478 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3479 /* Drop the reference gotten when we enqueued. */
3480 css_put(&cw->memcg->css);
3481 kfree(cw);
3482 }
3483
3484 /*
3485 * Enqueue the creation of a per-memcg kmem_cache.
3486 */
3487 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3488 struct kmem_cache *cachep)
3489 {
3490 struct create_work *cw;
3491
3492 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3493 if (cw == NULL) {
3494 css_put(&memcg->css);
3495 return;
3496 }
3497
3498 cw->memcg = memcg;
3499 cw->cachep = cachep;
3500
3501 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3502 schedule_work(&cw->work);
3503 }
3504
3505 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3506 struct kmem_cache *cachep)
3507 {
3508 /*
3509 * We need to stop accounting when we kmalloc, because if the
3510 * corresponding kmalloc cache is not yet created, the first allocation
3511 * in __memcg_create_cache_enqueue will recurse.
3512 *
3513 * However, it is better to enclose the whole function. Depending on
3514 * the debugging options enabled, INIT_WORK(), for instance, can
3515 * trigger an allocation. This too, will make us recurse. Because at
3516 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3517 * the safest choice is to do it like this, wrapping the whole function.
3518 */
3519 memcg_stop_kmem_account();
3520 __memcg_create_cache_enqueue(memcg, cachep);
3521 memcg_resume_kmem_account();
3522 }
3523 /*
3524 * Return the kmem_cache we're supposed to use for a slab allocation.
3525 * We try to use the current memcg's version of the cache.
3526 *
3527 * If the cache does not exist yet, if we are the first user of it,
3528 * we either create it immediately, if possible, or create it asynchronously
3529 * in a workqueue.
3530 * In the latter case, we will let the current allocation go through with
3531 * the original cache.
3532 *
3533 * Can't be called in interrupt context or from kernel threads.
3534 * This function needs to be called with rcu_read_lock() held.
3535 */
3536 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3537 gfp_t gfp)
3538 {
3539 struct mem_cgroup *memcg;
3540 int idx;
3541
3542 VM_BUG_ON(!cachep->memcg_params);
3543 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3544
3545 if (!current->mm || current->memcg_kmem_skip_account)
3546 return cachep;
3547
3548 rcu_read_lock();
3549 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3550
3551 if (!memcg_can_account_kmem(memcg))
3552 goto out;
3553
3554 idx = memcg_cache_id(memcg);
3555
3556 /*
3557 * barrier to mare sure we're always seeing the up to date value. The
3558 * code updating memcg_caches will issue a write barrier to match this.
3559 */
3560 read_barrier_depends();
3561 if (likely(cachep->memcg_params->memcg_caches[idx])) {
3562 cachep = cachep->memcg_params->memcg_caches[idx];
3563 goto out;
3564 }
3565
3566 /* The corresponding put will be done in the workqueue. */
3567 if (!css_tryget(&memcg->css))
3568 goto out;
3569 rcu_read_unlock();
3570
3571 /*
3572 * If we are in a safe context (can wait, and not in interrupt
3573 * context), we could be be predictable and return right away.
3574 * This would guarantee that the allocation being performed
3575 * already belongs in the new cache.
3576 *
3577 * However, there are some clashes that can arrive from locking.
3578 * For instance, because we acquire the slab_mutex while doing
3579 * kmem_cache_dup, this means no further allocation could happen
3580 * with the slab_mutex held.
3581 *
3582 * Also, because cache creation issue get_online_cpus(), this
3583 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3584 * that ends up reversed during cpu hotplug. (cpuset allocates
3585 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3586 * better to defer everything.
3587 */
3588 memcg_create_cache_enqueue(memcg, cachep);
3589 return cachep;
3590 out:
3591 rcu_read_unlock();
3592 return cachep;
3593 }
3594 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3595
3596 /*
3597 * We need to verify if the allocation against current->mm->owner's memcg is
3598 * possible for the given order. But the page is not allocated yet, so we'll
3599 * need a further commit step to do the final arrangements.
3600 *
3601 * It is possible for the task to switch cgroups in this mean time, so at
3602 * commit time, we can't rely on task conversion any longer. We'll then use
3603 * the handle argument to return to the caller which cgroup we should commit
3604 * against. We could also return the memcg directly and avoid the pointer
3605 * passing, but a boolean return value gives better semantics considering
3606 * the compiled-out case as well.
3607 *
3608 * Returning true means the allocation is possible.
3609 */
3610 bool
3611 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3612 {
3613 struct mem_cgroup *memcg;
3614 int ret;
3615
3616 *_memcg = NULL;
3617 memcg = try_get_mem_cgroup_from_mm(current->mm);
3618
3619 /*
3620 * very rare case described in mem_cgroup_from_task. Unfortunately there
3621 * isn't much we can do without complicating this too much, and it would
3622 * be gfp-dependent anyway. Just let it go
3623 */
3624 if (unlikely(!memcg))
3625 return true;
3626
3627 if (!memcg_can_account_kmem(memcg)) {
3628 css_put(&memcg->css);
3629 return true;
3630 }
3631
3632 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3633 if (!ret)
3634 *_memcg = memcg;
3635
3636 css_put(&memcg->css);
3637 return (ret == 0);
3638 }
3639
3640 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3641 int order)
3642 {
3643 struct page_cgroup *pc;
3644
3645 VM_BUG_ON(mem_cgroup_is_root(memcg));
3646
3647 /* The page allocation failed. Revert */
3648 if (!page) {
3649 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3650 return;
3651 }
3652
3653 pc = lookup_page_cgroup(page);
3654 lock_page_cgroup(pc);
3655 pc->mem_cgroup = memcg;
3656 SetPageCgroupUsed(pc);
3657 unlock_page_cgroup(pc);
3658 }
3659
3660 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3661 {
3662 struct mem_cgroup *memcg = NULL;
3663 struct page_cgroup *pc;
3664
3665
3666 pc = lookup_page_cgroup(page);
3667 /*
3668 * Fast unlocked return. Theoretically might have changed, have to
3669 * check again after locking.
3670 */
3671 if (!PageCgroupUsed(pc))
3672 return;
3673
3674 lock_page_cgroup(pc);
3675 if (PageCgroupUsed(pc)) {
3676 memcg = pc->mem_cgroup;
3677 ClearPageCgroupUsed(pc);
3678 }
3679 unlock_page_cgroup(pc);
3680
3681 /*
3682 * We trust that only if there is a memcg associated with the page, it
3683 * is a valid allocation
3684 */
3685 if (!memcg)
3686 return;
3687
3688 VM_BUG_ON(mem_cgroup_is_root(memcg));
3689 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3690 }
3691 #else
3692 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3693 {
3694 }
3695 #endif /* CONFIG_MEMCG_KMEM */
3696
3697 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3698
3699 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3700 /*
3701 * Because tail pages are not marked as "used", set it. We're under
3702 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3703 * charge/uncharge will be never happen and move_account() is done under
3704 * compound_lock(), so we don't have to take care of races.
3705 */
3706 void mem_cgroup_split_huge_fixup(struct page *head)
3707 {
3708 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3709 struct page_cgroup *pc;
3710 int i;
3711
3712 if (mem_cgroup_disabled())
3713 return;
3714 for (i = 1; i < HPAGE_PMD_NR; i++) {
3715 pc = head_pc + i;
3716 pc->mem_cgroup = head_pc->mem_cgroup;
3717 smp_wmb();/* see __commit_charge() */
3718 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3719 }
3720 }
3721 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3722
3723 /**
3724 * mem_cgroup_move_account - move account of the page
3725 * @page: the page
3726 * @nr_pages: number of regular pages (>1 for huge pages)
3727 * @pc: page_cgroup of the page.
3728 * @from: mem_cgroup which the page is moved from.
3729 * @to: mem_cgroup which the page is moved to. @from != @to.
3730 *
3731 * The caller must confirm following.
3732 * - page is not on LRU (isolate_page() is useful.)
3733 * - compound_lock is held when nr_pages > 1
3734 *
3735 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3736 * from old cgroup.
3737 */
3738 static int mem_cgroup_move_account(struct page *page,
3739 unsigned int nr_pages,
3740 struct page_cgroup *pc,
3741 struct mem_cgroup *from,
3742 struct mem_cgroup *to)
3743 {
3744 unsigned long flags;
3745 int ret;
3746 bool anon = PageAnon(page);
3747
3748 VM_BUG_ON(from == to);
3749 VM_BUG_ON(PageLRU(page));
3750 /*
3751 * The page is isolated from LRU. So, collapse function
3752 * will not handle this page. But page splitting can happen.
3753 * Do this check under compound_page_lock(). The caller should
3754 * hold it.
3755 */
3756 ret = -EBUSY;
3757 if (nr_pages > 1 && !PageTransHuge(page))
3758 goto out;
3759
3760 lock_page_cgroup(pc);
3761
3762 ret = -EINVAL;
3763 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3764 goto unlock;
3765
3766 move_lock_mem_cgroup(from, &flags);
3767
3768 if (!anon && page_mapped(page)) {
3769 /* Update mapped_file data for mem_cgroup */
3770 preempt_disable();
3771 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3772 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3773 preempt_enable();
3774 }
3775 mem_cgroup_charge_statistics(from, anon, -nr_pages);
3776
3777 /* caller should have done css_get */
3778 pc->mem_cgroup = to;
3779 mem_cgroup_charge_statistics(to, anon, nr_pages);
3780 move_unlock_mem_cgroup(from, &flags);
3781 ret = 0;
3782 unlock:
3783 unlock_page_cgroup(pc);
3784 /*
3785 * check events
3786 */
3787 memcg_check_events(to, page);
3788 memcg_check_events(from, page);
3789 out:
3790 return ret;
3791 }
3792
3793 /**
3794 * mem_cgroup_move_parent - moves page to the parent group
3795 * @page: the page to move
3796 * @pc: page_cgroup of the page
3797 * @child: page's cgroup
3798 *
3799 * move charges to its parent or the root cgroup if the group has no
3800 * parent (aka use_hierarchy==0).
3801 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3802 * mem_cgroup_move_account fails) the failure is always temporary and
3803 * it signals a race with a page removal/uncharge or migration. In the
3804 * first case the page is on the way out and it will vanish from the LRU
3805 * on the next attempt and the call should be retried later.
3806 * Isolation from the LRU fails only if page has been isolated from
3807 * the LRU since we looked at it and that usually means either global
3808 * reclaim or migration going on. The page will either get back to the
3809 * LRU or vanish.
3810 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3811 * (!PageCgroupUsed) or moved to a different group. The page will
3812 * disappear in the next attempt.
3813 */
3814 static int mem_cgroup_move_parent(struct page *page,
3815 struct page_cgroup *pc,
3816 struct mem_cgroup *child)
3817 {
3818 struct mem_cgroup *parent;
3819 unsigned int nr_pages;
3820 unsigned long uninitialized_var(flags);
3821 int ret;
3822
3823 VM_BUG_ON(mem_cgroup_is_root(child));
3824
3825 ret = -EBUSY;
3826 if (!get_page_unless_zero(page))
3827 goto out;
3828 if (isolate_lru_page(page))
3829 goto put;
3830
3831 nr_pages = hpage_nr_pages(page);
3832
3833 parent = parent_mem_cgroup(child);
3834 /*
3835 * If no parent, move charges to root cgroup.
3836 */
3837 if (!parent)
3838 parent = root_mem_cgroup;
3839
3840 if (nr_pages > 1) {
3841 VM_BUG_ON(!PageTransHuge(page));
3842 flags = compound_lock_irqsave(page);
3843 }
3844
3845 ret = mem_cgroup_move_account(page, nr_pages,
3846 pc, child, parent);
3847 if (!ret)
3848 __mem_cgroup_cancel_local_charge(child, nr_pages);
3849
3850 if (nr_pages > 1)
3851 compound_unlock_irqrestore(page, flags);
3852 putback_lru_page(page);
3853 put:
3854 put_page(page);
3855 out:
3856 return ret;
3857 }
3858
3859 /*
3860 * Charge the memory controller for page usage.
3861 * Return
3862 * 0 if the charge was successful
3863 * < 0 if the cgroup is over its limit
3864 */
3865 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3866 gfp_t gfp_mask, enum charge_type ctype)
3867 {
3868 struct mem_cgroup *memcg = NULL;
3869 unsigned int nr_pages = 1;
3870 bool oom = true;
3871 int ret;
3872
3873 if (PageTransHuge(page)) {
3874 nr_pages <<= compound_order(page);
3875 VM_BUG_ON(!PageTransHuge(page));
3876 /*
3877 * Never OOM-kill a process for a huge page. The
3878 * fault handler will fall back to regular pages.
3879 */
3880 oom = false;
3881 }
3882
3883 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3884 if (ret == -ENOMEM)
3885 return ret;
3886 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3887 return 0;
3888 }
3889
3890 int mem_cgroup_newpage_charge(struct page *page,
3891 struct mm_struct *mm, gfp_t gfp_mask)
3892 {
3893 if (mem_cgroup_disabled())
3894 return 0;
3895 VM_BUG_ON(page_mapped(page));
3896 VM_BUG_ON(page->mapping && !PageAnon(page));
3897 VM_BUG_ON(!mm);
3898 return mem_cgroup_charge_common(page, mm, gfp_mask,
3899 MEM_CGROUP_CHARGE_TYPE_ANON);
3900 }
3901
3902 /*
3903 * While swap-in, try_charge -> commit or cancel, the page is locked.
3904 * And when try_charge() successfully returns, one refcnt to memcg without
3905 * struct page_cgroup is acquired. This refcnt will be consumed by
3906 * "commit()" or removed by "cancel()"
3907 */
3908 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3909 struct page *page,
3910 gfp_t mask,
3911 struct mem_cgroup **memcgp)
3912 {
3913 struct mem_cgroup *memcg;
3914 struct page_cgroup *pc;
3915 int ret;
3916
3917 pc = lookup_page_cgroup(page);
3918 /*
3919 * Every swap fault against a single page tries to charge the
3920 * page, bail as early as possible. shmem_unuse() encounters
3921 * already charged pages, too. The USED bit is protected by
3922 * the page lock, which serializes swap cache removal, which
3923 * in turn serializes uncharging.
3924 */
3925 if (PageCgroupUsed(pc))
3926 return 0;
3927 if (!do_swap_account)
3928 goto charge_cur_mm;
3929 memcg = try_get_mem_cgroup_from_page(page);
3930 if (!memcg)
3931 goto charge_cur_mm;
3932 *memcgp = memcg;
3933 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3934 css_put(&memcg->css);
3935 if (ret == -EINTR)
3936 ret = 0;
3937 return ret;
3938 charge_cur_mm:
3939 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3940 if (ret == -EINTR)
3941 ret = 0;
3942 return ret;
3943 }
3944
3945 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3946 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3947 {
3948 *memcgp = NULL;
3949 if (mem_cgroup_disabled())
3950 return 0;
3951 /*
3952 * A racing thread's fault, or swapoff, may have already
3953 * updated the pte, and even removed page from swap cache: in
3954 * those cases unuse_pte()'s pte_same() test will fail; but
3955 * there's also a KSM case which does need to charge the page.
3956 */
3957 if (!PageSwapCache(page)) {
3958 int ret;
3959
3960 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
3961 if (ret == -EINTR)
3962 ret = 0;
3963 return ret;
3964 }
3965 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3966 }
3967
3968 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3969 {
3970 if (mem_cgroup_disabled())
3971 return;
3972 if (!memcg)
3973 return;
3974 __mem_cgroup_cancel_charge(memcg, 1);
3975 }
3976
3977 static void
3978 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
3979 enum charge_type ctype)
3980 {
3981 if (mem_cgroup_disabled())
3982 return;
3983 if (!memcg)
3984 return;
3985
3986 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3987 /*
3988 * Now swap is on-memory. This means this page may be
3989 * counted both as mem and swap....double count.
3990 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3991 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3992 * may call delete_from_swap_cache() before reach here.
3993 */
3994 if (do_swap_account && PageSwapCache(page)) {
3995 swp_entry_t ent = {.val = page_private(page)};
3996 mem_cgroup_uncharge_swap(ent);
3997 }
3998 }
3999
4000 void mem_cgroup_commit_charge_swapin(struct page *page,
4001 struct mem_cgroup *memcg)
4002 {
4003 __mem_cgroup_commit_charge_swapin(page, memcg,
4004 MEM_CGROUP_CHARGE_TYPE_ANON);
4005 }
4006
4007 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4008 gfp_t gfp_mask)
4009 {
4010 struct mem_cgroup *memcg = NULL;
4011 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4012 int ret;
4013
4014 if (mem_cgroup_disabled())
4015 return 0;
4016 if (PageCompound(page))
4017 return 0;
4018
4019 if (!PageSwapCache(page))
4020 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4021 else { /* page is swapcache/shmem */
4022 ret = __mem_cgroup_try_charge_swapin(mm, page,
4023 gfp_mask, &memcg);
4024 if (!ret)
4025 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4026 }
4027 return ret;
4028 }
4029
4030 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4031 unsigned int nr_pages,
4032 const enum charge_type ctype)
4033 {
4034 struct memcg_batch_info *batch = NULL;
4035 bool uncharge_memsw = true;
4036
4037 /* If swapout, usage of swap doesn't decrease */
4038 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4039 uncharge_memsw = false;
4040
4041 batch = &current->memcg_batch;
4042 /*
4043 * In usual, we do css_get() when we remember memcg pointer.
4044 * But in this case, we keep res->usage until end of a series of
4045 * uncharges. Then, it's ok to ignore memcg's refcnt.
4046 */
4047 if (!batch->memcg)
4048 batch->memcg = memcg;
4049 /*
4050 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4051 * In those cases, all pages freed continuously can be expected to be in
4052 * the same cgroup and we have chance to coalesce uncharges.
4053 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4054 * because we want to do uncharge as soon as possible.
4055 */
4056
4057 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4058 goto direct_uncharge;
4059
4060 if (nr_pages > 1)
4061 goto direct_uncharge;
4062
4063 /*
4064 * In typical case, batch->memcg == mem. This means we can
4065 * merge a series of uncharges to an uncharge of res_counter.
4066 * If not, we uncharge res_counter ony by one.
4067 */
4068 if (batch->memcg != memcg)
4069 goto direct_uncharge;
4070 /* remember freed charge and uncharge it later */
4071 batch->nr_pages++;
4072 if (uncharge_memsw)
4073 batch->memsw_nr_pages++;
4074 return;
4075 direct_uncharge:
4076 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4077 if (uncharge_memsw)
4078 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4079 if (unlikely(batch->memcg != memcg))
4080 memcg_oom_recover(memcg);
4081 }
4082
4083 /*
4084 * uncharge if !page_mapped(page)
4085 */
4086 static struct mem_cgroup *
4087 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4088 bool end_migration)
4089 {
4090 struct mem_cgroup *memcg = NULL;
4091 unsigned int nr_pages = 1;
4092 struct page_cgroup *pc;
4093 bool anon;
4094
4095 if (mem_cgroup_disabled())
4096 return NULL;
4097
4098 VM_BUG_ON(PageSwapCache(page));
4099
4100 if (PageTransHuge(page)) {
4101 nr_pages <<= compound_order(page);
4102 VM_BUG_ON(!PageTransHuge(page));
4103 }
4104 /*
4105 * Check if our page_cgroup is valid
4106 */
4107 pc = lookup_page_cgroup(page);
4108 if (unlikely(!PageCgroupUsed(pc)))
4109 return NULL;
4110
4111 lock_page_cgroup(pc);
4112
4113 memcg = pc->mem_cgroup;
4114
4115 if (!PageCgroupUsed(pc))
4116 goto unlock_out;
4117
4118 anon = PageAnon(page);
4119
4120 switch (ctype) {
4121 case MEM_CGROUP_CHARGE_TYPE_ANON:
4122 /*
4123 * Generally PageAnon tells if it's the anon statistics to be
4124 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4125 * used before page reached the stage of being marked PageAnon.
4126 */
4127 anon = true;
4128 /* fallthrough */
4129 case MEM_CGROUP_CHARGE_TYPE_DROP:
4130 /* See mem_cgroup_prepare_migration() */
4131 if (page_mapped(page))
4132 goto unlock_out;
4133 /*
4134 * Pages under migration may not be uncharged. But
4135 * end_migration() /must/ be the one uncharging the
4136 * unused post-migration page and so it has to call
4137 * here with the migration bit still set. See the
4138 * res_counter handling below.
4139 */
4140 if (!end_migration && PageCgroupMigration(pc))
4141 goto unlock_out;
4142 break;
4143 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4144 if (!PageAnon(page)) { /* Shared memory */
4145 if (page->mapping && !page_is_file_cache(page))
4146 goto unlock_out;
4147 } else if (page_mapped(page)) /* Anon */
4148 goto unlock_out;
4149 break;
4150 default:
4151 break;
4152 }
4153
4154 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
4155
4156 ClearPageCgroupUsed(pc);
4157 /*
4158 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4159 * freed from LRU. This is safe because uncharged page is expected not
4160 * to be reused (freed soon). Exception is SwapCache, it's handled by
4161 * special functions.
4162 */
4163
4164 unlock_page_cgroup(pc);
4165 /*
4166 * even after unlock, we have memcg->res.usage here and this memcg
4167 * will never be freed.
4168 */
4169 memcg_check_events(memcg, page);
4170 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4171 mem_cgroup_swap_statistics(memcg, true);
4172 mem_cgroup_get(memcg);
4173 }
4174 /*
4175 * Migration does not charge the res_counter for the
4176 * replacement page, so leave it alone when phasing out the
4177 * page that is unused after the migration.
4178 */
4179 if (!end_migration && !mem_cgroup_is_root(memcg))
4180 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4181
4182 return memcg;
4183
4184 unlock_out:
4185 unlock_page_cgroup(pc);
4186 return NULL;
4187 }
4188
4189 void mem_cgroup_uncharge_page(struct page *page)
4190 {
4191 /* early check. */
4192 if (page_mapped(page))
4193 return;
4194 VM_BUG_ON(page->mapping && !PageAnon(page));
4195 if (PageSwapCache(page))
4196 return;
4197 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4198 }
4199
4200 void mem_cgroup_uncharge_cache_page(struct page *page)
4201 {
4202 VM_BUG_ON(page_mapped(page));
4203 VM_BUG_ON(page->mapping);
4204 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4205 }
4206
4207 /*
4208 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4209 * In that cases, pages are freed continuously and we can expect pages
4210 * are in the same memcg. All these calls itself limits the number of
4211 * pages freed at once, then uncharge_start/end() is called properly.
4212 * This may be called prural(2) times in a context,
4213 */
4214
4215 void mem_cgroup_uncharge_start(void)
4216 {
4217 current->memcg_batch.do_batch++;
4218 /* We can do nest. */
4219 if (current->memcg_batch.do_batch == 1) {
4220 current->memcg_batch.memcg = NULL;
4221 current->memcg_batch.nr_pages = 0;
4222 current->memcg_batch.memsw_nr_pages = 0;
4223 }
4224 }
4225
4226 void mem_cgroup_uncharge_end(void)
4227 {
4228 struct memcg_batch_info *batch = &current->memcg_batch;
4229
4230 if (!batch->do_batch)
4231 return;
4232
4233 batch->do_batch--;
4234 if (batch->do_batch) /* If stacked, do nothing. */
4235 return;
4236
4237 if (!batch->memcg)
4238 return;
4239 /*
4240 * This "batch->memcg" is valid without any css_get/put etc...
4241 * bacause we hide charges behind us.
4242 */
4243 if (batch->nr_pages)
4244 res_counter_uncharge(&batch->memcg->res,
4245 batch->nr_pages * PAGE_SIZE);
4246 if (batch->memsw_nr_pages)
4247 res_counter_uncharge(&batch->memcg->memsw,
4248 batch->memsw_nr_pages * PAGE_SIZE);
4249 memcg_oom_recover(batch->memcg);
4250 /* forget this pointer (for sanity check) */
4251 batch->memcg = NULL;
4252 }
4253
4254 #ifdef CONFIG_SWAP
4255 /*
4256 * called after __delete_from_swap_cache() and drop "page" account.
4257 * memcg information is recorded to swap_cgroup of "ent"
4258 */
4259 void
4260 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4261 {
4262 struct mem_cgroup *memcg;
4263 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4264
4265 if (!swapout) /* this was a swap cache but the swap is unused ! */
4266 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4267
4268 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4269
4270 /*
4271 * record memcg information, if swapout && memcg != NULL,
4272 * mem_cgroup_get() was called in uncharge().
4273 */
4274 if (do_swap_account && swapout && memcg)
4275 swap_cgroup_record(ent, css_id(&memcg->css));
4276 }
4277 #endif
4278
4279 #ifdef CONFIG_MEMCG_SWAP
4280 /*
4281 * called from swap_entry_free(). remove record in swap_cgroup and
4282 * uncharge "memsw" account.
4283 */
4284 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4285 {
4286 struct mem_cgroup *memcg;
4287 unsigned short id;
4288
4289 if (!do_swap_account)
4290 return;
4291
4292 id = swap_cgroup_record(ent, 0);
4293 rcu_read_lock();
4294 memcg = mem_cgroup_lookup(id);
4295 if (memcg) {
4296 /*
4297 * We uncharge this because swap is freed.
4298 * This memcg can be obsolete one. We avoid calling css_tryget
4299 */
4300 if (!mem_cgroup_is_root(memcg))
4301 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4302 mem_cgroup_swap_statistics(memcg, false);
4303 mem_cgroup_put(memcg);
4304 }
4305 rcu_read_unlock();
4306 }
4307
4308 /**
4309 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4310 * @entry: swap entry to be moved
4311 * @from: mem_cgroup which the entry is moved from
4312 * @to: mem_cgroup which the entry is moved to
4313 *
4314 * It succeeds only when the swap_cgroup's record for this entry is the same
4315 * as the mem_cgroup's id of @from.
4316 *
4317 * Returns 0 on success, -EINVAL on failure.
4318 *
4319 * The caller must have charged to @to, IOW, called res_counter_charge() about
4320 * both res and memsw, and called css_get().
4321 */
4322 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4323 struct mem_cgroup *from, struct mem_cgroup *to)
4324 {
4325 unsigned short old_id, new_id;
4326
4327 old_id = css_id(&from->css);
4328 new_id = css_id(&to->css);
4329
4330 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4331 mem_cgroup_swap_statistics(from, false);
4332 mem_cgroup_swap_statistics(to, true);
4333 /*
4334 * This function is only called from task migration context now.
4335 * It postpones res_counter and refcount handling till the end
4336 * of task migration(mem_cgroup_clear_mc()) for performance
4337 * improvement. But we cannot postpone mem_cgroup_get(to)
4338 * because if the process that has been moved to @to does
4339 * swap-in, the refcount of @to might be decreased to 0.
4340 */
4341 mem_cgroup_get(to);
4342 return 0;
4343 }
4344 return -EINVAL;
4345 }
4346 #else
4347 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4348 struct mem_cgroup *from, struct mem_cgroup *to)
4349 {
4350 return -EINVAL;
4351 }
4352 #endif
4353
4354 /*
4355 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4356 * page belongs to.
4357 */
4358 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4359 struct mem_cgroup **memcgp)
4360 {
4361 struct mem_cgroup *memcg = NULL;
4362 unsigned int nr_pages = 1;
4363 struct page_cgroup *pc;
4364 enum charge_type ctype;
4365
4366 *memcgp = NULL;
4367
4368 if (mem_cgroup_disabled())
4369 return;
4370
4371 if (PageTransHuge(page))
4372 nr_pages <<= compound_order(page);
4373
4374 pc = lookup_page_cgroup(page);
4375 lock_page_cgroup(pc);
4376 if (PageCgroupUsed(pc)) {
4377 memcg = pc->mem_cgroup;
4378 css_get(&memcg->css);
4379 /*
4380 * At migrating an anonymous page, its mapcount goes down
4381 * to 0 and uncharge() will be called. But, even if it's fully
4382 * unmapped, migration may fail and this page has to be
4383 * charged again. We set MIGRATION flag here and delay uncharge
4384 * until end_migration() is called
4385 *
4386 * Corner Case Thinking
4387 * A)
4388 * When the old page was mapped as Anon and it's unmap-and-freed
4389 * while migration was ongoing.
4390 * If unmap finds the old page, uncharge() of it will be delayed
4391 * until end_migration(). If unmap finds a new page, it's
4392 * uncharged when it make mapcount to be 1->0. If unmap code
4393 * finds swap_migration_entry, the new page will not be mapped
4394 * and end_migration() will find it(mapcount==0).
4395 *
4396 * B)
4397 * When the old page was mapped but migraion fails, the kernel
4398 * remaps it. A charge for it is kept by MIGRATION flag even
4399 * if mapcount goes down to 0. We can do remap successfully
4400 * without charging it again.
4401 *
4402 * C)
4403 * The "old" page is under lock_page() until the end of
4404 * migration, so, the old page itself will not be swapped-out.
4405 * If the new page is swapped out before end_migraton, our
4406 * hook to usual swap-out path will catch the event.
4407 */
4408 if (PageAnon(page))
4409 SetPageCgroupMigration(pc);
4410 }
4411 unlock_page_cgroup(pc);
4412 /*
4413 * If the page is not charged at this point,
4414 * we return here.
4415 */
4416 if (!memcg)
4417 return;
4418
4419 *memcgp = memcg;
4420 /*
4421 * We charge new page before it's used/mapped. So, even if unlock_page()
4422 * is called before end_migration, we can catch all events on this new
4423 * page. In the case new page is migrated but not remapped, new page's
4424 * mapcount will be finally 0 and we call uncharge in end_migration().
4425 */
4426 if (PageAnon(page))
4427 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4428 else
4429 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4430 /*
4431 * The page is committed to the memcg, but it's not actually
4432 * charged to the res_counter since we plan on replacing the
4433 * old one and only one page is going to be left afterwards.
4434 */
4435 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4436 }
4437
4438 /* remove redundant charge if migration failed*/
4439 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4440 struct page *oldpage, struct page *newpage, bool migration_ok)
4441 {
4442 struct page *used, *unused;
4443 struct page_cgroup *pc;
4444 bool anon;
4445
4446 if (!memcg)
4447 return;
4448
4449 if (!migration_ok) {
4450 used = oldpage;
4451 unused = newpage;
4452 } else {
4453 used = newpage;
4454 unused = oldpage;
4455 }
4456 anon = PageAnon(used);
4457 __mem_cgroup_uncharge_common(unused,
4458 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4459 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4460 true);
4461 css_put(&memcg->css);
4462 /*
4463 * We disallowed uncharge of pages under migration because mapcount
4464 * of the page goes down to zero, temporarly.
4465 * Clear the flag and check the page should be charged.
4466 */
4467 pc = lookup_page_cgroup(oldpage);
4468 lock_page_cgroup(pc);
4469 ClearPageCgroupMigration(pc);
4470 unlock_page_cgroup(pc);
4471
4472 /*
4473 * If a page is a file cache, radix-tree replacement is very atomic
4474 * and we can skip this check. When it was an Anon page, its mapcount
4475 * goes down to 0. But because we added MIGRATION flage, it's not
4476 * uncharged yet. There are several case but page->mapcount check
4477 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4478 * check. (see prepare_charge() also)
4479 */
4480 if (anon)
4481 mem_cgroup_uncharge_page(used);
4482 }
4483
4484 /*
4485 * At replace page cache, newpage is not under any memcg but it's on
4486 * LRU. So, this function doesn't touch res_counter but handles LRU
4487 * in correct way. Both pages are locked so we cannot race with uncharge.
4488 */
4489 void mem_cgroup_replace_page_cache(struct page *oldpage,
4490 struct page *newpage)
4491 {
4492 struct mem_cgroup *memcg = NULL;
4493 struct page_cgroup *pc;
4494 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4495
4496 if (mem_cgroup_disabled())
4497 return;
4498
4499 pc = lookup_page_cgroup(oldpage);
4500 /* fix accounting on old pages */
4501 lock_page_cgroup(pc);
4502 if (PageCgroupUsed(pc)) {
4503 memcg = pc->mem_cgroup;
4504 mem_cgroup_charge_statistics(memcg, false, -1);
4505 ClearPageCgroupUsed(pc);
4506 }
4507 unlock_page_cgroup(pc);
4508
4509 /*
4510 * When called from shmem_replace_page(), in some cases the
4511 * oldpage has already been charged, and in some cases not.
4512 */
4513 if (!memcg)
4514 return;
4515 /*
4516 * Even if newpage->mapping was NULL before starting replacement,
4517 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4518 * LRU while we overwrite pc->mem_cgroup.
4519 */
4520 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4521 }
4522
4523 #ifdef CONFIG_DEBUG_VM
4524 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4525 {
4526 struct page_cgroup *pc;
4527
4528 pc = lookup_page_cgroup(page);
4529 /*
4530 * Can be NULL while feeding pages into the page allocator for
4531 * the first time, i.e. during boot or memory hotplug;
4532 * or when mem_cgroup_disabled().
4533 */
4534 if (likely(pc) && PageCgroupUsed(pc))
4535 return pc;
4536 return NULL;
4537 }
4538
4539 bool mem_cgroup_bad_page_check(struct page *page)
4540 {
4541 if (mem_cgroup_disabled())
4542 return false;
4543
4544 return lookup_page_cgroup_used(page) != NULL;
4545 }
4546
4547 void mem_cgroup_print_bad_page(struct page *page)
4548 {
4549 struct page_cgroup *pc;
4550
4551 pc = lookup_page_cgroup_used(page);
4552 if (pc) {
4553 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4554 pc, pc->flags, pc->mem_cgroup);
4555 }
4556 }
4557 #endif
4558
4559 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4560 unsigned long long val)
4561 {
4562 int retry_count;
4563 u64 memswlimit, memlimit;
4564 int ret = 0;
4565 int children = mem_cgroup_count_children(memcg);
4566 u64 curusage, oldusage;
4567 int enlarge;
4568
4569 /*
4570 * For keeping hierarchical_reclaim simple, how long we should retry
4571 * is depends on callers. We set our retry-count to be function
4572 * of # of children which we should visit in this loop.
4573 */
4574 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4575
4576 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4577
4578 enlarge = 0;
4579 while (retry_count) {
4580 if (signal_pending(current)) {
4581 ret = -EINTR;
4582 break;
4583 }
4584 /*
4585 * Rather than hide all in some function, I do this in
4586 * open coded manner. You see what this really does.
4587 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4588 */
4589 mutex_lock(&set_limit_mutex);
4590 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4591 if (memswlimit < val) {
4592 ret = -EINVAL;
4593 mutex_unlock(&set_limit_mutex);
4594 break;
4595 }
4596
4597 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4598 if (memlimit < val)
4599 enlarge = 1;
4600
4601 ret = res_counter_set_limit(&memcg->res, val);
4602 if (!ret) {
4603 if (memswlimit == val)
4604 memcg->memsw_is_minimum = true;
4605 else
4606 memcg->memsw_is_minimum = false;
4607 }
4608 mutex_unlock(&set_limit_mutex);
4609
4610 if (!ret)
4611 break;
4612
4613 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4614 MEM_CGROUP_RECLAIM_SHRINK);
4615 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4616 /* Usage is reduced ? */
4617 if (curusage >= oldusage)
4618 retry_count--;
4619 else
4620 oldusage = curusage;
4621 }
4622 if (!ret && enlarge)
4623 memcg_oom_recover(memcg);
4624
4625 return ret;
4626 }
4627
4628 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4629 unsigned long long val)
4630 {
4631 int retry_count;
4632 u64 memlimit, memswlimit, oldusage, curusage;
4633 int children = mem_cgroup_count_children(memcg);
4634 int ret = -EBUSY;
4635 int enlarge = 0;
4636
4637 /* see mem_cgroup_resize_res_limit */
4638 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4639 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4640 while (retry_count) {
4641 if (signal_pending(current)) {
4642 ret = -EINTR;
4643 break;
4644 }
4645 /*
4646 * Rather than hide all in some function, I do this in
4647 * open coded manner. You see what this really does.
4648 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4649 */
4650 mutex_lock(&set_limit_mutex);
4651 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4652 if (memlimit > val) {
4653 ret = -EINVAL;
4654 mutex_unlock(&set_limit_mutex);
4655 break;
4656 }
4657 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4658 if (memswlimit < val)
4659 enlarge = 1;
4660 ret = res_counter_set_limit(&memcg->memsw, val);
4661 if (!ret) {
4662 if (memlimit == val)
4663 memcg->memsw_is_minimum = true;
4664 else
4665 memcg->memsw_is_minimum = false;
4666 }
4667 mutex_unlock(&set_limit_mutex);
4668
4669 if (!ret)
4670 break;
4671
4672 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4673 MEM_CGROUP_RECLAIM_NOSWAP |
4674 MEM_CGROUP_RECLAIM_SHRINK);
4675 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4676 /* Usage is reduced ? */
4677 if (curusage >= oldusage)
4678 retry_count--;
4679 else
4680 oldusage = curusage;
4681 }
4682 if (!ret && enlarge)
4683 memcg_oom_recover(memcg);
4684 return ret;
4685 }
4686
4687 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4688 gfp_t gfp_mask,
4689 unsigned long *total_scanned)
4690 {
4691 unsigned long nr_reclaimed = 0;
4692 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4693 unsigned long reclaimed;
4694 int loop = 0;
4695 struct mem_cgroup_tree_per_zone *mctz;
4696 unsigned long long excess;
4697 unsigned long nr_scanned;
4698
4699 if (order > 0)
4700 return 0;
4701
4702 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4703 /*
4704 * This loop can run a while, specially if mem_cgroup's continuously
4705 * keep exceeding their soft limit and putting the system under
4706 * pressure
4707 */
4708 do {
4709 if (next_mz)
4710 mz = next_mz;
4711 else
4712 mz = mem_cgroup_largest_soft_limit_node(mctz);
4713 if (!mz)
4714 break;
4715
4716 nr_scanned = 0;
4717 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4718 gfp_mask, &nr_scanned);
4719 nr_reclaimed += reclaimed;
4720 *total_scanned += nr_scanned;
4721 spin_lock(&mctz->lock);
4722
4723 /*
4724 * If we failed to reclaim anything from this memory cgroup
4725 * it is time to move on to the next cgroup
4726 */
4727 next_mz = NULL;
4728 if (!reclaimed) {
4729 do {
4730 /*
4731 * Loop until we find yet another one.
4732 *
4733 * By the time we get the soft_limit lock
4734 * again, someone might have aded the
4735 * group back on the RB tree. Iterate to
4736 * make sure we get a different mem.
4737 * mem_cgroup_largest_soft_limit_node returns
4738 * NULL if no other cgroup is present on
4739 * the tree
4740 */
4741 next_mz =
4742 __mem_cgroup_largest_soft_limit_node(mctz);
4743 if (next_mz == mz)
4744 css_put(&next_mz->memcg->css);
4745 else /* next_mz == NULL or other memcg */
4746 break;
4747 } while (1);
4748 }
4749 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4750 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4751 /*
4752 * One school of thought says that we should not add
4753 * back the node to the tree if reclaim returns 0.
4754 * But our reclaim could return 0, simply because due
4755 * to priority we are exposing a smaller subset of
4756 * memory to reclaim from. Consider this as a longer
4757 * term TODO.
4758 */
4759 /* If excess == 0, no tree ops */
4760 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4761 spin_unlock(&mctz->lock);
4762 css_put(&mz->memcg->css);
4763 loop++;
4764 /*
4765 * Could not reclaim anything and there are no more
4766 * mem cgroups to try or we seem to be looping without
4767 * reclaiming anything.
4768 */
4769 if (!nr_reclaimed &&
4770 (next_mz == NULL ||
4771 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4772 break;
4773 } while (!nr_reclaimed);
4774 if (next_mz)
4775 css_put(&next_mz->memcg->css);
4776 return nr_reclaimed;
4777 }
4778
4779 /**
4780 * mem_cgroup_force_empty_list - clears LRU of a group
4781 * @memcg: group to clear
4782 * @node: NUMA node
4783 * @zid: zone id
4784 * @lru: lru to to clear
4785 *
4786 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4787 * reclaim the pages page themselves - pages are moved to the parent (or root)
4788 * group.
4789 */
4790 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4791 int node, int zid, enum lru_list lru)
4792 {
4793 struct lruvec *lruvec;
4794 unsigned long flags;
4795 struct list_head *list;
4796 struct page *busy;
4797 struct zone *zone;
4798
4799 zone = &NODE_DATA(node)->node_zones[zid];
4800 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4801 list = &lruvec->lists[lru];
4802
4803 busy = NULL;
4804 do {
4805 struct page_cgroup *pc;
4806 struct page *page;
4807
4808 spin_lock_irqsave(&zone->lru_lock, flags);
4809 if (list_empty(list)) {
4810 spin_unlock_irqrestore(&zone->lru_lock, flags);
4811 break;
4812 }
4813 page = list_entry(list->prev, struct page, lru);
4814 if (busy == page) {
4815 list_move(&page->lru, list);
4816 busy = NULL;
4817 spin_unlock_irqrestore(&zone->lru_lock, flags);
4818 continue;
4819 }
4820 spin_unlock_irqrestore(&zone->lru_lock, flags);
4821
4822 pc = lookup_page_cgroup(page);
4823
4824 if (mem_cgroup_move_parent(page, pc, memcg)) {
4825 /* found lock contention or "pc" is obsolete. */
4826 busy = page;
4827 cond_resched();
4828 } else
4829 busy = NULL;
4830 } while (!list_empty(list));
4831 }
4832
4833 /*
4834 * make mem_cgroup's charge to be 0 if there is no task by moving
4835 * all the charges and pages to the parent.
4836 * This enables deleting this mem_cgroup.
4837 *
4838 * Caller is responsible for holding css reference on the memcg.
4839 */
4840 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4841 {
4842 int node, zid;
4843 u64 usage;
4844
4845 do {
4846 /* This is for making all *used* pages to be on LRU. */
4847 lru_add_drain_all();
4848 drain_all_stock_sync(memcg);
4849 mem_cgroup_start_move(memcg);
4850 for_each_node_state(node, N_MEMORY) {
4851 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4852 enum lru_list lru;
4853 for_each_lru(lru) {
4854 mem_cgroup_force_empty_list(memcg,
4855 node, zid, lru);
4856 }
4857 }
4858 }
4859 mem_cgroup_end_move(memcg);
4860 memcg_oom_recover(memcg);
4861 cond_resched();
4862
4863 /*
4864 * Kernel memory may not necessarily be trackable to a specific
4865 * process. So they are not migrated, and therefore we can't
4866 * expect their value to drop to 0 here.
4867 * Having res filled up with kmem only is enough.
4868 *
4869 * This is a safety check because mem_cgroup_force_empty_list
4870 * could have raced with mem_cgroup_replace_page_cache callers
4871 * so the lru seemed empty but the page could have been added
4872 * right after the check. RES_USAGE should be safe as we always
4873 * charge before adding to the LRU.
4874 */
4875 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4876 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4877 } while (usage > 0);
4878 }
4879
4880 /*
4881 * This mainly exists for tests during the setting of set of use_hierarchy.
4882 * Since this is the very setting we are changing, the current hierarchy value
4883 * is meaningless
4884 */
4885 static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4886 {
4887 struct cgroup *pos;
4888
4889 /* bounce at first found */
4890 cgroup_for_each_child(pos, memcg->css.cgroup)
4891 return true;
4892 return false;
4893 }
4894
4895 /*
4896 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4897 * to be already dead (as in mem_cgroup_force_empty, for instance). This is
4898 * from mem_cgroup_count_children(), in the sense that we don't really care how
4899 * many children we have; we only need to know if we have any. It also counts
4900 * any memcg without hierarchy as infertile.
4901 */
4902 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4903 {
4904 return memcg->use_hierarchy && __memcg_has_children(memcg);
4905 }
4906
4907 /*
4908 * Reclaims as many pages from the given memcg as possible and moves
4909 * the rest to the parent.
4910 *
4911 * Caller is responsible for holding css reference for memcg.
4912 */
4913 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4914 {
4915 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4916 struct cgroup *cgrp = memcg->css.cgroup;
4917
4918 /* returns EBUSY if there is a task or if we come here twice. */
4919 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4920 return -EBUSY;
4921
4922 /* we call try-to-free pages for make this cgroup empty */
4923 lru_add_drain_all();
4924 /* try to free all pages in this cgroup */
4925 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4926 int progress;
4927
4928 if (signal_pending(current))
4929 return -EINTR;
4930
4931 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4932 false);
4933 if (!progress) {
4934 nr_retries--;
4935 /* maybe some writeback is necessary */
4936 congestion_wait(BLK_RW_ASYNC, HZ/10);
4937 }
4938
4939 }
4940 lru_add_drain();
4941 mem_cgroup_reparent_charges(memcg);
4942
4943 return 0;
4944 }
4945
4946 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
4947 {
4948 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4949 int ret;
4950
4951 if (mem_cgroup_is_root(memcg))
4952 return -EINVAL;
4953 css_get(&memcg->css);
4954 ret = mem_cgroup_force_empty(memcg);
4955 css_put(&memcg->css);
4956
4957 return ret;
4958 }
4959
4960
4961 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
4962 {
4963 return mem_cgroup_from_cont(cont)->use_hierarchy;
4964 }
4965
4966 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
4967 u64 val)
4968 {
4969 int retval = 0;
4970 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4971 struct cgroup *parent = cont->parent;
4972 struct mem_cgroup *parent_memcg = NULL;
4973
4974 if (parent)
4975 parent_memcg = mem_cgroup_from_cont(parent);
4976
4977 mutex_lock(&memcg_create_mutex);
4978
4979 if (memcg->use_hierarchy == val)
4980 goto out;
4981
4982 /*
4983 * If parent's use_hierarchy is set, we can't make any modifications
4984 * in the child subtrees. If it is unset, then the change can
4985 * occur, provided the current cgroup has no children.
4986 *
4987 * For the root cgroup, parent_mem is NULL, we allow value to be
4988 * set if there are no children.
4989 */
4990 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4991 (val == 1 || val == 0)) {
4992 if (!__memcg_has_children(memcg))
4993 memcg->use_hierarchy = val;
4994 else
4995 retval = -EBUSY;
4996 } else
4997 retval = -EINVAL;
4998
4999 out:
5000 mutex_unlock(&memcg_create_mutex);
5001
5002 return retval;
5003 }
5004
5005
5006 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5007 enum mem_cgroup_stat_index idx)
5008 {
5009 struct mem_cgroup *iter;
5010 long val = 0;
5011
5012 /* Per-cpu values can be negative, use a signed accumulator */
5013 for_each_mem_cgroup_tree(iter, memcg)
5014 val += mem_cgroup_read_stat(iter, idx);
5015
5016 if (val < 0) /* race ? */
5017 val = 0;
5018 return val;
5019 }
5020
5021 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5022 {
5023 u64 val;
5024
5025 if (!mem_cgroup_is_root(memcg)) {
5026 if (!swap)
5027 return res_counter_read_u64(&memcg->res, RES_USAGE);
5028 else
5029 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5030 }
5031
5032 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5033 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5034
5035 if (swap)
5036 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5037
5038 return val << PAGE_SHIFT;
5039 }
5040
5041 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
5042 struct file *file, char __user *buf,
5043 size_t nbytes, loff_t *ppos)
5044 {
5045 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5046 char str[64];
5047 u64 val;
5048 int name, len;
5049 enum res_type type;
5050
5051 type = MEMFILE_TYPE(cft->private);
5052 name = MEMFILE_ATTR(cft->private);
5053
5054 switch (type) {
5055 case _MEM:
5056 if (name == RES_USAGE)
5057 val = mem_cgroup_usage(memcg, false);
5058 else
5059 val = res_counter_read_u64(&memcg->res, name);
5060 break;
5061 case _MEMSWAP:
5062 if (name == RES_USAGE)
5063 val = mem_cgroup_usage(memcg, true);
5064 else
5065 val = res_counter_read_u64(&memcg->memsw, name);
5066 break;
5067 case _KMEM:
5068 val = res_counter_read_u64(&memcg->kmem, name);
5069 break;
5070 default:
5071 BUG();
5072 }
5073
5074 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5075 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
5076 }
5077
5078 static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
5079 {
5080 int ret = -EINVAL;
5081 #ifdef CONFIG_MEMCG_KMEM
5082 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5083 /*
5084 * For simplicity, we won't allow this to be disabled. It also can't
5085 * be changed if the cgroup has children already, or if tasks had
5086 * already joined.
5087 *
5088 * If tasks join before we set the limit, a person looking at
5089 * kmem.usage_in_bytes will have no way to determine when it took
5090 * place, which makes the value quite meaningless.
5091 *
5092 * After it first became limited, changes in the value of the limit are
5093 * of course permitted.
5094 */
5095 mutex_lock(&memcg_create_mutex);
5096 mutex_lock(&set_limit_mutex);
5097 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
5098 if (cgroup_task_count(cont) || memcg_has_children(memcg)) {
5099 ret = -EBUSY;
5100 goto out;
5101 }
5102 ret = res_counter_set_limit(&memcg->kmem, val);
5103 VM_BUG_ON(ret);
5104
5105 ret = memcg_update_cache_sizes(memcg);
5106 if (ret) {
5107 res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
5108 goto out;
5109 }
5110 static_key_slow_inc(&memcg_kmem_enabled_key);
5111 /*
5112 * setting the active bit after the inc will guarantee no one
5113 * starts accounting before all call sites are patched
5114 */
5115 memcg_kmem_set_active(memcg);
5116
5117 /*
5118 * kmem charges can outlive the cgroup. In the case of slab
5119 * pages, for instance, a page contain objects from various
5120 * processes, so it is unfeasible to migrate them away. We
5121 * need to reference count the memcg because of that.
5122 */
5123 mem_cgroup_get(memcg);
5124 } else
5125 ret = res_counter_set_limit(&memcg->kmem, val);
5126 out:
5127 mutex_unlock(&set_limit_mutex);
5128 mutex_unlock(&memcg_create_mutex);
5129 #endif
5130 return ret;
5131 }
5132
5133 #ifdef CONFIG_MEMCG_KMEM
5134 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5135 {
5136 int ret = 0;
5137 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5138 if (!parent)
5139 goto out;
5140
5141 memcg->kmem_account_flags = parent->kmem_account_flags;
5142 /*
5143 * When that happen, we need to disable the static branch only on those
5144 * memcgs that enabled it. To achieve this, we would be forced to
5145 * complicate the code by keeping track of which memcgs were the ones
5146 * that actually enabled limits, and which ones got it from its
5147 * parents.
5148 *
5149 * It is a lot simpler just to do static_key_slow_inc() on every child
5150 * that is accounted.
5151 */
5152 if (!memcg_kmem_is_active(memcg))
5153 goto out;
5154
5155 /*
5156 * destroy(), called if we fail, will issue static_key_slow_inc() and
5157 * mem_cgroup_put() if kmem is enabled. We have to either call them
5158 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
5159 * this more consistent, since it always leads to the same destroy path
5160 */
5161 mem_cgroup_get(memcg);
5162 static_key_slow_inc(&memcg_kmem_enabled_key);
5163
5164 mutex_lock(&set_limit_mutex);
5165 ret = memcg_update_cache_sizes(memcg);
5166 mutex_unlock(&set_limit_mutex);
5167 out:
5168 return ret;
5169 }
5170 #endif /* CONFIG_MEMCG_KMEM */
5171
5172 /*
5173 * The user of this function is...
5174 * RES_LIMIT.
5175 */
5176 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
5177 const char *buffer)
5178 {
5179 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5180 enum res_type type;
5181 int name;
5182 unsigned long long val;
5183 int ret;
5184
5185 type = MEMFILE_TYPE(cft->private);
5186 name = MEMFILE_ATTR(cft->private);
5187
5188 switch (name) {
5189 case RES_LIMIT:
5190 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5191 ret = -EINVAL;
5192 break;
5193 }
5194 /* This function does all necessary parse...reuse it */
5195 ret = res_counter_memparse_write_strategy(buffer, &val);
5196 if (ret)
5197 break;
5198 if (type == _MEM)
5199 ret = mem_cgroup_resize_limit(memcg, val);
5200 else if (type == _MEMSWAP)
5201 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5202 else if (type == _KMEM)
5203 ret = memcg_update_kmem_limit(cont, val);
5204 else
5205 return -EINVAL;
5206 break;
5207 case RES_SOFT_LIMIT:
5208 ret = res_counter_memparse_write_strategy(buffer, &val);
5209 if (ret)
5210 break;
5211 /*
5212 * For memsw, soft limits are hard to implement in terms
5213 * of semantics, for now, we support soft limits for
5214 * control without swap
5215 */
5216 if (type == _MEM)
5217 ret = res_counter_set_soft_limit(&memcg->res, val);
5218 else
5219 ret = -EINVAL;
5220 break;
5221 default:
5222 ret = -EINVAL; /* should be BUG() ? */
5223 break;
5224 }
5225 return ret;
5226 }
5227
5228 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5229 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5230 {
5231 struct cgroup *cgroup;
5232 unsigned long long min_limit, min_memsw_limit, tmp;
5233
5234 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5235 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5236 cgroup = memcg->css.cgroup;
5237 if (!memcg->use_hierarchy)
5238 goto out;
5239
5240 while (cgroup->parent) {
5241 cgroup = cgroup->parent;
5242 memcg = mem_cgroup_from_cont(cgroup);
5243 if (!memcg->use_hierarchy)
5244 break;
5245 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5246 min_limit = min(min_limit, tmp);
5247 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5248 min_memsw_limit = min(min_memsw_limit, tmp);
5249 }
5250 out:
5251 *mem_limit = min_limit;
5252 *memsw_limit = min_memsw_limit;
5253 }
5254
5255 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
5256 {
5257 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5258 int name;
5259 enum res_type type;
5260
5261 type = MEMFILE_TYPE(event);
5262 name = MEMFILE_ATTR(event);
5263
5264 switch (name) {
5265 case RES_MAX_USAGE:
5266 if (type == _MEM)
5267 res_counter_reset_max(&memcg->res);
5268 else if (type == _MEMSWAP)
5269 res_counter_reset_max(&memcg->memsw);
5270 else if (type == _KMEM)
5271 res_counter_reset_max(&memcg->kmem);
5272 else
5273 return -EINVAL;
5274 break;
5275 case RES_FAILCNT:
5276 if (type == _MEM)
5277 res_counter_reset_failcnt(&memcg->res);
5278 else if (type == _MEMSWAP)
5279 res_counter_reset_failcnt(&memcg->memsw);
5280 else if (type == _KMEM)
5281 res_counter_reset_failcnt(&memcg->kmem);
5282 else
5283 return -EINVAL;
5284 break;
5285 }
5286
5287 return 0;
5288 }
5289
5290 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
5291 struct cftype *cft)
5292 {
5293 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
5294 }
5295
5296 #ifdef CONFIG_MMU
5297 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5298 struct cftype *cft, u64 val)
5299 {
5300 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5301
5302 if (val >= (1 << NR_MOVE_TYPE))
5303 return -EINVAL;
5304
5305 /*
5306 * No kind of locking is needed in here, because ->can_attach() will
5307 * check this value once in the beginning of the process, and then carry
5308 * on with stale data. This means that changes to this value will only
5309 * affect task migrations starting after the change.
5310 */
5311 memcg->move_charge_at_immigrate = val;
5312 return 0;
5313 }
5314 #else
5315 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5316 struct cftype *cft, u64 val)
5317 {
5318 return -ENOSYS;
5319 }
5320 #endif
5321
5322 #ifdef CONFIG_NUMA
5323 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
5324 struct seq_file *m)
5325 {
5326 int nid;
5327 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5328 unsigned long node_nr;
5329 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5330
5331 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5332 seq_printf(m, "total=%lu", total_nr);
5333 for_each_node_state(nid, N_MEMORY) {
5334 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5335 seq_printf(m, " N%d=%lu", nid, node_nr);
5336 }
5337 seq_putc(m, '\n');
5338
5339 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5340 seq_printf(m, "file=%lu", file_nr);
5341 for_each_node_state(nid, N_MEMORY) {
5342 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5343 LRU_ALL_FILE);
5344 seq_printf(m, " N%d=%lu", nid, node_nr);
5345 }
5346 seq_putc(m, '\n');
5347
5348 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5349 seq_printf(m, "anon=%lu", anon_nr);
5350 for_each_node_state(nid, N_MEMORY) {
5351 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5352 LRU_ALL_ANON);
5353 seq_printf(m, " N%d=%lu", nid, node_nr);
5354 }
5355 seq_putc(m, '\n');
5356
5357 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5358 seq_printf(m, "unevictable=%lu", unevictable_nr);
5359 for_each_node_state(nid, N_MEMORY) {
5360 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5361 BIT(LRU_UNEVICTABLE));
5362 seq_printf(m, " N%d=%lu", nid, node_nr);
5363 }
5364 seq_putc(m, '\n');
5365 return 0;
5366 }
5367 #endif /* CONFIG_NUMA */
5368
5369 static inline void mem_cgroup_lru_names_not_uptodate(void)
5370 {
5371 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5372 }
5373
5374 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
5375 struct seq_file *m)
5376 {
5377 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5378 struct mem_cgroup *mi;
5379 unsigned int i;
5380
5381 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5382 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5383 continue;
5384 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5385 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5386 }
5387
5388 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5389 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5390 mem_cgroup_read_events(memcg, i));
5391
5392 for (i = 0; i < NR_LRU_LISTS; i++)
5393 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5394 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5395
5396 /* Hierarchical information */
5397 {
5398 unsigned long long limit, memsw_limit;
5399 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5400 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5401 if (do_swap_account)
5402 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5403 memsw_limit);
5404 }
5405
5406 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5407 long long val = 0;
5408
5409 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5410 continue;
5411 for_each_mem_cgroup_tree(mi, memcg)
5412 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5413 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5414 }
5415
5416 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5417 unsigned long long val = 0;
5418
5419 for_each_mem_cgroup_tree(mi, memcg)
5420 val += mem_cgroup_read_events(mi, i);
5421 seq_printf(m, "total_%s %llu\n",
5422 mem_cgroup_events_names[i], val);
5423 }
5424
5425 for (i = 0; i < NR_LRU_LISTS; i++) {
5426 unsigned long long val = 0;
5427
5428 for_each_mem_cgroup_tree(mi, memcg)
5429 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5430 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5431 }
5432
5433 #ifdef CONFIG_DEBUG_VM
5434 {
5435 int nid, zid;
5436 struct mem_cgroup_per_zone *mz;
5437 struct zone_reclaim_stat *rstat;
5438 unsigned long recent_rotated[2] = {0, 0};
5439 unsigned long recent_scanned[2] = {0, 0};
5440
5441 for_each_online_node(nid)
5442 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5443 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5444 rstat = &mz->lruvec.reclaim_stat;
5445
5446 recent_rotated[0] += rstat->recent_rotated[0];
5447 recent_rotated[1] += rstat->recent_rotated[1];
5448 recent_scanned[0] += rstat->recent_scanned[0];
5449 recent_scanned[1] += rstat->recent_scanned[1];
5450 }
5451 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5452 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5453 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5454 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5455 }
5456 #endif
5457
5458 return 0;
5459 }
5460
5461 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
5462 {
5463 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5464
5465 return mem_cgroup_swappiness(memcg);
5466 }
5467
5468 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
5469 u64 val)
5470 {
5471 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5472 struct mem_cgroup *parent;
5473
5474 if (val > 100)
5475 return -EINVAL;
5476
5477 if (cgrp->parent == NULL)
5478 return -EINVAL;
5479
5480 parent = mem_cgroup_from_cont(cgrp->parent);
5481
5482 mutex_lock(&memcg_create_mutex);
5483
5484 /* If under hierarchy, only empty-root can set this value */
5485 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5486 mutex_unlock(&memcg_create_mutex);
5487 return -EINVAL;
5488 }
5489
5490 memcg->swappiness = val;
5491
5492 mutex_unlock(&memcg_create_mutex);
5493
5494 return 0;
5495 }
5496
5497 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5498 {
5499 struct mem_cgroup_threshold_ary *t;
5500 u64 usage;
5501 int i;
5502
5503 rcu_read_lock();
5504 if (!swap)
5505 t = rcu_dereference(memcg->thresholds.primary);
5506 else
5507 t = rcu_dereference(memcg->memsw_thresholds.primary);
5508
5509 if (!t)
5510 goto unlock;
5511
5512 usage = mem_cgroup_usage(memcg, swap);
5513
5514 /*
5515 * current_threshold points to threshold just below or equal to usage.
5516 * If it's not true, a threshold was crossed after last
5517 * call of __mem_cgroup_threshold().
5518 */
5519 i = t->current_threshold;
5520
5521 /*
5522 * Iterate backward over array of thresholds starting from
5523 * current_threshold and check if a threshold is crossed.
5524 * If none of thresholds below usage is crossed, we read
5525 * only one element of the array here.
5526 */
5527 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5528 eventfd_signal(t->entries[i].eventfd, 1);
5529
5530 /* i = current_threshold + 1 */
5531 i++;
5532
5533 /*
5534 * Iterate forward over array of thresholds starting from
5535 * current_threshold+1 and check if a threshold is crossed.
5536 * If none of thresholds above usage is crossed, we read
5537 * only one element of the array here.
5538 */
5539 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5540 eventfd_signal(t->entries[i].eventfd, 1);
5541
5542 /* Update current_threshold */
5543 t->current_threshold = i - 1;
5544 unlock:
5545 rcu_read_unlock();
5546 }
5547
5548 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5549 {
5550 while (memcg) {
5551 __mem_cgroup_threshold(memcg, false);
5552 if (do_swap_account)
5553 __mem_cgroup_threshold(memcg, true);
5554
5555 memcg = parent_mem_cgroup(memcg);
5556 }
5557 }
5558
5559 static int compare_thresholds(const void *a, const void *b)
5560 {
5561 const struct mem_cgroup_threshold *_a = a;
5562 const struct mem_cgroup_threshold *_b = b;
5563
5564 return _a->threshold - _b->threshold;
5565 }
5566
5567 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5568 {
5569 struct mem_cgroup_eventfd_list *ev;
5570
5571 list_for_each_entry(ev, &memcg->oom_notify, list)
5572 eventfd_signal(ev->eventfd, 1);
5573 return 0;
5574 }
5575
5576 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5577 {
5578 struct mem_cgroup *iter;
5579
5580 for_each_mem_cgroup_tree(iter, memcg)
5581 mem_cgroup_oom_notify_cb(iter);
5582 }
5583
5584 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
5585 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5586 {
5587 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5588 struct mem_cgroup_thresholds *thresholds;
5589 struct mem_cgroup_threshold_ary *new;
5590 enum res_type type = MEMFILE_TYPE(cft->private);
5591 u64 threshold, usage;
5592 int i, size, ret;
5593
5594 ret = res_counter_memparse_write_strategy(args, &threshold);
5595 if (ret)
5596 return ret;
5597
5598 mutex_lock(&memcg->thresholds_lock);
5599
5600 if (type == _MEM)
5601 thresholds = &memcg->thresholds;
5602 else if (type == _MEMSWAP)
5603 thresholds = &memcg->memsw_thresholds;
5604 else
5605 BUG();
5606
5607 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5608
5609 /* Check if a threshold crossed before adding a new one */
5610 if (thresholds->primary)
5611 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5612
5613 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5614
5615 /* Allocate memory for new array of thresholds */
5616 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5617 GFP_KERNEL);
5618 if (!new) {
5619 ret = -ENOMEM;
5620 goto unlock;
5621 }
5622 new->size = size;
5623
5624 /* Copy thresholds (if any) to new array */
5625 if (thresholds->primary) {
5626 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5627 sizeof(struct mem_cgroup_threshold));
5628 }
5629
5630 /* Add new threshold */
5631 new->entries[size - 1].eventfd = eventfd;
5632 new->entries[size - 1].threshold = threshold;
5633
5634 /* Sort thresholds. Registering of new threshold isn't time-critical */
5635 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5636 compare_thresholds, NULL);
5637
5638 /* Find current threshold */
5639 new->current_threshold = -1;
5640 for (i = 0; i < size; i++) {
5641 if (new->entries[i].threshold <= usage) {
5642 /*
5643 * new->current_threshold will not be used until
5644 * rcu_assign_pointer(), so it's safe to increment
5645 * it here.
5646 */
5647 ++new->current_threshold;
5648 } else
5649 break;
5650 }
5651
5652 /* Free old spare buffer and save old primary buffer as spare */
5653 kfree(thresholds->spare);
5654 thresholds->spare = thresholds->primary;
5655
5656 rcu_assign_pointer(thresholds->primary, new);
5657
5658 /* To be sure that nobody uses thresholds */
5659 synchronize_rcu();
5660
5661 unlock:
5662 mutex_unlock(&memcg->thresholds_lock);
5663
5664 return ret;
5665 }
5666
5667 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
5668 struct cftype *cft, struct eventfd_ctx *eventfd)
5669 {
5670 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5671 struct mem_cgroup_thresholds *thresholds;
5672 struct mem_cgroup_threshold_ary *new;
5673 enum res_type type = MEMFILE_TYPE(cft->private);
5674 u64 usage;
5675 int i, j, size;
5676
5677 mutex_lock(&memcg->thresholds_lock);
5678 if (type == _MEM)
5679 thresholds = &memcg->thresholds;
5680 else if (type == _MEMSWAP)
5681 thresholds = &memcg->memsw_thresholds;
5682 else
5683 BUG();
5684
5685 if (!thresholds->primary)
5686 goto unlock;
5687
5688 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5689
5690 /* Check if a threshold crossed before removing */
5691 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5692
5693 /* Calculate new number of threshold */
5694 size = 0;
5695 for (i = 0; i < thresholds->primary->size; i++) {
5696 if (thresholds->primary->entries[i].eventfd != eventfd)
5697 size++;
5698 }
5699
5700 new = thresholds->spare;
5701
5702 /* Set thresholds array to NULL if we don't have thresholds */
5703 if (!size) {
5704 kfree(new);
5705 new = NULL;
5706 goto swap_buffers;
5707 }
5708
5709 new->size = size;
5710
5711 /* Copy thresholds and find current threshold */
5712 new->current_threshold = -1;
5713 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5714 if (thresholds->primary->entries[i].eventfd == eventfd)
5715 continue;
5716
5717 new->entries[j] = thresholds->primary->entries[i];
5718 if (new->entries[j].threshold <= usage) {
5719 /*
5720 * new->current_threshold will not be used
5721 * until rcu_assign_pointer(), so it's safe to increment
5722 * it here.
5723 */
5724 ++new->current_threshold;
5725 }
5726 j++;
5727 }
5728
5729 swap_buffers:
5730 /* Swap primary and spare array */
5731 thresholds->spare = thresholds->primary;
5732 /* If all events are unregistered, free the spare array */
5733 if (!new) {
5734 kfree(thresholds->spare);
5735 thresholds->spare = NULL;
5736 }
5737
5738 rcu_assign_pointer(thresholds->primary, new);
5739
5740 /* To be sure that nobody uses thresholds */
5741 synchronize_rcu();
5742 unlock:
5743 mutex_unlock(&memcg->thresholds_lock);
5744 }
5745
5746 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
5747 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5748 {
5749 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5750 struct mem_cgroup_eventfd_list *event;
5751 enum res_type type = MEMFILE_TYPE(cft->private);
5752
5753 BUG_ON(type != _OOM_TYPE);
5754 event = kmalloc(sizeof(*event), GFP_KERNEL);
5755 if (!event)
5756 return -ENOMEM;
5757
5758 spin_lock(&memcg_oom_lock);
5759
5760 event->eventfd = eventfd;
5761 list_add(&event->list, &memcg->oom_notify);
5762
5763 /* already in OOM ? */
5764 if (atomic_read(&memcg->under_oom))
5765 eventfd_signal(eventfd, 1);
5766 spin_unlock(&memcg_oom_lock);
5767
5768 return 0;
5769 }
5770
5771 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
5772 struct cftype *cft, struct eventfd_ctx *eventfd)
5773 {
5774 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5775 struct mem_cgroup_eventfd_list *ev, *tmp;
5776 enum res_type type = MEMFILE_TYPE(cft->private);
5777
5778 BUG_ON(type != _OOM_TYPE);
5779
5780 spin_lock(&memcg_oom_lock);
5781
5782 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5783 if (ev->eventfd == eventfd) {
5784 list_del(&ev->list);
5785 kfree(ev);
5786 }
5787 }
5788
5789 spin_unlock(&memcg_oom_lock);
5790 }
5791
5792 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
5793 struct cftype *cft, struct cgroup_map_cb *cb)
5794 {
5795 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5796
5797 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5798
5799 if (atomic_read(&memcg->under_oom))
5800 cb->fill(cb, "under_oom", 1);
5801 else
5802 cb->fill(cb, "under_oom", 0);
5803 return 0;
5804 }
5805
5806 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
5807 struct cftype *cft, u64 val)
5808 {
5809 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5810 struct mem_cgroup *parent;
5811
5812 /* cannot set to root cgroup and only 0 and 1 are allowed */
5813 if (!cgrp->parent || !((val == 0) || (val == 1)))
5814 return -EINVAL;
5815
5816 parent = mem_cgroup_from_cont(cgrp->parent);
5817
5818 mutex_lock(&memcg_create_mutex);
5819 /* oom-kill-disable is a flag for subhierarchy. */
5820 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5821 mutex_unlock(&memcg_create_mutex);
5822 return -EINVAL;
5823 }
5824 memcg->oom_kill_disable = val;
5825 if (!val)
5826 memcg_oom_recover(memcg);
5827 mutex_unlock(&memcg_create_mutex);
5828 return 0;
5829 }
5830
5831 #ifdef CONFIG_MEMCG_KMEM
5832 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5833 {
5834 int ret;
5835
5836 memcg->kmemcg_id = -1;
5837 ret = memcg_propagate_kmem(memcg);
5838 if (ret)
5839 return ret;
5840
5841 return mem_cgroup_sockets_init(memcg, ss);
5842 }
5843
5844 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
5845 {
5846 mem_cgroup_sockets_destroy(memcg);
5847
5848 memcg_kmem_mark_dead(memcg);
5849
5850 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5851 return;
5852
5853 /*
5854 * Charges already down to 0, undo mem_cgroup_get() done in the charge
5855 * path here, being careful not to race with memcg_uncharge_kmem: it is
5856 * possible that the charges went down to 0 between mark_dead and the
5857 * res_counter read, so in that case, we don't need the put
5858 */
5859 if (memcg_kmem_test_and_clear_dead(memcg))
5860 mem_cgroup_put(memcg);
5861 }
5862 #else
5863 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5864 {
5865 return 0;
5866 }
5867
5868 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
5869 {
5870 }
5871 #endif
5872
5873 static struct cftype mem_cgroup_files[] = {
5874 {
5875 .name = "usage_in_bytes",
5876 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5877 .read = mem_cgroup_read,
5878 .register_event = mem_cgroup_usage_register_event,
5879 .unregister_event = mem_cgroup_usage_unregister_event,
5880 },
5881 {
5882 .name = "max_usage_in_bytes",
5883 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5884 .trigger = mem_cgroup_reset,
5885 .read = mem_cgroup_read,
5886 },
5887 {
5888 .name = "limit_in_bytes",
5889 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5890 .write_string = mem_cgroup_write,
5891 .read = mem_cgroup_read,
5892 },
5893 {
5894 .name = "soft_limit_in_bytes",
5895 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5896 .write_string = mem_cgroup_write,
5897 .read = mem_cgroup_read,
5898 },
5899 {
5900 .name = "failcnt",
5901 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5902 .trigger = mem_cgroup_reset,
5903 .read = mem_cgroup_read,
5904 },
5905 {
5906 .name = "stat",
5907 .read_seq_string = memcg_stat_show,
5908 },
5909 {
5910 .name = "force_empty",
5911 .trigger = mem_cgroup_force_empty_write,
5912 },
5913 {
5914 .name = "use_hierarchy",
5915 .write_u64 = mem_cgroup_hierarchy_write,
5916 .read_u64 = mem_cgroup_hierarchy_read,
5917 },
5918 {
5919 .name = "swappiness",
5920 .read_u64 = mem_cgroup_swappiness_read,
5921 .write_u64 = mem_cgroup_swappiness_write,
5922 },
5923 {
5924 .name = "move_charge_at_immigrate",
5925 .read_u64 = mem_cgroup_move_charge_read,
5926 .write_u64 = mem_cgroup_move_charge_write,
5927 },
5928 {
5929 .name = "oom_control",
5930 .read_map = mem_cgroup_oom_control_read,
5931 .write_u64 = mem_cgroup_oom_control_write,
5932 .register_event = mem_cgroup_oom_register_event,
5933 .unregister_event = mem_cgroup_oom_unregister_event,
5934 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5935 },
5936 {
5937 .name = "pressure_level",
5938 .register_event = vmpressure_register_event,
5939 .unregister_event = vmpressure_unregister_event,
5940 },
5941 #ifdef CONFIG_NUMA
5942 {
5943 .name = "numa_stat",
5944 .read_seq_string = memcg_numa_stat_show,
5945 },
5946 #endif
5947 #ifdef CONFIG_MEMCG_KMEM
5948 {
5949 .name = "kmem.limit_in_bytes",
5950 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5951 .write_string = mem_cgroup_write,
5952 .read = mem_cgroup_read,
5953 },
5954 {
5955 .name = "kmem.usage_in_bytes",
5956 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5957 .read = mem_cgroup_read,
5958 },
5959 {
5960 .name = "kmem.failcnt",
5961 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5962 .trigger = mem_cgroup_reset,
5963 .read = mem_cgroup_read,
5964 },
5965 {
5966 .name = "kmem.max_usage_in_bytes",
5967 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5968 .trigger = mem_cgroup_reset,
5969 .read = mem_cgroup_read,
5970 },
5971 #ifdef CONFIG_SLABINFO
5972 {
5973 .name = "kmem.slabinfo",
5974 .read_seq_string = mem_cgroup_slabinfo_read,
5975 },
5976 #endif
5977 #endif
5978 { }, /* terminate */
5979 };
5980
5981 #ifdef CONFIG_MEMCG_SWAP
5982 static struct cftype memsw_cgroup_files[] = {
5983 {
5984 .name = "memsw.usage_in_bytes",
5985 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5986 .read = mem_cgroup_read,
5987 .register_event = mem_cgroup_usage_register_event,
5988 .unregister_event = mem_cgroup_usage_unregister_event,
5989 },
5990 {
5991 .name = "memsw.max_usage_in_bytes",
5992 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5993 .trigger = mem_cgroup_reset,
5994 .read = mem_cgroup_read,
5995 },
5996 {
5997 .name = "memsw.limit_in_bytes",
5998 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5999 .write_string = mem_cgroup_write,
6000 .read = mem_cgroup_read,
6001 },
6002 {
6003 .name = "memsw.failcnt",
6004 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6005 .trigger = mem_cgroup_reset,
6006 .read = mem_cgroup_read,
6007 },
6008 { }, /* terminate */
6009 };
6010 #endif
6011 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6012 {
6013 struct mem_cgroup_per_node *pn;
6014 struct mem_cgroup_per_zone *mz;
6015 int zone, tmp = node;
6016 /*
6017 * This routine is called against possible nodes.
6018 * But it's BUG to call kmalloc() against offline node.
6019 *
6020 * TODO: this routine can waste much memory for nodes which will
6021 * never be onlined. It's better to use memory hotplug callback
6022 * function.
6023 */
6024 if (!node_state(node, N_NORMAL_MEMORY))
6025 tmp = -1;
6026 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6027 if (!pn)
6028 return 1;
6029
6030 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6031 mz = &pn->zoneinfo[zone];
6032 lruvec_init(&mz->lruvec);
6033 mz->usage_in_excess = 0;
6034 mz->on_tree = false;
6035 mz->memcg = memcg;
6036 }
6037 memcg->info.nodeinfo[node] = pn;
6038 return 0;
6039 }
6040
6041 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6042 {
6043 kfree(memcg->info.nodeinfo[node]);
6044 }
6045
6046 static struct mem_cgroup *mem_cgroup_alloc(void)
6047 {
6048 struct mem_cgroup *memcg;
6049 size_t size = memcg_size();
6050
6051 /* Can be very big if nr_node_ids is very big */
6052 if (size < PAGE_SIZE)
6053 memcg = kzalloc(size, GFP_KERNEL);
6054 else
6055 memcg = vzalloc(size);
6056
6057 if (!memcg)
6058 return NULL;
6059
6060 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6061 if (!memcg->stat)
6062 goto out_free;
6063 spin_lock_init(&memcg->pcp_counter_lock);
6064 return memcg;
6065
6066 out_free:
6067 if (size < PAGE_SIZE)
6068 kfree(memcg);
6069 else
6070 vfree(memcg);
6071 return NULL;
6072 }
6073
6074 /*
6075 * At destroying mem_cgroup, references from swap_cgroup can remain.
6076 * (scanning all at force_empty is too costly...)
6077 *
6078 * Instead of clearing all references at force_empty, we remember
6079 * the number of reference from swap_cgroup and free mem_cgroup when
6080 * it goes down to 0.
6081 *
6082 * Removal of cgroup itself succeeds regardless of refs from swap.
6083 */
6084
6085 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6086 {
6087 int node;
6088 size_t size = memcg_size();
6089
6090 mem_cgroup_remove_from_trees(memcg);
6091 free_css_id(&mem_cgroup_subsys, &memcg->css);
6092
6093 for_each_node(node)
6094 free_mem_cgroup_per_zone_info(memcg, node);
6095
6096 free_percpu(memcg->stat);
6097
6098 /*
6099 * We need to make sure that (at least for now), the jump label
6100 * destruction code runs outside of the cgroup lock. This is because
6101 * get_online_cpus(), which is called from the static_branch update,
6102 * can't be called inside the cgroup_lock. cpusets are the ones
6103 * enforcing this dependency, so if they ever change, we might as well.
6104 *
6105 * schedule_work() will guarantee this happens. Be careful if you need
6106 * to move this code around, and make sure it is outside
6107 * the cgroup_lock.
6108 */
6109 disarm_static_keys(memcg);
6110 if (size < PAGE_SIZE)
6111 kfree(memcg);
6112 else
6113 vfree(memcg);
6114 }
6115
6116
6117 /*
6118 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
6119 * but in process context. The work_freeing structure is overlaid
6120 * on the rcu_freeing structure, which itself is overlaid on memsw.
6121 */
6122 static void free_work(struct work_struct *work)
6123 {
6124 struct mem_cgroup *memcg;
6125
6126 memcg = container_of(work, struct mem_cgroup, work_freeing);
6127 __mem_cgroup_free(memcg);
6128 }
6129
6130 static void free_rcu(struct rcu_head *rcu_head)
6131 {
6132 struct mem_cgroup *memcg;
6133
6134 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
6135 INIT_WORK(&memcg->work_freeing, free_work);
6136 schedule_work(&memcg->work_freeing);
6137 }
6138
6139 static void mem_cgroup_get(struct mem_cgroup *memcg)
6140 {
6141 atomic_inc(&memcg->refcnt);
6142 }
6143
6144 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
6145 {
6146 if (atomic_sub_and_test(count, &memcg->refcnt)) {
6147 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
6148 call_rcu(&memcg->rcu_freeing, free_rcu);
6149 if (parent)
6150 mem_cgroup_put(parent);
6151 }
6152 }
6153
6154 static void mem_cgroup_put(struct mem_cgroup *memcg)
6155 {
6156 __mem_cgroup_put(memcg, 1);
6157 }
6158
6159 /*
6160 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6161 */
6162 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6163 {
6164 if (!memcg->res.parent)
6165 return NULL;
6166 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6167 }
6168 EXPORT_SYMBOL(parent_mem_cgroup);
6169
6170 static void __init mem_cgroup_soft_limit_tree_init(void)
6171 {
6172 struct mem_cgroup_tree_per_node *rtpn;
6173 struct mem_cgroup_tree_per_zone *rtpz;
6174 int tmp, node, zone;
6175
6176 for_each_node(node) {
6177 tmp = node;
6178 if (!node_state(node, N_NORMAL_MEMORY))
6179 tmp = -1;
6180 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6181 BUG_ON(!rtpn);
6182
6183 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6184
6185 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6186 rtpz = &rtpn->rb_tree_per_zone[zone];
6187 rtpz->rb_root = RB_ROOT;
6188 spin_lock_init(&rtpz->lock);
6189 }
6190 }
6191 }
6192
6193 static struct cgroup_subsys_state * __ref
6194 mem_cgroup_css_alloc(struct cgroup *cont)
6195 {
6196 struct mem_cgroup *memcg;
6197 long error = -ENOMEM;
6198 int node;
6199
6200 memcg = mem_cgroup_alloc();
6201 if (!memcg)
6202 return ERR_PTR(error);
6203
6204 for_each_node(node)
6205 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6206 goto free_out;
6207
6208 /* root ? */
6209 if (cont->parent == NULL) {
6210 root_mem_cgroup = memcg;
6211 res_counter_init(&memcg->res, NULL);
6212 res_counter_init(&memcg->memsw, NULL);
6213 res_counter_init(&memcg->kmem, NULL);
6214 }
6215
6216 memcg->last_scanned_node = MAX_NUMNODES;
6217 INIT_LIST_HEAD(&memcg->oom_notify);
6218 atomic_set(&memcg->refcnt, 1);
6219 memcg->move_charge_at_immigrate = 0;
6220 mutex_init(&memcg->thresholds_lock);
6221 spin_lock_init(&memcg->move_lock);
6222 vmpressure_init(&memcg->vmpressure);
6223
6224 return &memcg->css;
6225
6226 free_out:
6227 __mem_cgroup_free(memcg);
6228 return ERR_PTR(error);
6229 }
6230
6231 static int
6232 mem_cgroup_css_online(struct cgroup *cont)
6233 {
6234 struct mem_cgroup *memcg, *parent;
6235 int error = 0;
6236
6237 if (!cont->parent)
6238 return 0;
6239
6240 mutex_lock(&memcg_create_mutex);
6241 memcg = mem_cgroup_from_cont(cont);
6242 parent = mem_cgroup_from_cont(cont->parent);
6243
6244 memcg->use_hierarchy = parent->use_hierarchy;
6245 memcg->oom_kill_disable = parent->oom_kill_disable;
6246 memcg->swappiness = mem_cgroup_swappiness(parent);
6247
6248 if (parent->use_hierarchy) {
6249 res_counter_init(&memcg->res, &parent->res);
6250 res_counter_init(&memcg->memsw, &parent->memsw);
6251 res_counter_init(&memcg->kmem, &parent->kmem);
6252
6253 /*
6254 * We increment refcnt of the parent to ensure that we can
6255 * safely access it on res_counter_charge/uncharge.
6256 * This refcnt will be decremented when freeing this
6257 * mem_cgroup(see mem_cgroup_put).
6258 */
6259 mem_cgroup_get(parent);
6260 } else {
6261 res_counter_init(&memcg->res, NULL);
6262 res_counter_init(&memcg->memsw, NULL);
6263 res_counter_init(&memcg->kmem, NULL);
6264 /*
6265 * Deeper hierachy with use_hierarchy == false doesn't make
6266 * much sense so let cgroup subsystem know about this
6267 * unfortunate state in our controller.
6268 */
6269 if (parent != root_mem_cgroup)
6270 mem_cgroup_subsys.broken_hierarchy = true;
6271 }
6272
6273 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6274 mutex_unlock(&memcg_create_mutex);
6275 if (error) {
6276 /*
6277 * We call put now because our (and parent's) refcnts
6278 * are already in place. mem_cgroup_put() will internally
6279 * call __mem_cgroup_free, so return directly
6280 */
6281 mem_cgroup_put(memcg);
6282 if (parent->use_hierarchy)
6283 mem_cgroup_put(parent);
6284 }
6285 return error;
6286 }
6287
6288 /*
6289 * Announce all parents that a group from their hierarchy is gone.
6290 */
6291 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6292 {
6293 struct mem_cgroup *parent = memcg;
6294
6295 while ((parent = parent_mem_cgroup(parent)))
6296 atomic_inc(&parent->dead_count);
6297
6298 /*
6299 * if the root memcg is not hierarchical we have to check it
6300 * explicitely.
6301 */
6302 if (!root_mem_cgroup->use_hierarchy)
6303 atomic_inc(&root_mem_cgroup->dead_count);
6304 }
6305
6306 static void mem_cgroup_css_offline(struct cgroup *cont)
6307 {
6308 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6309
6310 mem_cgroup_invalidate_reclaim_iterators(memcg);
6311 mem_cgroup_reparent_charges(memcg);
6312 mem_cgroup_destroy_all_caches(memcg);
6313 }
6314
6315 static void mem_cgroup_css_free(struct cgroup *cont)
6316 {
6317 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6318
6319 kmem_cgroup_destroy(memcg);
6320
6321 mem_cgroup_put(memcg);
6322 }
6323
6324 #ifdef CONFIG_MMU
6325 /* Handlers for move charge at task migration. */
6326 #define PRECHARGE_COUNT_AT_ONCE 256
6327 static int mem_cgroup_do_precharge(unsigned long count)
6328 {
6329 int ret = 0;
6330 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6331 struct mem_cgroup *memcg = mc.to;
6332
6333 if (mem_cgroup_is_root(memcg)) {
6334 mc.precharge += count;
6335 /* we don't need css_get for root */
6336 return ret;
6337 }
6338 /* try to charge at once */
6339 if (count > 1) {
6340 struct res_counter *dummy;
6341 /*
6342 * "memcg" cannot be under rmdir() because we've already checked
6343 * by cgroup_lock_live_cgroup() that it is not removed and we
6344 * are still under the same cgroup_mutex. So we can postpone
6345 * css_get().
6346 */
6347 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6348 goto one_by_one;
6349 if (do_swap_account && res_counter_charge(&memcg->memsw,
6350 PAGE_SIZE * count, &dummy)) {
6351 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6352 goto one_by_one;
6353 }
6354 mc.precharge += count;
6355 return ret;
6356 }
6357 one_by_one:
6358 /* fall back to one by one charge */
6359 while (count--) {
6360 if (signal_pending(current)) {
6361 ret = -EINTR;
6362 break;
6363 }
6364 if (!batch_count--) {
6365 batch_count = PRECHARGE_COUNT_AT_ONCE;
6366 cond_resched();
6367 }
6368 ret = __mem_cgroup_try_charge(NULL,
6369 GFP_KERNEL, 1, &memcg, false);
6370 if (ret)
6371 /* mem_cgroup_clear_mc() will do uncharge later */
6372 return ret;
6373 mc.precharge++;
6374 }
6375 return ret;
6376 }
6377
6378 /**
6379 * get_mctgt_type - get target type of moving charge
6380 * @vma: the vma the pte to be checked belongs
6381 * @addr: the address corresponding to the pte to be checked
6382 * @ptent: the pte to be checked
6383 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6384 *
6385 * Returns
6386 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6387 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6388 * move charge. if @target is not NULL, the page is stored in target->page
6389 * with extra refcnt got(Callers should handle it).
6390 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6391 * target for charge migration. if @target is not NULL, the entry is stored
6392 * in target->ent.
6393 *
6394 * Called with pte lock held.
6395 */
6396 union mc_target {
6397 struct page *page;
6398 swp_entry_t ent;
6399 };
6400
6401 enum mc_target_type {
6402 MC_TARGET_NONE = 0,
6403 MC_TARGET_PAGE,
6404 MC_TARGET_SWAP,
6405 };
6406
6407 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6408 unsigned long addr, pte_t ptent)
6409 {
6410 struct page *page = vm_normal_page(vma, addr, ptent);
6411
6412 if (!page || !page_mapped(page))
6413 return NULL;
6414 if (PageAnon(page)) {
6415 /* we don't move shared anon */
6416 if (!move_anon())
6417 return NULL;
6418 } else if (!move_file())
6419 /* we ignore mapcount for file pages */
6420 return NULL;
6421 if (!get_page_unless_zero(page))
6422 return NULL;
6423
6424 return page;
6425 }
6426
6427 #ifdef CONFIG_SWAP
6428 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6429 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6430 {
6431 struct page *page = NULL;
6432 swp_entry_t ent = pte_to_swp_entry(ptent);
6433
6434 if (!move_anon() || non_swap_entry(ent))
6435 return NULL;
6436 /*
6437 * Because lookup_swap_cache() updates some statistics counter,
6438 * we call find_get_page() with swapper_space directly.
6439 */
6440 page = find_get_page(swap_address_space(ent), ent.val);
6441 if (do_swap_account)
6442 entry->val = ent.val;
6443
6444 return page;
6445 }
6446 #else
6447 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6448 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6449 {
6450 return NULL;
6451 }
6452 #endif
6453
6454 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6455 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6456 {
6457 struct page *page = NULL;
6458 struct address_space *mapping;
6459 pgoff_t pgoff;
6460
6461 if (!vma->vm_file) /* anonymous vma */
6462 return NULL;
6463 if (!move_file())
6464 return NULL;
6465
6466 mapping = vma->vm_file->f_mapping;
6467 if (pte_none(ptent))
6468 pgoff = linear_page_index(vma, addr);
6469 else /* pte_file(ptent) is true */
6470 pgoff = pte_to_pgoff(ptent);
6471
6472 /* page is moved even if it's not RSS of this task(page-faulted). */
6473 page = find_get_page(mapping, pgoff);
6474
6475 #ifdef CONFIG_SWAP
6476 /* shmem/tmpfs may report page out on swap: account for that too. */
6477 if (radix_tree_exceptional_entry(page)) {
6478 swp_entry_t swap = radix_to_swp_entry(page);
6479 if (do_swap_account)
6480 *entry = swap;
6481 page = find_get_page(swap_address_space(swap), swap.val);
6482 }
6483 #endif
6484 return page;
6485 }
6486
6487 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6488 unsigned long addr, pte_t ptent, union mc_target *target)
6489 {
6490 struct page *page = NULL;
6491 struct page_cgroup *pc;
6492 enum mc_target_type ret = MC_TARGET_NONE;
6493 swp_entry_t ent = { .val = 0 };
6494
6495 if (pte_present(ptent))
6496 page = mc_handle_present_pte(vma, addr, ptent);
6497 else if (is_swap_pte(ptent))
6498 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6499 else if (pte_none(ptent) || pte_file(ptent))
6500 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6501
6502 if (!page && !ent.val)
6503 return ret;
6504 if (page) {
6505 pc = lookup_page_cgroup(page);
6506 /*
6507 * Do only loose check w/o page_cgroup lock.
6508 * mem_cgroup_move_account() checks the pc is valid or not under
6509 * the lock.
6510 */
6511 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6512 ret = MC_TARGET_PAGE;
6513 if (target)
6514 target->page = page;
6515 }
6516 if (!ret || !target)
6517 put_page(page);
6518 }
6519 /* There is a swap entry and a page doesn't exist or isn't charged */
6520 if (ent.val && !ret &&
6521 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6522 ret = MC_TARGET_SWAP;
6523 if (target)
6524 target->ent = ent;
6525 }
6526 return ret;
6527 }
6528
6529 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6530 /*
6531 * We don't consider swapping or file mapped pages because THP does not
6532 * support them for now.
6533 * Caller should make sure that pmd_trans_huge(pmd) is true.
6534 */
6535 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6536 unsigned long addr, pmd_t pmd, union mc_target *target)
6537 {
6538 struct page *page = NULL;
6539 struct page_cgroup *pc;
6540 enum mc_target_type ret = MC_TARGET_NONE;
6541
6542 page = pmd_page(pmd);
6543 VM_BUG_ON(!page || !PageHead(page));
6544 if (!move_anon())
6545 return ret;
6546 pc = lookup_page_cgroup(page);
6547 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6548 ret = MC_TARGET_PAGE;
6549 if (target) {
6550 get_page(page);
6551 target->page = page;
6552 }
6553 }
6554 return ret;
6555 }
6556 #else
6557 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6558 unsigned long addr, pmd_t pmd, union mc_target *target)
6559 {
6560 return MC_TARGET_NONE;
6561 }
6562 #endif
6563
6564 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6565 unsigned long addr, unsigned long end,
6566 struct mm_walk *walk)
6567 {
6568 struct vm_area_struct *vma = walk->private;
6569 pte_t *pte;
6570 spinlock_t *ptl;
6571
6572 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6573 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6574 mc.precharge += HPAGE_PMD_NR;
6575 spin_unlock(&vma->vm_mm->page_table_lock);
6576 return 0;
6577 }
6578
6579 if (pmd_trans_unstable(pmd))
6580 return 0;
6581 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6582 for (; addr != end; pte++, addr += PAGE_SIZE)
6583 if (get_mctgt_type(vma, addr, *pte, NULL))
6584 mc.precharge++; /* increment precharge temporarily */
6585 pte_unmap_unlock(pte - 1, ptl);
6586 cond_resched();
6587
6588 return 0;
6589 }
6590
6591 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6592 {
6593 unsigned long precharge;
6594 struct vm_area_struct *vma;
6595
6596 down_read(&mm->mmap_sem);
6597 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6598 struct mm_walk mem_cgroup_count_precharge_walk = {
6599 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6600 .mm = mm,
6601 .private = vma,
6602 };
6603 if (is_vm_hugetlb_page(vma))
6604 continue;
6605 walk_page_range(vma->vm_start, vma->vm_end,
6606 &mem_cgroup_count_precharge_walk);
6607 }
6608 up_read(&mm->mmap_sem);
6609
6610 precharge = mc.precharge;
6611 mc.precharge = 0;
6612
6613 return precharge;
6614 }
6615
6616 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6617 {
6618 unsigned long precharge = mem_cgroup_count_precharge(mm);
6619
6620 VM_BUG_ON(mc.moving_task);
6621 mc.moving_task = current;
6622 return mem_cgroup_do_precharge(precharge);
6623 }
6624
6625 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6626 static void __mem_cgroup_clear_mc(void)
6627 {
6628 struct mem_cgroup *from = mc.from;
6629 struct mem_cgroup *to = mc.to;
6630
6631 /* we must uncharge all the leftover precharges from mc.to */
6632 if (mc.precharge) {
6633 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6634 mc.precharge = 0;
6635 }
6636 /*
6637 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6638 * we must uncharge here.
6639 */
6640 if (mc.moved_charge) {
6641 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6642 mc.moved_charge = 0;
6643 }
6644 /* we must fixup refcnts and charges */
6645 if (mc.moved_swap) {
6646 /* uncharge swap account from the old cgroup */
6647 if (!mem_cgroup_is_root(mc.from))
6648 res_counter_uncharge(&mc.from->memsw,
6649 PAGE_SIZE * mc.moved_swap);
6650 __mem_cgroup_put(mc.from, mc.moved_swap);
6651
6652 if (!mem_cgroup_is_root(mc.to)) {
6653 /*
6654 * we charged both to->res and to->memsw, so we should
6655 * uncharge to->res.
6656 */
6657 res_counter_uncharge(&mc.to->res,
6658 PAGE_SIZE * mc.moved_swap);
6659 }
6660 /* we've already done mem_cgroup_get(mc.to) */
6661 mc.moved_swap = 0;
6662 }
6663 memcg_oom_recover(from);
6664 memcg_oom_recover(to);
6665 wake_up_all(&mc.waitq);
6666 }
6667
6668 static void mem_cgroup_clear_mc(void)
6669 {
6670 struct mem_cgroup *from = mc.from;
6671
6672 /*
6673 * we must clear moving_task before waking up waiters at the end of
6674 * task migration.
6675 */
6676 mc.moving_task = NULL;
6677 __mem_cgroup_clear_mc();
6678 spin_lock(&mc.lock);
6679 mc.from = NULL;
6680 mc.to = NULL;
6681 spin_unlock(&mc.lock);
6682 mem_cgroup_end_move(from);
6683 }
6684
6685 static int mem_cgroup_can_attach(struct cgroup *cgroup,
6686 struct cgroup_taskset *tset)
6687 {
6688 struct task_struct *p = cgroup_taskset_first(tset);
6689 int ret = 0;
6690 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
6691 unsigned long move_charge_at_immigrate;
6692
6693 /*
6694 * We are now commited to this value whatever it is. Changes in this
6695 * tunable will only affect upcoming migrations, not the current one.
6696 * So we need to save it, and keep it going.
6697 */
6698 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6699 if (move_charge_at_immigrate) {
6700 struct mm_struct *mm;
6701 struct mem_cgroup *from = mem_cgroup_from_task(p);
6702
6703 VM_BUG_ON(from == memcg);
6704
6705 mm = get_task_mm(p);
6706 if (!mm)
6707 return 0;
6708 /* We move charges only when we move a owner of the mm */
6709 if (mm->owner == p) {
6710 VM_BUG_ON(mc.from);
6711 VM_BUG_ON(mc.to);
6712 VM_BUG_ON(mc.precharge);
6713 VM_BUG_ON(mc.moved_charge);
6714 VM_BUG_ON(mc.moved_swap);
6715 mem_cgroup_start_move(from);
6716 spin_lock(&mc.lock);
6717 mc.from = from;
6718 mc.to = memcg;
6719 mc.immigrate_flags = move_charge_at_immigrate;
6720 spin_unlock(&mc.lock);
6721 /* We set mc.moving_task later */
6722
6723 ret = mem_cgroup_precharge_mc(mm);
6724 if (ret)
6725 mem_cgroup_clear_mc();
6726 }
6727 mmput(mm);
6728 }
6729 return ret;
6730 }
6731
6732 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6733 struct cgroup_taskset *tset)
6734 {
6735 mem_cgroup_clear_mc();
6736 }
6737
6738 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6739 unsigned long addr, unsigned long end,
6740 struct mm_walk *walk)
6741 {
6742 int ret = 0;
6743 struct vm_area_struct *vma = walk->private;
6744 pte_t *pte;
6745 spinlock_t *ptl;
6746 enum mc_target_type target_type;
6747 union mc_target target;
6748 struct page *page;
6749 struct page_cgroup *pc;
6750
6751 /*
6752 * We don't take compound_lock() here but no race with splitting thp
6753 * happens because:
6754 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6755 * under splitting, which means there's no concurrent thp split,
6756 * - if another thread runs into split_huge_page() just after we
6757 * entered this if-block, the thread must wait for page table lock
6758 * to be unlocked in __split_huge_page_splitting(), where the main
6759 * part of thp split is not executed yet.
6760 */
6761 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6762 if (mc.precharge < HPAGE_PMD_NR) {
6763 spin_unlock(&vma->vm_mm->page_table_lock);
6764 return 0;
6765 }
6766 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6767 if (target_type == MC_TARGET_PAGE) {
6768 page = target.page;
6769 if (!isolate_lru_page(page)) {
6770 pc = lookup_page_cgroup(page);
6771 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6772 pc, mc.from, mc.to)) {
6773 mc.precharge -= HPAGE_PMD_NR;
6774 mc.moved_charge += HPAGE_PMD_NR;
6775 }
6776 putback_lru_page(page);
6777 }
6778 put_page(page);
6779 }
6780 spin_unlock(&vma->vm_mm->page_table_lock);
6781 return 0;
6782 }
6783
6784 if (pmd_trans_unstable(pmd))
6785 return 0;
6786 retry:
6787 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6788 for (; addr != end; addr += PAGE_SIZE) {
6789 pte_t ptent = *(pte++);
6790 swp_entry_t ent;
6791
6792 if (!mc.precharge)
6793 break;
6794
6795 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6796 case MC_TARGET_PAGE:
6797 page = target.page;
6798 if (isolate_lru_page(page))
6799 goto put;
6800 pc = lookup_page_cgroup(page);
6801 if (!mem_cgroup_move_account(page, 1, pc,
6802 mc.from, mc.to)) {
6803 mc.precharge--;
6804 /* we uncharge from mc.from later. */
6805 mc.moved_charge++;
6806 }
6807 putback_lru_page(page);
6808 put: /* get_mctgt_type() gets the page */
6809 put_page(page);
6810 break;
6811 case MC_TARGET_SWAP:
6812 ent = target.ent;
6813 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6814 mc.precharge--;
6815 /* we fixup refcnts and charges later. */
6816 mc.moved_swap++;
6817 }
6818 break;
6819 default:
6820 break;
6821 }
6822 }
6823 pte_unmap_unlock(pte - 1, ptl);
6824 cond_resched();
6825
6826 if (addr != end) {
6827 /*
6828 * We have consumed all precharges we got in can_attach().
6829 * We try charge one by one, but don't do any additional
6830 * charges to mc.to if we have failed in charge once in attach()
6831 * phase.
6832 */
6833 ret = mem_cgroup_do_precharge(1);
6834 if (!ret)
6835 goto retry;
6836 }
6837
6838 return ret;
6839 }
6840
6841 static void mem_cgroup_move_charge(struct mm_struct *mm)
6842 {
6843 struct vm_area_struct *vma;
6844
6845 lru_add_drain_all();
6846 retry:
6847 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6848 /*
6849 * Someone who are holding the mmap_sem might be waiting in
6850 * waitq. So we cancel all extra charges, wake up all waiters,
6851 * and retry. Because we cancel precharges, we might not be able
6852 * to move enough charges, but moving charge is a best-effort
6853 * feature anyway, so it wouldn't be a big problem.
6854 */
6855 __mem_cgroup_clear_mc();
6856 cond_resched();
6857 goto retry;
6858 }
6859 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6860 int ret;
6861 struct mm_walk mem_cgroup_move_charge_walk = {
6862 .pmd_entry = mem_cgroup_move_charge_pte_range,
6863 .mm = mm,
6864 .private = vma,
6865 };
6866 if (is_vm_hugetlb_page(vma))
6867 continue;
6868 ret = walk_page_range(vma->vm_start, vma->vm_end,
6869 &mem_cgroup_move_charge_walk);
6870 if (ret)
6871 /*
6872 * means we have consumed all precharges and failed in
6873 * doing additional charge. Just abandon here.
6874 */
6875 break;
6876 }
6877 up_read(&mm->mmap_sem);
6878 }
6879
6880 static void mem_cgroup_move_task(struct cgroup *cont,
6881 struct cgroup_taskset *tset)
6882 {
6883 struct task_struct *p = cgroup_taskset_first(tset);
6884 struct mm_struct *mm = get_task_mm(p);
6885
6886 if (mm) {
6887 if (mc.to)
6888 mem_cgroup_move_charge(mm);
6889 mmput(mm);
6890 }
6891 if (mc.to)
6892 mem_cgroup_clear_mc();
6893 }
6894 #else /* !CONFIG_MMU */
6895 static int mem_cgroup_can_attach(struct cgroup *cgroup,
6896 struct cgroup_taskset *tset)
6897 {
6898 return 0;
6899 }
6900 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6901 struct cgroup_taskset *tset)
6902 {
6903 }
6904 static void mem_cgroup_move_task(struct cgroup *cont,
6905 struct cgroup_taskset *tset)
6906 {
6907 }
6908 #endif
6909
6910 struct cgroup_subsys mem_cgroup_subsys = {
6911 .name = "memory",
6912 .subsys_id = mem_cgroup_subsys_id,
6913 .css_alloc = mem_cgroup_css_alloc,
6914 .css_online = mem_cgroup_css_online,
6915 .css_offline = mem_cgroup_css_offline,
6916 .css_free = mem_cgroup_css_free,
6917 .can_attach = mem_cgroup_can_attach,
6918 .cancel_attach = mem_cgroup_cancel_attach,
6919 .attach = mem_cgroup_move_task,
6920 .base_cftypes = mem_cgroup_files,
6921 .early_init = 0,
6922 .use_id = 1,
6923 };
6924
6925 #ifdef CONFIG_MEMCG_SWAP
6926 static int __init enable_swap_account(char *s)
6927 {
6928 /* consider enabled if no parameter or 1 is given */
6929 if (!strcmp(s, "1"))
6930 really_do_swap_account = 1;
6931 else if (!strcmp(s, "0"))
6932 really_do_swap_account = 0;
6933 return 1;
6934 }
6935 __setup("swapaccount=", enable_swap_account);
6936
6937 static void __init memsw_file_init(void)
6938 {
6939 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6940 }
6941
6942 static void __init enable_swap_cgroup(void)
6943 {
6944 if (!mem_cgroup_disabled() && really_do_swap_account) {
6945 do_swap_account = 1;
6946 memsw_file_init();
6947 }
6948 }
6949
6950 #else
6951 static void __init enable_swap_cgroup(void)
6952 {
6953 }
6954 #endif
6955
6956 /*
6957 * subsys_initcall() for memory controller.
6958 *
6959 * Some parts like hotcpu_notifier() have to be initialized from this context
6960 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6961 * everything that doesn't depend on a specific mem_cgroup structure should
6962 * be initialized from here.
6963 */
6964 static int __init mem_cgroup_init(void)
6965 {
6966 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6967 enable_swap_cgroup();
6968 mem_cgroup_soft_limit_tree_init();
6969 memcg_stock_init();
6970 return 0;
6971 }
6972 subsys_initcall(mem_cgroup_init);
This page took 0.17094 seconds and 5 git commands to generate.