mm: hugetlb: proc: add HugetlbPages field to /proc/PID/status
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include <net/tcp_memcontrol.h>
70 #include "slab.h"
71
72 #include <asm/uaccess.h>
73
74 #include <trace/events/vmscan.h>
75
76 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77 EXPORT_SYMBOL(memory_cgrp_subsys);
78
79 #define MEM_CGROUP_RECLAIM_RETRIES 5
80 static struct mem_cgroup *root_mem_cgroup __read_mostly;
81 struct cgroup_subsys_state *mem_cgroup_root_css __read_mostly;
82
83 /* Whether the swap controller is active */
84 #ifdef CONFIG_MEMCG_SWAP
85 int do_swap_account __read_mostly;
86 #else
87 #define do_swap_account 0
88 #endif
89
90 static const char * const mem_cgroup_stat_names[] = {
91 "cache",
92 "rss",
93 "rss_huge",
94 "mapped_file",
95 "dirty",
96 "writeback",
97 "swap",
98 };
99
100 static const char * const mem_cgroup_events_names[] = {
101 "pgpgin",
102 "pgpgout",
103 "pgfault",
104 "pgmajfault",
105 };
106
107 static const char * const mem_cgroup_lru_names[] = {
108 "inactive_anon",
109 "active_anon",
110 "inactive_file",
111 "active_file",
112 "unevictable",
113 };
114
115 #define THRESHOLDS_EVENTS_TARGET 128
116 #define SOFTLIMIT_EVENTS_TARGET 1024
117 #define NUMAINFO_EVENTS_TARGET 1024
118
119 /*
120 * Cgroups above their limits are maintained in a RB-Tree, independent of
121 * their hierarchy representation
122 */
123
124 struct mem_cgroup_tree_per_zone {
125 struct rb_root rb_root;
126 spinlock_t lock;
127 };
128
129 struct mem_cgroup_tree_per_node {
130 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
131 };
132
133 struct mem_cgroup_tree {
134 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
135 };
136
137 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
138
139 /* for OOM */
140 struct mem_cgroup_eventfd_list {
141 struct list_head list;
142 struct eventfd_ctx *eventfd;
143 };
144
145 /*
146 * cgroup_event represents events which userspace want to receive.
147 */
148 struct mem_cgroup_event {
149 /*
150 * memcg which the event belongs to.
151 */
152 struct mem_cgroup *memcg;
153 /*
154 * eventfd to signal userspace about the event.
155 */
156 struct eventfd_ctx *eventfd;
157 /*
158 * Each of these stored in a list by the cgroup.
159 */
160 struct list_head list;
161 /*
162 * register_event() callback will be used to add new userspace
163 * waiter for changes related to this event. Use eventfd_signal()
164 * on eventfd to send notification to userspace.
165 */
166 int (*register_event)(struct mem_cgroup *memcg,
167 struct eventfd_ctx *eventfd, const char *args);
168 /*
169 * unregister_event() callback will be called when userspace closes
170 * the eventfd or on cgroup removing. This callback must be set,
171 * if you want provide notification functionality.
172 */
173 void (*unregister_event)(struct mem_cgroup *memcg,
174 struct eventfd_ctx *eventfd);
175 /*
176 * All fields below needed to unregister event when
177 * userspace closes eventfd.
178 */
179 poll_table pt;
180 wait_queue_head_t *wqh;
181 wait_queue_t wait;
182 struct work_struct remove;
183 };
184
185 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
186 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
187
188 /* Stuffs for move charges at task migration. */
189 /*
190 * Types of charges to be moved.
191 */
192 #define MOVE_ANON 0x1U
193 #define MOVE_FILE 0x2U
194 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
195
196 /* "mc" and its members are protected by cgroup_mutex */
197 static struct move_charge_struct {
198 spinlock_t lock; /* for from, to */
199 struct mem_cgroup *from;
200 struct mem_cgroup *to;
201 unsigned long flags;
202 unsigned long precharge;
203 unsigned long moved_charge;
204 unsigned long moved_swap;
205 struct task_struct *moving_task; /* a task moving charges */
206 wait_queue_head_t waitq; /* a waitq for other context */
207 } mc = {
208 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
209 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
210 };
211
212 /*
213 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
214 * limit reclaim to prevent infinite loops, if they ever occur.
215 */
216 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
217 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
218
219 enum charge_type {
220 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
221 MEM_CGROUP_CHARGE_TYPE_ANON,
222 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
223 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
224 NR_CHARGE_TYPE,
225 };
226
227 /* for encoding cft->private value on file */
228 enum res_type {
229 _MEM,
230 _MEMSWAP,
231 _OOM_TYPE,
232 _KMEM,
233 };
234
235 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
236 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
237 #define MEMFILE_ATTR(val) ((val) & 0xffff)
238 /* Used for OOM nofiier */
239 #define OOM_CONTROL (0)
240
241 /*
242 * The memcg_create_mutex will be held whenever a new cgroup is created.
243 * As a consequence, any change that needs to protect against new child cgroups
244 * appearing has to hold it as well.
245 */
246 static DEFINE_MUTEX(memcg_create_mutex);
247
248 /* Some nice accessors for the vmpressure. */
249 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
250 {
251 if (!memcg)
252 memcg = root_mem_cgroup;
253 return &memcg->vmpressure;
254 }
255
256 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
257 {
258 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
259 }
260
261 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
262 {
263 return (memcg == root_mem_cgroup);
264 }
265
266 /*
267 * We restrict the id in the range of [1, 65535], so it can fit into
268 * an unsigned short.
269 */
270 #define MEM_CGROUP_ID_MAX USHRT_MAX
271
272 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
273 {
274 return memcg->css.id;
275 }
276
277 /*
278 * A helper function to get mem_cgroup from ID. must be called under
279 * rcu_read_lock(). The caller is responsible for calling
280 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
281 * refcnt from swap can be called against removed memcg.)
282 */
283 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
284 {
285 struct cgroup_subsys_state *css;
286
287 css = css_from_id(id, &memory_cgrp_subsys);
288 return mem_cgroup_from_css(css);
289 }
290
291 /* Writing them here to avoid exposing memcg's inner layout */
292 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
293
294 void sock_update_memcg(struct sock *sk)
295 {
296 if (mem_cgroup_sockets_enabled) {
297 struct mem_cgroup *memcg;
298 struct cg_proto *cg_proto;
299
300 BUG_ON(!sk->sk_prot->proto_cgroup);
301
302 /* Socket cloning can throw us here with sk_cgrp already
303 * filled. It won't however, necessarily happen from
304 * process context. So the test for root memcg given
305 * the current task's memcg won't help us in this case.
306 *
307 * Respecting the original socket's memcg is a better
308 * decision in this case.
309 */
310 if (sk->sk_cgrp) {
311 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
312 css_get(&sk->sk_cgrp->memcg->css);
313 return;
314 }
315
316 rcu_read_lock();
317 memcg = mem_cgroup_from_task(current);
318 cg_proto = sk->sk_prot->proto_cgroup(memcg);
319 if (cg_proto && test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags) &&
320 css_tryget_online(&memcg->css)) {
321 sk->sk_cgrp = cg_proto;
322 }
323 rcu_read_unlock();
324 }
325 }
326 EXPORT_SYMBOL(sock_update_memcg);
327
328 void sock_release_memcg(struct sock *sk)
329 {
330 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
331 struct mem_cgroup *memcg;
332 WARN_ON(!sk->sk_cgrp->memcg);
333 memcg = sk->sk_cgrp->memcg;
334 css_put(&sk->sk_cgrp->memcg->css);
335 }
336 }
337
338 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
339 {
340 if (!memcg || mem_cgroup_is_root(memcg))
341 return NULL;
342
343 return &memcg->tcp_mem;
344 }
345 EXPORT_SYMBOL(tcp_proto_cgroup);
346
347 #endif
348
349 #ifdef CONFIG_MEMCG_KMEM
350 /*
351 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
352 * The main reason for not using cgroup id for this:
353 * this works better in sparse environments, where we have a lot of memcgs,
354 * but only a few kmem-limited. Or also, if we have, for instance, 200
355 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
356 * 200 entry array for that.
357 *
358 * The current size of the caches array is stored in memcg_nr_cache_ids. It
359 * will double each time we have to increase it.
360 */
361 static DEFINE_IDA(memcg_cache_ida);
362 int memcg_nr_cache_ids;
363
364 /* Protects memcg_nr_cache_ids */
365 static DECLARE_RWSEM(memcg_cache_ids_sem);
366
367 void memcg_get_cache_ids(void)
368 {
369 down_read(&memcg_cache_ids_sem);
370 }
371
372 void memcg_put_cache_ids(void)
373 {
374 up_read(&memcg_cache_ids_sem);
375 }
376
377 /*
378 * MIN_SIZE is different than 1, because we would like to avoid going through
379 * the alloc/free process all the time. In a small machine, 4 kmem-limited
380 * cgroups is a reasonable guess. In the future, it could be a parameter or
381 * tunable, but that is strictly not necessary.
382 *
383 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
384 * this constant directly from cgroup, but it is understandable that this is
385 * better kept as an internal representation in cgroup.c. In any case, the
386 * cgrp_id space is not getting any smaller, and we don't have to necessarily
387 * increase ours as well if it increases.
388 */
389 #define MEMCG_CACHES_MIN_SIZE 4
390 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
391
392 /*
393 * A lot of the calls to the cache allocation functions are expected to be
394 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
395 * conditional to this static branch, we'll have to allow modules that does
396 * kmem_cache_alloc and the such to see this symbol as well
397 */
398 struct static_key memcg_kmem_enabled_key;
399 EXPORT_SYMBOL(memcg_kmem_enabled_key);
400
401 #endif /* CONFIG_MEMCG_KMEM */
402
403 static struct mem_cgroup_per_zone *
404 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
405 {
406 int nid = zone_to_nid(zone);
407 int zid = zone_idx(zone);
408
409 return &memcg->nodeinfo[nid]->zoneinfo[zid];
410 }
411
412 /**
413 * mem_cgroup_css_from_page - css of the memcg associated with a page
414 * @page: page of interest
415 *
416 * If memcg is bound to the default hierarchy, css of the memcg associated
417 * with @page is returned. The returned css remains associated with @page
418 * until it is released.
419 *
420 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
421 * is returned.
422 *
423 * XXX: The above description of behavior on the default hierarchy isn't
424 * strictly true yet as replace_page_cache_page() can modify the
425 * association before @page is released even on the default hierarchy;
426 * however, the current and planned usages don't mix the the two functions
427 * and replace_page_cache_page() will soon be updated to make the invariant
428 * actually true.
429 */
430 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
431 {
432 struct mem_cgroup *memcg;
433
434 rcu_read_lock();
435
436 memcg = page->mem_cgroup;
437
438 if (!memcg || !cgroup_on_dfl(memcg->css.cgroup))
439 memcg = root_mem_cgroup;
440
441 rcu_read_unlock();
442 return &memcg->css;
443 }
444
445 /**
446 * page_cgroup_ino - return inode number of the memcg a page is charged to
447 * @page: the page
448 *
449 * Look up the closest online ancestor of the memory cgroup @page is charged to
450 * and return its inode number or 0 if @page is not charged to any cgroup. It
451 * is safe to call this function without holding a reference to @page.
452 *
453 * Note, this function is inherently racy, because there is nothing to prevent
454 * the cgroup inode from getting torn down and potentially reallocated a moment
455 * after page_cgroup_ino() returns, so it only should be used by callers that
456 * do not care (such as procfs interfaces).
457 */
458 ino_t page_cgroup_ino(struct page *page)
459 {
460 struct mem_cgroup *memcg;
461 unsigned long ino = 0;
462
463 rcu_read_lock();
464 memcg = READ_ONCE(page->mem_cgroup);
465 while (memcg && !(memcg->css.flags & CSS_ONLINE))
466 memcg = parent_mem_cgroup(memcg);
467 if (memcg)
468 ino = cgroup_ino(memcg->css.cgroup);
469 rcu_read_unlock();
470 return ino;
471 }
472
473 static struct mem_cgroup_per_zone *
474 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
475 {
476 int nid = page_to_nid(page);
477 int zid = page_zonenum(page);
478
479 return &memcg->nodeinfo[nid]->zoneinfo[zid];
480 }
481
482 static struct mem_cgroup_tree_per_zone *
483 soft_limit_tree_node_zone(int nid, int zid)
484 {
485 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
486 }
487
488 static struct mem_cgroup_tree_per_zone *
489 soft_limit_tree_from_page(struct page *page)
490 {
491 int nid = page_to_nid(page);
492 int zid = page_zonenum(page);
493
494 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
495 }
496
497 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
498 struct mem_cgroup_tree_per_zone *mctz,
499 unsigned long new_usage_in_excess)
500 {
501 struct rb_node **p = &mctz->rb_root.rb_node;
502 struct rb_node *parent = NULL;
503 struct mem_cgroup_per_zone *mz_node;
504
505 if (mz->on_tree)
506 return;
507
508 mz->usage_in_excess = new_usage_in_excess;
509 if (!mz->usage_in_excess)
510 return;
511 while (*p) {
512 parent = *p;
513 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
514 tree_node);
515 if (mz->usage_in_excess < mz_node->usage_in_excess)
516 p = &(*p)->rb_left;
517 /*
518 * We can't avoid mem cgroups that are over their soft
519 * limit by the same amount
520 */
521 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
522 p = &(*p)->rb_right;
523 }
524 rb_link_node(&mz->tree_node, parent, p);
525 rb_insert_color(&mz->tree_node, &mctz->rb_root);
526 mz->on_tree = true;
527 }
528
529 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
530 struct mem_cgroup_tree_per_zone *mctz)
531 {
532 if (!mz->on_tree)
533 return;
534 rb_erase(&mz->tree_node, &mctz->rb_root);
535 mz->on_tree = false;
536 }
537
538 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
539 struct mem_cgroup_tree_per_zone *mctz)
540 {
541 unsigned long flags;
542
543 spin_lock_irqsave(&mctz->lock, flags);
544 __mem_cgroup_remove_exceeded(mz, mctz);
545 spin_unlock_irqrestore(&mctz->lock, flags);
546 }
547
548 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
549 {
550 unsigned long nr_pages = page_counter_read(&memcg->memory);
551 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
552 unsigned long excess = 0;
553
554 if (nr_pages > soft_limit)
555 excess = nr_pages - soft_limit;
556
557 return excess;
558 }
559
560 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
561 {
562 unsigned long excess;
563 struct mem_cgroup_per_zone *mz;
564 struct mem_cgroup_tree_per_zone *mctz;
565
566 mctz = soft_limit_tree_from_page(page);
567 /*
568 * Necessary to update all ancestors when hierarchy is used.
569 * because their event counter is not touched.
570 */
571 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
572 mz = mem_cgroup_page_zoneinfo(memcg, page);
573 excess = soft_limit_excess(memcg);
574 /*
575 * We have to update the tree if mz is on RB-tree or
576 * mem is over its softlimit.
577 */
578 if (excess || mz->on_tree) {
579 unsigned long flags;
580
581 spin_lock_irqsave(&mctz->lock, flags);
582 /* if on-tree, remove it */
583 if (mz->on_tree)
584 __mem_cgroup_remove_exceeded(mz, mctz);
585 /*
586 * Insert again. mz->usage_in_excess will be updated.
587 * If excess is 0, no tree ops.
588 */
589 __mem_cgroup_insert_exceeded(mz, mctz, excess);
590 spin_unlock_irqrestore(&mctz->lock, flags);
591 }
592 }
593 }
594
595 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
596 {
597 struct mem_cgroup_tree_per_zone *mctz;
598 struct mem_cgroup_per_zone *mz;
599 int nid, zid;
600
601 for_each_node(nid) {
602 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
603 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
604 mctz = soft_limit_tree_node_zone(nid, zid);
605 mem_cgroup_remove_exceeded(mz, mctz);
606 }
607 }
608 }
609
610 static struct mem_cgroup_per_zone *
611 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
612 {
613 struct rb_node *rightmost = NULL;
614 struct mem_cgroup_per_zone *mz;
615
616 retry:
617 mz = NULL;
618 rightmost = rb_last(&mctz->rb_root);
619 if (!rightmost)
620 goto done; /* Nothing to reclaim from */
621
622 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
623 /*
624 * Remove the node now but someone else can add it back,
625 * we will to add it back at the end of reclaim to its correct
626 * position in the tree.
627 */
628 __mem_cgroup_remove_exceeded(mz, mctz);
629 if (!soft_limit_excess(mz->memcg) ||
630 !css_tryget_online(&mz->memcg->css))
631 goto retry;
632 done:
633 return mz;
634 }
635
636 static struct mem_cgroup_per_zone *
637 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
638 {
639 struct mem_cgroup_per_zone *mz;
640
641 spin_lock_irq(&mctz->lock);
642 mz = __mem_cgroup_largest_soft_limit_node(mctz);
643 spin_unlock_irq(&mctz->lock);
644 return mz;
645 }
646
647 /*
648 * Return page count for single (non recursive) @memcg.
649 *
650 * Implementation Note: reading percpu statistics for memcg.
651 *
652 * Both of vmstat[] and percpu_counter has threshold and do periodic
653 * synchronization to implement "quick" read. There are trade-off between
654 * reading cost and precision of value. Then, we may have a chance to implement
655 * a periodic synchronization of counter in memcg's counter.
656 *
657 * But this _read() function is used for user interface now. The user accounts
658 * memory usage by memory cgroup and he _always_ requires exact value because
659 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
660 * have to visit all online cpus and make sum. So, for now, unnecessary
661 * synchronization is not implemented. (just implemented for cpu hotplug)
662 *
663 * If there are kernel internal actions which can make use of some not-exact
664 * value, and reading all cpu value can be performance bottleneck in some
665 * common workload, threshold and synchronization as vmstat[] should be
666 * implemented.
667 */
668 static unsigned long
669 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
670 {
671 long val = 0;
672 int cpu;
673
674 /* Per-cpu values can be negative, use a signed accumulator */
675 for_each_possible_cpu(cpu)
676 val += per_cpu(memcg->stat->count[idx], cpu);
677 /*
678 * Summing races with updates, so val may be negative. Avoid exposing
679 * transient negative values.
680 */
681 if (val < 0)
682 val = 0;
683 return val;
684 }
685
686 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
687 enum mem_cgroup_events_index idx)
688 {
689 unsigned long val = 0;
690 int cpu;
691
692 for_each_possible_cpu(cpu)
693 val += per_cpu(memcg->stat->events[idx], cpu);
694 return val;
695 }
696
697 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
698 struct page *page,
699 int nr_pages)
700 {
701 /*
702 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
703 * counted as CACHE even if it's on ANON LRU.
704 */
705 if (PageAnon(page))
706 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
707 nr_pages);
708 else
709 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
710 nr_pages);
711
712 if (PageTransHuge(page))
713 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
714 nr_pages);
715
716 /* pagein of a big page is an event. So, ignore page size */
717 if (nr_pages > 0)
718 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
719 else {
720 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
721 nr_pages = -nr_pages; /* for event */
722 }
723
724 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
725 }
726
727 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
728 int nid,
729 unsigned int lru_mask)
730 {
731 unsigned long nr = 0;
732 int zid;
733
734 VM_BUG_ON((unsigned)nid >= nr_node_ids);
735
736 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
737 struct mem_cgroup_per_zone *mz;
738 enum lru_list lru;
739
740 for_each_lru(lru) {
741 if (!(BIT(lru) & lru_mask))
742 continue;
743 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
744 nr += mz->lru_size[lru];
745 }
746 }
747 return nr;
748 }
749
750 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
751 unsigned int lru_mask)
752 {
753 unsigned long nr = 0;
754 int nid;
755
756 for_each_node_state(nid, N_MEMORY)
757 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
758 return nr;
759 }
760
761 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
762 enum mem_cgroup_events_target target)
763 {
764 unsigned long val, next;
765
766 val = __this_cpu_read(memcg->stat->nr_page_events);
767 next = __this_cpu_read(memcg->stat->targets[target]);
768 /* from time_after() in jiffies.h */
769 if ((long)next - (long)val < 0) {
770 switch (target) {
771 case MEM_CGROUP_TARGET_THRESH:
772 next = val + THRESHOLDS_EVENTS_TARGET;
773 break;
774 case MEM_CGROUP_TARGET_SOFTLIMIT:
775 next = val + SOFTLIMIT_EVENTS_TARGET;
776 break;
777 case MEM_CGROUP_TARGET_NUMAINFO:
778 next = val + NUMAINFO_EVENTS_TARGET;
779 break;
780 default:
781 break;
782 }
783 __this_cpu_write(memcg->stat->targets[target], next);
784 return true;
785 }
786 return false;
787 }
788
789 /*
790 * Check events in order.
791 *
792 */
793 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
794 {
795 /* threshold event is triggered in finer grain than soft limit */
796 if (unlikely(mem_cgroup_event_ratelimit(memcg,
797 MEM_CGROUP_TARGET_THRESH))) {
798 bool do_softlimit;
799 bool do_numainfo __maybe_unused;
800
801 do_softlimit = mem_cgroup_event_ratelimit(memcg,
802 MEM_CGROUP_TARGET_SOFTLIMIT);
803 #if MAX_NUMNODES > 1
804 do_numainfo = mem_cgroup_event_ratelimit(memcg,
805 MEM_CGROUP_TARGET_NUMAINFO);
806 #endif
807 mem_cgroup_threshold(memcg);
808 if (unlikely(do_softlimit))
809 mem_cgroup_update_tree(memcg, page);
810 #if MAX_NUMNODES > 1
811 if (unlikely(do_numainfo))
812 atomic_inc(&memcg->numainfo_events);
813 #endif
814 }
815 }
816
817 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
818 {
819 /*
820 * mm_update_next_owner() may clear mm->owner to NULL
821 * if it races with swapoff, page migration, etc.
822 * So this can be called with p == NULL.
823 */
824 if (unlikely(!p))
825 return NULL;
826
827 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
828 }
829 EXPORT_SYMBOL(mem_cgroup_from_task);
830
831 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
832 {
833 struct mem_cgroup *memcg = NULL;
834
835 rcu_read_lock();
836 do {
837 /*
838 * Page cache insertions can happen withou an
839 * actual mm context, e.g. during disk probing
840 * on boot, loopback IO, acct() writes etc.
841 */
842 if (unlikely(!mm))
843 memcg = root_mem_cgroup;
844 else {
845 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
846 if (unlikely(!memcg))
847 memcg = root_mem_cgroup;
848 }
849 } while (!css_tryget_online(&memcg->css));
850 rcu_read_unlock();
851 return memcg;
852 }
853
854 /**
855 * mem_cgroup_iter - iterate over memory cgroup hierarchy
856 * @root: hierarchy root
857 * @prev: previously returned memcg, NULL on first invocation
858 * @reclaim: cookie for shared reclaim walks, NULL for full walks
859 *
860 * Returns references to children of the hierarchy below @root, or
861 * @root itself, or %NULL after a full round-trip.
862 *
863 * Caller must pass the return value in @prev on subsequent
864 * invocations for reference counting, or use mem_cgroup_iter_break()
865 * to cancel a hierarchy walk before the round-trip is complete.
866 *
867 * Reclaimers can specify a zone and a priority level in @reclaim to
868 * divide up the memcgs in the hierarchy among all concurrent
869 * reclaimers operating on the same zone and priority.
870 */
871 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
872 struct mem_cgroup *prev,
873 struct mem_cgroup_reclaim_cookie *reclaim)
874 {
875 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
876 struct cgroup_subsys_state *css = NULL;
877 struct mem_cgroup *memcg = NULL;
878 struct mem_cgroup *pos = NULL;
879
880 if (mem_cgroup_disabled())
881 return NULL;
882
883 if (!root)
884 root = root_mem_cgroup;
885
886 if (prev && !reclaim)
887 pos = prev;
888
889 if (!root->use_hierarchy && root != root_mem_cgroup) {
890 if (prev)
891 goto out;
892 return root;
893 }
894
895 rcu_read_lock();
896
897 if (reclaim) {
898 struct mem_cgroup_per_zone *mz;
899
900 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
901 iter = &mz->iter[reclaim->priority];
902
903 if (prev && reclaim->generation != iter->generation)
904 goto out_unlock;
905
906 do {
907 pos = READ_ONCE(iter->position);
908 /*
909 * A racing update may change the position and
910 * put the last reference, hence css_tryget(),
911 * or retry to see the updated position.
912 */
913 } while (pos && !css_tryget(&pos->css));
914 }
915
916 if (pos)
917 css = &pos->css;
918
919 for (;;) {
920 css = css_next_descendant_pre(css, &root->css);
921 if (!css) {
922 /*
923 * Reclaimers share the hierarchy walk, and a
924 * new one might jump in right at the end of
925 * the hierarchy - make sure they see at least
926 * one group and restart from the beginning.
927 */
928 if (!prev)
929 continue;
930 break;
931 }
932
933 /*
934 * Verify the css and acquire a reference. The root
935 * is provided by the caller, so we know it's alive
936 * and kicking, and don't take an extra reference.
937 */
938 memcg = mem_cgroup_from_css(css);
939
940 if (css == &root->css)
941 break;
942
943 if (css_tryget(css)) {
944 /*
945 * Make sure the memcg is initialized:
946 * mem_cgroup_css_online() orders the the
947 * initialization against setting the flag.
948 */
949 if (smp_load_acquire(&memcg->initialized))
950 break;
951
952 css_put(css);
953 }
954
955 memcg = NULL;
956 }
957
958 if (reclaim) {
959 if (cmpxchg(&iter->position, pos, memcg) == pos) {
960 if (memcg)
961 css_get(&memcg->css);
962 if (pos)
963 css_put(&pos->css);
964 }
965
966 /*
967 * pairs with css_tryget when dereferencing iter->position
968 * above.
969 */
970 if (pos)
971 css_put(&pos->css);
972
973 if (!memcg)
974 iter->generation++;
975 else if (!prev)
976 reclaim->generation = iter->generation;
977 }
978
979 out_unlock:
980 rcu_read_unlock();
981 out:
982 if (prev && prev != root)
983 css_put(&prev->css);
984
985 return memcg;
986 }
987
988 /**
989 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
990 * @root: hierarchy root
991 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
992 */
993 void mem_cgroup_iter_break(struct mem_cgroup *root,
994 struct mem_cgroup *prev)
995 {
996 if (!root)
997 root = root_mem_cgroup;
998 if (prev && prev != root)
999 css_put(&prev->css);
1000 }
1001
1002 /*
1003 * Iteration constructs for visiting all cgroups (under a tree). If
1004 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1005 * be used for reference counting.
1006 */
1007 #define for_each_mem_cgroup_tree(iter, root) \
1008 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1009 iter != NULL; \
1010 iter = mem_cgroup_iter(root, iter, NULL))
1011
1012 #define for_each_mem_cgroup(iter) \
1013 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1014 iter != NULL; \
1015 iter = mem_cgroup_iter(NULL, iter, NULL))
1016
1017 /**
1018 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1019 * @zone: zone of the wanted lruvec
1020 * @memcg: memcg of the wanted lruvec
1021 *
1022 * Returns the lru list vector holding pages for the given @zone and
1023 * @mem. This can be the global zone lruvec, if the memory controller
1024 * is disabled.
1025 */
1026 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1027 struct mem_cgroup *memcg)
1028 {
1029 struct mem_cgroup_per_zone *mz;
1030 struct lruvec *lruvec;
1031
1032 if (mem_cgroup_disabled()) {
1033 lruvec = &zone->lruvec;
1034 goto out;
1035 }
1036
1037 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1038 lruvec = &mz->lruvec;
1039 out:
1040 /*
1041 * Since a node can be onlined after the mem_cgroup was created,
1042 * we have to be prepared to initialize lruvec->zone here;
1043 * and if offlined then reonlined, we need to reinitialize it.
1044 */
1045 if (unlikely(lruvec->zone != zone))
1046 lruvec->zone = zone;
1047 return lruvec;
1048 }
1049
1050 /**
1051 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1052 * @page: the page
1053 * @zone: zone of the page
1054 *
1055 * This function is only safe when following the LRU page isolation
1056 * and putback protocol: the LRU lock must be held, and the page must
1057 * either be PageLRU() or the caller must have isolated/allocated it.
1058 */
1059 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1060 {
1061 struct mem_cgroup_per_zone *mz;
1062 struct mem_cgroup *memcg;
1063 struct lruvec *lruvec;
1064
1065 if (mem_cgroup_disabled()) {
1066 lruvec = &zone->lruvec;
1067 goto out;
1068 }
1069
1070 memcg = page->mem_cgroup;
1071 /*
1072 * Swapcache readahead pages are added to the LRU - and
1073 * possibly migrated - before they are charged.
1074 */
1075 if (!memcg)
1076 memcg = root_mem_cgroup;
1077
1078 mz = mem_cgroup_page_zoneinfo(memcg, page);
1079 lruvec = &mz->lruvec;
1080 out:
1081 /*
1082 * Since a node can be onlined after the mem_cgroup was created,
1083 * we have to be prepared to initialize lruvec->zone here;
1084 * and if offlined then reonlined, we need to reinitialize it.
1085 */
1086 if (unlikely(lruvec->zone != zone))
1087 lruvec->zone = zone;
1088 return lruvec;
1089 }
1090
1091 /**
1092 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1093 * @lruvec: mem_cgroup per zone lru vector
1094 * @lru: index of lru list the page is sitting on
1095 * @nr_pages: positive when adding or negative when removing
1096 *
1097 * This function must be called when a page is added to or removed from an
1098 * lru list.
1099 */
1100 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1101 int nr_pages)
1102 {
1103 struct mem_cgroup_per_zone *mz;
1104 unsigned long *lru_size;
1105
1106 if (mem_cgroup_disabled())
1107 return;
1108
1109 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1110 lru_size = mz->lru_size + lru;
1111 *lru_size += nr_pages;
1112 VM_BUG_ON((long)(*lru_size) < 0);
1113 }
1114
1115 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1116 {
1117 struct mem_cgroup *task_memcg;
1118 struct task_struct *p;
1119 bool ret;
1120
1121 p = find_lock_task_mm(task);
1122 if (p) {
1123 task_memcg = get_mem_cgroup_from_mm(p->mm);
1124 task_unlock(p);
1125 } else {
1126 /*
1127 * All threads may have already detached their mm's, but the oom
1128 * killer still needs to detect if they have already been oom
1129 * killed to prevent needlessly killing additional tasks.
1130 */
1131 rcu_read_lock();
1132 task_memcg = mem_cgroup_from_task(task);
1133 css_get(&task_memcg->css);
1134 rcu_read_unlock();
1135 }
1136 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1137 css_put(&task_memcg->css);
1138 return ret;
1139 }
1140
1141 #define mem_cgroup_from_counter(counter, member) \
1142 container_of(counter, struct mem_cgroup, member)
1143
1144 /**
1145 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1146 * @memcg: the memory cgroup
1147 *
1148 * Returns the maximum amount of memory @mem can be charged with, in
1149 * pages.
1150 */
1151 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1152 {
1153 unsigned long margin = 0;
1154 unsigned long count;
1155 unsigned long limit;
1156
1157 count = page_counter_read(&memcg->memory);
1158 limit = READ_ONCE(memcg->memory.limit);
1159 if (count < limit)
1160 margin = limit - count;
1161
1162 if (do_swap_account) {
1163 count = page_counter_read(&memcg->memsw);
1164 limit = READ_ONCE(memcg->memsw.limit);
1165 if (count <= limit)
1166 margin = min(margin, limit - count);
1167 }
1168
1169 return margin;
1170 }
1171
1172 /*
1173 * A routine for checking "mem" is under move_account() or not.
1174 *
1175 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1176 * moving cgroups. This is for waiting at high-memory pressure
1177 * caused by "move".
1178 */
1179 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1180 {
1181 struct mem_cgroup *from;
1182 struct mem_cgroup *to;
1183 bool ret = false;
1184 /*
1185 * Unlike task_move routines, we access mc.to, mc.from not under
1186 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1187 */
1188 spin_lock(&mc.lock);
1189 from = mc.from;
1190 to = mc.to;
1191 if (!from)
1192 goto unlock;
1193
1194 ret = mem_cgroup_is_descendant(from, memcg) ||
1195 mem_cgroup_is_descendant(to, memcg);
1196 unlock:
1197 spin_unlock(&mc.lock);
1198 return ret;
1199 }
1200
1201 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1202 {
1203 if (mc.moving_task && current != mc.moving_task) {
1204 if (mem_cgroup_under_move(memcg)) {
1205 DEFINE_WAIT(wait);
1206 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1207 /* moving charge context might have finished. */
1208 if (mc.moving_task)
1209 schedule();
1210 finish_wait(&mc.waitq, &wait);
1211 return true;
1212 }
1213 }
1214 return false;
1215 }
1216
1217 #define K(x) ((x) << (PAGE_SHIFT-10))
1218 /**
1219 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1220 * @memcg: The memory cgroup that went over limit
1221 * @p: Task that is going to be killed
1222 *
1223 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1224 * enabled
1225 */
1226 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1227 {
1228 /* oom_info_lock ensures that parallel ooms do not interleave */
1229 static DEFINE_MUTEX(oom_info_lock);
1230 struct mem_cgroup *iter;
1231 unsigned int i;
1232
1233 mutex_lock(&oom_info_lock);
1234 rcu_read_lock();
1235
1236 if (p) {
1237 pr_info("Task in ");
1238 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1239 pr_cont(" killed as a result of limit of ");
1240 } else {
1241 pr_info("Memory limit reached of cgroup ");
1242 }
1243
1244 pr_cont_cgroup_path(memcg->css.cgroup);
1245 pr_cont("\n");
1246
1247 rcu_read_unlock();
1248
1249 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1250 K((u64)page_counter_read(&memcg->memory)),
1251 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1252 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1253 K((u64)page_counter_read(&memcg->memsw)),
1254 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1255 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1256 K((u64)page_counter_read(&memcg->kmem)),
1257 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1258
1259 for_each_mem_cgroup_tree(iter, memcg) {
1260 pr_info("Memory cgroup stats for ");
1261 pr_cont_cgroup_path(iter->css.cgroup);
1262 pr_cont(":");
1263
1264 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1265 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1266 continue;
1267 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1268 K(mem_cgroup_read_stat(iter, i)));
1269 }
1270
1271 for (i = 0; i < NR_LRU_LISTS; i++)
1272 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1273 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1274
1275 pr_cont("\n");
1276 }
1277 mutex_unlock(&oom_info_lock);
1278 }
1279
1280 /*
1281 * This function returns the number of memcg under hierarchy tree. Returns
1282 * 1(self count) if no children.
1283 */
1284 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1285 {
1286 int num = 0;
1287 struct mem_cgroup *iter;
1288
1289 for_each_mem_cgroup_tree(iter, memcg)
1290 num++;
1291 return num;
1292 }
1293
1294 /*
1295 * Return the memory (and swap, if configured) limit for a memcg.
1296 */
1297 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1298 {
1299 unsigned long limit;
1300
1301 limit = memcg->memory.limit;
1302 if (mem_cgroup_swappiness(memcg)) {
1303 unsigned long memsw_limit;
1304
1305 memsw_limit = memcg->memsw.limit;
1306 limit = min(limit + total_swap_pages, memsw_limit);
1307 }
1308 return limit;
1309 }
1310
1311 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1312 int order)
1313 {
1314 struct oom_control oc = {
1315 .zonelist = NULL,
1316 .nodemask = NULL,
1317 .gfp_mask = gfp_mask,
1318 .order = order,
1319 };
1320 struct mem_cgroup *iter;
1321 unsigned long chosen_points = 0;
1322 unsigned long totalpages;
1323 unsigned int points = 0;
1324 struct task_struct *chosen = NULL;
1325
1326 mutex_lock(&oom_lock);
1327
1328 /*
1329 * If current has a pending SIGKILL or is exiting, then automatically
1330 * select it. The goal is to allow it to allocate so that it may
1331 * quickly exit and free its memory.
1332 */
1333 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1334 mark_oom_victim(current);
1335 goto unlock;
1336 }
1337
1338 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1339 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1340 for_each_mem_cgroup_tree(iter, memcg) {
1341 struct css_task_iter it;
1342 struct task_struct *task;
1343
1344 css_task_iter_start(&iter->css, &it);
1345 while ((task = css_task_iter_next(&it))) {
1346 switch (oom_scan_process_thread(&oc, task, totalpages)) {
1347 case OOM_SCAN_SELECT:
1348 if (chosen)
1349 put_task_struct(chosen);
1350 chosen = task;
1351 chosen_points = ULONG_MAX;
1352 get_task_struct(chosen);
1353 /* fall through */
1354 case OOM_SCAN_CONTINUE:
1355 continue;
1356 case OOM_SCAN_ABORT:
1357 css_task_iter_end(&it);
1358 mem_cgroup_iter_break(memcg, iter);
1359 if (chosen)
1360 put_task_struct(chosen);
1361 goto unlock;
1362 case OOM_SCAN_OK:
1363 break;
1364 };
1365 points = oom_badness(task, memcg, NULL, totalpages);
1366 if (!points || points < chosen_points)
1367 continue;
1368 /* Prefer thread group leaders for display purposes */
1369 if (points == chosen_points &&
1370 thread_group_leader(chosen))
1371 continue;
1372
1373 if (chosen)
1374 put_task_struct(chosen);
1375 chosen = task;
1376 chosen_points = points;
1377 get_task_struct(chosen);
1378 }
1379 css_task_iter_end(&it);
1380 }
1381
1382 if (chosen) {
1383 points = chosen_points * 1000 / totalpages;
1384 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1385 "Memory cgroup out of memory");
1386 }
1387 unlock:
1388 mutex_unlock(&oom_lock);
1389 }
1390
1391 #if MAX_NUMNODES > 1
1392
1393 /**
1394 * test_mem_cgroup_node_reclaimable
1395 * @memcg: the target memcg
1396 * @nid: the node ID to be checked.
1397 * @noswap : specify true here if the user wants flle only information.
1398 *
1399 * This function returns whether the specified memcg contains any
1400 * reclaimable pages on a node. Returns true if there are any reclaimable
1401 * pages in the node.
1402 */
1403 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1404 int nid, bool noswap)
1405 {
1406 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1407 return true;
1408 if (noswap || !total_swap_pages)
1409 return false;
1410 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1411 return true;
1412 return false;
1413
1414 }
1415
1416 /*
1417 * Always updating the nodemask is not very good - even if we have an empty
1418 * list or the wrong list here, we can start from some node and traverse all
1419 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1420 *
1421 */
1422 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1423 {
1424 int nid;
1425 /*
1426 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1427 * pagein/pageout changes since the last update.
1428 */
1429 if (!atomic_read(&memcg->numainfo_events))
1430 return;
1431 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1432 return;
1433
1434 /* make a nodemask where this memcg uses memory from */
1435 memcg->scan_nodes = node_states[N_MEMORY];
1436
1437 for_each_node_mask(nid, node_states[N_MEMORY]) {
1438
1439 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1440 node_clear(nid, memcg->scan_nodes);
1441 }
1442
1443 atomic_set(&memcg->numainfo_events, 0);
1444 atomic_set(&memcg->numainfo_updating, 0);
1445 }
1446
1447 /*
1448 * Selecting a node where we start reclaim from. Because what we need is just
1449 * reducing usage counter, start from anywhere is O,K. Considering
1450 * memory reclaim from current node, there are pros. and cons.
1451 *
1452 * Freeing memory from current node means freeing memory from a node which
1453 * we'll use or we've used. So, it may make LRU bad. And if several threads
1454 * hit limits, it will see a contention on a node. But freeing from remote
1455 * node means more costs for memory reclaim because of memory latency.
1456 *
1457 * Now, we use round-robin. Better algorithm is welcomed.
1458 */
1459 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1460 {
1461 int node;
1462
1463 mem_cgroup_may_update_nodemask(memcg);
1464 node = memcg->last_scanned_node;
1465
1466 node = next_node(node, memcg->scan_nodes);
1467 if (node == MAX_NUMNODES)
1468 node = first_node(memcg->scan_nodes);
1469 /*
1470 * We call this when we hit limit, not when pages are added to LRU.
1471 * No LRU may hold pages because all pages are UNEVICTABLE or
1472 * memcg is too small and all pages are not on LRU. In that case,
1473 * we use curret node.
1474 */
1475 if (unlikely(node == MAX_NUMNODES))
1476 node = numa_node_id();
1477
1478 memcg->last_scanned_node = node;
1479 return node;
1480 }
1481 #else
1482 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1483 {
1484 return 0;
1485 }
1486 #endif
1487
1488 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1489 struct zone *zone,
1490 gfp_t gfp_mask,
1491 unsigned long *total_scanned)
1492 {
1493 struct mem_cgroup *victim = NULL;
1494 int total = 0;
1495 int loop = 0;
1496 unsigned long excess;
1497 unsigned long nr_scanned;
1498 struct mem_cgroup_reclaim_cookie reclaim = {
1499 .zone = zone,
1500 .priority = 0,
1501 };
1502
1503 excess = soft_limit_excess(root_memcg);
1504
1505 while (1) {
1506 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1507 if (!victim) {
1508 loop++;
1509 if (loop >= 2) {
1510 /*
1511 * If we have not been able to reclaim
1512 * anything, it might because there are
1513 * no reclaimable pages under this hierarchy
1514 */
1515 if (!total)
1516 break;
1517 /*
1518 * We want to do more targeted reclaim.
1519 * excess >> 2 is not to excessive so as to
1520 * reclaim too much, nor too less that we keep
1521 * coming back to reclaim from this cgroup
1522 */
1523 if (total >= (excess >> 2) ||
1524 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1525 break;
1526 }
1527 continue;
1528 }
1529 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1530 zone, &nr_scanned);
1531 *total_scanned += nr_scanned;
1532 if (!soft_limit_excess(root_memcg))
1533 break;
1534 }
1535 mem_cgroup_iter_break(root_memcg, victim);
1536 return total;
1537 }
1538
1539 #ifdef CONFIG_LOCKDEP
1540 static struct lockdep_map memcg_oom_lock_dep_map = {
1541 .name = "memcg_oom_lock",
1542 };
1543 #endif
1544
1545 static DEFINE_SPINLOCK(memcg_oom_lock);
1546
1547 /*
1548 * Check OOM-Killer is already running under our hierarchy.
1549 * If someone is running, return false.
1550 */
1551 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1552 {
1553 struct mem_cgroup *iter, *failed = NULL;
1554
1555 spin_lock(&memcg_oom_lock);
1556
1557 for_each_mem_cgroup_tree(iter, memcg) {
1558 if (iter->oom_lock) {
1559 /*
1560 * this subtree of our hierarchy is already locked
1561 * so we cannot give a lock.
1562 */
1563 failed = iter;
1564 mem_cgroup_iter_break(memcg, iter);
1565 break;
1566 } else
1567 iter->oom_lock = true;
1568 }
1569
1570 if (failed) {
1571 /*
1572 * OK, we failed to lock the whole subtree so we have
1573 * to clean up what we set up to the failing subtree
1574 */
1575 for_each_mem_cgroup_tree(iter, memcg) {
1576 if (iter == failed) {
1577 mem_cgroup_iter_break(memcg, iter);
1578 break;
1579 }
1580 iter->oom_lock = false;
1581 }
1582 } else
1583 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1584
1585 spin_unlock(&memcg_oom_lock);
1586
1587 return !failed;
1588 }
1589
1590 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1591 {
1592 struct mem_cgroup *iter;
1593
1594 spin_lock(&memcg_oom_lock);
1595 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1596 for_each_mem_cgroup_tree(iter, memcg)
1597 iter->oom_lock = false;
1598 spin_unlock(&memcg_oom_lock);
1599 }
1600
1601 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1602 {
1603 struct mem_cgroup *iter;
1604
1605 spin_lock(&memcg_oom_lock);
1606 for_each_mem_cgroup_tree(iter, memcg)
1607 iter->under_oom++;
1608 spin_unlock(&memcg_oom_lock);
1609 }
1610
1611 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1612 {
1613 struct mem_cgroup *iter;
1614
1615 /*
1616 * When a new child is created while the hierarchy is under oom,
1617 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1618 */
1619 spin_lock(&memcg_oom_lock);
1620 for_each_mem_cgroup_tree(iter, memcg)
1621 if (iter->under_oom > 0)
1622 iter->under_oom--;
1623 spin_unlock(&memcg_oom_lock);
1624 }
1625
1626 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1627
1628 struct oom_wait_info {
1629 struct mem_cgroup *memcg;
1630 wait_queue_t wait;
1631 };
1632
1633 static int memcg_oom_wake_function(wait_queue_t *wait,
1634 unsigned mode, int sync, void *arg)
1635 {
1636 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1637 struct mem_cgroup *oom_wait_memcg;
1638 struct oom_wait_info *oom_wait_info;
1639
1640 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1641 oom_wait_memcg = oom_wait_info->memcg;
1642
1643 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1644 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1645 return 0;
1646 return autoremove_wake_function(wait, mode, sync, arg);
1647 }
1648
1649 static void memcg_oom_recover(struct mem_cgroup *memcg)
1650 {
1651 /*
1652 * For the following lockless ->under_oom test, the only required
1653 * guarantee is that it must see the state asserted by an OOM when
1654 * this function is called as a result of userland actions
1655 * triggered by the notification of the OOM. This is trivially
1656 * achieved by invoking mem_cgroup_mark_under_oom() before
1657 * triggering notification.
1658 */
1659 if (memcg && memcg->under_oom)
1660 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1661 }
1662
1663 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1664 {
1665 if (!current->memcg_may_oom)
1666 return;
1667 /*
1668 * We are in the middle of the charge context here, so we
1669 * don't want to block when potentially sitting on a callstack
1670 * that holds all kinds of filesystem and mm locks.
1671 *
1672 * Also, the caller may handle a failed allocation gracefully
1673 * (like optional page cache readahead) and so an OOM killer
1674 * invocation might not even be necessary.
1675 *
1676 * That's why we don't do anything here except remember the
1677 * OOM context and then deal with it at the end of the page
1678 * fault when the stack is unwound, the locks are released,
1679 * and when we know whether the fault was overall successful.
1680 */
1681 css_get(&memcg->css);
1682 current->memcg_in_oom = memcg;
1683 current->memcg_oom_gfp_mask = mask;
1684 current->memcg_oom_order = order;
1685 }
1686
1687 /**
1688 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1689 * @handle: actually kill/wait or just clean up the OOM state
1690 *
1691 * This has to be called at the end of a page fault if the memcg OOM
1692 * handler was enabled.
1693 *
1694 * Memcg supports userspace OOM handling where failed allocations must
1695 * sleep on a waitqueue until the userspace task resolves the
1696 * situation. Sleeping directly in the charge context with all kinds
1697 * of locks held is not a good idea, instead we remember an OOM state
1698 * in the task and mem_cgroup_oom_synchronize() has to be called at
1699 * the end of the page fault to complete the OOM handling.
1700 *
1701 * Returns %true if an ongoing memcg OOM situation was detected and
1702 * completed, %false otherwise.
1703 */
1704 bool mem_cgroup_oom_synchronize(bool handle)
1705 {
1706 struct mem_cgroup *memcg = current->memcg_in_oom;
1707 struct oom_wait_info owait;
1708 bool locked;
1709
1710 /* OOM is global, do not handle */
1711 if (!memcg)
1712 return false;
1713
1714 if (!handle || oom_killer_disabled)
1715 goto cleanup;
1716
1717 owait.memcg = memcg;
1718 owait.wait.flags = 0;
1719 owait.wait.func = memcg_oom_wake_function;
1720 owait.wait.private = current;
1721 INIT_LIST_HEAD(&owait.wait.task_list);
1722
1723 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1724 mem_cgroup_mark_under_oom(memcg);
1725
1726 locked = mem_cgroup_oom_trylock(memcg);
1727
1728 if (locked)
1729 mem_cgroup_oom_notify(memcg);
1730
1731 if (locked && !memcg->oom_kill_disable) {
1732 mem_cgroup_unmark_under_oom(memcg);
1733 finish_wait(&memcg_oom_waitq, &owait.wait);
1734 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1735 current->memcg_oom_order);
1736 } else {
1737 schedule();
1738 mem_cgroup_unmark_under_oom(memcg);
1739 finish_wait(&memcg_oom_waitq, &owait.wait);
1740 }
1741
1742 if (locked) {
1743 mem_cgroup_oom_unlock(memcg);
1744 /*
1745 * There is no guarantee that an OOM-lock contender
1746 * sees the wakeups triggered by the OOM kill
1747 * uncharges. Wake any sleepers explicitely.
1748 */
1749 memcg_oom_recover(memcg);
1750 }
1751 cleanup:
1752 current->memcg_in_oom = NULL;
1753 css_put(&memcg->css);
1754 return true;
1755 }
1756
1757 /**
1758 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1759 * @page: page that is going to change accounted state
1760 *
1761 * This function must mark the beginning of an accounted page state
1762 * change to prevent double accounting when the page is concurrently
1763 * being moved to another memcg:
1764 *
1765 * memcg = mem_cgroup_begin_page_stat(page);
1766 * if (TestClearPageState(page))
1767 * mem_cgroup_update_page_stat(memcg, state, -1);
1768 * mem_cgroup_end_page_stat(memcg);
1769 */
1770 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1771 {
1772 struct mem_cgroup *memcg;
1773 unsigned long flags;
1774
1775 /*
1776 * The RCU lock is held throughout the transaction. The fast
1777 * path can get away without acquiring the memcg->move_lock
1778 * because page moving starts with an RCU grace period.
1779 *
1780 * The RCU lock also protects the memcg from being freed when
1781 * the page state that is going to change is the only thing
1782 * preventing the page from being uncharged.
1783 * E.g. end-writeback clearing PageWriteback(), which allows
1784 * migration to go ahead and uncharge the page before the
1785 * account transaction might be complete.
1786 */
1787 rcu_read_lock();
1788
1789 if (mem_cgroup_disabled())
1790 return NULL;
1791 again:
1792 memcg = page->mem_cgroup;
1793 if (unlikely(!memcg))
1794 return NULL;
1795
1796 if (atomic_read(&memcg->moving_account) <= 0)
1797 return memcg;
1798
1799 spin_lock_irqsave(&memcg->move_lock, flags);
1800 if (memcg != page->mem_cgroup) {
1801 spin_unlock_irqrestore(&memcg->move_lock, flags);
1802 goto again;
1803 }
1804
1805 /*
1806 * When charge migration first begins, we can have locked and
1807 * unlocked page stat updates happening concurrently. Track
1808 * the task who has the lock for mem_cgroup_end_page_stat().
1809 */
1810 memcg->move_lock_task = current;
1811 memcg->move_lock_flags = flags;
1812
1813 return memcg;
1814 }
1815 EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
1816
1817 /**
1818 * mem_cgroup_end_page_stat - finish a page state statistics transaction
1819 * @memcg: the memcg that was accounted against
1820 */
1821 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
1822 {
1823 if (memcg && memcg->move_lock_task == current) {
1824 unsigned long flags = memcg->move_lock_flags;
1825
1826 memcg->move_lock_task = NULL;
1827 memcg->move_lock_flags = 0;
1828
1829 spin_unlock_irqrestore(&memcg->move_lock, flags);
1830 }
1831
1832 rcu_read_unlock();
1833 }
1834 EXPORT_SYMBOL(mem_cgroup_end_page_stat);
1835
1836 /*
1837 * size of first charge trial. "32" comes from vmscan.c's magic value.
1838 * TODO: maybe necessary to use big numbers in big irons.
1839 */
1840 #define CHARGE_BATCH 32U
1841 struct memcg_stock_pcp {
1842 struct mem_cgroup *cached; /* this never be root cgroup */
1843 unsigned int nr_pages;
1844 struct work_struct work;
1845 unsigned long flags;
1846 #define FLUSHING_CACHED_CHARGE 0
1847 };
1848 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1849 static DEFINE_MUTEX(percpu_charge_mutex);
1850
1851 /**
1852 * consume_stock: Try to consume stocked charge on this cpu.
1853 * @memcg: memcg to consume from.
1854 * @nr_pages: how many pages to charge.
1855 *
1856 * The charges will only happen if @memcg matches the current cpu's memcg
1857 * stock, and at least @nr_pages are available in that stock. Failure to
1858 * service an allocation will refill the stock.
1859 *
1860 * returns true if successful, false otherwise.
1861 */
1862 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1863 {
1864 struct memcg_stock_pcp *stock;
1865 bool ret = false;
1866
1867 if (nr_pages > CHARGE_BATCH)
1868 return ret;
1869
1870 stock = &get_cpu_var(memcg_stock);
1871 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1872 stock->nr_pages -= nr_pages;
1873 ret = true;
1874 }
1875 put_cpu_var(memcg_stock);
1876 return ret;
1877 }
1878
1879 /*
1880 * Returns stocks cached in percpu and reset cached information.
1881 */
1882 static void drain_stock(struct memcg_stock_pcp *stock)
1883 {
1884 struct mem_cgroup *old = stock->cached;
1885
1886 if (stock->nr_pages) {
1887 page_counter_uncharge(&old->memory, stock->nr_pages);
1888 if (do_swap_account)
1889 page_counter_uncharge(&old->memsw, stock->nr_pages);
1890 css_put_many(&old->css, stock->nr_pages);
1891 stock->nr_pages = 0;
1892 }
1893 stock->cached = NULL;
1894 }
1895
1896 /*
1897 * This must be called under preempt disabled or must be called by
1898 * a thread which is pinned to local cpu.
1899 */
1900 static void drain_local_stock(struct work_struct *dummy)
1901 {
1902 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1903 drain_stock(stock);
1904 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1905 }
1906
1907 /*
1908 * Cache charges(val) to local per_cpu area.
1909 * This will be consumed by consume_stock() function, later.
1910 */
1911 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1912 {
1913 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1914
1915 if (stock->cached != memcg) { /* reset if necessary */
1916 drain_stock(stock);
1917 stock->cached = memcg;
1918 }
1919 stock->nr_pages += nr_pages;
1920 put_cpu_var(memcg_stock);
1921 }
1922
1923 /*
1924 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1925 * of the hierarchy under it.
1926 */
1927 static void drain_all_stock(struct mem_cgroup *root_memcg)
1928 {
1929 int cpu, curcpu;
1930
1931 /* If someone's already draining, avoid adding running more workers. */
1932 if (!mutex_trylock(&percpu_charge_mutex))
1933 return;
1934 /* Notify other cpus that system-wide "drain" is running */
1935 get_online_cpus();
1936 curcpu = get_cpu();
1937 for_each_online_cpu(cpu) {
1938 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1939 struct mem_cgroup *memcg;
1940
1941 memcg = stock->cached;
1942 if (!memcg || !stock->nr_pages)
1943 continue;
1944 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1945 continue;
1946 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1947 if (cpu == curcpu)
1948 drain_local_stock(&stock->work);
1949 else
1950 schedule_work_on(cpu, &stock->work);
1951 }
1952 }
1953 put_cpu();
1954 put_online_cpus();
1955 mutex_unlock(&percpu_charge_mutex);
1956 }
1957
1958 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1959 unsigned long action,
1960 void *hcpu)
1961 {
1962 int cpu = (unsigned long)hcpu;
1963 struct memcg_stock_pcp *stock;
1964
1965 if (action == CPU_ONLINE)
1966 return NOTIFY_OK;
1967
1968 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1969 return NOTIFY_OK;
1970
1971 stock = &per_cpu(memcg_stock, cpu);
1972 drain_stock(stock);
1973 return NOTIFY_OK;
1974 }
1975
1976 /*
1977 * Scheduled by try_charge() to be executed from the userland return path
1978 * and reclaims memory over the high limit.
1979 */
1980 void mem_cgroup_handle_over_high(void)
1981 {
1982 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1983 struct mem_cgroup *memcg, *pos;
1984
1985 if (likely(!nr_pages))
1986 return;
1987
1988 pos = memcg = get_mem_cgroup_from_mm(current->mm);
1989
1990 do {
1991 if (page_counter_read(&pos->memory) <= pos->high)
1992 continue;
1993 mem_cgroup_events(pos, MEMCG_HIGH, 1);
1994 try_to_free_mem_cgroup_pages(pos, nr_pages, GFP_KERNEL, true);
1995 } while ((pos = parent_mem_cgroup(pos)));
1996
1997 css_put(&memcg->css);
1998 current->memcg_nr_pages_over_high = 0;
1999 }
2000
2001 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2002 unsigned int nr_pages)
2003 {
2004 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2005 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2006 struct mem_cgroup *mem_over_limit;
2007 struct page_counter *counter;
2008 unsigned long nr_reclaimed;
2009 bool may_swap = true;
2010 bool drained = false;
2011
2012 if (mem_cgroup_is_root(memcg))
2013 return 0;
2014 retry:
2015 if (consume_stock(memcg, nr_pages))
2016 return 0;
2017
2018 if (!do_swap_account ||
2019 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2020 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2021 goto done_restock;
2022 if (do_swap_account)
2023 page_counter_uncharge(&memcg->memsw, batch);
2024 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2025 } else {
2026 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2027 may_swap = false;
2028 }
2029
2030 if (batch > nr_pages) {
2031 batch = nr_pages;
2032 goto retry;
2033 }
2034
2035 /*
2036 * Unlike in global OOM situations, memcg is not in a physical
2037 * memory shortage. Allow dying and OOM-killed tasks to
2038 * bypass the last charges so that they can exit quickly and
2039 * free their memory.
2040 */
2041 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2042 fatal_signal_pending(current) ||
2043 current->flags & PF_EXITING))
2044 goto force;
2045
2046 if (unlikely(task_in_memcg_oom(current)))
2047 goto nomem;
2048
2049 if (!(gfp_mask & __GFP_WAIT))
2050 goto nomem;
2051
2052 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2053
2054 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2055 gfp_mask, may_swap);
2056
2057 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2058 goto retry;
2059
2060 if (!drained) {
2061 drain_all_stock(mem_over_limit);
2062 drained = true;
2063 goto retry;
2064 }
2065
2066 if (gfp_mask & __GFP_NORETRY)
2067 goto nomem;
2068 /*
2069 * Even though the limit is exceeded at this point, reclaim
2070 * may have been able to free some pages. Retry the charge
2071 * before killing the task.
2072 *
2073 * Only for regular pages, though: huge pages are rather
2074 * unlikely to succeed so close to the limit, and we fall back
2075 * to regular pages anyway in case of failure.
2076 */
2077 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2078 goto retry;
2079 /*
2080 * At task move, charge accounts can be doubly counted. So, it's
2081 * better to wait until the end of task_move if something is going on.
2082 */
2083 if (mem_cgroup_wait_acct_move(mem_over_limit))
2084 goto retry;
2085
2086 if (nr_retries--)
2087 goto retry;
2088
2089 if (gfp_mask & __GFP_NOFAIL)
2090 goto force;
2091
2092 if (fatal_signal_pending(current))
2093 goto force;
2094
2095 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2096
2097 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2098 nomem:
2099 if (!(gfp_mask & __GFP_NOFAIL))
2100 return -ENOMEM;
2101 force:
2102 /*
2103 * The allocation either can't fail or will lead to more memory
2104 * being freed very soon. Allow memory usage go over the limit
2105 * temporarily by force charging it.
2106 */
2107 page_counter_charge(&memcg->memory, nr_pages);
2108 if (do_swap_account)
2109 page_counter_charge(&memcg->memsw, nr_pages);
2110 css_get_many(&memcg->css, nr_pages);
2111
2112 return 0;
2113
2114 done_restock:
2115 css_get_many(&memcg->css, batch);
2116 if (batch > nr_pages)
2117 refill_stock(memcg, batch - nr_pages);
2118
2119 /*
2120 * If the hierarchy is above the normal consumption range, schedule
2121 * reclaim on returning to userland. We can perform reclaim here
2122 * if __GFP_WAIT but let's always punt for simplicity and so that
2123 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2124 * not recorded as it most likely matches current's and won't
2125 * change in the meantime. As high limit is checked again before
2126 * reclaim, the cost of mismatch is negligible.
2127 */
2128 do {
2129 if (page_counter_read(&memcg->memory) > memcg->high) {
2130 current->memcg_nr_pages_over_high += nr_pages;
2131 set_notify_resume(current);
2132 break;
2133 }
2134 } while ((memcg = parent_mem_cgroup(memcg)));
2135
2136 return 0;
2137 }
2138
2139 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2140 {
2141 if (mem_cgroup_is_root(memcg))
2142 return;
2143
2144 page_counter_uncharge(&memcg->memory, nr_pages);
2145 if (do_swap_account)
2146 page_counter_uncharge(&memcg->memsw, nr_pages);
2147
2148 css_put_many(&memcg->css, nr_pages);
2149 }
2150
2151 static void lock_page_lru(struct page *page, int *isolated)
2152 {
2153 struct zone *zone = page_zone(page);
2154
2155 spin_lock_irq(&zone->lru_lock);
2156 if (PageLRU(page)) {
2157 struct lruvec *lruvec;
2158
2159 lruvec = mem_cgroup_page_lruvec(page, zone);
2160 ClearPageLRU(page);
2161 del_page_from_lru_list(page, lruvec, page_lru(page));
2162 *isolated = 1;
2163 } else
2164 *isolated = 0;
2165 }
2166
2167 static void unlock_page_lru(struct page *page, int isolated)
2168 {
2169 struct zone *zone = page_zone(page);
2170
2171 if (isolated) {
2172 struct lruvec *lruvec;
2173
2174 lruvec = mem_cgroup_page_lruvec(page, zone);
2175 VM_BUG_ON_PAGE(PageLRU(page), page);
2176 SetPageLRU(page);
2177 add_page_to_lru_list(page, lruvec, page_lru(page));
2178 }
2179 spin_unlock_irq(&zone->lru_lock);
2180 }
2181
2182 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2183 bool lrucare)
2184 {
2185 int isolated;
2186
2187 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2188
2189 /*
2190 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2191 * may already be on some other mem_cgroup's LRU. Take care of it.
2192 */
2193 if (lrucare)
2194 lock_page_lru(page, &isolated);
2195
2196 /*
2197 * Nobody should be changing or seriously looking at
2198 * page->mem_cgroup at this point:
2199 *
2200 * - the page is uncharged
2201 *
2202 * - the page is off-LRU
2203 *
2204 * - an anonymous fault has exclusive page access, except for
2205 * a locked page table
2206 *
2207 * - a page cache insertion, a swapin fault, or a migration
2208 * have the page locked
2209 */
2210 page->mem_cgroup = memcg;
2211
2212 if (lrucare)
2213 unlock_page_lru(page, isolated);
2214 }
2215
2216 #ifdef CONFIG_MEMCG_KMEM
2217 int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2218 unsigned long nr_pages)
2219 {
2220 struct page_counter *counter;
2221 int ret = 0;
2222
2223 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2224 if (ret < 0)
2225 return ret;
2226
2227 ret = try_charge(memcg, gfp, nr_pages);
2228 if (ret)
2229 page_counter_uncharge(&memcg->kmem, nr_pages);
2230
2231 return ret;
2232 }
2233
2234 void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
2235 {
2236 page_counter_uncharge(&memcg->memory, nr_pages);
2237 if (do_swap_account)
2238 page_counter_uncharge(&memcg->memsw, nr_pages);
2239
2240 page_counter_uncharge(&memcg->kmem, nr_pages);
2241
2242 css_put_many(&memcg->css, nr_pages);
2243 }
2244
2245 static int memcg_alloc_cache_id(void)
2246 {
2247 int id, size;
2248 int err;
2249
2250 id = ida_simple_get(&memcg_cache_ida,
2251 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2252 if (id < 0)
2253 return id;
2254
2255 if (id < memcg_nr_cache_ids)
2256 return id;
2257
2258 /*
2259 * There's no space for the new id in memcg_caches arrays,
2260 * so we have to grow them.
2261 */
2262 down_write(&memcg_cache_ids_sem);
2263
2264 size = 2 * (id + 1);
2265 if (size < MEMCG_CACHES_MIN_SIZE)
2266 size = MEMCG_CACHES_MIN_SIZE;
2267 else if (size > MEMCG_CACHES_MAX_SIZE)
2268 size = MEMCG_CACHES_MAX_SIZE;
2269
2270 err = memcg_update_all_caches(size);
2271 if (!err)
2272 err = memcg_update_all_list_lrus(size);
2273 if (!err)
2274 memcg_nr_cache_ids = size;
2275
2276 up_write(&memcg_cache_ids_sem);
2277
2278 if (err) {
2279 ida_simple_remove(&memcg_cache_ida, id);
2280 return err;
2281 }
2282 return id;
2283 }
2284
2285 static void memcg_free_cache_id(int id)
2286 {
2287 ida_simple_remove(&memcg_cache_ida, id);
2288 }
2289
2290 struct memcg_kmem_cache_create_work {
2291 struct mem_cgroup *memcg;
2292 struct kmem_cache *cachep;
2293 struct work_struct work;
2294 };
2295
2296 static void memcg_kmem_cache_create_func(struct work_struct *w)
2297 {
2298 struct memcg_kmem_cache_create_work *cw =
2299 container_of(w, struct memcg_kmem_cache_create_work, work);
2300 struct mem_cgroup *memcg = cw->memcg;
2301 struct kmem_cache *cachep = cw->cachep;
2302
2303 memcg_create_kmem_cache(memcg, cachep);
2304
2305 css_put(&memcg->css);
2306 kfree(cw);
2307 }
2308
2309 /*
2310 * Enqueue the creation of a per-memcg kmem_cache.
2311 */
2312 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2313 struct kmem_cache *cachep)
2314 {
2315 struct memcg_kmem_cache_create_work *cw;
2316
2317 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2318 if (!cw)
2319 return;
2320
2321 css_get(&memcg->css);
2322
2323 cw->memcg = memcg;
2324 cw->cachep = cachep;
2325 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2326
2327 schedule_work(&cw->work);
2328 }
2329
2330 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2331 struct kmem_cache *cachep)
2332 {
2333 /*
2334 * We need to stop accounting when we kmalloc, because if the
2335 * corresponding kmalloc cache is not yet created, the first allocation
2336 * in __memcg_schedule_kmem_cache_create will recurse.
2337 *
2338 * However, it is better to enclose the whole function. Depending on
2339 * the debugging options enabled, INIT_WORK(), for instance, can
2340 * trigger an allocation. This too, will make us recurse. Because at
2341 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2342 * the safest choice is to do it like this, wrapping the whole function.
2343 */
2344 current->memcg_kmem_skip_account = 1;
2345 __memcg_schedule_kmem_cache_create(memcg, cachep);
2346 current->memcg_kmem_skip_account = 0;
2347 }
2348
2349 /*
2350 * Return the kmem_cache we're supposed to use for a slab allocation.
2351 * We try to use the current memcg's version of the cache.
2352 *
2353 * If the cache does not exist yet, if we are the first user of it,
2354 * we either create it immediately, if possible, or create it asynchronously
2355 * in a workqueue.
2356 * In the latter case, we will let the current allocation go through with
2357 * the original cache.
2358 *
2359 * Can't be called in interrupt context or from kernel threads.
2360 * This function needs to be called with rcu_read_lock() held.
2361 */
2362 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2363 {
2364 struct mem_cgroup *memcg;
2365 struct kmem_cache *memcg_cachep;
2366 int kmemcg_id;
2367
2368 VM_BUG_ON(!is_root_cache(cachep));
2369
2370 if (current->memcg_kmem_skip_account)
2371 return cachep;
2372
2373 memcg = get_mem_cgroup_from_mm(current->mm);
2374 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2375 if (kmemcg_id < 0)
2376 goto out;
2377
2378 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2379 if (likely(memcg_cachep))
2380 return memcg_cachep;
2381
2382 /*
2383 * If we are in a safe context (can wait, and not in interrupt
2384 * context), we could be be predictable and return right away.
2385 * This would guarantee that the allocation being performed
2386 * already belongs in the new cache.
2387 *
2388 * However, there are some clashes that can arrive from locking.
2389 * For instance, because we acquire the slab_mutex while doing
2390 * memcg_create_kmem_cache, this means no further allocation
2391 * could happen with the slab_mutex held. So it's better to
2392 * defer everything.
2393 */
2394 memcg_schedule_kmem_cache_create(memcg, cachep);
2395 out:
2396 css_put(&memcg->css);
2397 return cachep;
2398 }
2399
2400 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2401 {
2402 if (!is_root_cache(cachep))
2403 css_put(&cachep->memcg_params.memcg->css);
2404 }
2405
2406 /*
2407 * We need to verify if the allocation against current->mm->owner's memcg is
2408 * possible for the given order. But the page is not allocated yet, so we'll
2409 * need a further commit step to do the final arrangements.
2410 *
2411 * It is possible for the task to switch cgroups in this mean time, so at
2412 * commit time, we can't rely on task conversion any longer. We'll then use
2413 * the handle argument to return to the caller which cgroup we should commit
2414 * against. We could also return the memcg directly and avoid the pointer
2415 * passing, but a boolean return value gives better semantics considering
2416 * the compiled-out case as well.
2417 *
2418 * Returning true means the allocation is possible.
2419 */
2420 bool
2421 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2422 {
2423 struct mem_cgroup *memcg;
2424 int ret;
2425
2426 *_memcg = NULL;
2427
2428 memcg = get_mem_cgroup_from_mm(current->mm);
2429
2430 if (!memcg_kmem_is_active(memcg)) {
2431 css_put(&memcg->css);
2432 return true;
2433 }
2434
2435 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2436 if (!ret)
2437 *_memcg = memcg;
2438
2439 css_put(&memcg->css);
2440 return (ret == 0);
2441 }
2442
2443 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2444 int order)
2445 {
2446 VM_BUG_ON(mem_cgroup_is_root(memcg));
2447
2448 /* The page allocation failed. Revert */
2449 if (!page) {
2450 memcg_uncharge_kmem(memcg, 1 << order);
2451 return;
2452 }
2453 page->mem_cgroup = memcg;
2454 }
2455
2456 void __memcg_kmem_uncharge_pages(struct page *page, int order)
2457 {
2458 struct mem_cgroup *memcg = page->mem_cgroup;
2459
2460 if (!memcg)
2461 return;
2462
2463 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2464
2465 memcg_uncharge_kmem(memcg, 1 << order);
2466 page->mem_cgroup = NULL;
2467 }
2468
2469 struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
2470 {
2471 struct mem_cgroup *memcg = NULL;
2472 struct kmem_cache *cachep;
2473 struct page *page;
2474
2475 page = virt_to_head_page(ptr);
2476 if (PageSlab(page)) {
2477 cachep = page->slab_cache;
2478 if (!is_root_cache(cachep))
2479 memcg = cachep->memcg_params.memcg;
2480 } else
2481 /* page allocated by alloc_kmem_pages */
2482 memcg = page->mem_cgroup;
2483
2484 return memcg;
2485 }
2486 #endif /* CONFIG_MEMCG_KMEM */
2487
2488 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2489
2490 /*
2491 * Because tail pages are not marked as "used", set it. We're under
2492 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2493 * charge/uncharge will be never happen and move_account() is done under
2494 * compound_lock(), so we don't have to take care of races.
2495 */
2496 void mem_cgroup_split_huge_fixup(struct page *head)
2497 {
2498 int i;
2499
2500 if (mem_cgroup_disabled())
2501 return;
2502
2503 for (i = 1; i < HPAGE_PMD_NR; i++)
2504 head[i].mem_cgroup = head->mem_cgroup;
2505
2506 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2507 HPAGE_PMD_NR);
2508 }
2509 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2510
2511 #ifdef CONFIG_MEMCG_SWAP
2512 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2513 bool charge)
2514 {
2515 int val = (charge) ? 1 : -1;
2516 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2517 }
2518
2519 /**
2520 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2521 * @entry: swap entry to be moved
2522 * @from: mem_cgroup which the entry is moved from
2523 * @to: mem_cgroup which the entry is moved to
2524 *
2525 * It succeeds only when the swap_cgroup's record for this entry is the same
2526 * as the mem_cgroup's id of @from.
2527 *
2528 * Returns 0 on success, -EINVAL on failure.
2529 *
2530 * The caller must have charged to @to, IOW, called page_counter_charge() about
2531 * both res and memsw, and called css_get().
2532 */
2533 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2534 struct mem_cgroup *from, struct mem_cgroup *to)
2535 {
2536 unsigned short old_id, new_id;
2537
2538 old_id = mem_cgroup_id(from);
2539 new_id = mem_cgroup_id(to);
2540
2541 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2542 mem_cgroup_swap_statistics(from, false);
2543 mem_cgroup_swap_statistics(to, true);
2544 return 0;
2545 }
2546 return -EINVAL;
2547 }
2548 #else
2549 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2550 struct mem_cgroup *from, struct mem_cgroup *to)
2551 {
2552 return -EINVAL;
2553 }
2554 #endif
2555
2556 static DEFINE_MUTEX(memcg_limit_mutex);
2557
2558 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2559 unsigned long limit)
2560 {
2561 unsigned long curusage;
2562 unsigned long oldusage;
2563 bool enlarge = false;
2564 int retry_count;
2565 int ret;
2566
2567 /*
2568 * For keeping hierarchical_reclaim simple, how long we should retry
2569 * is depends on callers. We set our retry-count to be function
2570 * of # of children which we should visit in this loop.
2571 */
2572 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2573 mem_cgroup_count_children(memcg);
2574
2575 oldusage = page_counter_read(&memcg->memory);
2576
2577 do {
2578 if (signal_pending(current)) {
2579 ret = -EINTR;
2580 break;
2581 }
2582
2583 mutex_lock(&memcg_limit_mutex);
2584 if (limit > memcg->memsw.limit) {
2585 mutex_unlock(&memcg_limit_mutex);
2586 ret = -EINVAL;
2587 break;
2588 }
2589 if (limit > memcg->memory.limit)
2590 enlarge = true;
2591 ret = page_counter_limit(&memcg->memory, limit);
2592 mutex_unlock(&memcg_limit_mutex);
2593
2594 if (!ret)
2595 break;
2596
2597 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2598
2599 curusage = page_counter_read(&memcg->memory);
2600 /* Usage is reduced ? */
2601 if (curusage >= oldusage)
2602 retry_count--;
2603 else
2604 oldusage = curusage;
2605 } while (retry_count);
2606
2607 if (!ret && enlarge)
2608 memcg_oom_recover(memcg);
2609
2610 return ret;
2611 }
2612
2613 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2614 unsigned long limit)
2615 {
2616 unsigned long curusage;
2617 unsigned long oldusage;
2618 bool enlarge = false;
2619 int retry_count;
2620 int ret;
2621
2622 /* see mem_cgroup_resize_res_limit */
2623 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2624 mem_cgroup_count_children(memcg);
2625
2626 oldusage = page_counter_read(&memcg->memsw);
2627
2628 do {
2629 if (signal_pending(current)) {
2630 ret = -EINTR;
2631 break;
2632 }
2633
2634 mutex_lock(&memcg_limit_mutex);
2635 if (limit < memcg->memory.limit) {
2636 mutex_unlock(&memcg_limit_mutex);
2637 ret = -EINVAL;
2638 break;
2639 }
2640 if (limit > memcg->memsw.limit)
2641 enlarge = true;
2642 ret = page_counter_limit(&memcg->memsw, limit);
2643 mutex_unlock(&memcg_limit_mutex);
2644
2645 if (!ret)
2646 break;
2647
2648 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2649
2650 curusage = page_counter_read(&memcg->memsw);
2651 /* Usage is reduced ? */
2652 if (curusage >= oldusage)
2653 retry_count--;
2654 else
2655 oldusage = curusage;
2656 } while (retry_count);
2657
2658 if (!ret && enlarge)
2659 memcg_oom_recover(memcg);
2660
2661 return ret;
2662 }
2663
2664 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2665 gfp_t gfp_mask,
2666 unsigned long *total_scanned)
2667 {
2668 unsigned long nr_reclaimed = 0;
2669 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2670 unsigned long reclaimed;
2671 int loop = 0;
2672 struct mem_cgroup_tree_per_zone *mctz;
2673 unsigned long excess;
2674 unsigned long nr_scanned;
2675
2676 if (order > 0)
2677 return 0;
2678
2679 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2680 /*
2681 * This loop can run a while, specially if mem_cgroup's continuously
2682 * keep exceeding their soft limit and putting the system under
2683 * pressure
2684 */
2685 do {
2686 if (next_mz)
2687 mz = next_mz;
2688 else
2689 mz = mem_cgroup_largest_soft_limit_node(mctz);
2690 if (!mz)
2691 break;
2692
2693 nr_scanned = 0;
2694 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2695 gfp_mask, &nr_scanned);
2696 nr_reclaimed += reclaimed;
2697 *total_scanned += nr_scanned;
2698 spin_lock_irq(&mctz->lock);
2699 __mem_cgroup_remove_exceeded(mz, mctz);
2700
2701 /*
2702 * If we failed to reclaim anything from this memory cgroup
2703 * it is time to move on to the next cgroup
2704 */
2705 next_mz = NULL;
2706 if (!reclaimed)
2707 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2708
2709 excess = soft_limit_excess(mz->memcg);
2710 /*
2711 * One school of thought says that we should not add
2712 * back the node to the tree if reclaim returns 0.
2713 * But our reclaim could return 0, simply because due
2714 * to priority we are exposing a smaller subset of
2715 * memory to reclaim from. Consider this as a longer
2716 * term TODO.
2717 */
2718 /* If excess == 0, no tree ops */
2719 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2720 spin_unlock_irq(&mctz->lock);
2721 css_put(&mz->memcg->css);
2722 loop++;
2723 /*
2724 * Could not reclaim anything and there are no more
2725 * mem cgroups to try or we seem to be looping without
2726 * reclaiming anything.
2727 */
2728 if (!nr_reclaimed &&
2729 (next_mz == NULL ||
2730 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2731 break;
2732 } while (!nr_reclaimed);
2733 if (next_mz)
2734 css_put(&next_mz->memcg->css);
2735 return nr_reclaimed;
2736 }
2737
2738 /*
2739 * Test whether @memcg has children, dead or alive. Note that this
2740 * function doesn't care whether @memcg has use_hierarchy enabled and
2741 * returns %true if there are child csses according to the cgroup
2742 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2743 */
2744 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2745 {
2746 bool ret;
2747
2748 /*
2749 * The lock does not prevent addition or deletion of children, but
2750 * it prevents a new child from being initialized based on this
2751 * parent in css_online(), so it's enough to decide whether
2752 * hierarchically inherited attributes can still be changed or not.
2753 */
2754 lockdep_assert_held(&memcg_create_mutex);
2755
2756 rcu_read_lock();
2757 ret = css_next_child(NULL, &memcg->css);
2758 rcu_read_unlock();
2759 return ret;
2760 }
2761
2762 /*
2763 * Reclaims as many pages from the given memcg as possible and moves
2764 * the rest to the parent.
2765 *
2766 * Caller is responsible for holding css reference for memcg.
2767 */
2768 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2769 {
2770 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2771
2772 /* we call try-to-free pages for make this cgroup empty */
2773 lru_add_drain_all();
2774 /* try to free all pages in this cgroup */
2775 while (nr_retries && page_counter_read(&memcg->memory)) {
2776 int progress;
2777
2778 if (signal_pending(current))
2779 return -EINTR;
2780
2781 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2782 GFP_KERNEL, true);
2783 if (!progress) {
2784 nr_retries--;
2785 /* maybe some writeback is necessary */
2786 congestion_wait(BLK_RW_ASYNC, HZ/10);
2787 }
2788
2789 }
2790
2791 return 0;
2792 }
2793
2794 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2795 char *buf, size_t nbytes,
2796 loff_t off)
2797 {
2798 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2799
2800 if (mem_cgroup_is_root(memcg))
2801 return -EINVAL;
2802 return mem_cgroup_force_empty(memcg) ?: nbytes;
2803 }
2804
2805 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2806 struct cftype *cft)
2807 {
2808 return mem_cgroup_from_css(css)->use_hierarchy;
2809 }
2810
2811 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2812 struct cftype *cft, u64 val)
2813 {
2814 int retval = 0;
2815 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2816 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2817
2818 mutex_lock(&memcg_create_mutex);
2819
2820 if (memcg->use_hierarchy == val)
2821 goto out;
2822
2823 /*
2824 * If parent's use_hierarchy is set, we can't make any modifications
2825 * in the child subtrees. If it is unset, then the change can
2826 * occur, provided the current cgroup has no children.
2827 *
2828 * For the root cgroup, parent_mem is NULL, we allow value to be
2829 * set if there are no children.
2830 */
2831 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2832 (val == 1 || val == 0)) {
2833 if (!memcg_has_children(memcg))
2834 memcg->use_hierarchy = val;
2835 else
2836 retval = -EBUSY;
2837 } else
2838 retval = -EINVAL;
2839
2840 out:
2841 mutex_unlock(&memcg_create_mutex);
2842
2843 return retval;
2844 }
2845
2846 static unsigned long tree_stat(struct mem_cgroup *memcg,
2847 enum mem_cgroup_stat_index idx)
2848 {
2849 struct mem_cgroup *iter;
2850 unsigned long val = 0;
2851
2852 for_each_mem_cgroup_tree(iter, memcg)
2853 val += mem_cgroup_read_stat(iter, idx);
2854
2855 return val;
2856 }
2857
2858 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2859 {
2860 u64 val;
2861
2862 if (mem_cgroup_is_root(memcg)) {
2863 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2864 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2865 if (swap)
2866 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2867 } else {
2868 if (!swap)
2869 val = page_counter_read(&memcg->memory);
2870 else
2871 val = page_counter_read(&memcg->memsw);
2872 }
2873 return val << PAGE_SHIFT;
2874 }
2875
2876 enum {
2877 RES_USAGE,
2878 RES_LIMIT,
2879 RES_MAX_USAGE,
2880 RES_FAILCNT,
2881 RES_SOFT_LIMIT,
2882 };
2883
2884 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2885 struct cftype *cft)
2886 {
2887 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2888 struct page_counter *counter;
2889
2890 switch (MEMFILE_TYPE(cft->private)) {
2891 case _MEM:
2892 counter = &memcg->memory;
2893 break;
2894 case _MEMSWAP:
2895 counter = &memcg->memsw;
2896 break;
2897 case _KMEM:
2898 counter = &memcg->kmem;
2899 break;
2900 default:
2901 BUG();
2902 }
2903
2904 switch (MEMFILE_ATTR(cft->private)) {
2905 case RES_USAGE:
2906 if (counter == &memcg->memory)
2907 return mem_cgroup_usage(memcg, false);
2908 if (counter == &memcg->memsw)
2909 return mem_cgroup_usage(memcg, true);
2910 return (u64)page_counter_read(counter) * PAGE_SIZE;
2911 case RES_LIMIT:
2912 return (u64)counter->limit * PAGE_SIZE;
2913 case RES_MAX_USAGE:
2914 return (u64)counter->watermark * PAGE_SIZE;
2915 case RES_FAILCNT:
2916 return counter->failcnt;
2917 case RES_SOFT_LIMIT:
2918 return (u64)memcg->soft_limit * PAGE_SIZE;
2919 default:
2920 BUG();
2921 }
2922 }
2923
2924 #ifdef CONFIG_MEMCG_KMEM
2925 static int memcg_activate_kmem(struct mem_cgroup *memcg,
2926 unsigned long nr_pages)
2927 {
2928 int err = 0;
2929 int memcg_id;
2930
2931 BUG_ON(memcg->kmemcg_id >= 0);
2932 BUG_ON(memcg->kmem_acct_activated);
2933 BUG_ON(memcg->kmem_acct_active);
2934
2935 /*
2936 * For simplicity, we won't allow this to be disabled. It also can't
2937 * be changed if the cgroup has children already, or if tasks had
2938 * already joined.
2939 *
2940 * If tasks join before we set the limit, a person looking at
2941 * kmem.usage_in_bytes will have no way to determine when it took
2942 * place, which makes the value quite meaningless.
2943 *
2944 * After it first became limited, changes in the value of the limit are
2945 * of course permitted.
2946 */
2947 mutex_lock(&memcg_create_mutex);
2948 if (cgroup_has_tasks(memcg->css.cgroup) ||
2949 (memcg->use_hierarchy && memcg_has_children(memcg)))
2950 err = -EBUSY;
2951 mutex_unlock(&memcg_create_mutex);
2952 if (err)
2953 goto out;
2954
2955 memcg_id = memcg_alloc_cache_id();
2956 if (memcg_id < 0) {
2957 err = memcg_id;
2958 goto out;
2959 }
2960
2961 /*
2962 * We couldn't have accounted to this cgroup, because it hasn't got
2963 * activated yet, so this should succeed.
2964 */
2965 err = page_counter_limit(&memcg->kmem, nr_pages);
2966 VM_BUG_ON(err);
2967
2968 static_key_slow_inc(&memcg_kmem_enabled_key);
2969 /*
2970 * A memory cgroup is considered kmem-active as soon as it gets
2971 * kmemcg_id. Setting the id after enabling static branching will
2972 * guarantee no one starts accounting before all call sites are
2973 * patched.
2974 */
2975 memcg->kmemcg_id = memcg_id;
2976 memcg->kmem_acct_activated = true;
2977 memcg->kmem_acct_active = true;
2978 out:
2979 return err;
2980 }
2981
2982 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2983 unsigned long limit)
2984 {
2985 int ret;
2986
2987 mutex_lock(&memcg_limit_mutex);
2988 if (!memcg_kmem_is_active(memcg))
2989 ret = memcg_activate_kmem(memcg, limit);
2990 else
2991 ret = page_counter_limit(&memcg->kmem, limit);
2992 mutex_unlock(&memcg_limit_mutex);
2993 return ret;
2994 }
2995
2996 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
2997 {
2998 int ret = 0;
2999 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3000
3001 if (!parent)
3002 return 0;
3003
3004 mutex_lock(&memcg_limit_mutex);
3005 /*
3006 * If the parent cgroup is not kmem-active now, it cannot be activated
3007 * after this point, because it has at least one child already.
3008 */
3009 if (memcg_kmem_is_active(parent))
3010 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3011 mutex_unlock(&memcg_limit_mutex);
3012 return ret;
3013 }
3014 #else
3015 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3016 unsigned long limit)
3017 {
3018 return -EINVAL;
3019 }
3020 #endif /* CONFIG_MEMCG_KMEM */
3021
3022 /*
3023 * The user of this function is...
3024 * RES_LIMIT.
3025 */
3026 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3027 char *buf, size_t nbytes, loff_t off)
3028 {
3029 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3030 unsigned long nr_pages;
3031 int ret;
3032
3033 buf = strstrip(buf);
3034 ret = page_counter_memparse(buf, "-1", &nr_pages);
3035 if (ret)
3036 return ret;
3037
3038 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3039 case RES_LIMIT:
3040 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3041 ret = -EINVAL;
3042 break;
3043 }
3044 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3045 case _MEM:
3046 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3047 break;
3048 case _MEMSWAP:
3049 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3050 break;
3051 case _KMEM:
3052 ret = memcg_update_kmem_limit(memcg, nr_pages);
3053 break;
3054 }
3055 break;
3056 case RES_SOFT_LIMIT:
3057 memcg->soft_limit = nr_pages;
3058 ret = 0;
3059 break;
3060 }
3061 return ret ?: nbytes;
3062 }
3063
3064 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3065 size_t nbytes, loff_t off)
3066 {
3067 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3068 struct page_counter *counter;
3069
3070 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3071 case _MEM:
3072 counter = &memcg->memory;
3073 break;
3074 case _MEMSWAP:
3075 counter = &memcg->memsw;
3076 break;
3077 case _KMEM:
3078 counter = &memcg->kmem;
3079 break;
3080 default:
3081 BUG();
3082 }
3083
3084 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3085 case RES_MAX_USAGE:
3086 page_counter_reset_watermark(counter);
3087 break;
3088 case RES_FAILCNT:
3089 counter->failcnt = 0;
3090 break;
3091 default:
3092 BUG();
3093 }
3094
3095 return nbytes;
3096 }
3097
3098 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3099 struct cftype *cft)
3100 {
3101 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3102 }
3103
3104 #ifdef CONFIG_MMU
3105 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3106 struct cftype *cft, u64 val)
3107 {
3108 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3109
3110 if (val & ~MOVE_MASK)
3111 return -EINVAL;
3112
3113 /*
3114 * No kind of locking is needed in here, because ->can_attach() will
3115 * check this value once in the beginning of the process, and then carry
3116 * on with stale data. This means that changes to this value will only
3117 * affect task migrations starting after the change.
3118 */
3119 memcg->move_charge_at_immigrate = val;
3120 return 0;
3121 }
3122 #else
3123 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3124 struct cftype *cft, u64 val)
3125 {
3126 return -ENOSYS;
3127 }
3128 #endif
3129
3130 #ifdef CONFIG_NUMA
3131 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3132 {
3133 struct numa_stat {
3134 const char *name;
3135 unsigned int lru_mask;
3136 };
3137
3138 static const struct numa_stat stats[] = {
3139 { "total", LRU_ALL },
3140 { "file", LRU_ALL_FILE },
3141 { "anon", LRU_ALL_ANON },
3142 { "unevictable", BIT(LRU_UNEVICTABLE) },
3143 };
3144 const struct numa_stat *stat;
3145 int nid;
3146 unsigned long nr;
3147 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3148
3149 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3150 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3151 seq_printf(m, "%s=%lu", stat->name, nr);
3152 for_each_node_state(nid, N_MEMORY) {
3153 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3154 stat->lru_mask);
3155 seq_printf(m, " N%d=%lu", nid, nr);
3156 }
3157 seq_putc(m, '\n');
3158 }
3159
3160 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3161 struct mem_cgroup *iter;
3162
3163 nr = 0;
3164 for_each_mem_cgroup_tree(iter, memcg)
3165 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3166 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3167 for_each_node_state(nid, N_MEMORY) {
3168 nr = 0;
3169 for_each_mem_cgroup_tree(iter, memcg)
3170 nr += mem_cgroup_node_nr_lru_pages(
3171 iter, nid, stat->lru_mask);
3172 seq_printf(m, " N%d=%lu", nid, nr);
3173 }
3174 seq_putc(m, '\n');
3175 }
3176
3177 return 0;
3178 }
3179 #endif /* CONFIG_NUMA */
3180
3181 static int memcg_stat_show(struct seq_file *m, void *v)
3182 {
3183 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3184 unsigned long memory, memsw;
3185 struct mem_cgroup *mi;
3186 unsigned int i;
3187
3188 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3189 MEM_CGROUP_STAT_NSTATS);
3190 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3191 MEM_CGROUP_EVENTS_NSTATS);
3192 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3193
3194 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3195 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3196 continue;
3197 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3198 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3199 }
3200
3201 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3202 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3203 mem_cgroup_read_events(memcg, i));
3204
3205 for (i = 0; i < NR_LRU_LISTS; i++)
3206 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3207 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3208
3209 /* Hierarchical information */
3210 memory = memsw = PAGE_COUNTER_MAX;
3211 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3212 memory = min(memory, mi->memory.limit);
3213 memsw = min(memsw, mi->memsw.limit);
3214 }
3215 seq_printf(m, "hierarchical_memory_limit %llu\n",
3216 (u64)memory * PAGE_SIZE);
3217 if (do_swap_account)
3218 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3219 (u64)memsw * PAGE_SIZE);
3220
3221 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3222 unsigned long long val = 0;
3223
3224 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3225 continue;
3226 for_each_mem_cgroup_tree(mi, memcg)
3227 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3228 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3229 }
3230
3231 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3232 unsigned long long val = 0;
3233
3234 for_each_mem_cgroup_tree(mi, memcg)
3235 val += mem_cgroup_read_events(mi, i);
3236 seq_printf(m, "total_%s %llu\n",
3237 mem_cgroup_events_names[i], val);
3238 }
3239
3240 for (i = 0; i < NR_LRU_LISTS; i++) {
3241 unsigned long long val = 0;
3242
3243 for_each_mem_cgroup_tree(mi, memcg)
3244 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3245 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3246 }
3247
3248 #ifdef CONFIG_DEBUG_VM
3249 {
3250 int nid, zid;
3251 struct mem_cgroup_per_zone *mz;
3252 struct zone_reclaim_stat *rstat;
3253 unsigned long recent_rotated[2] = {0, 0};
3254 unsigned long recent_scanned[2] = {0, 0};
3255
3256 for_each_online_node(nid)
3257 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3258 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3259 rstat = &mz->lruvec.reclaim_stat;
3260
3261 recent_rotated[0] += rstat->recent_rotated[0];
3262 recent_rotated[1] += rstat->recent_rotated[1];
3263 recent_scanned[0] += rstat->recent_scanned[0];
3264 recent_scanned[1] += rstat->recent_scanned[1];
3265 }
3266 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3267 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3268 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3269 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3270 }
3271 #endif
3272
3273 return 0;
3274 }
3275
3276 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3277 struct cftype *cft)
3278 {
3279 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3280
3281 return mem_cgroup_swappiness(memcg);
3282 }
3283
3284 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3285 struct cftype *cft, u64 val)
3286 {
3287 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3288
3289 if (val > 100)
3290 return -EINVAL;
3291
3292 if (css->parent)
3293 memcg->swappiness = val;
3294 else
3295 vm_swappiness = val;
3296
3297 return 0;
3298 }
3299
3300 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3301 {
3302 struct mem_cgroup_threshold_ary *t;
3303 unsigned long usage;
3304 int i;
3305
3306 rcu_read_lock();
3307 if (!swap)
3308 t = rcu_dereference(memcg->thresholds.primary);
3309 else
3310 t = rcu_dereference(memcg->memsw_thresholds.primary);
3311
3312 if (!t)
3313 goto unlock;
3314
3315 usage = mem_cgroup_usage(memcg, swap);
3316
3317 /*
3318 * current_threshold points to threshold just below or equal to usage.
3319 * If it's not true, a threshold was crossed after last
3320 * call of __mem_cgroup_threshold().
3321 */
3322 i = t->current_threshold;
3323
3324 /*
3325 * Iterate backward over array of thresholds starting from
3326 * current_threshold and check if a threshold is crossed.
3327 * If none of thresholds below usage is crossed, we read
3328 * only one element of the array here.
3329 */
3330 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3331 eventfd_signal(t->entries[i].eventfd, 1);
3332
3333 /* i = current_threshold + 1 */
3334 i++;
3335
3336 /*
3337 * Iterate forward over array of thresholds starting from
3338 * current_threshold+1 and check if a threshold is crossed.
3339 * If none of thresholds above usage is crossed, we read
3340 * only one element of the array here.
3341 */
3342 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3343 eventfd_signal(t->entries[i].eventfd, 1);
3344
3345 /* Update current_threshold */
3346 t->current_threshold = i - 1;
3347 unlock:
3348 rcu_read_unlock();
3349 }
3350
3351 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3352 {
3353 while (memcg) {
3354 __mem_cgroup_threshold(memcg, false);
3355 if (do_swap_account)
3356 __mem_cgroup_threshold(memcg, true);
3357
3358 memcg = parent_mem_cgroup(memcg);
3359 }
3360 }
3361
3362 static int compare_thresholds(const void *a, const void *b)
3363 {
3364 const struct mem_cgroup_threshold *_a = a;
3365 const struct mem_cgroup_threshold *_b = b;
3366
3367 if (_a->threshold > _b->threshold)
3368 return 1;
3369
3370 if (_a->threshold < _b->threshold)
3371 return -1;
3372
3373 return 0;
3374 }
3375
3376 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3377 {
3378 struct mem_cgroup_eventfd_list *ev;
3379
3380 spin_lock(&memcg_oom_lock);
3381
3382 list_for_each_entry(ev, &memcg->oom_notify, list)
3383 eventfd_signal(ev->eventfd, 1);
3384
3385 spin_unlock(&memcg_oom_lock);
3386 return 0;
3387 }
3388
3389 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3390 {
3391 struct mem_cgroup *iter;
3392
3393 for_each_mem_cgroup_tree(iter, memcg)
3394 mem_cgroup_oom_notify_cb(iter);
3395 }
3396
3397 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3398 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3399 {
3400 struct mem_cgroup_thresholds *thresholds;
3401 struct mem_cgroup_threshold_ary *new;
3402 unsigned long threshold;
3403 unsigned long usage;
3404 int i, size, ret;
3405
3406 ret = page_counter_memparse(args, "-1", &threshold);
3407 if (ret)
3408 return ret;
3409 threshold <<= PAGE_SHIFT;
3410
3411 mutex_lock(&memcg->thresholds_lock);
3412
3413 if (type == _MEM) {
3414 thresholds = &memcg->thresholds;
3415 usage = mem_cgroup_usage(memcg, false);
3416 } else if (type == _MEMSWAP) {
3417 thresholds = &memcg->memsw_thresholds;
3418 usage = mem_cgroup_usage(memcg, true);
3419 } else
3420 BUG();
3421
3422 /* Check if a threshold crossed before adding a new one */
3423 if (thresholds->primary)
3424 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3425
3426 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3427
3428 /* Allocate memory for new array of thresholds */
3429 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3430 GFP_KERNEL);
3431 if (!new) {
3432 ret = -ENOMEM;
3433 goto unlock;
3434 }
3435 new->size = size;
3436
3437 /* Copy thresholds (if any) to new array */
3438 if (thresholds->primary) {
3439 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3440 sizeof(struct mem_cgroup_threshold));
3441 }
3442
3443 /* Add new threshold */
3444 new->entries[size - 1].eventfd = eventfd;
3445 new->entries[size - 1].threshold = threshold;
3446
3447 /* Sort thresholds. Registering of new threshold isn't time-critical */
3448 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3449 compare_thresholds, NULL);
3450
3451 /* Find current threshold */
3452 new->current_threshold = -1;
3453 for (i = 0; i < size; i++) {
3454 if (new->entries[i].threshold <= usage) {
3455 /*
3456 * new->current_threshold will not be used until
3457 * rcu_assign_pointer(), so it's safe to increment
3458 * it here.
3459 */
3460 ++new->current_threshold;
3461 } else
3462 break;
3463 }
3464
3465 /* Free old spare buffer and save old primary buffer as spare */
3466 kfree(thresholds->spare);
3467 thresholds->spare = thresholds->primary;
3468
3469 rcu_assign_pointer(thresholds->primary, new);
3470
3471 /* To be sure that nobody uses thresholds */
3472 synchronize_rcu();
3473
3474 unlock:
3475 mutex_unlock(&memcg->thresholds_lock);
3476
3477 return ret;
3478 }
3479
3480 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3481 struct eventfd_ctx *eventfd, const char *args)
3482 {
3483 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3484 }
3485
3486 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3487 struct eventfd_ctx *eventfd, const char *args)
3488 {
3489 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3490 }
3491
3492 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3493 struct eventfd_ctx *eventfd, enum res_type type)
3494 {
3495 struct mem_cgroup_thresholds *thresholds;
3496 struct mem_cgroup_threshold_ary *new;
3497 unsigned long usage;
3498 int i, j, size;
3499
3500 mutex_lock(&memcg->thresholds_lock);
3501
3502 if (type == _MEM) {
3503 thresholds = &memcg->thresholds;
3504 usage = mem_cgroup_usage(memcg, false);
3505 } else if (type == _MEMSWAP) {
3506 thresholds = &memcg->memsw_thresholds;
3507 usage = mem_cgroup_usage(memcg, true);
3508 } else
3509 BUG();
3510
3511 if (!thresholds->primary)
3512 goto unlock;
3513
3514 /* Check if a threshold crossed before removing */
3515 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3516
3517 /* Calculate new number of threshold */
3518 size = 0;
3519 for (i = 0; i < thresholds->primary->size; i++) {
3520 if (thresholds->primary->entries[i].eventfd != eventfd)
3521 size++;
3522 }
3523
3524 new = thresholds->spare;
3525
3526 /* Set thresholds array to NULL if we don't have thresholds */
3527 if (!size) {
3528 kfree(new);
3529 new = NULL;
3530 goto swap_buffers;
3531 }
3532
3533 new->size = size;
3534
3535 /* Copy thresholds and find current threshold */
3536 new->current_threshold = -1;
3537 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3538 if (thresholds->primary->entries[i].eventfd == eventfd)
3539 continue;
3540
3541 new->entries[j] = thresholds->primary->entries[i];
3542 if (new->entries[j].threshold <= usage) {
3543 /*
3544 * new->current_threshold will not be used
3545 * until rcu_assign_pointer(), so it's safe to increment
3546 * it here.
3547 */
3548 ++new->current_threshold;
3549 }
3550 j++;
3551 }
3552
3553 swap_buffers:
3554 /* Swap primary and spare array */
3555 thresholds->spare = thresholds->primary;
3556 /* If all events are unregistered, free the spare array */
3557 if (!new) {
3558 kfree(thresholds->spare);
3559 thresholds->spare = NULL;
3560 }
3561
3562 rcu_assign_pointer(thresholds->primary, new);
3563
3564 /* To be sure that nobody uses thresholds */
3565 synchronize_rcu();
3566 unlock:
3567 mutex_unlock(&memcg->thresholds_lock);
3568 }
3569
3570 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3571 struct eventfd_ctx *eventfd)
3572 {
3573 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3574 }
3575
3576 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3577 struct eventfd_ctx *eventfd)
3578 {
3579 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3580 }
3581
3582 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3583 struct eventfd_ctx *eventfd, const char *args)
3584 {
3585 struct mem_cgroup_eventfd_list *event;
3586
3587 event = kmalloc(sizeof(*event), GFP_KERNEL);
3588 if (!event)
3589 return -ENOMEM;
3590
3591 spin_lock(&memcg_oom_lock);
3592
3593 event->eventfd = eventfd;
3594 list_add(&event->list, &memcg->oom_notify);
3595
3596 /* already in OOM ? */
3597 if (memcg->under_oom)
3598 eventfd_signal(eventfd, 1);
3599 spin_unlock(&memcg_oom_lock);
3600
3601 return 0;
3602 }
3603
3604 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3605 struct eventfd_ctx *eventfd)
3606 {
3607 struct mem_cgroup_eventfd_list *ev, *tmp;
3608
3609 spin_lock(&memcg_oom_lock);
3610
3611 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3612 if (ev->eventfd == eventfd) {
3613 list_del(&ev->list);
3614 kfree(ev);
3615 }
3616 }
3617
3618 spin_unlock(&memcg_oom_lock);
3619 }
3620
3621 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3622 {
3623 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3624
3625 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3626 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3627 return 0;
3628 }
3629
3630 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3631 struct cftype *cft, u64 val)
3632 {
3633 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3634
3635 /* cannot set to root cgroup and only 0 and 1 are allowed */
3636 if (!css->parent || !((val == 0) || (val == 1)))
3637 return -EINVAL;
3638
3639 memcg->oom_kill_disable = val;
3640 if (!val)
3641 memcg_oom_recover(memcg);
3642
3643 return 0;
3644 }
3645
3646 #ifdef CONFIG_MEMCG_KMEM
3647 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3648 {
3649 int ret;
3650
3651 ret = memcg_propagate_kmem(memcg);
3652 if (ret)
3653 return ret;
3654
3655 return mem_cgroup_sockets_init(memcg, ss);
3656 }
3657
3658 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3659 {
3660 struct cgroup_subsys_state *css;
3661 struct mem_cgroup *parent, *child;
3662 int kmemcg_id;
3663
3664 if (!memcg->kmem_acct_active)
3665 return;
3666
3667 /*
3668 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3669 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3670 * guarantees no cache will be created for this cgroup after we are
3671 * done (see memcg_create_kmem_cache()).
3672 */
3673 memcg->kmem_acct_active = false;
3674
3675 memcg_deactivate_kmem_caches(memcg);
3676
3677 kmemcg_id = memcg->kmemcg_id;
3678 BUG_ON(kmemcg_id < 0);
3679
3680 parent = parent_mem_cgroup(memcg);
3681 if (!parent)
3682 parent = root_mem_cgroup;
3683
3684 /*
3685 * Change kmemcg_id of this cgroup and all its descendants to the
3686 * parent's id, and then move all entries from this cgroup's list_lrus
3687 * to ones of the parent. After we have finished, all list_lrus
3688 * corresponding to this cgroup are guaranteed to remain empty. The
3689 * ordering is imposed by list_lru_node->lock taken by
3690 * memcg_drain_all_list_lrus().
3691 */
3692 css_for_each_descendant_pre(css, &memcg->css) {
3693 child = mem_cgroup_from_css(css);
3694 BUG_ON(child->kmemcg_id != kmemcg_id);
3695 child->kmemcg_id = parent->kmemcg_id;
3696 if (!memcg->use_hierarchy)
3697 break;
3698 }
3699 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3700
3701 memcg_free_cache_id(kmemcg_id);
3702 }
3703
3704 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3705 {
3706 if (memcg->kmem_acct_activated) {
3707 memcg_destroy_kmem_caches(memcg);
3708 static_key_slow_dec(&memcg_kmem_enabled_key);
3709 WARN_ON(page_counter_read(&memcg->kmem));
3710 }
3711 mem_cgroup_sockets_destroy(memcg);
3712 }
3713 #else
3714 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3715 {
3716 return 0;
3717 }
3718
3719 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3720 {
3721 }
3722
3723 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3724 {
3725 }
3726 #endif
3727
3728 #ifdef CONFIG_CGROUP_WRITEBACK
3729
3730 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3731 {
3732 return &memcg->cgwb_list;
3733 }
3734
3735 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3736 {
3737 return wb_domain_init(&memcg->cgwb_domain, gfp);
3738 }
3739
3740 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3741 {
3742 wb_domain_exit(&memcg->cgwb_domain);
3743 }
3744
3745 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3746 {
3747 wb_domain_size_changed(&memcg->cgwb_domain);
3748 }
3749
3750 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3751 {
3752 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3753
3754 if (!memcg->css.parent)
3755 return NULL;
3756
3757 return &memcg->cgwb_domain;
3758 }
3759
3760 /**
3761 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3762 * @wb: bdi_writeback in question
3763 * @pfilepages: out parameter for number of file pages
3764 * @pheadroom: out parameter for number of allocatable pages according to memcg
3765 * @pdirty: out parameter for number of dirty pages
3766 * @pwriteback: out parameter for number of pages under writeback
3767 *
3768 * Determine the numbers of file, headroom, dirty, and writeback pages in
3769 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3770 * is a bit more involved.
3771 *
3772 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3773 * headroom is calculated as the lowest headroom of itself and the
3774 * ancestors. Note that this doesn't consider the actual amount of
3775 * available memory in the system. The caller should further cap
3776 * *@pheadroom accordingly.
3777 */
3778 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3779 unsigned long *pheadroom, unsigned long *pdirty,
3780 unsigned long *pwriteback)
3781 {
3782 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3783 struct mem_cgroup *parent;
3784
3785 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3786
3787 /* this should eventually include NR_UNSTABLE_NFS */
3788 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3789 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3790 (1 << LRU_ACTIVE_FILE));
3791 *pheadroom = PAGE_COUNTER_MAX;
3792
3793 while ((parent = parent_mem_cgroup(memcg))) {
3794 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3795 unsigned long used = page_counter_read(&memcg->memory);
3796
3797 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3798 memcg = parent;
3799 }
3800 }
3801
3802 #else /* CONFIG_CGROUP_WRITEBACK */
3803
3804 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3805 {
3806 return 0;
3807 }
3808
3809 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3810 {
3811 }
3812
3813 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3814 {
3815 }
3816
3817 #endif /* CONFIG_CGROUP_WRITEBACK */
3818
3819 /*
3820 * DO NOT USE IN NEW FILES.
3821 *
3822 * "cgroup.event_control" implementation.
3823 *
3824 * This is way over-engineered. It tries to support fully configurable
3825 * events for each user. Such level of flexibility is completely
3826 * unnecessary especially in the light of the planned unified hierarchy.
3827 *
3828 * Please deprecate this and replace with something simpler if at all
3829 * possible.
3830 */
3831
3832 /*
3833 * Unregister event and free resources.
3834 *
3835 * Gets called from workqueue.
3836 */
3837 static void memcg_event_remove(struct work_struct *work)
3838 {
3839 struct mem_cgroup_event *event =
3840 container_of(work, struct mem_cgroup_event, remove);
3841 struct mem_cgroup *memcg = event->memcg;
3842
3843 remove_wait_queue(event->wqh, &event->wait);
3844
3845 event->unregister_event(memcg, event->eventfd);
3846
3847 /* Notify userspace the event is going away. */
3848 eventfd_signal(event->eventfd, 1);
3849
3850 eventfd_ctx_put(event->eventfd);
3851 kfree(event);
3852 css_put(&memcg->css);
3853 }
3854
3855 /*
3856 * Gets called on POLLHUP on eventfd when user closes it.
3857 *
3858 * Called with wqh->lock held and interrupts disabled.
3859 */
3860 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3861 int sync, void *key)
3862 {
3863 struct mem_cgroup_event *event =
3864 container_of(wait, struct mem_cgroup_event, wait);
3865 struct mem_cgroup *memcg = event->memcg;
3866 unsigned long flags = (unsigned long)key;
3867
3868 if (flags & POLLHUP) {
3869 /*
3870 * If the event has been detached at cgroup removal, we
3871 * can simply return knowing the other side will cleanup
3872 * for us.
3873 *
3874 * We can't race against event freeing since the other
3875 * side will require wqh->lock via remove_wait_queue(),
3876 * which we hold.
3877 */
3878 spin_lock(&memcg->event_list_lock);
3879 if (!list_empty(&event->list)) {
3880 list_del_init(&event->list);
3881 /*
3882 * We are in atomic context, but cgroup_event_remove()
3883 * may sleep, so we have to call it in workqueue.
3884 */
3885 schedule_work(&event->remove);
3886 }
3887 spin_unlock(&memcg->event_list_lock);
3888 }
3889
3890 return 0;
3891 }
3892
3893 static void memcg_event_ptable_queue_proc(struct file *file,
3894 wait_queue_head_t *wqh, poll_table *pt)
3895 {
3896 struct mem_cgroup_event *event =
3897 container_of(pt, struct mem_cgroup_event, pt);
3898
3899 event->wqh = wqh;
3900 add_wait_queue(wqh, &event->wait);
3901 }
3902
3903 /*
3904 * DO NOT USE IN NEW FILES.
3905 *
3906 * Parse input and register new cgroup event handler.
3907 *
3908 * Input must be in format '<event_fd> <control_fd> <args>'.
3909 * Interpretation of args is defined by control file implementation.
3910 */
3911 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3912 char *buf, size_t nbytes, loff_t off)
3913 {
3914 struct cgroup_subsys_state *css = of_css(of);
3915 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3916 struct mem_cgroup_event *event;
3917 struct cgroup_subsys_state *cfile_css;
3918 unsigned int efd, cfd;
3919 struct fd efile;
3920 struct fd cfile;
3921 const char *name;
3922 char *endp;
3923 int ret;
3924
3925 buf = strstrip(buf);
3926
3927 efd = simple_strtoul(buf, &endp, 10);
3928 if (*endp != ' ')
3929 return -EINVAL;
3930 buf = endp + 1;
3931
3932 cfd = simple_strtoul(buf, &endp, 10);
3933 if ((*endp != ' ') && (*endp != '\0'))
3934 return -EINVAL;
3935 buf = endp + 1;
3936
3937 event = kzalloc(sizeof(*event), GFP_KERNEL);
3938 if (!event)
3939 return -ENOMEM;
3940
3941 event->memcg = memcg;
3942 INIT_LIST_HEAD(&event->list);
3943 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3944 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3945 INIT_WORK(&event->remove, memcg_event_remove);
3946
3947 efile = fdget(efd);
3948 if (!efile.file) {
3949 ret = -EBADF;
3950 goto out_kfree;
3951 }
3952
3953 event->eventfd = eventfd_ctx_fileget(efile.file);
3954 if (IS_ERR(event->eventfd)) {
3955 ret = PTR_ERR(event->eventfd);
3956 goto out_put_efile;
3957 }
3958
3959 cfile = fdget(cfd);
3960 if (!cfile.file) {
3961 ret = -EBADF;
3962 goto out_put_eventfd;
3963 }
3964
3965 /* the process need read permission on control file */
3966 /* AV: shouldn't we check that it's been opened for read instead? */
3967 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3968 if (ret < 0)
3969 goto out_put_cfile;
3970
3971 /*
3972 * Determine the event callbacks and set them in @event. This used
3973 * to be done via struct cftype but cgroup core no longer knows
3974 * about these events. The following is crude but the whole thing
3975 * is for compatibility anyway.
3976 *
3977 * DO NOT ADD NEW FILES.
3978 */
3979 name = cfile.file->f_path.dentry->d_name.name;
3980
3981 if (!strcmp(name, "memory.usage_in_bytes")) {
3982 event->register_event = mem_cgroup_usage_register_event;
3983 event->unregister_event = mem_cgroup_usage_unregister_event;
3984 } else if (!strcmp(name, "memory.oom_control")) {
3985 event->register_event = mem_cgroup_oom_register_event;
3986 event->unregister_event = mem_cgroup_oom_unregister_event;
3987 } else if (!strcmp(name, "memory.pressure_level")) {
3988 event->register_event = vmpressure_register_event;
3989 event->unregister_event = vmpressure_unregister_event;
3990 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3991 event->register_event = memsw_cgroup_usage_register_event;
3992 event->unregister_event = memsw_cgroup_usage_unregister_event;
3993 } else {
3994 ret = -EINVAL;
3995 goto out_put_cfile;
3996 }
3997
3998 /*
3999 * Verify @cfile should belong to @css. Also, remaining events are
4000 * automatically removed on cgroup destruction but the removal is
4001 * asynchronous, so take an extra ref on @css.
4002 */
4003 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4004 &memory_cgrp_subsys);
4005 ret = -EINVAL;
4006 if (IS_ERR(cfile_css))
4007 goto out_put_cfile;
4008 if (cfile_css != css) {
4009 css_put(cfile_css);
4010 goto out_put_cfile;
4011 }
4012
4013 ret = event->register_event(memcg, event->eventfd, buf);
4014 if (ret)
4015 goto out_put_css;
4016
4017 efile.file->f_op->poll(efile.file, &event->pt);
4018
4019 spin_lock(&memcg->event_list_lock);
4020 list_add(&event->list, &memcg->event_list);
4021 spin_unlock(&memcg->event_list_lock);
4022
4023 fdput(cfile);
4024 fdput(efile);
4025
4026 return nbytes;
4027
4028 out_put_css:
4029 css_put(css);
4030 out_put_cfile:
4031 fdput(cfile);
4032 out_put_eventfd:
4033 eventfd_ctx_put(event->eventfd);
4034 out_put_efile:
4035 fdput(efile);
4036 out_kfree:
4037 kfree(event);
4038
4039 return ret;
4040 }
4041
4042 static struct cftype mem_cgroup_legacy_files[] = {
4043 {
4044 .name = "usage_in_bytes",
4045 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4046 .read_u64 = mem_cgroup_read_u64,
4047 },
4048 {
4049 .name = "max_usage_in_bytes",
4050 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4051 .write = mem_cgroup_reset,
4052 .read_u64 = mem_cgroup_read_u64,
4053 },
4054 {
4055 .name = "limit_in_bytes",
4056 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4057 .write = mem_cgroup_write,
4058 .read_u64 = mem_cgroup_read_u64,
4059 },
4060 {
4061 .name = "soft_limit_in_bytes",
4062 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4063 .write = mem_cgroup_write,
4064 .read_u64 = mem_cgroup_read_u64,
4065 },
4066 {
4067 .name = "failcnt",
4068 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4069 .write = mem_cgroup_reset,
4070 .read_u64 = mem_cgroup_read_u64,
4071 },
4072 {
4073 .name = "stat",
4074 .seq_show = memcg_stat_show,
4075 },
4076 {
4077 .name = "force_empty",
4078 .write = mem_cgroup_force_empty_write,
4079 },
4080 {
4081 .name = "use_hierarchy",
4082 .write_u64 = mem_cgroup_hierarchy_write,
4083 .read_u64 = mem_cgroup_hierarchy_read,
4084 },
4085 {
4086 .name = "cgroup.event_control", /* XXX: for compat */
4087 .write = memcg_write_event_control,
4088 .flags = CFTYPE_NO_PREFIX,
4089 .mode = S_IWUGO,
4090 },
4091 {
4092 .name = "swappiness",
4093 .read_u64 = mem_cgroup_swappiness_read,
4094 .write_u64 = mem_cgroup_swappiness_write,
4095 },
4096 {
4097 .name = "move_charge_at_immigrate",
4098 .read_u64 = mem_cgroup_move_charge_read,
4099 .write_u64 = mem_cgroup_move_charge_write,
4100 },
4101 {
4102 .name = "oom_control",
4103 .seq_show = mem_cgroup_oom_control_read,
4104 .write_u64 = mem_cgroup_oom_control_write,
4105 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4106 },
4107 {
4108 .name = "pressure_level",
4109 },
4110 #ifdef CONFIG_NUMA
4111 {
4112 .name = "numa_stat",
4113 .seq_show = memcg_numa_stat_show,
4114 },
4115 #endif
4116 #ifdef CONFIG_MEMCG_KMEM
4117 {
4118 .name = "kmem.limit_in_bytes",
4119 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4120 .write = mem_cgroup_write,
4121 .read_u64 = mem_cgroup_read_u64,
4122 },
4123 {
4124 .name = "kmem.usage_in_bytes",
4125 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4126 .read_u64 = mem_cgroup_read_u64,
4127 },
4128 {
4129 .name = "kmem.failcnt",
4130 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4131 .write = mem_cgroup_reset,
4132 .read_u64 = mem_cgroup_read_u64,
4133 },
4134 {
4135 .name = "kmem.max_usage_in_bytes",
4136 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4137 .write = mem_cgroup_reset,
4138 .read_u64 = mem_cgroup_read_u64,
4139 },
4140 #ifdef CONFIG_SLABINFO
4141 {
4142 .name = "kmem.slabinfo",
4143 .seq_start = slab_start,
4144 .seq_next = slab_next,
4145 .seq_stop = slab_stop,
4146 .seq_show = memcg_slab_show,
4147 },
4148 #endif
4149 #endif
4150 { }, /* terminate */
4151 };
4152
4153 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4154 {
4155 struct mem_cgroup_per_node *pn;
4156 struct mem_cgroup_per_zone *mz;
4157 int zone, tmp = node;
4158 /*
4159 * This routine is called against possible nodes.
4160 * But it's BUG to call kmalloc() against offline node.
4161 *
4162 * TODO: this routine can waste much memory for nodes which will
4163 * never be onlined. It's better to use memory hotplug callback
4164 * function.
4165 */
4166 if (!node_state(node, N_NORMAL_MEMORY))
4167 tmp = -1;
4168 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4169 if (!pn)
4170 return 1;
4171
4172 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4173 mz = &pn->zoneinfo[zone];
4174 lruvec_init(&mz->lruvec);
4175 mz->usage_in_excess = 0;
4176 mz->on_tree = false;
4177 mz->memcg = memcg;
4178 }
4179 memcg->nodeinfo[node] = pn;
4180 return 0;
4181 }
4182
4183 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4184 {
4185 kfree(memcg->nodeinfo[node]);
4186 }
4187
4188 static struct mem_cgroup *mem_cgroup_alloc(void)
4189 {
4190 struct mem_cgroup *memcg;
4191 size_t size;
4192
4193 size = sizeof(struct mem_cgroup);
4194 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4195
4196 memcg = kzalloc(size, GFP_KERNEL);
4197 if (!memcg)
4198 return NULL;
4199
4200 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4201 if (!memcg->stat)
4202 goto out_free;
4203
4204 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4205 goto out_free_stat;
4206
4207 return memcg;
4208
4209 out_free_stat:
4210 free_percpu(memcg->stat);
4211 out_free:
4212 kfree(memcg);
4213 return NULL;
4214 }
4215
4216 /*
4217 * At destroying mem_cgroup, references from swap_cgroup can remain.
4218 * (scanning all at force_empty is too costly...)
4219 *
4220 * Instead of clearing all references at force_empty, we remember
4221 * the number of reference from swap_cgroup and free mem_cgroup when
4222 * it goes down to 0.
4223 *
4224 * Removal of cgroup itself succeeds regardless of refs from swap.
4225 */
4226
4227 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4228 {
4229 int node;
4230
4231 mem_cgroup_remove_from_trees(memcg);
4232
4233 for_each_node(node)
4234 free_mem_cgroup_per_zone_info(memcg, node);
4235
4236 free_percpu(memcg->stat);
4237 memcg_wb_domain_exit(memcg);
4238 kfree(memcg);
4239 }
4240
4241 /*
4242 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4243 */
4244 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4245 {
4246 if (!memcg->memory.parent)
4247 return NULL;
4248 return mem_cgroup_from_counter(memcg->memory.parent, memory);
4249 }
4250 EXPORT_SYMBOL(parent_mem_cgroup);
4251
4252 static struct cgroup_subsys_state * __ref
4253 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4254 {
4255 struct mem_cgroup *memcg;
4256 long error = -ENOMEM;
4257 int node;
4258
4259 memcg = mem_cgroup_alloc();
4260 if (!memcg)
4261 return ERR_PTR(error);
4262
4263 for_each_node(node)
4264 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4265 goto free_out;
4266
4267 /* root ? */
4268 if (parent_css == NULL) {
4269 root_mem_cgroup = memcg;
4270 mem_cgroup_root_css = &memcg->css;
4271 page_counter_init(&memcg->memory, NULL);
4272 memcg->high = PAGE_COUNTER_MAX;
4273 memcg->soft_limit = PAGE_COUNTER_MAX;
4274 page_counter_init(&memcg->memsw, NULL);
4275 page_counter_init(&memcg->kmem, NULL);
4276 }
4277
4278 memcg->last_scanned_node = MAX_NUMNODES;
4279 INIT_LIST_HEAD(&memcg->oom_notify);
4280 memcg->move_charge_at_immigrate = 0;
4281 mutex_init(&memcg->thresholds_lock);
4282 spin_lock_init(&memcg->move_lock);
4283 vmpressure_init(&memcg->vmpressure);
4284 INIT_LIST_HEAD(&memcg->event_list);
4285 spin_lock_init(&memcg->event_list_lock);
4286 #ifdef CONFIG_MEMCG_KMEM
4287 memcg->kmemcg_id = -1;
4288 #endif
4289 #ifdef CONFIG_CGROUP_WRITEBACK
4290 INIT_LIST_HEAD(&memcg->cgwb_list);
4291 #endif
4292 return &memcg->css;
4293
4294 free_out:
4295 __mem_cgroup_free(memcg);
4296 return ERR_PTR(error);
4297 }
4298
4299 static int
4300 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4301 {
4302 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4303 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4304 int ret;
4305
4306 if (css->id > MEM_CGROUP_ID_MAX)
4307 return -ENOSPC;
4308
4309 if (!parent)
4310 return 0;
4311
4312 mutex_lock(&memcg_create_mutex);
4313
4314 memcg->use_hierarchy = parent->use_hierarchy;
4315 memcg->oom_kill_disable = parent->oom_kill_disable;
4316 memcg->swappiness = mem_cgroup_swappiness(parent);
4317
4318 if (parent->use_hierarchy) {
4319 page_counter_init(&memcg->memory, &parent->memory);
4320 memcg->high = PAGE_COUNTER_MAX;
4321 memcg->soft_limit = PAGE_COUNTER_MAX;
4322 page_counter_init(&memcg->memsw, &parent->memsw);
4323 page_counter_init(&memcg->kmem, &parent->kmem);
4324
4325 /*
4326 * No need to take a reference to the parent because cgroup
4327 * core guarantees its existence.
4328 */
4329 } else {
4330 page_counter_init(&memcg->memory, NULL);
4331 memcg->high = PAGE_COUNTER_MAX;
4332 memcg->soft_limit = PAGE_COUNTER_MAX;
4333 page_counter_init(&memcg->memsw, NULL);
4334 page_counter_init(&memcg->kmem, NULL);
4335 /*
4336 * Deeper hierachy with use_hierarchy == false doesn't make
4337 * much sense so let cgroup subsystem know about this
4338 * unfortunate state in our controller.
4339 */
4340 if (parent != root_mem_cgroup)
4341 memory_cgrp_subsys.broken_hierarchy = true;
4342 }
4343 mutex_unlock(&memcg_create_mutex);
4344
4345 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4346 if (ret)
4347 return ret;
4348
4349 /*
4350 * Make sure the memcg is initialized: mem_cgroup_iter()
4351 * orders reading memcg->initialized against its callers
4352 * reading the memcg members.
4353 */
4354 smp_store_release(&memcg->initialized, 1);
4355
4356 return 0;
4357 }
4358
4359 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4360 {
4361 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4362 struct mem_cgroup_event *event, *tmp;
4363
4364 /*
4365 * Unregister events and notify userspace.
4366 * Notify userspace about cgroup removing only after rmdir of cgroup
4367 * directory to avoid race between userspace and kernelspace.
4368 */
4369 spin_lock(&memcg->event_list_lock);
4370 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4371 list_del_init(&event->list);
4372 schedule_work(&event->remove);
4373 }
4374 spin_unlock(&memcg->event_list_lock);
4375
4376 vmpressure_cleanup(&memcg->vmpressure);
4377
4378 memcg_deactivate_kmem(memcg);
4379
4380 wb_memcg_offline(memcg);
4381 }
4382
4383 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4384 {
4385 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4386
4387 memcg_destroy_kmem(memcg);
4388 __mem_cgroup_free(memcg);
4389 }
4390
4391 /**
4392 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4393 * @css: the target css
4394 *
4395 * Reset the states of the mem_cgroup associated with @css. This is
4396 * invoked when the userland requests disabling on the default hierarchy
4397 * but the memcg is pinned through dependency. The memcg should stop
4398 * applying policies and should revert to the vanilla state as it may be
4399 * made visible again.
4400 *
4401 * The current implementation only resets the essential configurations.
4402 * This needs to be expanded to cover all the visible parts.
4403 */
4404 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4405 {
4406 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4407
4408 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4409 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4410 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4411 memcg->low = 0;
4412 memcg->high = PAGE_COUNTER_MAX;
4413 memcg->soft_limit = PAGE_COUNTER_MAX;
4414 memcg_wb_domain_size_changed(memcg);
4415 }
4416
4417 #ifdef CONFIG_MMU
4418 /* Handlers for move charge at task migration. */
4419 static int mem_cgroup_do_precharge(unsigned long count)
4420 {
4421 int ret;
4422
4423 /* Try a single bulk charge without reclaim first */
4424 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4425 if (!ret) {
4426 mc.precharge += count;
4427 return ret;
4428 }
4429
4430 /* Try charges one by one with reclaim */
4431 while (count--) {
4432 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4433 if (ret)
4434 return ret;
4435 mc.precharge++;
4436 cond_resched();
4437 }
4438 return 0;
4439 }
4440
4441 /**
4442 * get_mctgt_type - get target type of moving charge
4443 * @vma: the vma the pte to be checked belongs
4444 * @addr: the address corresponding to the pte to be checked
4445 * @ptent: the pte to be checked
4446 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4447 *
4448 * Returns
4449 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4450 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4451 * move charge. if @target is not NULL, the page is stored in target->page
4452 * with extra refcnt got(Callers should handle it).
4453 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4454 * target for charge migration. if @target is not NULL, the entry is stored
4455 * in target->ent.
4456 *
4457 * Called with pte lock held.
4458 */
4459 union mc_target {
4460 struct page *page;
4461 swp_entry_t ent;
4462 };
4463
4464 enum mc_target_type {
4465 MC_TARGET_NONE = 0,
4466 MC_TARGET_PAGE,
4467 MC_TARGET_SWAP,
4468 };
4469
4470 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4471 unsigned long addr, pte_t ptent)
4472 {
4473 struct page *page = vm_normal_page(vma, addr, ptent);
4474
4475 if (!page || !page_mapped(page))
4476 return NULL;
4477 if (PageAnon(page)) {
4478 if (!(mc.flags & MOVE_ANON))
4479 return NULL;
4480 } else {
4481 if (!(mc.flags & MOVE_FILE))
4482 return NULL;
4483 }
4484 if (!get_page_unless_zero(page))
4485 return NULL;
4486
4487 return page;
4488 }
4489
4490 #ifdef CONFIG_SWAP
4491 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4492 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4493 {
4494 struct page *page = NULL;
4495 swp_entry_t ent = pte_to_swp_entry(ptent);
4496
4497 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4498 return NULL;
4499 /*
4500 * Because lookup_swap_cache() updates some statistics counter,
4501 * we call find_get_page() with swapper_space directly.
4502 */
4503 page = find_get_page(swap_address_space(ent), ent.val);
4504 if (do_swap_account)
4505 entry->val = ent.val;
4506
4507 return page;
4508 }
4509 #else
4510 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4511 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4512 {
4513 return NULL;
4514 }
4515 #endif
4516
4517 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4518 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4519 {
4520 struct page *page = NULL;
4521 struct address_space *mapping;
4522 pgoff_t pgoff;
4523
4524 if (!vma->vm_file) /* anonymous vma */
4525 return NULL;
4526 if (!(mc.flags & MOVE_FILE))
4527 return NULL;
4528
4529 mapping = vma->vm_file->f_mapping;
4530 pgoff = linear_page_index(vma, addr);
4531
4532 /* page is moved even if it's not RSS of this task(page-faulted). */
4533 #ifdef CONFIG_SWAP
4534 /* shmem/tmpfs may report page out on swap: account for that too. */
4535 if (shmem_mapping(mapping)) {
4536 page = find_get_entry(mapping, pgoff);
4537 if (radix_tree_exceptional_entry(page)) {
4538 swp_entry_t swp = radix_to_swp_entry(page);
4539 if (do_swap_account)
4540 *entry = swp;
4541 page = find_get_page(swap_address_space(swp), swp.val);
4542 }
4543 } else
4544 page = find_get_page(mapping, pgoff);
4545 #else
4546 page = find_get_page(mapping, pgoff);
4547 #endif
4548 return page;
4549 }
4550
4551 /**
4552 * mem_cgroup_move_account - move account of the page
4553 * @page: the page
4554 * @nr_pages: number of regular pages (>1 for huge pages)
4555 * @from: mem_cgroup which the page is moved from.
4556 * @to: mem_cgroup which the page is moved to. @from != @to.
4557 *
4558 * The caller must confirm following.
4559 * - page is not on LRU (isolate_page() is useful.)
4560 * - compound_lock is held when nr_pages > 1
4561 *
4562 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4563 * from old cgroup.
4564 */
4565 static int mem_cgroup_move_account(struct page *page,
4566 unsigned int nr_pages,
4567 struct mem_cgroup *from,
4568 struct mem_cgroup *to)
4569 {
4570 unsigned long flags;
4571 int ret;
4572 bool anon;
4573
4574 VM_BUG_ON(from == to);
4575 VM_BUG_ON_PAGE(PageLRU(page), page);
4576 /*
4577 * The page is isolated from LRU. So, collapse function
4578 * will not handle this page. But page splitting can happen.
4579 * Do this check under compound_page_lock(). The caller should
4580 * hold it.
4581 */
4582 ret = -EBUSY;
4583 if (nr_pages > 1 && !PageTransHuge(page))
4584 goto out;
4585
4586 /*
4587 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
4588 * of its source page while we change it: page migration takes
4589 * both pages off the LRU, but page cache replacement doesn't.
4590 */
4591 if (!trylock_page(page))
4592 goto out;
4593
4594 ret = -EINVAL;
4595 if (page->mem_cgroup != from)
4596 goto out_unlock;
4597
4598 anon = PageAnon(page);
4599
4600 spin_lock_irqsave(&from->move_lock, flags);
4601
4602 if (!anon && page_mapped(page)) {
4603 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4604 nr_pages);
4605 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4606 nr_pages);
4607 }
4608
4609 /*
4610 * move_lock grabbed above and caller set from->moving_account, so
4611 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4612 * So mapping should be stable for dirty pages.
4613 */
4614 if (!anon && PageDirty(page)) {
4615 struct address_space *mapping = page_mapping(page);
4616
4617 if (mapping_cap_account_dirty(mapping)) {
4618 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4619 nr_pages);
4620 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4621 nr_pages);
4622 }
4623 }
4624
4625 if (PageWriteback(page)) {
4626 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4627 nr_pages);
4628 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4629 nr_pages);
4630 }
4631
4632 /*
4633 * It is safe to change page->mem_cgroup here because the page
4634 * is referenced, charged, and isolated - we can't race with
4635 * uncharging, charging, migration, or LRU putback.
4636 */
4637
4638 /* caller should have done css_get */
4639 page->mem_cgroup = to;
4640 spin_unlock_irqrestore(&from->move_lock, flags);
4641
4642 ret = 0;
4643
4644 local_irq_disable();
4645 mem_cgroup_charge_statistics(to, page, nr_pages);
4646 memcg_check_events(to, page);
4647 mem_cgroup_charge_statistics(from, page, -nr_pages);
4648 memcg_check_events(from, page);
4649 local_irq_enable();
4650 out_unlock:
4651 unlock_page(page);
4652 out:
4653 return ret;
4654 }
4655
4656 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4657 unsigned long addr, pte_t ptent, union mc_target *target)
4658 {
4659 struct page *page = NULL;
4660 enum mc_target_type ret = MC_TARGET_NONE;
4661 swp_entry_t ent = { .val = 0 };
4662
4663 if (pte_present(ptent))
4664 page = mc_handle_present_pte(vma, addr, ptent);
4665 else if (is_swap_pte(ptent))
4666 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4667 else if (pte_none(ptent))
4668 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4669
4670 if (!page && !ent.val)
4671 return ret;
4672 if (page) {
4673 /*
4674 * Do only loose check w/o serialization.
4675 * mem_cgroup_move_account() checks the page is valid or
4676 * not under LRU exclusion.
4677 */
4678 if (page->mem_cgroup == mc.from) {
4679 ret = MC_TARGET_PAGE;
4680 if (target)
4681 target->page = page;
4682 }
4683 if (!ret || !target)
4684 put_page(page);
4685 }
4686 /* There is a swap entry and a page doesn't exist or isn't charged */
4687 if (ent.val && !ret &&
4688 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4689 ret = MC_TARGET_SWAP;
4690 if (target)
4691 target->ent = ent;
4692 }
4693 return ret;
4694 }
4695
4696 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4697 /*
4698 * We don't consider swapping or file mapped pages because THP does not
4699 * support them for now.
4700 * Caller should make sure that pmd_trans_huge(pmd) is true.
4701 */
4702 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4703 unsigned long addr, pmd_t pmd, union mc_target *target)
4704 {
4705 struct page *page = NULL;
4706 enum mc_target_type ret = MC_TARGET_NONE;
4707
4708 page = pmd_page(pmd);
4709 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4710 if (!(mc.flags & MOVE_ANON))
4711 return ret;
4712 if (page->mem_cgroup == mc.from) {
4713 ret = MC_TARGET_PAGE;
4714 if (target) {
4715 get_page(page);
4716 target->page = page;
4717 }
4718 }
4719 return ret;
4720 }
4721 #else
4722 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4723 unsigned long addr, pmd_t pmd, union mc_target *target)
4724 {
4725 return MC_TARGET_NONE;
4726 }
4727 #endif
4728
4729 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4730 unsigned long addr, unsigned long end,
4731 struct mm_walk *walk)
4732 {
4733 struct vm_area_struct *vma = walk->vma;
4734 pte_t *pte;
4735 spinlock_t *ptl;
4736
4737 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4738 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4739 mc.precharge += HPAGE_PMD_NR;
4740 spin_unlock(ptl);
4741 return 0;
4742 }
4743
4744 if (pmd_trans_unstable(pmd))
4745 return 0;
4746 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4747 for (; addr != end; pte++, addr += PAGE_SIZE)
4748 if (get_mctgt_type(vma, addr, *pte, NULL))
4749 mc.precharge++; /* increment precharge temporarily */
4750 pte_unmap_unlock(pte - 1, ptl);
4751 cond_resched();
4752
4753 return 0;
4754 }
4755
4756 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4757 {
4758 unsigned long precharge;
4759
4760 struct mm_walk mem_cgroup_count_precharge_walk = {
4761 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4762 .mm = mm,
4763 };
4764 down_read(&mm->mmap_sem);
4765 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4766 up_read(&mm->mmap_sem);
4767
4768 precharge = mc.precharge;
4769 mc.precharge = 0;
4770
4771 return precharge;
4772 }
4773
4774 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4775 {
4776 unsigned long precharge = mem_cgroup_count_precharge(mm);
4777
4778 VM_BUG_ON(mc.moving_task);
4779 mc.moving_task = current;
4780 return mem_cgroup_do_precharge(precharge);
4781 }
4782
4783 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4784 static void __mem_cgroup_clear_mc(void)
4785 {
4786 struct mem_cgroup *from = mc.from;
4787 struct mem_cgroup *to = mc.to;
4788
4789 /* we must uncharge all the leftover precharges from mc.to */
4790 if (mc.precharge) {
4791 cancel_charge(mc.to, mc.precharge);
4792 mc.precharge = 0;
4793 }
4794 /*
4795 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4796 * we must uncharge here.
4797 */
4798 if (mc.moved_charge) {
4799 cancel_charge(mc.from, mc.moved_charge);
4800 mc.moved_charge = 0;
4801 }
4802 /* we must fixup refcnts and charges */
4803 if (mc.moved_swap) {
4804 /* uncharge swap account from the old cgroup */
4805 if (!mem_cgroup_is_root(mc.from))
4806 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4807
4808 /*
4809 * we charged both to->memory and to->memsw, so we
4810 * should uncharge to->memory.
4811 */
4812 if (!mem_cgroup_is_root(mc.to))
4813 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4814
4815 css_put_many(&mc.from->css, mc.moved_swap);
4816
4817 /* we've already done css_get(mc.to) */
4818 mc.moved_swap = 0;
4819 }
4820 memcg_oom_recover(from);
4821 memcg_oom_recover(to);
4822 wake_up_all(&mc.waitq);
4823 }
4824
4825 static void mem_cgroup_clear_mc(void)
4826 {
4827 /*
4828 * we must clear moving_task before waking up waiters at the end of
4829 * task migration.
4830 */
4831 mc.moving_task = NULL;
4832 __mem_cgroup_clear_mc();
4833 spin_lock(&mc.lock);
4834 mc.from = NULL;
4835 mc.to = NULL;
4836 spin_unlock(&mc.lock);
4837 }
4838
4839 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
4840 struct cgroup_taskset *tset)
4841 {
4842 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4843 struct mem_cgroup *from;
4844 struct task_struct *p;
4845 struct mm_struct *mm;
4846 unsigned long move_flags;
4847 int ret = 0;
4848
4849 /*
4850 * We are now commited to this value whatever it is. Changes in this
4851 * tunable will only affect upcoming migrations, not the current one.
4852 * So we need to save it, and keep it going.
4853 */
4854 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4855 if (!move_flags)
4856 return 0;
4857
4858 p = cgroup_taskset_first(tset);
4859 from = mem_cgroup_from_task(p);
4860
4861 VM_BUG_ON(from == memcg);
4862
4863 mm = get_task_mm(p);
4864 if (!mm)
4865 return 0;
4866 /* We move charges only when we move a owner of the mm */
4867 if (mm->owner == p) {
4868 VM_BUG_ON(mc.from);
4869 VM_BUG_ON(mc.to);
4870 VM_BUG_ON(mc.precharge);
4871 VM_BUG_ON(mc.moved_charge);
4872 VM_BUG_ON(mc.moved_swap);
4873
4874 spin_lock(&mc.lock);
4875 mc.from = from;
4876 mc.to = memcg;
4877 mc.flags = move_flags;
4878 spin_unlock(&mc.lock);
4879 /* We set mc.moving_task later */
4880
4881 ret = mem_cgroup_precharge_mc(mm);
4882 if (ret)
4883 mem_cgroup_clear_mc();
4884 }
4885 mmput(mm);
4886 return ret;
4887 }
4888
4889 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
4890 struct cgroup_taskset *tset)
4891 {
4892 if (mc.to)
4893 mem_cgroup_clear_mc();
4894 }
4895
4896 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4897 unsigned long addr, unsigned long end,
4898 struct mm_walk *walk)
4899 {
4900 int ret = 0;
4901 struct vm_area_struct *vma = walk->vma;
4902 pte_t *pte;
4903 spinlock_t *ptl;
4904 enum mc_target_type target_type;
4905 union mc_target target;
4906 struct page *page;
4907
4908 /*
4909 * We don't take compound_lock() here but no race with splitting thp
4910 * happens because:
4911 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
4912 * under splitting, which means there's no concurrent thp split,
4913 * - if another thread runs into split_huge_page() just after we
4914 * entered this if-block, the thread must wait for page table lock
4915 * to be unlocked in __split_huge_page_splitting(), where the main
4916 * part of thp split is not executed yet.
4917 */
4918 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4919 if (mc.precharge < HPAGE_PMD_NR) {
4920 spin_unlock(ptl);
4921 return 0;
4922 }
4923 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4924 if (target_type == MC_TARGET_PAGE) {
4925 page = target.page;
4926 if (!isolate_lru_page(page)) {
4927 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
4928 mc.from, mc.to)) {
4929 mc.precharge -= HPAGE_PMD_NR;
4930 mc.moved_charge += HPAGE_PMD_NR;
4931 }
4932 putback_lru_page(page);
4933 }
4934 put_page(page);
4935 }
4936 spin_unlock(ptl);
4937 return 0;
4938 }
4939
4940 if (pmd_trans_unstable(pmd))
4941 return 0;
4942 retry:
4943 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4944 for (; addr != end; addr += PAGE_SIZE) {
4945 pte_t ptent = *(pte++);
4946 swp_entry_t ent;
4947
4948 if (!mc.precharge)
4949 break;
4950
4951 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4952 case MC_TARGET_PAGE:
4953 page = target.page;
4954 if (isolate_lru_page(page))
4955 goto put;
4956 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4957 mc.precharge--;
4958 /* we uncharge from mc.from later. */
4959 mc.moved_charge++;
4960 }
4961 putback_lru_page(page);
4962 put: /* get_mctgt_type() gets the page */
4963 put_page(page);
4964 break;
4965 case MC_TARGET_SWAP:
4966 ent = target.ent;
4967 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4968 mc.precharge--;
4969 /* we fixup refcnts and charges later. */
4970 mc.moved_swap++;
4971 }
4972 break;
4973 default:
4974 break;
4975 }
4976 }
4977 pte_unmap_unlock(pte - 1, ptl);
4978 cond_resched();
4979
4980 if (addr != end) {
4981 /*
4982 * We have consumed all precharges we got in can_attach().
4983 * We try charge one by one, but don't do any additional
4984 * charges to mc.to if we have failed in charge once in attach()
4985 * phase.
4986 */
4987 ret = mem_cgroup_do_precharge(1);
4988 if (!ret)
4989 goto retry;
4990 }
4991
4992 return ret;
4993 }
4994
4995 static void mem_cgroup_move_charge(struct mm_struct *mm)
4996 {
4997 struct mm_walk mem_cgroup_move_charge_walk = {
4998 .pmd_entry = mem_cgroup_move_charge_pte_range,
4999 .mm = mm,
5000 };
5001
5002 lru_add_drain_all();
5003 /*
5004 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5005 * move_lock while we're moving its pages to another memcg.
5006 * Then wait for already started RCU-only updates to finish.
5007 */
5008 atomic_inc(&mc.from->moving_account);
5009 synchronize_rcu();
5010 retry:
5011 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5012 /*
5013 * Someone who are holding the mmap_sem might be waiting in
5014 * waitq. So we cancel all extra charges, wake up all waiters,
5015 * and retry. Because we cancel precharges, we might not be able
5016 * to move enough charges, but moving charge is a best-effort
5017 * feature anyway, so it wouldn't be a big problem.
5018 */
5019 __mem_cgroup_clear_mc();
5020 cond_resched();
5021 goto retry;
5022 }
5023 /*
5024 * When we have consumed all precharges and failed in doing
5025 * additional charge, the page walk just aborts.
5026 */
5027 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5028 up_read(&mm->mmap_sem);
5029 atomic_dec(&mc.from->moving_account);
5030 }
5031
5032 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5033 struct cgroup_taskset *tset)
5034 {
5035 struct task_struct *p = cgroup_taskset_first(tset);
5036 struct mm_struct *mm = get_task_mm(p);
5037
5038 if (mm) {
5039 if (mc.to)
5040 mem_cgroup_move_charge(mm);
5041 mmput(mm);
5042 }
5043 if (mc.to)
5044 mem_cgroup_clear_mc();
5045 }
5046 #else /* !CONFIG_MMU */
5047 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5048 struct cgroup_taskset *tset)
5049 {
5050 return 0;
5051 }
5052 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5053 struct cgroup_taskset *tset)
5054 {
5055 }
5056 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5057 struct cgroup_taskset *tset)
5058 {
5059 }
5060 #endif
5061
5062 /*
5063 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5064 * to verify whether we're attached to the default hierarchy on each mount
5065 * attempt.
5066 */
5067 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5068 {
5069 /*
5070 * use_hierarchy is forced on the default hierarchy. cgroup core
5071 * guarantees that @root doesn't have any children, so turning it
5072 * on for the root memcg is enough.
5073 */
5074 if (cgroup_on_dfl(root_css->cgroup))
5075 root_mem_cgroup->use_hierarchy = true;
5076 else
5077 root_mem_cgroup->use_hierarchy = false;
5078 }
5079
5080 static u64 memory_current_read(struct cgroup_subsys_state *css,
5081 struct cftype *cft)
5082 {
5083 return mem_cgroup_usage(mem_cgroup_from_css(css), false);
5084 }
5085
5086 static int memory_low_show(struct seq_file *m, void *v)
5087 {
5088 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5089 unsigned long low = READ_ONCE(memcg->low);
5090
5091 if (low == PAGE_COUNTER_MAX)
5092 seq_puts(m, "max\n");
5093 else
5094 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5095
5096 return 0;
5097 }
5098
5099 static ssize_t memory_low_write(struct kernfs_open_file *of,
5100 char *buf, size_t nbytes, loff_t off)
5101 {
5102 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5103 unsigned long low;
5104 int err;
5105
5106 buf = strstrip(buf);
5107 err = page_counter_memparse(buf, "max", &low);
5108 if (err)
5109 return err;
5110
5111 memcg->low = low;
5112
5113 return nbytes;
5114 }
5115
5116 static int memory_high_show(struct seq_file *m, void *v)
5117 {
5118 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5119 unsigned long high = READ_ONCE(memcg->high);
5120
5121 if (high == PAGE_COUNTER_MAX)
5122 seq_puts(m, "max\n");
5123 else
5124 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5125
5126 return 0;
5127 }
5128
5129 static ssize_t memory_high_write(struct kernfs_open_file *of,
5130 char *buf, size_t nbytes, loff_t off)
5131 {
5132 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5133 unsigned long high;
5134 int err;
5135
5136 buf = strstrip(buf);
5137 err = page_counter_memparse(buf, "max", &high);
5138 if (err)
5139 return err;
5140
5141 memcg->high = high;
5142
5143 memcg_wb_domain_size_changed(memcg);
5144 return nbytes;
5145 }
5146
5147 static int memory_max_show(struct seq_file *m, void *v)
5148 {
5149 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5150 unsigned long max = READ_ONCE(memcg->memory.limit);
5151
5152 if (max == PAGE_COUNTER_MAX)
5153 seq_puts(m, "max\n");
5154 else
5155 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5156
5157 return 0;
5158 }
5159
5160 static ssize_t memory_max_write(struct kernfs_open_file *of,
5161 char *buf, size_t nbytes, loff_t off)
5162 {
5163 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5164 unsigned long max;
5165 int err;
5166
5167 buf = strstrip(buf);
5168 err = page_counter_memparse(buf, "max", &max);
5169 if (err)
5170 return err;
5171
5172 err = mem_cgroup_resize_limit(memcg, max);
5173 if (err)
5174 return err;
5175
5176 memcg_wb_domain_size_changed(memcg);
5177 return nbytes;
5178 }
5179
5180 static int memory_events_show(struct seq_file *m, void *v)
5181 {
5182 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5183
5184 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5185 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5186 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5187 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5188
5189 return 0;
5190 }
5191
5192 static struct cftype memory_files[] = {
5193 {
5194 .name = "current",
5195 .read_u64 = memory_current_read,
5196 },
5197 {
5198 .name = "low",
5199 .flags = CFTYPE_NOT_ON_ROOT,
5200 .seq_show = memory_low_show,
5201 .write = memory_low_write,
5202 },
5203 {
5204 .name = "high",
5205 .flags = CFTYPE_NOT_ON_ROOT,
5206 .seq_show = memory_high_show,
5207 .write = memory_high_write,
5208 },
5209 {
5210 .name = "max",
5211 .flags = CFTYPE_NOT_ON_ROOT,
5212 .seq_show = memory_max_show,
5213 .write = memory_max_write,
5214 },
5215 {
5216 .name = "events",
5217 .flags = CFTYPE_NOT_ON_ROOT,
5218 .seq_show = memory_events_show,
5219 },
5220 { } /* terminate */
5221 };
5222
5223 struct cgroup_subsys memory_cgrp_subsys = {
5224 .css_alloc = mem_cgroup_css_alloc,
5225 .css_online = mem_cgroup_css_online,
5226 .css_offline = mem_cgroup_css_offline,
5227 .css_free = mem_cgroup_css_free,
5228 .css_reset = mem_cgroup_css_reset,
5229 .can_attach = mem_cgroup_can_attach,
5230 .cancel_attach = mem_cgroup_cancel_attach,
5231 .attach = mem_cgroup_move_task,
5232 .bind = mem_cgroup_bind,
5233 .dfl_cftypes = memory_files,
5234 .legacy_cftypes = mem_cgroup_legacy_files,
5235 .early_init = 0,
5236 };
5237
5238 /**
5239 * mem_cgroup_low - check if memory consumption is below the normal range
5240 * @root: the highest ancestor to consider
5241 * @memcg: the memory cgroup to check
5242 *
5243 * Returns %true if memory consumption of @memcg, and that of all
5244 * configurable ancestors up to @root, is below the normal range.
5245 */
5246 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5247 {
5248 if (mem_cgroup_disabled())
5249 return false;
5250
5251 /*
5252 * The toplevel group doesn't have a configurable range, so
5253 * it's never low when looked at directly, and it is not
5254 * considered an ancestor when assessing the hierarchy.
5255 */
5256
5257 if (memcg == root_mem_cgroup)
5258 return false;
5259
5260 if (page_counter_read(&memcg->memory) >= memcg->low)
5261 return false;
5262
5263 while (memcg != root) {
5264 memcg = parent_mem_cgroup(memcg);
5265
5266 if (memcg == root_mem_cgroup)
5267 break;
5268
5269 if (page_counter_read(&memcg->memory) >= memcg->low)
5270 return false;
5271 }
5272 return true;
5273 }
5274
5275 /**
5276 * mem_cgroup_try_charge - try charging a page
5277 * @page: page to charge
5278 * @mm: mm context of the victim
5279 * @gfp_mask: reclaim mode
5280 * @memcgp: charged memcg return
5281 *
5282 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5283 * pages according to @gfp_mask if necessary.
5284 *
5285 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5286 * Otherwise, an error code is returned.
5287 *
5288 * After page->mapping has been set up, the caller must finalize the
5289 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5290 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5291 */
5292 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5293 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5294 {
5295 struct mem_cgroup *memcg = NULL;
5296 unsigned int nr_pages = 1;
5297 int ret = 0;
5298
5299 if (mem_cgroup_disabled())
5300 goto out;
5301
5302 if (PageSwapCache(page)) {
5303 /*
5304 * Every swap fault against a single page tries to charge the
5305 * page, bail as early as possible. shmem_unuse() encounters
5306 * already charged pages, too. The USED bit is protected by
5307 * the page lock, which serializes swap cache removal, which
5308 * in turn serializes uncharging.
5309 */
5310 VM_BUG_ON_PAGE(!PageLocked(page), page);
5311 if (page->mem_cgroup)
5312 goto out;
5313
5314 if (do_swap_account) {
5315 swp_entry_t ent = { .val = page_private(page), };
5316 unsigned short id = lookup_swap_cgroup_id(ent);
5317
5318 rcu_read_lock();
5319 memcg = mem_cgroup_from_id(id);
5320 if (memcg && !css_tryget_online(&memcg->css))
5321 memcg = NULL;
5322 rcu_read_unlock();
5323 }
5324 }
5325
5326 if (PageTransHuge(page)) {
5327 nr_pages <<= compound_order(page);
5328 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5329 }
5330
5331 if (!memcg)
5332 memcg = get_mem_cgroup_from_mm(mm);
5333
5334 ret = try_charge(memcg, gfp_mask, nr_pages);
5335
5336 css_put(&memcg->css);
5337 out:
5338 *memcgp = memcg;
5339 return ret;
5340 }
5341
5342 /**
5343 * mem_cgroup_commit_charge - commit a page charge
5344 * @page: page to charge
5345 * @memcg: memcg to charge the page to
5346 * @lrucare: page might be on LRU already
5347 *
5348 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5349 * after page->mapping has been set up. This must happen atomically
5350 * as part of the page instantiation, i.e. under the page table lock
5351 * for anonymous pages, under the page lock for page and swap cache.
5352 *
5353 * In addition, the page must not be on the LRU during the commit, to
5354 * prevent racing with task migration. If it might be, use @lrucare.
5355 *
5356 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5357 */
5358 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5359 bool lrucare)
5360 {
5361 unsigned int nr_pages = 1;
5362
5363 VM_BUG_ON_PAGE(!page->mapping, page);
5364 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5365
5366 if (mem_cgroup_disabled())
5367 return;
5368 /*
5369 * Swap faults will attempt to charge the same page multiple
5370 * times. But reuse_swap_page() might have removed the page
5371 * from swapcache already, so we can't check PageSwapCache().
5372 */
5373 if (!memcg)
5374 return;
5375
5376 commit_charge(page, memcg, lrucare);
5377
5378 if (PageTransHuge(page)) {
5379 nr_pages <<= compound_order(page);
5380 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5381 }
5382
5383 local_irq_disable();
5384 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5385 memcg_check_events(memcg, page);
5386 local_irq_enable();
5387
5388 if (do_swap_account && PageSwapCache(page)) {
5389 swp_entry_t entry = { .val = page_private(page) };
5390 /*
5391 * The swap entry might not get freed for a long time,
5392 * let's not wait for it. The page already received a
5393 * memory+swap charge, drop the swap entry duplicate.
5394 */
5395 mem_cgroup_uncharge_swap(entry);
5396 }
5397 }
5398
5399 /**
5400 * mem_cgroup_cancel_charge - cancel a page charge
5401 * @page: page to charge
5402 * @memcg: memcg to charge the page to
5403 *
5404 * Cancel a charge transaction started by mem_cgroup_try_charge().
5405 */
5406 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5407 {
5408 unsigned int nr_pages = 1;
5409
5410 if (mem_cgroup_disabled())
5411 return;
5412 /*
5413 * Swap faults will attempt to charge the same page multiple
5414 * times. But reuse_swap_page() might have removed the page
5415 * from swapcache already, so we can't check PageSwapCache().
5416 */
5417 if (!memcg)
5418 return;
5419
5420 if (PageTransHuge(page)) {
5421 nr_pages <<= compound_order(page);
5422 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5423 }
5424
5425 cancel_charge(memcg, nr_pages);
5426 }
5427
5428 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5429 unsigned long nr_anon, unsigned long nr_file,
5430 unsigned long nr_huge, struct page *dummy_page)
5431 {
5432 unsigned long nr_pages = nr_anon + nr_file;
5433 unsigned long flags;
5434
5435 if (!mem_cgroup_is_root(memcg)) {
5436 page_counter_uncharge(&memcg->memory, nr_pages);
5437 if (do_swap_account)
5438 page_counter_uncharge(&memcg->memsw, nr_pages);
5439 memcg_oom_recover(memcg);
5440 }
5441
5442 local_irq_save(flags);
5443 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5444 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5445 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5446 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5447 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5448 memcg_check_events(memcg, dummy_page);
5449 local_irq_restore(flags);
5450
5451 if (!mem_cgroup_is_root(memcg))
5452 css_put_many(&memcg->css, nr_pages);
5453 }
5454
5455 static void uncharge_list(struct list_head *page_list)
5456 {
5457 struct mem_cgroup *memcg = NULL;
5458 unsigned long nr_anon = 0;
5459 unsigned long nr_file = 0;
5460 unsigned long nr_huge = 0;
5461 unsigned long pgpgout = 0;
5462 struct list_head *next;
5463 struct page *page;
5464
5465 next = page_list->next;
5466 do {
5467 unsigned int nr_pages = 1;
5468
5469 page = list_entry(next, struct page, lru);
5470 next = page->lru.next;
5471
5472 VM_BUG_ON_PAGE(PageLRU(page), page);
5473 VM_BUG_ON_PAGE(page_count(page), page);
5474
5475 if (!page->mem_cgroup)
5476 continue;
5477
5478 /*
5479 * Nobody should be changing or seriously looking at
5480 * page->mem_cgroup at this point, we have fully
5481 * exclusive access to the page.
5482 */
5483
5484 if (memcg != page->mem_cgroup) {
5485 if (memcg) {
5486 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5487 nr_huge, page);
5488 pgpgout = nr_anon = nr_file = nr_huge = 0;
5489 }
5490 memcg = page->mem_cgroup;
5491 }
5492
5493 if (PageTransHuge(page)) {
5494 nr_pages <<= compound_order(page);
5495 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5496 nr_huge += nr_pages;
5497 }
5498
5499 if (PageAnon(page))
5500 nr_anon += nr_pages;
5501 else
5502 nr_file += nr_pages;
5503
5504 page->mem_cgroup = NULL;
5505
5506 pgpgout++;
5507 } while (next != page_list);
5508
5509 if (memcg)
5510 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5511 nr_huge, page);
5512 }
5513
5514 /**
5515 * mem_cgroup_uncharge - uncharge a page
5516 * @page: page to uncharge
5517 *
5518 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5519 * mem_cgroup_commit_charge().
5520 */
5521 void mem_cgroup_uncharge(struct page *page)
5522 {
5523 if (mem_cgroup_disabled())
5524 return;
5525
5526 /* Don't touch page->lru of any random page, pre-check: */
5527 if (!page->mem_cgroup)
5528 return;
5529
5530 INIT_LIST_HEAD(&page->lru);
5531 uncharge_list(&page->lru);
5532 }
5533
5534 /**
5535 * mem_cgroup_uncharge_list - uncharge a list of page
5536 * @page_list: list of pages to uncharge
5537 *
5538 * Uncharge a list of pages previously charged with
5539 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5540 */
5541 void mem_cgroup_uncharge_list(struct list_head *page_list)
5542 {
5543 if (mem_cgroup_disabled())
5544 return;
5545
5546 if (!list_empty(page_list))
5547 uncharge_list(page_list);
5548 }
5549
5550 /**
5551 * mem_cgroup_migrate - migrate a charge to another page
5552 * @oldpage: currently charged page
5553 * @newpage: page to transfer the charge to
5554 * @lrucare: either or both pages might be on the LRU already
5555 *
5556 * Migrate the charge from @oldpage to @newpage.
5557 *
5558 * Both pages must be locked, @newpage->mapping must be set up.
5559 */
5560 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5561 bool lrucare)
5562 {
5563 struct mem_cgroup *memcg;
5564 int isolated;
5565
5566 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5567 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5568 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5569 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5570 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5571 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5572 newpage);
5573
5574 if (mem_cgroup_disabled())
5575 return;
5576
5577 /* Page cache replacement: new page already charged? */
5578 if (newpage->mem_cgroup)
5579 return;
5580
5581 /*
5582 * Swapcache readahead pages can get migrated before being
5583 * charged, and migration from compaction can happen to an
5584 * uncharged page when the PFN walker finds a page that
5585 * reclaim just put back on the LRU but has not released yet.
5586 */
5587 memcg = oldpage->mem_cgroup;
5588 if (!memcg)
5589 return;
5590
5591 if (lrucare)
5592 lock_page_lru(oldpage, &isolated);
5593
5594 oldpage->mem_cgroup = NULL;
5595
5596 if (lrucare)
5597 unlock_page_lru(oldpage, isolated);
5598
5599 commit_charge(newpage, memcg, lrucare);
5600 }
5601
5602 /*
5603 * subsys_initcall() for memory controller.
5604 *
5605 * Some parts like hotcpu_notifier() have to be initialized from this context
5606 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5607 * everything that doesn't depend on a specific mem_cgroup structure should
5608 * be initialized from here.
5609 */
5610 static int __init mem_cgroup_init(void)
5611 {
5612 int cpu, node;
5613
5614 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5615
5616 for_each_possible_cpu(cpu)
5617 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5618 drain_local_stock);
5619
5620 for_each_node(node) {
5621 struct mem_cgroup_tree_per_node *rtpn;
5622 int zone;
5623
5624 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5625 node_online(node) ? node : NUMA_NO_NODE);
5626
5627 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5628 struct mem_cgroup_tree_per_zone *rtpz;
5629
5630 rtpz = &rtpn->rb_tree_per_zone[zone];
5631 rtpz->rb_root = RB_ROOT;
5632 spin_lock_init(&rtpz->lock);
5633 }
5634 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5635 }
5636
5637 return 0;
5638 }
5639 subsys_initcall(mem_cgroup_init);
5640
5641 #ifdef CONFIG_MEMCG_SWAP
5642 /**
5643 * mem_cgroup_swapout - transfer a memsw charge to swap
5644 * @page: page whose memsw charge to transfer
5645 * @entry: swap entry to move the charge to
5646 *
5647 * Transfer the memsw charge of @page to @entry.
5648 */
5649 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5650 {
5651 struct mem_cgroup *memcg;
5652 unsigned short oldid;
5653
5654 VM_BUG_ON_PAGE(PageLRU(page), page);
5655 VM_BUG_ON_PAGE(page_count(page), page);
5656
5657 if (!do_swap_account)
5658 return;
5659
5660 memcg = page->mem_cgroup;
5661
5662 /* Readahead page, never charged */
5663 if (!memcg)
5664 return;
5665
5666 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5667 VM_BUG_ON_PAGE(oldid, page);
5668 mem_cgroup_swap_statistics(memcg, true);
5669
5670 page->mem_cgroup = NULL;
5671
5672 if (!mem_cgroup_is_root(memcg))
5673 page_counter_uncharge(&memcg->memory, 1);
5674
5675 /*
5676 * Interrupts should be disabled here because the caller holds the
5677 * mapping->tree_lock lock which is taken with interrupts-off. It is
5678 * important here to have the interrupts disabled because it is the
5679 * only synchronisation we have for udpating the per-CPU variables.
5680 */
5681 VM_BUG_ON(!irqs_disabled());
5682 mem_cgroup_charge_statistics(memcg, page, -1);
5683 memcg_check_events(memcg, page);
5684 }
5685
5686 /**
5687 * mem_cgroup_uncharge_swap - uncharge a swap entry
5688 * @entry: swap entry to uncharge
5689 *
5690 * Drop the memsw charge associated with @entry.
5691 */
5692 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5693 {
5694 struct mem_cgroup *memcg;
5695 unsigned short id;
5696
5697 if (!do_swap_account)
5698 return;
5699
5700 id = swap_cgroup_record(entry, 0);
5701 rcu_read_lock();
5702 memcg = mem_cgroup_from_id(id);
5703 if (memcg) {
5704 if (!mem_cgroup_is_root(memcg))
5705 page_counter_uncharge(&memcg->memsw, 1);
5706 mem_cgroup_swap_statistics(memcg, false);
5707 css_put(&memcg->css);
5708 }
5709 rcu_read_unlock();
5710 }
5711
5712 /* for remember boot option*/
5713 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5714 static int really_do_swap_account __initdata = 1;
5715 #else
5716 static int really_do_swap_account __initdata;
5717 #endif
5718
5719 static int __init enable_swap_account(char *s)
5720 {
5721 if (!strcmp(s, "1"))
5722 really_do_swap_account = 1;
5723 else if (!strcmp(s, "0"))
5724 really_do_swap_account = 0;
5725 return 1;
5726 }
5727 __setup("swapaccount=", enable_swap_account);
5728
5729 static struct cftype memsw_cgroup_files[] = {
5730 {
5731 .name = "memsw.usage_in_bytes",
5732 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5733 .read_u64 = mem_cgroup_read_u64,
5734 },
5735 {
5736 .name = "memsw.max_usage_in_bytes",
5737 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5738 .write = mem_cgroup_reset,
5739 .read_u64 = mem_cgroup_read_u64,
5740 },
5741 {
5742 .name = "memsw.limit_in_bytes",
5743 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5744 .write = mem_cgroup_write,
5745 .read_u64 = mem_cgroup_read_u64,
5746 },
5747 {
5748 .name = "memsw.failcnt",
5749 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5750 .write = mem_cgroup_reset,
5751 .read_u64 = mem_cgroup_read_u64,
5752 },
5753 { }, /* terminate */
5754 };
5755
5756 static int __init mem_cgroup_swap_init(void)
5757 {
5758 if (!mem_cgroup_disabled() && really_do_swap_account) {
5759 do_swap_account = 1;
5760 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5761 memsw_cgroup_files));
5762 }
5763 return 0;
5764 }
5765 subsys_initcall(mem_cgroup_swap_init);
5766
5767 #endif /* CONFIG_MEMCG_SWAP */
This page took 0.147977 seconds and 5 git commands to generate.