memcg: fix mem_cgroup_move_lists locking
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/page-flags.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bit_spinlock.h>
28 #include <linux/rcupdate.h>
29 #include <linux/swap.h>
30 #include <linux/spinlock.h>
31 #include <linux/fs.h>
32 #include <linux/seq_file.h>
33
34 #include <asm/uaccess.h>
35
36 struct cgroup_subsys mem_cgroup_subsys;
37 static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
38
39 /*
40 * Statistics for memory cgroup.
41 */
42 enum mem_cgroup_stat_index {
43 /*
44 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
45 */
46 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
47 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
48
49 MEM_CGROUP_STAT_NSTATS,
50 };
51
52 struct mem_cgroup_stat_cpu {
53 s64 count[MEM_CGROUP_STAT_NSTATS];
54 } ____cacheline_aligned_in_smp;
55
56 struct mem_cgroup_stat {
57 struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
58 };
59
60 /*
61 * For accounting under irq disable, no need for increment preempt count.
62 */
63 static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat,
64 enum mem_cgroup_stat_index idx, int val)
65 {
66 int cpu = smp_processor_id();
67 stat->cpustat[cpu].count[idx] += val;
68 }
69
70 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
71 enum mem_cgroup_stat_index idx)
72 {
73 int cpu;
74 s64 ret = 0;
75 for_each_possible_cpu(cpu)
76 ret += stat->cpustat[cpu].count[idx];
77 return ret;
78 }
79
80 /*
81 * per-zone information in memory controller.
82 */
83
84 enum mem_cgroup_zstat_index {
85 MEM_CGROUP_ZSTAT_ACTIVE,
86 MEM_CGROUP_ZSTAT_INACTIVE,
87
88 NR_MEM_CGROUP_ZSTAT,
89 };
90
91 struct mem_cgroup_per_zone {
92 /*
93 * spin_lock to protect the per cgroup LRU
94 */
95 spinlock_t lru_lock;
96 struct list_head active_list;
97 struct list_head inactive_list;
98 unsigned long count[NR_MEM_CGROUP_ZSTAT];
99 };
100 /* Macro for accessing counter */
101 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
102
103 struct mem_cgroup_per_node {
104 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
105 };
106
107 struct mem_cgroup_lru_info {
108 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
109 };
110
111 /*
112 * The memory controller data structure. The memory controller controls both
113 * page cache and RSS per cgroup. We would eventually like to provide
114 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
115 * to help the administrator determine what knobs to tune.
116 *
117 * TODO: Add a water mark for the memory controller. Reclaim will begin when
118 * we hit the water mark. May be even add a low water mark, such that
119 * no reclaim occurs from a cgroup at it's low water mark, this is
120 * a feature that will be implemented much later in the future.
121 */
122 struct mem_cgroup {
123 struct cgroup_subsys_state css;
124 /*
125 * the counter to account for memory usage
126 */
127 struct res_counter res;
128 /*
129 * Per cgroup active and inactive list, similar to the
130 * per zone LRU lists.
131 */
132 struct mem_cgroup_lru_info info;
133
134 int prev_priority; /* for recording reclaim priority */
135 /*
136 * statistics.
137 */
138 struct mem_cgroup_stat stat;
139 };
140 static struct mem_cgroup init_mem_cgroup;
141
142 /*
143 * We use the lower bit of the page->page_cgroup pointer as a bit spin
144 * lock. We need to ensure that page->page_cgroup is at least two
145 * byte aligned (based on comments from Nick Piggin). But since
146 * bit_spin_lock doesn't actually set that lock bit in a non-debug
147 * uniprocessor kernel, we should avoid setting it here too.
148 */
149 #define PAGE_CGROUP_LOCK_BIT 0x0
150 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK)
151 #define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
152 #else
153 #define PAGE_CGROUP_LOCK 0x0
154 #endif
155
156 /*
157 * A page_cgroup page is associated with every page descriptor. The
158 * page_cgroup helps us identify information about the cgroup
159 */
160 struct page_cgroup {
161 struct list_head lru; /* per cgroup LRU list */
162 struct page *page;
163 struct mem_cgroup *mem_cgroup;
164 int ref_cnt; /* cached, mapped, migrating */
165 int flags;
166 };
167 #define PAGE_CGROUP_FLAG_CACHE (0x1) /* charged as cache */
168 #define PAGE_CGROUP_FLAG_ACTIVE (0x2) /* page is active in this cgroup */
169
170 static int page_cgroup_nid(struct page_cgroup *pc)
171 {
172 return page_to_nid(pc->page);
173 }
174
175 static enum zone_type page_cgroup_zid(struct page_cgroup *pc)
176 {
177 return page_zonenum(pc->page);
178 }
179
180 enum charge_type {
181 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
182 MEM_CGROUP_CHARGE_TYPE_MAPPED,
183 };
184
185 /*
186 * Always modified under lru lock. Then, not necessary to preempt_disable()
187 */
188 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags,
189 bool charge)
190 {
191 int val = (charge)? 1 : -1;
192 struct mem_cgroup_stat *stat = &mem->stat;
193
194 VM_BUG_ON(!irqs_disabled());
195 if (flags & PAGE_CGROUP_FLAG_CACHE)
196 __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_CACHE, val);
197 else
198 __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val);
199 }
200
201 static struct mem_cgroup_per_zone *
202 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
203 {
204 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
205 }
206
207 static struct mem_cgroup_per_zone *
208 page_cgroup_zoneinfo(struct page_cgroup *pc)
209 {
210 struct mem_cgroup *mem = pc->mem_cgroup;
211 int nid = page_cgroup_nid(pc);
212 int zid = page_cgroup_zid(pc);
213
214 return mem_cgroup_zoneinfo(mem, nid, zid);
215 }
216
217 static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
218 enum mem_cgroup_zstat_index idx)
219 {
220 int nid, zid;
221 struct mem_cgroup_per_zone *mz;
222 u64 total = 0;
223
224 for_each_online_node(nid)
225 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
226 mz = mem_cgroup_zoneinfo(mem, nid, zid);
227 total += MEM_CGROUP_ZSTAT(mz, idx);
228 }
229 return total;
230 }
231
232 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
233 {
234 return container_of(cgroup_subsys_state(cont,
235 mem_cgroup_subsys_id), struct mem_cgroup,
236 css);
237 }
238
239 static struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
240 {
241 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
242 struct mem_cgroup, css);
243 }
244
245 void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p)
246 {
247 struct mem_cgroup *mem;
248
249 mem = mem_cgroup_from_task(p);
250 css_get(&mem->css);
251 mm->mem_cgroup = mem;
252 }
253
254 void mm_free_cgroup(struct mm_struct *mm)
255 {
256 css_put(&mm->mem_cgroup->css);
257 }
258
259 static inline int page_cgroup_locked(struct page *page)
260 {
261 return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
262 }
263
264 static void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
265 {
266 VM_BUG_ON(!page_cgroup_locked(page));
267 page->page_cgroup = ((unsigned long)pc | PAGE_CGROUP_LOCK);
268 }
269
270 struct page_cgroup *page_get_page_cgroup(struct page *page)
271 {
272 return (struct page_cgroup *) (page->page_cgroup & ~PAGE_CGROUP_LOCK);
273 }
274
275 static void lock_page_cgroup(struct page *page)
276 {
277 bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
278 }
279
280 static int try_lock_page_cgroup(struct page *page)
281 {
282 return bit_spin_trylock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
283 }
284
285 static void unlock_page_cgroup(struct page *page)
286 {
287 bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
288 }
289
290 static void __mem_cgroup_remove_list(struct page_cgroup *pc)
291 {
292 int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
293 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
294
295 if (from)
296 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
297 else
298 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
299
300 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false);
301 list_del_init(&pc->lru);
302 }
303
304 static void __mem_cgroup_add_list(struct page_cgroup *pc)
305 {
306 int to = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
307 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
308
309 if (!to) {
310 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
311 list_add(&pc->lru, &mz->inactive_list);
312 } else {
313 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
314 list_add(&pc->lru, &mz->active_list);
315 }
316 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true);
317 }
318
319 static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
320 {
321 int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
322 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
323
324 if (from)
325 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
326 else
327 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
328
329 if (active) {
330 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
331 pc->flags |= PAGE_CGROUP_FLAG_ACTIVE;
332 list_move(&pc->lru, &mz->active_list);
333 } else {
334 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
335 pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE;
336 list_move(&pc->lru, &mz->inactive_list);
337 }
338 }
339
340 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
341 {
342 int ret;
343
344 task_lock(task);
345 ret = task->mm && mm_match_cgroup(task->mm, mem);
346 task_unlock(task);
347 return ret;
348 }
349
350 /*
351 * This routine assumes that the appropriate zone's lru lock is already held
352 */
353 void mem_cgroup_move_lists(struct page *page, bool active)
354 {
355 struct page_cgroup *pc;
356 struct mem_cgroup *mem;
357 struct mem_cgroup_per_zone *mz;
358 unsigned long flags;
359
360 /*
361 * We cannot lock_page_cgroup while holding zone's lru_lock,
362 * because other holders of lock_page_cgroup can be interrupted
363 * with an attempt to rotate_reclaimable_page. But we cannot
364 * safely get to page_cgroup without it, so just try_lock it:
365 * mem_cgroup_isolate_pages allows for page left on wrong list.
366 */
367 if (!try_lock_page_cgroup(page))
368 return;
369
370 /*
371 * Now page_cgroup is stable, but we cannot acquire mz->lru_lock
372 * while holding it, because mem_cgroup_force_empty_list does the
373 * reverse. Get a hold on the mem_cgroup before unlocking, so that
374 * the zoneinfo remains stable, then take mz->lru_lock; then check
375 * that page still points to pc and pc (even if freed and reassigned
376 * to that same page meanwhile) still points to the same mem_cgroup.
377 * Then we know mz still points to the right spinlock, so it's safe
378 * to move_lists (page->page_cgroup might be reset while we do so, but
379 * that doesn't matter: pc->page is stable till we drop mz->lru_lock).
380 * We're being a little naughty not to try_lock_page_cgroup again
381 * inside there, but we are safe, aren't we? Aren't we? Whistle...
382 */
383 pc = page_get_page_cgroup(page);
384 if (pc) {
385 mem = pc->mem_cgroup;
386 mz = page_cgroup_zoneinfo(pc);
387 css_get(&mem->css);
388
389 unlock_page_cgroup(page);
390
391 spin_lock_irqsave(&mz->lru_lock, flags);
392 if (page_get_page_cgroup(page) == pc && pc->mem_cgroup == mem)
393 __mem_cgroup_move_lists(pc, active);
394 spin_unlock_irqrestore(&mz->lru_lock, flags);
395
396 css_put(&mem->css);
397 } else
398 unlock_page_cgroup(page);
399 }
400
401 /*
402 * Calculate mapped_ratio under memory controller. This will be used in
403 * vmscan.c for deteremining we have to reclaim mapped pages.
404 */
405 int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
406 {
407 long total, rss;
408
409 /*
410 * usage is recorded in bytes. But, here, we assume the number of
411 * physical pages can be represented by "long" on any arch.
412 */
413 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
414 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
415 return (int)((rss * 100L) / total);
416 }
417
418 /*
419 * This function is called from vmscan.c. In page reclaiming loop. balance
420 * between active and inactive list is calculated. For memory controller
421 * page reclaiming, we should use using mem_cgroup's imbalance rather than
422 * zone's global lru imbalance.
423 */
424 long mem_cgroup_reclaim_imbalance(struct mem_cgroup *mem)
425 {
426 unsigned long active, inactive;
427 /* active and inactive are the number of pages. 'long' is ok.*/
428 active = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_ACTIVE);
429 inactive = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_INACTIVE);
430 return (long) (active / (inactive + 1));
431 }
432
433 /*
434 * prev_priority control...this will be used in memory reclaim path.
435 */
436 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
437 {
438 return mem->prev_priority;
439 }
440
441 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
442 {
443 if (priority < mem->prev_priority)
444 mem->prev_priority = priority;
445 }
446
447 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
448 {
449 mem->prev_priority = priority;
450 }
451
452 /*
453 * Calculate # of pages to be scanned in this priority/zone.
454 * See also vmscan.c
455 *
456 * priority starts from "DEF_PRIORITY" and decremented in each loop.
457 * (see include/linux/mmzone.h)
458 */
459
460 long mem_cgroup_calc_reclaim_active(struct mem_cgroup *mem,
461 struct zone *zone, int priority)
462 {
463 long nr_active;
464 int nid = zone->zone_pgdat->node_id;
465 int zid = zone_idx(zone);
466 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
467
468 nr_active = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE);
469 return (nr_active >> priority);
470 }
471
472 long mem_cgroup_calc_reclaim_inactive(struct mem_cgroup *mem,
473 struct zone *zone, int priority)
474 {
475 long nr_inactive;
476 int nid = zone->zone_pgdat->node_id;
477 int zid = zone_idx(zone);
478 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
479
480 nr_inactive = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE);
481 return (nr_inactive >> priority);
482 }
483
484 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
485 struct list_head *dst,
486 unsigned long *scanned, int order,
487 int mode, struct zone *z,
488 struct mem_cgroup *mem_cont,
489 int active)
490 {
491 unsigned long nr_taken = 0;
492 struct page *page;
493 unsigned long scan;
494 LIST_HEAD(pc_list);
495 struct list_head *src;
496 struct page_cgroup *pc, *tmp;
497 int nid = z->zone_pgdat->node_id;
498 int zid = zone_idx(z);
499 struct mem_cgroup_per_zone *mz;
500
501 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
502 if (active)
503 src = &mz->active_list;
504 else
505 src = &mz->inactive_list;
506
507
508 spin_lock(&mz->lru_lock);
509 scan = 0;
510 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
511 if (scan >= nr_to_scan)
512 break;
513 page = pc->page;
514
515 if (unlikely(!PageLRU(page)))
516 continue;
517
518 if (PageActive(page) && !active) {
519 __mem_cgroup_move_lists(pc, true);
520 continue;
521 }
522 if (!PageActive(page) && active) {
523 __mem_cgroup_move_lists(pc, false);
524 continue;
525 }
526
527 scan++;
528 list_move(&pc->lru, &pc_list);
529
530 if (__isolate_lru_page(page, mode) == 0) {
531 list_move(&page->lru, dst);
532 nr_taken++;
533 }
534 }
535
536 list_splice(&pc_list, src);
537 spin_unlock(&mz->lru_lock);
538
539 *scanned = scan;
540 return nr_taken;
541 }
542
543 /*
544 * Charge the memory controller for page usage.
545 * Return
546 * 0 if the charge was successful
547 * < 0 if the cgroup is over its limit
548 */
549 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
550 gfp_t gfp_mask, enum charge_type ctype)
551 {
552 struct mem_cgroup *mem;
553 struct page_cgroup *pc;
554 unsigned long flags;
555 unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
556 struct mem_cgroup_per_zone *mz;
557
558 /*
559 * Should page_cgroup's go to their own slab?
560 * One could optimize the performance of the charging routine
561 * by saving a bit in the page_flags and using it as a lock
562 * to see if the cgroup page already has a page_cgroup associated
563 * with it
564 */
565 retry:
566 lock_page_cgroup(page);
567 pc = page_get_page_cgroup(page);
568 /*
569 * The page_cgroup exists and
570 * the page has already been accounted.
571 */
572 if (pc) {
573 VM_BUG_ON(pc->page != page);
574 VM_BUG_ON(pc->ref_cnt <= 0);
575
576 pc->ref_cnt++;
577 unlock_page_cgroup(page);
578 goto done;
579 }
580 unlock_page_cgroup(page);
581
582 pc = kzalloc(sizeof(struct page_cgroup), gfp_mask);
583 if (pc == NULL)
584 goto err;
585
586 /*
587 * We always charge the cgroup the mm_struct belongs to.
588 * The mm_struct's mem_cgroup changes on task migration if the
589 * thread group leader migrates. It's possible that mm is not
590 * set, if so charge the init_mm (happens for pagecache usage).
591 */
592 if (!mm)
593 mm = &init_mm;
594
595 rcu_read_lock();
596 mem = rcu_dereference(mm->mem_cgroup);
597 /*
598 * For every charge from the cgroup, increment reference count
599 */
600 css_get(&mem->css);
601 rcu_read_unlock();
602
603 while (res_counter_charge(&mem->res, PAGE_SIZE)) {
604 if (!(gfp_mask & __GFP_WAIT))
605 goto out;
606
607 if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
608 continue;
609
610 /*
611 * try_to_free_mem_cgroup_pages() might not give us a full
612 * picture of reclaim. Some pages are reclaimed and might be
613 * moved to swap cache or just unmapped from the cgroup.
614 * Check the limit again to see if the reclaim reduced the
615 * current usage of the cgroup before giving up
616 */
617 if (res_counter_check_under_limit(&mem->res))
618 continue;
619
620 if (!nr_retries--) {
621 mem_cgroup_out_of_memory(mem, gfp_mask);
622 goto out;
623 }
624 congestion_wait(WRITE, HZ/10);
625 }
626
627 pc->ref_cnt = 1;
628 pc->mem_cgroup = mem;
629 pc->page = page;
630 pc->flags = PAGE_CGROUP_FLAG_ACTIVE;
631 if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
632 pc->flags |= PAGE_CGROUP_FLAG_CACHE;
633
634 lock_page_cgroup(page);
635 if (page_get_page_cgroup(page)) {
636 unlock_page_cgroup(page);
637 /*
638 * Another charge has been added to this page already.
639 * We take lock_page_cgroup(page) again and read
640 * page->cgroup, increment refcnt.... just retry is OK.
641 */
642 res_counter_uncharge(&mem->res, PAGE_SIZE);
643 css_put(&mem->css);
644 kfree(pc);
645 goto retry;
646 }
647 page_assign_page_cgroup(page, pc);
648 unlock_page_cgroup(page);
649
650 mz = page_cgroup_zoneinfo(pc);
651 spin_lock_irqsave(&mz->lru_lock, flags);
652 __mem_cgroup_add_list(pc);
653 spin_unlock_irqrestore(&mz->lru_lock, flags);
654
655 done:
656 return 0;
657 out:
658 css_put(&mem->css);
659 kfree(pc);
660 err:
661 return -ENOMEM;
662 }
663
664 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
665 {
666 return mem_cgroup_charge_common(page, mm, gfp_mask,
667 MEM_CGROUP_CHARGE_TYPE_MAPPED);
668 }
669
670 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
671 gfp_t gfp_mask)
672 {
673 if (!mm)
674 mm = &init_mm;
675 return mem_cgroup_charge_common(page, mm, gfp_mask,
676 MEM_CGROUP_CHARGE_TYPE_CACHE);
677 }
678
679 /*
680 * Uncharging is always a welcome operation, we never complain, simply
681 * uncharge.
682 */
683 void mem_cgroup_uncharge_page(struct page *page)
684 {
685 struct page_cgroup *pc;
686 struct mem_cgroup *mem;
687 struct mem_cgroup_per_zone *mz;
688 unsigned long flags;
689
690 /*
691 * Check if our page_cgroup is valid
692 */
693 lock_page_cgroup(page);
694 pc = page_get_page_cgroup(page);
695 if (!pc)
696 goto unlock;
697
698 VM_BUG_ON(pc->page != page);
699 VM_BUG_ON(pc->ref_cnt <= 0);
700
701 if (--(pc->ref_cnt) == 0) {
702 page_assign_page_cgroup(page, NULL);
703 unlock_page_cgroup(page);
704
705 mz = page_cgroup_zoneinfo(pc);
706 spin_lock_irqsave(&mz->lru_lock, flags);
707 __mem_cgroup_remove_list(pc);
708 spin_unlock_irqrestore(&mz->lru_lock, flags);
709
710 mem = pc->mem_cgroup;
711 res_counter_uncharge(&mem->res, PAGE_SIZE);
712 css_put(&mem->css);
713
714 kfree(pc);
715 return;
716 }
717
718 unlock:
719 unlock_page_cgroup(page);
720 }
721
722 /*
723 * Returns non-zero if a page (under migration) has valid page_cgroup member.
724 * Refcnt of page_cgroup is incremented.
725 */
726 int mem_cgroup_prepare_migration(struct page *page)
727 {
728 struct page_cgroup *pc;
729
730 lock_page_cgroup(page);
731 pc = page_get_page_cgroup(page);
732 if (pc)
733 pc->ref_cnt++;
734 unlock_page_cgroup(page);
735 return pc != NULL;
736 }
737
738 void mem_cgroup_end_migration(struct page *page)
739 {
740 mem_cgroup_uncharge_page(page);
741 }
742
743 /*
744 * We know both *page* and *newpage* are now not-on-LRU and PG_locked.
745 * And no race with uncharge() routines because page_cgroup for *page*
746 * has extra one reference by mem_cgroup_prepare_migration.
747 */
748 void mem_cgroup_page_migration(struct page *page, struct page *newpage)
749 {
750 struct page_cgroup *pc;
751 struct mem_cgroup_per_zone *mz;
752 unsigned long flags;
753
754 lock_page_cgroup(page);
755 pc = page_get_page_cgroup(page);
756 if (!pc) {
757 unlock_page_cgroup(page);
758 return;
759 }
760
761 page_assign_page_cgroup(page, NULL);
762 unlock_page_cgroup(page);
763
764 mz = page_cgroup_zoneinfo(pc);
765 spin_lock_irqsave(&mz->lru_lock, flags);
766 __mem_cgroup_remove_list(pc);
767 spin_unlock_irqrestore(&mz->lru_lock, flags);
768
769 pc->page = newpage;
770 lock_page_cgroup(newpage);
771 page_assign_page_cgroup(newpage, pc);
772 unlock_page_cgroup(newpage);
773
774 mz = page_cgroup_zoneinfo(pc);
775 spin_lock_irqsave(&mz->lru_lock, flags);
776 __mem_cgroup_add_list(pc);
777 spin_unlock_irqrestore(&mz->lru_lock, flags);
778 }
779
780 /*
781 * This routine traverse page_cgroup in given list and drop them all.
782 * This routine ignores page_cgroup->ref_cnt.
783 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
784 */
785 #define FORCE_UNCHARGE_BATCH (128)
786 static void mem_cgroup_force_empty_list(struct mem_cgroup *mem,
787 struct mem_cgroup_per_zone *mz,
788 int active)
789 {
790 struct page_cgroup *pc;
791 struct page *page;
792 int count;
793 unsigned long flags;
794 struct list_head *list;
795
796 if (active)
797 list = &mz->active_list;
798 else
799 list = &mz->inactive_list;
800
801 if (list_empty(list))
802 return;
803 retry:
804 count = FORCE_UNCHARGE_BATCH;
805 spin_lock_irqsave(&mz->lru_lock, flags);
806
807 while (--count && !list_empty(list)) {
808 pc = list_entry(list->prev, struct page_cgroup, lru);
809 page = pc->page;
810 lock_page_cgroup(page);
811 if (page_get_page_cgroup(page) == pc) {
812 page_assign_page_cgroup(page, NULL);
813 unlock_page_cgroup(page);
814 __mem_cgroup_remove_list(pc);
815 res_counter_uncharge(&mem->res, PAGE_SIZE);
816 css_put(&mem->css);
817 kfree(pc);
818 } else {
819 /* racing uncharge: let page go then retry */
820 unlock_page_cgroup(page);
821 break;
822 }
823 }
824
825 spin_unlock_irqrestore(&mz->lru_lock, flags);
826 if (!list_empty(list)) {
827 cond_resched();
828 goto retry;
829 }
830 }
831
832 /*
833 * make mem_cgroup's charge to be 0 if there is no task.
834 * This enables deleting this mem_cgroup.
835 */
836 static int mem_cgroup_force_empty(struct mem_cgroup *mem)
837 {
838 int ret = -EBUSY;
839 int node, zid;
840
841 css_get(&mem->css);
842 /*
843 * page reclaim code (kswapd etc..) will move pages between
844 * active_list <-> inactive_list while we don't take a lock.
845 * So, we have to do loop here until all lists are empty.
846 */
847 while (mem->res.usage > 0) {
848 if (atomic_read(&mem->css.cgroup->count) > 0)
849 goto out;
850 for_each_node_state(node, N_POSSIBLE)
851 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
852 struct mem_cgroup_per_zone *mz;
853 mz = mem_cgroup_zoneinfo(mem, node, zid);
854 /* drop all page_cgroup in active_list */
855 mem_cgroup_force_empty_list(mem, mz, 1);
856 /* drop all page_cgroup in inactive_list */
857 mem_cgroup_force_empty_list(mem, mz, 0);
858 }
859 }
860 ret = 0;
861 out:
862 css_put(&mem->css);
863 return ret;
864 }
865
866 static int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
867 {
868 *tmp = memparse(buf, &buf);
869 if (*buf != '\0')
870 return -EINVAL;
871
872 /*
873 * Round up the value to the closest page size
874 */
875 *tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
876 return 0;
877 }
878
879 static ssize_t mem_cgroup_read(struct cgroup *cont,
880 struct cftype *cft, struct file *file,
881 char __user *userbuf, size_t nbytes, loff_t *ppos)
882 {
883 return res_counter_read(&mem_cgroup_from_cont(cont)->res,
884 cft->private, userbuf, nbytes, ppos,
885 NULL);
886 }
887
888 static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
889 struct file *file, const char __user *userbuf,
890 size_t nbytes, loff_t *ppos)
891 {
892 return res_counter_write(&mem_cgroup_from_cont(cont)->res,
893 cft->private, userbuf, nbytes, ppos,
894 mem_cgroup_write_strategy);
895 }
896
897 static ssize_t mem_force_empty_write(struct cgroup *cont,
898 struct cftype *cft, struct file *file,
899 const char __user *userbuf,
900 size_t nbytes, loff_t *ppos)
901 {
902 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
903 int ret = mem_cgroup_force_empty(mem);
904 if (!ret)
905 ret = nbytes;
906 return ret;
907 }
908
909 /*
910 * Note: This should be removed if cgroup supports write-only file.
911 */
912 static ssize_t mem_force_empty_read(struct cgroup *cont,
913 struct cftype *cft,
914 struct file *file, char __user *userbuf,
915 size_t nbytes, loff_t *ppos)
916 {
917 return -EINVAL;
918 }
919
920 static const struct mem_cgroup_stat_desc {
921 const char *msg;
922 u64 unit;
923 } mem_cgroup_stat_desc[] = {
924 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
925 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
926 };
927
928 static int mem_control_stat_show(struct seq_file *m, void *arg)
929 {
930 struct cgroup *cont = m->private;
931 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
932 struct mem_cgroup_stat *stat = &mem_cont->stat;
933 int i;
934
935 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
936 s64 val;
937
938 val = mem_cgroup_read_stat(stat, i);
939 val *= mem_cgroup_stat_desc[i].unit;
940 seq_printf(m, "%s %lld\n", mem_cgroup_stat_desc[i].msg,
941 (long long)val);
942 }
943 /* showing # of active pages */
944 {
945 unsigned long active, inactive;
946
947 inactive = mem_cgroup_get_all_zonestat(mem_cont,
948 MEM_CGROUP_ZSTAT_INACTIVE);
949 active = mem_cgroup_get_all_zonestat(mem_cont,
950 MEM_CGROUP_ZSTAT_ACTIVE);
951 seq_printf(m, "active %ld\n", (active) * PAGE_SIZE);
952 seq_printf(m, "inactive %ld\n", (inactive) * PAGE_SIZE);
953 }
954 return 0;
955 }
956
957 static const struct file_operations mem_control_stat_file_operations = {
958 .read = seq_read,
959 .llseek = seq_lseek,
960 .release = single_release,
961 };
962
963 static int mem_control_stat_open(struct inode *unused, struct file *file)
964 {
965 /* XXX __d_cont */
966 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
967
968 file->f_op = &mem_control_stat_file_operations;
969 return single_open(file, mem_control_stat_show, cont);
970 }
971
972 static struct cftype mem_cgroup_files[] = {
973 {
974 .name = "usage_in_bytes",
975 .private = RES_USAGE,
976 .read = mem_cgroup_read,
977 },
978 {
979 .name = "limit_in_bytes",
980 .private = RES_LIMIT,
981 .write = mem_cgroup_write,
982 .read = mem_cgroup_read,
983 },
984 {
985 .name = "failcnt",
986 .private = RES_FAILCNT,
987 .read = mem_cgroup_read,
988 },
989 {
990 .name = "force_empty",
991 .write = mem_force_empty_write,
992 .read = mem_force_empty_read,
993 },
994 {
995 .name = "stat",
996 .open = mem_control_stat_open,
997 },
998 };
999
1000 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1001 {
1002 struct mem_cgroup_per_node *pn;
1003 struct mem_cgroup_per_zone *mz;
1004 int zone;
1005 /*
1006 * This routine is called against possible nodes.
1007 * But it's BUG to call kmalloc() against offline node.
1008 *
1009 * TODO: this routine can waste much memory for nodes which will
1010 * never be onlined. It's better to use memory hotplug callback
1011 * function.
1012 */
1013 if (node_state(node, N_HIGH_MEMORY))
1014 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, node);
1015 else
1016 pn = kmalloc(sizeof(*pn), GFP_KERNEL);
1017 if (!pn)
1018 return 1;
1019
1020 mem->info.nodeinfo[node] = pn;
1021 memset(pn, 0, sizeof(*pn));
1022
1023 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
1024 mz = &pn->zoneinfo[zone];
1025 INIT_LIST_HEAD(&mz->active_list);
1026 INIT_LIST_HEAD(&mz->inactive_list);
1027 spin_lock_init(&mz->lru_lock);
1028 }
1029 return 0;
1030 }
1031
1032 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1033 {
1034 kfree(mem->info.nodeinfo[node]);
1035 }
1036
1037 static struct cgroup_subsys_state *
1038 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
1039 {
1040 struct mem_cgroup *mem;
1041 int node;
1042
1043 if (unlikely((cont->parent) == NULL)) {
1044 mem = &init_mem_cgroup;
1045 init_mm.mem_cgroup = mem;
1046 } else
1047 mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);
1048
1049 if (mem == NULL)
1050 return ERR_PTR(-ENOMEM);
1051
1052 res_counter_init(&mem->res);
1053
1054 memset(&mem->info, 0, sizeof(mem->info));
1055
1056 for_each_node_state(node, N_POSSIBLE)
1057 if (alloc_mem_cgroup_per_zone_info(mem, node))
1058 goto free_out;
1059
1060 return &mem->css;
1061 free_out:
1062 for_each_node_state(node, N_POSSIBLE)
1063 free_mem_cgroup_per_zone_info(mem, node);
1064 if (cont->parent != NULL)
1065 kfree(mem);
1066 return ERR_PTR(-ENOMEM);
1067 }
1068
1069 static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
1070 struct cgroup *cont)
1071 {
1072 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1073 mem_cgroup_force_empty(mem);
1074 }
1075
1076 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
1077 struct cgroup *cont)
1078 {
1079 int node;
1080 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1081
1082 for_each_node_state(node, N_POSSIBLE)
1083 free_mem_cgroup_per_zone_info(mem, node);
1084
1085 kfree(mem_cgroup_from_cont(cont));
1086 }
1087
1088 static int mem_cgroup_populate(struct cgroup_subsys *ss,
1089 struct cgroup *cont)
1090 {
1091 return cgroup_add_files(cont, ss, mem_cgroup_files,
1092 ARRAY_SIZE(mem_cgroup_files));
1093 }
1094
1095 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
1096 struct cgroup *cont,
1097 struct cgroup *old_cont,
1098 struct task_struct *p)
1099 {
1100 struct mm_struct *mm;
1101 struct mem_cgroup *mem, *old_mem;
1102
1103 mm = get_task_mm(p);
1104 if (mm == NULL)
1105 return;
1106
1107 mem = mem_cgroup_from_cont(cont);
1108 old_mem = mem_cgroup_from_cont(old_cont);
1109
1110 if (mem == old_mem)
1111 goto out;
1112
1113 /*
1114 * Only thread group leaders are allowed to migrate, the mm_struct is
1115 * in effect owned by the leader
1116 */
1117 if (p->tgid != p->pid)
1118 goto out;
1119
1120 css_get(&mem->css);
1121 rcu_assign_pointer(mm->mem_cgroup, mem);
1122 css_put(&old_mem->css);
1123
1124 out:
1125 mmput(mm);
1126 }
1127
1128 struct cgroup_subsys mem_cgroup_subsys = {
1129 .name = "memory",
1130 .subsys_id = mem_cgroup_subsys_id,
1131 .create = mem_cgroup_create,
1132 .pre_destroy = mem_cgroup_pre_destroy,
1133 .destroy = mem_cgroup_destroy,
1134 .populate = mem_cgroup_populate,
1135 .attach = mem_cgroup_move_task,
1136 .early_init = 0,
1137 };
This page took 0.111782 seconds and 5 git commands to generate.