[S390] ccw_driver: remove duplicate members
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
51 #include "internal.h"
52
53 #include <asm/uaccess.h>
54
55 #include <trace/events/vmscan.h>
56
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58 #define MEM_CGROUP_RECLAIM_RETRIES 5
59 struct mem_cgroup *root_mem_cgroup __read_mostly;
60
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly;
64
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata = 1;
68 #else
69 static int really_do_swap_account __initdata = 0;
70 #endif
71
72 #else
73 #define do_swap_account (0)
74 #endif
75
76 /*
77 * Per memcg event counter is incremented at every pagein/pageout. This counter
78 * is used for trigger some periodic events. This is straightforward and better
79 * than using jiffies etc. to handle periodic memcg event.
80 *
81 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
82 */
83 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
84 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
85
86 /*
87 * Statistics for memory cgroup.
88 */
89 enum mem_cgroup_stat_index {
90 /*
91 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
92 */
93 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
94 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
95 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
96 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
97 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
98 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
99 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
100 /* incremented at every pagein/pageout */
101 MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
102 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
103
104 MEM_CGROUP_STAT_NSTATS,
105 };
106
107 struct mem_cgroup_stat_cpu {
108 s64 count[MEM_CGROUP_STAT_NSTATS];
109 };
110
111 /*
112 * per-zone information in memory controller.
113 */
114 struct mem_cgroup_per_zone {
115 /*
116 * spin_lock to protect the per cgroup LRU
117 */
118 struct list_head lists[NR_LRU_LISTS];
119 unsigned long count[NR_LRU_LISTS];
120
121 struct zone_reclaim_stat reclaim_stat;
122 struct rb_node tree_node; /* RB tree node */
123 unsigned long long usage_in_excess;/* Set to the value by which */
124 /* the soft limit is exceeded*/
125 bool on_tree;
126 struct mem_cgroup *mem; /* Back pointer, we cannot */
127 /* use container_of */
128 };
129 /* Macro for accessing counter */
130 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
131
132 struct mem_cgroup_per_node {
133 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
134 };
135
136 struct mem_cgroup_lru_info {
137 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
138 };
139
140 /*
141 * Cgroups above their limits are maintained in a RB-Tree, independent of
142 * their hierarchy representation
143 */
144
145 struct mem_cgroup_tree_per_zone {
146 struct rb_root rb_root;
147 spinlock_t lock;
148 };
149
150 struct mem_cgroup_tree_per_node {
151 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
152 };
153
154 struct mem_cgroup_tree {
155 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
156 };
157
158 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
159
160 struct mem_cgroup_threshold {
161 struct eventfd_ctx *eventfd;
162 u64 threshold;
163 };
164
165 /* For threshold */
166 struct mem_cgroup_threshold_ary {
167 /* An array index points to threshold just below usage. */
168 int current_threshold;
169 /* Size of entries[] */
170 unsigned int size;
171 /* Array of thresholds */
172 struct mem_cgroup_threshold entries[0];
173 };
174
175 struct mem_cgroup_thresholds {
176 /* Primary thresholds array */
177 struct mem_cgroup_threshold_ary *primary;
178 /*
179 * Spare threshold array.
180 * This is needed to make mem_cgroup_unregister_event() "never fail".
181 * It must be able to store at least primary->size - 1 entries.
182 */
183 struct mem_cgroup_threshold_ary *spare;
184 };
185
186 /* for OOM */
187 struct mem_cgroup_eventfd_list {
188 struct list_head list;
189 struct eventfd_ctx *eventfd;
190 };
191
192 static void mem_cgroup_threshold(struct mem_cgroup *mem);
193 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
194
195 /*
196 * The memory controller data structure. The memory controller controls both
197 * page cache and RSS per cgroup. We would eventually like to provide
198 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
199 * to help the administrator determine what knobs to tune.
200 *
201 * TODO: Add a water mark for the memory controller. Reclaim will begin when
202 * we hit the water mark. May be even add a low water mark, such that
203 * no reclaim occurs from a cgroup at it's low water mark, this is
204 * a feature that will be implemented much later in the future.
205 */
206 struct mem_cgroup {
207 struct cgroup_subsys_state css;
208 /*
209 * the counter to account for memory usage
210 */
211 struct res_counter res;
212 /*
213 * the counter to account for mem+swap usage.
214 */
215 struct res_counter memsw;
216 /*
217 * Per cgroup active and inactive list, similar to the
218 * per zone LRU lists.
219 */
220 struct mem_cgroup_lru_info info;
221
222 /*
223 protect against reclaim related member.
224 */
225 spinlock_t reclaim_param_lock;
226
227 /*
228 * While reclaiming in a hierarchy, we cache the last child we
229 * reclaimed from.
230 */
231 int last_scanned_child;
232 /*
233 * Should the accounting and control be hierarchical, per subtree?
234 */
235 bool use_hierarchy;
236 atomic_t oom_lock;
237 atomic_t refcnt;
238
239 unsigned int swappiness;
240 /* OOM-Killer disable */
241 int oom_kill_disable;
242
243 /* set when res.limit == memsw.limit */
244 bool memsw_is_minimum;
245
246 /* protect arrays of thresholds */
247 struct mutex thresholds_lock;
248
249 /* thresholds for memory usage. RCU-protected */
250 struct mem_cgroup_thresholds thresholds;
251
252 /* thresholds for mem+swap usage. RCU-protected */
253 struct mem_cgroup_thresholds memsw_thresholds;
254
255 /* For oom notifier event fd */
256 struct list_head oom_notify;
257
258 /*
259 * Should we move charges of a task when a task is moved into this
260 * mem_cgroup ? And what type of charges should we move ?
261 */
262 unsigned long move_charge_at_immigrate;
263 /*
264 * percpu counter.
265 */
266 struct mem_cgroup_stat_cpu *stat;
267 /*
268 * used when a cpu is offlined or other synchronizations
269 * See mem_cgroup_read_stat().
270 */
271 struct mem_cgroup_stat_cpu nocpu_base;
272 spinlock_t pcp_counter_lock;
273 };
274
275 /* Stuffs for move charges at task migration. */
276 /*
277 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
278 * left-shifted bitmap of these types.
279 */
280 enum move_type {
281 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
282 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
283 NR_MOVE_TYPE,
284 };
285
286 /* "mc" and its members are protected by cgroup_mutex */
287 static struct move_charge_struct {
288 spinlock_t lock; /* for from, to */
289 struct mem_cgroup *from;
290 struct mem_cgroup *to;
291 unsigned long precharge;
292 unsigned long moved_charge;
293 unsigned long moved_swap;
294 struct task_struct *moving_task; /* a task moving charges */
295 wait_queue_head_t waitq; /* a waitq for other context */
296 } mc = {
297 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
298 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
299 };
300
301 static bool move_anon(void)
302 {
303 return test_bit(MOVE_CHARGE_TYPE_ANON,
304 &mc.to->move_charge_at_immigrate);
305 }
306
307 static bool move_file(void)
308 {
309 return test_bit(MOVE_CHARGE_TYPE_FILE,
310 &mc.to->move_charge_at_immigrate);
311 }
312
313 /*
314 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
315 * limit reclaim to prevent infinite loops, if they ever occur.
316 */
317 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
318 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
319
320 enum charge_type {
321 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
322 MEM_CGROUP_CHARGE_TYPE_MAPPED,
323 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
324 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
325 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
326 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
327 NR_CHARGE_TYPE,
328 };
329
330 /* only for here (for easy reading.) */
331 #define PCGF_CACHE (1UL << PCG_CACHE)
332 #define PCGF_USED (1UL << PCG_USED)
333 #define PCGF_LOCK (1UL << PCG_LOCK)
334 /* Not used, but added here for completeness */
335 #define PCGF_ACCT (1UL << PCG_ACCT)
336
337 /* for encoding cft->private value on file */
338 #define _MEM (0)
339 #define _MEMSWAP (1)
340 #define _OOM_TYPE (2)
341 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
342 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
343 #define MEMFILE_ATTR(val) ((val) & 0xffff)
344 /* Used for OOM nofiier */
345 #define OOM_CONTROL (0)
346
347 /*
348 * Reclaim flags for mem_cgroup_hierarchical_reclaim
349 */
350 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
351 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
352 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
353 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
354 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
355 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
356
357 static void mem_cgroup_get(struct mem_cgroup *mem);
358 static void mem_cgroup_put(struct mem_cgroup *mem);
359 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
360 static void drain_all_stock_async(void);
361
362 static struct mem_cgroup_per_zone *
363 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
364 {
365 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
366 }
367
368 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
369 {
370 return &mem->css;
371 }
372
373 static struct mem_cgroup_per_zone *
374 page_cgroup_zoneinfo(struct page_cgroup *pc)
375 {
376 struct mem_cgroup *mem = pc->mem_cgroup;
377 int nid = page_cgroup_nid(pc);
378 int zid = page_cgroup_zid(pc);
379
380 if (!mem)
381 return NULL;
382
383 return mem_cgroup_zoneinfo(mem, nid, zid);
384 }
385
386 static struct mem_cgroup_tree_per_zone *
387 soft_limit_tree_node_zone(int nid, int zid)
388 {
389 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
390 }
391
392 static struct mem_cgroup_tree_per_zone *
393 soft_limit_tree_from_page(struct page *page)
394 {
395 int nid = page_to_nid(page);
396 int zid = page_zonenum(page);
397
398 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399 }
400
401 static void
402 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
403 struct mem_cgroup_per_zone *mz,
404 struct mem_cgroup_tree_per_zone *mctz,
405 unsigned long long new_usage_in_excess)
406 {
407 struct rb_node **p = &mctz->rb_root.rb_node;
408 struct rb_node *parent = NULL;
409 struct mem_cgroup_per_zone *mz_node;
410
411 if (mz->on_tree)
412 return;
413
414 mz->usage_in_excess = new_usage_in_excess;
415 if (!mz->usage_in_excess)
416 return;
417 while (*p) {
418 parent = *p;
419 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
420 tree_node);
421 if (mz->usage_in_excess < mz_node->usage_in_excess)
422 p = &(*p)->rb_left;
423 /*
424 * We can't avoid mem cgroups that are over their soft
425 * limit by the same amount
426 */
427 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
428 p = &(*p)->rb_right;
429 }
430 rb_link_node(&mz->tree_node, parent, p);
431 rb_insert_color(&mz->tree_node, &mctz->rb_root);
432 mz->on_tree = true;
433 }
434
435 static void
436 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
437 struct mem_cgroup_per_zone *mz,
438 struct mem_cgroup_tree_per_zone *mctz)
439 {
440 if (!mz->on_tree)
441 return;
442 rb_erase(&mz->tree_node, &mctz->rb_root);
443 mz->on_tree = false;
444 }
445
446 static void
447 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
448 struct mem_cgroup_per_zone *mz,
449 struct mem_cgroup_tree_per_zone *mctz)
450 {
451 spin_lock(&mctz->lock);
452 __mem_cgroup_remove_exceeded(mem, mz, mctz);
453 spin_unlock(&mctz->lock);
454 }
455
456
457 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
458 {
459 unsigned long long excess;
460 struct mem_cgroup_per_zone *mz;
461 struct mem_cgroup_tree_per_zone *mctz;
462 int nid = page_to_nid(page);
463 int zid = page_zonenum(page);
464 mctz = soft_limit_tree_from_page(page);
465
466 /*
467 * Necessary to update all ancestors when hierarchy is used.
468 * because their event counter is not touched.
469 */
470 for (; mem; mem = parent_mem_cgroup(mem)) {
471 mz = mem_cgroup_zoneinfo(mem, nid, zid);
472 excess = res_counter_soft_limit_excess(&mem->res);
473 /*
474 * We have to update the tree if mz is on RB-tree or
475 * mem is over its softlimit.
476 */
477 if (excess || mz->on_tree) {
478 spin_lock(&mctz->lock);
479 /* if on-tree, remove it */
480 if (mz->on_tree)
481 __mem_cgroup_remove_exceeded(mem, mz, mctz);
482 /*
483 * Insert again. mz->usage_in_excess will be updated.
484 * If excess is 0, no tree ops.
485 */
486 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
487 spin_unlock(&mctz->lock);
488 }
489 }
490 }
491
492 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
493 {
494 int node, zone;
495 struct mem_cgroup_per_zone *mz;
496 struct mem_cgroup_tree_per_zone *mctz;
497
498 for_each_node_state(node, N_POSSIBLE) {
499 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
500 mz = mem_cgroup_zoneinfo(mem, node, zone);
501 mctz = soft_limit_tree_node_zone(node, zone);
502 mem_cgroup_remove_exceeded(mem, mz, mctz);
503 }
504 }
505 }
506
507 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
508 {
509 return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
510 }
511
512 static struct mem_cgroup_per_zone *
513 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
514 {
515 struct rb_node *rightmost = NULL;
516 struct mem_cgroup_per_zone *mz;
517
518 retry:
519 mz = NULL;
520 rightmost = rb_last(&mctz->rb_root);
521 if (!rightmost)
522 goto done; /* Nothing to reclaim from */
523
524 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
525 /*
526 * Remove the node now but someone else can add it back,
527 * we will to add it back at the end of reclaim to its correct
528 * position in the tree.
529 */
530 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
531 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
532 !css_tryget(&mz->mem->css))
533 goto retry;
534 done:
535 return mz;
536 }
537
538 static struct mem_cgroup_per_zone *
539 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
540 {
541 struct mem_cgroup_per_zone *mz;
542
543 spin_lock(&mctz->lock);
544 mz = __mem_cgroup_largest_soft_limit_node(mctz);
545 spin_unlock(&mctz->lock);
546 return mz;
547 }
548
549 /*
550 * Implementation Note: reading percpu statistics for memcg.
551 *
552 * Both of vmstat[] and percpu_counter has threshold and do periodic
553 * synchronization to implement "quick" read. There are trade-off between
554 * reading cost and precision of value. Then, we may have a chance to implement
555 * a periodic synchronizion of counter in memcg's counter.
556 *
557 * But this _read() function is used for user interface now. The user accounts
558 * memory usage by memory cgroup and he _always_ requires exact value because
559 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
560 * have to visit all online cpus and make sum. So, for now, unnecessary
561 * synchronization is not implemented. (just implemented for cpu hotplug)
562 *
563 * If there are kernel internal actions which can make use of some not-exact
564 * value, and reading all cpu value can be performance bottleneck in some
565 * common workload, threashold and synchonization as vmstat[] should be
566 * implemented.
567 */
568 static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
569 enum mem_cgroup_stat_index idx)
570 {
571 int cpu;
572 s64 val = 0;
573
574 get_online_cpus();
575 for_each_online_cpu(cpu)
576 val += per_cpu(mem->stat->count[idx], cpu);
577 #ifdef CONFIG_HOTPLUG_CPU
578 spin_lock(&mem->pcp_counter_lock);
579 val += mem->nocpu_base.count[idx];
580 spin_unlock(&mem->pcp_counter_lock);
581 #endif
582 put_online_cpus();
583 return val;
584 }
585
586 static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
587 {
588 s64 ret;
589
590 ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
591 ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
592 return ret;
593 }
594
595 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
596 bool charge)
597 {
598 int val = (charge) ? 1 : -1;
599 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
600 }
601
602 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
603 bool file, int nr_pages)
604 {
605 preempt_disable();
606
607 if (file)
608 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
609 else
610 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
611
612 /* pagein of a big page is an event. So, ignore page size */
613 if (nr_pages > 0)
614 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
615 else {
616 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
617 nr_pages = -nr_pages; /* for event */
618 }
619
620 __this_cpu_add(mem->stat->count[MEM_CGROUP_EVENTS], nr_pages);
621
622 preempt_enable();
623 }
624
625 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
626 enum lru_list idx)
627 {
628 int nid, zid;
629 struct mem_cgroup_per_zone *mz;
630 u64 total = 0;
631
632 for_each_online_node(nid)
633 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
634 mz = mem_cgroup_zoneinfo(mem, nid, zid);
635 total += MEM_CGROUP_ZSTAT(mz, idx);
636 }
637 return total;
638 }
639
640 static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
641 {
642 s64 val;
643
644 val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
645
646 return !(val & ((1 << event_mask_shift) - 1));
647 }
648
649 /*
650 * Check events in order.
651 *
652 */
653 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
654 {
655 /* threshold event is triggered in finer grain than soft limit */
656 if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
657 mem_cgroup_threshold(mem);
658 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
659 mem_cgroup_update_tree(mem, page);
660 }
661 }
662
663 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
664 {
665 return container_of(cgroup_subsys_state(cont,
666 mem_cgroup_subsys_id), struct mem_cgroup,
667 css);
668 }
669
670 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
671 {
672 /*
673 * mm_update_next_owner() may clear mm->owner to NULL
674 * if it races with swapoff, page migration, etc.
675 * So this can be called with p == NULL.
676 */
677 if (unlikely(!p))
678 return NULL;
679
680 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
681 struct mem_cgroup, css);
682 }
683
684 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
685 {
686 struct mem_cgroup *mem = NULL;
687
688 if (!mm)
689 return NULL;
690 /*
691 * Because we have no locks, mm->owner's may be being moved to other
692 * cgroup. We use css_tryget() here even if this looks
693 * pessimistic (rather than adding locks here).
694 */
695 rcu_read_lock();
696 do {
697 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
698 if (unlikely(!mem))
699 break;
700 } while (!css_tryget(&mem->css));
701 rcu_read_unlock();
702 return mem;
703 }
704
705 /* The caller has to guarantee "mem" exists before calling this */
706 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
707 {
708 struct cgroup_subsys_state *css;
709 int found;
710
711 if (!mem) /* ROOT cgroup has the smallest ID */
712 return root_mem_cgroup; /*css_put/get against root is ignored*/
713 if (!mem->use_hierarchy) {
714 if (css_tryget(&mem->css))
715 return mem;
716 return NULL;
717 }
718 rcu_read_lock();
719 /*
720 * searching a memory cgroup which has the smallest ID under given
721 * ROOT cgroup. (ID >= 1)
722 */
723 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
724 if (css && css_tryget(css))
725 mem = container_of(css, struct mem_cgroup, css);
726 else
727 mem = NULL;
728 rcu_read_unlock();
729 return mem;
730 }
731
732 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
733 struct mem_cgroup *root,
734 bool cond)
735 {
736 int nextid = css_id(&iter->css) + 1;
737 int found;
738 int hierarchy_used;
739 struct cgroup_subsys_state *css;
740
741 hierarchy_used = iter->use_hierarchy;
742
743 css_put(&iter->css);
744 /* If no ROOT, walk all, ignore hierarchy */
745 if (!cond || (root && !hierarchy_used))
746 return NULL;
747
748 if (!root)
749 root = root_mem_cgroup;
750
751 do {
752 iter = NULL;
753 rcu_read_lock();
754
755 css = css_get_next(&mem_cgroup_subsys, nextid,
756 &root->css, &found);
757 if (css && css_tryget(css))
758 iter = container_of(css, struct mem_cgroup, css);
759 rcu_read_unlock();
760 /* If css is NULL, no more cgroups will be found */
761 nextid = found + 1;
762 } while (css && !iter);
763
764 return iter;
765 }
766 /*
767 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
768 * be careful that "break" loop is not allowed. We have reference count.
769 * Instead of that modify "cond" to be false and "continue" to exit the loop.
770 */
771 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
772 for (iter = mem_cgroup_start_loop(root);\
773 iter != NULL;\
774 iter = mem_cgroup_get_next(iter, root, cond))
775
776 #define for_each_mem_cgroup_tree(iter, root) \
777 for_each_mem_cgroup_tree_cond(iter, root, true)
778
779 #define for_each_mem_cgroup_all(iter) \
780 for_each_mem_cgroup_tree_cond(iter, NULL, true)
781
782
783 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
784 {
785 return (mem == root_mem_cgroup);
786 }
787
788 /*
789 * Following LRU functions are allowed to be used without PCG_LOCK.
790 * Operations are called by routine of global LRU independently from memcg.
791 * What we have to take care of here is validness of pc->mem_cgroup.
792 *
793 * Changes to pc->mem_cgroup happens when
794 * 1. charge
795 * 2. moving account
796 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
797 * It is added to LRU before charge.
798 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
799 * When moving account, the page is not on LRU. It's isolated.
800 */
801
802 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
803 {
804 struct page_cgroup *pc;
805 struct mem_cgroup_per_zone *mz;
806
807 if (mem_cgroup_disabled())
808 return;
809 pc = lookup_page_cgroup(page);
810 /* can happen while we handle swapcache. */
811 if (!TestClearPageCgroupAcctLRU(pc))
812 return;
813 VM_BUG_ON(!pc->mem_cgroup);
814 /*
815 * We don't check PCG_USED bit. It's cleared when the "page" is finally
816 * removed from global LRU.
817 */
818 mz = page_cgroup_zoneinfo(pc);
819 /* huge page split is done under lru_lock. so, we have no races. */
820 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
821 if (mem_cgroup_is_root(pc->mem_cgroup))
822 return;
823 VM_BUG_ON(list_empty(&pc->lru));
824 list_del_init(&pc->lru);
825 }
826
827 void mem_cgroup_del_lru(struct page *page)
828 {
829 mem_cgroup_del_lru_list(page, page_lru(page));
830 }
831
832 /*
833 * Writeback is about to end against a page which has been marked for immediate
834 * reclaim. If it still appears to be reclaimable, move it to the tail of the
835 * inactive list.
836 */
837 void mem_cgroup_rotate_reclaimable_page(struct page *page)
838 {
839 struct mem_cgroup_per_zone *mz;
840 struct page_cgroup *pc;
841 enum lru_list lru = page_lru(page);
842
843 if (mem_cgroup_disabled())
844 return;
845
846 pc = lookup_page_cgroup(page);
847 /* unused or root page is not rotated. */
848 if (!PageCgroupUsed(pc))
849 return;
850 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
851 smp_rmb();
852 if (mem_cgroup_is_root(pc->mem_cgroup))
853 return;
854 mz = page_cgroup_zoneinfo(pc);
855 list_move_tail(&pc->lru, &mz->lists[lru]);
856 }
857
858 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
859 {
860 struct mem_cgroup_per_zone *mz;
861 struct page_cgroup *pc;
862
863 if (mem_cgroup_disabled())
864 return;
865
866 pc = lookup_page_cgroup(page);
867 /* unused or root page is not rotated. */
868 if (!PageCgroupUsed(pc))
869 return;
870 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
871 smp_rmb();
872 if (mem_cgroup_is_root(pc->mem_cgroup))
873 return;
874 mz = page_cgroup_zoneinfo(pc);
875 list_move(&pc->lru, &mz->lists[lru]);
876 }
877
878 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
879 {
880 struct page_cgroup *pc;
881 struct mem_cgroup_per_zone *mz;
882
883 if (mem_cgroup_disabled())
884 return;
885 pc = lookup_page_cgroup(page);
886 VM_BUG_ON(PageCgroupAcctLRU(pc));
887 if (!PageCgroupUsed(pc))
888 return;
889 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
890 smp_rmb();
891 mz = page_cgroup_zoneinfo(pc);
892 /* huge page split is done under lru_lock. so, we have no races. */
893 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
894 SetPageCgroupAcctLRU(pc);
895 if (mem_cgroup_is_root(pc->mem_cgroup))
896 return;
897 list_add(&pc->lru, &mz->lists[lru]);
898 }
899
900 /*
901 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
902 * lru because the page may.be reused after it's fully uncharged (because of
903 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
904 * it again. This function is only used to charge SwapCache. It's done under
905 * lock_page and expected that zone->lru_lock is never held.
906 */
907 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
908 {
909 unsigned long flags;
910 struct zone *zone = page_zone(page);
911 struct page_cgroup *pc = lookup_page_cgroup(page);
912
913 spin_lock_irqsave(&zone->lru_lock, flags);
914 /*
915 * Forget old LRU when this page_cgroup is *not* used. This Used bit
916 * is guarded by lock_page() because the page is SwapCache.
917 */
918 if (!PageCgroupUsed(pc))
919 mem_cgroup_del_lru_list(page, page_lru(page));
920 spin_unlock_irqrestore(&zone->lru_lock, flags);
921 }
922
923 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
924 {
925 unsigned long flags;
926 struct zone *zone = page_zone(page);
927 struct page_cgroup *pc = lookup_page_cgroup(page);
928
929 spin_lock_irqsave(&zone->lru_lock, flags);
930 /* link when the page is linked to LRU but page_cgroup isn't */
931 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
932 mem_cgroup_add_lru_list(page, page_lru(page));
933 spin_unlock_irqrestore(&zone->lru_lock, flags);
934 }
935
936
937 void mem_cgroup_move_lists(struct page *page,
938 enum lru_list from, enum lru_list to)
939 {
940 if (mem_cgroup_disabled())
941 return;
942 mem_cgroup_del_lru_list(page, from);
943 mem_cgroup_add_lru_list(page, to);
944 }
945
946 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
947 {
948 int ret;
949 struct mem_cgroup *curr = NULL;
950 struct task_struct *p;
951
952 p = find_lock_task_mm(task);
953 if (!p)
954 return 0;
955 curr = try_get_mem_cgroup_from_mm(p->mm);
956 task_unlock(p);
957 if (!curr)
958 return 0;
959 /*
960 * We should check use_hierarchy of "mem" not "curr". Because checking
961 * use_hierarchy of "curr" here make this function true if hierarchy is
962 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
963 * hierarchy(even if use_hierarchy is disabled in "mem").
964 */
965 if (mem->use_hierarchy)
966 ret = css_is_ancestor(&curr->css, &mem->css);
967 else
968 ret = (curr == mem);
969 css_put(&curr->css);
970 return ret;
971 }
972
973 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
974 {
975 unsigned long active;
976 unsigned long inactive;
977 unsigned long gb;
978 unsigned long inactive_ratio;
979
980 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
981 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
982
983 gb = (inactive + active) >> (30 - PAGE_SHIFT);
984 if (gb)
985 inactive_ratio = int_sqrt(10 * gb);
986 else
987 inactive_ratio = 1;
988
989 if (present_pages) {
990 present_pages[0] = inactive;
991 present_pages[1] = active;
992 }
993
994 return inactive_ratio;
995 }
996
997 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
998 {
999 unsigned long active;
1000 unsigned long inactive;
1001 unsigned long present_pages[2];
1002 unsigned long inactive_ratio;
1003
1004 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
1005
1006 inactive = present_pages[0];
1007 active = present_pages[1];
1008
1009 if (inactive * inactive_ratio < active)
1010 return 1;
1011
1012 return 0;
1013 }
1014
1015 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1016 {
1017 unsigned long active;
1018 unsigned long inactive;
1019
1020 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
1021 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
1022
1023 return (active > inactive);
1024 }
1025
1026 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
1027 struct zone *zone,
1028 enum lru_list lru)
1029 {
1030 int nid = zone_to_nid(zone);
1031 int zid = zone_idx(zone);
1032 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1033
1034 return MEM_CGROUP_ZSTAT(mz, lru);
1035 }
1036
1037 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1038 struct zone *zone)
1039 {
1040 int nid = zone_to_nid(zone);
1041 int zid = zone_idx(zone);
1042 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1043
1044 return &mz->reclaim_stat;
1045 }
1046
1047 struct zone_reclaim_stat *
1048 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1049 {
1050 struct page_cgroup *pc;
1051 struct mem_cgroup_per_zone *mz;
1052
1053 if (mem_cgroup_disabled())
1054 return NULL;
1055
1056 pc = lookup_page_cgroup(page);
1057 if (!PageCgroupUsed(pc))
1058 return NULL;
1059 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1060 smp_rmb();
1061 mz = page_cgroup_zoneinfo(pc);
1062 if (!mz)
1063 return NULL;
1064
1065 return &mz->reclaim_stat;
1066 }
1067
1068 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1069 struct list_head *dst,
1070 unsigned long *scanned, int order,
1071 int mode, struct zone *z,
1072 struct mem_cgroup *mem_cont,
1073 int active, int file)
1074 {
1075 unsigned long nr_taken = 0;
1076 struct page *page;
1077 unsigned long scan;
1078 LIST_HEAD(pc_list);
1079 struct list_head *src;
1080 struct page_cgroup *pc, *tmp;
1081 int nid = zone_to_nid(z);
1082 int zid = zone_idx(z);
1083 struct mem_cgroup_per_zone *mz;
1084 int lru = LRU_FILE * file + active;
1085 int ret;
1086
1087 BUG_ON(!mem_cont);
1088 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1089 src = &mz->lists[lru];
1090
1091 scan = 0;
1092 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1093 if (scan >= nr_to_scan)
1094 break;
1095
1096 page = pc->page;
1097 if (unlikely(!PageCgroupUsed(pc)))
1098 continue;
1099 if (unlikely(!PageLRU(page)))
1100 continue;
1101
1102 scan++;
1103 ret = __isolate_lru_page(page, mode, file);
1104 switch (ret) {
1105 case 0:
1106 list_move(&page->lru, dst);
1107 mem_cgroup_del_lru(page);
1108 nr_taken += hpage_nr_pages(page);
1109 break;
1110 case -EBUSY:
1111 /* we don't affect global LRU but rotate in our LRU */
1112 mem_cgroup_rotate_lru_list(page, page_lru(page));
1113 break;
1114 default:
1115 break;
1116 }
1117 }
1118
1119 *scanned = scan;
1120
1121 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1122 0, 0, 0, mode);
1123
1124 return nr_taken;
1125 }
1126
1127 #define mem_cgroup_from_res_counter(counter, member) \
1128 container_of(counter, struct mem_cgroup, member)
1129
1130 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1131 {
1132 if (do_swap_account) {
1133 if (res_counter_check_under_limit(&mem->res) &&
1134 res_counter_check_under_limit(&mem->memsw))
1135 return true;
1136 } else
1137 if (res_counter_check_under_limit(&mem->res))
1138 return true;
1139 return false;
1140 }
1141
1142 /**
1143 * mem_cgroup_check_margin - check if the memory cgroup allows charging
1144 * @mem: memory cgroup to check
1145 * @bytes: the number of bytes the caller intends to charge
1146 *
1147 * Returns a boolean value on whether @mem can be charged @bytes or
1148 * whether this would exceed the limit.
1149 */
1150 static bool mem_cgroup_check_margin(struct mem_cgroup *mem, unsigned long bytes)
1151 {
1152 if (!res_counter_check_margin(&mem->res, bytes))
1153 return false;
1154 if (do_swap_account && !res_counter_check_margin(&mem->memsw, bytes))
1155 return false;
1156 return true;
1157 }
1158
1159 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1160 {
1161 struct cgroup *cgrp = memcg->css.cgroup;
1162 unsigned int swappiness;
1163
1164 /* root ? */
1165 if (cgrp->parent == NULL)
1166 return vm_swappiness;
1167
1168 spin_lock(&memcg->reclaim_param_lock);
1169 swappiness = memcg->swappiness;
1170 spin_unlock(&memcg->reclaim_param_lock);
1171
1172 return swappiness;
1173 }
1174
1175 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1176 {
1177 int cpu;
1178
1179 get_online_cpus();
1180 spin_lock(&mem->pcp_counter_lock);
1181 for_each_online_cpu(cpu)
1182 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1183 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1184 spin_unlock(&mem->pcp_counter_lock);
1185 put_online_cpus();
1186
1187 synchronize_rcu();
1188 }
1189
1190 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1191 {
1192 int cpu;
1193
1194 if (!mem)
1195 return;
1196 get_online_cpus();
1197 spin_lock(&mem->pcp_counter_lock);
1198 for_each_online_cpu(cpu)
1199 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1200 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1201 spin_unlock(&mem->pcp_counter_lock);
1202 put_online_cpus();
1203 }
1204 /*
1205 * 2 routines for checking "mem" is under move_account() or not.
1206 *
1207 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1208 * for avoiding race in accounting. If true,
1209 * pc->mem_cgroup may be overwritten.
1210 *
1211 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1212 * under hierarchy of moving cgroups. This is for
1213 * waiting at hith-memory prressure caused by "move".
1214 */
1215
1216 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1217 {
1218 VM_BUG_ON(!rcu_read_lock_held());
1219 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1220 }
1221
1222 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1223 {
1224 struct mem_cgroup *from;
1225 struct mem_cgroup *to;
1226 bool ret = false;
1227 /*
1228 * Unlike task_move routines, we access mc.to, mc.from not under
1229 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1230 */
1231 spin_lock(&mc.lock);
1232 from = mc.from;
1233 to = mc.to;
1234 if (!from)
1235 goto unlock;
1236 if (from == mem || to == mem
1237 || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1238 || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1239 ret = true;
1240 unlock:
1241 spin_unlock(&mc.lock);
1242 return ret;
1243 }
1244
1245 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1246 {
1247 if (mc.moving_task && current != mc.moving_task) {
1248 if (mem_cgroup_under_move(mem)) {
1249 DEFINE_WAIT(wait);
1250 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1251 /* moving charge context might have finished. */
1252 if (mc.moving_task)
1253 schedule();
1254 finish_wait(&mc.waitq, &wait);
1255 return true;
1256 }
1257 }
1258 return false;
1259 }
1260
1261 /**
1262 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1263 * @memcg: The memory cgroup that went over limit
1264 * @p: Task that is going to be killed
1265 *
1266 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1267 * enabled
1268 */
1269 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1270 {
1271 struct cgroup *task_cgrp;
1272 struct cgroup *mem_cgrp;
1273 /*
1274 * Need a buffer in BSS, can't rely on allocations. The code relies
1275 * on the assumption that OOM is serialized for memory controller.
1276 * If this assumption is broken, revisit this code.
1277 */
1278 static char memcg_name[PATH_MAX];
1279 int ret;
1280
1281 if (!memcg || !p)
1282 return;
1283
1284
1285 rcu_read_lock();
1286
1287 mem_cgrp = memcg->css.cgroup;
1288 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1289
1290 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1291 if (ret < 0) {
1292 /*
1293 * Unfortunately, we are unable to convert to a useful name
1294 * But we'll still print out the usage information
1295 */
1296 rcu_read_unlock();
1297 goto done;
1298 }
1299 rcu_read_unlock();
1300
1301 printk(KERN_INFO "Task in %s killed", memcg_name);
1302
1303 rcu_read_lock();
1304 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1305 if (ret < 0) {
1306 rcu_read_unlock();
1307 goto done;
1308 }
1309 rcu_read_unlock();
1310
1311 /*
1312 * Continues from above, so we don't need an KERN_ level
1313 */
1314 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1315 done:
1316
1317 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1318 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1319 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1320 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1321 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1322 "failcnt %llu\n",
1323 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1324 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1325 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1326 }
1327
1328 /*
1329 * This function returns the number of memcg under hierarchy tree. Returns
1330 * 1(self count) if no children.
1331 */
1332 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1333 {
1334 int num = 0;
1335 struct mem_cgroup *iter;
1336
1337 for_each_mem_cgroup_tree(iter, mem)
1338 num++;
1339 return num;
1340 }
1341
1342 /*
1343 * Return the memory (and swap, if configured) limit for a memcg.
1344 */
1345 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1346 {
1347 u64 limit;
1348 u64 memsw;
1349
1350 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1351 limit += total_swap_pages << PAGE_SHIFT;
1352
1353 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1354 /*
1355 * If memsw is finite and limits the amount of swap space available
1356 * to this memcg, return that limit.
1357 */
1358 return min(limit, memsw);
1359 }
1360
1361 /*
1362 * Visit the first child (need not be the first child as per the ordering
1363 * of the cgroup list, since we track last_scanned_child) of @mem and use
1364 * that to reclaim free pages from.
1365 */
1366 static struct mem_cgroup *
1367 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1368 {
1369 struct mem_cgroup *ret = NULL;
1370 struct cgroup_subsys_state *css;
1371 int nextid, found;
1372
1373 if (!root_mem->use_hierarchy) {
1374 css_get(&root_mem->css);
1375 ret = root_mem;
1376 }
1377
1378 while (!ret) {
1379 rcu_read_lock();
1380 nextid = root_mem->last_scanned_child + 1;
1381 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1382 &found);
1383 if (css && css_tryget(css))
1384 ret = container_of(css, struct mem_cgroup, css);
1385
1386 rcu_read_unlock();
1387 /* Updates scanning parameter */
1388 spin_lock(&root_mem->reclaim_param_lock);
1389 if (!css) {
1390 /* this means start scan from ID:1 */
1391 root_mem->last_scanned_child = 0;
1392 } else
1393 root_mem->last_scanned_child = found;
1394 spin_unlock(&root_mem->reclaim_param_lock);
1395 }
1396
1397 return ret;
1398 }
1399
1400 /*
1401 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1402 * we reclaimed from, so that we don't end up penalizing one child extensively
1403 * based on its position in the children list.
1404 *
1405 * root_mem is the original ancestor that we've been reclaim from.
1406 *
1407 * We give up and return to the caller when we visit root_mem twice.
1408 * (other groups can be removed while we're walking....)
1409 *
1410 * If shrink==true, for avoiding to free too much, this returns immedieately.
1411 */
1412 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1413 struct zone *zone,
1414 gfp_t gfp_mask,
1415 unsigned long reclaim_options)
1416 {
1417 struct mem_cgroup *victim;
1418 int ret, total = 0;
1419 int loop = 0;
1420 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1421 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1422 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1423 unsigned long excess = mem_cgroup_get_excess(root_mem);
1424
1425 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1426 if (root_mem->memsw_is_minimum)
1427 noswap = true;
1428
1429 while (1) {
1430 victim = mem_cgroup_select_victim(root_mem);
1431 if (victim == root_mem) {
1432 loop++;
1433 if (loop >= 1)
1434 drain_all_stock_async();
1435 if (loop >= 2) {
1436 /*
1437 * If we have not been able to reclaim
1438 * anything, it might because there are
1439 * no reclaimable pages under this hierarchy
1440 */
1441 if (!check_soft || !total) {
1442 css_put(&victim->css);
1443 break;
1444 }
1445 /*
1446 * We want to do more targetted reclaim.
1447 * excess >> 2 is not to excessive so as to
1448 * reclaim too much, nor too less that we keep
1449 * coming back to reclaim from this cgroup
1450 */
1451 if (total >= (excess >> 2) ||
1452 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1453 css_put(&victim->css);
1454 break;
1455 }
1456 }
1457 }
1458 if (!mem_cgroup_local_usage(victim)) {
1459 /* this cgroup's local usage == 0 */
1460 css_put(&victim->css);
1461 continue;
1462 }
1463 /* we use swappiness of local cgroup */
1464 if (check_soft)
1465 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1466 noswap, get_swappiness(victim), zone);
1467 else
1468 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1469 noswap, get_swappiness(victim));
1470 css_put(&victim->css);
1471 /*
1472 * At shrinking usage, we can't check we should stop here or
1473 * reclaim more. It's depends on callers. last_scanned_child
1474 * will work enough for keeping fairness under tree.
1475 */
1476 if (shrink)
1477 return ret;
1478 total += ret;
1479 if (check_soft) {
1480 if (res_counter_check_under_soft_limit(&root_mem->res))
1481 return total;
1482 } else if (mem_cgroup_check_under_limit(root_mem))
1483 return 1 + total;
1484 }
1485 return total;
1486 }
1487
1488 /*
1489 * Check OOM-Killer is already running under our hierarchy.
1490 * If someone is running, return false.
1491 */
1492 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1493 {
1494 int x, lock_count = 0;
1495 struct mem_cgroup *iter;
1496
1497 for_each_mem_cgroup_tree(iter, mem) {
1498 x = atomic_inc_return(&iter->oom_lock);
1499 lock_count = max(x, lock_count);
1500 }
1501
1502 if (lock_count == 1)
1503 return true;
1504 return false;
1505 }
1506
1507 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1508 {
1509 struct mem_cgroup *iter;
1510
1511 /*
1512 * When a new child is created while the hierarchy is under oom,
1513 * mem_cgroup_oom_lock() may not be called. We have to use
1514 * atomic_add_unless() here.
1515 */
1516 for_each_mem_cgroup_tree(iter, mem)
1517 atomic_add_unless(&iter->oom_lock, -1, 0);
1518 return 0;
1519 }
1520
1521
1522 static DEFINE_MUTEX(memcg_oom_mutex);
1523 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1524
1525 struct oom_wait_info {
1526 struct mem_cgroup *mem;
1527 wait_queue_t wait;
1528 };
1529
1530 static int memcg_oom_wake_function(wait_queue_t *wait,
1531 unsigned mode, int sync, void *arg)
1532 {
1533 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1534 struct oom_wait_info *oom_wait_info;
1535
1536 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1537
1538 if (oom_wait_info->mem == wake_mem)
1539 goto wakeup;
1540 /* if no hierarchy, no match */
1541 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1542 return 0;
1543 /*
1544 * Both of oom_wait_info->mem and wake_mem are stable under us.
1545 * Then we can use css_is_ancestor without taking care of RCU.
1546 */
1547 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1548 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1549 return 0;
1550
1551 wakeup:
1552 return autoremove_wake_function(wait, mode, sync, arg);
1553 }
1554
1555 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1556 {
1557 /* for filtering, pass "mem" as argument. */
1558 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1559 }
1560
1561 static void memcg_oom_recover(struct mem_cgroup *mem)
1562 {
1563 if (mem && atomic_read(&mem->oom_lock))
1564 memcg_wakeup_oom(mem);
1565 }
1566
1567 /*
1568 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1569 */
1570 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1571 {
1572 struct oom_wait_info owait;
1573 bool locked, need_to_kill;
1574
1575 owait.mem = mem;
1576 owait.wait.flags = 0;
1577 owait.wait.func = memcg_oom_wake_function;
1578 owait.wait.private = current;
1579 INIT_LIST_HEAD(&owait.wait.task_list);
1580 need_to_kill = true;
1581 /* At first, try to OOM lock hierarchy under mem.*/
1582 mutex_lock(&memcg_oom_mutex);
1583 locked = mem_cgroup_oom_lock(mem);
1584 /*
1585 * Even if signal_pending(), we can't quit charge() loop without
1586 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1587 * under OOM is always welcomed, use TASK_KILLABLE here.
1588 */
1589 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1590 if (!locked || mem->oom_kill_disable)
1591 need_to_kill = false;
1592 if (locked)
1593 mem_cgroup_oom_notify(mem);
1594 mutex_unlock(&memcg_oom_mutex);
1595
1596 if (need_to_kill) {
1597 finish_wait(&memcg_oom_waitq, &owait.wait);
1598 mem_cgroup_out_of_memory(mem, mask);
1599 } else {
1600 schedule();
1601 finish_wait(&memcg_oom_waitq, &owait.wait);
1602 }
1603 mutex_lock(&memcg_oom_mutex);
1604 mem_cgroup_oom_unlock(mem);
1605 memcg_wakeup_oom(mem);
1606 mutex_unlock(&memcg_oom_mutex);
1607
1608 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1609 return false;
1610 /* Give chance to dying process */
1611 schedule_timeout(1);
1612 return true;
1613 }
1614
1615 /*
1616 * Currently used to update mapped file statistics, but the routine can be
1617 * generalized to update other statistics as well.
1618 *
1619 * Notes: Race condition
1620 *
1621 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1622 * it tends to be costly. But considering some conditions, we doesn't need
1623 * to do so _always_.
1624 *
1625 * Considering "charge", lock_page_cgroup() is not required because all
1626 * file-stat operations happen after a page is attached to radix-tree. There
1627 * are no race with "charge".
1628 *
1629 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1630 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1631 * if there are race with "uncharge". Statistics itself is properly handled
1632 * by flags.
1633 *
1634 * Considering "move", this is an only case we see a race. To make the race
1635 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1636 * possibility of race condition. If there is, we take a lock.
1637 */
1638
1639 void mem_cgroup_update_page_stat(struct page *page,
1640 enum mem_cgroup_page_stat_item idx, int val)
1641 {
1642 struct mem_cgroup *mem;
1643 struct page_cgroup *pc = lookup_page_cgroup(page);
1644 bool need_unlock = false;
1645 unsigned long uninitialized_var(flags);
1646
1647 if (unlikely(!pc))
1648 return;
1649
1650 rcu_read_lock();
1651 mem = pc->mem_cgroup;
1652 if (unlikely(!mem || !PageCgroupUsed(pc)))
1653 goto out;
1654 /* pc->mem_cgroup is unstable ? */
1655 if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1656 /* take a lock against to access pc->mem_cgroup */
1657 move_lock_page_cgroup(pc, &flags);
1658 need_unlock = true;
1659 mem = pc->mem_cgroup;
1660 if (!mem || !PageCgroupUsed(pc))
1661 goto out;
1662 }
1663
1664 switch (idx) {
1665 case MEMCG_NR_FILE_MAPPED:
1666 if (val > 0)
1667 SetPageCgroupFileMapped(pc);
1668 else if (!page_mapped(page))
1669 ClearPageCgroupFileMapped(pc);
1670 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1671 break;
1672 default:
1673 BUG();
1674 }
1675
1676 this_cpu_add(mem->stat->count[idx], val);
1677
1678 out:
1679 if (unlikely(need_unlock))
1680 move_unlock_page_cgroup(pc, &flags);
1681 rcu_read_unlock();
1682 return;
1683 }
1684 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1685
1686 /*
1687 * size of first charge trial. "32" comes from vmscan.c's magic value.
1688 * TODO: maybe necessary to use big numbers in big irons.
1689 */
1690 #define CHARGE_SIZE (32 * PAGE_SIZE)
1691 struct memcg_stock_pcp {
1692 struct mem_cgroup *cached; /* this never be root cgroup */
1693 int charge;
1694 struct work_struct work;
1695 };
1696 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1697 static atomic_t memcg_drain_count;
1698
1699 /*
1700 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1701 * from local stock and true is returned. If the stock is 0 or charges from a
1702 * cgroup which is not current target, returns false. This stock will be
1703 * refilled.
1704 */
1705 static bool consume_stock(struct mem_cgroup *mem)
1706 {
1707 struct memcg_stock_pcp *stock;
1708 bool ret = true;
1709
1710 stock = &get_cpu_var(memcg_stock);
1711 if (mem == stock->cached && stock->charge)
1712 stock->charge -= PAGE_SIZE;
1713 else /* need to call res_counter_charge */
1714 ret = false;
1715 put_cpu_var(memcg_stock);
1716 return ret;
1717 }
1718
1719 /*
1720 * Returns stocks cached in percpu to res_counter and reset cached information.
1721 */
1722 static void drain_stock(struct memcg_stock_pcp *stock)
1723 {
1724 struct mem_cgroup *old = stock->cached;
1725
1726 if (stock->charge) {
1727 res_counter_uncharge(&old->res, stock->charge);
1728 if (do_swap_account)
1729 res_counter_uncharge(&old->memsw, stock->charge);
1730 }
1731 stock->cached = NULL;
1732 stock->charge = 0;
1733 }
1734
1735 /*
1736 * This must be called under preempt disabled or must be called by
1737 * a thread which is pinned to local cpu.
1738 */
1739 static void drain_local_stock(struct work_struct *dummy)
1740 {
1741 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1742 drain_stock(stock);
1743 }
1744
1745 /*
1746 * Cache charges(val) which is from res_counter, to local per_cpu area.
1747 * This will be consumed by consume_stock() function, later.
1748 */
1749 static void refill_stock(struct mem_cgroup *mem, int val)
1750 {
1751 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1752
1753 if (stock->cached != mem) { /* reset if necessary */
1754 drain_stock(stock);
1755 stock->cached = mem;
1756 }
1757 stock->charge += val;
1758 put_cpu_var(memcg_stock);
1759 }
1760
1761 /*
1762 * Tries to drain stocked charges in other cpus. This function is asynchronous
1763 * and just put a work per cpu for draining localy on each cpu. Caller can
1764 * expects some charges will be back to res_counter later but cannot wait for
1765 * it.
1766 */
1767 static void drain_all_stock_async(void)
1768 {
1769 int cpu;
1770 /* This function is for scheduling "drain" in asynchronous way.
1771 * The result of "drain" is not directly handled by callers. Then,
1772 * if someone is calling drain, we don't have to call drain more.
1773 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1774 * there is a race. We just do loose check here.
1775 */
1776 if (atomic_read(&memcg_drain_count))
1777 return;
1778 /* Notify other cpus that system-wide "drain" is running */
1779 atomic_inc(&memcg_drain_count);
1780 get_online_cpus();
1781 for_each_online_cpu(cpu) {
1782 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1783 schedule_work_on(cpu, &stock->work);
1784 }
1785 put_online_cpus();
1786 atomic_dec(&memcg_drain_count);
1787 /* We don't wait for flush_work */
1788 }
1789
1790 /* This is a synchronous drain interface. */
1791 static void drain_all_stock_sync(void)
1792 {
1793 /* called when force_empty is called */
1794 atomic_inc(&memcg_drain_count);
1795 schedule_on_each_cpu(drain_local_stock);
1796 atomic_dec(&memcg_drain_count);
1797 }
1798
1799 /*
1800 * This function drains percpu counter value from DEAD cpu and
1801 * move it to local cpu. Note that this function can be preempted.
1802 */
1803 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1804 {
1805 int i;
1806
1807 spin_lock(&mem->pcp_counter_lock);
1808 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1809 s64 x = per_cpu(mem->stat->count[i], cpu);
1810
1811 per_cpu(mem->stat->count[i], cpu) = 0;
1812 mem->nocpu_base.count[i] += x;
1813 }
1814 /* need to clear ON_MOVE value, works as a kind of lock. */
1815 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1816 spin_unlock(&mem->pcp_counter_lock);
1817 }
1818
1819 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1820 {
1821 int idx = MEM_CGROUP_ON_MOVE;
1822
1823 spin_lock(&mem->pcp_counter_lock);
1824 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1825 spin_unlock(&mem->pcp_counter_lock);
1826 }
1827
1828 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1829 unsigned long action,
1830 void *hcpu)
1831 {
1832 int cpu = (unsigned long)hcpu;
1833 struct memcg_stock_pcp *stock;
1834 struct mem_cgroup *iter;
1835
1836 if ((action == CPU_ONLINE)) {
1837 for_each_mem_cgroup_all(iter)
1838 synchronize_mem_cgroup_on_move(iter, cpu);
1839 return NOTIFY_OK;
1840 }
1841
1842 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1843 return NOTIFY_OK;
1844
1845 for_each_mem_cgroup_all(iter)
1846 mem_cgroup_drain_pcp_counter(iter, cpu);
1847
1848 stock = &per_cpu(memcg_stock, cpu);
1849 drain_stock(stock);
1850 return NOTIFY_OK;
1851 }
1852
1853
1854 /* See __mem_cgroup_try_charge() for details */
1855 enum {
1856 CHARGE_OK, /* success */
1857 CHARGE_RETRY, /* need to retry but retry is not bad */
1858 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
1859 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
1860 CHARGE_OOM_DIE, /* the current is killed because of OOM */
1861 };
1862
1863 static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1864 int csize, bool oom_check)
1865 {
1866 struct mem_cgroup *mem_over_limit;
1867 struct res_counter *fail_res;
1868 unsigned long flags = 0;
1869 int ret;
1870
1871 ret = res_counter_charge(&mem->res, csize, &fail_res);
1872
1873 if (likely(!ret)) {
1874 if (!do_swap_account)
1875 return CHARGE_OK;
1876 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1877 if (likely(!ret))
1878 return CHARGE_OK;
1879
1880 res_counter_uncharge(&mem->res, csize);
1881 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1882 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1883 } else
1884 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1885 /*
1886 * csize can be either a huge page (HPAGE_SIZE), a batch of
1887 * regular pages (CHARGE_SIZE), or a single regular page
1888 * (PAGE_SIZE).
1889 *
1890 * Never reclaim on behalf of optional batching, retry with a
1891 * single page instead.
1892 */
1893 if (csize == CHARGE_SIZE)
1894 return CHARGE_RETRY;
1895
1896 if (!(gfp_mask & __GFP_WAIT))
1897 return CHARGE_WOULDBLOCK;
1898
1899 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1900 gfp_mask, flags);
1901 if (mem_cgroup_check_margin(mem_over_limit, csize))
1902 return CHARGE_RETRY;
1903 /*
1904 * Even though the limit is exceeded at this point, reclaim
1905 * may have been able to free some pages. Retry the charge
1906 * before killing the task.
1907 *
1908 * Only for regular pages, though: huge pages are rather
1909 * unlikely to succeed so close to the limit, and we fall back
1910 * to regular pages anyway in case of failure.
1911 */
1912 if (csize == PAGE_SIZE && ret)
1913 return CHARGE_RETRY;
1914
1915 /*
1916 * At task move, charge accounts can be doubly counted. So, it's
1917 * better to wait until the end of task_move if something is going on.
1918 */
1919 if (mem_cgroup_wait_acct_move(mem_over_limit))
1920 return CHARGE_RETRY;
1921
1922 /* If we don't need to call oom-killer at el, return immediately */
1923 if (!oom_check)
1924 return CHARGE_NOMEM;
1925 /* check OOM */
1926 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1927 return CHARGE_OOM_DIE;
1928
1929 return CHARGE_RETRY;
1930 }
1931
1932 /*
1933 * Unlike exported interface, "oom" parameter is added. if oom==true,
1934 * oom-killer can be invoked.
1935 */
1936 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1937 gfp_t gfp_mask,
1938 struct mem_cgroup **memcg, bool oom,
1939 int page_size)
1940 {
1941 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1942 struct mem_cgroup *mem = NULL;
1943 int ret;
1944 int csize = max(CHARGE_SIZE, (unsigned long) page_size);
1945
1946 /*
1947 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1948 * in system level. So, allow to go ahead dying process in addition to
1949 * MEMDIE process.
1950 */
1951 if (unlikely(test_thread_flag(TIF_MEMDIE)
1952 || fatal_signal_pending(current)))
1953 goto bypass;
1954
1955 /*
1956 * We always charge the cgroup the mm_struct belongs to.
1957 * The mm_struct's mem_cgroup changes on task migration if the
1958 * thread group leader migrates. It's possible that mm is not
1959 * set, if so charge the init_mm (happens for pagecache usage).
1960 */
1961 if (!*memcg && !mm)
1962 goto bypass;
1963 again:
1964 if (*memcg) { /* css should be a valid one */
1965 mem = *memcg;
1966 VM_BUG_ON(css_is_removed(&mem->css));
1967 if (mem_cgroup_is_root(mem))
1968 goto done;
1969 if (page_size == PAGE_SIZE && consume_stock(mem))
1970 goto done;
1971 css_get(&mem->css);
1972 } else {
1973 struct task_struct *p;
1974
1975 rcu_read_lock();
1976 p = rcu_dereference(mm->owner);
1977 /*
1978 * Because we don't have task_lock(), "p" can exit.
1979 * In that case, "mem" can point to root or p can be NULL with
1980 * race with swapoff. Then, we have small risk of mis-accouning.
1981 * But such kind of mis-account by race always happens because
1982 * we don't have cgroup_mutex(). It's overkill and we allo that
1983 * small race, here.
1984 * (*) swapoff at el will charge against mm-struct not against
1985 * task-struct. So, mm->owner can be NULL.
1986 */
1987 mem = mem_cgroup_from_task(p);
1988 if (!mem || mem_cgroup_is_root(mem)) {
1989 rcu_read_unlock();
1990 goto done;
1991 }
1992 if (page_size == PAGE_SIZE && consume_stock(mem)) {
1993 /*
1994 * It seems dagerous to access memcg without css_get().
1995 * But considering how consume_stok works, it's not
1996 * necessary. If consume_stock success, some charges
1997 * from this memcg are cached on this cpu. So, we
1998 * don't need to call css_get()/css_tryget() before
1999 * calling consume_stock().
2000 */
2001 rcu_read_unlock();
2002 goto done;
2003 }
2004 /* after here, we may be blocked. we need to get refcnt */
2005 if (!css_tryget(&mem->css)) {
2006 rcu_read_unlock();
2007 goto again;
2008 }
2009 rcu_read_unlock();
2010 }
2011
2012 do {
2013 bool oom_check;
2014
2015 /* If killed, bypass charge */
2016 if (fatal_signal_pending(current)) {
2017 css_put(&mem->css);
2018 goto bypass;
2019 }
2020
2021 oom_check = false;
2022 if (oom && !nr_oom_retries) {
2023 oom_check = true;
2024 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2025 }
2026
2027 ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
2028
2029 switch (ret) {
2030 case CHARGE_OK:
2031 break;
2032 case CHARGE_RETRY: /* not in OOM situation but retry */
2033 csize = page_size;
2034 css_put(&mem->css);
2035 mem = NULL;
2036 goto again;
2037 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2038 css_put(&mem->css);
2039 goto nomem;
2040 case CHARGE_NOMEM: /* OOM routine works */
2041 if (!oom) {
2042 css_put(&mem->css);
2043 goto nomem;
2044 }
2045 /* If oom, we never return -ENOMEM */
2046 nr_oom_retries--;
2047 break;
2048 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2049 css_put(&mem->css);
2050 goto bypass;
2051 }
2052 } while (ret != CHARGE_OK);
2053
2054 if (csize > page_size)
2055 refill_stock(mem, csize - page_size);
2056 css_put(&mem->css);
2057 done:
2058 *memcg = mem;
2059 return 0;
2060 nomem:
2061 *memcg = NULL;
2062 return -ENOMEM;
2063 bypass:
2064 *memcg = NULL;
2065 return 0;
2066 }
2067
2068 /*
2069 * Somemtimes we have to undo a charge we got by try_charge().
2070 * This function is for that and do uncharge, put css's refcnt.
2071 * gotten by try_charge().
2072 */
2073 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2074 unsigned long count)
2075 {
2076 if (!mem_cgroup_is_root(mem)) {
2077 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
2078 if (do_swap_account)
2079 res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
2080 }
2081 }
2082
2083 static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2084 int page_size)
2085 {
2086 __mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
2087 }
2088
2089 /*
2090 * A helper function to get mem_cgroup from ID. must be called under
2091 * rcu_read_lock(). The caller must check css_is_removed() or some if
2092 * it's concern. (dropping refcnt from swap can be called against removed
2093 * memcg.)
2094 */
2095 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2096 {
2097 struct cgroup_subsys_state *css;
2098
2099 /* ID 0 is unused ID */
2100 if (!id)
2101 return NULL;
2102 css = css_lookup(&mem_cgroup_subsys, id);
2103 if (!css)
2104 return NULL;
2105 return container_of(css, struct mem_cgroup, css);
2106 }
2107
2108 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2109 {
2110 struct mem_cgroup *mem = NULL;
2111 struct page_cgroup *pc;
2112 unsigned short id;
2113 swp_entry_t ent;
2114
2115 VM_BUG_ON(!PageLocked(page));
2116
2117 pc = lookup_page_cgroup(page);
2118 lock_page_cgroup(pc);
2119 if (PageCgroupUsed(pc)) {
2120 mem = pc->mem_cgroup;
2121 if (mem && !css_tryget(&mem->css))
2122 mem = NULL;
2123 } else if (PageSwapCache(page)) {
2124 ent.val = page_private(page);
2125 id = lookup_swap_cgroup(ent);
2126 rcu_read_lock();
2127 mem = mem_cgroup_lookup(id);
2128 if (mem && !css_tryget(&mem->css))
2129 mem = NULL;
2130 rcu_read_unlock();
2131 }
2132 unlock_page_cgroup(pc);
2133 return mem;
2134 }
2135
2136 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2137 struct page_cgroup *pc,
2138 enum charge_type ctype,
2139 int page_size)
2140 {
2141 int nr_pages = page_size >> PAGE_SHIFT;
2142
2143 /* try_charge() can return NULL to *memcg, taking care of it. */
2144 if (!mem)
2145 return;
2146
2147 lock_page_cgroup(pc);
2148 if (unlikely(PageCgroupUsed(pc))) {
2149 unlock_page_cgroup(pc);
2150 mem_cgroup_cancel_charge(mem, page_size);
2151 return;
2152 }
2153 /*
2154 * we don't need page_cgroup_lock about tail pages, becase they are not
2155 * accessed by any other context at this point.
2156 */
2157 pc->mem_cgroup = mem;
2158 /*
2159 * We access a page_cgroup asynchronously without lock_page_cgroup().
2160 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2161 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2162 * before USED bit, we need memory barrier here.
2163 * See mem_cgroup_add_lru_list(), etc.
2164 */
2165 smp_wmb();
2166 switch (ctype) {
2167 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2168 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2169 SetPageCgroupCache(pc);
2170 SetPageCgroupUsed(pc);
2171 break;
2172 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2173 ClearPageCgroupCache(pc);
2174 SetPageCgroupUsed(pc);
2175 break;
2176 default:
2177 break;
2178 }
2179
2180 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2181 unlock_page_cgroup(pc);
2182 /*
2183 * "charge_statistics" updated event counter. Then, check it.
2184 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2185 * if they exceeds softlimit.
2186 */
2187 memcg_check_events(mem, pc->page);
2188 }
2189
2190 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2191
2192 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2193 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2194 /*
2195 * Because tail pages are not marked as "used", set it. We're under
2196 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2197 */
2198 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2199 {
2200 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2201 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2202 unsigned long flags;
2203
2204 if (mem_cgroup_disabled())
2205 return;
2206 /*
2207 * We have no races with charge/uncharge but will have races with
2208 * page state accounting.
2209 */
2210 move_lock_page_cgroup(head_pc, &flags);
2211
2212 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2213 smp_wmb(); /* see __commit_charge() */
2214 if (PageCgroupAcctLRU(head_pc)) {
2215 enum lru_list lru;
2216 struct mem_cgroup_per_zone *mz;
2217
2218 /*
2219 * LRU flags cannot be copied because we need to add tail
2220 *.page to LRU by generic call and our hook will be called.
2221 * We hold lru_lock, then, reduce counter directly.
2222 */
2223 lru = page_lru(head);
2224 mz = page_cgroup_zoneinfo(head_pc);
2225 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2226 }
2227 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2228 move_unlock_page_cgroup(head_pc, &flags);
2229 }
2230 #endif
2231
2232 /**
2233 * __mem_cgroup_move_account - move account of the page
2234 * @pc: page_cgroup of the page.
2235 * @from: mem_cgroup which the page is moved from.
2236 * @to: mem_cgroup which the page is moved to. @from != @to.
2237 * @uncharge: whether we should call uncharge and css_put against @from.
2238 *
2239 * The caller must confirm following.
2240 * - page is not on LRU (isolate_page() is useful.)
2241 * - the pc is locked, used, and ->mem_cgroup points to @from.
2242 *
2243 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2244 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2245 * true, this function does "uncharge" from old cgroup, but it doesn't if
2246 * @uncharge is false, so a caller should do "uncharge".
2247 */
2248
2249 static void __mem_cgroup_move_account(struct page_cgroup *pc,
2250 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge,
2251 int charge_size)
2252 {
2253 int nr_pages = charge_size >> PAGE_SHIFT;
2254
2255 VM_BUG_ON(from == to);
2256 VM_BUG_ON(PageLRU(pc->page));
2257 VM_BUG_ON(!page_is_cgroup_locked(pc));
2258 VM_BUG_ON(!PageCgroupUsed(pc));
2259 VM_BUG_ON(pc->mem_cgroup != from);
2260
2261 if (PageCgroupFileMapped(pc)) {
2262 /* Update mapped_file data for mem_cgroup */
2263 preempt_disable();
2264 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2265 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2266 preempt_enable();
2267 }
2268 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2269 if (uncharge)
2270 /* This is not "cancel", but cancel_charge does all we need. */
2271 mem_cgroup_cancel_charge(from, charge_size);
2272
2273 /* caller should have done css_get */
2274 pc->mem_cgroup = to;
2275 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2276 /*
2277 * We charges against "to" which may not have any tasks. Then, "to"
2278 * can be under rmdir(). But in current implementation, caller of
2279 * this function is just force_empty() and move charge, so it's
2280 * garanteed that "to" is never removed. So, we don't check rmdir
2281 * status here.
2282 */
2283 }
2284
2285 /*
2286 * check whether the @pc is valid for moving account and call
2287 * __mem_cgroup_move_account()
2288 */
2289 static int mem_cgroup_move_account(struct page_cgroup *pc,
2290 struct mem_cgroup *from, struct mem_cgroup *to,
2291 bool uncharge, int charge_size)
2292 {
2293 int ret = -EINVAL;
2294 unsigned long flags;
2295 /*
2296 * The page is isolated from LRU. So, collapse function
2297 * will not handle this page. But page splitting can happen.
2298 * Do this check under compound_page_lock(). The caller should
2299 * hold it.
2300 */
2301 if ((charge_size > PAGE_SIZE) && !PageTransHuge(pc->page))
2302 return -EBUSY;
2303
2304 lock_page_cgroup(pc);
2305 if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2306 move_lock_page_cgroup(pc, &flags);
2307 __mem_cgroup_move_account(pc, from, to, uncharge, charge_size);
2308 move_unlock_page_cgroup(pc, &flags);
2309 ret = 0;
2310 }
2311 unlock_page_cgroup(pc);
2312 /*
2313 * check events
2314 */
2315 memcg_check_events(to, pc->page);
2316 memcg_check_events(from, pc->page);
2317 return ret;
2318 }
2319
2320 /*
2321 * move charges to its parent.
2322 */
2323
2324 static int mem_cgroup_move_parent(struct page_cgroup *pc,
2325 struct mem_cgroup *child,
2326 gfp_t gfp_mask)
2327 {
2328 struct page *page = pc->page;
2329 struct cgroup *cg = child->css.cgroup;
2330 struct cgroup *pcg = cg->parent;
2331 struct mem_cgroup *parent;
2332 int page_size = PAGE_SIZE;
2333 unsigned long flags;
2334 int ret;
2335
2336 /* Is ROOT ? */
2337 if (!pcg)
2338 return -EINVAL;
2339
2340 ret = -EBUSY;
2341 if (!get_page_unless_zero(page))
2342 goto out;
2343 if (isolate_lru_page(page))
2344 goto put;
2345
2346 if (PageTransHuge(page))
2347 page_size = HPAGE_SIZE;
2348
2349 parent = mem_cgroup_from_cont(pcg);
2350 ret = __mem_cgroup_try_charge(NULL, gfp_mask,
2351 &parent, false, page_size);
2352 if (ret || !parent)
2353 goto put_back;
2354
2355 if (page_size > PAGE_SIZE)
2356 flags = compound_lock_irqsave(page);
2357
2358 ret = mem_cgroup_move_account(pc, child, parent, true, page_size);
2359 if (ret)
2360 mem_cgroup_cancel_charge(parent, page_size);
2361
2362 if (page_size > PAGE_SIZE)
2363 compound_unlock_irqrestore(page, flags);
2364 put_back:
2365 putback_lru_page(page);
2366 put:
2367 put_page(page);
2368 out:
2369 return ret;
2370 }
2371
2372 /*
2373 * Charge the memory controller for page usage.
2374 * Return
2375 * 0 if the charge was successful
2376 * < 0 if the cgroup is over its limit
2377 */
2378 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2379 gfp_t gfp_mask, enum charge_type ctype)
2380 {
2381 struct mem_cgroup *mem = NULL;
2382 int page_size = PAGE_SIZE;
2383 struct page_cgroup *pc;
2384 bool oom = true;
2385 int ret;
2386
2387 if (PageTransHuge(page)) {
2388 page_size <<= compound_order(page);
2389 VM_BUG_ON(!PageTransHuge(page));
2390 /*
2391 * Never OOM-kill a process for a huge page. The
2392 * fault handler will fall back to regular pages.
2393 */
2394 oom = false;
2395 }
2396
2397 pc = lookup_page_cgroup(page);
2398 /* can happen at boot */
2399 if (unlikely(!pc))
2400 return 0;
2401 prefetchw(pc);
2402
2403 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, oom, page_size);
2404 if (ret || !mem)
2405 return ret;
2406
2407 __mem_cgroup_commit_charge(mem, pc, ctype, page_size);
2408 return 0;
2409 }
2410
2411 int mem_cgroup_newpage_charge(struct page *page,
2412 struct mm_struct *mm, gfp_t gfp_mask)
2413 {
2414 if (mem_cgroup_disabled())
2415 return 0;
2416 /*
2417 * If already mapped, we don't have to account.
2418 * If page cache, page->mapping has address_space.
2419 * But page->mapping may have out-of-use anon_vma pointer,
2420 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2421 * is NULL.
2422 */
2423 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2424 return 0;
2425 if (unlikely(!mm))
2426 mm = &init_mm;
2427 return mem_cgroup_charge_common(page, mm, gfp_mask,
2428 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2429 }
2430
2431 static void
2432 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2433 enum charge_type ctype);
2434
2435 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2436 gfp_t gfp_mask)
2437 {
2438 int ret;
2439
2440 if (mem_cgroup_disabled())
2441 return 0;
2442 if (PageCompound(page))
2443 return 0;
2444 /*
2445 * Corner case handling. This is called from add_to_page_cache()
2446 * in usual. But some FS (shmem) precharges this page before calling it
2447 * and call add_to_page_cache() with GFP_NOWAIT.
2448 *
2449 * For GFP_NOWAIT case, the page may be pre-charged before calling
2450 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2451 * charge twice. (It works but has to pay a bit larger cost.)
2452 * And when the page is SwapCache, it should take swap information
2453 * into account. This is under lock_page() now.
2454 */
2455 if (!(gfp_mask & __GFP_WAIT)) {
2456 struct page_cgroup *pc;
2457
2458 pc = lookup_page_cgroup(page);
2459 if (!pc)
2460 return 0;
2461 lock_page_cgroup(pc);
2462 if (PageCgroupUsed(pc)) {
2463 unlock_page_cgroup(pc);
2464 return 0;
2465 }
2466 unlock_page_cgroup(pc);
2467 }
2468
2469 if (unlikely(!mm))
2470 mm = &init_mm;
2471
2472 if (page_is_file_cache(page))
2473 return mem_cgroup_charge_common(page, mm, gfp_mask,
2474 MEM_CGROUP_CHARGE_TYPE_CACHE);
2475
2476 /* shmem */
2477 if (PageSwapCache(page)) {
2478 struct mem_cgroup *mem = NULL;
2479
2480 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2481 if (!ret)
2482 __mem_cgroup_commit_charge_swapin(page, mem,
2483 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2484 } else
2485 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2486 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2487
2488 return ret;
2489 }
2490
2491 /*
2492 * While swap-in, try_charge -> commit or cancel, the page is locked.
2493 * And when try_charge() successfully returns, one refcnt to memcg without
2494 * struct page_cgroup is acquired. This refcnt will be consumed by
2495 * "commit()" or removed by "cancel()"
2496 */
2497 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2498 struct page *page,
2499 gfp_t mask, struct mem_cgroup **ptr)
2500 {
2501 struct mem_cgroup *mem;
2502 int ret;
2503
2504 if (mem_cgroup_disabled())
2505 return 0;
2506
2507 if (!do_swap_account)
2508 goto charge_cur_mm;
2509 /*
2510 * A racing thread's fault, or swapoff, may have already updated
2511 * the pte, and even removed page from swap cache: in those cases
2512 * do_swap_page()'s pte_same() test will fail; but there's also a
2513 * KSM case which does need to charge the page.
2514 */
2515 if (!PageSwapCache(page))
2516 goto charge_cur_mm;
2517 mem = try_get_mem_cgroup_from_page(page);
2518 if (!mem)
2519 goto charge_cur_mm;
2520 *ptr = mem;
2521 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
2522 css_put(&mem->css);
2523 return ret;
2524 charge_cur_mm:
2525 if (unlikely(!mm))
2526 mm = &init_mm;
2527 return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
2528 }
2529
2530 static void
2531 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2532 enum charge_type ctype)
2533 {
2534 struct page_cgroup *pc;
2535
2536 if (mem_cgroup_disabled())
2537 return;
2538 if (!ptr)
2539 return;
2540 cgroup_exclude_rmdir(&ptr->css);
2541 pc = lookup_page_cgroup(page);
2542 mem_cgroup_lru_del_before_commit_swapcache(page);
2543 __mem_cgroup_commit_charge(ptr, pc, ctype, PAGE_SIZE);
2544 mem_cgroup_lru_add_after_commit_swapcache(page);
2545 /*
2546 * Now swap is on-memory. This means this page may be
2547 * counted both as mem and swap....double count.
2548 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2549 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2550 * may call delete_from_swap_cache() before reach here.
2551 */
2552 if (do_swap_account && PageSwapCache(page)) {
2553 swp_entry_t ent = {.val = page_private(page)};
2554 unsigned short id;
2555 struct mem_cgroup *memcg;
2556
2557 id = swap_cgroup_record(ent, 0);
2558 rcu_read_lock();
2559 memcg = mem_cgroup_lookup(id);
2560 if (memcg) {
2561 /*
2562 * This recorded memcg can be obsolete one. So, avoid
2563 * calling css_tryget
2564 */
2565 if (!mem_cgroup_is_root(memcg))
2566 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2567 mem_cgroup_swap_statistics(memcg, false);
2568 mem_cgroup_put(memcg);
2569 }
2570 rcu_read_unlock();
2571 }
2572 /*
2573 * At swapin, we may charge account against cgroup which has no tasks.
2574 * So, rmdir()->pre_destroy() can be called while we do this charge.
2575 * In that case, we need to call pre_destroy() again. check it here.
2576 */
2577 cgroup_release_and_wakeup_rmdir(&ptr->css);
2578 }
2579
2580 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2581 {
2582 __mem_cgroup_commit_charge_swapin(page, ptr,
2583 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2584 }
2585
2586 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2587 {
2588 if (mem_cgroup_disabled())
2589 return;
2590 if (!mem)
2591 return;
2592 mem_cgroup_cancel_charge(mem, PAGE_SIZE);
2593 }
2594
2595 static void
2596 __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
2597 int page_size)
2598 {
2599 struct memcg_batch_info *batch = NULL;
2600 bool uncharge_memsw = true;
2601 /* If swapout, usage of swap doesn't decrease */
2602 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2603 uncharge_memsw = false;
2604
2605 batch = &current->memcg_batch;
2606 /*
2607 * In usual, we do css_get() when we remember memcg pointer.
2608 * But in this case, we keep res->usage until end of a series of
2609 * uncharges. Then, it's ok to ignore memcg's refcnt.
2610 */
2611 if (!batch->memcg)
2612 batch->memcg = mem;
2613 /*
2614 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2615 * In those cases, all pages freed continously can be expected to be in
2616 * the same cgroup and we have chance to coalesce uncharges.
2617 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2618 * because we want to do uncharge as soon as possible.
2619 */
2620
2621 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2622 goto direct_uncharge;
2623
2624 if (page_size != PAGE_SIZE)
2625 goto direct_uncharge;
2626
2627 /*
2628 * In typical case, batch->memcg == mem. This means we can
2629 * merge a series of uncharges to an uncharge of res_counter.
2630 * If not, we uncharge res_counter ony by one.
2631 */
2632 if (batch->memcg != mem)
2633 goto direct_uncharge;
2634 /* remember freed charge and uncharge it later */
2635 batch->bytes += PAGE_SIZE;
2636 if (uncharge_memsw)
2637 batch->memsw_bytes += PAGE_SIZE;
2638 return;
2639 direct_uncharge:
2640 res_counter_uncharge(&mem->res, page_size);
2641 if (uncharge_memsw)
2642 res_counter_uncharge(&mem->memsw, page_size);
2643 if (unlikely(batch->memcg != mem))
2644 memcg_oom_recover(mem);
2645 return;
2646 }
2647
2648 /*
2649 * uncharge if !page_mapped(page)
2650 */
2651 static struct mem_cgroup *
2652 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2653 {
2654 int count;
2655 struct page_cgroup *pc;
2656 struct mem_cgroup *mem = NULL;
2657 int page_size = PAGE_SIZE;
2658
2659 if (mem_cgroup_disabled())
2660 return NULL;
2661
2662 if (PageSwapCache(page))
2663 return NULL;
2664
2665 if (PageTransHuge(page)) {
2666 page_size <<= compound_order(page);
2667 VM_BUG_ON(!PageTransHuge(page));
2668 }
2669
2670 count = page_size >> PAGE_SHIFT;
2671 /*
2672 * Check if our page_cgroup is valid
2673 */
2674 pc = lookup_page_cgroup(page);
2675 if (unlikely(!pc || !PageCgroupUsed(pc)))
2676 return NULL;
2677
2678 lock_page_cgroup(pc);
2679
2680 mem = pc->mem_cgroup;
2681
2682 if (!PageCgroupUsed(pc))
2683 goto unlock_out;
2684
2685 switch (ctype) {
2686 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2687 case MEM_CGROUP_CHARGE_TYPE_DROP:
2688 /* See mem_cgroup_prepare_migration() */
2689 if (page_mapped(page) || PageCgroupMigration(pc))
2690 goto unlock_out;
2691 break;
2692 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2693 if (!PageAnon(page)) { /* Shared memory */
2694 if (page->mapping && !page_is_file_cache(page))
2695 goto unlock_out;
2696 } else if (page_mapped(page)) /* Anon */
2697 goto unlock_out;
2698 break;
2699 default:
2700 break;
2701 }
2702
2703 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -count);
2704
2705 ClearPageCgroupUsed(pc);
2706 /*
2707 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2708 * freed from LRU. This is safe because uncharged page is expected not
2709 * to be reused (freed soon). Exception is SwapCache, it's handled by
2710 * special functions.
2711 */
2712
2713 unlock_page_cgroup(pc);
2714 /*
2715 * even after unlock, we have mem->res.usage here and this memcg
2716 * will never be freed.
2717 */
2718 memcg_check_events(mem, page);
2719 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2720 mem_cgroup_swap_statistics(mem, true);
2721 mem_cgroup_get(mem);
2722 }
2723 if (!mem_cgroup_is_root(mem))
2724 __do_uncharge(mem, ctype, page_size);
2725
2726 return mem;
2727
2728 unlock_out:
2729 unlock_page_cgroup(pc);
2730 return NULL;
2731 }
2732
2733 void mem_cgroup_uncharge_page(struct page *page)
2734 {
2735 /* early check. */
2736 if (page_mapped(page))
2737 return;
2738 if (page->mapping && !PageAnon(page))
2739 return;
2740 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2741 }
2742
2743 void mem_cgroup_uncharge_cache_page(struct page *page)
2744 {
2745 VM_BUG_ON(page_mapped(page));
2746 VM_BUG_ON(page->mapping);
2747 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2748 }
2749
2750 /*
2751 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2752 * In that cases, pages are freed continuously and we can expect pages
2753 * are in the same memcg. All these calls itself limits the number of
2754 * pages freed at once, then uncharge_start/end() is called properly.
2755 * This may be called prural(2) times in a context,
2756 */
2757
2758 void mem_cgroup_uncharge_start(void)
2759 {
2760 current->memcg_batch.do_batch++;
2761 /* We can do nest. */
2762 if (current->memcg_batch.do_batch == 1) {
2763 current->memcg_batch.memcg = NULL;
2764 current->memcg_batch.bytes = 0;
2765 current->memcg_batch.memsw_bytes = 0;
2766 }
2767 }
2768
2769 void mem_cgroup_uncharge_end(void)
2770 {
2771 struct memcg_batch_info *batch = &current->memcg_batch;
2772
2773 if (!batch->do_batch)
2774 return;
2775
2776 batch->do_batch--;
2777 if (batch->do_batch) /* If stacked, do nothing. */
2778 return;
2779
2780 if (!batch->memcg)
2781 return;
2782 /*
2783 * This "batch->memcg" is valid without any css_get/put etc...
2784 * bacause we hide charges behind us.
2785 */
2786 if (batch->bytes)
2787 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2788 if (batch->memsw_bytes)
2789 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2790 memcg_oom_recover(batch->memcg);
2791 /* forget this pointer (for sanity check) */
2792 batch->memcg = NULL;
2793 }
2794
2795 #ifdef CONFIG_SWAP
2796 /*
2797 * called after __delete_from_swap_cache() and drop "page" account.
2798 * memcg information is recorded to swap_cgroup of "ent"
2799 */
2800 void
2801 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2802 {
2803 struct mem_cgroup *memcg;
2804 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2805
2806 if (!swapout) /* this was a swap cache but the swap is unused ! */
2807 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2808
2809 memcg = __mem_cgroup_uncharge_common(page, ctype);
2810
2811 /*
2812 * record memcg information, if swapout && memcg != NULL,
2813 * mem_cgroup_get() was called in uncharge().
2814 */
2815 if (do_swap_account && swapout && memcg)
2816 swap_cgroup_record(ent, css_id(&memcg->css));
2817 }
2818 #endif
2819
2820 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2821 /*
2822 * called from swap_entry_free(). remove record in swap_cgroup and
2823 * uncharge "memsw" account.
2824 */
2825 void mem_cgroup_uncharge_swap(swp_entry_t ent)
2826 {
2827 struct mem_cgroup *memcg;
2828 unsigned short id;
2829
2830 if (!do_swap_account)
2831 return;
2832
2833 id = swap_cgroup_record(ent, 0);
2834 rcu_read_lock();
2835 memcg = mem_cgroup_lookup(id);
2836 if (memcg) {
2837 /*
2838 * We uncharge this because swap is freed.
2839 * This memcg can be obsolete one. We avoid calling css_tryget
2840 */
2841 if (!mem_cgroup_is_root(memcg))
2842 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2843 mem_cgroup_swap_statistics(memcg, false);
2844 mem_cgroup_put(memcg);
2845 }
2846 rcu_read_unlock();
2847 }
2848
2849 /**
2850 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2851 * @entry: swap entry to be moved
2852 * @from: mem_cgroup which the entry is moved from
2853 * @to: mem_cgroup which the entry is moved to
2854 * @need_fixup: whether we should fixup res_counters and refcounts.
2855 *
2856 * It succeeds only when the swap_cgroup's record for this entry is the same
2857 * as the mem_cgroup's id of @from.
2858 *
2859 * Returns 0 on success, -EINVAL on failure.
2860 *
2861 * The caller must have charged to @to, IOW, called res_counter_charge() about
2862 * both res and memsw, and called css_get().
2863 */
2864 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2865 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2866 {
2867 unsigned short old_id, new_id;
2868
2869 old_id = css_id(&from->css);
2870 new_id = css_id(&to->css);
2871
2872 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2873 mem_cgroup_swap_statistics(from, false);
2874 mem_cgroup_swap_statistics(to, true);
2875 /*
2876 * This function is only called from task migration context now.
2877 * It postpones res_counter and refcount handling till the end
2878 * of task migration(mem_cgroup_clear_mc()) for performance
2879 * improvement. But we cannot postpone mem_cgroup_get(to)
2880 * because if the process that has been moved to @to does
2881 * swap-in, the refcount of @to might be decreased to 0.
2882 */
2883 mem_cgroup_get(to);
2884 if (need_fixup) {
2885 if (!mem_cgroup_is_root(from))
2886 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2887 mem_cgroup_put(from);
2888 /*
2889 * we charged both to->res and to->memsw, so we should
2890 * uncharge to->res.
2891 */
2892 if (!mem_cgroup_is_root(to))
2893 res_counter_uncharge(&to->res, PAGE_SIZE);
2894 }
2895 return 0;
2896 }
2897 return -EINVAL;
2898 }
2899 #else
2900 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2901 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2902 {
2903 return -EINVAL;
2904 }
2905 #endif
2906
2907 /*
2908 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2909 * page belongs to.
2910 */
2911 int mem_cgroup_prepare_migration(struct page *page,
2912 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
2913 {
2914 struct page_cgroup *pc;
2915 struct mem_cgroup *mem = NULL;
2916 enum charge_type ctype;
2917 int ret = 0;
2918
2919 VM_BUG_ON(PageTransHuge(page));
2920 if (mem_cgroup_disabled())
2921 return 0;
2922
2923 pc = lookup_page_cgroup(page);
2924 lock_page_cgroup(pc);
2925 if (PageCgroupUsed(pc)) {
2926 mem = pc->mem_cgroup;
2927 css_get(&mem->css);
2928 /*
2929 * At migrating an anonymous page, its mapcount goes down
2930 * to 0 and uncharge() will be called. But, even if it's fully
2931 * unmapped, migration may fail and this page has to be
2932 * charged again. We set MIGRATION flag here and delay uncharge
2933 * until end_migration() is called
2934 *
2935 * Corner Case Thinking
2936 * A)
2937 * When the old page was mapped as Anon and it's unmap-and-freed
2938 * while migration was ongoing.
2939 * If unmap finds the old page, uncharge() of it will be delayed
2940 * until end_migration(). If unmap finds a new page, it's
2941 * uncharged when it make mapcount to be 1->0. If unmap code
2942 * finds swap_migration_entry, the new page will not be mapped
2943 * and end_migration() will find it(mapcount==0).
2944 *
2945 * B)
2946 * When the old page was mapped but migraion fails, the kernel
2947 * remaps it. A charge for it is kept by MIGRATION flag even
2948 * if mapcount goes down to 0. We can do remap successfully
2949 * without charging it again.
2950 *
2951 * C)
2952 * The "old" page is under lock_page() until the end of
2953 * migration, so, the old page itself will not be swapped-out.
2954 * If the new page is swapped out before end_migraton, our
2955 * hook to usual swap-out path will catch the event.
2956 */
2957 if (PageAnon(page))
2958 SetPageCgroupMigration(pc);
2959 }
2960 unlock_page_cgroup(pc);
2961 /*
2962 * If the page is not charged at this point,
2963 * we return here.
2964 */
2965 if (!mem)
2966 return 0;
2967
2968 *ptr = mem;
2969 ret = __mem_cgroup_try_charge(NULL, gfp_mask, ptr, false, PAGE_SIZE);
2970 css_put(&mem->css);/* drop extra refcnt */
2971 if (ret || *ptr == NULL) {
2972 if (PageAnon(page)) {
2973 lock_page_cgroup(pc);
2974 ClearPageCgroupMigration(pc);
2975 unlock_page_cgroup(pc);
2976 /*
2977 * The old page may be fully unmapped while we kept it.
2978 */
2979 mem_cgroup_uncharge_page(page);
2980 }
2981 return -ENOMEM;
2982 }
2983 /*
2984 * We charge new page before it's used/mapped. So, even if unlock_page()
2985 * is called before end_migration, we can catch all events on this new
2986 * page. In the case new page is migrated but not remapped, new page's
2987 * mapcount will be finally 0 and we call uncharge in end_migration().
2988 */
2989 pc = lookup_page_cgroup(newpage);
2990 if (PageAnon(page))
2991 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2992 else if (page_is_file_cache(page))
2993 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2994 else
2995 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2996 __mem_cgroup_commit_charge(mem, pc, ctype, PAGE_SIZE);
2997 return ret;
2998 }
2999
3000 /* remove redundant charge if migration failed*/
3001 void mem_cgroup_end_migration(struct mem_cgroup *mem,
3002 struct page *oldpage, struct page *newpage, bool migration_ok)
3003 {
3004 struct page *used, *unused;
3005 struct page_cgroup *pc;
3006
3007 if (!mem)
3008 return;
3009 /* blocks rmdir() */
3010 cgroup_exclude_rmdir(&mem->css);
3011 if (!migration_ok) {
3012 used = oldpage;
3013 unused = newpage;
3014 } else {
3015 used = newpage;
3016 unused = oldpage;
3017 }
3018 /*
3019 * We disallowed uncharge of pages under migration because mapcount
3020 * of the page goes down to zero, temporarly.
3021 * Clear the flag and check the page should be charged.
3022 */
3023 pc = lookup_page_cgroup(oldpage);
3024 lock_page_cgroup(pc);
3025 ClearPageCgroupMigration(pc);
3026 unlock_page_cgroup(pc);
3027
3028 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3029
3030 /*
3031 * If a page is a file cache, radix-tree replacement is very atomic
3032 * and we can skip this check. When it was an Anon page, its mapcount
3033 * goes down to 0. But because we added MIGRATION flage, it's not
3034 * uncharged yet. There are several case but page->mapcount check
3035 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3036 * check. (see prepare_charge() also)
3037 */
3038 if (PageAnon(used))
3039 mem_cgroup_uncharge_page(used);
3040 /*
3041 * At migration, we may charge account against cgroup which has no
3042 * tasks.
3043 * So, rmdir()->pre_destroy() can be called while we do this charge.
3044 * In that case, we need to call pre_destroy() again. check it here.
3045 */
3046 cgroup_release_and_wakeup_rmdir(&mem->css);
3047 }
3048
3049 /*
3050 * A call to try to shrink memory usage on charge failure at shmem's swapin.
3051 * Calling hierarchical_reclaim is not enough because we should update
3052 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3053 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3054 * not from the memcg which this page would be charged to.
3055 * try_charge_swapin does all of these works properly.
3056 */
3057 int mem_cgroup_shmem_charge_fallback(struct page *page,
3058 struct mm_struct *mm,
3059 gfp_t gfp_mask)
3060 {
3061 struct mem_cgroup *mem = NULL;
3062 int ret;
3063
3064 if (mem_cgroup_disabled())
3065 return 0;
3066
3067 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3068 if (!ret)
3069 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3070
3071 return ret;
3072 }
3073
3074 static DEFINE_MUTEX(set_limit_mutex);
3075
3076 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3077 unsigned long long val)
3078 {
3079 int retry_count;
3080 u64 memswlimit, memlimit;
3081 int ret = 0;
3082 int children = mem_cgroup_count_children(memcg);
3083 u64 curusage, oldusage;
3084 int enlarge;
3085
3086 /*
3087 * For keeping hierarchical_reclaim simple, how long we should retry
3088 * is depends on callers. We set our retry-count to be function
3089 * of # of children which we should visit in this loop.
3090 */
3091 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3092
3093 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3094
3095 enlarge = 0;
3096 while (retry_count) {
3097 if (signal_pending(current)) {
3098 ret = -EINTR;
3099 break;
3100 }
3101 /*
3102 * Rather than hide all in some function, I do this in
3103 * open coded manner. You see what this really does.
3104 * We have to guarantee mem->res.limit < mem->memsw.limit.
3105 */
3106 mutex_lock(&set_limit_mutex);
3107 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3108 if (memswlimit < val) {
3109 ret = -EINVAL;
3110 mutex_unlock(&set_limit_mutex);
3111 break;
3112 }
3113
3114 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3115 if (memlimit < val)
3116 enlarge = 1;
3117
3118 ret = res_counter_set_limit(&memcg->res, val);
3119 if (!ret) {
3120 if (memswlimit == val)
3121 memcg->memsw_is_minimum = true;
3122 else
3123 memcg->memsw_is_minimum = false;
3124 }
3125 mutex_unlock(&set_limit_mutex);
3126
3127 if (!ret)
3128 break;
3129
3130 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3131 MEM_CGROUP_RECLAIM_SHRINK);
3132 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3133 /* Usage is reduced ? */
3134 if (curusage >= oldusage)
3135 retry_count--;
3136 else
3137 oldusage = curusage;
3138 }
3139 if (!ret && enlarge)
3140 memcg_oom_recover(memcg);
3141
3142 return ret;
3143 }
3144
3145 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3146 unsigned long long val)
3147 {
3148 int retry_count;
3149 u64 memlimit, memswlimit, oldusage, curusage;
3150 int children = mem_cgroup_count_children(memcg);
3151 int ret = -EBUSY;
3152 int enlarge = 0;
3153
3154 /* see mem_cgroup_resize_res_limit */
3155 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3156 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3157 while (retry_count) {
3158 if (signal_pending(current)) {
3159 ret = -EINTR;
3160 break;
3161 }
3162 /*
3163 * Rather than hide all in some function, I do this in
3164 * open coded manner. You see what this really does.
3165 * We have to guarantee mem->res.limit < mem->memsw.limit.
3166 */
3167 mutex_lock(&set_limit_mutex);
3168 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3169 if (memlimit > val) {
3170 ret = -EINVAL;
3171 mutex_unlock(&set_limit_mutex);
3172 break;
3173 }
3174 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3175 if (memswlimit < val)
3176 enlarge = 1;
3177 ret = res_counter_set_limit(&memcg->memsw, val);
3178 if (!ret) {
3179 if (memlimit == val)
3180 memcg->memsw_is_minimum = true;
3181 else
3182 memcg->memsw_is_minimum = false;
3183 }
3184 mutex_unlock(&set_limit_mutex);
3185
3186 if (!ret)
3187 break;
3188
3189 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3190 MEM_CGROUP_RECLAIM_NOSWAP |
3191 MEM_CGROUP_RECLAIM_SHRINK);
3192 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3193 /* Usage is reduced ? */
3194 if (curusage >= oldusage)
3195 retry_count--;
3196 else
3197 oldusage = curusage;
3198 }
3199 if (!ret && enlarge)
3200 memcg_oom_recover(memcg);
3201 return ret;
3202 }
3203
3204 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3205 gfp_t gfp_mask)
3206 {
3207 unsigned long nr_reclaimed = 0;
3208 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3209 unsigned long reclaimed;
3210 int loop = 0;
3211 struct mem_cgroup_tree_per_zone *mctz;
3212 unsigned long long excess;
3213
3214 if (order > 0)
3215 return 0;
3216
3217 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3218 /*
3219 * This loop can run a while, specially if mem_cgroup's continuously
3220 * keep exceeding their soft limit and putting the system under
3221 * pressure
3222 */
3223 do {
3224 if (next_mz)
3225 mz = next_mz;
3226 else
3227 mz = mem_cgroup_largest_soft_limit_node(mctz);
3228 if (!mz)
3229 break;
3230
3231 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3232 gfp_mask,
3233 MEM_CGROUP_RECLAIM_SOFT);
3234 nr_reclaimed += reclaimed;
3235 spin_lock(&mctz->lock);
3236
3237 /*
3238 * If we failed to reclaim anything from this memory cgroup
3239 * it is time to move on to the next cgroup
3240 */
3241 next_mz = NULL;
3242 if (!reclaimed) {
3243 do {
3244 /*
3245 * Loop until we find yet another one.
3246 *
3247 * By the time we get the soft_limit lock
3248 * again, someone might have aded the
3249 * group back on the RB tree. Iterate to
3250 * make sure we get a different mem.
3251 * mem_cgroup_largest_soft_limit_node returns
3252 * NULL if no other cgroup is present on
3253 * the tree
3254 */
3255 next_mz =
3256 __mem_cgroup_largest_soft_limit_node(mctz);
3257 if (next_mz == mz) {
3258 css_put(&next_mz->mem->css);
3259 next_mz = NULL;
3260 } else /* next_mz == NULL or other memcg */
3261 break;
3262 } while (1);
3263 }
3264 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3265 excess = res_counter_soft_limit_excess(&mz->mem->res);
3266 /*
3267 * One school of thought says that we should not add
3268 * back the node to the tree if reclaim returns 0.
3269 * But our reclaim could return 0, simply because due
3270 * to priority we are exposing a smaller subset of
3271 * memory to reclaim from. Consider this as a longer
3272 * term TODO.
3273 */
3274 /* If excess == 0, no tree ops */
3275 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3276 spin_unlock(&mctz->lock);
3277 css_put(&mz->mem->css);
3278 loop++;
3279 /*
3280 * Could not reclaim anything and there are no more
3281 * mem cgroups to try or we seem to be looping without
3282 * reclaiming anything.
3283 */
3284 if (!nr_reclaimed &&
3285 (next_mz == NULL ||
3286 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3287 break;
3288 } while (!nr_reclaimed);
3289 if (next_mz)
3290 css_put(&next_mz->mem->css);
3291 return nr_reclaimed;
3292 }
3293
3294 /*
3295 * This routine traverse page_cgroup in given list and drop them all.
3296 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3297 */
3298 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3299 int node, int zid, enum lru_list lru)
3300 {
3301 struct zone *zone;
3302 struct mem_cgroup_per_zone *mz;
3303 struct page_cgroup *pc, *busy;
3304 unsigned long flags, loop;
3305 struct list_head *list;
3306 int ret = 0;
3307
3308 zone = &NODE_DATA(node)->node_zones[zid];
3309 mz = mem_cgroup_zoneinfo(mem, node, zid);
3310 list = &mz->lists[lru];
3311
3312 loop = MEM_CGROUP_ZSTAT(mz, lru);
3313 /* give some margin against EBUSY etc...*/
3314 loop += 256;
3315 busy = NULL;
3316 while (loop--) {
3317 ret = 0;
3318 spin_lock_irqsave(&zone->lru_lock, flags);
3319 if (list_empty(list)) {
3320 spin_unlock_irqrestore(&zone->lru_lock, flags);
3321 break;
3322 }
3323 pc = list_entry(list->prev, struct page_cgroup, lru);
3324 if (busy == pc) {
3325 list_move(&pc->lru, list);
3326 busy = NULL;
3327 spin_unlock_irqrestore(&zone->lru_lock, flags);
3328 continue;
3329 }
3330 spin_unlock_irqrestore(&zone->lru_lock, flags);
3331
3332 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
3333 if (ret == -ENOMEM)
3334 break;
3335
3336 if (ret == -EBUSY || ret == -EINVAL) {
3337 /* found lock contention or "pc" is obsolete. */
3338 busy = pc;
3339 cond_resched();
3340 } else
3341 busy = NULL;
3342 }
3343
3344 if (!ret && !list_empty(list))
3345 return -EBUSY;
3346 return ret;
3347 }
3348
3349 /*
3350 * make mem_cgroup's charge to be 0 if there is no task.
3351 * This enables deleting this mem_cgroup.
3352 */
3353 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3354 {
3355 int ret;
3356 int node, zid, shrink;
3357 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3358 struct cgroup *cgrp = mem->css.cgroup;
3359
3360 css_get(&mem->css);
3361
3362 shrink = 0;
3363 /* should free all ? */
3364 if (free_all)
3365 goto try_to_free;
3366 move_account:
3367 do {
3368 ret = -EBUSY;
3369 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3370 goto out;
3371 ret = -EINTR;
3372 if (signal_pending(current))
3373 goto out;
3374 /* This is for making all *used* pages to be on LRU. */
3375 lru_add_drain_all();
3376 drain_all_stock_sync();
3377 ret = 0;
3378 mem_cgroup_start_move(mem);
3379 for_each_node_state(node, N_HIGH_MEMORY) {
3380 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3381 enum lru_list l;
3382 for_each_lru(l) {
3383 ret = mem_cgroup_force_empty_list(mem,
3384 node, zid, l);
3385 if (ret)
3386 break;
3387 }
3388 }
3389 if (ret)
3390 break;
3391 }
3392 mem_cgroup_end_move(mem);
3393 memcg_oom_recover(mem);
3394 /* it seems parent cgroup doesn't have enough mem */
3395 if (ret == -ENOMEM)
3396 goto try_to_free;
3397 cond_resched();
3398 /* "ret" should also be checked to ensure all lists are empty. */
3399 } while (mem->res.usage > 0 || ret);
3400 out:
3401 css_put(&mem->css);
3402 return ret;
3403
3404 try_to_free:
3405 /* returns EBUSY if there is a task or if we come here twice. */
3406 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3407 ret = -EBUSY;
3408 goto out;
3409 }
3410 /* we call try-to-free pages for make this cgroup empty */
3411 lru_add_drain_all();
3412 /* try to free all pages in this cgroup */
3413 shrink = 1;
3414 while (nr_retries && mem->res.usage > 0) {
3415 int progress;
3416
3417 if (signal_pending(current)) {
3418 ret = -EINTR;
3419 goto out;
3420 }
3421 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3422 false, get_swappiness(mem));
3423 if (!progress) {
3424 nr_retries--;
3425 /* maybe some writeback is necessary */
3426 congestion_wait(BLK_RW_ASYNC, HZ/10);
3427 }
3428
3429 }
3430 lru_add_drain();
3431 /* try move_account...there may be some *locked* pages. */
3432 goto move_account;
3433 }
3434
3435 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3436 {
3437 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3438 }
3439
3440
3441 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3442 {
3443 return mem_cgroup_from_cont(cont)->use_hierarchy;
3444 }
3445
3446 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3447 u64 val)
3448 {
3449 int retval = 0;
3450 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3451 struct cgroup *parent = cont->parent;
3452 struct mem_cgroup *parent_mem = NULL;
3453
3454 if (parent)
3455 parent_mem = mem_cgroup_from_cont(parent);
3456
3457 cgroup_lock();
3458 /*
3459 * If parent's use_hierarchy is set, we can't make any modifications
3460 * in the child subtrees. If it is unset, then the change can
3461 * occur, provided the current cgroup has no children.
3462 *
3463 * For the root cgroup, parent_mem is NULL, we allow value to be
3464 * set if there are no children.
3465 */
3466 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3467 (val == 1 || val == 0)) {
3468 if (list_empty(&cont->children))
3469 mem->use_hierarchy = val;
3470 else
3471 retval = -EBUSY;
3472 } else
3473 retval = -EINVAL;
3474 cgroup_unlock();
3475
3476 return retval;
3477 }
3478
3479
3480 static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3481 enum mem_cgroup_stat_index idx)
3482 {
3483 struct mem_cgroup *iter;
3484 s64 val = 0;
3485
3486 /* each per cpu's value can be minus.Then, use s64 */
3487 for_each_mem_cgroup_tree(iter, mem)
3488 val += mem_cgroup_read_stat(iter, idx);
3489
3490 if (val < 0) /* race ? */
3491 val = 0;
3492 return val;
3493 }
3494
3495 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3496 {
3497 u64 val;
3498
3499 if (!mem_cgroup_is_root(mem)) {
3500 if (!swap)
3501 return res_counter_read_u64(&mem->res, RES_USAGE);
3502 else
3503 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3504 }
3505
3506 val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
3507 val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3508
3509 if (swap)
3510 val += mem_cgroup_get_recursive_idx_stat(mem,
3511 MEM_CGROUP_STAT_SWAPOUT);
3512
3513 return val << PAGE_SHIFT;
3514 }
3515
3516 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3517 {
3518 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3519 u64 val;
3520 int type, name;
3521
3522 type = MEMFILE_TYPE(cft->private);
3523 name = MEMFILE_ATTR(cft->private);
3524 switch (type) {
3525 case _MEM:
3526 if (name == RES_USAGE)
3527 val = mem_cgroup_usage(mem, false);
3528 else
3529 val = res_counter_read_u64(&mem->res, name);
3530 break;
3531 case _MEMSWAP:
3532 if (name == RES_USAGE)
3533 val = mem_cgroup_usage(mem, true);
3534 else
3535 val = res_counter_read_u64(&mem->memsw, name);
3536 break;
3537 default:
3538 BUG();
3539 break;
3540 }
3541 return val;
3542 }
3543 /*
3544 * The user of this function is...
3545 * RES_LIMIT.
3546 */
3547 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3548 const char *buffer)
3549 {
3550 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3551 int type, name;
3552 unsigned long long val;
3553 int ret;
3554
3555 type = MEMFILE_TYPE(cft->private);
3556 name = MEMFILE_ATTR(cft->private);
3557 switch (name) {
3558 case RES_LIMIT:
3559 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3560 ret = -EINVAL;
3561 break;
3562 }
3563 /* This function does all necessary parse...reuse it */
3564 ret = res_counter_memparse_write_strategy(buffer, &val);
3565 if (ret)
3566 break;
3567 if (type == _MEM)
3568 ret = mem_cgroup_resize_limit(memcg, val);
3569 else
3570 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3571 break;
3572 case RES_SOFT_LIMIT:
3573 ret = res_counter_memparse_write_strategy(buffer, &val);
3574 if (ret)
3575 break;
3576 /*
3577 * For memsw, soft limits are hard to implement in terms
3578 * of semantics, for now, we support soft limits for
3579 * control without swap
3580 */
3581 if (type == _MEM)
3582 ret = res_counter_set_soft_limit(&memcg->res, val);
3583 else
3584 ret = -EINVAL;
3585 break;
3586 default:
3587 ret = -EINVAL; /* should be BUG() ? */
3588 break;
3589 }
3590 return ret;
3591 }
3592
3593 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3594 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3595 {
3596 struct cgroup *cgroup;
3597 unsigned long long min_limit, min_memsw_limit, tmp;
3598
3599 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3600 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3601 cgroup = memcg->css.cgroup;
3602 if (!memcg->use_hierarchy)
3603 goto out;
3604
3605 while (cgroup->parent) {
3606 cgroup = cgroup->parent;
3607 memcg = mem_cgroup_from_cont(cgroup);
3608 if (!memcg->use_hierarchy)
3609 break;
3610 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3611 min_limit = min(min_limit, tmp);
3612 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3613 min_memsw_limit = min(min_memsw_limit, tmp);
3614 }
3615 out:
3616 *mem_limit = min_limit;
3617 *memsw_limit = min_memsw_limit;
3618 return;
3619 }
3620
3621 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3622 {
3623 struct mem_cgroup *mem;
3624 int type, name;
3625
3626 mem = mem_cgroup_from_cont(cont);
3627 type = MEMFILE_TYPE(event);
3628 name = MEMFILE_ATTR(event);
3629 switch (name) {
3630 case RES_MAX_USAGE:
3631 if (type == _MEM)
3632 res_counter_reset_max(&mem->res);
3633 else
3634 res_counter_reset_max(&mem->memsw);
3635 break;
3636 case RES_FAILCNT:
3637 if (type == _MEM)
3638 res_counter_reset_failcnt(&mem->res);
3639 else
3640 res_counter_reset_failcnt(&mem->memsw);
3641 break;
3642 }
3643
3644 return 0;
3645 }
3646
3647 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3648 struct cftype *cft)
3649 {
3650 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3651 }
3652
3653 #ifdef CONFIG_MMU
3654 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3655 struct cftype *cft, u64 val)
3656 {
3657 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3658
3659 if (val >= (1 << NR_MOVE_TYPE))
3660 return -EINVAL;
3661 /*
3662 * We check this value several times in both in can_attach() and
3663 * attach(), so we need cgroup lock to prevent this value from being
3664 * inconsistent.
3665 */
3666 cgroup_lock();
3667 mem->move_charge_at_immigrate = val;
3668 cgroup_unlock();
3669
3670 return 0;
3671 }
3672 #else
3673 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3674 struct cftype *cft, u64 val)
3675 {
3676 return -ENOSYS;
3677 }
3678 #endif
3679
3680
3681 /* For read statistics */
3682 enum {
3683 MCS_CACHE,
3684 MCS_RSS,
3685 MCS_FILE_MAPPED,
3686 MCS_PGPGIN,
3687 MCS_PGPGOUT,
3688 MCS_SWAP,
3689 MCS_INACTIVE_ANON,
3690 MCS_ACTIVE_ANON,
3691 MCS_INACTIVE_FILE,
3692 MCS_ACTIVE_FILE,
3693 MCS_UNEVICTABLE,
3694 NR_MCS_STAT,
3695 };
3696
3697 struct mcs_total_stat {
3698 s64 stat[NR_MCS_STAT];
3699 };
3700
3701 struct {
3702 char *local_name;
3703 char *total_name;
3704 } memcg_stat_strings[NR_MCS_STAT] = {
3705 {"cache", "total_cache"},
3706 {"rss", "total_rss"},
3707 {"mapped_file", "total_mapped_file"},
3708 {"pgpgin", "total_pgpgin"},
3709 {"pgpgout", "total_pgpgout"},
3710 {"swap", "total_swap"},
3711 {"inactive_anon", "total_inactive_anon"},
3712 {"active_anon", "total_active_anon"},
3713 {"inactive_file", "total_inactive_file"},
3714 {"active_file", "total_active_file"},
3715 {"unevictable", "total_unevictable"}
3716 };
3717
3718
3719 static void
3720 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3721 {
3722 s64 val;
3723
3724 /* per cpu stat */
3725 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3726 s->stat[MCS_CACHE] += val * PAGE_SIZE;
3727 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3728 s->stat[MCS_RSS] += val * PAGE_SIZE;
3729 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3730 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3731 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3732 s->stat[MCS_PGPGIN] += val;
3733 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3734 s->stat[MCS_PGPGOUT] += val;
3735 if (do_swap_account) {
3736 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3737 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3738 }
3739
3740 /* per zone stat */
3741 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3742 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3743 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3744 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3745 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3746 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3747 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3748 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3749 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3750 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3751 }
3752
3753 static void
3754 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3755 {
3756 struct mem_cgroup *iter;
3757
3758 for_each_mem_cgroup_tree(iter, mem)
3759 mem_cgroup_get_local_stat(iter, s);
3760 }
3761
3762 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3763 struct cgroup_map_cb *cb)
3764 {
3765 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3766 struct mcs_total_stat mystat;
3767 int i;
3768
3769 memset(&mystat, 0, sizeof(mystat));
3770 mem_cgroup_get_local_stat(mem_cont, &mystat);
3771
3772 for (i = 0; i < NR_MCS_STAT; i++) {
3773 if (i == MCS_SWAP && !do_swap_account)
3774 continue;
3775 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3776 }
3777
3778 /* Hierarchical information */
3779 {
3780 unsigned long long limit, memsw_limit;
3781 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3782 cb->fill(cb, "hierarchical_memory_limit", limit);
3783 if (do_swap_account)
3784 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3785 }
3786
3787 memset(&mystat, 0, sizeof(mystat));
3788 mem_cgroup_get_total_stat(mem_cont, &mystat);
3789 for (i = 0; i < NR_MCS_STAT; i++) {
3790 if (i == MCS_SWAP && !do_swap_account)
3791 continue;
3792 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3793 }
3794
3795 #ifdef CONFIG_DEBUG_VM
3796 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3797
3798 {
3799 int nid, zid;
3800 struct mem_cgroup_per_zone *mz;
3801 unsigned long recent_rotated[2] = {0, 0};
3802 unsigned long recent_scanned[2] = {0, 0};
3803
3804 for_each_online_node(nid)
3805 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3806 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3807
3808 recent_rotated[0] +=
3809 mz->reclaim_stat.recent_rotated[0];
3810 recent_rotated[1] +=
3811 mz->reclaim_stat.recent_rotated[1];
3812 recent_scanned[0] +=
3813 mz->reclaim_stat.recent_scanned[0];
3814 recent_scanned[1] +=
3815 mz->reclaim_stat.recent_scanned[1];
3816 }
3817 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3818 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3819 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3820 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3821 }
3822 #endif
3823
3824 return 0;
3825 }
3826
3827 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3828 {
3829 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3830
3831 return get_swappiness(memcg);
3832 }
3833
3834 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3835 u64 val)
3836 {
3837 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3838 struct mem_cgroup *parent;
3839
3840 if (val > 100)
3841 return -EINVAL;
3842
3843 if (cgrp->parent == NULL)
3844 return -EINVAL;
3845
3846 parent = mem_cgroup_from_cont(cgrp->parent);
3847
3848 cgroup_lock();
3849
3850 /* If under hierarchy, only empty-root can set this value */
3851 if ((parent->use_hierarchy) ||
3852 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3853 cgroup_unlock();
3854 return -EINVAL;
3855 }
3856
3857 spin_lock(&memcg->reclaim_param_lock);
3858 memcg->swappiness = val;
3859 spin_unlock(&memcg->reclaim_param_lock);
3860
3861 cgroup_unlock();
3862
3863 return 0;
3864 }
3865
3866 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3867 {
3868 struct mem_cgroup_threshold_ary *t;
3869 u64 usage;
3870 int i;
3871
3872 rcu_read_lock();
3873 if (!swap)
3874 t = rcu_dereference(memcg->thresholds.primary);
3875 else
3876 t = rcu_dereference(memcg->memsw_thresholds.primary);
3877
3878 if (!t)
3879 goto unlock;
3880
3881 usage = mem_cgroup_usage(memcg, swap);
3882
3883 /*
3884 * current_threshold points to threshold just below usage.
3885 * If it's not true, a threshold was crossed after last
3886 * call of __mem_cgroup_threshold().
3887 */
3888 i = t->current_threshold;
3889
3890 /*
3891 * Iterate backward over array of thresholds starting from
3892 * current_threshold and check if a threshold is crossed.
3893 * If none of thresholds below usage is crossed, we read
3894 * only one element of the array here.
3895 */
3896 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3897 eventfd_signal(t->entries[i].eventfd, 1);
3898
3899 /* i = current_threshold + 1 */
3900 i++;
3901
3902 /*
3903 * Iterate forward over array of thresholds starting from
3904 * current_threshold+1 and check if a threshold is crossed.
3905 * If none of thresholds above usage is crossed, we read
3906 * only one element of the array here.
3907 */
3908 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3909 eventfd_signal(t->entries[i].eventfd, 1);
3910
3911 /* Update current_threshold */
3912 t->current_threshold = i - 1;
3913 unlock:
3914 rcu_read_unlock();
3915 }
3916
3917 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3918 {
3919 while (memcg) {
3920 __mem_cgroup_threshold(memcg, false);
3921 if (do_swap_account)
3922 __mem_cgroup_threshold(memcg, true);
3923
3924 memcg = parent_mem_cgroup(memcg);
3925 }
3926 }
3927
3928 static int compare_thresholds(const void *a, const void *b)
3929 {
3930 const struct mem_cgroup_threshold *_a = a;
3931 const struct mem_cgroup_threshold *_b = b;
3932
3933 return _a->threshold - _b->threshold;
3934 }
3935
3936 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
3937 {
3938 struct mem_cgroup_eventfd_list *ev;
3939
3940 list_for_each_entry(ev, &mem->oom_notify, list)
3941 eventfd_signal(ev->eventfd, 1);
3942 return 0;
3943 }
3944
3945 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3946 {
3947 struct mem_cgroup *iter;
3948
3949 for_each_mem_cgroup_tree(iter, mem)
3950 mem_cgroup_oom_notify_cb(iter);
3951 }
3952
3953 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3954 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3955 {
3956 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3957 struct mem_cgroup_thresholds *thresholds;
3958 struct mem_cgroup_threshold_ary *new;
3959 int type = MEMFILE_TYPE(cft->private);
3960 u64 threshold, usage;
3961 int i, size, ret;
3962
3963 ret = res_counter_memparse_write_strategy(args, &threshold);
3964 if (ret)
3965 return ret;
3966
3967 mutex_lock(&memcg->thresholds_lock);
3968
3969 if (type == _MEM)
3970 thresholds = &memcg->thresholds;
3971 else if (type == _MEMSWAP)
3972 thresholds = &memcg->memsw_thresholds;
3973 else
3974 BUG();
3975
3976 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3977
3978 /* Check if a threshold crossed before adding a new one */
3979 if (thresholds->primary)
3980 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3981
3982 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3983
3984 /* Allocate memory for new array of thresholds */
3985 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3986 GFP_KERNEL);
3987 if (!new) {
3988 ret = -ENOMEM;
3989 goto unlock;
3990 }
3991 new->size = size;
3992
3993 /* Copy thresholds (if any) to new array */
3994 if (thresholds->primary) {
3995 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3996 sizeof(struct mem_cgroup_threshold));
3997 }
3998
3999 /* Add new threshold */
4000 new->entries[size - 1].eventfd = eventfd;
4001 new->entries[size - 1].threshold = threshold;
4002
4003 /* Sort thresholds. Registering of new threshold isn't time-critical */
4004 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4005 compare_thresholds, NULL);
4006
4007 /* Find current threshold */
4008 new->current_threshold = -1;
4009 for (i = 0; i < size; i++) {
4010 if (new->entries[i].threshold < usage) {
4011 /*
4012 * new->current_threshold will not be used until
4013 * rcu_assign_pointer(), so it's safe to increment
4014 * it here.
4015 */
4016 ++new->current_threshold;
4017 }
4018 }
4019
4020 /* Free old spare buffer and save old primary buffer as spare */
4021 kfree(thresholds->spare);
4022 thresholds->spare = thresholds->primary;
4023
4024 rcu_assign_pointer(thresholds->primary, new);
4025
4026 /* To be sure that nobody uses thresholds */
4027 synchronize_rcu();
4028
4029 unlock:
4030 mutex_unlock(&memcg->thresholds_lock);
4031
4032 return ret;
4033 }
4034
4035 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4036 struct cftype *cft, struct eventfd_ctx *eventfd)
4037 {
4038 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4039 struct mem_cgroup_thresholds *thresholds;
4040 struct mem_cgroup_threshold_ary *new;
4041 int type = MEMFILE_TYPE(cft->private);
4042 u64 usage;
4043 int i, j, size;
4044
4045 mutex_lock(&memcg->thresholds_lock);
4046 if (type == _MEM)
4047 thresholds = &memcg->thresholds;
4048 else if (type == _MEMSWAP)
4049 thresholds = &memcg->memsw_thresholds;
4050 else
4051 BUG();
4052
4053 /*
4054 * Something went wrong if we trying to unregister a threshold
4055 * if we don't have thresholds
4056 */
4057 BUG_ON(!thresholds);
4058
4059 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4060
4061 /* Check if a threshold crossed before removing */
4062 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4063
4064 /* Calculate new number of threshold */
4065 size = 0;
4066 for (i = 0; i < thresholds->primary->size; i++) {
4067 if (thresholds->primary->entries[i].eventfd != eventfd)
4068 size++;
4069 }
4070
4071 new = thresholds->spare;
4072
4073 /* Set thresholds array to NULL if we don't have thresholds */
4074 if (!size) {
4075 kfree(new);
4076 new = NULL;
4077 goto swap_buffers;
4078 }
4079
4080 new->size = size;
4081
4082 /* Copy thresholds and find current threshold */
4083 new->current_threshold = -1;
4084 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4085 if (thresholds->primary->entries[i].eventfd == eventfd)
4086 continue;
4087
4088 new->entries[j] = thresholds->primary->entries[i];
4089 if (new->entries[j].threshold < usage) {
4090 /*
4091 * new->current_threshold will not be used
4092 * until rcu_assign_pointer(), so it's safe to increment
4093 * it here.
4094 */
4095 ++new->current_threshold;
4096 }
4097 j++;
4098 }
4099
4100 swap_buffers:
4101 /* Swap primary and spare array */
4102 thresholds->spare = thresholds->primary;
4103 rcu_assign_pointer(thresholds->primary, new);
4104
4105 /* To be sure that nobody uses thresholds */
4106 synchronize_rcu();
4107
4108 mutex_unlock(&memcg->thresholds_lock);
4109 }
4110
4111 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4112 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4113 {
4114 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4115 struct mem_cgroup_eventfd_list *event;
4116 int type = MEMFILE_TYPE(cft->private);
4117
4118 BUG_ON(type != _OOM_TYPE);
4119 event = kmalloc(sizeof(*event), GFP_KERNEL);
4120 if (!event)
4121 return -ENOMEM;
4122
4123 mutex_lock(&memcg_oom_mutex);
4124
4125 event->eventfd = eventfd;
4126 list_add(&event->list, &memcg->oom_notify);
4127
4128 /* already in OOM ? */
4129 if (atomic_read(&memcg->oom_lock))
4130 eventfd_signal(eventfd, 1);
4131 mutex_unlock(&memcg_oom_mutex);
4132
4133 return 0;
4134 }
4135
4136 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4137 struct cftype *cft, struct eventfd_ctx *eventfd)
4138 {
4139 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4140 struct mem_cgroup_eventfd_list *ev, *tmp;
4141 int type = MEMFILE_TYPE(cft->private);
4142
4143 BUG_ON(type != _OOM_TYPE);
4144
4145 mutex_lock(&memcg_oom_mutex);
4146
4147 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4148 if (ev->eventfd == eventfd) {
4149 list_del(&ev->list);
4150 kfree(ev);
4151 }
4152 }
4153
4154 mutex_unlock(&memcg_oom_mutex);
4155 }
4156
4157 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4158 struct cftype *cft, struct cgroup_map_cb *cb)
4159 {
4160 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4161
4162 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4163
4164 if (atomic_read(&mem->oom_lock))
4165 cb->fill(cb, "under_oom", 1);
4166 else
4167 cb->fill(cb, "under_oom", 0);
4168 return 0;
4169 }
4170
4171 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4172 struct cftype *cft, u64 val)
4173 {
4174 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4175 struct mem_cgroup *parent;
4176
4177 /* cannot set to root cgroup and only 0 and 1 are allowed */
4178 if (!cgrp->parent || !((val == 0) || (val == 1)))
4179 return -EINVAL;
4180
4181 parent = mem_cgroup_from_cont(cgrp->parent);
4182
4183 cgroup_lock();
4184 /* oom-kill-disable is a flag for subhierarchy. */
4185 if ((parent->use_hierarchy) ||
4186 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4187 cgroup_unlock();
4188 return -EINVAL;
4189 }
4190 mem->oom_kill_disable = val;
4191 if (!val)
4192 memcg_oom_recover(mem);
4193 cgroup_unlock();
4194 return 0;
4195 }
4196
4197 static struct cftype mem_cgroup_files[] = {
4198 {
4199 .name = "usage_in_bytes",
4200 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4201 .read_u64 = mem_cgroup_read,
4202 .register_event = mem_cgroup_usage_register_event,
4203 .unregister_event = mem_cgroup_usage_unregister_event,
4204 },
4205 {
4206 .name = "max_usage_in_bytes",
4207 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4208 .trigger = mem_cgroup_reset,
4209 .read_u64 = mem_cgroup_read,
4210 },
4211 {
4212 .name = "limit_in_bytes",
4213 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4214 .write_string = mem_cgroup_write,
4215 .read_u64 = mem_cgroup_read,
4216 },
4217 {
4218 .name = "soft_limit_in_bytes",
4219 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4220 .write_string = mem_cgroup_write,
4221 .read_u64 = mem_cgroup_read,
4222 },
4223 {
4224 .name = "failcnt",
4225 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4226 .trigger = mem_cgroup_reset,
4227 .read_u64 = mem_cgroup_read,
4228 },
4229 {
4230 .name = "stat",
4231 .read_map = mem_control_stat_show,
4232 },
4233 {
4234 .name = "force_empty",
4235 .trigger = mem_cgroup_force_empty_write,
4236 },
4237 {
4238 .name = "use_hierarchy",
4239 .write_u64 = mem_cgroup_hierarchy_write,
4240 .read_u64 = mem_cgroup_hierarchy_read,
4241 },
4242 {
4243 .name = "swappiness",
4244 .read_u64 = mem_cgroup_swappiness_read,
4245 .write_u64 = mem_cgroup_swappiness_write,
4246 },
4247 {
4248 .name = "move_charge_at_immigrate",
4249 .read_u64 = mem_cgroup_move_charge_read,
4250 .write_u64 = mem_cgroup_move_charge_write,
4251 },
4252 {
4253 .name = "oom_control",
4254 .read_map = mem_cgroup_oom_control_read,
4255 .write_u64 = mem_cgroup_oom_control_write,
4256 .register_event = mem_cgroup_oom_register_event,
4257 .unregister_event = mem_cgroup_oom_unregister_event,
4258 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4259 },
4260 };
4261
4262 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4263 static struct cftype memsw_cgroup_files[] = {
4264 {
4265 .name = "memsw.usage_in_bytes",
4266 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4267 .read_u64 = mem_cgroup_read,
4268 .register_event = mem_cgroup_usage_register_event,
4269 .unregister_event = mem_cgroup_usage_unregister_event,
4270 },
4271 {
4272 .name = "memsw.max_usage_in_bytes",
4273 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4274 .trigger = mem_cgroup_reset,
4275 .read_u64 = mem_cgroup_read,
4276 },
4277 {
4278 .name = "memsw.limit_in_bytes",
4279 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4280 .write_string = mem_cgroup_write,
4281 .read_u64 = mem_cgroup_read,
4282 },
4283 {
4284 .name = "memsw.failcnt",
4285 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4286 .trigger = mem_cgroup_reset,
4287 .read_u64 = mem_cgroup_read,
4288 },
4289 };
4290
4291 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4292 {
4293 if (!do_swap_account)
4294 return 0;
4295 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4296 ARRAY_SIZE(memsw_cgroup_files));
4297 };
4298 #else
4299 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4300 {
4301 return 0;
4302 }
4303 #endif
4304
4305 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4306 {
4307 struct mem_cgroup_per_node *pn;
4308 struct mem_cgroup_per_zone *mz;
4309 enum lru_list l;
4310 int zone, tmp = node;
4311 /*
4312 * This routine is called against possible nodes.
4313 * But it's BUG to call kmalloc() against offline node.
4314 *
4315 * TODO: this routine can waste much memory for nodes which will
4316 * never be onlined. It's better to use memory hotplug callback
4317 * function.
4318 */
4319 if (!node_state(node, N_NORMAL_MEMORY))
4320 tmp = -1;
4321 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4322 if (!pn)
4323 return 1;
4324
4325 mem->info.nodeinfo[node] = pn;
4326 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4327 mz = &pn->zoneinfo[zone];
4328 for_each_lru(l)
4329 INIT_LIST_HEAD(&mz->lists[l]);
4330 mz->usage_in_excess = 0;
4331 mz->on_tree = false;
4332 mz->mem = mem;
4333 }
4334 return 0;
4335 }
4336
4337 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4338 {
4339 kfree(mem->info.nodeinfo[node]);
4340 }
4341
4342 static struct mem_cgroup *mem_cgroup_alloc(void)
4343 {
4344 struct mem_cgroup *mem;
4345 int size = sizeof(struct mem_cgroup);
4346
4347 /* Can be very big if MAX_NUMNODES is very big */
4348 if (size < PAGE_SIZE)
4349 mem = kzalloc(size, GFP_KERNEL);
4350 else
4351 mem = vzalloc(size);
4352
4353 if (!mem)
4354 return NULL;
4355
4356 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4357 if (!mem->stat)
4358 goto out_free;
4359 spin_lock_init(&mem->pcp_counter_lock);
4360 return mem;
4361
4362 out_free:
4363 if (size < PAGE_SIZE)
4364 kfree(mem);
4365 else
4366 vfree(mem);
4367 return NULL;
4368 }
4369
4370 /*
4371 * At destroying mem_cgroup, references from swap_cgroup can remain.
4372 * (scanning all at force_empty is too costly...)
4373 *
4374 * Instead of clearing all references at force_empty, we remember
4375 * the number of reference from swap_cgroup and free mem_cgroup when
4376 * it goes down to 0.
4377 *
4378 * Removal of cgroup itself succeeds regardless of refs from swap.
4379 */
4380
4381 static void __mem_cgroup_free(struct mem_cgroup *mem)
4382 {
4383 int node;
4384
4385 mem_cgroup_remove_from_trees(mem);
4386 free_css_id(&mem_cgroup_subsys, &mem->css);
4387
4388 for_each_node_state(node, N_POSSIBLE)
4389 free_mem_cgroup_per_zone_info(mem, node);
4390
4391 free_percpu(mem->stat);
4392 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4393 kfree(mem);
4394 else
4395 vfree(mem);
4396 }
4397
4398 static void mem_cgroup_get(struct mem_cgroup *mem)
4399 {
4400 atomic_inc(&mem->refcnt);
4401 }
4402
4403 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4404 {
4405 if (atomic_sub_and_test(count, &mem->refcnt)) {
4406 struct mem_cgroup *parent = parent_mem_cgroup(mem);
4407 __mem_cgroup_free(mem);
4408 if (parent)
4409 mem_cgroup_put(parent);
4410 }
4411 }
4412
4413 static void mem_cgroup_put(struct mem_cgroup *mem)
4414 {
4415 __mem_cgroup_put(mem, 1);
4416 }
4417
4418 /*
4419 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4420 */
4421 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4422 {
4423 if (!mem->res.parent)
4424 return NULL;
4425 return mem_cgroup_from_res_counter(mem->res.parent, res);
4426 }
4427
4428 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4429 static void __init enable_swap_cgroup(void)
4430 {
4431 if (!mem_cgroup_disabled() && really_do_swap_account)
4432 do_swap_account = 1;
4433 }
4434 #else
4435 static void __init enable_swap_cgroup(void)
4436 {
4437 }
4438 #endif
4439
4440 static int mem_cgroup_soft_limit_tree_init(void)
4441 {
4442 struct mem_cgroup_tree_per_node *rtpn;
4443 struct mem_cgroup_tree_per_zone *rtpz;
4444 int tmp, node, zone;
4445
4446 for_each_node_state(node, N_POSSIBLE) {
4447 tmp = node;
4448 if (!node_state(node, N_NORMAL_MEMORY))
4449 tmp = -1;
4450 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4451 if (!rtpn)
4452 return 1;
4453
4454 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4455
4456 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4457 rtpz = &rtpn->rb_tree_per_zone[zone];
4458 rtpz->rb_root = RB_ROOT;
4459 spin_lock_init(&rtpz->lock);
4460 }
4461 }
4462 return 0;
4463 }
4464
4465 static struct cgroup_subsys_state * __ref
4466 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4467 {
4468 struct mem_cgroup *mem, *parent;
4469 long error = -ENOMEM;
4470 int node;
4471
4472 mem = mem_cgroup_alloc();
4473 if (!mem)
4474 return ERR_PTR(error);
4475
4476 for_each_node_state(node, N_POSSIBLE)
4477 if (alloc_mem_cgroup_per_zone_info(mem, node))
4478 goto free_out;
4479
4480 /* root ? */
4481 if (cont->parent == NULL) {
4482 int cpu;
4483 enable_swap_cgroup();
4484 parent = NULL;
4485 root_mem_cgroup = mem;
4486 if (mem_cgroup_soft_limit_tree_init())
4487 goto free_out;
4488 for_each_possible_cpu(cpu) {
4489 struct memcg_stock_pcp *stock =
4490 &per_cpu(memcg_stock, cpu);
4491 INIT_WORK(&stock->work, drain_local_stock);
4492 }
4493 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4494 } else {
4495 parent = mem_cgroup_from_cont(cont->parent);
4496 mem->use_hierarchy = parent->use_hierarchy;
4497 mem->oom_kill_disable = parent->oom_kill_disable;
4498 }
4499
4500 if (parent && parent->use_hierarchy) {
4501 res_counter_init(&mem->res, &parent->res);
4502 res_counter_init(&mem->memsw, &parent->memsw);
4503 /*
4504 * We increment refcnt of the parent to ensure that we can
4505 * safely access it on res_counter_charge/uncharge.
4506 * This refcnt will be decremented when freeing this
4507 * mem_cgroup(see mem_cgroup_put).
4508 */
4509 mem_cgroup_get(parent);
4510 } else {
4511 res_counter_init(&mem->res, NULL);
4512 res_counter_init(&mem->memsw, NULL);
4513 }
4514 mem->last_scanned_child = 0;
4515 spin_lock_init(&mem->reclaim_param_lock);
4516 INIT_LIST_HEAD(&mem->oom_notify);
4517
4518 if (parent)
4519 mem->swappiness = get_swappiness(parent);
4520 atomic_set(&mem->refcnt, 1);
4521 mem->move_charge_at_immigrate = 0;
4522 mutex_init(&mem->thresholds_lock);
4523 return &mem->css;
4524 free_out:
4525 __mem_cgroup_free(mem);
4526 root_mem_cgroup = NULL;
4527 return ERR_PTR(error);
4528 }
4529
4530 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4531 struct cgroup *cont)
4532 {
4533 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4534
4535 return mem_cgroup_force_empty(mem, false);
4536 }
4537
4538 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4539 struct cgroup *cont)
4540 {
4541 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4542
4543 mem_cgroup_put(mem);
4544 }
4545
4546 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4547 struct cgroup *cont)
4548 {
4549 int ret;
4550
4551 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4552 ARRAY_SIZE(mem_cgroup_files));
4553
4554 if (!ret)
4555 ret = register_memsw_files(cont, ss);
4556 return ret;
4557 }
4558
4559 #ifdef CONFIG_MMU
4560 /* Handlers for move charge at task migration. */
4561 #define PRECHARGE_COUNT_AT_ONCE 256
4562 static int mem_cgroup_do_precharge(unsigned long count)
4563 {
4564 int ret = 0;
4565 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4566 struct mem_cgroup *mem = mc.to;
4567
4568 if (mem_cgroup_is_root(mem)) {
4569 mc.precharge += count;
4570 /* we don't need css_get for root */
4571 return ret;
4572 }
4573 /* try to charge at once */
4574 if (count > 1) {
4575 struct res_counter *dummy;
4576 /*
4577 * "mem" cannot be under rmdir() because we've already checked
4578 * by cgroup_lock_live_cgroup() that it is not removed and we
4579 * are still under the same cgroup_mutex. So we can postpone
4580 * css_get().
4581 */
4582 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4583 goto one_by_one;
4584 if (do_swap_account && res_counter_charge(&mem->memsw,
4585 PAGE_SIZE * count, &dummy)) {
4586 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4587 goto one_by_one;
4588 }
4589 mc.precharge += count;
4590 return ret;
4591 }
4592 one_by_one:
4593 /* fall back to one by one charge */
4594 while (count--) {
4595 if (signal_pending(current)) {
4596 ret = -EINTR;
4597 break;
4598 }
4599 if (!batch_count--) {
4600 batch_count = PRECHARGE_COUNT_AT_ONCE;
4601 cond_resched();
4602 }
4603 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
4604 PAGE_SIZE);
4605 if (ret || !mem)
4606 /* mem_cgroup_clear_mc() will do uncharge later */
4607 return -ENOMEM;
4608 mc.precharge++;
4609 }
4610 return ret;
4611 }
4612
4613 /**
4614 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4615 * @vma: the vma the pte to be checked belongs
4616 * @addr: the address corresponding to the pte to be checked
4617 * @ptent: the pte to be checked
4618 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4619 *
4620 * Returns
4621 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4622 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4623 * move charge. if @target is not NULL, the page is stored in target->page
4624 * with extra refcnt got(Callers should handle it).
4625 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4626 * target for charge migration. if @target is not NULL, the entry is stored
4627 * in target->ent.
4628 *
4629 * Called with pte lock held.
4630 */
4631 union mc_target {
4632 struct page *page;
4633 swp_entry_t ent;
4634 };
4635
4636 enum mc_target_type {
4637 MC_TARGET_NONE, /* not used */
4638 MC_TARGET_PAGE,
4639 MC_TARGET_SWAP,
4640 };
4641
4642 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4643 unsigned long addr, pte_t ptent)
4644 {
4645 struct page *page = vm_normal_page(vma, addr, ptent);
4646
4647 if (!page || !page_mapped(page))
4648 return NULL;
4649 if (PageAnon(page)) {
4650 /* we don't move shared anon */
4651 if (!move_anon() || page_mapcount(page) > 2)
4652 return NULL;
4653 } else if (!move_file())
4654 /* we ignore mapcount for file pages */
4655 return NULL;
4656 if (!get_page_unless_zero(page))
4657 return NULL;
4658
4659 return page;
4660 }
4661
4662 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4663 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4664 {
4665 int usage_count;
4666 struct page *page = NULL;
4667 swp_entry_t ent = pte_to_swp_entry(ptent);
4668
4669 if (!move_anon() || non_swap_entry(ent))
4670 return NULL;
4671 usage_count = mem_cgroup_count_swap_user(ent, &page);
4672 if (usage_count > 1) { /* we don't move shared anon */
4673 if (page)
4674 put_page(page);
4675 return NULL;
4676 }
4677 if (do_swap_account)
4678 entry->val = ent.val;
4679
4680 return page;
4681 }
4682
4683 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4684 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4685 {
4686 struct page *page = NULL;
4687 struct inode *inode;
4688 struct address_space *mapping;
4689 pgoff_t pgoff;
4690
4691 if (!vma->vm_file) /* anonymous vma */
4692 return NULL;
4693 if (!move_file())
4694 return NULL;
4695
4696 inode = vma->vm_file->f_path.dentry->d_inode;
4697 mapping = vma->vm_file->f_mapping;
4698 if (pte_none(ptent))
4699 pgoff = linear_page_index(vma, addr);
4700 else /* pte_file(ptent) is true */
4701 pgoff = pte_to_pgoff(ptent);
4702
4703 /* page is moved even if it's not RSS of this task(page-faulted). */
4704 if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4705 page = find_get_page(mapping, pgoff);
4706 } else { /* shmem/tmpfs file. we should take account of swap too. */
4707 swp_entry_t ent;
4708 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4709 if (do_swap_account)
4710 entry->val = ent.val;
4711 }
4712
4713 return page;
4714 }
4715
4716 static int is_target_pte_for_mc(struct vm_area_struct *vma,
4717 unsigned long addr, pte_t ptent, union mc_target *target)
4718 {
4719 struct page *page = NULL;
4720 struct page_cgroup *pc;
4721 int ret = 0;
4722 swp_entry_t ent = { .val = 0 };
4723
4724 if (pte_present(ptent))
4725 page = mc_handle_present_pte(vma, addr, ptent);
4726 else if (is_swap_pte(ptent))
4727 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4728 else if (pte_none(ptent) || pte_file(ptent))
4729 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4730
4731 if (!page && !ent.val)
4732 return 0;
4733 if (page) {
4734 pc = lookup_page_cgroup(page);
4735 /*
4736 * Do only loose check w/o page_cgroup lock.
4737 * mem_cgroup_move_account() checks the pc is valid or not under
4738 * the lock.
4739 */
4740 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4741 ret = MC_TARGET_PAGE;
4742 if (target)
4743 target->page = page;
4744 }
4745 if (!ret || !target)
4746 put_page(page);
4747 }
4748 /* There is a swap entry and a page doesn't exist or isn't charged */
4749 if (ent.val && !ret &&
4750 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4751 ret = MC_TARGET_SWAP;
4752 if (target)
4753 target->ent = ent;
4754 }
4755 return ret;
4756 }
4757
4758 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4759 unsigned long addr, unsigned long end,
4760 struct mm_walk *walk)
4761 {
4762 struct vm_area_struct *vma = walk->private;
4763 pte_t *pte;
4764 spinlock_t *ptl;
4765
4766 split_huge_page_pmd(walk->mm, pmd);
4767
4768 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4769 for (; addr != end; pte++, addr += PAGE_SIZE)
4770 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4771 mc.precharge++; /* increment precharge temporarily */
4772 pte_unmap_unlock(pte - 1, ptl);
4773 cond_resched();
4774
4775 return 0;
4776 }
4777
4778 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4779 {
4780 unsigned long precharge;
4781 struct vm_area_struct *vma;
4782
4783 down_read(&mm->mmap_sem);
4784 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4785 struct mm_walk mem_cgroup_count_precharge_walk = {
4786 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4787 .mm = mm,
4788 .private = vma,
4789 };
4790 if (is_vm_hugetlb_page(vma))
4791 continue;
4792 walk_page_range(vma->vm_start, vma->vm_end,
4793 &mem_cgroup_count_precharge_walk);
4794 }
4795 up_read(&mm->mmap_sem);
4796
4797 precharge = mc.precharge;
4798 mc.precharge = 0;
4799
4800 return precharge;
4801 }
4802
4803 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4804 {
4805 unsigned long precharge = mem_cgroup_count_precharge(mm);
4806
4807 VM_BUG_ON(mc.moving_task);
4808 mc.moving_task = current;
4809 return mem_cgroup_do_precharge(precharge);
4810 }
4811
4812 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4813 static void __mem_cgroup_clear_mc(void)
4814 {
4815 struct mem_cgroup *from = mc.from;
4816 struct mem_cgroup *to = mc.to;
4817
4818 /* we must uncharge all the leftover precharges from mc.to */
4819 if (mc.precharge) {
4820 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4821 mc.precharge = 0;
4822 }
4823 /*
4824 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4825 * we must uncharge here.
4826 */
4827 if (mc.moved_charge) {
4828 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4829 mc.moved_charge = 0;
4830 }
4831 /* we must fixup refcnts and charges */
4832 if (mc.moved_swap) {
4833 /* uncharge swap account from the old cgroup */
4834 if (!mem_cgroup_is_root(mc.from))
4835 res_counter_uncharge(&mc.from->memsw,
4836 PAGE_SIZE * mc.moved_swap);
4837 __mem_cgroup_put(mc.from, mc.moved_swap);
4838
4839 if (!mem_cgroup_is_root(mc.to)) {
4840 /*
4841 * we charged both to->res and to->memsw, so we should
4842 * uncharge to->res.
4843 */
4844 res_counter_uncharge(&mc.to->res,
4845 PAGE_SIZE * mc.moved_swap);
4846 }
4847 /* we've already done mem_cgroup_get(mc.to) */
4848 mc.moved_swap = 0;
4849 }
4850 memcg_oom_recover(from);
4851 memcg_oom_recover(to);
4852 wake_up_all(&mc.waitq);
4853 }
4854
4855 static void mem_cgroup_clear_mc(void)
4856 {
4857 struct mem_cgroup *from = mc.from;
4858
4859 /*
4860 * we must clear moving_task before waking up waiters at the end of
4861 * task migration.
4862 */
4863 mc.moving_task = NULL;
4864 __mem_cgroup_clear_mc();
4865 spin_lock(&mc.lock);
4866 mc.from = NULL;
4867 mc.to = NULL;
4868 spin_unlock(&mc.lock);
4869 mem_cgroup_end_move(from);
4870 }
4871
4872 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4873 struct cgroup *cgroup,
4874 struct task_struct *p,
4875 bool threadgroup)
4876 {
4877 int ret = 0;
4878 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4879
4880 if (mem->move_charge_at_immigrate) {
4881 struct mm_struct *mm;
4882 struct mem_cgroup *from = mem_cgroup_from_task(p);
4883
4884 VM_BUG_ON(from == mem);
4885
4886 mm = get_task_mm(p);
4887 if (!mm)
4888 return 0;
4889 /* We move charges only when we move a owner of the mm */
4890 if (mm->owner == p) {
4891 VM_BUG_ON(mc.from);
4892 VM_BUG_ON(mc.to);
4893 VM_BUG_ON(mc.precharge);
4894 VM_BUG_ON(mc.moved_charge);
4895 VM_BUG_ON(mc.moved_swap);
4896 mem_cgroup_start_move(from);
4897 spin_lock(&mc.lock);
4898 mc.from = from;
4899 mc.to = mem;
4900 spin_unlock(&mc.lock);
4901 /* We set mc.moving_task later */
4902
4903 ret = mem_cgroup_precharge_mc(mm);
4904 if (ret)
4905 mem_cgroup_clear_mc();
4906 }
4907 mmput(mm);
4908 }
4909 return ret;
4910 }
4911
4912 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4913 struct cgroup *cgroup,
4914 struct task_struct *p,
4915 bool threadgroup)
4916 {
4917 mem_cgroup_clear_mc();
4918 }
4919
4920 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4921 unsigned long addr, unsigned long end,
4922 struct mm_walk *walk)
4923 {
4924 int ret = 0;
4925 struct vm_area_struct *vma = walk->private;
4926 pte_t *pte;
4927 spinlock_t *ptl;
4928
4929 split_huge_page_pmd(walk->mm, pmd);
4930 retry:
4931 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4932 for (; addr != end; addr += PAGE_SIZE) {
4933 pte_t ptent = *(pte++);
4934 union mc_target target;
4935 int type;
4936 struct page *page;
4937 struct page_cgroup *pc;
4938 swp_entry_t ent;
4939
4940 if (!mc.precharge)
4941 break;
4942
4943 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4944 switch (type) {
4945 case MC_TARGET_PAGE:
4946 page = target.page;
4947 if (isolate_lru_page(page))
4948 goto put;
4949 pc = lookup_page_cgroup(page);
4950 if (!mem_cgroup_move_account(pc,
4951 mc.from, mc.to, false, PAGE_SIZE)) {
4952 mc.precharge--;
4953 /* we uncharge from mc.from later. */
4954 mc.moved_charge++;
4955 }
4956 putback_lru_page(page);
4957 put: /* is_target_pte_for_mc() gets the page */
4958 put_page(page);
4959 break;
4960 case MC_TARGET_SWAP:
4961 ent = target.ent;
4962 if (!mem_cgroup_move_swap_account(ent,
4963 mc.from, mc.to, false)) {
4964 mc.precharge--;
4965 /* we fixup refcnts and charges later. */
4966 mc.moved_swap++;
4967 }
4968 break;
4969 default:
4970 break;
4971 }
4972 }
4973 pte_unmap_unlock(pte - 1, ptl);
4974 cond_resched();
4975
4976 if (addr != end) {
4977 /*
4978 * We have consumed all precharges we got in can_attach().
4979 * We try charge one by one, but don't do any additional
4980 * charges to mc.to if we have failed in charge once in attach()
4981 * phase.
4982 */
4983 ret = mem_cgroup_do_precharge(1);
4984 if (!ret)
4985 goto retry;
4986 }
4987
4988 return ret;
4989 }
4990
4991 static void mem_cgroup_move_charge(struct mm_struct *mm)
4992 {
4993 struct vm_area_struct *vma;
4994
4995 lru_add_drain_all();
4996 retry:
4997 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4998 /*
4999 * Someone who are holding the mmap_sem might be waiting in
5000 * waitq. So we cancel all extra charges, wake up all waiters,
5001 * and retry. Because we cancel precharges, we might not be able
5002 * to move enough charges, but moving charge is a best-effort
5003 * feature anyway, so it wouldn't be a big problem.
5004 */
5005 __mem_cgroup_clear_mc();
5006 cond_resched();
5007 goto retry;
5008 }
5009 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5010 int ret;
5011 struct mm_walk mem_cgroup_move_charge_walk = {
5012 .pmd_entry = mem_cgroup_move_charge_pte_range,
5013 .mm = mm,
5014 .private = vma,
5015 };
5016 if (is_vm_hugetlb_page(vma))
5017 continue;
5018 ret = walk_page_range(vma->vm_start, vma->vm_end,
5019 &mem_cgroup_move_charge_walk);
5020 if (ret)
5021 /*
5022 * means we have consumed all precharges and failed in
5023 * doing additional charge. Just abandon here.
5024 */
5025 break;
5026 }
5027 up_read(&mm->mmap_sem);
5028 }
5029
5030 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5031 struct cgroup *cont,
5032 struct cgroup *old_cont,
5033 struct task_struct *p,
5034 bool threadgroup)
5035 {
5036 struct mm_struct *mm;
5037
5038 if (!mc.to)
5039 /* no need to move charge */
5040 return;
5041
5042 mm = get_task_mm(p);
5043 if (mm) {
5044 mem_cgroup_move_charge(mm);
5045 mmput(mm);
5046 }
5047 mem_cgroup_clear_mc();
5048 }
5049 #else /* !CONFIG_MMU */
5050 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5051 struct cgroup *cgroup,
5052 struct task_struct *p,
5053 bool threadgroup)
5054 {
5055 return 0;
5056 }
5057 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5058 struct cgroup *cgroup,
5059 struct task_struct *p,
5060 bool threadgroup)
5061 {
5062 }
5063 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5064 struct cgroup *cont,
5065 struct cgroup *old_cont,
5066 struct task_struct *p,
5067 bool threadgroup)
5068 {
5069 }
5070 #endif
5071
5072 struct cgroup_subsys mem_cgroup_subsys = {
5073 .name = "memory",
5074 .subsys_id = mem_cgroup_subsys_id,
5075 .create = mem_cgroup_create,
5076 .pre_destroy = mem_cgroup_pre_destroy,
5077 .destroy = mem_cgroup_destroy,
5078 .populate = mem_cgroup_populate,
5079 .can_attach = mem_cgroup_can_attach,
5080 .cancel_attach = mem_cgroup_cancel_attach,
5081 .attach = mem_cgroup_move_task,
5082 .early_init = 0,
5083 .use_id = 1,
5084 };
5085
5086 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5087 static int __init enable_swap_account(char *s)
5088 {
5089 /* consider enabled if no parameter or 1 is given */
5090 if (!(*s) || !strcmp(s, "=1"))
5091 really_do_swap_account = 1;
5092 else if (!strcmp(s, "=0"))
5093 really_do_swap_account = 0;
5094 return 1;
5095 }
5096 __setup("swapaccount", enable_swap_account);
5097
5098 static int __init disable_swap_account(char *s)
5099 {
5100 printk_once("noswapaccount is deprecated and will be removed in 2.6.40. Use swapaccount=0 instead\n");
5101 enable_swap_account("=0");
5102 return 1;
5103 }
5104 __setup("noswapaccount", disable_swap_account);
5105 #endif
This page took 0.137203 seconds and 5 git commands to generate.