f6bc78f4ed137bd4fd3b46b439170b6ebc485bd0
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70
71 #include <asm/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79
80 #define MEM_CGROUP_RECLAIM_RETRIES 5
81
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account 0
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100
101 static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
104 "rss_huge",
105 "mapped_file",
106 "dirty",
107 "writeback",
108 "swap",
109 };
110
111 static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116 };
117
118 static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124 };
125
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET 1024
129
130 /*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135 struct mem_cgroup_tree_per_zone {
136 struct rb_root rb_root;
137 spinlock_t lock;
138 };
139
140 struct mem_cgroup_tree_per_node {
141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142 };
143
144 struct mem_cgroup_tree {
145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146 };
147
148 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
150 /* for OOM */
151 struct mem_cgroup_eventfd_list {
152 struct list_head list;
153 struct eventfd_ctx *eventfd;
154 };
155
156 /*
157 * cgroup_event represents events which userspace want to receive.
158 */
159 struct mem_cgroup_event {
160 /*
161 * memcg which the event belongs to.
162 */
163 struct mem_cgroup *memcg;
164 /*
165 * eventfd to signal userspace about the event.
166 */
167 struct eventfd_ctx *eventfd;
168 /*
169 * Each of these stored in a list by the cgroup.
170 */
171 struct list_head list;
172 /*
173 * register_event() callback will be used to add new userspace
174 * waiter for changes related to this event. Use eventfd_signal()
175 * on eventfd to send notification to userspace.
176 */
177 int (*register_event)(struct mem_cgroup *memcg,
178 struct eventfd_ctx *eventfd, const char *args);
179 /*
180 * unregister_event() callback will be called when userspace closes
181 * the eventfd or on cgroup removing. This callback must be set,
182 * if you want provide notification functionality.
183 */
184 void (*unregister_event)(struct mem_cgroup *memcg,
185 struct eventfd_ctx *eventfd);
186 /*
187 * All fields below needed to unregister event when
188 * userspace closes eventfd.
189 */
190 poll_table pt;
191 wait_queue_head_t *wqh;
192 wait_queue_t wait;
193 struct work_struct remove;
194 };
195
196 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198
199 /* Stuffs for move charges at task migration. */
200 /*
201 * Types of charges to be moved.
202 */
203 #define MOVE_ANON 0x1U
204 #define MOVE_FILE 0x2U
205 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
206
207 /* "mc" and its members are protected by cgroup_mutex */
208 static struct move_charge_struct {
209 spinlock_t lock; /* for from, to */
210 struct mem_cgroup *from;
211 struct mem_cgroup *to;
212 unsigned long flags;
213 unsigned long precharge;
214 unsigned long moved_charge;
215 unsigned long moved_swap;
216 struct task_struct *moving_task; /* a task moving charges */
217 wait_queue_head_t waitq; /* a waitq for other context */
218 } mc = {
219 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
220 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
221 };
222
223 /*
224 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
225 * limit reclaim to prevent infinite loops, if they ever occur.
226 */
227 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
228 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
229
230 enum charge_type {
231 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
232 MEM_CGROUP_CHARGE_TYPE_ANON,
233 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
234 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
235 NR_CHARGE_TYPE,
236 };
237
238 /* for encoding cft->private value on file */
239 enum res_type {
240 _MEM,
241 _MEMSWAP,
242 _OOM_TYPE,
243 _KMEM,
244 _TCP,
245 };
246
247 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
248 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
249 #define MEMFILE_ATTR(val) ((val) & 0xffff)
250 /* Used for OOM nofiier */
251 #define OOM_CONTROL (0)
252
253 /* Some nice accessors for the vmpressure. */
254 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
255 {
256 if (!memcg)
257 memcg = root_mem_cgroup;
258 return &memcg->vmpressure;
259 }
260
261 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
262 {
263 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
264 }
265
266 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
267 {
268 return (memcg == root_mem_cgroup);
269 }
270
271 /*
272 * We restrict the id in the range of [1, 65535], so it can fit into
273 * an unsigned short.
274 */
275 #define MEM_CGROUP_ID_MAX USHRT_MAX
276
277 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
278 {
279 return memcg->css.id;
280 }
281
282 /*
283 * A helper function to get mem_cgroup from ID. must be called under
284 * rcu_read_lock(). The caller is responsible for calling
285 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
286 * refcnt from swap can be called against removed memcg.)
287 */
288 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
289 {
290 struct cgroup_subsys_state *css;
291
292 css = css_from_id(id, &memory_cgrp_subsys);
293 return mem_cgroup_from_css(css);
294 }
295
296 #ifndef CONFIG_SLOB
297 /*
298 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
299 * The main reason for not using cgroup id for this:
300 * this works better in sparse environments, where we have a lot of memcgs,
301 * but only a few kmem-limited. Or also, if we have, for instance, 200
302 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
303 * 200 entry array for that.
304 *
305 * The current size of the caches array is stored in memcg_nr_cache_ids. It
306 * will double each time we have to increase it.
307 */
308 static DEFINE_IDA(memcg_cache_ida);
309 int memcg_nr_cache_ids;
310
311 /* Protects memcg_nr_cache_ids */
312 static DECLARE_RWSEM(memcg_cache_ids_sem);
313
314 void memcg_get_cache_ids(void)
315 {
316 down_read(&memcg_cache_ids_sem);
317 }
318
319 void memcg_put_cache_ids(void)
320 {
321 up_read(&memcg_cache_ids_sem);
322 }
323
324 /*
325 * MIN_SIZE is different than 1, because we would like to avoid going through
326 * the alloc/free process all the time. In a small machine, 4 kmem-limited
327 * cgroups is a reasonable guess. In the future, it could be a parameter or
328 * tunable, but that is strictly not necessary.
329 *
330 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
331 * this constant directly from cgroup, but it is understandable that this is
332 * better kept as an internal representation in cgroup.c. In any case, the
333 * cgrp_id space is not getting any smaller, and we don't have to necessarily
334 * increase ours as well if it increases.
335 */
336 #define MEMCG_CACHES_MIN_SIZE 4
337 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
338
339 /*
340 * A lot of the calls to the cache allocation functions are expected to be
341 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
342 * conditional to this static branch, we'll have to allow modules that does
343 * kmem_cache_alloc and the such to see this symbol as well
344 */
345 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
346 EXPORT_SYMBOL(memcg_kmem_enabled_key);
347
348 #endif /* !CONFIG_SLOB */
349
350 static struct mem_cgroup_per_zone *
351 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
352 {
353 int nid = zone_to_nid(zone);
354 int zid = zone_idx(zone);
355
356 return &memcg->nodeinfo[nid]->zoneinfo[zid];
357 }
358
359 /**
360 * mem_cgroup_css_from_page - css of the memcg associated with a page
361 * @page: page of interest
362 *
363 * If memcg is bound to the default hierarchy, css of the memcg associated
364 * with @page is returned. The returned css remains associated with @page
365 * until it is released.
366 *
367 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
368 * is returned.
369 *
370 * XXX: The above description of behavior on the default hierarchy isn't
371 * strictly true yet as replace_page_cache_page() can modify the
372 * association before @page is released even on the default hierarchy;
373 * however, the current and planned usages don't mix the the two functions
374 * and replace_page_cache_page() will soon be updated to make the invariant
375 * actually true.
376 */
377 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
378 {
379 struct mem_cgroup *memcg;
380
381 memcg = page->mem_cgroup;
382
383 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
384 memcg = root_mem_cgroup;
385
386 return &memcg->css;
387 }
388
389 /**
390 * page_cgroup_ino - return inode number of the memcg a page is charged to
391 * @page: the page
392 *
393 * Look up the closest online ancestor of the memory cgroup @page is charged to
394 * and return its inode number or 0 if @page is not charged to any cgroup. It
395 * is safe to call this function without holding a reference to @page.
396 *
397 * Note, this function is inherently racy, because there is nothing to prevent
398 * the cgroup inode from getting torn down and potentially reallocated a moment
399 * after page_cgroup_ino() returns, so it only should be used by callers that
400 * do not care (such as procfs interfaces).
401 */
402 ino_t page_cgroup_ino(struct page *page)
403 {
404 struct mem_cgroup *memcg;
405 unsigned long ino = 0;
406
407 rcu_read_lock();
408 memcg = READ_ONCE(page->mem_cgroup);
409 while (memcg && !(memcg->css.flags & CSS_ONLINE))
410 memcg = parent_mem_cgroup(memcg);
411 if (memcg)
412 ino = cgroup_ino(memcg->css.cgroup);
413 rcu_read_unlock();
414 return ino;
415 }
416
417 static struct mem_cgroup_per_zone *
418 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
419 {
420 int nid = page_to_nid(page);
421 int zid = page_zonenum(page);
422
423 return &memcg->nodeinfo[nid]->zoneinfo[zid];
424 }
425
426 static struct mem_cgroup_tree_per_zone *
427 soft_limit_tree_node_zone(int nid, int zid)
428 {
429 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
430 }
431
432 static struct mem_cgroup_tree_per_zone *
433 soft_limit_tree_from_page(struct page *page)
434 {
435 int nid = page_to_nid(page);
436 int zid = page_zonenum(page);
437
438 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
439 }
440
441 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
442 struct mem_cgroup_tree_per_zone *mctz,
443 unsigned long new_usage_in_excess)
444 {
445 struct rb_node **p = &mctz->rb_root.rb_node;
446 struct rb_node *parent = NULL;
447 struct mem_cgroup_per_zone *mz_node;
448
449 if (mz->on_tree)
450 return;
451
452 mz->usage_in_excess = new_usage_in_excess;
453 if (!mz->usage_in_excess)
454 return;
455 while (*p) {
456 parent = *p;
457 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
458 tree_node);
459 if (mz->usage_in_excess < mz_node->usage_in_excess)
460 p = &(*p)->rb_left;
461 /*
462 * We can't avoid mem cgroups that are over their soft
463 * limit by the same amount
464 */
465 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
466 p = &(*p)->rb_right;
467 }
468 rb_link_node(&mz->tree_node, parent, p);
469 rb_insert_color(&mz->tree_node, &mctz->rb_root);
470 mz->on_tree = true;
471 }
472
473 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
474 struct mem_cgroup_tree_per_zone *mctz)
475 {
476 if (!mz->on_tree)
477 return;
478 rb_erase(&mz->tree_node, &mctz->rb_root);
479 mz->on_tree = false;
480 }
481
482 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
483 struct mem_cgroup_tree_per_zone *mctz)
484 {
485 unsigned long flags;
486
487 spin_lock_irqsave(&mctz->lock, flags);
488 __mem_cgroup_remove_exceeded(mz, mctz);
489 spin_unlock_irqrestore(&mctz->lock, flags);
490 }
491
492 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
493 {
494 unsigned long nr_pages = page_counter_read(&memcg->memory);
495 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
496 unsigned long excess = 0;
497
498 if (nr_pages > soft_limit)
499 excess = nr_pages - soft_limit;
500
501 return excess;
502 }
503
504 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
505 {
506 unsigned long excess;
507 struct mem_cgroup_per_zone *mz;
508 struct mem_cgroup_tree_per_zone *mctz;
509
510 mctz = soft_limit_tree_from_page(page);
511 /*
512 * Necessary to update all ancestors when hierarchy is used.
513 * because their event counter is not touched.
514 */
515 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
516 mz = mem_cgroup_page_zoneinfo(memcg, page);
517 excess = soft_limit_excess(memcg);
518 /*
519 * We have to update the tree if mz is on RB-tree or
520 * mem is over its softlimit.
521 */
522 if (excess || mz->on_tree) {
523 unsigned long flags;
524
525 spin_lock_irqsave(&mctz->lock, flags);
526 /* if on-tree, remove it */
527 if (mz->on_tree)
528 __mem_cgroup_remove_exceeded(mz, mctz);
529 /*
530 * Insert again. mz->usage_in_excess will be updated.
531 * If excess is 0, no tree ops.
532 */
533 __mem_cgroup_insert_exceeded(mz, mctz, excess);
534 spin_unlock_irqrestore(&mctz->lock, flags);
535 }
536 }
537 }
538
539 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
540 {
541 struct mem_cgroup_tree_per_zone *mctz;
542 struct mem_cgroup_per_zone *mz;
543 int nid, zid;
544
545 for_each_node(nid) {
546 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
547 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
548 mctz = soft_limit_tree_node_zone(nid, zid);
549 mem_cgroup_remove_exceeded(mz, mctz);
550 }
551 }
552 }
553
554 static struct mem_cgroup_per_zone *
555 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
556 {
557 struct rb_node *rightmost = NULL;
558 struct mem_cgroup_per_zone *mz;
559
560 retry:
561 mz = NULL;
562 rightmost = rb_last(&mctz->rb_root);
563 if (!rightmost)
564 goto done; /* Nothing to reclaim from */
565
566 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
567 /*
568 * Remove the node now but someone else can add it back,
569 * we will to add it back at the end of reclaim to its correct
570 * position in the tree.
571 */
572 __mem_cgroup_remove_exceeded(mz, mctz);
573 if (!soft_limit_excess(mz->memcg) ||
574 !css_tryget_online(&mz->memcg->css))
575 goto retry;
576 done:
577 return mz;
578 }
579
580 static struct mem_cgroup_per_zone *
581 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
582 {
583 struct mem_cgroup_per_zone *mz;
584
585 spin_lock_irq(&mctz->lock);
586 mz = __mem_cgroup_largest_soft_limit_node(mctz);
587 spin_unlock_irq(&mctz->lock);
588 return mz;
589 }
590
591 /*
592 * Return page count for single (non recursive) @memcg.
593 *
594 * Implementation Note: reading percpu statistics for memcg.
595 *
596 * Both of vmstat[] and percpu_counter has threshold and do periodic
597 * synchronization to implement "quick" read. There are trade-off between
598 * reading cost and precision of value. Then, we may have a chance to implement
599 * a periodic synchronization of counter in memcg's counter.
600 *
601 * But this _read() function is used for user interface now. The user accounts
602 * memory usage by memory cgroup and he _always_ requires exact value because
603 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
604 * have to visit all online cpus and make sum. So, for now, unnecessary
605 * synchronization is not implemented. (just implemented for cpu hotplug)
606 *
607 * If there are kernel internal actions which can make use of some not-exact
608 * value, and reading all cpu value can be performance bottleneck in some
609 * common workload, threshold and synchronization as vmstat[] should be
610 * implemented.
611 */
612 static unsigned long
613 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
614 {
615 long val = 0;
616 int cpu;
617
618 /* Per-cpu values can be negative, use a signed accumulator */
619 for_each_possible_cpu(cpu)
620 val += per_cpu(memcg->stat->count[idx], cpu);
621 /*
622 * Summing races with updates, so val may be negative. Avoid exposing
623 * transient negative values.
624 */
625 if (val < 0)
626 val = 0;
627 return val;
628 }
629
630 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
631 enum mem_cgroup_events_index idx)
632 {
633 unsigned long val = 0;
634 int cpu;
635
636 for_each_possible_cpu(cpu)
637 val += per_cpu(memcg->stat->events[idx], cpu);
638 return val;
639 }
640
641 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
642 struct page *page,
643 bool compound, int nr_pages)
644 {
645 /*
646 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
647 * counted as CACHE even if it's on ANON LRU.
648 */
649 if (PageAnon(page))
650 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
651 nr_pages);
652 else
653 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
654 nr_pages);
655
656 if (compound) {
657 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
658 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
659 nr_pages);
660 }
661
662 /* pagein of a big page is an event. So, ignore page size */
663 if (nr_pages > 0)
664 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
665 else {
666 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
667 nr_pages = -nr_pages; /* for event */
668 }
669
670 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
671 }
672
673 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
674 int nid,
675 unsigned int lru_mask)
676 {
677 unsigned long nr = 0;
678 int zid;
679
680 VM_BUG_ON((unsigned)nid >= nr_node_ids);
681
682 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
683 struct mem_cgroup_per_zone *mz;
684 enum lru_list lru;
685
686 for_each_lru(lru) {
687 if (!(BIT(lru) & lru_mask))
688 continue;
689 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
690 nr += mz->lru_size[lru];
691 }
692 }
693 return nr;
694 }
695
696 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
697 unsigned int lru_mask)
698 {
699 unsigned long nr = 0;
700 int nid;
701
702 for_each_node_state(nid, N_MEMORY)
703 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
704 return nr;
705 }
706
707 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
708 enum mem_cgroup_events_target target)
709 {
710 unsigned long val, next;
711
712 val = __this_cpu_read(memcg->stat->nr_page_events);
713 next = __this_cpu_read(memcg->stat->targets[target]);
714 /* from time_after() in jiffies.h */
715 if ((long)next - (long)val < 0) {
716 switch (target) {
717 case MEM_CGROUP_TARGET_THRESH:
718 next = val + THRESHOLDS_EVENTS_TARGET;
719 break;
720 case MEM_CGROUP_TARGET_SOFTLIMIT:
721 next = val + SOFTLIMIT_EVENTS_TARGET;
722 break;
723 case MEM_CGROUP_TARGET_NUMAINFO:
724 next = val + NUMAINFO_EVENTS_TARGET;
725 break;
726 default:
727 break;
728 }
729 __this_cpu_write(memcg->stat->targets[target], next);
730 return true;
731 }
732 return false;
733 }
734
735 /*
736 * Check events in order.
737 *
738 */
739 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
740 {
741 /* threshold event is triggered in finer grain than soft limit */
742 if (unlikely(mem_cgroup_event_ratelimit(memcg,
743 MEM_CGROUP_TARGET_THRESH))) {
744 bool do_softlimit;
745 bool do_numainfo __maybe_unused;
746
747 do_softlimit = mem_cgroup_event_ratelimit(memcg,
748 MEM_CGROUP_TARGET_SOFTLIMIT);
749 #if MAX_NUMNODES > 1
750 do_numainfo = mem_cgroup_event_ratelimit(memcg,
751 MEM_CGROUP_TARGET_NUMAINFO);
752 #endif
753 mem_cgroup_threshold(memcg);
754 if (unlikely(do_softlimit))
755 mem_cgroup_update_tree(memcg, page);
756 #if MAX_NUMNODES > 1
757 if (unlikely(do_numainfo))
758 atomic_inc(&memcg->numainfo_events);
759 #endif
760 }
761 }
762
763 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
764 {
765 /*
766 * mm_update_next_owner() may clear mm->owner to NULL
767 * if it races with swapoff, page migration, etc.
768 * So this can be called with p == NULL.
769 */
770 if (unlikely(!p))
771 return NULL;
772
773 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
774 }
775 EXPORT_SYMBOL(mem_cgroup_from_task);
776
777 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
778 {
779 struct mem_cgroup *memcg = NULL;
780
781 rcu_read_lock();
782 do {
783 /*
784 * Page cache insertions can happen withou an
785 * actual mm context, e.g. during disk probing
786 * on boot, loopback IO, acct() writes etc.
787 */
788 if (unlikely(!mm))
789 memcg = root_mem_cgroup;
790 else {
791 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
792 if (unlikely(!memcg))
793 memcg = root_mem_cgroup;
794 }
795 } while (!css_tryget_online(&memcg->css));
796 rcu_read_unlock();
797 return memcg;
798 }
799
800 /**
801 * mem_cgroup_iter - iterate over memory cgroup hierarchy
802 * @root: hierarchy root
803 * @prev: previously returned memcg, NULL on first invocation
804 * @reclaim: cookie for shared reclaim walks, NULL for full walks
805 *
806 * Returns references to children of the hierarchy below @root, or
807 * @root itself, or %NULL after a full round-trip.
808 *
809 * Caller must pass the return value in @prev on subsequent
810 * invocations for reference counting, or use mem_cgroup_iter_break()
811 * to cancel a hierarchy walk before the round-trip is complete.
812 *
813 * Reclaimers can specify a zone and a priority level in @reclaim to
814 * divide up the memcgs in the hierarchy among all concurrent
815 * reclaimers operating on the same zone and priority.
816 */
817 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
818 struct mem_cgroup *prev,
819 struct mem_cgroup_reclaim_cookie *reclaim)
820 {
821 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
822 struct cgroup_subsys_state *css = NULL;
823 struct mem_cgroup *memcg = NULL;
824 struct mem_cgroup *pos = NULL;
825
826 if (mem_cgroup_disabled())
827 return NULL;
828
829 if (!root)
830 root = root_mem_cgroup;
831
832 if (prev && !reclaim)
833 pos = prev;
834
835 if (!root->use_hierarchy && root != root_mem_cgroup) {
836 if (prev)
837 goto out;
838 return root;
839 }
840
841 rcu_read_lock();
842
843 if (reclaim) {
844 struct mem_cgroup_per_zone *mz;
845
846 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
847 iter = &mz->iter[reclaim->priority];
848
849 if (prev && reclaim->generation != iter->generation)
850 goto out_unlock;
851
852 while (1) {
853 pos = READ_ONCE(iter->position);
854 if (!pos || css_tryget(&pos->css))
855 break;
856 /*
857 * css reference reached zero, so iter->position will
858 * be cleared by ->css_released. However, we should not
859 * rely on this happening soon, because ->css_released
860 * is called from a work queue, and by busy-waiting we
861 * might block it. So we clear iter->position right
862 * away.
863 */
864 (void)cmpxchg(&iter->position, pos, NULL);
865 }
866 }
867
868 if (pos)
869 css = &pos->css;
870
871 for (;;) {
872 css = css_next_descendant_pre(css, &root->css);
873 if (!css) {
874 /*
875 * Reclaimers share the hierarchy walk, and a
876 * new one might jump in right at the end of
877 * the hierarchy - make sure they see at least
878 * one group and restart from the beginning.
879 */
880 if (!prev)
881 continue;
882 break;
883 }
884
885 /*
886 * Verify the css and acquire a reference. The root
887 * is provided by the caller, so we know it's alive
888 * and kicking, and don't take an extra reference.
889 */
890 memcg = mem_cgroup_from_css(css);
891
892 if (css == &root->css)
893 break;
894
895 if (css_tryget(css))
896 break;
897
898 memcg = NULL;
899 }
900
901 if (reclaim) {
902 /*
903 * The position could have already been updated by a competing
904 * thread, so check that the value hasn't changed since we read
905 * it to avoid reclaiming from the same cgroup twice.
906 */
907 (void)cmpxchg(&iter->position, pos, memcg);
908
909 if (pos)
910 css_put(&pos->css);
911
912 if (!memcg)
913 iter->generation++;
914 else if (!prev)
915 reclaim->generation = iter->generation;
916 }
917
918 out_unlock:
919 rcu_read_unlock();
920 out:
921 if (prev && prev != root)
922 css_put(&prev->css);
923
924 return memcg;
925 }
926
927 /**
928 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
929 * @root: hierarchy root
930 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
931 */
932 void mem_cgroup_iter_break(struct mem_cgroup *root,
933 struct mem_cgroup *prev)
934 {
935 if (!root)
936 root = root_mem_cgroup;
937 if (prev && prev != root)
938 css_put(&prev->css);
939 }
940
941 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
942 {
943 struct mem_cgroup *memcg = dead_memcg;
944 struct mem_cgroup_reclaim_iter *iter;
945 struct mem_cgroup_per_zone *mz;
946 int nid, zid;
947 int i;
948
949 while ((memcg = parent_mem_cgroup(memcg))) {
950 for_each_node(nid) {
951 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
952 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
953 for (i = 0; i <= DEF_PRIORITY; i++) {
954 iter = &mz->iter[i];
955 cmpxchg(&iter->position,
956 dead_memcg, NULL);
957 }
958 }
959 }
960 }
961 }
962
963 /*
964 * Iteration constructs for visiting all cgroups (under a tree). If
965 * loops are exited prematurely (break), mem_cgroup_iter_break() must
966 * be used for reference counting.
967 */
968 #define for_each_mem_cgroup_tree(iter, root) \
969 for (iter = mem_cgroup_iter(root, NULL, NULL); \
970 iter != NULL; \
971 iter = mem_cgroup_iter(root, iter, NULL))
972
973 #define for_each_mem_cgroup(iter) \
974 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
975 iter != NULL; \
976 iter = mem_cgroup_iter(NULL, iter, NULL))
977
978 /**
979 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
980 * @zone: zone of the wanted lruvec
981 * @memcg: memcg of the wanted lruvec
982 *
983 * Returns the lru list vector holding pages for the given @zone and
984 * @mem. This can be the global zone lruvec, if the memory controller
985 * is disabled.
986 */
987 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
988 struct mem_cgroup *memcg)
989 {
990 struct mem_cgroup_per_zone *mz;
991 struct lruvec *lruvec;
992
993 if (mem_cgroup_disabled()) {
994 lruvec = &zone->lruvec;
995 goto out;
996 }
997
998 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
999 lruvec = &mz->lruvec;
1000 out:
1001 /*
1002 * Since a node can be onlined after the mem_cgroup was created,
1003 * we have to be prepared to initialize lruvec->zone here;
1004 * and if offlined then reonlined, we need to reinitialize it.
1005 */
1006 if (unlikely(lruvec->zone != zone))
1007 lruvec->zone = zone;
1008 return lruvec;
1009 }
1010
1011 /**
1012 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1013 * @page: the page
1014 * @zone: zone of the page
1015 *
1016 * This function is only safe when following the LRU page isolation
1017 * and putback protocol: the LRU lock must be held, and the page must
1018 * either be PageLRU() or the caller must have isolated/allocated it.
1019 */
1020 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1021 {
1022 struct mem_cgroup_per_zone *mz;
1023 struct mem_cgroup *memcg;
1024 struct lruvec *lruvec;
1025
1026 if (mem_cgroup_disabled()) {
1027 lruvec = &zone->lruvec;
1028 goto out;
1029 }
1030
1031 memcg = page->mem_cgroup;
1032 /*
1033 * Swapcache readahead pages are added to the LRU - and
1034 * possibly migrated - before they are charged.
1035 */
1036 if (!memcg)
1037 memcg = root_mem_cgroup;
1038
1039 mz = mem_cgroup_page_zoneinfo(memcg, page);
1040 lruvec = &mz->lruvec;
1041 out:
1042 /*
1043 * Since a node can be onlined after the mem_cgroup was created,
1044 * we have to be prepared to initialize lruvec->zone here;
1045 * and if offlined then reonlined, we need to reinitialize it.
1046 */
1047 if (unlikely(lruvec->zone != zone))
1048 lruvec->zone = zone;
1049 return lruvec;
1050 }
1051
1052 /**
1053 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1054 * @lruvec: mem_cgroup per zone lru vector
1055 * @lru: index of lru list the page is sitting on
1056 * @nr_pages: positive when adding or negative when removing
1057 *
1058 * This function must be called when a page is added to or removed from an
1059 * lru list.
1060 */
1061 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1062 int nr_pages)
1063 {
1064 struct mem_cgroup_per_zone *mz;
1065 unsigned long *lru_size;
1066
1067 if (mem_cgroup_disabled())
1068 return;
1069
1070 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1071 lru_size = mz->lru_size + lru;
1072 *lru_size += nr_pages;
1073 VM_BUG_ON((long)(*lru_size) < 0);
1074 }
1075
1076 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1077 {
1078 struct mem_cgroup *task_memcg;
1079 struct task_struct *p;
1080 bool ret;
1081
1082 p = find_lock_task_mm(task);
1083 if (p) {
1084 task_memcg = get_mem_cgroup_from_mm(p->mm);
1085 task_unlock(p);
1086 } else {
1087 /*
1088 * All threads may have already detached their mm's, but the oom
1089 * killer still needs to detect if they have already been oom
1090 * killed to prevent needlessly killing additional tasks.
1091 */
1092 rcu_read_lock();
1093 task_memcg = mem_cgroup_from_task(task);
1094 css_get(&task_memcg->css);
1095 rcu_read_unlock();
1096 }
1097 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1098 css_put(&task_memcg->css);
1099 return ret;
1100 }
1101
1102 /**
1103 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1104 * @memcg: the memory cgroup
1105 *
1106 * Returns the maximum amount of memory @mem can be charged with, in
1107 * pages.
1108 */
1109 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1110 {
1111 unsigned long margin = 0;
1112 unsigned long count;
1113 unsigned long limit;
1114
1115 count = page_counter_read(&memcg->memory);
1116 limit = READ_ONCE(memcg->memory.limit);
1117 if (count < limit)
1118 margin = limit - count;
1119
1120 if (do_memsw_account()) {
1121 count = page_counter_read(&memcg->memsw);
1122 limit = READ_ONCE(memcg->memsw.limit);
1123 if (count <= limit)
1124 margin = min(margin, limit - count);
1125 }
1126
1127 return margin;
1128 }
1129
1130 /*
1131 * A routine for checking "mem" is under move_account() or not.
1132 *
1133 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1134 * moving cgroups. This is for waiting at high-memory pressure
1135 * caused by "move".
1136 */
1137 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1138 {
1139 struct mem_cgroup *from;
1140 struct mem_cgroup *to;
1141 bool ret = false;
1142 /*
1143 * Unlike task_move routines, we access mc.to, mc.from not under
1144 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1145 */
1146 spin_lock(&mc.lock);
1147 from = mc.from;
1148 to = mc.to;
1149 if (!from)
1150 goto unlock;
1151
1152 ret = mem_cgroup_is_descendant(from, memcg) ||
1153 mem_cgroup_is_descendant(to, memcg);
1154 unlock:
1155 spin_unlock(&mc.lock);
1156 return ret;
1157 }
1158
1159 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1160 {
1161 if (mc.moving_task && current != mc.moving_task) {
1162 if (mem_cgroup_under_move(memcg)) {
1163 DEFINE_WAIT(wait);
1164 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1165 /* moving charge context might have finished. */
1166 if (mc.moving_task)
1167 schedule();
1168 finish_wait(&mc.waitq, &wait);
1169 return true;
1170 }
1171 }
1172 return false;
1173 }
1174
1175 #define K(x) ((x) << (PAGE_SHIFT-10))
1176 /**
1177 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1178 * @memcg: The memory cgroup that went over limit
1179 * @p: Task that is going to be killed
1180 *
1181 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1182 * enabled
1183 */
1184 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1185 {
1186 /* oom_info_lock ensures that parallel ooms do not interleave */
1187 static DEFINE_MUTEX(oom_info_lock);
1188 struct mem_cgroup *iter;
1189 unsigned int i;
1190
1191 mutex_lock(&oom_info_lock);
1192 rcu_read_lock();
1193
1194 if (p) {
1195 pr_info("Task in ");
1196 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1197 pr_cont(" killed as a result of limit of ");
1198 } else {
1199 pr_info("Memory limit reached of cgroup ");
1200 }
1201
1202 pr_cont_cgroup_path(memcg->css.cgroup);
1203 pr_cont("\n");
1204
1205 rcu_read_unlock();
1206
1207 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1208 K((u64)page_counter_read(&memcg->memory)),
1209 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1210 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1211 K((u64)page_counter_read(&memcg->memsw)),
1212 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1213 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1214 K((u64)page_counter_read(&memcg->kmem)),
1215 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1216
1217 for_each_mem_cgroup_tree(iter, memcg) {
1218 pr_info("Memory cgroup stats for ");
1219 pr_cont_cgroup_path(iter->css.cgroup);
1220 pr_cont(":");
1221
1222 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1223 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1224 continue;
1225 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1226 K(mem_cgroup_read_stat(iter, i)));
1227 }
1228
1229 for (i = 0; i < NR_LRU_LISTS; i++)
1230 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1231 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1232
1233 pr_cont("\n");
1234 }
1235 mutex_unlock(&oom_info_lock);
1236 }
1237
1238 /*
1239 * This function returns the number of memcg under hierarchy tree. Returns
1240 * 1(self count) if no children.
1241 */
1242 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1243 {
1244 int num = 0;
1245 struct mem_cgroup *iter;
1246
1247 for_each_mem_cgroup_tree(iter, memcg)
1248 num++;
1249 return num;
1250 }
1251
1252 /*
1253 * Return the memory (and swap, if configured) limit for a memcg.
1254 */
1255 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1256 {
1257 unsigned long limit;
1258
1259 limit = memcg->memory.limit;
1260 if (mem_cgroup_swappiness(memcg)) {
1261 unsigned long memsw_limit;
1262
1263 memsw_limit = memcg->memsw.limit;
1264 limit = min(limit + total_swap_pages, memsw_limit);
1265 }
1266 return limit;
1267 }
1268
1269 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1270 int order)
1271 {
1272 struct oom_control oc = {
1273 .zonelist = NULL,
1274 .nodemask = NULL,
1275 .gfp_mask = gfp_mask,
1276 .order = order,
1277 };
1278 struct mem_cgroup *iter;
1279 unsigned long chosen_points = 0;
1280 unsigned long totalpages;
1281 unsigned int points = 0;
1282 struct task_struct *chosen = NULL;
1283
1284 mutex_lock(&oom_lock);
1285
1286 /*
1287 * If current has a pending SIGKILL or is exiting, then automatically
1288 * select it. The goal is to allow it to allocate so that it may
1289 * quickly exit and free its memory.
1290 */
1291 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1292 mark_oom_victim(current);
1293 goto unlock;
1294 }
1295
1296 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1297 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1298 for_each_mem_cgroup_tree(iter, memcg) {
1299 struct css_task_iter it;
1300 struct task_struct *task;
1301
1302 css_task_iter_start(&iter->css, &it);
1303 while ((task = css_task_iter_next(&it))) {
1304 switch (oom_scan_process_thread(&oc, task, totalpages)) {
1305 case OOM_SCAN_SELECT:
1306 if (chosen)
1307 put_task_struct(chosen);
1308 chosen = task;
1309 chosen_points = ULONG_MAX;
1310 get_task_struct(chosen);
1311 /* fall through */
1312 case OOM_SCAN_CONTINUE:
1313 continue;
1314 case OOM_SCAN_ABORT:
1315 css_task_iter_end(&it);
1316 mem_cgroup_iter_break(memcg, iter);
1317 if (chosen)
1318 put_task_struct(chosen);
1319 goto unlock;
1320 case OOM_SCAN_OK:
1321 break;
1322 };
1323 points = oom_badness(task, memcg, NULL, totalpages);
1324 if (!points || points < chosen_points)
1325 continue;
1326 /* Prefer thread group leaders for display purposes */
1327 if (points == chosen_points &&
1328 thread_group_leader(chosen))
1329 continue;
1330
1331 if (chosen)
1332 put_task_struct(chosen);
1333 chosen = task;
1334 chosen_points = points;
1335 get_task_struct(chosen);
1336 }
1337 css_task_iter_end(&it);
1338 }
1339
1340 if (chosen) {
1341 points = chosen_points * 1000 / totalpages;
1342 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1343 "Memory cgroup out of memory");
1344 }
1345 unlock:
1346 mutex_unlock(&oom_lock);
1347 }
1348
1349 #if MAX_NUMNODES > 1
1350
1351 /**
1352 * test_mem_cgroup_node_reclaimable
1353 * @memcg: the target memcg
1354 * @nid: the node ID to be checked.
1355 * @noswap : specify true here if the user wants flle only information.
1356 *
1357 * This function returns whether the specified memcg contains any
1358 * reclaimable pages on a node. Returns true if there are any reclaimable
1359 * pages in the node.
1360 */
1361 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1362 int nid, bool noswap)
1363 {
1364 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1365 return true;
1366 if (noswap || !total_swap_pages)
1367 return false;
1368 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1369 return true;
1370 return false;
1371
1372 }
1373
1374 /*
1375 * Always updating the nodemask is not very good - even if we have an empty
1376 * list or the wrong list here, we can start from some node and traverse all
1377 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1378 *
1379 */
1380 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1381 {
1382 int nid;
1383 /*
1384 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1385 * pagein/pageout changes since the last update.
1386 */
1387 if (!atomic_read(&memcg->numainfo_events))
1388 return;
1389 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1390 return;
1391
1392 /* make a nodemask where this memcg uses memory from */
1393 memcg->scan_nodes = node_states[N_MEMORY];
1394
1395 for_each_node_mask(nid, node_states[N_MEMORY]) {
1396
1397 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1398 node_clear(nid, memcg->scan_nodes);
1399 }
1400
1401 atomic_set(&memcg->numainfo_events, 0);
1402 atomic_set(&memcg->numainfo_updating, 0);
1403 }
1404
1405 /*
1406 * Selecting a node where we start reclaim from. Because what we need is just
1407 * reducing usage counter, start from anywhere is O,K. Considering
1408 * memory reclaim from current node, there are pros. and cons.
1409 *
1410 * Freeing memory from current node means freeing memory from a node which
1411 * we'll use or we've used. So, it may make LRU bad. And if several threads
1412 * hit limits, it will see a contention on a node. But freeing from remote
1413 * node means more costs for memory reclaim because of memory latency.
1414 *
1415 * Now, we use round-robin. Better algorithm is welcomed.
1416 */
1417 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1418 {
1419 int node;
1420
1421 mem_cgroup_may_update_nodemask(memcg);
1422 node = memcg->last_scanned_node;
1423
1424 node = next_node(node, memcg->scan_nodes);
1425 if (node == MAX_NUMNODES)
1426 node = first_node(memcg->scan_nodes);
1427 /*
1428 * We call this when we hit limit, not when pages are added to LRU.
1429 * No LRU may hold pages because all pages are UNEVICTABLE or
1430 * memcg is too small and all pages are not on LRU. In that case,
1431 * we use curret node.
1432 */
1433 if (unlikely(node == MAX_NUMNODES))
1434 node = numa_node_id();
1435
1436 memcg->last_scanned_node = node;
1437 return node;
1438 }
1439 #else
1440 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1441 {
1442 return 0;
1443 }
1444 #endif
1445
1446 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1447 struct zone *zone,
1448 gfp_t gfp_mask,
1449 unsigned long *total_scanned)
1450 {
1451 struct mem_cgroup *victim = NULL;
1452 int total = 0;
1453 int loop = 0;
1454 unsigned long excess;
1455 unsigned long nr_scanned;
1456 struct mem_cgroup_reclaim_cookie reclaim = {
1457 .zone = zone,
1458 .priority = 0,
1459 };
1460
1461 excess = soft_limit_excess(root_memcg);
1462
1463 while (1) {
1464 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1465 if (!victim) {
1466 loop++;
1467 if (loop >= 2) {
1468 /*
1469 * If we have not been able to reclaim
1470 * anything, it might because there are
1471 * no reclaimable pages under this hierarchy
1472 */
1473 if (!total)
1474 break;
1475 /*
1476 * We want to do more targeted reclaim.
1477 * excess >> 2 is not to excessive so as to
1478 * reclaim too much, nor too less that we keep
1479 * coming back to reclaim from this cgroup
1480 */
1481 if (total >= (excess >> 2) ||
1482 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1483 break;
1484 }
1485 continue;
1486 }
1487 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1488 zone, &nr_scanned);
1489 *total_scanned += nr_scanned;
1490 if (!soft_limit_excess(root_memcg))
1491 break;
1492 }
1493 mem_cgroup_iter_break(root_memcg, victim);
1494 return total;
1495 }
1496
1497 #ifdef CONFIG_LOCKDEP
1498 static struct lockdep_map memcg_oom_lock_dep_map = {
1499 .name = "memcg_oom_lock",
1500 };
1501 #endif
1502
1503 static DEFINE_SPINLOCK(memcg_oom_lock);
1504
1505 /*
1506 * Check OOM-Killer is already running under our hierarchy.
1507 * If someone is running, return false.
1508 */
1509 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1510 {
1511 struct mem_cgroup *iter, *failed = NULL;
1512
1513 spin_lock(&memcg_oom_lock);
1514
1515 for_each_mem_cgroup_tree(iter, memcg) {
1516 if (iter->oom_lock) {
1517 /*
1518 * this subtree of our hierarchy is already locked
1519 * so we cannot give a lock.
1520 */
1521 failed = iter;
1522 mem_cgroup_iter_break(memcg, iter);
1523 break;
1524 } else
1525 iter->oom_lock = true;
1526 }
1527
1528 if (failed) {
1529 /*
1530 * OK, we failed to lock the whole subtree so we have
1531 * to clean up what we set up to the failing subtree
1532 */
1533 for_each_mem_cgroup_tree(iter, memcg) {
1534 if (iter == failed) {
1535 mem_cgroup_iter_break(memcg, iter);
1536 break;
1537 }
1538 iter->oom_lock = false;
1539 }
1540 } else
1541 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1542
1543 spin_unlock(&memcg_oom_lock);
1544
1545 return !failed;
1546 }
1547
1548 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1549 {
1550 struct mem_cgroup *iter;
1551
1552 spin_lock(&memcg_oom_lock);
1553 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1554 for_each_mem_cgroup_tree(iter, memcg)
1555 iter->oom_lock = false;
1556 spin_unlock(&memcg_oom_lock);
1557 }
1558
1559 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1560 {
1561 struct mem_cgroup *iter;
1562
1563 spin_lock(&memcg_oom_lock);
1564 for_each_mem_cgroup_tree(iter, memcg)
1565 iter->under_oom++;
1566 spin_unlock(&memcg_oom_lock);
1567 }
1568
1569 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1570 {
1571 struct mem_cgroup *iter;
1572
1573 /*
1574 * When a new child is created while the hierarchy is under oom,
1575 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1576 */
1577 spin_lock(&memcg_oom_lock);
1578 for_each_mem_cgroup_tree(iter, memcg)
1579 if (iter->under_oom > 0)
1580 iter->under_oom--;
1581 spin_unlock(&memcg_oom_lock);
1582 }
1583
1584 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1585
1586 struct oom_wait_info {
1587 struct mem_cgroup *memcg;
1588 wait_queue_t wait;
1589 };
1590
1591 static int memcg_oom_wake_function(wait_queue_t *wait,
1592 unsigned mode, int sync, void *arg)
1593 {
1594 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1595 struct mem_cgroup *oom_wait_memcg;
1596 struct oom_wait_info *oom_wait_info;
1597
1598 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1599 oom_wait_memcg = oom_wait_info->memcg;
1600
1601 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1602 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1603 return 0;
1604 return autoremove_wake_function(wait, mode, sync, arg);
1605 }
1606
1607 static void memcg_oom_recover(struct mem_cgroup *memcg)
1608 {
1609 /*
1610 * For the following lockless ->under_oom test, the only required
1611 * guarantee is that it must see the state asserted by an OOM when
1612 * this function is called as a result of userland actions
1613 * triggered by the notification of the OOM. This is trivially
1614 * achieved by invoking mem_cgroup_mark_under_oom() before
1615 * triggering notification.
1616 */
1617 if (memcg && memcg->under_oom)
1618 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1619 }
1620
1621 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1622 {
1623 if (!current->memcg_may_oom)
1624 return;
1625 /*
1626 * We are in the middle of the charge context here, so we
1627 * don't want to block when potentially sitting on a callstack
1628 * that holds all kinds of filesystem and mm locks.
1629 *
1630 * Also, the caller may handle a failed allocation gracefully
1631 * (like optional page cache readahead) and so an OOM killer
1632 * invocation might not even be necessary.
1633 *
1634 * That's why we don't do anything here except remember the
1635 * OOM context and then deal with it at the end of the page
1636 * fault when the stack is unwound, the locks are released,
1637 * and when we know whether the fault was overall successful.
1638 */
1639 css_get(&memcg->css);
1640 current->memcg_in_oom = memcg;
1641 current->memcg_oom_gfp_mask = mask;
1642 current->memcg_oom_order = order;
1643 }
1644
1645 /**
1646 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1647 * @handle: actually kill/wait or just clean up the OOM state
1648 *
1649 * This has to be called at the end of a page fault if the memcg OOM
1650 * handler was enabled.
1651 *
1652 * Memcg supports userspace OOM handling where failed allocations must
1653 * sleep on a waitqueue until the userspace task resolves the
1654 * situation. Sleeping directly in the charge context with all kinds
1655 * of locks held is not a good idea, instead we remember an OOM state
1656 * in the task and mem_cgroup_oom_synchronize() has to be called at
1657 * the end of the page fault to complete the OOM handling.
1658 *
1659 * Returns %true if an ongoing memcg OOM situation was detected and
1660 * completed, %false otherwise.
1661 */
1662 bool mem_cgroup_oom_synchronize(bool handle)
1663 {
1664 struct mem_cgroup *memcg = current->memcg_in_oom;
1665 struct oom_wait_info owait;
1666 bool locked;
1667
1668 /* OOM is global, do not handle */
1669 if (!memcg)
1670 return false;
1671
1672 if (!handle || oom_killer_disabled)
1673 goto cleanup;
1674
1675 owait.memcg = memcg;
1676 owait.wait.flags = 0;
1677 owait.wait.func = memcg_oom_wake_function;
1678 owait.wait.private = current;
1679 INIT_LIST_HEAD(&owait.wait.task_list);
1680
1681 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1682 mem_cgroup_mark_under_oom(memcg);
1683
1684 locked = mem_cgroup_oom_trylock(memcg);
1685
1686 if (locked)
1687 mem_cgroup_oom_notify(memcg);
1688
1689 if (locked && !memcg->oom_kill_disable) {
1690 mem_cgroup_unmark_under_oom(memcg);
1691 finish_wait(&memcg_oom_waitq, &owait.wait);
1692 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1693 current->memcg_oom_order);
1694 } else {
1695 schedule();
1696 mem_cgroup_unmark_under_oom(memcg);
1697 finish_wait(&memcg_oom_waitq, &owait.wait);
1698 }
1699
1700 if (locked) {
1701 mem_cgroup_oom_unlock(memcg);
1702 /*
1703 * There is no guarantee that an OOM-lock contender
1704 * sees the wakeups triggered by the OOM kill
1705 * uncharges. Wake any sleepers explicitely.
1706 */
1707 memcg_oom_recover(memcg);
1708 }
1709 cleanup:
1710 current->memcg_in_oom = NULL;
1711 css_put(&memcg->css);
1712 return true;
1713 }
1714
1715 /**
1716 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1717 * @page: page that is going to change accounted state
1718 *
1719 * This function must mark the beginning of an accounted page state
1720 * change to prevent double accounting when the page is concurrently
1721 * being moved to another memcg:
1722 *
1723 * memcg = mem_cgroup_begin_page_stat(page);
1724 * if (TestClearPageState(page))
1725 * mem_cgroup_update_page_stat(memcg, state, -1);
1726 * mem_cgroup_end_page_stat(memcg);
1727 */
1728 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1729 {
1730 struct mem_cgroup *memcg;
1731 unsigned long flags;
1732
1733 /*
1734 * The RCU lock is held throughout the transaction. The fast
1735 * path can get away without acquiring the memcg->move_lock
1736 * because page moving starts with an RCU grace period.
1737 *
1738 * The RCU lock also protects the memcg from being freed when
1739 * the page state that is going to change is the only thing
1740 * preventing the page from being uncharged.
1741 * E.g. end-writeback clearing PageWriteback(), which allows
1742 * migration to go ahead and uncharge the page before the
1743 * account transaction might be complete.
1744 */
1745 rcu_read_lock();
1746
1747 if (mem_cgroup_disabled())
1748 return NULL;
1749 again:
1750 memcg = page->mem_cgroup;
1751 if (unlikely(!memcg))
1752 return NULL;
1753
1754 if (atomic_read(&memcg->moving_account) <= 0)
1755 return memcg;
1756
1757 spin_lock_irqsave(&memcg->move_lock, flags);
1758 if (memcg != page->mem_cgroup) {
1759 spin_unlock_irqrestore(&memcg->move_lock, flags);
1760 goto again;
1761 }
1762
1763 /*
1764 * When charge migration first begins, we can have locked and
1765 * unlocked page stat updates happening concurrently. Track
1766 * the task who has the lock for mem_cgroup_end_page_stat().
1767 */
1768 memcg->move_lock_task = current;
1769 memcg->move_lock_flags = flags;
1770
1771 return memcg;
1772 }
1773 EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
1774
1775 /**
1776 * mem_cgroup_end_page_stat - finish a page state statistics transaction
1777 * @memcg: the memcg that was accounted against
1778 */
1779 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
1780 {
1781 if (memcg && memcg->move_lock_task == current) {
1782 unsigned long flags = memcg->move_lock_flags;
1783
1784 memcg->move_lock_task = NULL;
1785 memcg->move_lock_flags = 0;
1786
1787 spin_unlock_irqrestore(&memcg->move_lock, flags);
1788 }
1789
1790 rcu_read_unlock();
1791 }
1792 EXPORT_SYMBOL(mem_cgroup_end_page_stat);
1793
1794 /*
1795 * size of first charge trial. "32" comes from vmscan.c's magic value.
1796 * TODO: maybe necessary to use big numbers in big irons.
1797 */
1798 #define CHARGE_BATCH 32U
1799 struct memcg_stock_pcp {
1800 struct mem_cgroup *cached; /* this never be root cgroup */
1801 unsigned int nr_pages;
1802 struct work_struct work;
1803 unsigned long flags;
1804 #define FLUSHING_CACHED_CHARGE 0
1805 };
1806 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1807 static DEFINE_MUTEX(percpu_charge_mutex);
1808
1809 /**
1810 * consume_stock: Try to consume stocked charge on this cpu.
1811 * @memcg: memcg to consume from.
1812 * @nr_pages: how many pages to charge.
1813 *
1814 * The charges will only happen if @memcg matches the current cpu's memcg
1815 * stock, and at least @nr_pages are available in that stock. Failure to
1816 * service an allocation will refill the stock.
1817 *
1818 * returns true if successful, false otherwise.
1819 */
1820 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1821 {
1822 struct memcg_stock_pcp *stock;
1823 bool ret = false;
1824
1825 if (nr_pages > CHARGE_BATCH)
1826 return ret;
1827
1828 stock = &get_cpu_var(memcg_stock);
1829 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1830 stock->nr_pages -= nr_pages;
1831 ret = true;
1832 }
1833 put_cpu_var(memcg_stock);
1834 return ret;
1835 }
1836
1837 /*
1838 * Returns stocks cached in percpu and reset cached information.
1839 */
1840 static void drain_stock(struct memcg_stock_pcp *stock)
1841 {
1842 struct mem_cgroup *old = stock->cached;
1843
1844 if (stock->nr_pages) {
1845 page_counter_uncharge(&old->memory, stock->nr_pages);
1846 if (do_memsw_account())
1847 page_counter_uncharge(&old->memsw, stock->nr_pages);
1848 css_put_many(&old->css, stock->nr_pages);
1849 stock->nr_pages = 0;
1850 }
1851 stock->cached = NULL;
1852 }
1853
1854 /*
1855 * This must be called under preempt disabled or must be called by
1856 * a thread which is pinned to local cpu.
1857 */
1858 static void drain_local_stock(struct work_struct *dummy)
1859 {
1860 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1861 drain_stock(stock);
1862 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1863 }
1864
1865 /*
1866 * Cache charges(val) to local per_cpu area.
1867 * This will be consumed by consume_stock() function, later.
1868 */
1869 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1870 {
1871 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1872
1873 if (stock->cached != memcg) { /* reset if necessary */
1874 drain_stock(stock);
1875 stock->cached = memcg;
1876 }
1877 stock->nr_pages += nr_pages;
1878 put_cpu_var(memcg_stock);
1879 }
1880
1881 /*
1882 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1883 * of the hierarchy under it.
1884 */
1885 static void drain_all_stock(struct mem_cgroup *root_memcg)
1886 {
1887 int cpu, curcpu;
1888
1889 /* If someone's already draining, avoid adding running more workers. */
1890 if (!mutex_trylock(&percpu_charge_mutex))
1891 return;
1892 /* Notify other cpus that system-wide "drain" is running */
1893 get_online_cpus();
1894 curcpu = get_cpu();
1895 for_each_online_cpu(cpu) {
1896 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1897 struct mem_cgroup *memcg;
1898
1899 memcg = stock->cached;
1900 if (!memcg || !stock->nr_pages)
1901 continue;
1902 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1903 continue;
1904 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1905 if (cpu == curcpu)
1906 drain_local_stock(&stock->work);
1907 else
1908 schedule_work_on(cpu, &stock->work);
1909 }
1910 }
1911 put_cpu();
1912 put_online_cpus();
1913 mutex_unlock(&percpu_charge_mutex);
1914 }
1915
1916 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1917 unsigned long action,
1918 void *hcpu)
1919 {
1920 int cpu = (unsigned long)hcpu;
1921 struct memcg_stock_pcp *stock;
1922
1923 if (action == CPU_ONLINE)
1924 return NOTIFY_OK;
1925
1926 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1927 return NOTIFY_OK;
1928
1929 stock = &per_cpu(memcg_stock, cpu);
1930 drain_stock(stock);
1931 return NOTIFY_OK;
1932 }
1933
1934 static void reclaim_high(struct mem_cgroup *memcg,
1935 unsigned int nr_pages,
1936 gfp_t gfp_mask)
1937 {
1938 do {
1939 if (page_counter_read(&memcg->memory) <= memcg->high)
1940 continue;
1941 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1942 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1943 } while ((memcg = parent_mem_cgroup(memcg)));
1944 }
1945
1946 static void high_work_func(struct work_struct *work)
1947 {
1948 struct mem_cgroup *memcg;
1949
1950 memcg = container_of(work, struct mem_cgroup, high_work);
1951 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1952 }
1953
1954 /*
1955 * Scheduled by try_charge() to be executed from the userland return path
1956 * and reclaims memory over the high limit.
1957 */
1958 void mem_cgroup_handle_over_high(void)
1959 {
1960 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1961 struct mem_cgroup *memcg;
1962
1963 if (likely(!nr_pages))
1964 return;
1965
1966 memcg = get_mem_cgroup_from_mm(current->mm);
1967 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1968 css_put(&memcg->css);
1969 current->memcg_nr_pages_over_high = 0;
1970 }
1971
1972 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1973 unsigned int nr_pages)
1974 {
1975 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1976 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1977 struct mem_cgroup *mem_over_limit;
1978 struct page_counter *counter;
1979 unsigned long nr_reclaimed;
1980 bool may_swap = true;
1981 bool drained = false;
1982
1983 if (mem_cgroup_is_root(memcg))
1984 return 0;
1985 retry:
1986 if (consume_stock(memcg, nr_pages))
1987 return 0;
1988
1989 if (!do_memsw_account() ||
1990 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1991 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1992 goto done_restock;
1993 if (do_memsw_account())
1994 page_counter_uncharge(&memcg->memsw, batch);
1995 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1996 } else {
1997 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1998 may_swap = false;
1999 }
2000
2001 if (batch > nr_pages) {
2002 batch = nr_pages;
2003 goto retry;
2004 }
2005
2006 /*
2007 * Unlike in global OOM situations, memcg is not in a physical
2008 * memory shortage. Allow dying and OOM-killed tasks to
2009 * bypass the last charges so that they can exit quickly and
2010 * free their memory.
2011 */
2012 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2013 fatal_signal_pending(current) ||
2014 current->flags & PF_EXITING))
2015 goto force;
2016
2017 if (unlikely(task_in_memcg_oom(current)))
2018 goto nomem;
2019
2020 if (!gfpflags_allow_blocking(gfp_mask))
2021 goto nomem;
2022
2023 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2024
2025 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2026 gfp_mask, may_swap);
2027
2028 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2029 goto retry;
2030
2031 if (!drained) {
2032 drain_all_stock(mem_over_limit);
2033 drained = true;
2034 goto retry;
2035 }
2036
2037 if (gfp_mask & __GFP_NORETRY)
2038 goto nomem;
2039 /*
2040 * Even though the limit is exceeded at this point, reclaim
2041 * may have been able to free some pages. Retry the charge
2042 * before killing the task.
2043 *
2044 * Only for regular pages, though: huge pages are rather
2045 * unlikely to succeed so close to the limit, and we fall back
2046 * to regular pages anyway in case of failure.
2047 */
2048 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2049 goto retry;
2050 /*
2051 * At task move, charge accounts can be doubly counted. So, it's
2052 * better to wait until the end of task_move if something is going on.
2053 */
2054 if (mem_cgroup_wait_acct_move(mem_over_limit))
2055 goto retry;
2056
2057 if (nr_retries--)
2058 goto retry;
2059
2060 if (gfp_mask & __GFP_NOFAIL)
2061 goto force;
2062
2063 if (fatal_signal_pending(current))
2064 goto force;
2065
2066 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2067
2068 mem_cgroup_oom(mem_over_limit, gfp_mask,
2069 get_order(nr_pages * PAGE_SIZE));
2070 nomem:
2071 if (!(gfp_mask & __GFP_NOFAIL))
2072 return -ENOMEM;
2073 force:
2074 /*
2075 * The allocation either can't fail or will lead to more memory
2076 * being freed very soon. Allow memory usage go over the limit
2077 * temporarily by force charging it.
2078 */
2079 page_counter_charge(&memcg->memory, nr_pages);
2080 if (do_memsw_account())
2081 page_counter_charge(&memcg->memsw, nr_pages);
2082 css_get_many(&memcg->css, nr_pages);
2083
2084 return 0;
2085
2086 done_restock:
2087 css_get_many(&memcg->css, batch);
2088 if (batch > nr_pages)
2089 refill_stock(memcg, batch - nr_pages);
2090
2091 /*
2092 * If the hierarchy is above the normal consumption range, schedule
2093 * reclaim on returning to userland. We can perform reclaim here
2094 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2095 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2096 * not recorded as it most likely matches current's and won't
2097 * change in the meantime. As high limit is checked again before
2098 * reclaim, the cost of mismatch is negligible.
2099 */
2100 do {
2101 if (page_counter_read(&memcg->memory) > memcg->high) {
2102 /* Don't bother a random interrupted task */
2103 if (in_interrupt()) {
2104 schedule_work(&memcg->high_work);
2105 break;
2106 }
2107 current->memcg_nr_pages_over_high += batch;
2108 set_notify_resume(current);
2109 break;
2110 }
2111 } while ((memcg = parent_mem_cgroup(memcg)));
2112
2113 return 0;
2114 }
2115
2116 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2117 {
2118 if (mem_cgroup_is_root(memcg))
2119 return;
2120
2121 page_counter_uncharge(&memcg->memory, nr_pages);
2122 if (do_memsw_account())
2123 page_counter_uncharge(&memcg->memsw, nr_pages);
2124
2125 css_put_many(&memcg->css, nr_pages);
2126 }
2127
2128 static void lock_page_lru(struct page *page, int *isolated)
2129 {
2130 struct zone *zone = page_zone(page);
2131
2132 spin_lock_irq(&zone->lru_lock);
2133 if (PageLRU(page)) {
2134 struct lruvec *lruvec;
2135
2136 lruvec = mem_cgroup_page_lruvec(page, zone);
2137 ClearPageLRU(page);
2138 del_page_from_lru_list(page, lruvec, page_lru(page));
2139 *isolated = 1;
2140 } else
2141 *isolated = 0;
2142 }
2143
2144 static void unlock_page_lru(struct page *page, int isolated)
2145 {
2146 struct zone *zone = page_zone(page);
2147
2148 if (isolated) {
2149 struct lruvec *lruvec;
2150
2151 lruvec = mem_cgroup_page_lruvec(page, zone);
2152 VM_BUG_ON_PAGE(PageLRU(page), page);
2153 SetPageLRU(page);
2154 add_page_to_lru_list(page, lruvec, page_lru(page));
2155 }
2156 spin_unlock_irq(&zone->lru_lock);
2157 }
2158
2159 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2160 bool lrucare)
2161 {
2162 int isolated;
2163
2164 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2165
2166 /*
2167 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2168 * may already be on some other mem_cgroup's LRU. Take care of it.
2169 */
2170 if (lrucare)
2171 lock_page_lru(page, &isolated);
2172
2173 /*
2174 * Nobody should be changing or seriously looking at
2175 * page->mem_cgroup at this point:
2176 *
2177 * - the page is uncharged
2178 *
2179 * - the page is off-LRU
2180 *
2181 * - an anonymous fault has exclusive page access, except for
2182 * a locked page table
2183 *
2184 * - a page cache insertion, a swapin fault, or a migration
2185 * have the page locked
2186 */
2187 page->mem_cgroup = memcg;
2188
2189 if (lrucare)
2190 unlock_page_lru(page, isolated);
2191 }
2192
2193 #ifndef CONFIG_SLOB
2194 static int memcg_alloc_cache_id(void)
2195 {
2196 int id, size;
2197 int err;
2198
2199 id = ida_simple_get(&memcg_cache_ida,
2200 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2201 if (id < 0)
2202 return id;
2203
2204 if (id < memcg_nr_cache_ids)
2205 return id;
2206
2207 /*
2208 * There's no space for the new id in memcg_caches arrays,
2209 * so we have to grow them.
2210 */
2211 down_write(&memcg_cache_ids_sem);
2212
2213 size = 2 * (id + 1);
2214 if (size < MEMCG_CACHES_MIN_SIZE)
2215 size = MEMCG_CACHES_MIN_SIZE;
2216 else if (size > MEMCG_CACHES_MAX_SIZE)
2217 size = MEMCG_CACHES_MAX_SIZE;
2218
2219 err = memcg_update_all_caches(size);
2220 if (!err)
2221 err = memcg_update_all_list_lrus(size);
2222 if (!err)
2223 memcg_nr_cache_ids = size;
2224
2225 up_write(&memcg_cache_ids_sem);
2226
2227 if (err) {
2228 ida_simple_remove(&memcg_cache_ida, id);
2229 return err;
2230 }
2231 return id;
2232 }
2233
2234 static void memcg_free_cache_id(int id)
2235 {
2236 ida_simple_remove(&memcg_cache_ida, id);
2237 }
2238
2239 struct memcg_kmem_cache_create_work {
2240 struct mem_cgroup *memcg;
2241 struct kmem_cache *cachep;
2242 struct work_struct work;
2243 };
2244
2245 static void memcg_kmem_cache_create_func(struct work_struct *w)
2246 {
2247 struct memcg_kmem_cache_create_work *cw =
2248 container_of(w, struct memcg_kmem_cache_create_work, work);
2249 struct mem_cgroup *memcg = cw->memcg;
2250 struct kmem_cache *cachep = cw->cachep;
2251
2252 memcg_create_kmem_cache(memcg, cachep);
2253
2254 css_put(&memcg->css);
2255 kfree(cw);
2256 }
2257
2258 /*
2259 * Enqueue the creation of a per-memcg kmem_cache.
2260 */
2261 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2262 struct kmem_cache *cachep)
2263 {
2264 struct memcg_kmem_cache_create_work *cw;
2265
2266 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2267 if (!cw)
2268 return;
2269
2270 css_get(&memcg->css);
2271
2272 cw->memcg = memcg;
2273 cw->cachep = cachep;
2274 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2275
2276 schedule_work(&cw->work);
2277 }
2278
2279 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2280 struct kmem_cache *cachep)
2281 {
2282 /*
2283 * We need to stop accounting when we kmalloc, because if the
2284 * corresponding kmalloc cache is not yet created, the first allocation
2285 * in __memcg_schedule_kmem_cache_create will recurse.
2286 *
2287 * However, it is better to enclose the whole function. Depending on
2288 * the debugging options enabled, INIT_WORK(), for instance, can
2289 * trigger an allocation. This too, will make us recurse. Because at
2290 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2291 * the safest choice is to do it like this, wrapping the whole function.
2292 */
2293 current->memcg_kmem_skip_account = 1;
2294 __memcg_schedule_kmem_cache_create(memcg, cachep);
2295 current->memcg_kmem_skip_account = 0;
2296 }
2297
2298 /*
2299 * Return the kmem_cache we're supposed to use for a slab allocation.
2300 * We try to use the current memcg's version of the cache.
2301 *
2302 * If the cache does not exist yet, if we are the first user of it,
2303 * we either create it immediately, if possible, or create it asynchronously
2304 * in a workqueue.
2305 * In the latter case, we will let the current allocation go through with
2306 * the original cache.
2307 *
2308 * Can't be called in interrupt context or from kernel threads.
2309 * This function needs to be called with rcu_read_lock() held.
2310 */
2311 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2312 {
2313 struct mem_cgroup *memcg;
2314 struct kmem_cache *memcg_cachep;
2315 int kmemcg_id;
2316
2317 VM_BUG_ON(!is_root_cache(cachep));
2318
2319 if (cachep->flags & SLAB_ACCOUNT)
2320 gfp |= __GFP_ACCOUNT;
2321
2322 if (!(gfp & __GFP_ACCOUNT))
2323 return cachep;
2324
2325 if (current->memcg_kmem_skip_account)
2326 return cachep;
2327
2328 memcg = get_mem_cgroup_from_mm(current->mm);
2329 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2330 if (kmemcg_id < 0)
2331 goto out;
2332
2333 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2334 if (likely(memcg_cachep))
2335 return memcg_cachep;
2336
2337 /*
2338 * If we are in a safe context (can wait, and not in interrupt
2339 * context), we could be be predictable and return right away.
2340 * This would guarantee that the allocation being performed
2341 * already belongs in the new cache.
2342 *
2343 * However, there are some clashes that can arrive from locking.
2344 * For instance, because we acquire the slab_mutex while doing
2345 * memcg_create_kmem_cache, this means no further allocation
2346 * could happen with the slab_mutex held. So it's better to
2347 * defer everything.
2348 */
2349 memcg_schedule_kmem_cache_create(memcg, cachep);
2350 out:
2351 css_put(&memcg->css);
2352 return cachep;
2353 }
2354
2355 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2356 {
2357 if (!is_root_cache(cachep))
2358 css_put(&cachep->memcg_params.memcg->css);
2359 }
2360
2361 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2362 struct mem_cgroup *memcg)
2363 {
2364 unsigned int nr_pages = 1 << order;
2365 struct page_counter *counter;
2366 int ret;
2367
2368 if (!memcg_kmem_online(memcg))
2369 return 0;
2370
2371 ret = try_charge(memcg, gfp, nr_pages);
2372 if (ret)
2373 return ret;
2374
2375 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2376 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2377 cancel_charge(memcg, nr_pages);
2378 return -ENOMEM;
2379 }
2380
2381 page->mem_cgroup = memcg;
2382
2383 return 0;
2384 }
2385
2386 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2387 {
2388 struct mem_cgroup *memcg;
2389 int ret;
2390
2391 memcg = get_mem_cgroup_from_mm(current->mm);
2392 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2393 css_put(&memcg->css);
2394 return ret;
2395 }
2396
2397 void __memcg_kmem_uncharge(struct page *page, int order)
2398 {
2399 struct mem_cgroup *memcg = page->mem_cgroup;
2400 unsigned int nr_pages = 1 << order;
2401
2402 if (!memcg)
2403 return;
2404
2405 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2406
2407 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2408 page_counter_uncharge(&memcg->kmem, nr_pages);
2409
2410 page_counter_uncharge(&memcg->memory, nr_pages);
2411 if (do_memsw_account())
2412 page_counter_uncharge(&memcg->memsw, nr_pages);
2413
2414 page->mem_cgroup = NULL;
2415 css_put_many(&memcg->css, nr_pages);
2416 }
2417 #endif /* !CONFIG_SLOB */
2418
2419 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2420
2421 /*
2422 * Because tail pages are not marked as "used", set it. We're under
2423 * zone->lru_lock and migration entries setup in all page mappings.
2424 */
2425 void mem_cgroup_split_huge_fixup(struct page *head)
2426 {
2427 int i;
2428
2429 if (mem_cgroup_disabled())
2430 return;
2431
2432 for (i = 1; i < HPAGE_PMD_NR; i++)
2433 head[i].mem_cgroup = head->mem_cgroup;
2434
2435 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2436 HPAGE_PMD_NR);
2437 }
2438 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2439
2440 #ifdef CONFIG_MEMCG_SWAP
2441 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2442 bool charge)
2443 {
2444 int val = (charge) ? 1 : -1;
2445 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2446 }
2447
2448 /**
2449 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2450 * @entry: swap entry to be moved
2451 * @from: mem_cgroup which the entry is moved from
2452 * @to: mem_cgroup which the entry is moved to
2453 *
2454 * It succeeds only when the swap_cgroup's record for this entry is the same
2455 * as the mem_cgroup's id of @from.
2456 *
2457 * Returns 0 on success, -EINVAL on failure.
2458 *
2459 * The caller must have charged to @to, IOW, called page_counter_charge() about
2460 * both res and memsw, and called css_get().
2461 */
2462 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2463 struct mem_cgroup *from, struct mem_cgroup *to)
2464 {
2465 unsigned short old_id, new_id;
2466
2467 old_id = mem_cgroup_id(from);
2468 new_id = mem_cgroup_id(to);
2469
2470 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2471 mem_cgroup_swap_statistics(from, false);
2472 mem_cgroup_swap_statistics(to, true);
2473 return 0;
2474 }
2475 return -EINVAL;
2476 }
2477 #else
2478 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2479 struct mem_cgroup *from, struct mem_cgroup *to)
2480 {
2481 return -EINVAL;
2482 }
2483 #endif
2484
2485 static DEFINE_MUTEX(memcg_limit_mutex);
2486
2487 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2488 unsigned long limit)
2489 {
2490 unsigned long curusage;
2491 unsigned long oldusage;
2492 bool enlarge = false;
2493 int retry_count;
2494 int ret;
2495
2496 /*
2497 * For keeping hierarchical_reclaim simple, how long we should retry
2498 * is depends on callers. We set our retry-count to be function
2499 * of # of children which we should visit in this loop.
2500 */
2501 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2502 mem_cgroup_count_children(memcg);
2503
2504 oldusage = page_counter_read(&memcg->memory);
2505
2506 do {
2507 if (signal_pending(current)) {
2508 ret = -EINTR;
2509 break;
2510 }
2511
2512 mutex_lock(&memcg_limit_mutex);
2513 if (limit > memcg->memsw.limit) {
2514 mutex_unlock(&memcg_limit_mutex);
2515 ret = -EINVAL;
2516 break;
2517 }
2518 if (limit > memcg->memory.limit)
2519 enlarge = true;
2520 ret = page_counter_limit(&memcg->memory, limit);
2521 mutex_unlock(&memcg_limit_mutex);
2522
2523 if (!ret)
2524 break;
2525
2526 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2527
2528 curusage = page_counter_read(&memcg->memory);
2529 /* Usage is reduced ? */
2530 if (curusage >= oldusage)
2531 retry_count--;
2532 else
2533 oldusage = curusage;
2534 } while (retry_count);
2535
2536 if (!ret && enlarge)
2537 memcg_oom_recover(memcg);
2538
2539 return ret;
2540 }
2541
2542 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2543 unsigned long limit)
2544 {
2545 unsigned long curusage;
2546 unsigned long oldusage;
2547 bool enlarge = false;
2548 int retry_count;
2549 int ret;
2550
2551 /* see mem_cgroup_resize_res_limit */
2552 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2553 mem_cgroup_count_children(memcg);
2554
2555 oldusage = page_counter_read(&memcg->memsw);
2556
2557 do {
2558 if (signal_pending(current)) {
2559 ret = -EINTR;
2560 break;
2561 }
2562
2563 mutex_lock(&memcg_limit_mutex);
2564 if (limit < memcg->memory.limit) {
2565 mutex_unlock(&memcg_limit_mutex);
2566 ret = -EINVAL;
2567 break;
2568 }
2569 if (limit > memcg->memsw.limit)
2570 enlarge = true;
2571 ret = page_counter_limit(&memcg->memsw, limit);
2572 mutex_unlock(&memcg_limit_mutex);
2573
2574 if (!ret)
2575 break;
2576
2577 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2578
2579 curusage = page_counter_read(&memcg->memsw);
2580 /* Usage is reduced ? */
2581 if (curusage >= oldusage)
2582 retry_count--;
2583 else
2584 oldusage = curusage;
2585 } while (retry_count);
2586
2587 if (!ret && enlarge)
2588 memcg_oom_recover(memcg);
2589
2590 return ret;
2591 }
2592
2593 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2594 gfp_t gfp_mask,
2595 unsigned long *total_scanned)
2596 {
2597 unsigned long nr_reclaimed = 0;
2598 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2599 unsigned long reclaimed;
2600 int loop = 0;
2601 struct mem_cgroup_tree_per_zone *mctz;
2602 unsigned long excess;
2603 unsigned long nr_scanned;
2604
2605 if (order > 0)
2606 return 0;
2607
2608 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2609 /*
2610 * This loop can run a while, specially if mem_cgroup's continuously
2611 * keep exceeding their soft limit and putting the system under
2612 * pressure
2613 */
2614 do {
2615 if (next_mz)
2616 mz = next_mz;
2617 else
2618 mz = mem_cgroup_largest_soft_limit_node(mctz);
2619 if (!mz)
2620 break;
2621
2622 nr_scanned = 0;
2623 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2624 gfp_mask, &nr_scanned);
2625 nr_reclaimed += reclaimed;
2626 *total_scanned += nr_scanned;
2627 spin_lock_irq(&mctz->lock);
2628 __mem_cgroup_remove_exceeded(mz, mctz);
2629
2630 /*
2631 * If we failed to reclaim anything from this memory cgroup
2632 * it is time to move on to the next cgroup
2633 */
2634 next_mz = NULL;
2635 if (!reclaimed)
2636 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2637
2638 excess = soft_limit_excess(mz->memcg);
2639 /*
2640 * One school of thought says that we should not add
2641 * back the node to the tree if reclaim returns 0.
2642 * But our reclaim could return 0, simply because due
2643 * to priority we are exposing a smaller subset of
2644 * memory to reclaim from. Consider this as a longer
2645 * term TODO.
2646 */
2647 /* If excess == 0, no tree ops */
2648 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2649 spin_unlock_irq(&mctz->lock);
2650 css_put(&mz->memcg->css);
2651 loop++;
2652 /*
2653 * Could not reclaim anything and there are no more
2654 * mem cgroups to try or we seem to be looping without
2655 * reclaiming anything.
2656 */
2657 if (!nr_reclaimed &&
2658 (next_mz == NULL ||
2659 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2660 break;
2661 } while (!nr_reclaimed);
2662 if (next_mz)
2663 css_put(&next_mz->memcg->css);
2664 return nr_reclaimed;
2665 }
2666
2667 /*
2668 * Test whether @memcg has children, dead or alive. Note that this
2669 * function doesn't care whether @memcg has use_hierarchy enabled and
2670 * returns %true if there are child csses according to the cgroup
2671 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2672 */
2673 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2674 {
2675 bool ret;
2676
2677 rcu_read_lock();
2678 ret = css_next_child(NULL, &memcg->css);
2679 rcu_read_unlock();
2680 return ret;
2681 }
2682
2683 /*
2684 * Reclaims as many pages from the given memcg as possible and moves
2685 * the rest to the parent.
2686 *
2687 * Caller is responsible for holding css reference for memcg.
2688 */
2689 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2690 {
2691 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2692
2693 /* we call try-to-free pages for make this cgroup empty */
2694 lru_add_drain_all();
2695 /* try to free all pages in this cgroup */
2696 while (nr_retries && page_counter_read(&memcg->memory)) {
2697 int progress;
2698
2699 if (signal_pending(current))
2700 return -EINTR;
2701
2702 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2703 GFP_KERNEL, true);
2704 if (!progress) {
2705 nr_retries--;
2706 /* maybe some writeback is necessary */
2707 congestion_wait(BLK_RW_ASYNC, HZ/10);
2708 }
2709
2710 }
2711
2712 return 0;
2713 }
2714
2715 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2716 char *buf, size_t nbytes,
2717 loff_t off)
2718 {
2719 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2720
2721 if (mem_cgroup_is_root(memcg))
2722 return -EINVAL;
2723 return mem_cgroup_force_empty(memcg) ?: nbytes;
2724 }
2725
2726 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2727 struct cftype *cft)
2728 {
2729 return mem_cgroup_from_css(css)->use_hierarchy;
2730 }
2731
2732 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2733 struct cftype *cft, u64 val)
2734 {
2735 int retval = 0;
2736 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2737 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2738
2739 if (memcg->use_hierarchy == val)
2740 return 0;
2741
2742 /*
2743 * If parent's use_hierarchy is set, we can't make any modifications
2744 * in the child subtrees. If it is unset, then the change can
2745 * occur, provided the current cgroup has no children.
2746 *
2747 * For the root cgroup, parent_mem is NULL, we allow value to be
2748 * set if there are no children.
2749 */
2750 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2751 (val == 1 || val == 0)) {
2752 if (!memcg_has_children(memcg))
2753 memcg->use_hierarchy = val;
2754 else
2755 retval = -EBUSY;
2756 } else
2757 retval = -EINVAL;
2758
2759 return retval;
2760 }
2761
2762 static unsigned long tree_stat(struct mem_cgroup *memcg,
2763 enum mem_cgroup_stat_index idx)
2764 {
2765 struct mem_cgroup *iter;
2766 unsigned long val = 0;
2767
2768 for_each_mem_cgroup_tree(iter, memcg)
2769 val += mem_cgroup_read_stat(iter, idx);
2770
2771 return val;
2772 }
2773
2774 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2775 {
2776 unsigned long val;
2777
2778 if (mem_cgroup_is_root(memcg)) {
2779 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2780 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2781 if (swap)
2782 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2783 } else {
2784 if (!swap)
2785 val = page_counter_read(&memcg->memory);
2786 else
2787 val = page_counter_read(&memcg->memsw);
2788 }
2789 return val;
2790 }
2791
2792 enum {
2793 RES_USAGE,
2794 RES_LIMIT,
2795 RES_MAX_USAGE,
2796 RES_FAILCNT,
2797 RES_SOFT_LIMIT,
2798 };
2799
2800 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2801 struct cftype *cft)
2802 {
2803 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2804 struct page_counter *counter;
2805
2806 switch (MEMFILE_TYPE(cft->private)) {
2807 case _MEM:
2808 counter = &memcg->memory;
2809 break;
2810 case _MEMSWAP:
2811 counter = &memcg->memsw;
2812 break;
2813 case _KMEM:
2814 counter = &memcg->kmem;
2815 break;
2816 case _TCP:
2817 counter = &memcg->tcpmem;
2818 break;
2819 default:
2820 BUG();
2821 }
2822
2823 switch (MEMFILE_ATTR(cft->private)) {
2824 case RES_USAGE:
2825 if (counter == &memcg->memory)
2826 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2827 if (counter == &memcg->memsw)
2828 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2829 return (u64)page_counter_read(counter) * PAGE_SIZE;
2830 case RES_LIMIT:
2831 return (u64)counter->limit * PAGE_SIZE;
2832 case RES_MAX_USAGE:
2833 return (u64)counter->watermark * PAGE_SIZE;
2834 case RES_FAILCNT:
2835 return counter->failcnt;
2836 case RES_SOFT_LIMIT:
2837 return (u64)memcg->soft_limit * PAGE_SIZE;
2838 default:
2839 BUG();
2840 }
2841 }
2842
2843 #ifndef CONFIG_SLOB
2844 static int memcg_online_kmem(struct mem_cgroup *memcg)
2845 {
2846 int memcg_id;
2847
2848 BUG_ON(memcg->kmemcg_id >= 0);
2849 BUG_ON(memcg->kmem_state);
2850
2851 memcg_id = memcg_alloc_cache_id();
2852 if (memcg_id < 0)
2853 return memcg_id;
2854
2855 static_branch_inc(&memcg_kmem_enabled_key);
2856 /*
2857 * A memory cgroup is considered kmem-online as soon as it gets
2858 * kmemcg_id. Setting the id after enabling static branching will
2859 * guarantee no one starts accounting before all call sites are
2860 * patched.
2861 */
2862 memcg->kmemcg_id = memcg_id;
2863 memcg->kmem_state = KMEM_ONLINE;
2864
2865 return 0;
2866 }
2867
2868 static int memcg_propagate_kmem(struct mem_cgroup *parent,
2869 struct mem_cgroup *memcg)
2870 {
2871 int ret = 0;
2872
2873 mutex_lock(&memcg_limit_mutex);
2874 /*
2875 * If the parent cgroup is not kmem-online now, it cannot be
2876 * onlined after this point, because it has at least one child
2877 * already.
2878 */
2879 if (memcg_kmem_online(parent) ||
2880 (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nokmem))
2881 ret = memcg_online_kmem(memcg);
2882 mutex_unlock(&memcg_limit_mutex);
2883 return ret;
2884 }
2885
2886 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2887 {
2888 struct cgroup_subsys_state *css;
2889 struct mem_cgroup *parent, *child;
2890 int kmemcg_id;
2891
2892 if (memcg->kmem_state != KMEM_ONLINE)
2893 return;
2894 /*
2895 * Clear the online state before clearing memcg_caches array
2896 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2897 * guarantees that no cache will be created for this cgroup
2898 * after we are done (see memcg_create_kmem_cache()).
2899 */
2900 memcg->kmem_state = KMEM_ALLOCATED;
2901
2902 memcg_deactivate_kmem_caches(memcg);
2903
2904 kmemcg_id = memcg->kmemcg_id;
2905 BUG_ON(kmemcg_id < 0);
2906
2907 parent = parent_mem_cgroup(memcg);
2908 if (!parent)
2909 parent = root_mem_cgroup;
2910
2911 /*
2912 * Change kmemcg_id of this cgroup and all its descendants to the
2913 * parent's id, and then move all entries from this cgroup's list_lrus
2914 * to ones of the parent. After we have finished, all list_lrus
2915 * corresponding to this cgroup are guaranteed to remain empty. The
2916 * ordering is imposed by list_lru_node->lock taken by
2917 * memcg_drain_all_list_lrus().
2918 */
2919 css_for_each_descendant_pre(css, &memcg->css) {
2920 child = mem_cgroup_from_css(css);
2921 BUG_ON(child->kmemcg_id != kmemcg_id);
2922 child->kmemcg_id = parent->kmemcg_id;
2923 if (!memcg->use_hierarchy)
2924 break;
2925 }
2926 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2927
2928 memcg_free_cache_id(kmemcg_id);
2929 }
2930
2931 static void memcg_free_kmem(struct mem_cgroup *memcg)
2932 {
2933 /* css_alloc() failed, offlining didn't happen */
2934 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2935 memcg_offline_kmem(memcg);
2936
2937 if (memcg->kmem_state == KMEM_ALLOCATED) {
2938 memcg_destroy_kmem_caches(memcg);
2939 static_branch_dec(&memcg_kmem_enabled_key);
2940 WARN_ON(page_counter_read(&memcg->kmem));
2941 }
2942 }
2943 #else
2944 static int memcg_propagate_kmem(struct mem_cgroup *parent, struct mem_cgroup *memcg)
2945 {
2946 return 0;
2947 }
2948 static int memcg_online_kmem(struct mem_cgroup *memcg)
2949 {
2950 return 0;
2951 }
2952 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2953 {
2954 }
2955 static void memcg_free_kmem(struct mem_cgroup *memcg)
2956 {
2957 }
2958 #endif /* !CONFIG_SLOB */
2959
2960 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2961 unsigned long limit)
2962 {
2963 int ret = 0;
2964
2965 mutex_lock(&memcg_limit_mutex);
2966 /* Top-level cgroup doesn't propagate from root */
2967 if (!memcg_kmem_online(memcg)) {
2968 if (cgroup_is_populated(memcg->css.cgroup) ||
2969 (memcg->use_hierarchy && memcg_has_children(memcg)))
2970 ret = -EBUSY;
2971 if (ret)
2972 goto out;
2973 ret = memcg_online_kmem(memcg);
2974 if (ret)
2975 goto out;
2976 }
2977 ret = page_counter_limit(&memcg->kmem, limit);
2978 out:
2979 mutex_unlock(&memcg_limit_mutex);
2980 return ret;
2981 }
2982
2983 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2984 {
2985 int ret;
2986
2987 mutex_lock(&memcg_limit_mutex);
2988
2989 ret = page_counter_limit(&memcg->tcpmem, limit);
2990 if (ret)
2991 goto out;
2992
2993 if (!memcg->tcpmem_active) {
2994 /*
2995 * The active flag needs to be written after the static_key
2996 * update. This is what guarantees that the socket activation
2997 * function is the last one to run. See sock_update_memcg() for
2998 * details, and note that we don't mark any socket as belonging
2999 * to this memcg until that flag is up.
3000 *
3001 * We need to do this, because static_keys will span multiple
3002 * sites, but we can't control their order. If we mark a socket
3003 * as accounted, but the accounting functions are not patched in
3004 * yet, we'll lose accounting.
3005 *
3006 * We never race with the readers in sock_update_memcg(),
3007 * because when this value change, the code to process it is not
3008 * patched in yet.
3009 */
3010 static_branch_inc(&memcg_sockets_enabled_key);
3011 memcg->tcpmem_active = true;
3012 }
3013 out:
3014 mutex_unlock(&memcg_limit_mutex);
3015 return ret;
3016 }
3017
3018 /*
3019 * The user of this function is...
3020 * RES_LIMIT.
3021 */
3022 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3023 char *buf, size_t nbytes, loff_t off)
3024 {
3025 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3026 unsigned long nr_pages;
3027 int ret;
3028
3029 buf = strstrip(buf);
3030 ret = page_counter_memparse(buf, "-1", &nr_pages);
3031 if (ret)
3032 return ret;
3033
3034 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3035 case RES_LIMIT:
3036 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3037 ret = -EINVAL;
3038 break;
3039 }
3040 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3041 case _MEM:
3042 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3043 break;
3044 case _MEMSWAP:
3045 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3046 break;
3047 case _KMEM:
3048 ret = memcg_update_kmem_limit(memcg, nr_pages);
3049 break;
3050 case _TCP:
3051 ret = memcg_update_tcp_limit(memcg, nr_pages);
3052 break;
3053 }
3054 break;
3055 case RES_SOFT_LIMIT:
3056 memcg->soft_limit = nr_pages;
3057 ret = 0;
3058 break;
3059 }
3060 return ret ?: nbytes;
3061 }
3062
3063 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3064 size_t nbytes, loff_t off)
3065 {
3066 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3067 struct page_counter *counter;
3068
3069 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3070 case _MEM:
3071 counter = &memcg->memory;
3072 break;
3073 case _MEMSWAP:
3074 counter = &memcg->memsw;
3075 break;
3076 case _KMEM:
3077 counter = &memcg->kmem;
3078 break;
3079 case _TCP:
3080 counter = &memcg->tcpmem;
3081 break;
3082 default:
3083 BUG();
3084 }
3085
3086 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3087 case RES_MAX_USAGE:
3088 page_counter_reset_watermark(counter);
3089 break;
3090 case RES_FAILCNT:
3091 counter->failcnt = 0;
3092 break;
3093 default:
3094 BUG();
3095 }
3096
3097 return nbytes;
3098 }
3099
3100 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3101 struct cftype *cft)
3102 {
3103 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3104 }
3105
3106 #ifdef CONFIG_MMU
3107 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3108 struct cftype *cft, u64 val)
3109 {
3110 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3111
3112 if (val & ~MOVE_MASK)
3113 return -EINVAL;
3114
3115 /*
3116 * No kind of locking is needed in here, because ->can_attach() will
3117 * check this value once in the beginning of the process, and then carry
3118 * on with stale data. This means that changes to this value will only
3119 * affect task migrations starting after the change.
3120 */
3121 memcg->move_charge_at_immigrate = val;
3122 return 0;
3123 }
3124 #else
3125 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3126 struct cftype *cft, u64 val)
3127 {
3128 return -ENOSYS;
3129 }
3130 #endif
3131
3132 #ifdef CONFIG_NUMA
3133 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3134 {
3135 struct numa_stat {
3136 const char *name;
3137 unsigned int lru_mask;
3138 };
3139
3140 static const struct numa_stat stats[] = {
3141 { "total", LRU_ALL },
3142 { "file", LRU_ALL_FILE },
3143 { "anon", LRU_ALL_ANON },
3144 { "unevictable", BIT(LRU_UNEVICTABLE) },
3145 };
3146 const struct numa_stat *stat;
3147 int nid;
3148 unsigned long nr;
3149 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3150
3151 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3152 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3153 seq_printf(m, "%s=%lu", stat->name, nr);
3154 for_each_node_state(nid, N_MEMORY) {
3155 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3156 stat->lru_mask);
3157 seq_printf(m, " N%d=%lu", nid, nr);
3158 }
3159 seq_putc(m, '\n');
3160 }
3161
3162 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3163 struct mem_cgroup *iter;
3164
3165 nr = 0;
3166 for_each_mem_cgroup_tree(iter, memcg)
3167 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3168 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3169 for_each_node_state(nid, N_MEMORY) {
3170 nr = 0;
3171 for_each_mem_cgroup_tree(iter, memcg)
3172 nr += mem_cgroup_node_nr_lru_pages(
3173 iter, nid, stat->lru_mask);
3174 seq_printf(m, " N%d=%lu", nid, nr);
3175 }
3176 seq_putc(m, '\n');
3177 }
3178
3179 return 0;
3180 }
3181 #endif /* CONFIG_NUMA */
3182
3183 static int memcg_stat_show(struct seq_file *m, void *v)
3184 {
3185 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3186 unsigned long memory, memsw;
3187 struct mem_cgroup *mi;
3188 unsigned int i;
3189
3190 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3191 MEM_CGROUP_STAT_NSTATS);
3192 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3193 MEM_CGROUP_EVENTS_NSTATS);
3194 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3195
3196 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3197 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3198 continue;
3199 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3200 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3201 }
3202
3203 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3204 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3205 mem_cgroup_read_events(memcg, i));
3206
3207 for (i = 0; i < NR_LRU_LISTS; i++)
3208 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3209 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3210
3211 /* Hierarchical information */
3212 memory = memsw = PAGE_COUNTER_MAX;
3213 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3214 memory = min(memory, mi->memory.limit);
3215 memsw = min(memsw, mi->memsw.limit);
3216 }
3217 seq_printf(m, "hierarchical_memory_limit %llu\n",
3218 (u64)memory * PAGE_SIZE);
3219 if (do_memsw_account())
3220 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3221 (u64)memsw * PAGE_SIZE);
3222
3223 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3224 unsigned long long val = 0;
3225
3226 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3227 continue;
3228 for_each_mem_cgroup_tree(mi, memcg)
3229 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3230 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3231 }
3232
3233 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3234 unsigned long long val = 0;
3235
3236 for_each_mem_cgroup_tree(mi, memcg)
3237 val += mem_cgroup_read_events(mi, i);
3238 seq_printf(m, "total_%s %llu\n",
3239 mem_cgroup_events_names[i], val);
3240 }
3241
3242 for (i = 0; i < NR_LRU_LISTS; i++) {
3243 unsigned long long val = 0;
3244
3245 for_each_mem_cgroup_tree(mi, memcg)
3246 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3247 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3248 }
3249
3250 #ifdef CONFIG_DEBUG_VM
3251 {
3252 int nid, zid;
3253 struct mem_cgroup_per_zone *mz;
3254 struct zone_reclaim_stat *rstat;
3255 unsigned long recent_rotated[2] = {0, 0};
3256 unsigned long recent_scanned[2] = {0, 0};
3257
3258 for_each_online_node(nid)
3259 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3260 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3261 rstat = &mz->lruvec.reclaim_stat;
3262
3263 recent_rotated[0] += rstat->recent_rotated[0];
3264 recent_rotated[1] += rstat->recent_rotated[1];
3265 recent_scanned[0] += rstat->recent_scanned[0];
3266 recent_scanned[1] += rstat->recent_scanned[1];
3267 }
3268 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3269 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3270 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3271 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3272 }
3273 #endif
3274
3275 return 0;
3276 }
3277
3278 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3279 struct cftype *cft)
3280 {
3281 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3282
3283 return mem_cgroup_swappiness(memcg);
3284 }
3285
3286 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3287 struct cftype *cft, u64 val)
3288 {
3289 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3290
3291 if (val > 100)
3292 return -EINVAL;
3293
3294 if (css->parent)
3295 memcg->swappiness = val;
3296 else
3297 vm_swappiness = val;
3298
3299 return 0;
3300 }
3301
3302 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3303 {
3304 struct mem_cgroup_threshold_ary *t;
3305 unsigned long usage;
3306 int i;
3307
3308 rcu_read_lock();
3309 if (!swap)
3310 t = rcu_dereference(memcg->thresholds.primary);
3311 else
3312 t = rcu_dereference(memcg->memsw_thresholds.primary);
3313
3314 if (!t)
3315 goto unlock;
3316
3317 usage = mem_cgroup_usage(memcg, swap);
3318
3319 /*
3320 * current_threshold points to threshold just below or equal to usage.
3321 * If it's not true, a threshold was crossed after last
3322 * call of __mem_cgroup_threshold().
3323 */
3324 i = t->current_threshold;
3325
3326 /*
3327 * Iterate backward over array of thresholds starting from
3328 * current_threshold and check if a threshold is crossed.
3329 * If none of thresholds below usage is crossed, we read
3330 * only one element of the array here.
3331 */
3332 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3333 eventfd_signal(t->entries[i].eventfd, 1);
3334
3335 /* i = current_threshold + 1 */
3336 i++;
3337
3338 /*
3339 * Iterate forward over array of thresholds starting from
3340 * current_threshold+1 and check if a threshold is crossed.
3341 * If none of thresholds above usage is crossed, we read
3342 * only one element of the array here.
3343 */
3344 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3345 eventfd_signal(t->entries[i].eventfd, 1);
3346
3347 /* Update current_threshold */
3348 t->current_threshold = i - 1;
3349 unlock:
3350 rcu_read_unlock();
3351 }
3352
3353 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3354 {
3355 while (memcg) {
3356 __mem_cgroup_threshold(memcg, false);
3357 if (do_memsw_account())
3358 __mem_cgroup_threshold(memcg, true);
3359
3360 memcg = parent_mem_cgroup(memcg);
3361 }
3362 }
3363
3364 static int compare_thresholds(const void *a, const void *b)
3365 {
3366 const struct mem_cgroup_threshold *_a = a;
3367 const struct mem_cgroup_threshold *_b = b;
3368
3369 if (_a->threshold > _b->threshold)
3370 return 1;
3371
3372 if (_a->threshold < _b->threshold)
3373 return -1;
3374
3375 return 0;
3376 }
3377
3378 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3379 {
3380 struct mem_cgroup_eventfd_list *ev;
3381
3382 spin_lock(&memcg_oom_lock);
3383
3384 list_for_each_entry(ev, &memcg->oom_notify, list)
3385 eventfd_signal(ev->eventfd, 1);
3386
3387 spin_unlock(&memcg_oom_lock);
3388 return 0;
3389 }
3390
3391 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3392 {
3393 struct mem_cgroup *iter;
3394
3395 for_each_mem_cgroup_tree(iter, memcg)
3396 mem_cgroup_oom_notify_cb(iter);
3397 }
3398
3399 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3400 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3401 {
3402 struct mem_cgroup_thresholds *thresholds;
3403 struct mem_cgroup_threshold_ary *new;
3404 unsigned long threshold;
3405 unsigned long usage;
3406 int i, size, ret;
3407
3408 ret = page_counter_memparse(args, "-1", &threshold);
3409 if (ret)
3410 return ret;
3411
3412 mutex_lock(&memcg->thresholds_lock);
3413
3414 if (type == _MEM) {
3415 thresholds = &memcg->thresholds;
3416 usage = mem_cgroup_usage(memcg, false);
3417 } else if (type == _MEMSWAP) {
3418 thresholds = &memcg->memsw_thresholds;
3419 usage = mem_cgroup_usage(memcg, true);
3420 } else
3421 BUG();
3422
3423 /* Check if a threshold crossed before adding a new one */
3424 if (thresholds->primary)
3425 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3426
3427 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3428
3429 /* Allocate memory for new array of thresholds */
3430 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3431 GFP_KERNEL);
3432 if (!new) {
3433 ret = -ENOMEM;
3434 goto unlock;
3435 }
3436 new->size = size;
3437
3438 /* Copy thresholds (if any) to new array */
3439 if (thresholds->primary) {
3440 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3441 sizeof(struct mem_cgroup_threshold));
3442 }
3443
3444 /* Add new threshold */
3445 new->entries[size - 1].eventfd = eventfd;
3446 new->entries[size - 1].threshold = threshold;
3447
3448 /* Sort thresholds. Registering of new threshold isn't time-critical */
3449 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3450 compare_thresholds, NULL);
3451
3452 /* Find current threshold */
3453 new->current_threshold = -1;
3454 for (i = 0; i < size; i++) {
3455 if (new->entries[i].threshold <= usage) {
3456 /*
3457 * new->current_threshold will not be used until
3458 * rcu_assign_pointer(), so it's safe to increment
3459 * it here.
3460 */
3461 ++new->current_threshold;
3462 } else
3463 break;
3464 }
3465
3466 /* Free old spare buffer and save old primary buffer as spare */
3467 kfree(thresholds->spare);
3468 thresholds->spare = thresholds->primary;
3469
3470 rcu_assign_pointer(thresholds->primary, new);
3471
3472 /* To be sure that nobody uses thresholds */
3473 synchronize_rcu();
3474
3475 unlock:
3476 mutex_unlock(&memcg->thresholds_lock);
3477
3478 return ret;
3479 }
3480
3481 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3482 struct eventfd_ctx *eventfd, const char *args)
3483 {
3484 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3485 }
3486
3487 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3488 struct eventfd_ctx *eventfd, const char *args)
3489 {
3490 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3491 }
3492
3493 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3494 struct eventfd_ctx *eventfd, enum res_type type)
3495 {
3496 struct mem_cgroup_thresholds *thresholds;
3497 struct mem_cgroup_threshold_ary *new;
3498 unsigned long usage;
3499 int i, j, size;
3500
3501 mutex_lock(&memcg->thresholds_lock);
3502
3503 if (type == _MEM) {
3504 thresholds = &memcg->thresholds;
3505 usage = mem_cgroup_usage(memcg, false);
3506 } else if (type == _MEMSWAP) {
3507 thresholds = &memcg->memsw_thresholds;
3508 usage = mem_cgroup_usage(memcg, true);
3509 } else
3510 BUG();
3511
3512 if (!thresholds->primary)
3513 goto unlock;
3514
3515 /* Check if a threshold crossed before removing */
3516 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3517
3518 /* Calculate new number of threshold */
3519 size = 0;
3520 for (i = 0; i < thresholds->primary->size; i++) {
3521 if (thresholds->primary->entries[i].eventfd != eventfd)
3522 size++;
3523 }
3524
3525 new = thresholds->spare;
3526
3527 /* Set thresholds array to NULL if we don't have thresholds */
3528 if (!size) {
3529 kfree(new);
3530 new = NULL;
3531 goto swap_buffers;
3532 }
3533
3534 new->size = size;
3535
3536 /* Copy thresholds and find current threshold */
3537 new->current_threshold = -1;
3538 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3539 if (thresholds->primary->entries[i].eventfd == eventfd)
3540 continue;
3541
3542 new->entries[j] = thresholds->primary->entries[i];
3543 if (new->entries[j].threshold <= usage) {
3544 /*
3545 * new->current_threshold will not be used
3546 * until rcu_assign_pointer(), so it's safe to increment
3547 * it here.
3548 */
3549 ++new->current_threshold;
3550 }
3551 j++;
3552 }
3553
3554 swap_buffers:
3555 /* Swap primary and spare array */
3556 thresholds->spare = thresholds->primary;
3557
3558 rcu_assign_pointer(thresholds->primary, new);
3559
3560 /* To be sure that nobody uses thresholds */
3561 synchronize_rcu();
3562
3563 /* If all events are unregistered, free the spare array */
3564 if (!new) {
3565 kfree(thresholds->spare);
3566 thresholds->spare = NULL;
3567 }
3568 unlock:
3569 mutex_unlock(&memcg->thresholds_lock);
3570 }
3571
3572 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3573 struct eventfd_ctx *eventfd)
3574 {
3575 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3576 }
3577
3578 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3579 struct eventfd_ctx *eventfd)
3580 {
3581 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3582 }
3583
3584 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3585 struct eventfd_ctx *eventfd, const char *args)
3586 {
3587 struct mem_cgroup_eventfd_list *event;
3588
3589 event = kmalloc(sizeof(*event), GFP_KERNEL);
3590 if (!event)
3591 return -ENOMEM;
3592
3593 spin_lock(&memcg_oom_lock);
3594
3595 event->eventfd = eventfd;
3596 list_add(&event->list, &memcg->oom_notify);
3597
3598 /* already in OOM ? */
3599 if (memcg->under_oom)
3600 eventfd_signal(eventfd, 1);
3601 spin_unlock(&memcg_oom_lock);
3602
3603 return 0;
3604 }
3605
3606 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3607 struct eventfd_ctx *eventfd)
3608 {
3609 struct mem_cgroup_eventfd_list *ev, *tmp;
3610
3611 spin_lock(&memcg_oom_lock);
3612
3613 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3614 if (ev->eventfd == eventfd) {
3615 list_del(&ev->list);
3616 kfree(ev);
3617 }
3618 }
3619
3620 spin_unlock(&memcg_oom_lock);
3621 }
3622
3623 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3624 {
3625 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3626
3627 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3628 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3629 return 0;
3630 }
3631
3632 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3633 struct cftype *cft, u64 val)
3634 {
3635 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3636
3637 /* cannot set to root cgroup and only 0 and 1 are allowed */
3638 if (!css->parent || !((val == 0) || (val == 1)))
3639 return -EINVAL;
3640
3641 memcg->oom_kill_disable = val;
3642 if (!val)
3643 memcg_oom_recover(memcg);
3644
3645 return 0;
3646 }
3647
3648 #ifdef CONFIG_CGROUP_WRITEBACK
3649
3650 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3651 {
3652 return &memcg->cgwb_list;
3653 }
3654
3655 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3656 {
3657 return wb_domain_init(&memcg->cgwb_domain, gfp);
3658 }
3659
3660 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3661 {
3662 wb_domain_exit(&memcg->cgwb_domain);
3663 }
3664
3665 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3666 {
3667 wb_domain_size_changed(&memcg->cgwb_domain);
3668 }
3669
3670 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3671 {
3672 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3673
3674 if (!memcg->css.parent)
3675 return NULL;
3676
3677 return &memcg->cgwb_domain;
3678 }
3679
3680 /**
3681 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3682 * @wb: bdi_writeback in question
3683 * @pfilepages: out parameter for number of file pages
3684 * @pheadroom: out parameter for number of allocatable pages according to memcg
3685 * @pdirty: out parameter for number of dirty pages
3686 * @pwriteback: out parameter for number of pages under writeback
3687 *
3688 * Determine the numbers of file, headroom, dirty, and writeback pages in
3689 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3690 * is a bit more involved.
3691 *
3692 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3693 * headroom is calculated as the lowest headroom of itself and the
3694 * ancestors. Note that this doesn't consider the actual amount of
3695 * available memory in the system. The caller should further cap
3696 * *@pheadroom accordingly.
3697 */
3698 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3699 unsigned long *pheadroom, unsigned long *pdirty,
3700 unsigned long *pwriteback)
3701 {
3702 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3703 struct mem_cgroup *parent;
3704
3705 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3706
3707 /* this should eventually include NR_UNSTABLE_NFS */
3708 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3709 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3710 (1 << LRU_ACTIVE_FILE));
3711 *pheadroom = PAGE_COUNTER_MAX;
3712
3713 while ((parent = parent_mem_cgroup(memcg))) {
3714 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3715 unsigned long used = page_counter_read(&memcg->memory);
3716
3717 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3718 memcg = parent;
3719 }
3720 }
3721
3722 #else /* CONFIG_CGROUP_WRITEBACK */
3723
3724 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3725 {
3726 return 0;
3727 }
3728
3729 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3730 {
3731 }
3732
3733 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3734 {
3735 }
3736
3737 #endif /* CONFIG_CGROUP_WRITEBACK */
3738
3739 /*
3740 * DO NOT USE IN NEW FILES.
3741 *
3742 * "cgroup.event_control" implementation.
3743 *
3744 * This is way over-engineered. It tries to support fully configurable
3745 * events for each user. Such level of flexibility is completely
3746 * unnecessary especially in the light of the planned unified hierarchy.
3747 *
3748 * Please deprecate this and replace with something simpler if at all
3749 * possible.
3750 */
3751
3752 /*
3753 * Unregister event and free resources.
3754 *
3755 * Gets called from workqueue.
3756 */
3757 static void memcg_event_remove(struct work_struct *work)
3758 {
3759 struct mem_cgroup_event *event =
3760 container_of(work, struct mem_cgroup_event, remove);
3761 struct mem_cgroup *memcg = event->memcg;
3762
3763 remove_wait_queue(event->wqh, &event->wait);
3764
3765 event->unregister_event(memcg, event->eventfd);
3766
3767 /* Notify userspace the event is going away. */
3768 eventfd_signal(event->eventfd, 1);
3769
3770 eventfd_ctx_put(event->eventfd);
3771 kfree(event);
3772 css_put(&memcg->css);
3773 }
3774
3775 /*
3776 * Gets called on POLLHUP on eventfd when user closes it.
3777 *
3778 * Called with wqh->lock held and interrupts disabled.
3779 */
3780 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3781 int sync, void *key)
3782 {
3783 struct mem_cgroup_event *event =
3784 container_of(wait, struct mem_cgroup_event, wait);
3785 struct mem_cgroup *memcg = event->memcg;
3786 unsigned long flags = (unsigned long)key;
3787
3788 if (flags & POLLHUP) {
3789 /*
3790 * If the event has been detached at cgroup removal, we
3791 * can simply return knowing the other side will cleanup
3792 * for us.
3793 *
3794 * We can't race against event freeing since the other
3795 * side will require wqh->lock via remove_wait_queue(),
3796 * which we hold.
3797 */
3798 spin_lock(&memcg->event_list_lock);
3799 if (!list_empty(&event->list)) {
3800 list_del_init(&event->list);
3801 /*
3802 * We are in atomic context, but cgroup_event_remove()
3803 * may sleep, so we have to call it in workqueue.
3804 */
3805 schedule_work(&event->remove);
3806 }
3807 spin_unlock(&memcg->event_list_lock);
3808 }
3809
3810 return 0;
3811 }
3812
3813 static void memcg_event_ptable_queue_proc(struct file *file,
3814 wait_queue_head_t *wqh, poll_table *pt)
3815 {
3816 struct mem_cgroup_event *event =
3817 container_of(pt, struct mem_cgroup_event, pt);
3818
3819 event->wqh = wqh;
3820 add_wait_queue(wqh, &event->wait);
3821 }
3822
3823 /*
3824 * DO NOT USE IN NEW FILES.
3825 *
3826 * Parse input and register new cgroup event handler.
3827 *
3828 * Input must be in format '<event_fd> <control_fd> <args>'.
3829 * Interpretation of args is defined by control file implementation.
3830 */
3831 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3832 char *buf, size_t nbytes, loff_t off)
3833 {
3834 struct cgroup_subsys_state *css = of_css(of);
3835 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3836 struct mem_cgroup_event *event;
3837 struct cgroup_subsys_state *cfile_css;
3838 unsigned int efd, cfd;
3839 struct fd efile;
3840 struct fd cfile;
3841 const char *name;
3842 char *endp;
3843 int ret;
3844
3845 buf = strstrip(buf);
3846
3847 efd = simple_strtoul(buf, &endp, 10);
3848 if (*endp != ' ')
3849 return -EINVAL;
3850 buf = endp + 1;
3851
3852 cfd = simple_strtoul(buf, &endp, 10);
3853 if ((*endp != ' ') && (*endp != '\0'))
3854 return -EINVAL;
3855 buf = endp + 1;
3856
3857 event = kzalloc(sizeof(*event), GFP_KERNEL);
3858 if (!event)
3859 return -ENOMEM;
3860
3861 event->memcg = memcg;
3862 INIT_LIST_HEAD(&event->list);
3863 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3864 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3865 INIT_WORK(&event->remove, memcg_event_remove);
3866
3867 efile = fdget(efd);
3868 if (!efile.file) {
3869 ret = -EBADF;
3870 goto out_kfree;
3871 }
3872
3873 event->eventfd = eventfd_ctx_fileget(efile.file);
3874 if (IS_ERR(event->eventfd)) {
3875 ret = PTR_ERR(event->eventfd);
3876 goto out_put_efile;
3877 }
3878
3879 cfile = fdget(cfd);
3880 if (!cfile.file) {
3881 ret = -EBADF;
3882 goto out_put_eventfd;
3883 }
3884
3885 /* the process need read permission on control file */
3886 /* AV: shouldn't we check that it's been opened for read instead? */
3887 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3888 if (ret < 0)
3889 goto out_put_cfile;
3890
3891 /*
3892 * Determine the event callbacks and set them in @event. This used
3893 * to be done via struct cftype but cgroup core no longer knows
3894 * about these events. The following is crude but the whole thing
3895 * is for compatibility anyway.
3896 *
3897 * DO NOT ADD NEW FILES.
3898 */
3899 name = cfile.file->f_path.dentry->d_name.name;
3900
3901 if (!strcmp(name, "memory.usage_in_bytes")) {
3902 event->register_event = mem_cgroup_usage_register_event;
3903 event->unregister_event = mem_cgroup_usage_unregister_event;
3904 } else if (!strcmp(name, "memory.oom_control")) {
3905 event->register_event = mem_cgroup_oom_register_event;
3906 event->unregister_event = mem_cgroup_oom_unregister_event;
3907 } else if (!strcmp(name, "memory.pressure_level")) {
3908 event->register_event = vmpressure_register_event;
3909 event->unregister_event = vmpressure_unregister_event;
3910 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3911 event->register_event = memsw_cgroup_usage_register_event;
3912 event->unregister_event = memsw_cgroup_usage_unregister_event;
3913 } else {
3914 ret = -EINVAL;
3915 goto out_put_cfile;
3916 }
3917
3918 /*
3919 * Verify @cfile should belong to @css. Also, remaining events are
3920 * automatically removed on cgroup destruction but the removal is
3921 * asynchronous, so take an extra ref on @css.
3922 */
3923 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3924 &memory_cgrp_subsys);
3925 ret = -EINVAL;
3926 if (IS_ERR(cfile_css))
3927 goto out_put_cfile;
3928 if (cfile_css != css) {
3929 css_put(cfile_css);
3930 goto out_put_cfile;
3931 }
3932
3933 ret = event->register_event(memcg, event->eventfd, buf);
3934 if (ret)
3935 goto out_put_css;
3936
3937 efile.file->f_op->poll(efile.file, &event->pt);
3938
3939 spin_lock(&memcg->event_list_lock);
3940 list_add(&event->list, &memcg->event_list);
3941 spin_unlock(&memcg->event_list_lock);
3942
3943 fdput(cfile);
3944 fdput(efile);
3945
3946 return nbytes;
3947
3948 out_put_css:
3949 css_put(css);
3950 out_put_cfile:
3951 fdput(cfile);
3952 out_put_eventfd:
3953 eventfd_ctx_put(event->eventfd);
3954 out_put_efile:
3955 fdput(efile);
3956 out_kfree:
3957 kfree(event);
3958
3959 return ret;
3960 }
3961
3962 static struct cftype mem_cgroup_legacy_files[] = {
3963 {
3964 .name = "usage_in_bytes",
3965 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3966 .read_u64 = mem_cgroup_read_u64,
3967 },
3968 {
3969 .name = "max_usage_in_bytes",
3970 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3971 .write = mem_cgroup_reset,
3972 .read_u64 = mem_cgroup_read_u64,
3973 },
3974 {
3975 .name = "limit_in_bytes",
3976 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3977 .write = mem_cgroup_write,
3978 .read_u64 = mem_cgroup_read_u64,
3979 },
3980 {
3981 .name = "soft_limit_in_bytes",
3982 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3983 .write = mem_cgroup_write,
3984 .read_u64 = mem_cgroup_read_u64,
3985 },
3986 {
3987 .name = "failcnt",
3988 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3989 .write = mem_cgroup_reset,
3990 .read_u64 = mem_cgroup_read_u64,
3991 },
3992 {
3993 .name = "stat",
3994 .seq_show = memcg_stat_show,
3995 },
3996 {
3997 .name = "force_empty",
3998 .write = mem_cgroup_force_empty_write,
3999 },
4000 {
4001 .name = "use_hierarchy",
4002 .write_u64 = mem_cgroup_hierarchy_write,
4003 .read_u64 = mem_cgroup_hierarchy_read,
4004 },
4005 {
4006 .name = "cgroup.event_control", /* XXX: for compat */
4007 .write = memcg_write_event_control,
4008 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4009 },
4010 {
4011 .name = "swappiness",
4012 .read_u64 = mem_cgroup_swappiness_read,
4013 .write_u64 = mem_cgroup_swappiness_write,
4014 },
4015 {
4016 .name = "move_charge_at_immigrate",
4017 .read_u64 = mem_cgroup_move_charge_read,
4018 .write_u64 = mem_cgroup_move_charge_write,
4019 },
4020 {
4021 .name = "oom_control",
4022 .seq_show = mem_cgroup_oom_control_read,
4023 .write_u64 = mem_cgroup_oom_control_write,
4024 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4025 },
4026 {
4027 .name = "pressure_level",
4028 },
4029 #ifdef CONFIG_NUMA
4030 {
4031 .name = "numa_stat",
4032 .seq_show = memcg_numa_stat_show,
4033 },
4034 #endif
4035 {
4036 .name = "kmem.limit_in_bytes",
4037 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4038 .write = mem_cgroup_write,
4039 .read_u64 = mem_cgroup_read_u64,
4040 },
4041 {
4042 .name = "kmem.usage_in_bytes",
4043 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4044 .read_u64 = mem_cgroup_read_u64,
4045 },
4046 {
4047 .name = "kmem.failcnt",
4048 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4049 .write = mem_cgroup_reset,
4050 .read_u64 = mem_cgroup_read_u64,
4051 },
4052 {
4053 .name = "kmem.max_usage_in_bytes",
4054 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4055 .write = mem_cgroup_reset,
4056 .read_u64 = mem_cgroup_read_u64,
4057 },
4058 #ifdef CONFIG_SLABINFO
4059 {
4060 .name = "kmem.slabinfo",
4061 .seq_start = slab_start,
4062 .seq_next = slab_next,
4063 .seq_stop = slab_stop,
4064 .seq_show = memcg_slab_show,
4065 },
4066 #endif
4067 {
4068 .name = "kmem.tcp.limit_in_bytes",
4069 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4070 .write = mem_cgroup_write,
4071 .read_u64 = mem_cgroup_read_u64,
4072 },
4073 {
4074 .name = "kmem.tcp.usage_in_bytes",
4075 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4076 .read_u64 = mem_cgroup_read_u64,
4077 },
4078 {
4079 .name = "kmem.tcp.failcnt",
4080 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4081 .write = mem_cgroup_reset,
4082 .read_u64 = mem_cgroup_read_u64,
4083 },
4084 {
4085 .name = "kmem.tcp.max_usage_in_bytes",
4086 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4087 .write = mem_cgroup_reset,
4088 .read_u64 = mem_cgroup_read_u64,
4089 },
4090 { }, /* terminate */
4091 };
4092
4093 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4094 {
4095 struct mem_cgroup_per_node *pn;
4096 struct mem_cgroup_per_zone *mz;
4097 int zone, tmp = node;
4098 /*
4099 * This routine is called against possible nodes.
4100 * But it's BUG to call kmalloc() against offline node.
4101 *
4102 * TODO: this routine can waste much memory for nodes which will
4103 * never be onlined. It's better to use memory hotplug callback
4104 * function.
4105 */
4106 if (!node_state(node, N_NORMAL_MEMORY))
4107 tmp = -1;
4108 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4109 if (!pn)
4110 return 1;
4111
4112 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4113 mz = &pn->zoneinfo[zone];
4114 lruvec_init(&mz->lruvec);
4115 mz->usage_in_excess = 0;
4116 mz->on_tree = false;
4117 mz->memcg = memcg;
4118 }
4119 memcg->nodeinfo[node] = pn;
4120 return 0;
4121 }
4122
4123 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4124 {
4125 kfree(memcg->nodeinfo[node]);
4126 }
4127
4128 static void mem_cgroup_free(struct mem_cgroup *memcg)
4129 {
4130 int node;
4131
4132 memcg_wb_domain_exit(memcg);
4133 for_each_node(node)
4134 free_mem_cgroup_per_zone_info(memcg, node);
4135 free_percpu(memcg->stat);
4136 kfree(memcg);
4137 }
4138
4139 static struct mem_cgroup *mem_cgroup_alloc(void)
4140 {
4141 struct mem_cgroup *memcg;
4142 size_t size;
4143 int node;
4144
4145 size = sizeof(struct mem_cgroup);
4146 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4147
4148 memcg = kzalloc(size, GFP_KERNEL);
4149 if (!memcg)
4150 return NULL;
4151
4152 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4153 if (!memcg->stat)
4154 goto fail;
4155
4156 for_each_node(node)
4157 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4158 goto fail;
4159
4160 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4161 goto fail;
4162
4163 INIT_WORK(&memcg->high_work, high_work_func);
4164 memcg->last_scanned_node = MAX_NUMNODES;
4165 INIT_LIST_HEAD(&memcg->oom_notify);
4166 mutex_init(&memcg->thresholds_lock);
4167 spin_lock_init(&memcg->move_lock);
4168 vmpressure_init(&memcg->vmpressure);
4169 INIT_LIST_HEAD(&memcg->event_list);
4170 spin_lock_init(&memcg->event_list_lock);
4171 memcg->socket_pressure = jiffies;
4172 #ifndef CONFIG_SLOB
4173 memcg->kmemcg_id = -1;
4174 #endif
4175 #ifdef CONFIG_CGROUP_WRITEBACK
4176 INIT_LIST_HEAD(&memcg->cgwb_list);
4177 #endif
4178 return memcg;
4179 fail:
4180 mem_cgroup_free(memcg);
4181 return NULL;
4182 }
4183
4184 static struct cgroup_subsys_state * __ref
4185 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4186 {
4187 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4188 struct mem_cgroup *memcg;
4189 long error = -ENOMEM;
4190
4191 memcg = mem_cgroup_alloc();
4192 if (!memcg)
4193 return ERR_PTR(error);
4194
4195 memcg->high = PAGE_COUNTER_MAX;
4196 memcg->soft_limit = PAGE_COUNTER_MAX;
4197 if (parent) {
4198 memcg->swappiness = mem_cgroup_swappiness(parent);
4199 memcg->oom_kill_disable = parent->oom_kill_disable;
4200 }
4201 if (parent && parent->use_hierarchy) {
4202 memcg->use_hierarchy = true;
4203 page_counter_init(&memcg->memory, &parent->memory);
4204 page_counter_init(&memcg->memsw, &parent->memsw);
4205 page_counter_init(&memcg->kmem, &parent->kmem);
4206 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4207 } else {
4208 page_counter_init(&memcg->memory, NULL);
4209 page_counter_init(&memcg->memsw, NULL);
4210 page_counter_init(&memcg->kmem, NULL);
4211 page_counter_init(&memcg->tcpmem, NULL);
4212 /*
4213 * Deeper hierachy with use_hierarchy == false doesn't make
4214 * much sense so let cgroup subsystem know about this
4215 * unfortunate state in our controller.
4216 */
4217 if (parent != root_mem_cgroup)
4218 memory_cgrp_subsys.broken_hierarchy = true;
4219 }
4220
4221 /* The following stuff does not apply to the root */
4222 if (!parent) {
4223 root_mem_cgroup = memcg;
4224 return &memcg->css;
4225 }
4226
4227 error = memcg_propagate_kmem(parent, memcg);
4228 if (error)
4229 goto fail;
4230
4231 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4232 static_branch_inc(&memcg_sockets_enabled_key);
4233
4234 return &memcg->css;
4235 fail:
4236 mem_cgroup_free(memcg);
4237 return NULL;
4238 }
4239
4240 static int
4241 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4242 {
4243 if (css->id > MEM_CGROUP_ID_MAX)
4244 return -ENOSPC;
4245
4246 return 0;
4247 }
4248
4249 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4250 {
4251 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4252 struct mem_cgroup_event *event, *tmp;
4253
4254 /*
4255 * Unregister events and notify userspace.
4256 * Notify userspace about cgroup removing only after rmdir of cgroup
4257 * directory to avoid race between userspace and kernelspace.
4258 */
4259 spin_lock(&memcg->event_list_lock);
4260 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4261 list_del_init(&event->list);
4262 schedule_work(&event->remove);
4263 }
4264 spin_unlock(&memcg->event_list_lock);
4265
4266 memcg_offline_kmem(memcg);
4267 wb_memcg_offline(memcg);
4268 }
4269
4270 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4271 {
4272 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4273
4274 invalidate_reclaim_iterators(memcg);
4275 }
4276
4277 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4278 {
4279 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4280
4281 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4282 static_branch_dec(&memcg_sockets_enabled_key);
4283
4284 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4285 static_branch_dec(&memcg_sockets_enabled_key);
4286
4287 vmpressure_cleanup(&memcg->vmpressure);
4288 cancel_work_sync(&memcg->high_work);
4289 mem_cgroup_remove_from_trees(memcg);
4290 memcg_free_kmem(memcg);
4291 mem_cgroup_free(memcg);
4292 }
4293
4294 /**
4295 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4296 * @css: the target css
4297 *
4298 * Reset the states of the mem_cgroup associated with @css. This is
4299 * invoked when the userland requests disabling on the default hierarchy
4300 * but the memcg is pinned through dependency. The memcg should stop
4301 * applying policies and should revert to the vanilla state as it may be
4302 * made visible again.
4303 *
4304 * The current implementation only resets the essential configurations.
4305 * This needs to be expanded to cover all the visible parts.
4306 */
4307 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4308 {
4309 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4310
4311 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4312 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4313 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4314 memcg->low = 0;
4315 memcg->high = PAGE_COUNTER_MAX;
4316 memcg->soft_limit = PAGE_COUNTER_MAX;
4317 memcg_wb_domain_size_changed(memcg);
4318 }
4319
4320 #ifdef CONFIG_MMU
4321 /* Handlers for move charge at task migration. */
4322 static int mem_cgroup_do_precharge(unsigned long count)
4323 {
4324 int ret;
4325
4326 /* Try a single bulk charge without reclaim first, kswapd may wake */
4327 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4328 if (!ret) {
4329 mc.precharge += count;
4330 return ret;
4331 }
4332
4333 /* Try charges one by one with reclaim */
4334 while (count--) {
4335 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4336 if (ret)
4337 return ret;
4338 mc.precharge++;
4339 cond_resched();
4340 }
4341 return 0;
4342 }
4343
4344 /**
4345 * get_mctgt_type - get target type of moving charge
4346 * @vma: the vma the pte to be checked belongs
4347 * @addr: the address corresponding to the pte to be checked
4348 * @ptent: the pte to be checked
4349 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4350 *
4351 * Returns
4352 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4353 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4354 * move charge. if @target is not NULL, the page is stored in target->page
4355 * with extra refcnt got(Callers should handle it).
4356 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4357 * target for charge migration. if @target is not NULL, the entry is stored
4358 * in target->ent.
4359 *
4360 * Called with pte lock held.
4361 */
4362 union mc_target {
4363 struct page *page;
4364 swp_entry_t ent;
4365 };
4366
4367 enum mc_target_type {
4368 MC_TARGET_NONE = 0,
4369 MC_TARGET_PAGE,
4370 MC_TARGET_SWAP,
4371 };
4372
4373 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4374 unsigned long addr, pte_t ptent)
4375 {
4376 struct page *page = vm_normal_page(vma, addr, ptent);
4377
4378 if (!page || !page_mapped(page))
4379 return NULL;
4380 if (PageAnon(page)) {
4381 if (!(mc.flags & MOVE_ANON))
4382 return NULL;
4383 } else {
4384 if (!(mc.flags & MOVE_FILE))
4385 return NULL;
4386 }
4387 if (!get_page_unless_zero(page))
4388 return NULL;
4389
4390 return page;
4391 }
4392
4393 #ifdef CONFIG_SWAP
4394 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4395 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4396 {
4397 struct page *page = NULL;
4398 swp_entry_t ent = pte_to_swp_entry(ptent);
4399
4400 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4401 return NULL;
4402 /*
4403 * Because lookup_swap_cache() updates some statistics counter,
4404 * we call find_get_page() with swapper_space directly.
4405 */
4406 page = find_get_page(swap_address_space(ent), ent.val);
4407 if (do_memsw_account())
4408 entry->val = ent.val;
4409
4410 return page;
4411 }
4412 #else
4413 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4414 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4415 {
4416 return NULL;
4417 }
4418 #endif
4419
4420 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4421 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4422 {
4423 struct page *page = NULL;
4424 struct address_space *mapping;
4425 pgoff_t pgoff;
4426
4427 if (!vma->vm_file) /* anonymous vma */
4428 return NULL;
4429 if (!(mc.flags & MOVE_FILE))
4430 return NULL;
4431
4432 mapping = vma->vm_file->f_mapping;
4433 pgoff = linear_page_index(vma, addr);
4434
4435 /* page is moved even if it's not RSS of this task(page-faulted). */
4436 #ifdef CONFIG_SWAP
4437 /* shmem/tmpfs may report page out on swap: account for that too. */
4438 if (shmem_mapping(mapping)) {
4439 page = find_get_entry(mapping, pgoff);
4440 if (radix_tree_exceptional_entry(page)) {
4441 swp_entry_t swp = radix_to_swp_entry(page);
4442 if (do_memsw_account())
4443 *entry = swp;
4444 page = find_get_page(swap_address_space(swp), swp.val);
4445 }
4446 } else
4447 page = find_get_page(mapping, pgoff);
4448 #else
4449 page = find_get_page(mapping, pgoff);
4450 #endif
4451 return page;
4452 }
4453
4454 /**
4455 * mem_cgroup_move_account - move account of the page
4456 * @page: the page
4457 * @nr_pages: number of regular pages (>1 for huge pages)
4458 * @from: mem_cgroup which the page is moved from.
4459 * @to: mem_cgroup which the page is moved to. @from != @to.
4460 *
4461 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4462 *
4463 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4464 * from old cgroup.
4465 */
4466 static int mem_cgroup_move_account(struct page *page,
4467 bool compound,
4468 struct mem_cgroup *from,
4469 struct mem_cgroup *to)
4470 {
4471 unsigned long flags;
4472 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4473 int ret;
4474 bool anon;
4475
4476 VM_BUG_ON(from == to);
4477 VM_BUG_ON_PAGE(PageLRU(page), page);
4478 VM_BUG_ON(compound && !PageTransHuge(page));
4479
4480 /*
4481 * Prevent mem_cgroup_replace_page() from looking at
4482 * page->mem_cgroup of its source page while we change it.
4483 */
4484 ret = -EBUSY;
4485 if (!trylock_page(page))
4486 goto out;
4487
4488 ret = -EINVAL;
4489 if (page->mem_cgroup != from)
4490 goto out_unlock;
4491
4492 anon = PageAnon(page);
4493
4494 spin_lock_irqsave(&from->move_lock, flags);
4495
4496 if (!anon && page_mapped(page)) {
4497 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4498 nr_pages);
4499 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4500 nr_pages);
4501 }
4502
4503 /*
4504 * move_lock grabbed above and caller set from->moving_account, so
4505 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4506 * So mapping should be stable for dirty pages.
4507 */
4508 if (!anon && PageDirty(page)) {
4509 struct address_space *mapping = page_mapping(page);
4510
4511 if (mapping_cap_account_dirty(mapping)) {
4512 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4513 nr_pages);
4514 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4515 nr_pages);
4516 }
4517 }
4518
4519 if (PageWriteback(page)) {
4520 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4521 nr_pages);
4522 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4523 nr_pages);
4524 }
4525
4526 /*
4527 * It is safe to change page->mem_cgroup here because the page
4528 * is referenced, charged, and isolated - we can't race with
4529 * uncharging, charging, migration, or LRU putback.
4530 */
4531
4532 /* caller should have done css_get */
4533 page->mem_cgroup = to;
4534 spin_unlock_irqrestore(&from->move_lock, flags);
4535
4536 ret = 0;
4537
4538 local_irq_disable();
4539 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4540 memcg_check_events(to, page);
4541 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4542 memcg_check_events(from, page);
4543 local_irq_enable();
4544 out_unlock:
4545 unlock_page(page);
4546 out:
4547 return ret;
4548 }
4549
4550 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4551 unsigned long addr, pte_t ptent, union mc_target *target)
4552 {
4553 struct page *page = NULL;
4554 enum mc_target_type ret = MC_TARGET_NONE;
4555 swp_entry_t ent = { .val = 0 };
4556
4557 if (pte_present(ptent))
4558 page = mc_handle_present_pte(vma, addr, ptent);
4559 else if (is_swap_pte(ptent))
4560 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4561 else if (pte_none(ptent))
4562 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4563
4564 if (!page && !ent.val)
4565 return ret;
4566 if (page) {
4567 /*
4568 * Do only loose check w/o serialization.
4569 * mem_cgroup_move_account() checks the page is valid or
4570 * not under LRU exclusion.
4571 */
4572 if (page->mem_cgroup == mc.from) {
4573 ret = MC_TARGET_PAGE;
4574 if (target)
4575 target->page = page;
4576 }
4577 if (!ret || !target)
4578 put_page(page);
4579 }
4580 /* There is a swap entry and a page doesn't exist or isn't charged */
4581 if (ent.val && !ret &&
4582 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4583 ret = MC_TARGET_SWAP;
4584 if (target)
4585 target->ent = ent;
4586 }
4587 return ret;
4588 }
4589
4590 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4591 /*
4592 * We don't consider swapping or file mapped pages because THP does not
4593 * support them for now.
4594 * Caller should make sure that pmd_trans_huge(pmd) is true.
4595 */
4596 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4597 unsigned long addr, pmd_t pmd, union mc_target *target)
4598 {
4599 struct page *page = NULL;
4600 enum mc_target_type ret = MC_TARGET_NONE;
4601
4602 page = pmd_page(pmd);
4603 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4604 if (!(mc.flags & MOVE_ANON))
4605 return ret;
4606 if (page->mem_cgroup == mc.from) {
4607 ret = MC_TARGET_PAGE;
4608 if (target) {
4609 get_page(page);
4610 target->page = page;
4611 }
4612 }
4613 return ret;
4614 }
4615 #else
4616 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4617 unsigned long addr, pmd_t pmd, union mc_target *target)
4618 {
4619 return MC_TARGET_NONE;
4620 }
4621 #endif
4622
4623 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4624 unsigned long addr, unsigned long end,
4625 struct mm_walk *walk)
4626 {
4627 struct vm_area_struct *vma = walk->vma;
4628 pte_t *pte;
4629 spinlock_t *ptl;
4630
4631 if (pmd_trans_huge_lock(pmd, vma, &ptl)) {
4632 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4633 mc.precharge += HPAGE_PMD_NR;
4634 spin_unlock(ptl);
4635 return 0;
4636 }
4637
4638 if (pmd_trans_unstable(pmd))
4639 return 0;
4640 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4641 for (; addr != end; pte++, addr += PAGE_SIZE)
4642 if (get_mctgt_type(vma, addr, *pte, NULL))
4643 mc.precharge++; /* increment precharge temporarily */
4644 pte_unmap_unlock(pte - 1, ptl);
4645 cond_resched();
4646
4647 return 0;
4648 }
4649
4650 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4651 {
4652 unsigned long precharge;
4653
4654 struct mm_walk mem_cgroup_count_precharge_walk = {
4655 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4656 .mm = mm,
4657 };
4658 down_read(&mm->mmap_sem);
4659 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4660 up_read(&mm->mmap_sem);
4661
4662 precharge = mc.precharge;
4663 mc.precharge = 0;
4664
4665 return precharge;
4666 }
4667
4668 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4669 {
4670 unsigned long precharge = mem_cgroup_count_precharge(mm);
4671
4672 VM_BUG_ON(mc.moving_task);
4673 mc.moving_task = current;
4674 return mem_cgroup_do_precharge(precharge);
4675 }
4676
4677 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4678 static void __mem_cgroup_clear_mc(void)
4679 {
4680 struct mem_cgroup *from = mc.from;
4681 struct mem_cgroup *to = mc.to;
4682
4683 /* we must uncharge all the leftover precharges from mc.to */
4684 if (mc.precharge) {
4685 cancel_charge(mc.to, mc.precharge);
4686 mc.precharge = 0;
4687 }
4688 /*
4689 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4690 * we must uncharge here.
4691 */
4692 if (mc.moved_charge) {
4693 cancel_charge(mc.from, mc.moved_charge);
4694 mc.moved_charge = 0;
4695 }
4696 /* we must fixup refcnts and charges */
4697 if (mc.moved_swap) {
4698 /* uncharge swap account from the old cgroup */
4699 if (!mem_cgroup_is_root(mc.from))
4700 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4701
4702 /*
4703 * we charged both to->memory and to->memsw, so we
4704 * should uncharge to->memory.
4705 */
4706 if (!mem_cgroup_is_root(mc.to))
4707 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4708
4709 css_put_many(&mc.from->css, mc.moved_swap);
4710
4711 /* we've already done css_get(mc.to) */
4712 mc.moved_swap = 0;
4713 }
4714 memcg_oom_recover(from);
4715 memcg_oom_recover(to);
4716 wake_up_all(&mc.waitq);
4717 }
4718
4719 static void mem_cgroup_clear_mc(void)
4720 {
4721 /*
4722 * we must clear moving_task before waking up waiters at the end of
4723 * task migration.
4724 */
4725 mc.moving_task = NULL;
4726 __mem_cgroup_clear_mc();
4727 spin_lock(&mc.lock);
4728 mc.from = NULL;
4729 mc.to = NULL;
4730 spin_unlock(&mc.lock);
4731 }
4732
4733 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4734 {
4735 struct cgroup_subsys_state *css;
4736 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4737 struct mem_cgroup *from;
4738 struct task_struct *leader, *p;
4739 struct mm_struct *mm;
4740 unsigned long move_flags;
4741 int ret = 0;
4742
4743 /* charge immigration isn't supported on the default hierarchy */
4744 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4745 return 0;
4746
4747 /*
4748 * Multi-process migrations only happen on the default hierarchy
4749 * where charge immigration is not used. Perform charge
4750 * immigration if @tset contains a leader and whine if there are
4751 * multiple.
4752 */
4753 p = NULL;
4754 cgroup_taskset_for_each_leader(leader, css, tset) {
4755 WARN_ON_ONCE(p);
4756 p = leader;
4757 memcg = mem_cgroup_from_css(css);
4758 }
4759 if (!p)
4760 return 0;
4761
4762 /*
4763 * We are now commited to this value whatever it is. Changes in this
4764 * tunable will only affect upcoming migrations, not the current one.
4765 * So we need to save it, and keep it going.
4766 */
4767 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4768 if (!move_flags)
4769 return 0;
4770
4771 from = mem_cgroup_from_task(p);
4772
4773 VM_BUG_ON(from == memcg);
4774
4775 mm = get_task_mm(p);
4776 if (!mm)
4777 return 0;
4778 /* We move charges only when we move a owner of the mm */
4779 if (mm->owner == p) {
4780 VM_BUG_ON(mc.from);
4781 VM_BUG_ON(mc.to);
4782 VM_BUG_ON(mc.precharge);
4783 VM_BUG_ON(mc.moved_charge);
4784 VM_BUG_ON(mc.moved_swap);
4785
4786 spin_lock(&mc.lock);
4787 mc.from = from;
4788 mc.to = memcg;
4789 mc.flags = move_flags;
4790 spin_unlock(&mc.lock);
4791 /* We set mc.moving_task later */
4792
4793 ret = mem_cgroup_precharge_mc(mm);
4794 if (ret)
4795 mem_cgroup_clear_mc();
4796 }
4797 mmput(mm);
4798 return ret;
4799 }
4800
4801 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4802 {
4803 if (mc.to)
4804 mem_cgroup_clear_mc();
4805 }
4806
4807 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4808 unsigned long addr, unsigned long end,
4809 struct mm_walk *walk)
4810 {
4811 int ret = 0;
4812 struct vm_area_struct *vma = walk->vma;
4813 pte_t *pte;
4814 spinlock_t *ptl;
4815 enum mc_target_type target_type;
4816 union mc_target target;
4817 struct page *page;
4818
4819 if (pmd_trans_huge_lock(pmd, vma, &ptl)) {
4820 if (mc.precharge < HPAGE_PMD_NR) {
4821 spin_unlock(ptl);
4822 return 0;
4823 }
4824 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4825 if (target_type == MC_TARGET_PAGE) {
4826 page = target.page;
4827 if (!isolate_lru_page(page)) {
4828 if (!mem_cgroup_move_account(page, true,
4829 mc.from, mc.to)) {
4830 mc.precharge -= HPAGE_PMD_NR;
4831 mc.moved_charge += HPAGE_PMD_NR;
4832 }
4833 putback_lru_page(page);
4834 }
4835 put_page(page);
4836 }
4837 spin_unlock(ptl);
4838 return 0;
4839 }
4840
4841 if (pmd_trans_unstable(pmd))
4842 return 0;
4843 retry:
4844 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4845 for (; addr != end; addr += PAGE_SIZE) {
4846 pte_t ptent = *(pte++);
4847 swp_entry_t ent;
4848
4849 if (!mc.precharge)
4850 break;
4851
4852 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4853 case MC_TARGET_PAGE:
4854 page = target.page;
4855 /*
4856 * We can have a part of the split pmd here. Moving it
4857 * can be done but it would be too convoluted so simply
4858 * ignore such a partial THP and keep it in original
4859 * memcg. There should be somebody mapping the head.
4860 */
4861 if (PageTransCompound(page))
4862 goto put;
4863 if (isolate_lru_page(page))
4864 goto put;
4865 if (!mem_cgroup_move_account(page, false,
4866 mc.from, mc.to)) {
4867 mc.precharge--;
4868 /* we uncharge from mc.from later. */
4869 mc.moved_charge++;
4870 }
4871 putback_lru_page(page);
4872 put: /* get_mctgt_type() gets the page */
4873 put_page(page);
4874 break;
4875 case MC_TARGET_SWAP:
4876 ent = target.ent;
4877 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4878 mc.precharge--;
4879 /* we fixup refcnts and charges later. */
4880 mc.moved_swap++;
4881 }
4882 break;
4883 default:
4884 break;
4885 }
4886 }
4887 pte_unmap_unlock(pte - 1, ptl);
4888 cond_resched();
4889
4890 if (addr != end) {
4891 /*
4892 * We have consumed all precharges we got in can_attach().
4893 * We try charge one by one, but don't do any additional
4894 * charges to mc.to if we have failed in charge once in attach()
4895 * phase.
4896 */
4897 ret = mem_cgroup_do_precharge(1);
4898 if (!ret)
4899 goto retry;
4900 }
4901
4902 return ret;
4903 }
4904
4905 static void mem_cgroup_move_charge(struct mm_struct *mm)
4906 {
4907 struct mm_walk mem_cgroup_move_charge_walk = {
4908 .pmd_entry = mem_cgroup_move_charge_pte_range,
4909 .mm = mm,
4910 };
4911
4912 lru_add_drain_all();
4913 /*
4914 * Signal mem_cgroup_begin_page_stat() to take the memcg's
4915 * move_lock while we're moving its pages to another memcg.
4916 * Then wait for already started RCU-only updates to finish.
4917 */
4918 atomic_inc(&mc.from->moving_account);
4919 synchronize_rcu();
4920 retry:
4921 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4922 /*
4923 * Someone who are holding the mmap_sem might be waiting in
4924 * waitq. So we cancel all extra charges, wake up all waiters,
4925 * and retry. Because we cancel precharges, we might not be able
4926 * to move enough charges, but moving charge is a best-effort
4927 * feature anyway, so it wouldn't be a big problem.
4928 */
4929 __mem_cgroup_clear_mc();
4930 cond_resched();
4931 goto retry;
4932 }
4933 /*
4934 * When we have consumed all precharges and failed in doing
4935 * additional charge, the page walk just aborts.
4936 */
4937 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4938 up_read(&mm->mmap_sem);
4939 atomic_dec(&mc.from->moving_account);
4940 }
4941
4942 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
4943 {
4944 struct cgroup_subsys_state *css;
4945 struct task_struct *p = cgroup_taskset_first(tset, &css);
4946 struct mm_struct *mm = get_task_mm(p);
4947
4948 if (mm) {
4949 if (mc.to)
4950 mem_cgroup_move_charge(mm);
4951 mmput(mm);
4952 }
4953 if (mc.to)
4954 mem_cgroup_clear_mc();
4955 }
4956 #else /* !CONFIG_MMU */
4957 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4958 {
4959 return 0;
4960 }
4961 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4962 {
4963 }
4964 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
4965 {
4966 }
4967 #endif
4968
4969 /*
4970 * Cgroup retains root cgroups across [un]mount cycles making it necessary
4971 * to verify whether we're attached to the default hierarchy on each mount
4972 * attempt.
4973 */
4974 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4975 {
4976 /*
4977 * use_hierarchy is forced on the default hierarchy. cgroup core
4978 * guarantees that @root doesn't have any children, so turning it
4979 * on for the root memcg is enough.
4980 */
4981 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4982 root_mem_cgroup->use_hierarchy = true;
4983 else
4984 root_mem_cgroup->use_hierarchy = false;
4985 }
4986
4987 static u64 memory_current_read(struct cgroup_subsys_state *css,
4988 struct cftype *cft)
4989 {
4990 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4991
4992 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4993 }
4994
4995 static int memory_low_show(struct seq_file *m, void *v)
4996 {
4997 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4998 unsigned long low = READ_ONCE(memcg->low);
4999
5000 if (low == PAGE_COUNTER_MAX)
5001 seq_puts(m, "max\n");
5002 else
5003 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5004
5005 return 0;
5006 }
5007
5008 static ssize_t memory_low_write(struct kernfs_open_file *of,
5009 char *buf, size_t nbytes, loff_t off)
5010 {
5011 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5012 unsigned long low;
5013 int err;
5014
5015 buf = strstrip(buf);
5016 err = page_counter_memparse(buf, "max", &low);
5017 if (err)
5018 return err;
5019
5020 memcg->low = low;
5021
5022 return nbytes;
5023 }
5024
5025 static int memory_high_show(struct seq_file *m, void *v)
5026 {
5027 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5028 unsigned long high = READ_ONCE(memcg->high);
5029
5030 if (high == PAGE_COUNTER_MAX)
5031 seq_puts(m, "max\n");
5032 else
5033 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5034
5035 return 0;
5036 }
5037
5038 static ssize_t memory_high_write(struct kernfs_open_file *of,
5039 char *buf, size_t nbytes, loff_t off)
5040 {
5041 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5042 unsigned long high;
5043 int err;
5044
5045 buf = strstrip(buf);
5046 err = page_counter_memparse(buf, "max", &high);
5047 if (err)
5048 return err;
5049
5050 memcg->high = high;
5051
5052 memcg_wb_domain_size_changed(memcg);
5053 return nbytes;
5054 }
5055
5056 static int memory_max_show(struct seq_file *m, void *v)
5057 {
5058 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5059 unsigned long max = READ_ONCE(memcg->memory.limit);
5060
5061 if (max == PAGE_COUNTER_MAX)
5062 seq_puts(m, "max\n");
5063 else
5064 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5065
5066 return 0;
5067 }
5068
5069 static ssize_t memory_max_write(struct kernfs_open_file *of,
5070 char *buf, size_t nbytes, loff_t off)
5071 {
5072 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5073 unsigned long max;
5074 int err;
5075
5076 buf = strstrip(buf);
5077 err = page_counter_memparse(buf, "max", &max);
5078 if (err)
5079 return err;
5080
5081 err = mem_cgroup_resize_limit(memcg, max);
5082 if (err)
5083 return err;
5084
5085 memcg_wb_domain_size_changed(memcg);
5086 return nbytes;
5087 }
5088
5089 static int memory_events_show(struct seq_file *m, void *v)
5090 {
5091 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5092
5093 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5094 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5095 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5096 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5097
5098 return 0;
5099 }
5100
5101 static struct cftype memory_files[] = {
5102 {
5103 .name = "current",
5104 .flags = CFTYPE_NOT_ON_ROOT,
5105 .read_u64 = memory_current_read,
5106 },
5107 {
5108 .name = "low",
5109 .flags = CFTYPE_NOT_ON_ROOT,
5110 .seq_show = memory_low_show,
5111 .write = memory_low_write,
5112 },
5113 {
5114 .name = "high",
5115 .flags = CFTYPE_NOT_ON_ROOT,
5116 .seq_show = memory_high_show,
5117 .write = memory_high_write,
5118 },
5119 {
5120 .name = "max",
5121 .flags = CFTYPE_NOT_ON_ROOT,
5122 .seq_show = memory_max_show,
5123 .write = memory_max_write,
5124 },
5125 {
5126 .name = "events",
5127 .flags = CFTYPE_NOT_ON_ROOT,
5128 .file_offset = offsetof(struct mem_cgroup, events_file),
5129 .seq_show = memory_events_show,
5130 },
5131 { } /* terminate */
5132 };
5133
5134 struct cgroup_subsys memory_cgrp_subsys = {
5135 .css_alloc = mem_cgroup_css_alloc,
5136 .css_online = mem_cgroup_css_online,
5137 .css_offline = mem_cgroup_css_offline,
5138 .css_released = mem_cgroup_css_released,
5139 .css_free = mem_cgroup_css_free,
5140 .css_reset = mem_cgroup_css_reset,
5141 .can_attach = mem_cgroup_can_attach,
5142 .cancel_attach = mem_cgroup_cancel_attach,
5143 .attach = mem_cgroup_move_task,
5144 .bind = mem_cgroup_bind,
5145 .dfl_cftypes = memory_files,
5146 .legacy_cftypes = mem_cgroup_legacy_files,
5147 .early_init = 0,
5148 };
5149
5150 /**
5151 * mem_cgroup_low - check if memory consumption is below the normal range
5152 * @root: the highest ancestor to consider
5153 * @memcg: the memory cgroup to check
5154 *
5155 * Returns %true if memory consumption of @memcg, and that of all
5156 * configurable ancestors up to @root, is below the normal range.
5157 */
5158 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5159 {
5160 if (mem_cgroup_disabled())
5161 return false;
5162
5163 /*
5164 * The toplevel group doesn't have a configurable range, so
5165 * it's never low when looked at directly, and it is not
5166 * considered an ancestor when assessing the hierarchy.
5167 */
5168
5169 if (memcg == root_mem_cgroup)
5170 return false;
5171
5172 if (page_counter_read(&memcg->memory) >= memcg->low)
5173 return false;
5174
5175 while (memcg != root) {
5176 memcg = parent_mem_cgroup(memcg);
5177
5178 if (memcg == root_mem_cgroup)
5179 break;
5180
5181 if (page_counter_read(&memcg->memory) >= memcg->low)
5182 return false;
5183 }
5184 return true;
5185 }
5186
5187 /**
5188 * mem_cgroup_try_charge - try charging a page
5189 * @page: page to charge
5190 * @mm: mm context of the victim
5191 * @gfp_mask: reclaim mode
5192 * @memcgp: charged memcg return
5193 *
5194 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5195 * pages according to @gfp_mask if necessary.
5196 *
5197 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5198 * Otherwise, an error code is returned.
5199 *
5200 * After page->mapping has been set up, the caller must finalize the
5201 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5202 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5203 */
5204 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5205 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5206 bool compound)
5207 {
5208 struct mem_cgroup *memcg = NULL;
5209 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5210 int ret = 0;
5211
5212 if (mem_cgroup_disabled())
5213 goto out;
5214
5215 if (PageSwapCache(page)) {
5216 /*
5217 * Every swap fault against a single page tries to charge the
5218 * page, bail as early as possible. shmem_unuse() encounters
5219 * already charged pages, too. The USED bit is protected by
5220 * the page lock, which serializes swap cache removal, which
5221 * in turn serializes uncharging.
5222 */
5223 VM_BUG_ON_PAGE(!PageLocked(page), page);
5224 if (page->mem_cgroup)
5225 goto out;
5226
5227 if (do_memsw_account()) {
5228 swp_entry_t ent = { .val = page_private(page), };
5229 unsigned short id = lookup_swap_cgroup_id(ent);
5230
5231 rcu_read_lock();
5232 memcg = mem_cgroup_from_id(id);
5233 if (memcg && !css_tryget_online(&memcg->css))
5234 memcg = NULL;
5235 rcu_read_unlock();
5236 }
5237 }
5238
5239 if (!memcg)
5240 memcg = get_mem_cgroup_from_mm(mm);
5241
5242 ret = try_charge(memcg, gfp_mask, nr_pages);
5243
5244 css_put(&memcg->css);
5245 out:
5246 *memcgp = memcg;
5247 return ret;
5248 }
5249
5250 /**
5251 * mem_cgroup_commit_charge - commit a page charge
5252 * @page: page to charge
5253 * @memcg: memcg to charge the page to
5254 * @lrucare: page might be on LRU already
5255 *
5256 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5257 * after page->mapping has been set up. This must happen atomically
5258 * as part of the page instantiation, i.e. under the page table lock
5259 * for anonymous pages, under the page lock for page and swap cache.
5260 *
5261 * In addition, the page must not be on the LRU during the commit, to
5262 * prevent racing with task migration. If it might be, use @lrucare.
5263 *
5264 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5265 */
5266 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5267 bool lrucare, bool compound)
5268 {
5269 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5270
5271 VM_BUG_ON_PAGE(!page->mapping, page);
5272 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5273
5274 if (mem_cgroup_disabled())
5275 return;
5276 /*
5277 * Swap faults will attempt to charge the same page multiple
5278 * times. But reuse_swap_page() might have removed the page
5279 * from swapcache already, so we can't check PageSwapCache().
5280 */
5281 if (!memcg)
5282 return;
5283
5284 commit_charge(page, memcg, lrucare);
5285
5286 local_irq_disable();
5287 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5288 memcg_check_events(memcg, page);
5289 local_irq_enable();
5290
5291 if (do_memsw_account() && PageSwapCache(page)) {
5292 swp_entry_t entry = { .val = page_private(page) };
5293 /*
5294 * The swap entry might not get freed for a long time,
5295 * let's not wait for it. The page already received a
5296 * memory+swap charge, drop the swap entry duplicate.
5297 */
5298 mem_cgroup_uncharge_swap(entry);
5299 }
5300 }
5301
5302 /**
5303 * mem_cgroup_cancel_charge - cancel a page charge
5304 * @page: page to charge
5305 * @memcg: memcg to charge the page to
5306 *
5307 * Cancel a charge transaction started by mem_cgroup_try_charge().
5308 */
5309 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5310 bool compound)
5311 {
5312 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5313
5314 if (mem_cgroup_disabled())
5315 return;
5316 /*
5317 * Swap faults will attempt to charge the same page multiple
5318 * times. But reuse_swap_page() might have removed the page
5319 * from swapcache already, so we can't check PageSwapCache().
5320 */
5321 if (!memcg)
5322 return;
5323
5324 cancel_charge(memcg, nr_pages);
5325 }
5326
5327 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5328 unsigned long nr_anon, unsigned long nr_file,
5329 unsigned long nr_huge, struct page *dummy_page)
5330 {
5331 unsigned long nr_pages = nr_anon + nr_file;
5332 unsigned long flags;
5333
5334 if (!mem_cgroup_is_root(memcg)) {
5335 page_counter_uncharge(&memcg->memory, nr_pages);
5336 if (do_memsw_account())
5337 page_counter_uncharge(&memcg->memsw, nr_pages);
5338 memcg_oom_recover(memcg);
5339 }
5340
5341 local_irq_save(flags);
5342 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5343 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5344 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5345 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5346 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5347 memcg_check_events(memcg, dummy_page);
5348 local_irq_restore(flags);
5349
5350 if (!mem_cgroup_is_root(memcg))
5351 css_put_many(&memcg->css, nr_pages);
5352 }
5353
5354 static void uncharge_list(struct list_head *page_list)
5355 {
5356 struct mem_cgroup *memcg = NULL;
5357 unsigned long nr_anon = 0;
5358 unsigned long nr_file = 0;
5359 unsigned long nr_huge = 0;
5360 unsigned long pgpgout = 0;
5361 struct list_head *next;
5362 struct page *page;
5363
5364 next = page_list->next;
5365 do {
5366 unsigned int nr_pages = 1;
5367
5368 page = list_entry(next, struct page, lru);
5369 next = page->lru.next;
5370
5371 VM_BUG_ON_PAGE(PageLRU(page), page);
5372 VM_BUG_ON_PAGE(page_count(page), page);
5373
5374 if (!page->mem_cgroup)
5375 continue;
5376
5377 /*
5378 * Nobody should be changing or seriously looking at
5379 * page->mem_cgroup at this point, we have fully
5380 * exclusive access to the page.
5381 */
5382
5383 if (memcg != page->mem_cgroup) {
5384 if (memcg) {
5385 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5386 nr_huge, page);
5387 pgpgout = nr_anon = nr_file = nr_huge = 0;
5388 }
5389 memcg = page->mem_cgroup;
5390 }
5391
5392 if (PageTransHuge(page)) {
5393 nr_pages <<= compound_order(page);
5394 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5395 nr_huge += nr_pages;
5396 }
5397
5398 if (PageAnon(page))
5399 nr_anon += nr_pages;
5400 else
5401 nr_file += nr_pages;
5402
5403 page->mem_cgroup = NULL;
5404
5405 pgpgout++;
5406 } while (next != page_list);
5407
5408 if (memcg)
5409 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5410 nr_huge, page);
5411 }
5412
5413 /**
5414 * mem_cgroup_uncharge - uncharge a page
5415 * @page: page to uncharge
5416 *
5417 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5418 * mem_cgroup_commit_charge().
5419 */
5420 void mem_cgroup_uncharge(struct page *page)
5421 {
5422 if (mem_cgroup_disabled())
5423 return;
5424
5425 /* Don't touch page->lru of any random page, pre-check: */
5426 if (!page->mem_cgroup)
5427 return;
5428
5429 INIT_LIST_HEAD(&page->lru);
5430 uncharge_list(&page->lru);
5431 }
5432
5433 /**
5434 * mem_cgroup_uncharge_list - uncharge a list of page
5435 * @page_list: list of pages to uncharge
5436 *
5437 * Uncharge a list of pages previously charged with
5438 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5439 */
5440 void mem_cgroup_uncharge_list(struct list_head *page_list)
5441 {
5442 if (mem_cgroup_disabled())
5443 return;
5444
5445 if (!list_empty(page_list))
5446 uncharge_list(page_list);
5447 }
5448
5449 /**
5450 * mem_cgroup_replace_page - migrate a charge to another page
5451 * @oldpage: currently charged page
5452 * @newpage: page to transfer the charge to
5453 *
5454 * Migrate the charge from @oldpage to @newpage.
5455 *
5456 * Both pages must be locked, @newpage->mapping must be set up.
5457 * Either or both pages might be on the LRU already.
5458 */
5459 void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
5460 {
5461 struct mem_cgroup *memcg;
5462 int isolated;
5463
5464 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5465 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5466 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5467 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5468 newpage);
5469
5470 if (mem_cgroup_disabled())
5471 return;
5472
5473 /* Page cache replacement: new page already charged? */
5474 if (newpage->mem_cgroup)
5475 return;
5476
5477 /* Swapcache readahead pages can get replaced before being charged */
5478 memcg = oldpage->mem_cgroup;
5479 if (!memcg)
5480 return;
5481
5482 lock_page_lru(oldpage, &isolated);
5483 oldpage->mem_cgroup = NULL;
5484 unlock_page_lru(oldpage, isolated);
5485
5486 commit_charge(newpage, memcg, true);
5487 }
5488
5489 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5490 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5491
5492 void sock_update_memcg(struct sock *sk)
5493 {
5494 struct mem_cgroup *memcg;
5495
5496 /* Socket cloning can throw us here with sk_cgrp already
5497 * filled. It won't however, necessarily happen from
5498 * process context. So the test for root memcg given
5499 * the current task's memcg won't help us in this case.
5500 *
5501 * Respecting the original socket's memcg is a better
5502 * decision in this case.
5503 */
5504 if (sk->sk_memcg) {
5505 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5506 css_get(&sk->sk_memcg->css);
5507 return;
5508 }
5509
5510 rcu_read_lock();
5511 memcg = mem_cgroup_from_task(current);
5512 if (memcg == root_mem_cgroup)
5513 goto out;
5514 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5515 goto out;
5516 if (css_tryget_online(&memcg->css))
5517 sk->sk_memcg = memcg;
5518 out:
5519 rcu_read_unlock();
5520 }
5521 EXPORT_SYMBOL(sock_update_memcg);
5522
5523 void sock_release_memcg(struct sock *sk)
5524 {
5525 WARN_ON(!sk->sk_memcg);
5526 css_put(&sk->sk_memcg->css);
5527 }
5528
5529 /**
5530 * mem_cgroup_charge_skmem - charge socket memory
5531 * @memcg: memcg to charge
5532 * @nr_pages: number of pages to charge
5533 *
5534 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5535 * @memcg's configured limit, %false if the charge had to be forced.
5536 */
5537 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5538 {
5539 gfp_t gfp_mask = GFP_KERNEL;
5540
5541 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5542 struct page_counter *fail;
5543
5544 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5545 memcg->tcpmem_pressure = 0;
5546 return true;
5547 }
5548 page_counter_charge(&memcg->tcpmem, nr_pages);
5549 memcg->tcpmem_pressure = 1;
5550 return false;
5551 }
5552
5553 /* Don't block in the packet receive path */
5554 if (in_softirq())
5555 gfp_mask = GFP_NOWAIT;
5556
5557 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5558 return true;
5559
5560 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5561 return false;
5562 }
5563
5564 /**
5565 * mem_cgroup_uncharge_skmem - uncharge socket memory
5566 * @memcg - memcg to uncharge
5567 * @nr_pages - number of pages to uncharge
5568 */
5569 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5570 {
5571 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5572 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5573 return;
5574 }
5575
5576 page_counter_uncharge(&memcg->memory, nr_pages);
5577 css_put_many(&memcg->css, nr_pages);
5578 }
5579
5580 static int __init cgroup_memory(char *s)
5581 {
5582 char *token;
5583
5584 while ((token = strsep(&s, ",")) != NULL) {
5585 if (!*token)
5586 continue;
5587 if (!strcmp(token, "nosocket"))
5588 cgroup_memory_nosocket = true;
5589 if (!strcmp(token, "nokmem"))
5590 cgroup_memory_nokmem = true;
5591 }
5592 return 0;
5593 }
5594 __setup("cgroup.memory=", cgroup_memory);
5595
5596 /*
5597 * subsys_initcall() for memory controller.
5598 *
5599 * Some parts like hotcpu_notifier() have to be initialized from this context
5600 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5601 * everything that doesn't depend on a specific mem_cgroup structure should
5602 * be initialized from here.
5603 */
5604 static int __init mem_cgroup_init(void)
5605 {
5606 int cpu, node;
5607
5608 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5609
5610 for_each_possible_cpu(cpu)
5611 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5612 drain_local_stock);
5613
5614 for_each_node(node) {
5615 struct mem_cgroup_tree_per_node *rtpn;
5616 int zone;
5617
5618 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5619 node_online(node) ? node : NUMA_NO_NODE);
5620
5621 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5622 struct mem_cgroup_tree_per_zone *rtpz;
5623
5624 rtpz = &rtpn->rb_tree_per_zone[zone];
5625 rtpz->rb_root = RB_ROOT;
5626 spin_lock_init(&rtpz->lock);
5627 }
5628 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5629 }
5630
5631 return 0;
5632 }
5633 subsys_initcall(mem_cgroup_init);
5634
5635 #ifdef CONFIG_MEMCG_SWAP
5636 /**
5637 * mem_cgroup_swapout - transfer a memsw charge to swap
5638 * @page: page whose memsw charge to transfer
5639 * @entry: swap entry to move the charge to
5640 *
5641 * Transfer the memsw charge of @page to @entry.
5642 */
5643 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5644 {
5645 struct mem_cgroup *memcg;
5646 unsigned short oldid;
5647
5648 VM_BUG_ON_PAGE(PageLRU(page), page);
5649 VM_BUG_ON_PAGE(page_count(page), page);
5650
5651 if (!do_memsw_account())
5652 return;
5653
5654 memcg = page->mem_cgroup;
5655
5656 /* Readahead page, never charged */
5657 if (!memcg)
5658 return;
5659
5660 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5661 VM_BUG_ON_PAGE(oldid, page);
5662 mem_cgroup_swap_statistics(memcg, true);
5663
5664 page->mem_cgroup = NULL;
5665
5666 if (!mem_cgroup_is_root(memcg))
5667 page_counter_uncharge(&memcg->memory, 1);
5668
5669 /*
5670 * Interrupts should be disabled here because the caller holds the
5671 * mapping->tree_lock lock which is taken with interrupts-off. It is
5672 * important here to have the interrupts disabled because it is the
5673 * only synchronisation we have for udpating the per-CPU variables.
5674 */
5675 VM_BUG_ON(!irqs_disabled());
5676 mem_cgroup_charge_statistics(memcg, page, false, -1);
5677 memcg_check_events(memcg, page);
5678 }
5679
5680 /**
5681 * mem_cgroup_uncharge_swap - uncharge a swap entry
5682 * @entry: swap entry to uncharge
5683 *
5684 * Drop the memsw charge associated with @entry.
5685 */
5686 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5687 {
5688 struct mem_cgroup *memcg;
5689 unsigned short id;
5690
5691 if (!do_memsw_account())
5692 return;
5693
5694 id = swap_cgroup_record(entry, 0);
5695 rcu_read_lock();
5696 memcg = mem_cgroup_from_id(id);
5697 if (memcg) {
5698 if (!mem_cgroup_is_root(memcg))
5699 page_counter_uncharge(&memcg->memsw, 1);
5700 mem_cgroup_swap_statistics(memcg, false);
5701 css_put(&memcg->css);
5702 }
5703 rcu_read_unlock();
5704 }
5705
5706 /* for remember boot option*/
5707 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5708 static int really_do_swap_account __initdata = 1;
5709 #else
5710 static int really_do_swap_account __initdata;
5711 #endif
5712
5713 static int __init enable_swap_account(char *s)
5714 {
5715 if (!strcmp(s, "1"))
5716 really_do_swap_account = 1;
5717 else if (!strcmp(s, "0"))
5718 really_do_swap_account = 0;
5719 return 1;
5720 }
5721 __setup("swapaccount=", enable_swap_account);
5722
5723 static struct cftype memsw_cgroup_files[] = {
5724 {
5725 .name = "memsw.usage_in_bytes",
5726 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5727 .read_u64 = mem_cgroup_read_u64,
5728 },
5729 {
5730 .name = "memsw.max_usage_in_bytes",
5731 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5732 .write = mem_cgroup_reset,
5733 .read_u64 = mem_cgroup_read_u64,
5734 },
5735 {
5736 .name = "memsw.limit_in_bytes",
5737 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5738 .write = mem_cgroup_write,
5739 .read_u64 = mem_cgroup_read_u64,
5740 },
5741 {
5742 .name = "memsw.failcnt",
5743 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5744 .write = mem_cgroup_reset,
5745 .read_u64 = mem_cgroup_read_u64,
5746 },
5747 { }, /* terminate */
5748 };
5749
5750 static int __init mem_cgroup_swap_init(void)
5751 {
5752 if (!mem_cgroup_disabled() && really_do_swap_account) {
5753 do_swap_account = 1;
5754 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5755 memsw_cgroup_files));
5756 }
5757 return 0;
5758 }
5759 subsys_initcall(mem_cgroup_swap_init);
5760
5761 #endif /* CONFIG_MEMCG_SWAP */
This page took 0.161599 seconds and 5 git commands to generate.