Memory controller: make page_referenced() cgroup aware
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/page-flags.h>
25 #include <linux/backing-dev.h>
26 #include <linux/bit_spinlock.h>
27 #include <linux/rcupdate.h>
28 #include <linux/swap.h>
29 #include <linux/spinlock.h>
30 #include <linux/fs.h>
31
32 #include <asm/uaccess.h>
33
34 struct cgroup_subsys mem_cgroup_subsys;
35 static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
36
37 /*
38 * The memory controller data structure. The memory controller controls both
39 * page cache and RSS per cgroup. We would eventually like to provide
40 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
41 * to help the administrator determine what knobs to tune.
42 *
43 * TODO: Add a water mark for the memory controller. Reclaim will begin when
44 * we hit the water mark. May be even add a low water mark, such that
45 * no reclaim occurs from a cgroup at it's low water mark, this is
46 * a feature that will be implemented much later in the future.
47 */
48 struct mem_cgroup {
49 struct cgroup_subsys_state css;
50 /*
51 * the counter to account for memory usage
52 */
53 struct res_counter res;
54 /*
55 * Per cgroup active and inactive list, similar to the
56 * per zone LRU lists.
57 * TODO: Consider making these lists per zone
58 */
59 struct list_head active_list;
60 struct list_head inactive_list;
61 /*
62 * spin_lock to protect the per cgroup LRU
63 */
64 spinlock_t lru_lock;
65 unsigned long control_type; /* control RSS or RSS+Pagecache */
66 };
67
68 /*
69 * We use the lower bit of the page->page_cgroup pointer as a bit spin
70 * lock. We need to ensure that page->page_cgroup is atleast two
71 * byte aligned (based on comments from Nick Piggin)
72 */
73 #define PAGE_CGROUP_LOCK_BIT 0x0
74 #define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
75
76 /*
77 * A page_cgroup page is associated with every page descriptor. The
78 * page_cgroup helps us identify information about the cgroup
79 */
80 struct page_cgroup {
81 struct list_head lru; /* per cgroup LRU list */
82 struct page *page;
83 struct mem_cgroup *mem_cgroup;
84 atomic_t ref_cnt; /* Helpful when pages move b/w */
85 /* mapped and cached states */
86 };
87
88 enum {
89 MEM_CGROUP_TYPE_UNSPEC = 0,
90 MEM_CGROUP_TYPE_MAPPED,
91 MEM_CGROUP_TYPE_CACHED,
92 MEM_CGROUP_TYPE_ALL,
93 MEM_CGROUP_TYPE_MAX,
94 };
95
96 static struct mem_cgroup init_mem_cgroup;
97
98 static inline
99 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
100 {
101 return container_of(cgroup_subsys_state(cont,
102 mem_cgroup_subsys_id), struct mem_cgroup,
103 css);
104 }
105
106 static inline
107 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
108 {
109 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
110 struct mem_cgroup, css);
111 }
112
113 inline struct mem_cgroup *mm_cgroup(struct mm_struct *mm)
114 {
115 return rcu_dereference(mm->mem_cgroup);
116 }
117
118 void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p)
119 {
120 struct mem_cgroup *mem;
121
122 mem = mem_cgroup_from_task(p);
123 css_get(&mem->css);
124 mm->mem_cgroup = mem;
125 }
126
127 void mm_free_cgroup(struct mm_struct *mm)
128 {
129 css_put(&mm->mem_cgroup->css);
130 }
131
132 static inline int page_cgroup_locked(struct page *page)
133 {
134 return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT,
135 &page->page_cgroup);
136 }
137
138 void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
139 {
140 int locked;
141
142 /*
143 * While resetting the page_cgroup we might not hold the
144 * page_cgroup lock. free_hot_cold_page() is an example
145 * of such a scenario
146 */
147 if (pc)
148 VM_BUG_ON(!page_cgroup_locked(page));
149 locked = (page->page_cgroup & PAGE_CGROUP_LOCK);
150 page->page_cgroup = ((unsigned long)pc | locked);
151 }
152
153 struct page_cgroup *page_get_page_cgroup(struct page *page)
154 {
155 return (struct page_cgroup *)
156 (page->page_cgroup & ~PAGE_CGROUP_LOCK);
157 }
158
159 static void __always_inline lock_page_cgroup(struct page *page)
160 {
161 bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
162 VM_BUG_ON(!page_cgroup_locked(page));
163 }
164
165 static void __always_inline unlock_page_cgroup(struct page *page)
166 {
167 bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
168 }
169
170 static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
171 {
172 if (active)
173 list_move(&pc->lru, &pc->mem_cgroup->active_list);
174 else
175 list_move(&pc->lru, &pc->mem_cgroup->inactive_list);
176 }
177
178 /*
179 * This routine assumes that the appropriate zone's lru lock is already held
180 */
181 void mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
182 {
183 struct mem_cgroup *mem;
184 if (!pc)
185 return;
186
187 mem = pc->mem_cgroup;
188
189 spin_lock(&mem->lru_lock);
190 __mem_cgroup_move_lists(pc, active);
191 spin_unlock(&mem->lru_lock);
192 }
193
194 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
195 struct list_head *dst,
196 unsigned long *scanned, int order,
197 int mode, struct zone *z,
198 struct mem_cgroup *mem_cont,
199 int active)
200 {
201 unsigned long nr_taken = 0;
202 struct page *page;
203 unsigned long scan;
204 LIST_HEAD(pc_list);
205 struct list_head *src;
206 struct page_cgroup *pc;
207
208 if (active)
209 src = &mem_cont->active_list;
210 else
211 src = &mem_cont->inactive_list;
212
213 spin_lock(&mem_cont->lru_lock);
214 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
215 pc = list_entry(src->prev, struct page_cgroup, lru);
216 page = pc->page;
217 VM_BUG_ON(!pc);
218
219 if (PageActive(page) && !active) {
220 __mem_cgroup_move_lists(pc, true);
221 scan--;
222 continue;
223 }
224 if (!PageActive(page) && active) {
225 __mem_cgroup_move_lists(pc, false);
226 scan--;
227 continue;
228 }
229
230 /*
231 * Reclaim, per zone
232 * TODO: make the active/inactive lists per zone
233 */
234 if (page_zone(page) != z)
235 continue;
236
237 /*
238 * Check if the meta page went away from under us
239 */
240 if (!list_empty(&pc->lru))
241 list_move(&pc->lru, &pc_list);
242 else
243 continue;
244
245 if (__isolate_lru_page(page, mode) == 0) {
246 list_move(&page->lru, dst);
247 nr_taken++;
248 }
249 }
250
251 list_splice(&pc_list, src);
252 spin_unlock(&mem_cont->lru_lock);
253
254 *scanned = scan;
255 return nr_taken;
256 }
257
258 /*
259 * Charge the memory controller for page usage.
260 * Return
261 * 0 if the charge was successful
262 * < 0 if the cgroup is over its limit
263 */
264 int mem_cgroup_charge(struct page *page, struct mm_struct *mm)
265 {
266 struct mem_cgroup *mem;
267 struct page_cgroup *pc, *race_pc;
268 unsigned long flags;
269 unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
270
271 /*
272 * Should page_cgroup's go to their own slab?
273 * One could optimize the performance of the charging routine
274 * by saving a bit in the page_flags and using it as a lock
275 * to see if the cgroup page already has a page_cgroup associated
276 * with it
277 */
278 retry:
279 lock_page_cgroup(page);
280 pc = page_get_page_cgroup(page);
281 /*
282 * The page_cgroup exists and the page has already been accounted
283 */
284 if (pc) {
285 if (unlikely(!atomic_inc_not_zero(&pc->ref_cnt))) {
286 /* this page is under being uncharged ? */
287 unlock_page_cgroup(page);
288 cpu_relax();
289 goto retry;
290 } else
291 goto done;
292 }
293
294 unlock_page_cgroup(page);
295
296 pc = kzalloc(sizeof(struct page_cgroup), GFP_KERNEL);
297 if (pc == NULL)
298 goto err;
299
300 rcu_read_lock();
301 /*
302 * We always charge the cgroup the mm_struct belongs to
303 * the mm_struct's mem_cgroup changes on task migration if the
304 * thread group leader migrates. It's possible that mm is not
305 * set, if so charge the init_mm (happens for pagecache usage).
306 */
307 if (!mm)
308 mm = &init_mm;
309
310 mem = rcu_dereference(mm->mem_cgroup);
311 /*
312 * For every charge from the cgroup, increment reference
313 * count
314 */
315 css_get(&mem->css);
316 rcu_read_unlock();
317
318 /*
319 * If we created the page_cgroup, we should free it on exceeding
320 * the cgroup limit.
321 */
322 while (res_counter_charge(&mem->res, PAGE_SIZE)) {
323 if (try_to_free_mem_cgroup_pages(mem))
324 continue;
325
326 /*
327 * try_to_free_mem_cgroup_pages() might not give us a full
328 * picture of reclaim. Some pages are reclaimed and might be
329 * moved to swap cache or just unmapped from the cgroup.
330 * Check the limit again to see if the reclaim reduced the
331 * current usage of the cgroup before giving up
332 */
333 if (res_counter_check_under_limit(&mem->res))
334 continue;
335 /*
336 * Since we control both RSS and cache, we end up with a
337 * very interesting scenario where we end up reclaiming
338 * memory (essentially RSS), since the memory is pushed
339 * to swap cache, we eventually end up adding those
340 * pages back to our list. Hence we give ourselves a
341 * few chances before we fail
342 */
343 else if (nr_retries--) {
344 congestion_wait(WRITE, HZ/10);
345 continue;
346 }
347
348 css_put(&mem->css);
349 mem_cgroup_out_of_memory(mem, GFP_KERNEL);
350 goto free_pc;
351 }
352
353 lock_page_cgroup(page);
354 /*
355 * Check if somebody else beat us to allocating the page_cgroup
356 */
357 race_pc = page_get_page_cgroup(page);
358 if (race_pc) {
359 kfree(pc);
360 pc = race_pc;
361 atomic_inc(&pc->ref_cnt);
362 res_counter_uncharge(&mem->res, PAGE_SIZE);
363 css_put(&mem->css);
364 goto done;
365 }
366
367 atomic_set(&pc->ref_cnt, 1);
368 pc->mem_cgroup = mem;
369 pc->page = page;
370 page_assign_page_cgroup(page, pc);
371
372 spin_lock_irqsave(&mem->lru_lock, flags);
373 list_add(&pc->lru, &mem->active_list);
374 spin_unlock_irqrestore(&mem->lru_lock, flags);
375
376 done:
377 unlock_page_cgroup(page);
378 return 0;
379 free_pc:
380 kfree(pc);
381 err:
382 return -ENOMEM;
383 }
384
385 /*
386 * See if the cached pages should be charged at all?
387 */
388 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm)
389 {
390 struct mem_cgroup *mem;
391 if (!mm)
392 mm = &init_mm;
393
394 mem = rcu_dereference(mm->mem_cgroup);
395 if (mem->control_type == MEM_CGROUP_TYPE_ALL)
396 return mem_cgroup_charge(page, mm);
397 else
398 return 0;
399 }
400
401 /*
402 * Uncharging is always a welcome operation, we never complain, simply
403 * uncharge.
404 */
405 void mem_cgroup_uncharge(struct page_cgroup *pc)
406 {
407 struct mem_cgroup *mem;
408 struct page *page;
409 unsigned long flags;
410
411 /*
412 * This can handle cases when a page is not charged at all and we
413 * are switching between handling the control_type.
414 */
415 if (!pc)
416 return;
417
418 if (atomic_dec_and_test(&pc->ref_cnt)) {
419 page = pc->page;
420 lock_page_cgroup(page);
421 mem = pc->mem_cgroup;
422 css_put(&mem->css);
423 page_assign_page_cgroup(page, NULL);
424 unlock_page_cgroup(page);
425 res_counter_uncharge(&mem->res, PAGE_SIZE);
426
427 spin_lock_irqsave(&mem->lru_lock, flags);
428 list_del_init(&pc->lru);
429 spin_unlock_irqrestore(&mem->lru_lock, flags);
430 kfree(pc);
431 }
432 }
433
434 int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
435 {
436 *tmp = memparse(buf, &buf);
437 if (*buf != '\0')
438 return -EINVAL;
439
440 /*
441 * Round up the value to the closest page size
442 */
443 *tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
444 return 0;
445 }
446
447 static ssize_t mem_cgroup_read(struct cgroup *cont,
448 struct cftype *cft, struct file *file,
449 char __user *userbuf, size_t nbytes, loff_t *ppos)
450 {
451 return res_counter_read(&mem_cgroup_from_cont(cont)->res,
452 cft->private, userbuf, nbytes, ppos,
453 NULL);
454 }
455
456 static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
457 struct file *file, const char __user *userbuf,
458 size_t nbytes, loff_t *ppos)
459 {
460 return res_counter_write(&mem_cgroup_from_cont(cont)->res,
461 cft->private, userbuf, nbytes, ppos,
462 mem_cgroup_write_strategy);
463 }
464
465 static ssize_t mem_control_type_write(struct cgroup *cont,
466 struct cftype *cft, struct file *file,
467 const char __user *userbuf,
468 size_t nbytes, loff_t *pos)
469 {
470 int ret;
471 char *buf, *end;
472 unsigned long tmp;
473 struct mem_cgroup *mem;
474
475 mem = mem_cgroup_from_cont(cont);
476 buf = kmalloc(nbytes + 1, GFP_KERNEL);
477 ret = -ENOMEM;
478 if (buf == NULL)
479 goto out;
480
481 buf[nbytes] = 0;
482 ret = -EFAULT;
483 if (copy_from_user(buf, userbuf, nbytes))
484 goto out_free;
485
486 ret = -EINVAL;
487 tmp = simple_strtoul(buf, &end, 10);
488 if (*end != '\0')
489 goto out_free;
490
491 if (tmp <= MEM_CGROUP_TYPE_UNSPEC || tmp >= MEM_CGROUP_TYPE_MAX)
492 goto out_free;
493
494 mem->control_type = tmp;
495 ret = nbytes;
496 out_free:
497 kfree(buf);
498 out:
499 return ret;
500 }
501
502 static ssize_t mem_control_type_read(struct cgroup *cont,
503 struct cftype *cft,
504 struct file *file, char __user *userbuf,
505 size_t nbytes, loff_t *ppos)
506 {
507 unsigned long val;
508 char buf[64], *s;
509 struct mem_cgroup *mem;
510
511 mem = mem_cgroup_from_cont(cont);
512 s = buf;
513 val = mem->control_type;
514 s += sprintf(s, "%lu\n", val);
515 return simple_read_from_buffer((void __user *)userbuf, nbytes,
516 ppos, buf, s - buf);
517 }
518
519 static struct cftype mem_cgroup_files[] = {
520 {
521 .name = "usage_in_bytes",
522 .private = RES_USAGE,
523 .read = mem_cgroup_read,
524 },
525 {
526 .name = "limit_in_bytes",
527 .private = RES_LIMIT,
528 .write = mem_cgroup_write,
529 .read = mem_cgroup_read,
530 },
531 {
532 .name = "failcnt",
533 .private = RES_FAILCNT,
534 .read = mem_cgroup_read,
535 },
536 {
537 .name = "control_type",
538 .write = mem_control_type_write,
539 .read = mem_control_type_read,
540 },
541 };
542
543 static struct mem_cgroup init_mem_cgroup;
544
545 static struct cgroup_subsys_state *
546 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
547 {
548 struct mem_cgroup *mem;
549
550 if (unlikely((cont->parent) == NULL)) {
551 mem = &init_mem_cgroup;
552 init_mm.mem_cgroup = mem;
553 } else
554 mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);
555
556 if (mem == NULL)
557 return NULL;
558
559 res_counter_init(&mem->res);
560 INIT_LIST_HEAD(&mem->active_list);
561 INIT_LIST_HEAD(&mem->inactive_list);
562 spin_lock_init(&mem->lru_lock);
563 mem->control_type = MEM_CGROUP_TYPE_ALL;
564 return &mem->css;
565 }
566
567 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
568 struct cgroup *cont)
569 {
570 kfree(mem_cgroup_from_cont(cont));
571 }
572
573 static int mem_cgroup_populate(struct cgroup_subsys *ss,
574 struct cgroup *cont)
575 {
576 return cgroup_add_files(cont, ss, mem_cgroup_files,
577 ARRAY_SIZE(mem_cgroup_files));
578 }
579
580 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
581 struct cgroup *cont,
582 struct cgroup *old_cont,
583 struct task_struct *p)
584 {
585 struct mm_struct *mm;
586 struct mem_cgroup *mem, *old_mem;
587
588 mm = get_task_mm(p);
589 if (mm == NULL)
590 return;
591
592 mem = mem_cgroup_from_cont(cont);
593 old_mem = mem_cgroup_from_cont(old_cont);
594
595 if (mem == old_mem)
596 goto out;
597
598 /*
599 * Only thread group leaders are allowed to migrate, the mm_struct is
600 * in effect owned by the leader
601 */
602 if (p->tgid != p->pid)
603 goto out;
604
605 css_get(&mem->css);
606 rcu_assign_pointer(mm->mem_cgroup, mem);
607 css_put(&old_mem->css);
608
609 out:
610 mmput(mm);
611 return;
612 }
613
614 struct cgroup_subsys mem_cgroup_subsys = {
615 .name = "memory",
616 .subsys_id = mem_cgroup_subsys_id,
617 .create = mem_cgroup_create,
618 .destroy = mem_cgroup_destroy,
619 .populate = mem_cgroup_populate,
620 .attach = mem_cgroup_move_task,
621 .early_init = 1,
622 };
This page took 0.048632 seconds and 5 git commands to generate.