mm: memcontrol: remove explicit OOM parameter in charge path
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include "internal.h"
60 #include <net/sock.h>
61 #include <net/ip.h>
62 #include <net/tcp_memcontrol.h>
63 #include "slab.h"
64
65 #include <asm/uaccess.h>
66
67 #include <trace/events/vmscan.h>
68
69 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70 EXPORT_SYMBOL(memory_cgrp_subsys);
71
72 #define MEM_CGROUP_RECLAIM_RETRIES 5
73 static struct mem_cgroup *root_mem_cgroup __read_mostly;
74
75 #ifdef CONFIG_MEMCG_SWAP
76 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77 int do_swap_account __read_mostly;
78
79 /* for remember boot option*/
80 #ifdef CONFIG_MEMCG_SWAP_ENABLED
81 static int really_do_swap_account __initdata = 1;
82 #else
83 static int really_do_swap_account __initdata;
84 #endif
85
86 #else
87 #define do_swap_account 0
88 #endif
89
90
91 static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
94 "rss_huge",
95 "mapped_file",
96 "writeback",
97 "swap",
98 };
99
100 enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
105 MEM_CGROUP_EVENTS_NSTATS,
106 };
107
108 static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113 };
114
115 static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121 };
122
123 /*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129 enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
131 MEM_CGROUP_TARGET_SOFTLIMIT,
132 MEM_CGROUP_TARGET_NUMAINFO,
133 MEM_CGROUP_NTARGETS,
134 };
135 #define THRESHOLDS_EVENTS_TARGET 128
136 #define SOFTLIMIT_EVENTS_TARGET 1024
137 #define NUMAINFO_EVENTS_TARGET 1024
138
139 struct mem_cgroup_stat_cpu {
140 long count[MEM_CGROUP_STAT_NSTATS];
141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142 unsigned long nr_page_events;
143 unsigned long targets[MEM_CGROUP_NTARGETS];
144 };
145
146 struct mem_cgroup_reclaim_iter {
147 /*
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
150 */
151 struct mem_cgroup *last_visited;
152 int last_dead_count;
153
154 /* scan generation, increased every round-trip */
155 unsigned int generation;
156 };
157
158 /*
159 * per-zone information in memory controller.
160 */
161 struct mem_cgroup_per_zone {
162 struct lruvec lruvec;
163 unsigned long lru_size[NR_LRU_LISTS];
164
165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166
167 struct rb_node tree_node; /* RB tree node */
168 unsigned long long usage_in_excess;/* Set to the value by which */
169 /* the soft limit is exceeded*/
170 bool on_tree;
171 struct mem_cgroup *memcg; /* Back pointer, we cannot */
172 /* use container_of */
173 };
174
175 struct mem_cgroup_per_node {
176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177 };
178
179 /*
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
182 */
183
184 struct mem_cgroup_tree_per_zone {
185 struct rb_root rb_root;
186 spinlock_t lock;
187 };
188
189 struct mem_cgroup_tree_per_node {
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191 };
192
193 struct mem_cgroup_tree {
194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195 };
196
197 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198
199 struct mem_cgroup_threshold {
200 struct eventfd_ctx *eventfd;
201 u64 threshold;
202 };
203
204 /* For threshold */
205 struct mem_cgroup_threshold_ary {
206 /* An array index points to threshold just below or equal to usage. */
207 int current_threshold;
208 /* Size of entries[] */
209 unsigned int size;
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries[0];
212 };
213
214 struct mem_cgroup_thresholds {
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary *primary;
217 /*
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
221 */
222 struct mem_cgroup_threshold_ary *spare;
223 };
224
225 /* for OOM */
226 struct mem_cgroup_eventfd_list {
227 struct list_head list;
228 struct eventfd_ctx *eventfd;
229 };
230
231 /*
232 * cgroup_event represents events which userspace want to receive.
233 */
234 struct mem_cgroup_event {
235 /*
236 * memcg which the event belongs to.
237 */
238 struct mem_cgroup *memcg;
239 /*
240 * eventfd to signal userspace about the event.
241 */
242 struct eventfd_ctx *eventfd;
243 /*
244 * Each of these stored in a list by the cgroup.
245 */
246 struct list_head list;
247 /*
248 * register_event() callback will be used to add new userspace
249 * waiter for changes related to this event. Use eventfd_signal()
250 * on eventfd to send notification to userspace.
251 */
252 int (*register_event)(struct mem_cgroup *memcg,
253 struct eventfd_ctx *eventfd, const char *args);
254 /*
255 * unregister_event() callback will be called when userspace closes
256 * the eventfd or on cgroup removing. This callback must be set,
257 * if you want provide notification functionality.
258 */
259 void (*unregister_event)(struct mem_cgroup *memcg,
260 struct eventfd_ctx *eventfd);
261 /*
262 * All fields below needed to unregister event when
263 * userspace closes eventfd.
264 */
265 poll_table pt;
266 wait_queue_head_t *wqh;
267 wait_queue_t wait;
268 struct work_struct remove;
269 };
270
271 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
273
274 /*
275 * The memory controller data structure. The memory controller controls both
276 * page cache and RSS per cgroup. We would eventually like to provide
277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278 * to help the administrator determine what knobs to tune.
279 *
280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
281 * we hit the water mark. May be even add a low water mark, such that
282 * no reclaim occurs from a cgroup at it's low water mark, this is
283 * a feature that will be implemented much later in the future.
284 */
285 struct mem_cgroup {
286 struct cgroup_subsys_state css;
287 /*
288 * the counter to account for memory usage
289 */
290 struct res_counter res;
291
292 /* vmpressure notifications */
293 struct vmpressure vmpressure;
294
295 /*
296 * the counter to account for mem+swap usage.
297 */
298 struct res_counter memsw;
299
300 /*
301 * the counter to account for kernel memory usage.
302 */
303 struct res_counter kmem;
304 /*
305 * Should the accounting and control be hierarchical, per subtree?
306 */
307 bool use_hierarchy;
308 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
309
310 bool oom_lock;
311 atomic_t under_oom;
312 atomic_t oom_wakeups;
313
314 int swappiness;
315 /* OOM-Killer disable */
316 int oom_kill_disable;
317
318 /* set when res.limit == memsw.limit */
319 bool memsw_is_minimum;
320
321 /* protect arrays of thresholds */
322 struct mutex thresholds_lock;
323
324 /* thresholds for memory usage. RCU-protected */
325 struct mem_cgroup_thresholds thresholds;
326
327 /* thresholds for mem+swap usage. RCU-protected */
328 struct mem_cgroup_thresholds memsw_thresholds;
329
330 /* For oom notifier event fd */
331 struct list_head oom_notify;
332
333 /*
334 * Should we move charges of a task when a task is moved into this
335 * mem_cgroup ? And what type of charges should we move ?
336 */
337 unsigned long move_charge_at_immigrate;
338 /*
339 * set > 0 if pages under this cgroup are moving to other cgroup.
340 */
341 atomic_t moving_account;
342 /* taken only while moving_account > 0 */
343 spinlock_t move_lock;
344 /*
345 * percpu counter.
346 */
347 struct mem_cgroup_stat_cpu __percpu *stat;
348 /*
349 * used when a cpu is offlined or other synchronizations
350 * See mem_cgroup_read_stat().
351 */
352 struct mem_cgroup_stat_cpu nocpu_base;
353 spinlock_t pcp_counter_lock;
354
355 atomic_t dead_count;
356 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
357 struct cg_proto tcp_mem;
358 #endif
359 #if defined(CONFIG_MEMCG_KMEM)
360 /* analogous to slab_common's slab_caches list, but per-memcg;
361 * protected by memcg_slab_mutex */
362 struct list_head memcg_slab_caches;
363 /* Index in the kmem_cache->memcg_params->memcg_caches array */
364 int kmemcg_id;
365 #endif
366
367 int last_scanned_node;
368 #if MAX_NUMNODES > 1
369 nodemask_t scan_nodes;
370 atomic_t numainfo_events;
371 atomic_t numainfo_updating;
372 #endif
373
374 /* List of events which userspace want to receive */
375 struct list_head event_list;
376 spinlock_t event_list_lock;
377
378 struct mem_cgroup_per_node *nodeinfo[0];
379 /* WARNING: nodeinfo must be the last member here */
380 };
381
382 /* internal only representation about the status of kmem accounting. */
383 enum {
384 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
385 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
386 };
387
388 #ifdef CONFIG_MEMCG_KMEM
389 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
390 {
391 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
392 }
393
394 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
395 {
396 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
397 }
398
399 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
400 {
401 /*
402 * Our caller must use css_get() first, because memcg_uncharge_kmem()
403 * will call css_put() if it sees the memcg is dead.
404 */
405 smp_wmb();
406 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
407 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
408 }
409
410 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
411 {
412 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
413 &memcg->kmem_account_flags);
414 }
415 #endif
416
417 /* Stuffs for move charges at task migration. */
418 /*
419 * Types of charges to be moved. "move_charge_at_immitgrate" and
420 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
421 */
422 enum move_type {
423 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
424 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
425 NR_MOVE_TYPE,
426 };
427
428 /* "mc" and its members are protected by cgroup_mutex */
429 static struct move_charge_struct {
430 spinlock_t lock; /* for from, to */
431 struct mem_cgroup *from;
432 struct mem_cgroup *to;
433 unsigned long immigrate_flags;
434 unsigned long precharge;
435 unsigned long moved_charge;
436 unsigned long moved_swap;
437 struct task_struct *moving_task; /* a task moving charges */
438 wait_queue_head_t waitq; /* a waitq for other context */
439 } mc = {
440 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
441 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
442 };
443
444 static bool move_anon(void)
445 {
446 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
447 }
448
449 static bool move_file(void)
450 {
451 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
452 }
453
454 /*
455 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
456 * limit reclaim to prevent infinite loops, if they ever occur.
457 */
458 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
459 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
460
461 enum charge_type {
462 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
463 MEM_CGROUP_CHARGE_TYPE_ANON,
464 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
465 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
466 NR_CHARGE_TYPE,
467 };
468
469 /* for encoding cft->private value on file */
470 enum res_type {
471 _MEM,
472 _MEMSWAP,
473 _OOM_TYPE,
474 _KMEM,
475 };
476
477 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
478 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
479 #define MEMFILE_ATTR(val) ((val) & 0xffff)
480 /* Used for OOM nofiier */
481 #define OOM_CONTROL (0)
482
483 /*
484 * Reclaim flags for mem_cgroup_hierarchical_reclaim
485 */
486 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
487 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
488 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
489 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
490
491 /*
492 * The memcg_create_mutex will be held whenever a new cgroup is created.
493 * As a consequence, any change that needs to protect against new child cgroups
494 * appearing has to hold it as well.
495 */
496 static DEFINE_MUTEX(memcg_create_mutex);
497
498 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
499 {
500 return s ? container_of(s, struct mem_cgroup, css) : NULL;
501 }
502
503 /* Some nice accessors for the vmpressure. */
504 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
505 {
506 if (!memcg)
507 memcg = root_mem_cgroup;
508 return &memcg->vmpressure;
509 }
510
511 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
512 {
513 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
514 }
515
516 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
517 {
518 return (memcg == root_mem_cgroup);
519 }
520
521 /*
522 * We restrict the id in the range of [1, 65535], so it can fit into
523 * an unsigned short.
524 */
525 #define MEM_CGROUP_ID_MAX USHRT_MAX
526
527 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
528 {
529 return memcg->css.id;
530 }
531
532 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
533 {
534 struct cgroup_subsys_state *css;
535
536 css = css_from_id(id, &memory_cgrp_subsys);
537 return mem_cgroup_from_css(css);
538 }
539
540 /* Writing them here to avoid exposing memcg's inner layout */
541 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
542
543 void sock_update_memcg(struct sock *sk)
544 {
545 if (mem_cgroup_sockets_enabled) {
546 struct mem_cgroup *memcg;
547 struct cg_proto *cg_proto;
548
549 BUG_ON(!sk->sk_prot->proto_cgroup);
550
551 /* Socket cloning can throw us here with sk_cgrp already
552 * filled. It won't however, necessarily happen from
553 * process context. So the test for root memcg given
554 * the current task's memcg won't help us in this case.
555 *
556 * Respecting the original socket's memcg is a better
557 * decision in this case.
558 */
559 if (sk->sk_cgrp) {
560 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
561 css_get(&sk->sk_cgrp->memcg->css);
562 return;
563 }
564
565 rcu_read_lock();
566 memcg = mem_cgroup_from_task(current);
567 cg_proto = sk->sk_prot->proto_cgroup(memcg);
568 if (!mem_cgroup_is_root(memcg) &&
569 memcg_proto_active(cg_proto) &&
570 css_tryget_online(&memcg->css)) {
571 sk->sk_cgrp = cg_proto;
572 }
573 rcu_read_unlock();
574 }
575 }
576 EXPORT_SYMBOL(sock_update_memcg);
577
578 void sock_release_memcg(struct sock *sk)
579 {
580 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
581 struct mem_cgroup *memcg;
582 WARN_ON(!sk->sk_cgrp->memcg);
583 memcg = sk->sk_cgrp->memcg;
584 css_put(&sk->sk_cgrp->memcg->css);
585 }
586 }
587
588 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
589 {
590 if (!memcg || mem_cgroup_is_root(memcg))
591 return NULL;
592
593 return &memcg->tcp_mem;
594 }
595 EXPORT_SYMBOL(tcp_proto_cgroup);
596
597 static void disarm_sock_keys(struct mem_cgroup *memcg)
598 {
599 if (!memcg_proto_activated(&memcg->tcp_mem))
600 return;
601 static_key_slow_dec(&memcg_socket_limit_enabled);
602 }
603 #else
604 static void disarm_sock_keys(struct mem_cgroup *memcg)
605 {
606 }
607 #endif
608
609 #ifdef CONFIG_MEMCG_KMEM
610 /*
611 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
612 * The main reason for not using cgroup id for this:
613 * this works better in sparse environments, where we have a lot of memcgs,
614 * but only a few kmem-limited. Or also, if we have, for instance, 200
615 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
616 * 200 entry array for that.
617 *
618 * The current size of the caches array is stored in
619 * memcg_limited_groups_array_size. It will double each time we have to
620 * increase it.
621 */
622 static DEFINE_IDA(kmem_limited_groups);
623 int memcg_limited_groups_array_size;
624
625 /*
626 * MIN_SIZE is different than 1, because we would like to avoid going through
627 * the alloc/free process all the time. In a small machine, 4 kmem-limited
628 * cgroups is a reasonable guess. In the future, it could be a parameter or
629 * tunable, but that is strictly not necessary.
630 *
631 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
632 * this constant directly from cgroup, but it is understandable that this is
633 * better kept as an internal representation in cgroup.c. In any case, the
634 * cgrp_id space is not getting any smaller, and we don't have to necessarily
635 * increase ours as well if it increases.
636 */
637 #define MEMCG_CACHES_MIN_SIZE 4
638 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
639
640 /*
641 * A lot of the calls to the cache allocation functions are expected to be
642 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
643 * conditional to this static branch, we'll have to allow modules that does
644 * kmem_cache_alloc and the such to see this symbol as well
645 */
646 struct static_key memcg_kmem_enabled_key;
647 EXPORT_SYMBOL(memcg_kmem_enabled_key);
648
649 static void disarm_kmem_keys(struct mem_cgroup *memcg)
650 {
651 if (memcg_kmem_is_active(memcg)) {
652 static_key_slow_dec(&memcg_kmem_enabled_key);
653 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
654 }
655 /*
656 * This check can't live in kmem destruction function,
657 * since the charges will outlive the cgroup
658 */
659 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
660 }
661 #else
662 static void disarm_kmem_keys(struct mem_cgroup *memcg)
663 {
664 }
665 #endif /* CONFIG_MEMCG_KMEM */
666
667 static void disarm_static_keys(struct mem_cgroup *memcg)
668 {
669 disarm_sock_keys(memcg);
670 disarm_kmem_keys(memcg);
671 }
672
673 static void drain_all_stock_async(struct mem_cgroup *memcg);
674
675 static struct mem_cgroup_per_zone *
676 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
677 {
678 int nid = zone_to_nid(zone);
679 int zid = zone_idx(zone);
680
681 return &memcg->nodeinfo[nid]->zoneinfo[zid];
682 }
683
684 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
685 {
686 return &memcg->css;
687 }
688
689 static struct mem_cgroup_per_zone *
690 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
691 {
692 int nid = page_to_nid(page);
693 int zid = page_zonenum(page);
694
695 return &memcg->nodeinfo[nid]->zoneinfo[zid];
696 }
697
698 static struct mem_cgroup_tree_per_zone *
699 soft_limit_tree_node_zone(int nid, int zid)
700 {
701 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
702 }
703
704 static struct mem_cgroup_tree_per_zone *
705 soft_limit_tree_from_page(struct page *page)
706 {
707 int nid = page_to_nid(page);
708 int zid = page_zonenum(page);
709
710 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
711 }
712
713 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
714 struct mem_cgroup_tree_per_zone *mctz,
715 unsigned long long new_usage_in_excess)
716 {
717 struct rb_node **p = &mctz->rb_root.rb_node;
718 struct rb_node *parent = NULL;
719 struct mem_cgroup_per_zone *mz_node;
720
721 if (mz->on_tree)
722 return;
723
724 mz->usage_in_excess = new_usage_in_excess;
725 if (!mz->usage_in_excess)
726 return;
727 while (*p) {
728 parent = *p;
729 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
730 tree_node);
731 if (mz->usage_in_excess < mz_node->usage_in_excess)
732 p = &(*p)->rb_left;
733 /*
734 * We can't avoid mem cgroups that are over their soft
735 * limit by the same amount
736 */
737 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
738 p = &(*p)->rb_right;
739 }
740 rb_link_node(&mz->tree_node, parent, p);
741 rb_insert_color(&mz->tree_node, &mctz->rb_root);
742 mz->on_tree = true;
743 }
744
745 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
746 struct mem_cgroup_tree_per_zone *mctz)
747 {
748 if (!mz->on_tree)
749 return;
750 rb_erase(&mz->tree_node, &mctz->rb_root);
751 mz->on_tree = false;
752 }
753
754 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
755 struct mem_cgroup_tree_per_zone *mctz)
756 {
757 spin_lock(&mctz->lock);
758 __mem_cgroup_remove_exceeded(mz, mctz);
759 spin_unlock(&mctz->lock);
760 }
761
762
763 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
764 {
765 unsigned long long excess;
766 struct mem_cgroup_per_zone *mz;
767 struct mem_cgroup_tree_per_zone *mctz;
768
769 mctz = soft_limit_tree_from_page(page);
770 /*
771 * Necessary to update all ancestors when hierarchy is used.
772 * because their event counter is not touched.
773 */
774 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
775 mz = mem_cgroup_page_zoneinfo(memcg, page);
776 excess = res_counter_soft_limit_excess(&memcg->res);
777 /*
778 * We have to update the tree if mz is on RB-tree or
779 * mem is over its softlimit.
780 */
781 if (excess || mz->on_tree) {
782 spin_lock(&mctz->lock);
783 /* if on-tree, remove it */
784 if (mz->on_tree)
785 __mem_cgroup_remove_exceeded(mz, mctz);
786 /*
787 * Insert again. mz->usage_in_excess will be updated.
788 * If excess is 0, no tree ops.
789 */
790 __mem_cgroup_insert_exceeded(mz, mctz, excess);
791 spin_unlock(&mctz->lock);
792 }
793 }
794 }
795
796 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
797 {
798 struct mem_cgroup_tree_per_zone *mctz;
799 struct mem_cgroup_per_zone *mz;
800 int nid, zid;
801
802 for_each_node(nid) {
803 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
804 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
805 mctz = soft_limit_tree_node_zone(nid, zid);
806 mem_cgroup_remove_exceeded(mz, mctz);
807 }
808 }
809 }
810
811 static struct mem_cgroup_per_zone *
812 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
813 {
814 struct rb_node *rightmost = NULL;
815 struct mem_cgroup_per_zone *mz;
816
817 retry:
818 mz = NULL;
819 rightmost = rb_last(&mctz->rb_root);
820 if (!rightmost)
821 goto done; /* Nothing to reclaim from */
822
823 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
824 /*
825 * Remove the node now but someone else can add it back,
826 * we will to add it back at the end of reclaim to its correct
827 * position in the tree.
828 */
829 __mem_cgroup_remove_exceeded(mz, mctz);
830 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
831 !css_tryget_online(&mz->memcg->css))
832 goto retry;
833 done:
834 return mz;
835 }
836
837 static struct mem_cgroup_per_zone *
838 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
839 {
840 struct mem_cgroup_per_zone *mz;
841
842 spin_lock(&mctz->lock);
843 mz = __mem_cgroup_largest_soft_limit_node(mctz);
844 spin_unlock(&mctz->lock);
845 return mz;
846 }
847
848 /*
849 * Implementation Note: reading percpu statistics for memcg.
850 *
851 * Both of vmstat[] and percpu_counter has threshold and do periodic
852 * synchronization to implement "quick" read. There are trade-off between
853 * reading cost and precision of value. Then, we may have a chance to implement
854 * a periodic synchronizion of counter in memcg's counter.
855 *
856 * But this _read() function is used for user interface now. The user accounts
857 * memory usage by memory cgroup and he _always_ requires exact value because
858 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
859 * have to visit all online cpus and make sum. So, for now, unnecessary
860 * synchronization is not implemented. (just implemented for cpu hotplug)
861 *
862 * If there are kernel internal actions which can make use of some not-exact
863 * value, and reading all cpu value can be performance bottleneck in some
864 * common workload, threashold and synchonization as vmstat[] should be
865 * implemented.
866 */
867 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
868 enum mem_cgroup_stat_index idx)
869 {
870 long val = 0;
871 int cpu;
872
873 get_online_cpus();
874 for_each_online_cpu(cpu)
875 val += per_cpu(memcg->stat->count[idx], cpu);
876 #ifdef CONFIG_HOTPLUG_CPU
877 spin_lock(&memcg->pcp_counter_lock);
878 val += memcg->nocpu_base.count[idx];
879 spin_unlock(&memcg->pcp_counter_lock);
880 #endif
881 put_online_cpus();
882 return val;
883 }
884
885 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
886 bool charge)
887 {
888 int val = (charge) ? 1 : -1;
889 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
890 }
891
892 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
893 enum mem_cgroup_events_index idx)
894 {
895 unsigned long val = 0;
896 int cpu;
897
898 get_online_cpus();
899 for_each_online_cpu(cpu)
900 val += per_cpu(memcg->stat->events[idx], cpu);
901 #ifdef CONFIG_HOTPLUG_CPU
902 spin_lock(&memcg->pcp_counter_lock);
903 val += memcg->nocpu_base.events[idx];
904 spin_unlock(&memcg->pcp_counter_lock);
905 #endif
906 put_online_cpus();
907 return val;
908 }
909
910 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
911 struct page *page,
912 bool anon, int nr_pages)
913 {
914 /*
915 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
916 * counted as CACHE even if it's on ANON LRU.
917 */
918 if (anon)
919 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
920 nr_pages);
921 else
922 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
923 nr_pages);
924
925 if (PageTransHuge(page))
926 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
927 nr_pages);
928
929 /* pagein of a big page is an event. So, ignore page size */
930 if (nr_pages > 0)
931 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
932 else {
933 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
934 nr_pages = -nr_pages; /* for event */
935 }
936
937 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
938 }
939
940 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
941 {
942 struct mem_cgroup_per_zone *mz;
943
944 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
945 return mz->lru_size[lru];
946 }
947
948 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
949 int nid,
950 unsigned int lru_mask)
951 {
952 unsigned long nr = 0;
953 int zid;
954
955 VM_BUG_ON((unsigned)nid >= nr_node_ids);
956
957 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
958 struct mem_cgroup_per_zone *mz;
959 enum lru_list lru;
960
961 for_each_lru(lru) {
962 if (!(BIT(lru) & lru_mask))
963 continue;
964 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
965 nr += mz->lru_size[lru];
966 }
967 }
968 return nr;
969 }
970
971 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
972 unsigned int lru_mask)
973 {
974 unsigned long nr = 0;
975 int nid;
976
977 for_each_node_state(nid, N_MEMORY)
978 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
979 return nr;
980 }
981
982 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
983 enum mem_cgroup_events_target target)
984 {
985 unsigned long val, next;
986
987 val = __this_cpu_read(memcg->stat->nr_page_events);
988 next = __this_cpu_read(memcg->stat->targets[target]);
989 /* from time_after() in jiffies.h */
990 if ((long)next - (long)val < 0) {
991 switch (target) {
992 case MEM_CGROUP_TARGET_THRESH:
993 next = val + THRESHOLDS_EVENTS_TARGET;
994 break;
995 case MEM_CGROUP_TARGET_SOFTLIMIT:
996 next = val + SOFTLIMIT_EVENTS_TARGET;
997 break;
998 case MEM_CGROUP_TARGET_NUMAINFO:
999 next = val + NUMAINFO_EVENTS_TARGET;
1000 break;
1001 default:
1002 break;
1003 }
1004 __this_cpu_write(memcg->stat->targets[target], next);
1005 return true;
1006 }
1007 return false;
1008 }
1009
1010 /*
1011 * Check events in order.
1012 *
1013 */
1014 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1015 {
1016 preempt_disable();
1017 /* threshold event is triggered in finer grain than soft limit */
1018 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1019 MEM_CGROUP_TARGET_THRESH))) {
1020 bool do_softlimit;
1021 bool do_numainfo __maybe_unused;
1022
1023 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1024 MEM_CGROUP_TARGET_SOFTLIMIT);
1025 #if MAX_NUMNODES > 1
1026 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1027 MEM_CGROUP_TARGET_NUMAINFO);
1028 #endif
1029 preempt_enable();
1030
1031 mem_cgroup_threshold(memcg);
1032 if (unlikely(do_softlimit))
1033 mem_cgroup_update_tree(memcg, page);
1034 #if MAX_NUMNODES > 1
1035 if (unlikely(do_numainfo))
1036 atomic_inc(&memcg->numainfo_events);
1037 #endif
1038 } else
1039 preempt_enable();
1040 }
1041
1042 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1043 {
1044 /*
1045 * mm_update_next_owner() may clear mm->owner to NULL
1046 * if it races with swapoff, page migration, etc.
1047 * So this can be called with p == NULL.
1048 */
1049 if (unlikely(!p))
1050 return NULL;
1051
1052 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1053 }
1054
1055 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1056 {
1057 struct mem_cgroup *memcg = NULL;
1058
1059 rcu_read_lock();
1060 do {
1061 /*
1062 * Page cache insertions can happen withou an
1063 * actual mm context, e.g. during disk probing
1064 * on boot, loopback IO, acct() writes etc.
1065 */
1066 if (unlikely(!mm))
1067 memcg = root_mem_cgroup;
1068 else {
1069 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1070 if (unlikely(!memcg))
1071 memcg = root_mem_cgroup;
1072 }
1073 } while (!css_tryget_online(&memcg->css));
1074 rcu_read_unlock();
1075 return memcg;
1076 }
1077
1078 /*
1079 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1080 * ref. count) or NULL if the whole root's subtree has been visited.
1081 *
1082 * helper function to be used by mem_cgroup_iter
1083 */
1084 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1085 struct mem_cgroup *last_visited)
1086 {
1087 struct cgroup_subsys_state *prev_css, *next_css;
1088
1089 prev_css = last_visited ? &last_visited->css : NULL;
1090 skip_node:
1091 next_css = css_next_descendant_pre(prev_css, &root->css);
1092
1093 /*
1094 * Even if we found a group we have to make sure it is
1095 * alive. css && !memcg means that the groups should be
1096 * skipped and we should continue the tree walk.
1097 * last_visited css is safe to use because it is
1098 * protected by css_get and the tree walk is rcu safe.
1099 *
1100 * We do not take a reference on the root of the tree walk
1101 * because we might race with the root removal when it would
1102 * be the only node in the iterated hierarchy and mem_cgroup_iter
1103 * would end up in an endless loop because it expects that at
1104 * least one valid node will be returned. Root cannot disappear
1105 * because caller of the iterator should hold it already so
1106 * skipping css reference should be safe.
1107 */
1108 if (next_css) {
1109 if ((next_css == &root->css) ||
1110 ((next_css->flags & CSS_ONLINE) &&
1111 css_tryget_online(next_css)))
1112 return mem_cgroup_from_css(next_css);
1113
1114 prev_css = next_css;
1115 goto skip_node;
1116 }
1117
1118 return NULL;
1119 }
1120
1121 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1122 {
1123 /*
1124 * When a group in the hierarchy below root is destroyed, the
1125 * hierarchy iterator can no longer be trusted since it might
1126 * have pointed to the destroyed group. Invalidate it.
1127 */
1128 atomic_inc(&root->dead_count);
1129 }
1130
1131 static struct mem_cgroup *
1132 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1133 struct mem_cgroup *root,
1134 int *sequence)
1135 {
1136 struct mem_cgroup *position = NULL;
1137 /*
1138 * A cgroup destruction happens in two stages: offlining and
1139 * release. They are separated by a RCU grace period.
1140 *
1141 * If the iterator is valid, we may still race with an
1142 * offlining. The RCU lock ensures the object won't be
1143 * released, tryget will fail if we lost the race.
1144 */
1145 *sequence = atomic_read(&root->dead_count);
1146 if (iter->last_dead_count == *sequence) {
1147 smp_rmb();
1148 position = iter->last_visited;
1149
1150 /*
1151 * We cannot take a reference to root because we might race
1152 * with root removal and returning NULL would end up in
1153 * an endless loop on the iterator user level when root
1154 * would be returned all the time.
1155 */
1156 if (position && position != root &&
1157 !css_tryget_online(&position->css))
1158 position = NULL;
1159 }
1160 return position;
1161 }
1162
1163 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1164 struct mem_cgroup *last_visited,
1165 struct mem_cgroup *new_position,
1166 struct mem_cgroup *root,
1167 int sequence)
1168 {
1169 /* root reference counting symmetric to mem_cgroup_iter_load */
1170 if (last_visited && last_visited != root)
1171 css_put(&last_visited->css);
1172 /*
1173 * We store the sequence count from the time @last_visited was
1174 * loaded successfully instead of rereading it here so that we
1175 * don't lose destruction events in between. We could have
1176 * raced with the destruction of @new_position after all.
1177 */
1178 iter->last_visited = new_position;
1179 smp_wmb();
1180 iter->last_dead_count = sequence;
1181 }
1182
1183 /**
1184 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1185 * @root: hierarchy root
1186 * @prev: previously returned memcg, NULL on first invocation
1187 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1188 *
1189 * Returns references to children of the hierarchy below @root, or
1190 * @root itself, or %NULL after a full round-trip.
1191 *
1192 * Caller must pass the return value in @prev on subsequent
1193 * invocations for reference counting, or use mem_cgroup_iter_break()
1194 * to cancel a hierarchy walk before the round-trip is complete.
1195 *
1196 * Reclaimers can specify a zone and a priority level in @reclaim to
1197 * divide up the memcgs in the hierarchy among all concurrent
1198 * reclaimers operating on the same zone and priority.
1199 */
1200 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1201 struct mem_cgroup *prev,
1202 struct mem_cgroup_reclaim_cookie *reclaim)
1203 {
1204 struct mem_cgroup *memcg = NULL;
1205 struct mem_cgroup *last_visited = NULL;
1206
1207 if (mem_cgroup_disabled())
1208 return NULL;
1209
1210 if (!root)
1211 root = root_mem_cgroup;
1212
1213 if (prev && !reclaim)
1214 last_visited = prev;
1215
1216 if (!root->use_hierarchy && root != root_mem_cgroup) {
1217 if (prev)
1218 goto out_css_put;
1219 return root;
1220 }
1221
1222 rcu_read_lock();
1223 while (!memcg) {
1224 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1225 int uninitialized_var(seq);
1226
1227 if (reclaim) {
1228 struct mem_cgroup_per_zone *mz;
1229
1230 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1231 iter = &mz->reclaim_iter[reclaim->priority];
1232 if (prev && reclaim->generation != iter->generation) {
1233 iter->last_visited = NULL;
1234 goto out_unlock;
1235 }
1236
1237 last_visited = mem_cgroup_iter_load(iter, root, &seq);
1238 }
1239
1240 memcg = __mem_cgroup_iter_next(root, last_visited);
1241
1242 if (reclaim) {
1243 mem_cgroup_iter_update(iter, last_visited, memcg, root,
1244 seq);
1245
1246 if (!memcg)
1247 iter->generation++;
1248 else if (!prev && memcg)
1249 reclaim->generation = iter->generation;
1250 }
1251
1252 if (prev && !memcg)
1253 goto out_unlock;
1254 }
1255 out_unlock:
1256 rcu_read_unlock();
1257 out_css_put:
1258 if (prev && prev != root)
1259 css_put(&prev->css);
1260
1261 return memcg;
1262 }
1263
1264 /**
1265 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1266 * @root: hierarchy root
1267 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1268 */
1269 void mem_cgroup_iter_break(struct mem_cgroup *root,
1270 struct mem_cgroup *prev)
1271 {
1272 if (!root)
1273 root = root_mem_cgroup;
1274 if (prev && prev != root)
1275 css_put(&prev->css);
1276 }
1277
1278 /*
1279 * Iteration constructs for visiting all cgroups (under a tree). If
1280 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1281 * be used for reference counting.
1282 */
1283 #define for_each_mem_cgroup_tree(iter, root) \
1284 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1285 iter != NULL; \
1286 iter = mem_cgroup_iter(root, iter, NULL))
1287
1288 #define for_each_mem_cgroup(iter) \
1289 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1290 iter != NULL; \
1291 iter = mem_cgroup_iter(NULL, iter, NULL))
1292
1293 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1294 {
1295 struct mem_cgroup *memcg;
1296
1297 rcu_read_lock();
1298 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1299 if (unlikely(!memcg))
1300 goto out;
1301
1302 switch (idx) {
1303 case PGFAULT:
1304 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1305 break;
1306 case PGMAJFAULT:
1307 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1308 break;
1309 default:
1310 BUG();
1311 }
1312 out:
1313 rcu_read_unlock();
1314 }
1315 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1316
1317 /**
1318 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1319 * @zone: zone of the wanted lruvec
1320 * @memcg: memcg of the wanted lruvec
1321 *
1322 * Returns the lru list vector holding pages for the given @zone and
1323 * @mem. This can be the global zone lruvec, if the memory controller
1324 * is disabled.
1325 */
1326 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1327 struct mem_cgroup *memcg)
1328 {
1329 struct mem_cgroup_per_zone *mz;
1330 struct lruvec *lruvec;
1331
1332 if (mem_cgroup_disabled()) {
1333 lruvec = &zone->lruvec;
1334 goto out;
1335 }
1336
1337 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1338 lruvec = &mz->lruvec;
1339 out:
1340 /*
1341 * Since a node can be onlined after the mem_cgroup was created,
1342 * we have to be prepared to initialize lruvec->zone here;
1343 * and if offlined then reonlined, we need to reinitialize it.
1344 */
1345 if (unlikely(lruvec->zone != zone))
1346 lruvec->zone = zone;
1347 return lruvec;
1348 }
1349
1350 /*
1351 * Following LRU functions are allowed to be used without PCG_LOCK.
1352 * Operations are called by routine of global LRU independently from memcg.
1353 * What we have to take care of here is validness of pc->mem_cgroup.
1354 *
1355 * Changes to pc->mem_cgroup happens when
1356 * 1. charge
1357 * 2. moving account
1358 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1359 * It is added to LRU before charge.
1360 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1361 * When moving account, the page is not on LRU. It's isolated.
1362 */
1363
1364 /**
1365 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1366 * @page: the page
1367 * @zone: zone of the page
1368 */
1369 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1370 {
1371 struct mem_cgroup_per_zone *mz;
1372 struct mem_cgroup *memcg;
1373 struct page_cgroup *pc;
1374 struct lruvec *lruvec;
1375
1376 if (mem_cgroup_disabled()) {
1377 lruvec = &zone->lruvec;
1378 goto out;
1379 }
1380
1381 pc = lookup_page_cgroup(page);
1382 memcg = pc->mem_cgroup;
1383
1384 /*
1385 * Surreptitiously switch any uncharged offlist page to root:
1386 * an uncharged page off lru does nothing to secure
1387 * its former mem_cgroup from sudden removal.
1388 *
1389 * Our caller holds lru_lock, and PageCgroupUsed is updated
1390 * under page_cgroup lock: between them, they make all uses
1391 * of pc->mem_cgroup safe.
1392 */
1393 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1394 pc->mem_cgroup = memcg = root_mem_cgroup;
1395
1396 mz = mem_cgroup_page_zoneinfo(memcg, page);
1397 lruvec = &mz->lruvec;
1398 out:
1399 /*
1400 * Since a node can be onlined after the mem_cgroup was created,
1401 * we have to be prepared to initialize lruvec->zone here;
1402 * and if offlined then reonlined, we need to reinitialize it.
1403 */
1404 if (unlikely(lruvec->zone != zone))
1405 lruvec->zone = zone;
1406 return lruvec;
1407 }
1408
1409 /**
1410 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1411 * @lruvec: mem_cgroup per zone lru vector
1412 * @lru: index of lru list the page is sitting on
1413 * @nr_pages: positive when adding or negative when removing
1414 *
1415 * This function must be called when a page is added to or removed from an
1416 * lru list.
1417 */
1418 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1419 int nr_pages)
1420 {
1421 struct mem_cgroup_per_zone *mz;
1422 unsigned long *lru_size;
1423
1424 if (mem_cgroup_disabled())
1425 return;
1426
1427 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1428 lru_size = mz->lru_size + lru;
1429 *lru_size += nr_pages;
1430 VM_BUG_ON((long)(*lru_size) < 0);
1431 }
1432
1433 /*
1434 * Checks whether given mem is same or in the root_mem_cgroup's
1435 * hierarchy subtree
1436 */
1437 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1438 struct mem_cgroup *memcg)
1439 {
1440 if (root_memcg == memcg)
1441 return true;
1442 if (!root_memcg->use_hierarchy || !memcg)
1443 return false;
1444 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1445 }
1446
1447 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1448 struct mem_cgroup *memcg)
1449 {
1450 bool ret;
1451
1452 rcu_read_lock();
1453 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1454 rcu_read_unlock();
1455 return ret;
1456 }
1457
1458 bool task_in_mem_cgroup(struct task_struct *task,
1459 const struct mem_cgroup *memcg)
1460 {
1461 struct mem_cgroup *curr = NULL;
1462 struct task_struct *p;
1463 bool ret;
1464
1465 p = find_lock_task_mm(task);
1466 if (p) {
1467 curr = get_mem_cgroup_from_mm(p->mm);
1468 task_unlock(p);
1469 } else {
1470 /*
1471 * All threads may have already detached their mm's, but the oom
1472 * killer still needs to detect if they have already been oom
1473 * killed to prevent needlessly killing additional tasks.
1474 */
1475 rcu_read_lock();
1476 curr = mem_cgroup_from_task(task);
1477 if (curr)
1478 css_get(&curr->css);
1479 rcu_read_unlock();
1480 }
1481 /*
1482 * We should check use_hierarchy of "memcg" not "curr". Because checking
1483 * use_hierarchy of "curr" here make this function true if hierarchy is
1484 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1485 * hierarchy(even if use_hierarchy is disabled in "memcg").
1486 */
1487 ret = mem_cgroup_same_or_subtree(memcg, curr);
1488 css_put(&curr->css);
1489 return ret;
1490 }
1491
1492 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1493 {
1494 unsigned long inactive_ratio;
1495 unsigned long inactive;
1496 unsigned long active;
1497 unsigned long gb;
1498
1499 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1500 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1501
1502 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1503 if (gb)
1504 inactive_ratio = int_sqrt(10 * gb);
1505 else
1506 inactive_ratio = 1;
1507
1508 return inactive * inactive_ratio < active;
1509 }
1510
1511 #define mem_cgroup_from_res_counter(counter, member) \
1512 container_of(counter, struct mem_cgroup, member)
1513
1514 /**
1515 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1516 * @memcg: the memory cgroup
1517 *
1518 * Returns the maximum amount of memory @mem can be charged with, in
1519 * pages.
1520 */
1521 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1522 {
1523 unsigned long long margin;
1524
1525 margin = res_counter_margin(&memcg->res);
1526 if (do_swap_account)
1527 margin = min(margin, res_counter_margin(&memcg->memsw));
1528 return margin >> PAGE_SHIFT;
1529 }
1530
1531 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1532 {
1533 /* root ? */
1534 if (mem_cgroup_disabled() || !memcg->css.parent)
1535 return vm_swappiness;
1536
1537 return memcg->swappiness;
1538 }
1539
1540 /*
1541 * memcg->moving_account is used for checking possibility that some thread is
1542 * calling move_account(). When a thread on CPU-A starts moving pages under
1543 * a memcg, other threads should check memcg->moving_account under
1544 * rcu_read_lock(), like this:
1545 *
1546 * CPU-A CPU-B
1547 * rcu_read_lock()
1548 * memcg->moving_account+1 if (memcg->mocing_account)
1549 * take heavy locks.
1550 * synchronize_rcu() update something.
1551 * rcu_read_unlock()
1552 * start move here.
1553 */
1554
1555 /* for quick checking without looking up memcg */
1556 atomic_t memcg_moving __read_mostly;
1557
1558 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1559 {
1560 atomic_inc(&memcg_moving);
1561 atomic_inc(&memcg->moving_account);
1562 synchronize_rcu();
1563 }
1564
1565 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1566 {
1567 /*
1568 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1569 * We check NULL in callee rather than caller.
1570 */
1571 if (memcg) {
1572 atomic_dec(&memcg_moving);
1573 atomic_dec(&memcg->moving_account);
1574 }
1575 }
1576
1577 /*
1578 * A routine for checking "mem" is under move_account() or not.
1579 *
1580 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1581 * moving cgroups. This is for waiting at high-memory pressure
1582 * caused by "move".
1583 */
1584 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1585 {
1586 struct mem_cgroup *from;
1587 struct mem_cgroup *to;
1588 bool ret = false;
1589 /*
1590 * Unlike task_move routines, we access mc.to, mc.from not under
1591 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1592 */
1593 spin_lock(&mc.lock);
1594 from = mc.from;
1595 to = mc.to;
1596 if (!from)
1597 goto unlock;
1598
1599 ret = mem_cgroup_same_or_subtree(memcg, from)
1600 || mem_cgroup_same_or_subtree(memcg, to);
1601 unlock:
1602 spin_unlock(&mc.lock);
1603 return ret;
1604 }
1605
1606 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1607 {
1608 if (mc.moving_task && current != mc.moving_task) {
1609 if (mem_cgroup_under_move(memcg)) {
1610 DEFINE_WAIT(wait);
1611 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1612 /* moving charge context might have finished. */
1613 if (mc.moving_task)
1614 schedule();
1615 finish_wait(&mc.waitq, &wait);
1616 return true;
1617 }
1618 }
1619 return false;
1620 }
1621
1622 /*
1623 * Take this lock when
1624 * - a code tries to modify page's memcg while it's USED.
1625 * - a code tries to modify page state accounting in a memcg.
1626 */
1627 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1628 unsigned long *flags)
1629 {
1630 spin_lock_irqsave(&memcg->move_lock, *flags);
1631 }
1632
1633 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1634 unsigned long *flags)
1635 {
1636 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1637 }
1638
1639 #define K(x) ((x) << (PAGE_SHIFT-10))
1640 /**
1641 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1642 * @memcg: The memory cgroup that went over limit
1643 * @p: Task that is going to be killed
1644 *
1645 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1646 * enabled
1647 */
1648 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1649 {
1650 /* oom_info_lock ensures that parallel ooms do not interleave */
1651 static DEFINE_MUTEX(oom_info_lock);
1652 struct mem_cgroup *iter;
1653 unsigned int i;
1654
1655 if (!p)
1656 return;
1657
1658 mutex_lock(&oom_info_lock);
1659 rcu_read_lock();
1660
1661 pr_info("Task in ");
1662 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1663 pr_info(" killed as a result of limit of ");
1664 pr_cont_cgroup_path(memcg->css.cgroup);
1665 pr_info("\n");
1666
1667 rcu_read_unlock();
1668
1669 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1670 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1671 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1672 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1673 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1674 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1675 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1676 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1677 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1678 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1679 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1680 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1681
1682 for_each_mem_cgroup_tree(iter, memcg) {
1683 pr_info("Memory cgroup stats for ");
1684 pr_cont_cgroup_path(iter->css.cgroup);
1685 pr_cont(":");
1686
1687 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1688 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1689 continue;
1690 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1691 K(mem_cgroup_read_stat(iter, i)));
1692 }
1693
1694 for (i = 0; i < NR_LRU_LISTS; i++)
1695 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1696 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1697
1698 pr_cont("\n");
1699 }
1700 mutex_unlock(&oom_info_lock);
1701 }
1702
1703 /*
1704 * This function returns the number of memcg under hierarchy tree. Returns
1705 * 1(self count) if no children.
1706 */
1707 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1708 {
1709 int num = 0;
1710 struct mem_cgroup *iter;
1711
1712 for_each_mem_cgroup_tree(iter, memcg)
1713 num++;
1714 return num;
1715 }
1716
1717 /*
1718 * Return the memory (and swap, if configured) limit for a memcg.
1719 */
1720 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1721 {
1722 u64 limit;
1723
1724 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1725
1726 /*
1727 * Do not consider swap space if we cannot swap due to swappiness
1728 */
1729 if (mem_cgroup_swappiness(memcg)) {
1730 u64 memsw;
1731
1732 limit += total_swap_pages << PAGE_SHIFT;
1733 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1734
1735 /*
1736 * If memsw is finite and limits the amount of swap space
1737 * available to this memcg, return that limit.
1738 */
1739 limit = min(limit, memsw);
1740 }
1741
1742 return limit;
1743 }
1744
1745 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1746 int order)
1747 {
1748 struct mem_cgroup *iter;
1749 unsigned long chosen_points = 0;
1750 unsigned long totalpages;
1751 unsigned int points = 0;
1752 struct task_struct *chosen = NULL;
1753
1754 /*
1755 * If current has a pending SIGKILL or is exiting, then automatically
1756 * select it. The goal is to allow it to allocate so that it may
1757 * quickly exit and free its memory.
1758 */
1759 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1760 set_thread_flag(TIF_MEMDIE);
1761 return;
1762 }
1763
1764 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1765 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1766 for_each_mem_cgroup_tree(iter, memcg) {
1767 struct css_task_iter it;
1768 struct task_struct *task;
1769
1770 css_task_iter_start(&iter->css, &it);
1771 while ((task = css_task_iter_next(&it))) {
1772 switch (oom_scan_process_thread(task, totalpages, NULL,
1773 false)) {
1774 case OOM_SCAN_SELECT:
1775 if (chosen)
1776 put_task_struct(chosen);
1777 chosen = task;
1778 chosen_points = ULONG_MAX;
1779 get_task_struct(chosen);
1780 /* fall through */
1781 case OOM_SCAN_CONTINUE:
1782 continue;
1783 case OOM_SCAN_ABORT:
1784 css_task_iter_end(&it);
1785 mem_cgroup_iter_break(memcg, iter);
1786 if (chosen)
1787 put_task_struct(chosen);
1788 return;
1789 case OOM_SCAN_OK:
1790 break;
1791 };
1792 points = oom_badness(task, memcg, NULL, totalpages);
1793 if (!points || points < chosen_points)
1794 continue;
1795 /* Prefer thread group leaders for display purposes */
1796 if (points == chosen_points &&
1797 thread_group_leader(chosen))
1798 continue;
1799
1800 if (chosen)
1801 put_task_struct(chosen);
1802 chosen = task;
1803 chosen_points = points;
1804 get_task_struct(chosen);
1805 }
1806 css_task_iter_end(&it);
1807 }
1808
1809 if (!chosen)
1810 return;
1811 points = chosen_points * 1000 / totalpages;
1812 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1813 NULL, "Memory cgroup out of memory");
1814 }
1815
1816 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1817 gfp_t gfp_mask,
1818 unsigned long flags)
1819 {
1820 unsigned long total = 0;
1821 bool noswap = false;
1822 int loop;
1823
1824 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1825 noswap = true;
1826 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1827 noswap = true;
1828
1829 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1830 if (loop)
1831 drain_all_stock_async(memcg);
1832 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1833 /*
1834 * Allow limit shrinkers, which are triggered directly
1835 * by userspace, to catch signals and stop reclaim
1836 * after minimal progress, regardless of the margin.
1837 */
1838 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1839 break;
1840 if (mem_cgroup_margin(memcg))
1841 break;
1842 /*
1843 * If nothing was reclaimed after two attempts, there
1844 * may be no reclaimable pages in this hierarchy.
1845 */
1846 if (loop && !total)
1847 break;
1848 }
1849 return total;
1850 }
1851
1852 /**
1853 * test_mem_cgroup_node_reclaimable
1854 * @memcg: the target memcg
1855 * @nid: the node ID to be checked.
1856 * @noswap : specify true here if the user wants flle only information.
1857 *
1858 * This function returns whether the specified memcg contains any
1859 * reclaimable pages on a node. Returns true if there are any reclaimable
1860 * pages in the node.
1861 */
1862 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1863 int nid, bool noswap)
1864 {
1865 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1866 return true;
1867 if (noswap || !total_swap_pages)
1868 return false;
1869 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1870 return true;
1871 return false;
1872
1873 }
1874 #if MAX_NUMNODES > 1
1875
1876 /*
1877 * Always updating the nodemask is not very good - even if we have an empty
1878 * list or the wrong list here, we can start from some node and traverse all
1879 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1880 *
1881 */
1882 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1883 {
1884 int nid;
1885 /*
1886 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1887 * pagein/pageout changes since the last update.
1888 */
1889 if (!atomic_read(&memcg->numainfo_events))
1890 return;
1891 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1892 return;
1893
1894 /* make a nodemask where this memcg uses memory from */
1895 memcg->scan_nodes = node_states[N_MEMORY];
1896
1897 for_each_node_mask(nid, node_states[N_MEMORY]) {
1898
1899 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1900 node_clear(nid, memcg->scan_nodes);
1901 }
1902
1903 atomic_set(&memcg->numainfo_events, 0);
1904 atomic_set(&memcg->numainfo_updating, 0);
1905 }
1906
1907 /*
1908 * Selecting a node where we start reclaim from. Because what we need is just
1909 * reducing usage counter, start from anywhere is O,K. Considering
1910 * memory reclaim from current node, there are pros. and cons.
1911 *
1912 * Freeing memory from current node means freeing memory from a node which
1913 * we'll use or we've used. So, it may make LRU bad. And if several threads
1914 * hit limits, it will see a contention on a node. But freeing from remote
1915 * node means more costs for memory reclaim because of memory latency.
1916 *
1917 * Now, we use round-robin. Better algorithm is welcomed.
1918 */
1919 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1920 {
1921 int node;
1922
1923 mem_cgroup_may_update_nodemask(memcg);
1924 node = memcg->last_scanned_node;
1925
1926 node = next_node(node, memcg->scan_nodes);
1927 if (node == MAX_NUMNODES)
1928 node = first_node(memcg->scan_nodes);
1929 /*
1930 * We call this when we hit limit, not when pages are added to LRU.
1931 * No LRU may hold pages because all pages are UNEVICTABLE or
1932 * memcg is too small and all pages are not on LRU. In that case,
1933 * we use curret node.
1934 */
1935 if (unlikely(node == MAX_NUMNODES))
1936 node = numa_node_id();
1937
1938 memcg->last_scanned_node = node;
1939 return node;
1940 }
1941
1942 /*
1943 * Check all nodes whether it contains reclaimable pages or not.
1944 * For quick scan, we make use of scan_nodes. This will allow us to skip
1945 * unused nodes. But scan_nodes is lazily updated and may not cotain
1946 * enough new information. We need to do double check.
1947 */
1948 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1949 {
1950 int nid;
1951
1952 /*
1953 * quick check...making use of scan_node.
1954 * We can skip unused nodes.
1955 */
1956 if (!nodes_empty(memcg->scan_nodes)) {
1957 for (nid = first_node(memcg->scan_nodes);
1958 nid < MAX_NUMNODES;
1959 nid = next_node(nid, memcg->scan_nodes)) {
1960
1961 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1962 return true;
1963 }
1964 }
1965 /*
1966 * Check rest of nodes.
1967 */
1968 for_each_node_state(nid, N_MEMORY) {
1969 if (node_isset(nid, memcg->scan_nodes))
1970 continue;
1971 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1972 return true;
1973 }
1974 return false;
1975 }
1976
1977 #else
1978 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1979 {
1980 return 0;
1981 }
1982
1983 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1984 {
1985 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1986 }
1987 #endif
1988
1989 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1990 struct zone *zone,
1991 gfp_t gfp_mask,
1992 unsigned long *total_scanned)
1993 {
1994 struct mem_cgroup *victim = NULL;
1995 int total = 0;
1996 int loop = 0;
1997 unsigned long excess;
1998 unsigned long nr_scanned;
1999 struct mem_cgroup_reclaim_cookie reclaim = {
2000 .zone = zone,
2001 .priority = 0,
2002 };
2003
2004 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2005
2006 while (1) {
2007 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2008 if (!victim) {
2009 loop++;
2010 if (loop >= 2) {
2011 /*
2012 * If we have not been able to reclaim
2013 * anything, it might because there are
2014 * no reclaimable pages under this hierarchy
2015 */
2016 if (!total)
2017 break;
2018 /*
2019 * We want to do more targeted reclaim.
2020 * excess >> 2 is not to excessive so as to
2021 * reclaim too much, nor too less that we keep
2022 * coming back to reclaim from this cgroup
2023 */
2024 if (total >= (excess >> 2) ||
2025 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2026 break;
2027 }
2028 continue;
2029 }
2030 if (!mem_cgroup_reclaimable(victim, false))
2031 continue;
2032 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2033 zone, &nr_scanned);
2034 *total_scanned += nr_scanned;
2035 if (!res_counter_soft_limit_excess(&root_memcg->res))
2036 break;
2037 }
2038 mem_cgroup_iter_break(root_memcg, victim);
2039 return total;
2040 }
2041
2042 #ifdef CONFIG_LOCKDEP
2043 static struct lockdep_map memcg_oom_lock_dep_map = {
2044 .name = "memcg_oom_lock",
2045 };
2046 #endif
2047
2048 static DEFINE_SPINLOCK(memcg_oom_lock);
2049
2050 /*
2051 * Check OOM-Killer is already running under our hierarchy.
2052 * If someone is running, return false.
2053 */
2054 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2055 {
2056 struct mem_cgroup *iter, *failed = NULL;
2057
2058 spin_lock(&memcg_oom_lock);
2059
2060 for_each_mem_cgroup_tree(iter, memcg) {
2061 if (iter->oom_lock) {
2062 /*
2063 * this subtree of our hierarchy is already locked
2064 * so we cannot give a lock.
2065 */
2066 failed = iter;
2067 mem_cgroup_iter_break(memcg, iter);
2068 break;
2069 } else
2070 iter->oom_lock = true;
2071 }
2072
2073 if (failed) {
2074 /*
2075 * OK, we failed to lock the whole subtree so we have
2076 * to clean up what we set up to the failing subtree
2077 */
2078 for_each_mem_cgroup_tree(iter, memcg) {
2079 if (iter == failed) {
2080 mem_cgroup_iter_break(memcg, iter);
2081 break;
2082 }
2083 iter->oom_lock = false;
2084 }
2085 } else
2086 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2087
2088 spin_unlock(&memcg_oom_lock);
2089
2090 return !failed;
2091 }
2092
2093 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2094 {
2095 struct mem_cgroup *iter;
2096
2097 spin_lock(&memcg_oom_lock);
2098 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2099 for_each_mem_cgroup_tree(iter, memcg)
2100 iter->oom_lock = false;
2101 spin_unlock(&memcg_oom_lock);
2102 }
2103
2104 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2105 {
2106 struct mem_cgroup *iter;
2107
2108 for_each_mem_cgroup_tree(iter, memcg)
2109 atomic_inc(&iter->under_oom);
2110 }
2111
2112 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2113 {
2114 struct mem_cgroup *iter;
2115
2116 /*
2117 * When a new child is created while the hierarchy is under oom,
2118 * mem_cgroup_oom_lock() may not be called. We have to use
2119 * atomic_add_unless() here.
2120 */
2121 for_each_mem_cgroup_tree(iter, memcg)
2122 atomic_add_unless(&iter->under_oom, -1, 0);
2123 }
2124
2125 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2126
2127 struct oom_wait_info {
2128 struct mem_cgroup *memcg;
2129 wait_queue_t wait;
2130 };
2131
2132 static int memcg_oom_wake_function(wait_queue_t *wait,
2133 unsigned mode, int sync, void *arg)
2134 {
2135 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2136 struct mem_cgroup *oom_wait_memcg;
2137 struct oom_wait_info *oom_wait_info;
2138
2139 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2140 oom_wait_memcg = oom_wait_info->memcg;
2141
2142 /*
2143 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2144 * Then we can use css_is_ancestor without taking care of RCU.
2145 */
2146 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2147 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2148 return 0;
2149 return autoremove_wake_function(wait, mode, sync, arg);
2150 }
2151
2152 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2153 {
2154 atomic_inc(&memcg->oom_wakeups);
2155 /* for filtering, pass "memcg" as argument. */
2156 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2157 }
2158
2159 static void memcg_oom_recover(struct mem_cgroup *memcg)
2160 {
2161 if (memcg && atomic_read(&memcg->under_oom))
2162 memcg_wakeup_oom(memcg);
2163 }
2164
2165 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2166 {
2167 if (!current->memcg_oom.may_oom)
2168 return;
2169 /*
2170 * We are in the middle of the charge context here, so we
2171 * don't want to block when potentially sitting on a callstack
2172 * that holds all kinds of filesystem and mm locks.
2173 *
2174 * Also, the caller may handle a failed allocation gracefully
2175 * (like optional page cache readahead) and so an OOM killer
2176 * invocation might not even be necessary.
2177 *
2178 * That's why we don't do anything here except remember the
2179 * OOM context and then deal with it at the end of the page
2180 * fault when the stack is unwound, the locks are released,
2181 * and when we know whether the fault was overall successful.
2182 */
2183 css_get(&memcg->css);
2184 current->memcg_oom.memcg = memcg;
2185 current->memcg_oom.gfp_mask = mask;
2186 current->memcg_oom.order = order;
2187 }
2188
2189 /**
2190 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2191 * @handle: actually kill/wait or just clean up the OOM state
2192 *
2193 * This has to be called at the end of a page fault if the memcg OOM
2194 * handler was enabled.
2195 *
2196 * Memcg supports userspace OOM handling where failed allocations must
2197 * sleep on a waitqueue until the userspace task resolves the
2198 * situation. Sleeping directly in the charge context with all kinds
2199 * of locks held is not a good idea, instead we remember an OOM state
2200 * in the task and mem_cgroup_oom_synchronize() has to be called at
2201 * the end of the page fault to complete the OOM handling.
2202 *
2203 * Returns %true if an ongoing memcg OOM situation was detected and
2204 * completed, %false otherwise.
2205 */
2206 bool mem_cgroup_oom_synchronize(bool handle)
2207 {
2208 struct mem_cgroup *memcg = current->memcg_oom.memcg;
2209 struct oom_wait_info owait;
2210 bool locked;
2211
2212 /* OOM is global, do not handle */
2213 if (!memcg)
2214 return false;
2215
2216 if (!handle)
2217 goto cleanup;
2218
2219 owait.memcg = memcg;
2220 owait.wait.flags = 0;
2221 owait.wait.func = memcg_oom_wake_function;
2222 owait.wait.private = current;
2223 INIT_LIST_HEAD(&owait.wait.task_list);
2224
2225 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2226 mem_cgroup_mark_under_oom(memcg);
2227
2228 locked = mem_cgroup_oom_trylock(memcg);
2229
2230 if (locked)
2231 mem_cgroup_oom_notify(memcg);
2232
2233 if (locked && !memcg->oom_kill_disable) {
2234 mem_cgroup_unmark_under_oom(memcg);
2235 finish_wait(&memcg_oom_waitq, &owait.wait);
2236 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2237 current->memcg_oom.order);
2238 } else {
2239 schedule();
2240 mem_cgroup_unmark_under_oom(memcg);
2241 finish_wait(&memcg_oom_waitq, &owait.wait);
2242 }
2243
2244 if (locked) {
2245 mem_cgroup_oom_unlock(memcg);
2246 /*
2247 * There is no guarantee that an OOM-lock contender
2248 * sees the wakeups triggered by the OOM kill
2249 * uncharges. Wake any sleepers explicitely.
2250 */
2251 memcg_oom_recover(memcg);
2252 }
2253 cleanup:
2254 current->memcg_oom.memcg = NULL;
2255 css_put(&memcg->css);
2256 return true;
2257 }
2258
2259 /*
2260 * Used to update mapped file or writeback or other statistics.
2261 *
2262 * Notes: Race condition
2263 *
2264 * We usually use lock_page_cgroup() for accessing page_cgroup member but
2265 * it tends to be costly. But considering some conditions, we doesn't need
2266 * to do so _always_.
2267 *
2268 * Considering "charge", lock_page_cgroup() is not required because all
2269 * file-stat operations happen after a page is attached to radix-tree. There
2270 * are no race with "charge".
2271 *
2272 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2273 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2274 * if there are race with "uncharge". Statistics itself is properly handled
2275 * by flags.
2276 *
2277 * Considering "move", this is an only case we see a race. To make the race
2278 * small, we check memcg->moving_account and detect there are possibility
2279 * of race or not. If there is, we take a lock.
2280 */
2281
2282 void __mem_cgroup_begin_update_page_stat(struct page *page,
2283 bool *locked, unsigned long *flags)
2284 {
2285 struct mem_cgroup *memcg;
2286 struct page_cgroup *pc;
2287
2288 pc = lookup_page_cgroup(page);
2289 again:
2290 memcg = pc->mem_cgroup;
2291 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2292 return;
2293 /*
2294 * If this memory cgroup is not under account moving, we don't
2295 * need to take move_lock_mem_cgroup(). Because we already hold
2296 * rcu_read_lock(), any calls to move_account will be delayed until
2297 * rcu_read_unlock().
2298 */
2299 VM_BUG_ON(!rcu_read_lock_held());
2300 if (atomic_read(&memcg->moving_account) <= 0)
2301 return;
2302
2303 move_lock_mem_cgroup(memcg, flags);
2304 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2305 move_unlock_mem_cgroup(memcg, flags);
2306 goto again;
2307 }
2308 *locked = true;
2309 }
2310
2311 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2312 {
2313 struct page_cgroup *pc = lookup_page_cgroup(page);
2314
2315 /*
2316 * It's guaranteed that pc->mem_cgroup never changes while
2317 * lock is held because a routine modifies pc->mem_cgroup
2318 * should take move_lock_mem_cgroup().
2319 */
2320 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2321 }
2322
2323 void mem_cgroup_update_page_stat(struct page *page,
2324 enum mem_cgroup_stat_index idx, int val)
2325 {
2326 struct mem_cgroup *memcg;
2327 struct page_cgroup *pc = lookup_page_cgroup(page);
2328 unsigned long uninitialized_var(flags);
2329
2330 if (mem_cgroup_disabled())
2331 return;
2332
2333 VM_BUG_ON(!rcu_read_lock_held());
2334 memcg = pc->mem_cgroup;
2335 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2336 return;
2337
2338 this_cpu_add(memcg->stat->count[idx], val);
2339 }
2340
2341 /*
2342 * size of first charge trial. "32" comes from vmscan.c's magic value.
2343 * TODO: maybe necessary to use big numbers in big irons.
2344 */
2345 #define CHARGE_BATCH 32U
2346 struct memcg_stock_pcp {
2347 struct mem_cgroup *cached; /* this never be root cgroup */
2348 unsigned int nr_pages;
2349 struct work_struct work;
2350 unsigned long flags;
2351 #define FLUSHING_CACHED_CHARGE 0
2352 };
2353 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2354 static DEFINE_MUTEX(percpu_charge_mutex);
2355
2356 /**
2357 * consume_stock: Try to consume stocked charge on this cpu.
2358 * @memcg: memcg to consume from.
2359 * @nr_pages: how many pages to charge.
2360 *
2361 * The charges will only happen if @memcg matches the current cpu's memcg
2362 * stock, and at least @nr_pages are available in that stock. Failure to
2363 * service an allocation will refill the stock.
2364 *
2365 * returns true if successful, false otherwise.
2366 */
2367 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2368 {
2369 struct memcg_stock_pcp *stock;
2370 bool ret = true;
2371
2372 if (nr_pages > CHARGE_BATCH)
2373 return false;
2374
2375 stock = &get_cpu_var(memcg_stock);
2376 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2377 stock->nr_pages -= nr_pages;
2378 else /* need to call res_counter_charge */
2379 ret = false;
2380 put_cpu_var(memcg_stock);
2381 return ret;
2382 }
2383
2384 /*
2385 * Returns stocks cached in percpu to res_counter and reset cached information.
2386 */
2387 static void drain_stock(struct memcg_stock_pcp *stock)
2388 {
2389 struct mem_cgroup *old = stock->cached;
2390
2391 if (stock->nr_pages) {
2392 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2393
2394 res_counter_uncharge(&old->res, bytes);
2395 if (do_swap_account)
2396 res_counter_uncharge(&old->memsw, bytes);
2397 stock->nr_pages = 0;
2398 }
2399 stock->cached = NULL;
2400 }
2401
2402 /*
2403 * This must be called under preempt disabled or must be called by
2404 * a thread which is pinned to local cpu.
2405 */
2406 static void drain_local_stock(struct work_struct *dummy)
2407 {
2408 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2409 drain_stock(stock);
2410 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2411 }
2412
2413 static void __init memcg_stock_init(void)
2414 {
2415 int cpu;
2416
2417 for_each_possible_cpu(cpu) {
2418 struct memcg_stock_pcp *stock =
2419 &per_cpu(memcg_stock, cpu);
2420 INIT_WORK(&stock->work, drain_local_stock);
2421 }
2422 }
2423
2424 /*
2425 * Cache charges(val) which is from res_counter, to local per_cpu area.
2426 * This will be consumed by consume_stock() function, later.
2427 */
2428 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2429 {
2430 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2431
2432 if (stock->cached != memcg) { /* reset if necessary */
2433 drain_stock(stock);
2434 stock->cached = memcg;
2435 }
2436 stock->nr_pages += nr_pages;
2437 put_cpu_var(memcg_stock);
2438 }
2439
2440 /*
2441 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2442 * of the hierarchy under it. sync flag says whether we should block
2443 * until the work is done.
2444 */
2445 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2446 {
2447 int cpu, curcpu;
2448
2449 /* Notify other cpus that system-wide "drain" is running */
2450 get_online_cpus();
2451 curcpu = get_cpu();
2452 for_each_online_cpu(cpu) {
2453 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2454 struct mem_cgroup *memcg;
2455
2456 memcg = stock->cached;
2457 if (!memcg || !stock->nr_pages)
2458 continue;
2459 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2460 continue;
2461 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2462 if (cpu == curcpu)
2463 drain_local_stock(&stock->work);
2464 else
2465 schedule_work_on(cpu, &stock->work);
2466 }
2467 }
2468 put_cpu();
2469
2470 if (!sync)
2471 goto out;
2472
2473 for_each_online_cpu(cpu) {
2474 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2475 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2476 flush_work(&stock->work);
2477 }
2478 out:
2479 put_online_cpus();
2480 }
2481
2482 /*
2483 * Tries to drain stocked charges in other cpus. This function is asynchronous
2484 * and just put a work per cpu for draining localy on each cpu. Caller can
2485 * expects some charges will be back to res_counter later but cannot wait for
2486 * it.
2487 */
2488 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2489 {
2490 /*
2491 * If someone calls draining, avoid adding more kworker runs.
2492 */
2493 if (!mutex_trylock(&percpu_charge_mutex))
2494 return;
2495 drain_all_stock(root_memcg, false);
2496 mutex_unlock(&percpu_charge_mutex);
2497 }
2498
2499 /* This is a synchronous drain interface. */
2500 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2501 {
2502 /* called when force_empty is called */
2503 mutex_lock(&percpu_charge_mutex);
2504 drain_all_stock(root_memcg, true);
2505 mutex_unlock(&percpu_charge_mutex);
2506 }
2507
2508 /*
2509 * This function drains percpu counter value from DEAD cpu and
2510 * move it to local cpu. Note that this function can be preempted.
2511 */
2512 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2513 {
2514 int i;
2515
2516 spin_lock(&memcg->pcp_counter_lock);
2517 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2518 long x = per_cpu(memcg->stat->count[i], cpu);
2519
2520 per_cpu(memcg->stat->count[i], cpu) = 0;
2521 memcg->nocpu_base.count[i] += x;
2522 }
2523 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2524 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2525
2526 per_cpu(memcg->stat->events[i], cpu) = 0;
2527 memcg->nocpu_base.events[i] += x;
2528 }
2529 spin_unlock(&memcg->pcp_counter_lock);
2530 }
2531
2532 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2533 unsigned long action,
2534 void *hcpu)
2535 {
2536 int cpu = (unsigned long)hcpu;
2537 struct memcg_stock_pcp *stock;
2538 struct mem_cgroup *iter;
2539
2540 if (action == CPU_ONLINE)
2541 return NOTIFY_OK;
2542
2543 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2544 return NOTIFY_OK;
2545
2546 for_each_mem_cgroup(iter)
2547 mem_cgroup_drain_pcp_counter(iter, cpu);
2548
2549 stock = &per_cpu(memcg_stock, cpu);
2550 drain_stock(stock);
2551 return NOTIFY_OK;
2552 }
2553
2554 /**
2555 * mem_cgroup_try_charge - try charging a memcg
2556 * @memcg: memcg to charge
2557 * @nr_pages: number of pages to charge
2558 *
2559 * Returns 0 if @memcg was charged successfully, -EINTR if the charge
2560 * was bypassed to root_mem_cgroup, and -ENOMEM if the charge failed.
2561 */
2562 static int mem_cgroup_try_charge(struct mem_cgroup *memcg,
2563 gfp_t gfp_mask,
2564 unsigned int nr_pages)
2565 {
2566 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2567 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2568 struct mem_cgroup *mem_over_limit;
2569 struct res_counter *fail_res;
2570 unsigned long nr_reclaimed;
2571 unsigned long flags = 0;
2572 unsigned long long size;
2573
2574 if (mem_cgroup_is_root(memcg))
2575 goto done;
2576 retry:
2577 if (consume_stock(memcg, nr_pages))
2578 goto done;
2579
2580 size = batch * PAGE_SIZE;
2581 if (!res_counter_charge(&memcg->res, size, &fail_res)) {
2582 if (!do_swap_account)
2583 goto done_restock;
2584 if (!res_counter_charge(&memcg->memsw, size, &fail_res))
2585 goto done_restock;
2586 res_counter_uncharge(&memcg->res, size);
2587 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2588 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2589 } else
2590 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2591
2592 if (batch > nr_pages) {
2593 batch = nr_pages;
2594 goto retry;
2595 }
2596
2597 /*
2598 * Unlike in global OOM situations, memcg is not in a physical
2599 * memory shortage. Allow dying and OOM-killed tasks to
2600 * bypass the last charges so that they can exit quickly and
2601 * free their memory.
2602 */
2603 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2604 fatal_signal_pending(current) ||
2605 current->flags & PF_EXITING))
2606 goto bypass;
2607
2608 if (unlikely(task_in_memcg_oom(current)))
2609 goto nomem;
2610
2611 if (!(gfp_mask & __GFP_WAIT))
2612 goto nomem;
2613
2614 nr_reclaimed = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2615
2616 if (mem_cgroup_margin(mem_over_limit) >= batch)
2617 goto retry;
2618
2619 if (gfp_mask & __GFP_NORETRY)
2620 goto nomem;
2621 /*
2622 * Even though the limit is exceeded at this point, reclaim
2623 * may have been able to free some pages. Retry the charge
2624 * before killing the task.
2625 *
2626 * Only for regular pages, though: huge pages are rather
2627 * unlikely to succeed so close to the limit, and we fall back
2628 * to regular pages anyway in case of failure.
2629 */
2630 if (nr_reclaimed && batch <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2631 goto retry;
2632 /*
2633 * At task move, charge accounts can be doubly counted. So, it's
2634 * better to wait until the end of task_move if something is going on.
2635 */
2636 if (mem_cgroup_wait_acct_move(mem_over_limit))
2637 goto retry;
2638
2639 if (nr_retries--)
2640 goto retry;
2641
2642 if (gfp_mask & __GFP_NOFAIL)
2643 goto bypass;
2644
2645 if (fatal_signal_pending(current))
2646 goto bypass;
2647
2648 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(batch));
2649 nomem:
2650 if (!(gfp_mask & __GFP_NOFAIL))
2651 return -ENOMEM;
2652 bypass:
2653 return -EINTR;
2654
2655 done_restock:
2656 if (batch > nr_pages)
2657 refill_stock(memcg, batch - nr_pages);
2658 done:
2659 return 0;
2660 }
2661
2662 /**
2663 * mem_cgroup_try_charge_mm - try charging a mm
2664 * @mm: mm_struct to charge
2665 * @nr_pages: number of pages to charge
2666 * @oom: trigger OOM if reclaim fails
2667 *
2668 * Returns the charged mem_cgroup associated with the given mm_struct or
2669 * NULL the charge failed.
2670 */
2671 static struct mem_cgroup *mem_cgroup_try_charge_mm(struct mm_struct *mm,
2672 gfp_t gfp_mask,
2673 unsigned int nr_pages)
2674
2675 {
2676 struct mem_cgroup *memcg;
2677 int ret;
2678
2679 memcg = get_mem_cgroup_from_mm(mm);
2680 ret = mem_cgroup_try_charge(memcg, gfp_mask, nr_pages);
2681 css_put(&memcg->css);
2682 if (ret == -EINTR)
2683 memcg = root_mem_cgroup;
2684 else if (ret)
2685 memcg = NULL;
2686
2687 return memcg;
2688 }
2689
2690 /*
2691 * Somemtimes we have to undo a charge we got by try_charge().
2692 * This function is for that and do uncharge, put css's refcnt.
2693 * gotten by try_charge().
2694 */
2695 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2696 unsigned int nr_pages)
2697 {
2698 if (!mem_cgroup_is_root(memcg)) {
2699 unsigned long bytes = nr_pages * PAGE_SIZE;
2700
2701 res_counter_uncharge(&memcg->res, bytes);
2702 if (do_swap_account)
2703 res_counter_uncharge(&memcg->memsw, bytes);
2704 }
2705 }
2706
2707 /*
2708 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2709 * This is useful when moving usage to parent cgroup.
2710 */
2711 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2712 unsigned int nr_pages)
2713 {
2714 unsigned long bytes = nr_pages * PAGE_SIZE;
2715
2716 if (mem_cgroup_is_root(memcg))
2717 return;
2718
2719 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2720 if (do_swap_account)
2721 res_counter_uncharge_until(&memcg->memsw,
2722 memcg->memsw.parent, bytes);
2723 }
2724
2725 /*
2726 * A helper function to get mem_cgroup from ID. must be called under
2727 * rcu_read_lock(). The caller is responsible for calling
2728 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2729 * refcnt from swap can be called against removed memcg.)
2730 */
2731 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2732 {
2733 /* ID 0 is unused ID */
2734 if (!id)
2735 return NULL;
2736 return mem_cgroup_from_id(id);
2737 }
2738
2739 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2740 {
2741 struct mem_cgroup *memcg = NULL;
2742 struct page_cgroup *pc;
2743 unsigned short id;
2744 swp_entry_t ent;
2745
2746 VM_BUG_ON_PAGE(!PageLocked(page), page);
2747
2748 pc = lookup_page_cgroup(page);
2749 lock_page_cgroup(pc);
2750 if (PageCgroupUsed(pc)) {
2751 memcg = pc->mem_cgroup;
2752 if (memcg && !css_tryget_online(&memcg->css))
2753 memcg = NULL;
2754 } else if (PageSwapCache(page)) {
2755 ent.val = page_private(page);
2756 id = lookup_swap_cgroup_id(ent);
2757 rcu_read_lock();
2758 memcg = mem_cgroup_lookup(id);
2759 if (memcg && !css_tryget_online(&memcg->css))
2760 memcg = NULL;
2761 rcu_read_unlock();
2762 }
2763 unlock_page_cgroup(pc);
2764 return memcg;
2765 }
2766
2767 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2768 struct page *page,
2769 unsigned int nr_pages,
2770 enum charge_type ctype,
2771 bool lrucare)
2772 {
2773 struct page_cgroup *pc = lookup_page_cgroup(page);
2774 struct zone *uninitialized_var(zone);
2775 struct lruvec *lruvec;
2776 bool was_on_lru = false;
2777 bool anon;
2778
2779 lock_page_cgroup(pc);
2780 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2781 /*
2782 * we don't need page_cgroup_lock about tail pages, becase they are not
2783 * accessed by any other context at this point.
2784 */
2785
2786 /*
2787 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2788 * may already be on some other mem_cgroup's LRU. Take care of it.
2789 */
2790 if (lrucare) {
2791 zone = page_zone(page);
2792 spin_lock_irq(&zone->lru_lock);
2793 if (PageLRU(page)) {
2794 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2795 ClearPageLRU(page);
2796 del_page_from_lru_list(page, lruvec, page_lru(page));
2797 was_on_lru = true;
2798 }
2799 }
2800
2801 pc->mem_cgroup = memcg;
2802 /*
2803 * We access a page_cgroup asynchronously without lock_page_cgroup().
2804 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2805 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2806 * before USED bit, we need memory barrier here.
2807 * See mem_cgroup_add_lru_list(), etc.
2808 */
2809 smp_wmb();
2810 SetPageCgroupUsed(pc);
2811
2812 if (lrucare) {
2813 if (was_on_lru) {
2814 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2815 VM_BUG_ON_PAGE(PageLRU(page), page);
2816 SetPageLRU(page);
2817 add_page_to_lru_list(page, lruvec, page_lru(page));
2818 }
2819 spin_unlock_irq(&zone->lru_lock);
2820 }
2821
2822 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2823 anon = true;
2824 else
2825 anon = false;
2826
2827 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2828 unlock_page_cgroup(pc);
2829
2830 /*
2831 * "charge_statistics" updated event counter. Then, check it.
2832 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2833 * if they exceeds softlimit.
2834 */
2835 memcg_check_events(memcg, page);
2836 }
2837
2838 static DEFINE_MUTEX(set_limit_mutex);
2839
2840 #ifdef CONFIG_MEMCG_KMEM
2841 /*
2842 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2843 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2844 */
2845 static DEFINE_MUTEX(memcg_slab_mutex);
2846
2847 static DEFINE_MUTEX(activate_kmem_mutex);
2848
2849 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2850 {
2851 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2852 memcg_kmem_is_active(memcg);
2853 }
2854
2855 /*
2856 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2857 * in the memcg_cache_params struct.
2858 */
2859 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2860 {
2861 struct kmem_cache *cachep;
2862
2863 VM_BUG_ON(p->is_root_cache);
2864 cachep = p->root_cache;
2865 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
2866 }
2867
2868 #ifdef CONFIG_SLABINFO
2869 static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
2870 {
2871 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
2872 struct memcg_cache_params *params;
2873
2874 if (!memcg_can_account_kmem(memcg))
2875 return -EIO;
2876
2877 print_slabinfo_header(m);
2878
2879 mutex_lock(&memcg_slab_mutex);
2880 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2881 cache_show(memcg_params_to_cache(params), m);
2882 mutex_unlock(&memcg_slab_mutex);
2883
2884 return 0;
2885 }
2886 #endif
2887
2888 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2889 {
2890 struct res_counter *fail_res;
2891 int ret = 0;
2892
2893 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2894 if (ret)
2895 return ret;
2896
2897 ret = mem_cgroup_try_charge(memcg, gfp, size >> PAGE_SHIFT);
2898 if (ret == -EINTR) {
2899 /*
2900 * mem_cgroup_try_charge() chosed to bypass to root due to
2901 * OOM kill or fatal signal. Since our only options are to
2902 * either fail the allocation or charge it to this cgroup, do
2903 * it as a temporary condition. But we can't fail. From a
2904 * kmem/slab perspective, the cache has already been selected,
2905 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2906 * our minds.
2907 *
2908 * This condition will only trigger if the task entered
2909 * memcg_charge_kmem in a sane state, but was OOM-killed during
2910 * mem_cgroup_try_charge() above. Tasks that were already
2911 * dying when the allocation triggers should have been already
2912 * directed to the root cgroup in memcontrol.h
2913 */
2914 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2915 if (do_swap_account)
2916 res_counter_charge_nofail(&memcg->memsw, size,
2917 &fail_res);
2918 ret = 0;
2919 } else if (ret)
2920 res_counter_uncharge(&memcg->kmem, size);
2921
2922 return ret;
2923 }
2924
2925 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2926 {
2927 res_counter_uncharge(&memcg->res, size);
2928 if (do_swap_account)
2929 res_counter_uncharge(&memcg->memsw, size);
2930
2931 /* Not down to 0 */
2932 if (res_counter_uncharge(&memcg->kmem, size))
2933 return;
2934
2935 /*
2936 * Releases a reference taken in kmem_cgroup_css_offline in case
2937 * this last uncharge is racing with the offlining code or it is
2938 * outliving the memcg existence.
2939 *
2940 * The memory barrier imposed by test&clear is paired with the
2941 * explicit one in memcg_kmem_mark_dead().
2942 */
2943 if (memcg_kmem_test_and_clear_dead(memcg))
2944 css_put(&memcg->css);
2945 }
2946
2947 /*
2948 * helper for acessing a memcg's index. It will be used as an index in the
2949 * child cache array in kmem_cache, and also to derive its name. This function
2950 * will return -1 when this is not a kmem-limited memcg.
2951 */
2952 int memcg_cache_id(struct mem_cgroup *memcg)
2953 {
2954 return memcg ? memcg->kmemcg_id : -1;
2955 }
2956
2957 static size_t memcg_caches_array_size(int num_groups)
2958 {
2959 ssize_t size;
2960 if (num_groups <= 0)
2961 return 0;
2962
2963 size = 2 * num_groups;
2964 if (size < MEMCG_CACHES_MIN_SIZE)
2965 size = MEMCG_CACHES_MIN_SIZE;
2966 else if (size > MEMCG_CACHES_MAX_SIZE)
2967 size = MEMCG_CACHES_MAX_SIZE;
2968
2969 return size;
2970 }
2971
2972 /*
2973 * We should update the current array size iff all caches updates succeed. This
2974 * can only be done from the slab side. The slab mutex needs to be held when
2975 * calling this.
2976 */
2977 void memcg_update_array_size(int num)
2978 {
2979 if (num > memcg_limited_groups_array_size)
2980 memcg_limited_groups_array_size = memcg_caches_array_size(num);
2981 }
2982
2983 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
2984 {
2985 struct memcg_cache_params *cur_params = s->memcg_params;
2986
2987 VM_BUG_ON(!is_root_cache(s));
2988
2989 if (num_groups > memcg_limited_groups_array_size) {
2990 int i;
2991 struct memcg_cache_params *new_params;
2992 ssize_t size = memcg_caches_array_size(num_groups);
2993
2994 size *= sizeof(void *);
2995 size += offsetof(struct memcg_cache_params, memcg_caches);
2996
2997 new_params = kzalloc(size, GFP_KERNEL);
2998 if (!new_params)
2999 return -ENOMEM;
3000
3001 new_params->is_root_cache = true;
3002
3003 /*
3004 * There is the chance it will be bigger than
3005 * memcg_limited_groups_array_size, if we failed an allocation
3006 * in a cache, in which case all caches updated before it, will
3007 * have a bigger array.
3008 *
3009 * But if that is the case, the data after
3010 * memcg_limited_groups_array_size is certainly unused
3011 */
3012 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3013 if (!cur_params->memcg_caches[i])
3014 continue;
3015 new_params->memcg_caches[i] =
3016 cur_params->memcg_caches[i];
3017 }
3018
3019 /*
3020 * Ideally, we would wait until all caches succeed, and only
3021 * then free the old one. But this is not worth the extra
3022 * pointer per-cache we'd have to have for this.
3023 *
3024 * It is not a big deal if some caches are left with a size
3025 * bigger than the others. And all updates will reset this
3026 * anyway.
3027 */
3028 rcu_assign_pointer(s->memcg_params, new_params);
3029 if (cur_params)
3030 kfree_rcu(cur_params, rcu_head);
3031 }
3032 return 0;
3033 }
3034
3035 int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
3036 struct kmem_cache *root_cache)
3037 {
3038 size_t size;
3039
3040 if (!memcg_kmem_enabled())
3041 return 0;
3042
3043 if (!memcg) {
3044 size = offsetof(struct memcg_cache_params, memcg_caches);
3045 size += memcg_limited_groups_array_size * sizeof(void *);
3046 } else
3047 size = sizeof(struct memcg_cache_params);
3048
3049 s->memcg_params = kzalloc(size, GFP_KERNEL);
3050 if (!s->memcg_params)
3051 return -ENOMEM;
3052
3053 if (memcg) {
3054 s->memcg_params->memcg = memcg;
3055 s->memcg_params->root_cache = root_cache;
3056 css_get(&memcg->css);
3057 } else
3058 s->memcg_params->is_root_cache = true;
3059
3060 return 0;
3061 }
3062
3063 void memcg_free_cache_params(struct kmem_cache *s)
3064 {
3065 if (!s->memcg_params)
3066 return;
3067 if (!s->memcg_params->is_root_cache)
3068 css_put(&s->memcg_params->memcg->css);
3069 kfree(s->memcg_params);
3070 }
3071
3072 static void memcg_register_cache(struct mem_cgroup *memcg,
3073 struct kmem_cache *root_cache)
3074 {
3075 static char memcg_name_buf[NAME_MAX + 1]; /* protected by
3076 memcg_slab_mutex */
3077 struct kmem_cache *cachep;
3078 int id;
3079
3080 lockdep_assert_held(&memcg_slab_mutex);
3081
3082 id = memcg_cache_id(memcg);
3083
3084 /*
3085 * Since per-memcg caches are created asynchronously on first
3086 * allocation (see memcg_kmem_get_cache()), several threads can try to
3087 * create the same cache, but only one of them may succeed.
3088 */
3089 if (cache_from_memcg_idx(root_cache, id))
3090 return;
3091
3092 cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
3093 cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
3094 /*
3095 * If we could not create a memcg cache, do not complain, because
3096 * that's not critical at all as we can always proceed with the root
3097 * cache.
3098 */
3099 if (!cachep)
3100 return;
3101
3102 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3103
3104 /*
3105 * Since readers won't lock (see cache_from_memcg_idx()), we need a
3106 * barrier here to ensure nobody will see the kmem_cache partially
3107 * initialized.
3108 */
3109 smp_wmb();
3110
3111 BUG_ON(root_cache->memcg_params->memcg_caches[id]);
3112 root_cache->memcg_params->memcg_caches[id] = cachep;
3113 }
3114
3115 static void memcg_unregister_cache(struct kmem_cache *cachep)
3116 {
3117 struct kmem_cache *root_cache;
3118 struct mem_cgroup *memcg;
3119 int id;
3120
3121 lockdep_assert_held(&memcg_slab_mutex);
3122
3123 BUG_ON(is_root_cache(cachep));
3124
3125 root_cache = cachep->memcg_params->root_cache;
3126 memcg = cachep->memcg_params->memcg;
3127 id = memcg_cache_id(memcg);
3128
3129 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
3130 root_cache->memcg_params->memcg_caches[id] = NULL;
3131
3132 list_del(&cachep->memcg_params->list);
3133
3134 kmem_cache_destroy(cachep);
3135 }
3136
3137 /*
3138 * During the creation a new cache, we need to disable our accounting mechanism
3139 * altogether. This is true even if we are not creating, but rather just
3140 * enqueing new caches to be created.
3141 *
3142 * This is because that process will trigger allocations; some visible, like
3143 * explicit kmallocs to auxiliary data structures, name strings and internal
3144 * cache structures; some well concealed, like INIT_WORK() that can allocate
3145 * objects during debug.
3146 *
3147 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3148 * to it. This may not be a bounded recursion: since the first cache creation
3149 * failed to complete (waiting on the allocation), we'll just try to create the
3150 * cache again, failing at the same point.
3151 *
3152 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3153 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3154 * inside the following two functions.
3155 */
3156 static inline void memcg_stop_kmem_account(void)
3157 {
3158 VM_BUG_ON(!current->mm);
3159 current->memcg_kmem_skip_account++;
3160 }
3161
3162 static inline void memcg_resume_kmem_account(void)
3163 {
3164 VM_BUG_ON(!current->mm);
3165 current->memcg_kmem_skip_account--;
3166 }
3167
3168 int __memcg_cleanup_cache_params(struct kmem_cache *s)
3169 {
3170 struct kmem_cache *c;
3171 int i, failed = 0;
3172
3173 mutex_lock(&memcg_slab_mutex);
3174 for_each_memcg_cache_index(i) {
3175 c = cache_from_memcg_idx(s, i);
3176 if (!c)
3177 continue;
3178
3179 memcg_unregister_cache(c);
3180
3181 if (cache_from_memcg_idx(s, i))
3182 failed++;
3183 }
3184 mutex_unlock(&memcg_slab_mutex);
3185 return failed;
3186 }
3187
3188 static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
3189 {
3190 struct kmem_cache *cachep;
3191 struct memcg_cache_params *params, *tmp;
3192
3193 if (!memcg_kmem_is_active(memcg))
3194 return;
3195
3196 mutex_lock(&memcg_slab_mutex);
3197 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
3198 cachep = memcg_params_to_cache(params);
3199 kmem_cache_shrink(cachep);
3200 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3201 memcg_unregister_cache(cachep);
3202 }
3203 mutex_unlock(&memcg_slab_mutex);
3204 }
3205
3206 struct memcg_register_cache_work {
3207 struct mem_cgroup *memcg;
3208 struct kmem_cache *cachep;
3209 struct work_struct work;
3210 };
3211
3212 static void memcg_register_cache_func(struct work_struct *w)
3213 {
3214 struct memcg_register_cache_work *cw =
3215 container_of(w, struct memcg_register_cache_work, work);
3216 struct mem_cgroup *memcg = cw->memcg;
3217 struct kmem_cache *cachep = cw->cachep;
3218
3219 mutex_lock(&memcg_slab_mutex);
3220 memcg_register_cache(memcg, cachep);
3221 mutex_unlock(&memcg_slab_mutex);
3222
3223 css_put(&memcg->css);
3224 kfree(cw);
3225 }
3226
3227 /*
3228 * Enqueue the creation of a per-memcg kmem_cache.
3229 */
3230 static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
3231 struct kmem_cache *cachep)
3232 {
3233 struct memcg_register_cache_work *cw;
3234
3235 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
3236 if (cw == NULL) {
3237 css_put(&memcg->css);
3238 return;
3239 }
3240
3241 cw->memcg = memcg;
3242 cw->cachep = cachep;
3243
3244 INIT_WORK(&cw->work, memcg_register_cache_func);
3245 schedule_work(&cw->work);
3246 }
3247
3248 static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
3249 struct kmem_cache *cachep)
3250 {
3251 /*
3252 * We need to stop accounting when we kmalloc, because if the
3253 * corresponding kmalloc cache is not yet created, the first allocation
3254 * in __memcg_schedule_register_cache will recurse.
3255 *
3256 * However, it is better to enclose the whole function. Depending on
3257 * the debugging options enabled, INIT_WORK(), for instance, can
3258 * trigger an allocation. This too, will make us recurse. Because at
3259 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3260 * the safest choice is to do it like this, wrapping the whole function.
3261 */
3262 memcg_stop_kmem_account();
3263 __memcg_schedule_register_cache(memcg, cachep);
3264 memcg_resume_kmem_account();
3265 }
3266
3267 int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
3268 {
3269 int res;
3270
3271 res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp,
3272 PAGE_SIZE << order);
3273 if (!res)
3274 atomic_add(1 << order, &cachep->memcg_params->nr_pages);
3275 return res;
3276 }
3277
3278 void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
3279 {
3280 memcg_uncharge_kmem(cachep->memcg_params->memcg, PAGE_SIZE << order);
3281 atomic_sub(1 << order, &cachep->memcg_params->nr_pages);
3282 }
3283
3284 /*
3285 * Return the kmem_cache we're supposed to use for a slab allocation.
3286 * We try to use the current memcg's version of the cache.
3287 *
3288 * If the cache does not exist yet, if we are the first user of it,
3289 * we either create it immediately, if possible, or create it asynchronously
3290 * in a workqueue.
3291 * In the latter case, we will let the current allocation go through with
3292 * the original cache.
3293 *
3294 * Can't be called in interrupt context or from kernel threads.
3295 * This function needs to be called with rcu_read_lock() held.
3296 */
3297 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3298 gfp_t gfp)
3299 {
3300 struct mem_cgroup *memcg;
3301 struct kmem_cache *memcg_cachep;
3302
3303 VM_BUG_ON(!cachep->memcg_params);
3304 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3305
3306 if (!current->mm || current->memcg_kmem_skip_account)
3307 return cachep;
3308
3309 rcu_read_lock();
3310 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3311
3312 if (!memcg_can_account_kmem(memcg))
3313 goto out;
3314
3315 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3316 if (likely(memcg_cachep)) {
3317 cachep = memcg_cachep;
3318 goto out;
3319 }
3320
3321 /* The corresponding put will be done in the workqueue. */
3322 if (!css_tryget_online(&memcg->css))
3323 goto out;
3324 rcu_read_unlock();
3325
3326 /*
3327 * If we are in a safe context (can wait, and not in interrupt
3328 * context), we could be be predictable and return right away.
3329 * This would guarantee that the allocation being performed
3330 * already belongs in the new cache.
3331 *
3332 * However, there are some clashes that can arrive from locking.
3333 * For instance, because we acquire the slab_mutex while doing
3334 * memcg_create_kmem_cache, this means no further allocation
3335 * could happen with the slab_mutex held. So it's better to
3336 * defer everything.
3337 */
3338 memcg_schedule_register_cache(memcg, cachep);
3339 return cachep;
3340 out:
3341 rcu_read_unlock();
3342 return cachep;
3343 }
3344
3345 /*
3346 * We need to verify if the allocation against current->mm->owner's memcg is
3347 * possible for the given order. But the page is not allocated yet, so we'll
3348 * need a further commit step to do the final arrangements.
3349 *
3350 * It is possible for the task to switch cgroups in this mean time, so at
3351 * commit time, we can't rely on task conversion any longer. We'll then use
3352 * the handle argument to return to the caller which cgroup we should commit
3353 * against. We could also return the memcg directly and avoid the pointer
3354 * passing, but a boolean return value gives better semantics considering
3355 * the compiled-out case as well.
3356 *
3357 * Returning true means the allocation is possible.
3358 */
3359 bool
3360 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3361 {
3362 struct mem_cgroup *memcg;
3363 int ret;
3364
3365 *_memcg = NULL;
3366
3367 /*
3368 * Disabling accounting is only relevant for some specific memcg
3369 * internal allocations. Therefore we would initially not have such
3370 * check here, since direct calls to the page allocator that are
3371 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
3372 * outside memcg core. We are mostly concerned with cache allocations,
3373 * and by having this test at memcg_kmem_get_cache, we are already able
3374 * to relay the allocation to the root cache and bypass the memcg cache
3375 * altogether.
3376 *
3377 * There is one exception, though: the SLUB allocator does not create
3378 * large order caches, but rather service large kmallocs directly from
3379 * the page allocator. Therefore, the following sequence when backed by
3380 * the SLUB allocator:
3381 *
3382 * memcg_stop_kmem_account();
3383 * kmalloc(<large_number>)
3384 * memcg_resume_kmem_account();
3385 *
3386 * would effectively ignore the fact that we should skip accounting,
3387 * since it will drive us directly to this function without passing
3388 * through the cache selector memcg_kmem_get_cache. Such large
3389 * allocations are extremely rare but can happen, for instance, for the
3390 * cache arrays. We bring this test here.
3391 */
3392 if (!current->mm || current->memcg_kmem_skip_account)
3393 return true;
3394
3395 memcg = get_mem_cgroup_from_mm(current->mm);
3396
3397 if (!memcg_can_account_kmem(memcg)) {
3398 css_put(&memcg->css);
3399 return true;
3400 }
3401
3402 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3403 if (!ret)
3404 *_memcg = memcg;
3405
3406 css_put(&memcg->css);
3407 return (ret == 0);
3408 }
3409
3410 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3411 int order)
3412 {
3413 struct page_cgroup *pc;
3414
3415 VM_BUG_ON(mem_cgroup_is_root(memcg));
3416
3417 /* The page allocation failed. Revert */
3418 if (!page) {
3419 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3420 return;
3421 }
3422
3423 pc = lookup_page_cgroup(page);
3424 lock_page_cgroup(pc);
3425 pc->mem_cgroup = memcg;
3426 SetPageCgroupUsed(pc);
3427 unlock_page_cgroup(pc);
3428 }
3429
3430 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3431 {
3432 struct mem_cgroup *memcg = NULL;
3433 struct page_cgroup *pc;
3434
3435
3436 pc = lookup_page_cgroup(page);
3437 /*
3438 * Fast unlocked return. Theoretically might have changed, have to
3439 * check again after locking.
3440 */
3441 if (!PageCgroupUsed(pc))
3442 return;
3443
3444 lock_page_cgroup(pc);
3445 if (PageCgroupUsed(pc)) {
3446 memcg = pc->mem_cgroup;
3447 ClearPageCgroupUsed(pc);
3448 }
3449 unlock_page_cgroup(pc);
3450
3451 /*
3452 * We trust that only if there is a memcg associated with the page, it
3453 * is a valid allocation
3454 */
3455 if (!memcg)
3456 return;
3457
3458 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3459 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3460 }
3461 #else
3462 static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
3463 {
3464 }
3465 #endif /* CONFIG_MEMCG_KMEM */
3466
3467 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3468
3469 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3470 /*
3471 * Because tail pages are not marked as "used", set it. We're under
3472 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3473 * charge/uncharge will be never happen and move_account() is done under
3474 * compound_lock(), so we don't have to take care of races.
3475 */
3476 void mem_cgroup_split_huge_fixup(struct page *head)
3477 {
3478 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3479 struct page_cgroup *pc;
3480 struct mem_cgroup *memcg;
3481 int i;
3482
3483 if (mem_cgroup_disabled())
3484 return;
3485
3486 memcg = head_pc->mem_cgroup;
3487 for (i = 1; i < HPAGE_PMD_NR; i++) {
3488 pc = head_pc + i;
3489 pc->mem_cgroup = memcg;
3490 smp_wmb();/* see __commit_charge() */
3491 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3492 }
3493 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3494 HPAGE_PMD_NR);
3495 }
3496 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3497
3498 /**
3499 * mem_cgroup_move_account - move account of the page
3500 * @page: the page
3501 * @nr_pages: number of regular pages (>1 for huge pages)
3502 * @pc: page_cgroup of the page.
3503 * @from: mem_cgroup which the page is moved from.
3504 * @to: mem_cgroup which the page is moved to. @from != @to.
3505 *
3506 * The caller must confirm following.
3507 * - page is not on LRU (isolate_page() is useful.)
3508 * - compound_lock is held when nr_pages > 1
3509 *
3510 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3511 * from old cgroup.
3512 */
3513 static int mem_cgroup_move_account(struct page *page,
3514 unsigned int nr_pages,
3515 struct page_cgroup *pc,
3516 struct mem_cgroup *from,
3517 struct mem_cgroup *to)
3518 {
3519 unsigned long flags;
3520 int ret;
3521 bool anon = PageAnon(page);
3522
3523 VM_BUG_ON(from == to);
3524 VM_BUG_ON_PAGE(PageLRU(page), page);
3525 /*
3526 * The page is isolated from LRU. So, collapse function
3527 * will not handle this page. But page splitting can happen.
3528 * Do this check under compound_page_lock(). The caller should
3529 * hold it.
3530 */
3531 ret = -EBUSY;
3532 if (nr_pages > 1 && !PageTransHuge(page))
3533 goto out;
3534
3535 lock_page_cgroup(pc);
3536
3537 ret = -EINVAL;
3538 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3539 goto unlock;
3540
3541 move_lock_mem_cgroup(from, &flags);
3542
3543 if (!anon && page_mapped(page)) {
3544 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3545 nr_pages);
3546 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3547 nr_pages);
3548 }
3549
3550 if (PageWriteback(page)) {
3551 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3552 nr_pages);
3553 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3554 nr_pages);
3555 }
3556
3557 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3558
3559 /* caller should have done css_get */
3560 pc->mem_cgroup = to;
3561 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3562 move_unlock_mem_cgroup(from, &flags);
3563 ret = 0;
3564 unlock:
3565 unlock_page_cgroup(pc);
3566 /*
3567 * check events
3568 */
3569 memcg_check_events(to, page);
3570 memcg_check_events(from, page);
3571 out:
3572 return ret;
3573 }
3574
3575 /**
3576 * mem_cgroup_move_parent - moves page to the parent group
3577 * @page: the page to move
3578 * @pc: page_cgroup of the page
3579 * @child: page's cgroup
3580 *
3581 * move charges to its parent or the root cgroup if the group has no
3582 * parent (aka use_hierarchy==0).
3583 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3584 * mem_cgroup_move_account fails) the failure is always temporary and
3585 * it signals a race with a page removal/uncharge or migration. In the
3586 * first case the page is on the way out and it will vanish from the LRU
3587 * on the next attempt and the call should be retried later.
3588 * Isolation from the LRU fails only if page has been isolated from
3589 * the LRU since we looked at it and that usually means either global
3590 * reclaim or migration going on. The page will either get back to the
3591 * LRU or vanish.
3592 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3593 * (!PageCgroupUsed) or moved to a different group. The page will
3594 * disappear in the next attempt.
3595 */
3596 static int mem_cgroup_move_parent(struct page *page,
3597 struct page_cgroup *pc,
3598 struct mem_cgroup *child)
3599 {
3600 struct mem_cgroup *parent;
3601 unsigned int nr_pages;
3602 unsigned long uninitialized_var(flags);
3603 int ret;
3604
3605 VM_BUG_ON(mem_cgroup_is_root(child));
3606
3607 ret = -EBUSY;
3608 if (!get_page_unless_zero(page))
3609 goto out;
3610 if (isolate_lru_page(page))
3611 goto put;
3612
3613 nr_pages = hpage_nr_pages(page);
3614
3615 parent = parent_mem_cgroup(child);
3616 /*
3617 * If no parent, move charges to root cgroup.
3618 */
3619 if (!parent)
3620 parent = root_mem_cgroup;
3621
3622 if (nr_pages > 1) {
3623 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3624 flags = compound_lock_irqsave(page);
3625 }
3626
3627 ret = mem_cgroup_move_account(page, nr_pages,
3628 pc, child, parent);
3629 if (!ret)
3630 __mem_cgroup_cancel_local_charge(child, nr_pages);
3631
3632 if (nr_pages > 1)
3633 compound_unlock_irqrestore(page, flags);
3634 putback_lru_page(page);
3635 put:
3636 put_page(page);
3637 out:
3638 return ret;
3639 }
3640
3641 int mem_cgroup_charge_anon(struct page *page,
3642 struct mm_struct *mm, gfp_t gfp_mask)
3643 {
3644 unsigned int nr_pages = 1;
3645 struct mem_cgroup *memcg;
3646
3647 if (mem_cgroup_disabled())
3648 return 0;
3649
3650 VM_BUG_ON_PAGE(page_mapped(page), page);
3651 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
3652 VM_BUG_ON(!mm);
3653
3654 if (PageTransHuge(page)) {
3655 nr_pages <<= compound_order(page);
3656 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3657 }
3658
3659 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, nr_pages);
3660 if (!memcg)
3661 return -ENOMEM;
3662 __mem_cgroup_commit_charge(memcg, page, nr_pages,
3663 MEM_CGROUP_CHARGE_TYPE_ANON, false);
3664 return 0;
3665 }
3666
3667 /*
3668 * While swap-in, try_charge -> commit or cancel, the page is locked.
3669 * And when try_charge() successfully returns, one refcnt to memcg without
3670 * struct page_cgroup is acquired. This refcnt will be consumed by
3671 * "commit()" or removed by "cancel()"
3672 */
3673 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3674 struct page *page,
3675 gfp_t mask,
3676 struct mem_cgroup **memcgp)
3677 {
3678 struct mem_cgroup *memcg = NULL;
3679 struct page_cgroup *pc;
3680 int ret;
3681
3682 pc = lookup_page_cgroup(page);
3683 /*
3684 * Every swap fault against a single page tries to charge the
3685 * page, bail as early as possible. shmem_unuse() encounters
3686 * already charged pages, too. The USED bit is protected by
3687 * the page lock, which serializes swap cache removal, which
3688 * in turn serializes uncharging.
3689 */
3690 if (PageCgroupUsed(pc))
3691 goto out;
3692 if (do_swap_account)
3693 memcg = try_get_mem_cgroup_from_page(page);
3694 if (!memcg)
3695 memcg = get_mem_cgroup_from_mm(mm);
3696 ret = mem_cgroup_try_charge(memcg, mask, 1);
3697 css_put(&memcg->css);
3698 if (ret == -EINTR)
3699 memcg = root_mem_cgroup;
3700 else if (ret)
3701 return ret;
3702 out:
3703 *memcgp = memcg;
3704 return 0;
3705 }
3706
3707 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3708 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3709 {
3710 if (mem_cgroup_disabled()) {
3711 *memcgp = NULL;
3712 return 0;
3713 }
3714 /*
3715 * A racing thread's fault, or swapoff, may have already
3716 * updated the pte, and even removed page from swap cache: in
3717 * those cases unuse_pte()'s pte_same() test will fail; but
3718 * there's also a KSM case which does need to charge the page.
3719 */
3720 if (!PageSwapCache(page)) {
3721 struct mem_cgroup *memcg;
3722
3723 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1);
3724 if (!memcg)
3725 return -ENOMEM;
3726 *memcgp = memcg;
3727 return 0;
3728 }
3729 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3730 }
3731
3732 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3733 {
3734 if (mem_cgroup_disabled())
3735 return;
3736 if (!memcg)
3737 return;
3738 __mem_cgroup_cancel_charge(memcg, 1);
3739 }
3740
3741 static void
3742 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
3743 enum charge_type ctype)
3744 {
3745 if (mem_cgroup_disabled())
3746 return;
3747 if (!memcg)
3748 return;
3749
3750 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3751 /*
3752 * Now swap is on-memory. This means this page may be
3753 * counted both as mem and swap....double count.
3754 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3755 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3756 * may call delete_from_swap_cache() before reach here.
3757 */
3758 if (do_swap_account && PageSwapCache(page)) {
3759 swp_entry_t ent = {.val = page_private(page)};
3760 mem_cgroup_uncharge_swap(ent);
3761 }
3762 }
3763
3764 void mem_cgroup_commit_charge_swapin(struct page *page,
3765 struct mem_cgroup *memcg)
3766 {
3767 __mem_cgroup_commit_charge_swapin(page, memcg,
3768 MEM_CGROUP_CHARGE_TYPE_ANON);
3769 }
3770
3771 int mem_cgroup_charge_file(struct page *page, struct mm_struct *mm,
3772 gfp_t gfp_mask)
3773 {
3774 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3775 struct mem_cgroup *memcg;
3776 int ret;
3777
3778 if (mem_cgroup_disabled())
3779 return 0;
3780 if (PageCompound(page))
3781 return 0;
3782
3783 if (PageSwapCache(page)) { /* shmem */
3784 ret = __mem_cgroup_try_charge_swapin(mm, page,
3785 gfp_mask, &memcg);
3786 if (ret)
3787 return ret;
3788 __mem_cgroup_commit_charge_swapin(page, memcg, type);
3789 return 0;
3790 }
3791
3792 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1);
3793 if (!memcg)
3794 return -ENOMEM;
3795 __mem_cgroup_commit_charge(memcg, page, 1, type, false);
3796 return 0;
3797 }
3798
3799 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3800 unsigned int nr_pages,
3801 const enum charge_type ctype)
3802 {
3803 struct memcg_batch_info *batch = NULL;
3804 bool uncharge_memsw = true;
3805
3806 /* If swapout, usage of swap doesn't decrease */
3807 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3808 uncharge_memsw = false;
3809
3810 batch = &current->memcg_batch;
3811 /*
3812 * In usual, we do css_get() when we remember memcg pointer.
3813 * But in this case, we keep res->usage until end of a series of
3814 * uncharges. Then, it's ok to ignore memcg's refcnt.
3815 */
3816 if (!batch->memcg)
3817 batch->memcg = memcg;
3818 /*
3819 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
3820 * In those cases, all pages freed continuously can be expected to be in
3821 * the same cgroup and we have chance to coalesce uncharges.
3822 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3823 * because we want to do uncharge as soon as possible.
3824 */
3825
3826 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
3827 goto direct_uncharge;
3828
3829 if (nr_pages > 1)
3830 goto direct_uncharge;
3831
3832 /*
3833 * In typical case, batch->memcg == mem. This means we can
3834 * merge a series of uncharges to an uncharge of res_counter.
3835 * If not, we uncharge res_counter ony by one.
3836 */
3837 if (batch->memcg != memcg)
3838 goto direct_uncharge;
3839 /* remember freed charge and uncharge it later */
3840 batch->nr_pages++;
3841 if (uncharge_memsw)
3842 batch->memsw_nr_pages++;
3843 return;
3844 direct_uncharge:
3845 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3846 if (uncharge_memsw)
3847 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3848 if (unlikely(batch->memcg != memcg))
3849 memcg_oom_recover(memcg);
3850 }
3851
3852 /*
3853 * uncharge if !page_mapped(page)
3854 */
3855 static struct mem_cgroup *
3856 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
3857 bool end_migration)
3858 {
3859 struct mem_cgroup *memcg = NULL;
3860 unsigned int nr_pages = 1;
3861 struct page_cgroup *pc;
3862 bool anon;
3863
3864 if (mem_cgroup_disabled())
3865 return NULL;
3866
3867 if (PageTransHuge(page)) {
3868 nr_pages <<= compound_order(page);
3869 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3870 }
3871 /*
3872 * Check if our page_cgroup is valid
3873 */
3874 pc = lookup_page_cgroup(page);
3875 if (unlikely(!PageCgroupUsed(pc)))
3876 return NULL;
3877
3878 lock_page_cgroup(pc);
3879
3880 memcg = pc->mem_cgroup;
3881
3882 if (!PageCgroupUsed(pc))
3883 goto unlock_out;
3884
3885 anon = PageAnon(page);
3886
3887 switch (ctype) {
3888 case MEM_CGROUP_CHARGE_TYPE_ANON:
3889 /*
3890 * Generally PageAnon tells if it's the anon statistics to be
3891 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3892 * used before page reached the stage of being marked PageAnon.
3893 */
3894 anon = true;
3895 /* fallthrough */
3896 case MEM_CGROUP_CHARGE_TYPE_DROP:
3897 /* See mem_cgroup_prepare_migration() */
3898 if (page_mapped(page))
3899 goto unlock_out;
3900 /*
3901 * Pages under migration may not be uncharged. But
3902 * end_migration() /must/ be the one uncharging the
3903 * unused post-migration page and so it has to call
3904 * here with the migration bit still set. See the
3905 * res_counter handling below.
3906 */
3907 if (!end_migration && PageCgroupMigration(pc))
3908 goto unlock_out;
3909 break;
3910 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3911 if (!PageAnon(page)) { /* Shared memory */
3912 if (page->mapping && !page_is_file_cache(page))
3913 goto unlock_out;
3914 } else if (page_mapped(page)) /* Anon */
3915 goto unlock_out;
3916 break;
3917 default:
3918 break;
3919 }
3920
3921 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
3922
3923 ClearPageCgroupUsed(pc);
3924 /*
3925 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3926 * freed from LRU. This is safe because uncharged page is expected not
3927 * to be reused (freed soon). Exception is SwapCache, it's handled by
3928 * special functions.
3929 */
3930
3931 unlock_page_cgroup(pc);
3932 /*
3933 * even after unlock, we have memcg->res.usage here and this memcg
3934 * will never be freed, so it's safe to call css_get().
3935 */
3936 memcg_check_events(memcg, page);
3937 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3938 mem_cgroup_swap_statistics(memcg, true);
3939 css_get(&memcg->css);
3940 }
3941 /*
3942 * Migration does not charge the res_counter for the
3943 * replacement page, so leave it alone when phasing out the
3944 * page that is unused after the migration.
3945 */
3946 if (!end_migration && !mem_cgroup_is_root(memcg))
3947 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3948
3949 return memcg;
3950
3951 unlock_out:
3952 unlock_page_cgroup(pc);
3953 return NULL;
3954 }
3955
3956 void mem_cgroup_uncharge_page(struct page *page)
3957 {
3958 /* early check. */
3959 if (page_mapped(page))
3960 return;
3961 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
3962 /*
3963 * If the page is in swap cache, uncharge should be deferred
3964 * to the swap path, which also properly accounts swap usage
3965 * and handles memcg lifetime.
3966 *
3967 * Note that this check is not stable and reclaim may add the
3968 * page to swap cache at any time after this. However, if the
3969 * page is not in swap cache by the time page->mapcount hits
3970 * 0, there won't be any page table references to the swap
3971 * slot, and reclaim will free it and not actually write the
3972 * page to disk.
3973 */
3974 if (PageSwapCache(page))
3975 return;
3976 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
3977 }
3978
3979 void mem_cgroup_uncharge_cache_page(struct page *page)
3980 {
3981 VM_BUG_ON_PAGE(page_mapped(page), page);
3982 VM_BUG_ON_PAGE(page->mapping, page);
3983 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
3984 }
3985
3986 /*
3987 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3988 * In that cases, pages are freed continuously and we can expect pages
3989 * are in the same memcg. All these calls itself limits the number of
3990 * pages freed at once, then uncharge_start/end() is called properly.
3991 * This may be called prural(2) times in a context,
3992 */
3993
3994 void mem_cgroup_uncharge_start(void)
3995 {
3996 current->memcg_batch.do_batch++;
3997 /* We can do nest. */
3998 if (current->memcg_batch.do_batch == 1) {
3999 current->memcg_batch.memcg = NULL;
4000 current->memcg_batch.nr_pages = 0;
4001 current->memcg_batch.memsw_nr_pages = 0;
4002 }
4003 }
4004
4005 void mem_cgroup_uncharge_end(void)
4006 {
4007 struct memcg_batch_info *batch = &current->memcg_batch;
4008
4009 if (!batch->do_batch)
4010 return;
4011
4012 batch->do_batch--;
4013 if (batch->do_batch) /* If stacked, do nothing. */
4014 return;
4015
4016 if (!batch->memcg)
4017 return;
4018 /*
4019 * This "batch->memcg" is valid without any css_get/put etc...
4020 * bacause we hide charges behind us.
4021 */
4022 if (batch->nr_pages)
4023 res_counter_uncharge(&batch->memcg->res,
4024 batch->nr_pages * PAGE_SIZE);
4025 if (batch->memsw_nr_pages)
4026 res_counter_uncharge(&batch->memcg->memsw,
4027 batch->memsw_nr_pages * PAGE_SIZE);
4028 memcg_oom_recover(batch->memcg);
4029 /* forget this pointer (for sanity check) */
4030 batch->memcg = NULL;
4031 }
4032
4033 #ifdef CONFIG_SWAP
4034 /*
4035 * called after __delete_from_swap_cache() and drop "page" account.
4036 * memcg information is recorded to swap_cgroup of "ent"
4037 */
4038 void
4039 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4040 {
4041 struct mem_cgroup *memcg;
4042 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4043
4044 if (!swapout) /* this was a swap cache but the swap is unused ! */
4045 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4046
4047 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4048
4049 /*
4050 * record memcg information, if swapout && memcg != NULL,
4051 * css_get() was called in uncharge().
4052 */
4053 if (do_swap_account && swapout && memcg)
4054 swap_cgroup_record(ent, mem_cgroup_id(memcg));
4055 }
4056 #endif
4057
4058 #ifdef CONFIG_MEMCG_SWAP
4059 /*
4060 * called from swap_entry_free(). remove record in swap_cgroup and
4061 * uncharge "memsw" account.
4062 */
4063 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4064 {
4065 struct mem_cgroup *memcg;
4066 unsigned short id;
4067
4068 if (!do_swap_account)
4069 return;
4070
4071 id = swap_cgroup_record(ent, 0);
4072 rcu_read_lock();
4073 memcg = mem_cgroup_lookup(id);
4074 if (memcg) {
4075 /*
4076 * We uncharge this because swap is freed. This memcg can
4077 * be obsolete one. We avoid calling css_tryget_online().
4078 */
4079 if (!mem_cgroup_is_root(memcg))
4080 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4081 mem_cgroup_swap_statistics(memcg, false);
4082 css_put(&memcg->css);
4083 }
4084 rcu_read_unlock();
4085 }
4086
4087 /**
4088 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4089 * @entry: swap entry to be moved
4090 * @from: mem_cgroup which the entry is moved from
4091 * @to: mem_cgroup which the entry is moved to
4092 *
4093 * It succeeds only when the swap_cgroup's record for this entry is the same
4094 * as the mem_cgroup's id of @from.
4095 *
4096 * Returns 0 on success, -EINVAL on failure.
4097 *
4098 * The caller must have charged to @to, IOW, called res_counter_charge() about
4099 * both res and memsw, and called css_get().
4100 */
4101 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4102 struct mem_cgroup *from, struct mem_cgroup *to)
4103 {
4104 unsigned short old_id, new_id;
4105
4106 old_id = mem_cgroup_id(from);
4107 new_id = mem_cgroup_id(to);
4108
4109 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4110 mem_cgroup_swap_statistics(from, false);
4111 mem_cgroup_swap_statistics(to, true);
4112 /*
4113 * This function is only called from task migration context now.
4114 * It postpones res_counter and refcount handling till the end
4115 * of task migration(mem_cgroup_clear_mc()) for performance
4116 * improvement. But we cannot postpone css_get(to) because if
4117 * the process that has been moved to @to does swap-in, the
4118 * refcount of @to might be decreased to 0.
4119 *
4120 * We are in attach() phase, so the cgroup is guaranteed to be
4121 * alive, so we can just call css_get().
4122 */
4123 css_get(&to->css);
4124 return 0;
4125 }
4126 return -EINVAL;
4127 }
4128 #else
4129 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4130 struct mem_cgroup *from, struct mem_cgroup *to)
4131 {
4132 return -EINVAL;
4133 }
4134 #endif
4135
4136 /*
4137 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4138 * page belongs to.
4139 */
4140 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4141 struct mem_cgroup **memcgp)
4142 {
4143 struct mem_cgroup *memcg = NULL;
4144 unsigned int nr_pages = 1;
4145 struct page_cgroup *pc;
4146 enum charge_type ctype;
4147
4148 *memcgp = NULL;
4149
4150 if (mem_cgroup_disabled())
4151 return;
4152
4153 if (PageTransHuge(page))
4154 nr_pages <<= compound_order(page);
4155
4156 pc = lookup_page_cgroup(page);
4157 lock_page_cgroup(pc);
4158 if (PageCgroupUsed(pc)) {
4159 memcg = pc->mem_cgroup;
4160 css_get(&memcg->css);
4161 /*
4162 * At migrating an anonymous page, its mapcount goes down
4163 * to 0 and uncharge() will be called. But, even if it's fully
4164 * unmapped, migration may fail and this page has to be
4165 * charged again. We set MIGRATION flag here and delay uncharge
4166 * until end_migration() is called
4167 *
4168 * Corner Case Thinking
4169 * A)
4170 * When the old page was mapped as Anon and it's unmap-and-freed
4171 * while migration was ongoing.
4172 * If unmap finds the old page, uncharge() of it will be delayed
4173 * until end_migration(). If unmap finds a new page, it's
4174 * uncharged when it make mapcount to be 1->0. If unmap code
4175 * finds swap_migration_entry, the new page will not be mapped
4176 * and end_migration() will find it(mapcount==0).
4177 *
4178 * B)
4179 * When the old page was mapped but migraion fails, the kernel
4180 * remaps it. A charge for it is kept by MIGRATION flag even
4181 * if mapcount goes down to 0. We can do remap successfully
4182 * without charging it again.
4183 *
4184 * C)
4185 * The "old" page is under lock_page() until the end of
4186 * migration, so, the old page itself will not be swapped-out.
4187 * If the new page is swapped out before end_migraton, our
4188 * hook to usual swap-out path will catch the event.
4189 */
4190 if (PageAnon(page))
4191 SetPageCgroupMigration(pc);
4192 }
4193 unlock_page_cgroup(pc);
4194 /*
4195 * If the page is not charged at this point,
4196 * we return here.
4197 */
4198 if (!memcg)
4199 return;
4200
4201 *memcgp = memcg;
4202 /*
4203 * We charge new page before it's used/mapped. So, even if unlock_page()
4204 * is called before end_migration, we can catch all events on this new
4205 * page. In the case new page is migrated but not remapped, new page's
4206 * mapcount will be finally 0 and we call uncharge in end_migration().
4207 */
4208 if (PageAnon(page))
4209 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4210 else
4211 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4212 /*
4213 * The page is committed to the memcg, but it's not actually
4214 * charged to the res_counter since we plan on replacing the
4215 * old one and only one page is going to be left afterwards.
4216 */
4217 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4218 }
4219
4220 /* remove redundant charge if migration failed*/
4221 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4222 struct page *oldpage, struct page *newpage, bool migration_ok)
4223 {
4224 struct page *used, *unused;
4225 struct page_cgroup *pc;
4226 bool anon;
4227
4228 if (!memcg)
4229 return;
4230
4231 if (!migration_ok) {
4232 used = oldpage;
4233 unused = newpage;
4234 } else {
4235 used = newpage;
4236 unused = oldpage;
4237 }
4238 anon = PageAnon(used);
4239 __mem_cgroup_uncharge_common(unused,
4240 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4241 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4242 true);
4243 css_put(&memcg->css);
4244 /*
4245 * We disallowed uncharge of pages under migration because mapcount
4246 * of the page goes down to zero, temporarly.
4247 * Clear the flag and check the page should be charged.
4248 */
4249 pc = lookup_page_cgroup(oldpage);
4250 lock_page_cgroup(pc);
4251 ClearPageCgroupMigration(pc);
4252 unlock_page_cgroup(pc);
4253
4254 /*
4255 * If a page is a file cache, radix-tree replacement is very atomic
4256 * and we can skip this check. When it was an Anon page, its mapcount
4257 * goes down to 0. But because we added MIGRATION flage, it's not
4258 * uncharged yet. There are several case but page->mapcount check
4259 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4260 * check. (see prepare_charge() also)
4261 */
4262 if (anon)
4263 mem_cgroup_uncharge_page(used);
4264 }
4265
4266 /*
4267 * At replace page cache, newpage is not under any memcg but it's on
4268 * LRU. So, this function doesn't touch res_counter but handles LRU
4269 * in correct way. Both pages are locked so we cannot race with uncharge.
4270 */
4271 void mem_cgroup_replace_page_cache(struct page *oldpage,
4272 struct page *newpage)
4273 {
4274 struct mem_cgroup *memcg = NULL;
4275 struct page_cgroup *pc;
4276 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4277
4278 if (mem_cgroup_disabled())
4279 return;
4280
4281 pc = lookup_page_cgroup(oldpage);
4282 /* fix accounting on old pages */
4283 lock_page_cgroup(pc);
4284 if (PageCgroupUsed(pc)) {
4285 memcg = pc->mem_cgroup;
4286 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4287 ClearPageCgroupUsed(pc);
4288 }
4289 unlock_page_cgroup(pc);
4290
4291 /*
4292 * When called from shmem_replace_page(), in some cases the
4293 * oldpage has already been charged, and in some cases not.
4294 */
4295 if (!memcg)
4296 return;
4297 /*
4298 * Even if newpage->mapping was NULL before starting replacement,
4299 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4300 * LRU while we overwrite pc->mem_cgroup.
4301 */
4302 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4303 }
4304
4305 #ifdef CONFIG_DEBUG_VM
4306 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4307 {
4308 struct page_cgroup *pc;
4309
4310 pc = lookup_page_cgroup(page);
4311 /*
4312 * Can be NULL while feeding pages into the page allocator for
4313 * the first time, i.e. during boot or memory hotplug;
4314 * or when mem_cgroup_disabled().
4315 */
4316 if (likely(pc) && PageCgroupUsed(pc))
4317 return pc;
4318 return NULL;
4319 }
4320
4321 bool mem_cgroup_bad_page_check(struct page *page)
4322 {
4323 if (mem_cgroup_disabled())
4324 return false;
4325
4326 return lookup_page_cgroup_used(page) != NULL;
4327 }
4328
4329 void mem_cgroup_print_bad_page(struct page *page)
4330 {
4331 struct page_cgroup *pc;
4332
4333 pc = lookup_page_cgroup_used(page);
4334 if (pc) {
4335 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4336 pc, pc->flags, pc->mem_cgroup);
4337 }
4338 }
4339 #endif
4340
4341 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4342 unsigned long long val)
4343 {
4344 int retry_count;
4345 u64 memswlimit, memlimit;
4346 int ret = 0;
4347 int children = mem_cgroup_count_children(memcg);
4348 u64 curusage, oldusage;
4349 int enlarge;
4350
4351 /*
4352 * For keeping hierarchical_reclaim simple, how long we should retry
4353 * is depends on callers. We set our retry-count to be function
4354 * of # of children which we should visit in this loop.
4355 */
4356 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4357
4358 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4359
4360 enlarge = 0;
4361 while (retry_count) {
4362 if (signal_pending(current)) {
4363 ret = -EINTR;
4364 break;
4365 }
4366 /*
4367 * Rather than hide all in some function, I do this in
4368 * open coded manner. You see what this really does.
4369 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4370 */
4371 mutex_lock(&set_limit_mutex);
4372 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4373 if (memswlimit < val) {
4374 ret = -EINVAL;
4375 mutex_unlock(&set_limit_mutex);
4376 break;
4377 }
4378
4379 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4380 if (memlimit < val)
4381 enlarge = 1;
4382
4383 ret = res_counter_set_limit(&memcg->res, val);
4384 if (!ret) {
4385 if (memswlimit == val)
4386 memcg->memsw_is_minimum = true;
4387 else
4388 memcg->memsw_is_minimum = false;
4389 }
4390 mutex_unlock(&set_limit_mutex);
4391
4392 if (!ret)
4393 break;
4394
4395 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4396 MEM_CGROUP_RECLAIM_SHRINK);
4397 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4398 /* Usage is reduced ? */
4399 if (curusage >= oldusage)
4400 retry_count--;
4401 else
4402 oldusage = curusage;
4403 }
4404 if (!ret && enlarge)
4405 memcg_oom_recover(memcg);
4406
4407 return ret;
4408 }
4409
4410 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4411 unsigned long long val)
4412 {
4413 int retry_count;
4414 u64 memlimit, memswlimit, oldusage, curusage;
4415 int children = mem_cgroup_count_children(memcg);
4416 int ret = -EBUSY;
4417 int enlarge = 0;
4418
4419 /* see mem_cgroup_resize_res_limit */
4420 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4421 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4422 while (retry_count) {
4423 if (signal_pending(current)) {
4424 ret = -EINTR;
4425 break;
4426 }
4427 /*
4428 * Rather than hide all in some function, I do this in
4429 * open coded manner. You see what this really does.
4430 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4431 */
4432 mutex_lock(&set_limit_mutex);
4433 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4434 if (memlimit > val) {
4435 ret = -EINVAL;
4436 mutex_unlock(&set_limit_mutex);
4437 break;
4438 }
4439 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4440 if (memswlimit < val)
4441 enlarge = 1;
4442 ret = res_counter_set_limit(&memcg->memsw, val);
4443 if (!ret) {
4444 if (memlimit == val)
4445 memcg->memsw_is_minimum = true;
4446 else
4447 memcg->memsw_is_minimum = false;
4448 }
4449 mutex_unlock(&set_limit_mutex);
4450
4451 if (!ret)
4452 break;
4453
4454 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4455 MEM_CGROUP_RECLAIM_NOSWAP |
4456 MEM_CGROUP_RECLAIM_SHRINK);
4457 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4458 /* Usage is reduced ? */
4459 if (curusage >= oldusage)
4460 retry_count--;
4461 else
4462 oldusage = curusage;
4463 }
4464 if (!ret && enlarge)
4465 memcg_oom_recover(memcg);
4466 return ret;
4467 }
4468
4469 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4470 gfp_t gfp_mask,
4471 unsigned long *total_scanned)
4472 {
4473 unsigned long nr_reclaimed = 0;
4474 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4475 unsigned long reclaimed;
4476 int loop = 0;
4477 struct mem_cgroup_tree_per_zone *mctz;
4478 unsigned long long excess;
4479 unsigned long nr_scanned;
4480
4481 if (order > 0)
4482 return 0;
4483
4484 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4485 /*
4486 * This loop can run a while, specially if mem_cgroup's continuously
4487 * keep exceeding their soft limit and putting the system under
4488 * pressure
4489 */
4490 do {
4491 if (next_mz)
4492 mz = next_mz;
4493 else
4494 mz = mem_cgroup_largest_soft_limit_node(mctz);
4495 if (!mz)
4496 break;
4497
4498 nr_scanned = 0;
4499 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4500 gfp_mask, &nr_scanned);
4501 nr_reclaimed += reclaimed;
4502 *total_scanned += nr_scanned;
4503 spin_lock(&mctz->lock);
4504
4505 /*
4506 * If we failed to reclaim anything from this memory cgroup
4507 * it is time to move on to the next cgroup
4508 */
4509 next_mz = NULL;
4510 if (!reclaimed) {
4511 do {
4512 /*
4513 * Loop until we find yet another one.
4514 *
4515 * By the time we get the soft_limit lock
4516 * again, someone might have aded the
4517 * group back on the RB tree. Iterate to
4518 * make sure we get a different mem.
4519 * mem_cgroup_largest_soft_limit_node returns
4520 * NULL if no other cgroup is present on
4521 * the tree
4522 */
4523 next_mz =
4524 __mem_cgroup_largest_soft_limit_node(mctz);
4525 if (next_mz == mz)
4526 css_put(&next_mz->memcg->css);
4527 else /* next_mz == NULL or other memcg */
4528 break;
4529 } while (1);
4530 }
4531 __mem_cgroup_remove_exceeded(mz, mctz);
4532 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4533 /*
4534 * One school of thought says that we should not add
4535 * back the node to the tree if reclaim returns 0.
4536 * But our reclaim could return 0, simply because due
4537 * to priority we are exposing a smaller subset of
4538 * memory to reclaim from. Consider this as a longer
4539 * term TODO.
4540 */
4541 /* If excess == 0, no tree ops */
4542 __mem_cgroup_insert_exceeded(mz, mctz, excess);
4543 spin_unlock(&mctz->lock);
4544 css_put(&mz->memcg->css);
4545 loop++;
4546 /*
4547 * Could not reclaim anything and there are no more
4548 * mem cgroups to try or we seem to be looping without
4549 * reclaiming anything.
4550 */
4551 if (!nr_reclaimed &&
4552 (next_mz == NULL ||
4553 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4554 break;
4555 } while (!nr_reclaimed);
4556 if (next_mz)
4557 css_put(&next_mz->memcg->css);
4558 return nr_reclaimed;
4559 }
4560
4561 /**
4562 * mem_cgroup_force_empty_list - clears LRU of a group
4563 * @memcg: group to clear
4564 * @node: NUMA node
4565 * @zid: zone id
4566 * @lru: lru to to clear
4567 *
4568 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4569 * reclaim the pages page themselves - pages are moved to the parent (or root)
4570 * group.
4571 */
4572 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4573 int node, int zid, enum lru_list lru)
4574 {
4575 struct lruvec *lruvec;
4576 unsigned long flags;
4577 struct list_head *list;
4578 struct page *busy;
4579 struct zone *zone;
4580
4581 zone = &NODE_DATA(node)->node_zones[zid];
4582 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4583 list = &lruvec->lists[lru];
4584
4585 busy = NULL;
4586 do {
4587 struct page_cgroup *pc;
4588 struct page *page;
4589
4590 spin_lock_irqsave(&zone->lru_lock, flags);
4591 if (list_empty(list)) {
4592 spin_unlock_irqrestore(&zone->lru_lock, flags);
4593 break;
4594 }
4595 page = list_entry(list->prev, struct page, lru);
4596 if (busy == page) {
4597 list_move(&page->lru, list);
4598 busy = NULL;
4599 spin_unlock_irqrestore(&zone->lru_lock, flags);
4600 continue;
4601 }
4602 spin_unlock_irqrestore(&zone->lru_lock, flags);
4603
4604 pc = lookup_page_cgroup(page);
4605
4606 if (mem_cgroup_move_parent(page, pc, memcg)) {
4607 /* found lock contention or "pc" is obsolete. */
4608 busy = page;
4609 } else
4610 busy = NULL;
4611 cond_resched();
4612 } while (!list_empty(list));
4613 }
4614
4615 /*
4616 * make mem_cgroup's charge to be 0 if there is no task by moving
4617 * all the charges and pages to the parent.
4618 * This enables deleting this mem_cgroup.
4619 *
4620 * Caller is responsible for holding css reference on the memcg.
4621 */
4622 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4623 {
4624 int node, zid;
4625 u64 usage;
4626
4627 do {
4628 /* This is for making all *used* pages to be on LRU. */
4629 lru_add_drain_all();
4630 drain_all_stock_sync(memcg);
4631 mem_cgroup_start_move(memcg);
4632 for_each_node_state(node, N_MEMORY) {
4633 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4634 enum lru_list lru;
4635 for_each_lru(lru) {
4636 mem_cgroup_force_empty_list(memcg,
4637 node, zid, lru);
4638 }
4639 }
4640 }
4641 mem_cgroup_end_move(memcg);
4642 memcg_oom_recover(memcg);
4643 cond_resched();
4644
4645 /*
4646 * Kernel memory may not necessarily be trackable to a specific
4647 * process. So they are not migrated, and therefore we can't
4648 * expect their value to drop to 0 here.
4649 * Having res filled up with kmem only is enough.
4650 *
4651 * This is a safety check because mem_cgroup_force_empty_list
4652 * could have raced with mem_cgroup_replace_page_cache callers
4653 * so the lru seemed empty but the page could have been added
4654 * right after the check. RES_USAGE should be safe as we always
4655 * charge before adding to the LRU.
4656 */
4657 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4658 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4659 } while (usage > 0);
4660 }
4661
4662 /*
4663 * Test whether @memcg has children, dead or alive. Note that this
4664 * function doesn't care whether @memcg has use_hierarchy enabled and
4665 * returns %true if there are child csses according to the cgroup
4666 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
4667 */
4668 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4669 {
4670 bool ret;
4671
4672 /*
4673 * The lock does not prevent addition or deletion of children, but
4674 * it prevents a new child from being initialized based on this
4675 * parent in css_online(), so it's enough to decide whether
4676 * hierarchically inherited attributes can still be changed or not.
4677 */
4678 lockdep_assert_held(&memcg_create_mutex);
4679
4680 rcu_read_lock();
4681 ret = css_next_child(NULL, &memcg->css);
4682 rcu_read_unlock();
4683 return ret;
4684 }
4685
4686 /*
4687 * Reclaims as many pages from the given memcg as possible and moves
4688 * the rest to the parent.
4689 *
4690 * Caller is responsible for holding css reference for memcg.
4691 */
4692 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4693 {
4694 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4695
4696 /* we call try-to-free pages for make this cgroup empty */
4697 lru_add_drain_all();
4698 /* try to free all pages in this cgroup */
4699 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4700 int progress;
4701
4702 if (signal_pending(current))
4703 return -EINTR;
4704
4705 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4706 false);
4707 if (!progress) {
4708 nr_retries--;
4709 /* maybe some writeback is necessary */
4710 congestion_wait(BLK_RW_ASYNC, HZ/10);
4711 }
4712
4713 }
4714
4715 return 0;
4716 }
4717
4718 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
4719 char *buf, size_t nbytes,
4720 loff_t off)
4721 {
4722 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4723
4724 if (mem_cgroup_is_root(memcg))
4725 return -EINVAL;
4726 return mem_cgroup_force_empty(memcg) ?: nbytes;
4727 }
4728
4729 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
4730 struct cftype *cft)
4731 {
4732 return mem_cgroup_from_css(css)->use_hierarchy;
4733 }
4734
4735 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
4736 struct cftype *cft, u64 val)
4737 {
4738 int retval = 0;
4739 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4740 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
4741
4742 mutex_lock(&memcg_create_mutex);
4743
4744 if (memcg->use_hierarchy == val)
4745 goto out;
4746
4747 /*
4748 * If parent's use_hierarchy is set, we can't make any modifications
4749 * in the child subtrees. If it is unset, then the change can
4750 * occur, provided the current cgroup has no children.
4751 *
4752 * For the root cgroup, parent_mem is NULL, we allow value to be
4753 * set if there are no children.
4754 */
4755 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4756 (val == 1 || val == 0)) {
4757 if (!memcg_has_children(memcg))
4758 memcg->use_hierarchy = val;
4759 else
4760 retval = -EBUSY;
4761 } else
4762 retval = -EINVAL;
4763
4764 out:
4765 mutex_unlock(&memcg_create_mutex);
4766
4767 return retval;
4768 }
4769
4770
4771 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4772 enum mem_cgroup_stat_index idx)
4773 {
4774 struct mem_cgroup *iter;
4775 long val = 0;
4776
4777 /* Per-cpu values can be negative, use a signed accumulator */
4778 for_each_mem_cgroup_tree(iter, memcg)
4779 val += mem_cgroup_read_stat(iter, idx);
4780
4781 if (val < 0) /* race ? */
4782 val = 0;
4783 return val;
4784 }
4785
4786 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4787 {
4788 u64 val;
4789
4790 if (!mem_cgroup_is_root(memcg)) {
4791 if (!swap)
4792 return res_counter_read_u64(&memcg->res, RES_USAGE);
4793 else
4794 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4795 }
4796
4797 /*
4798 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
4799 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
4800 */
4801 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4802 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4803
4804 if (swap)
4805 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4806
4807 return val << PAGE_SHIFT;
4808 }
4809
4810 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
4811 struct cftype *cft)
4812 {
4813 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4814 u64 val;
4815 int name;
4816 enum res_type type;
4817
4818 type = MEMFILE_TYPE(cft->private);
4819 name = MEMFILE_ATTR(cft->private);
4820
4821 switch (type) {
4822 case _MEM:
4823 if (name == RES_USAGE)
4824 val = mem_cgroup_usage(memcg, false);
4825 else
4826 val = res_counter_read_u64(&memcg->res, name);
4827 break;
4828 case _MEMSWAP:
4829 if (name == RES_USAGE)
4830 val = mem_cgroup_usage(memcg, true);
4831 else
4832 val = res_counter_read_u64(&memcg->memsw, name);
4833 break;
4834 case _KMEM:
4835 val = res_counter_read_u64(&memcg->kmem, name);
4836 break;
4837 default:
4838 BUG();
4839 }
4840
4841 return val;
4842 }
4843
4844 #ifdef CONFIG_MEMCG_KMEM
4845 /* should be called with activate_kmem_mutex held */
4846 static int __memcg_activate_kmem(struct mem_cgroup *memcg,
4847 unsigned long long limit)
4848 {
4849 int err = 0;
4850 int memcg_id;
4851
4852 if (memcg_kmem_is_active(memcg))
4853 return 0;
4854
4855 /*
4856 * We are going to allocate memory for data shared by all memory
4857 * cgroups so let's stop accounting here.
4858 */
4859 memcg_stop_kmem_account();
4860
4861 /*
4862 * For simplicity, we won't allow this to be disabled. It also can't
4863 * be changed if the cgroup has children already, or if tasks had
4864 * already joined.
4865 *
4866 * If tasks join before we set the limit, a person looking at
4867 * kmem.usage_in_bytes will have no way to determine when it took
4868 * place, which makes the value quite meaningless.
4869 *
4870 * After it first became limited, changes in the value of the limit are
4871 * of course permitted.
4872 */
4873 mutex_lock(&memcg_create_mutex);
4874 if (cgroup_has_tasks(memcg->css.cgroup) ||
4875 (memcg->use_hierarchy && memcg_has_children(memcg)))
4876 err = -EBUSY;
4877 mutex_unlock(&memcg_create_mutex);
4878 if (err)
4879 goto out;
4880
4881 memcg_id = ida_simple_get(&kmem_limited_groups,
4882 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
4883 if (memcg_id < 0) {
4884 err = memcg_id;
4885 goto out;
4886 }
4887
4888 /*
4889 * Make sure we have enough space for this cgroup in each root cache's
4890 * memcg_params.
4891 */
4892 mutex_lock(&memcg_slab_mutex);
4893 err = memcg_update_all_caches(memcg_id + 1);
4894 mutex_unlock(&memcg_slab_mutex);
4895 if (err)
4896 goto out_rmid;
4897
4898 memcg->kmemcg_id = memcg_id;
4899 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
4900
4901 /*
4902 * We couldn't have accounted to this cgroup, because it hasn't got the
4903 * active bit set yet, so this should succeed.
4904 */
4905 err = res_counter_set_limit(&memcg->kmem, limit);
4906 VM_BUG_ON(err);
4907
4908 static_key_slow_inc(&memcg_kmem_enabled_key);
4909 /*
4910 * Setting the active bit after enabling static branching will
4911 * guarantee no one starts accounting before all call sites are
4912 * patched.
4913 */
4914 memcg_kmem_set_active(memcg);
4915 out:
4916 memcg_resume_kmem_account();
4917 return err;
4918
4919 out_rmid:
4920 ida_simple_remove(&kmem_limited_groups, memcg_id);
4921 goto out;
4922 }
4923
4924 static int memcg_activate_kmem(struct mem_cgroup *memcg,
4925 unsigned long long limit)
4926 {
4927 int ret;
4928
4929 mutex_lock(&activate_kmem_mutex);
4930 ret = __memcg_activate_kmem(memcg, limit);
4931 mutex_unlock(&activate_kmem_mutex);
4932 return ret;
4933 }
4934
4935 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
4936 unsigned long long val)
4937 {
4938 int ret;
4939
4940 if (!memcg_kmem_is_active(memcg))
4941 ret = memcg_activate_kmem(memcg, val);
4942 else
4943 ret = res_counter_set_limit(&memcg->kmem, val);
4944 return ret;
4945 }
4946
4947 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
4948 {
4949 int ret = 0;
4950 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4951
4952 if (!parent)
4953 return 0;
4954
4955 mutex_lock(&activate_kmem_mutex);
4956 /*
4957 * If the parent cgroup is not kmem-active now, it cannot be activated
4958 * after this point, because it has at least one child already.
4959 */
4960 if (memcg_kmem_is_active(parent))
4961 ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
4962 mutex_unlock(&activate_kmem_mutex);
4963 return ret;
4964 }
4965 #else
4966 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
4967 unsigned long long val)
4968 {
4969 return -EINVAL;
4970 }
4971 #endif /* CONFIG_MEMCG_KMEM */
4972
4973 /*
4974 * The user of this function is...
4975 * RES_LIMIT.
4976 */
4977 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
4978 char *buf, size_t nbytes, loff_t off)
4979 {
4980 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4981 enum res_type type;
4982 int name;
4983 unsigned long long val;
4984 int ret;
4985
4986 buf = strstrip(buf);
4987 type = MEMFILE_TYPE(of_cft(of)->private);
4988 name = MEMFILE_ATTR(of_cft(of)->private);
4989
4990 switch (name) {
4991 case RES_LIMIT:
4992 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4993 ret = -EINVAL;
4994 break;
4995 }
4996 /* This function does all necessary parse...reuse it */
4997 ret = res_counter_memparse_write_strategy(buf, &val);
4998 if (ret)
4999 break;
5000 if (type == _MEM)
5001 ret = mem_cgroup_resize_limit(memcg, val);
5002 else if (type == _MEMSWAP)
5003 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5004 else if (type == _KMEM)
5005 ret = memcg_update_kmem_limit(memcg, val);
5006 else
5007 return -EINVAL;
5008 break;
5009 case RES_SOFT_LIMIT:
5010 ret = res_counter_memparse_write_strategy(buf, &val);
5011 if (ret)
5012 break;
5013 /*
5014 * For memsw, soft limits are hard to implement in terms
5015 * of semantics, for now, we support soft limits for
5016 * control without swap
5017 */
5018 if (type == _MEM)
5019 ret = res_counter_set_soft_limit(&memcg->res, val);
5020 else
5021 ret = -EINVAL;
5022 break;
5023 default:
5024 ret = -EINVAL; /* should be BUG() ? */
5025 break;
5026 }
5027 return ret ?: nbytes;
5028 }
5029
5030 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5031 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5032 {
5033 unsigned long long min_limit, min_memsw_limit, tmp;
5034
5035 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5036 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5037 if (!memcg->use_hierarchy)
5038 goto out;
5039
5040 while (memcg->css.parent) {
5041 memcg = mem_cgroup_from_css(memcg->css.parent);
5042 if (!memcg->use_hierarchy)
5043 break;
5044 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5045 min_limit = min(min_limit, tmp);
5046 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5047 min_memsw_limit = min(min_memsw_limit, tmp);
5048 }
5049 out:
5050 *mem_limit = min_limit;
5051 *memsw_limit = min_memsw_limit;
5052 }
5053
5054 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
5055 size_t nbytes, loff_t off)
5056 {
5057 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5058 int name;
5059 enum res_type type;
5060
5061 type = MEMFILE_TYPE(of_cft(of)->private);
5062 name = MEMFILE_ATTR(of_cft(of)->private);
5063
5064 switch (name) {
5065 case RES_MAX_USAGE:
5066 if (type == _MEM)
5067 res_counter_reset_max(&memcg->res);
5068 else if (type == _MEMSWAP)
5069 res_counter_reset_max(&memcg->memsw);
5070 else if (type == _KMEM)
5071 res_counter_reset_max(&memcg->kmem);
5072 else
5073 return -EINVAL;
5074 break;
5075 case RES_FAILCNT:
5076 if (type == _MEM)
5077 res_counter_reset_failcnt(&memcg->res);
5078 else if (type == _MEMSWAP)
5079 res_counter_reset_failcnt(&memcg->memsw);
5080 else if (type == _KMEM)
5081 res_counter_reset_failcnt(&memcg->kmem);
5082 else
5083 return -EINVAL;
5084 break;
5085 }
5086
5087 return nbytes;
5088 }
5089
5090 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5091 struct cftype *cft)
5092 {
5093 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5094 }
5095
5096 #ifdef CONFIG_MMU
5097 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5098 struct cftype *cft, u64 val)
5099 {
5100 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5101
5102 if (val >= (1 << NR_MOVE_TYPE))
5103 return -EINVAL;
5104
5105 /*
5106 * No kind of locking is needed in here, because ->can_attach() will
5107 * check this value once in the beginning of the process, and then carry
5108 * on with stale data. This means that changes to this value will only
5109 * affect task migrations starting after the change.
5110 */
5111 memcg->move_charge_at_immigrate = val;
5112 return 0;
5113 }
5114 #else
5115 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5116 struct cftype *cft, u64 val)
5117 {
5118 return -ENOSYS;
5119 }
5120 #endif
5121
5122 #ifdef CONFIG_NUMA
5123 static int memcg_numa_stat_show(struct seq_file *m, void *v)
5124 {
5125 struct numa_stat {
5126 const char *name;
5127 unsigned int lru_mask;
5128 };
5129
5130 static const struct numa_stat stats[] = {
5131 { "total", LRU_ALL },
5132 { "file", LRU_ALL_FILE },
5133 { "anon", LRU_ALL_ANON },
5134 { "unevictable", BIT(LRU_UNEVICTABLE) },
5135 };
5136 const struct numa_stat *stat;
5137 int nid;
5138 unsigned long nr;
5139 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5140
5141 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5142 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
5143 seq_printf(m, "%s=%lu", stat->name, nr);
5144 for_each_node_state(nid, N_MEMORY) {
5145 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5146 stat->lru_mask);
5147 seq_printf(m, " N%d=%lu", nid, nr);
5148 }
5149 seq_putc(m, '\n');
5150 }
5151
5152 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5153 struct mem_cgroup *iter;
5154
5155 nr = 0;
5156 for_each_mem_cgroup_tree(iter, memcg)
5157 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
5158 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
5159 for_each_node_state(nid, N_MEMORY) {
5160 nr = 0;
5161 for_each_mem_cgroup_tree(iter, memcg)
5162 nr += mem_cgroup_node_nr_lru_pages(
5163 iter, nid, stat->lru_mask);
5164 seq_printf(m, " N%d=%lu", nid, nr);
5165 }
5166 seq_putc(m, '\n');
5167 }
5168
5169 return 0;
5170 }
5171 #endif /* CONFIG_NUMA */
5172
5173 static inline void mem_cgroup_lru_names_not_uptodate(void)
5174 {
5175 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5176 }
5177
5178 static int memcg_stat_show(struct seq_file *m, void *v)
5179 {
5180 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5181 struct mem_cgroup *mi;
5182 unsigned int i;
5183
5184 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5185 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5186 continue;
5187 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5188 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5189 }
5190
5191 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5192 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5193 mem_cgroup_read_events(memcg, i));
5194
5195 for (i = 0; i < NR_LRU_LISTS; i++)
5196 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5197 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5198
5199 /* Hierarchical information */
5200 {
5201 unsigned long long limit, memsw_limit;
5202 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5203 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5204 if (do_swap_account)
5205 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5206 memsw_limit);
5207 }
5208
5209 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5210 long long val = 0;
5211
5212 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5213 continue;
5214 for_each_mem_cgroup_tree(mi, memcg)
5215 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5216 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5217 }
5218
5219 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5220 unsigned long long val = 0;
5221
5222 for_each_mem_cgroup_tree(mi, memcg)
5223 val += mem_cgroup_read_events(mi, i);
5224 seq_printf(m, "total_%s %llu\n",
5225 mem_cgroup_events_names[i], val);
5226 }
5227
5228 for (i = 0; i < NR_LRU_LISTS; i++) {
5229 unsigned long long val = 0;
5230
5231 for_each_mem_cgroup_tree(mi, memcg)
5232 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5233 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5234 }
5235
5236 #ifdef CONFIG_DEBUG_VM
5237 {
5238 int nid, zid;
5239 struct mem_cgroup_per_zone *mz;
5240 struct zone_reclaim_stat *rstat;
5241 unsigned long recent_rotated[2] = {0, 0};
5242 unsigned long recent_scanned[2] = {0, 0};
5243
5244 for_each_online_node(nid)
5245 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5246 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
5247 rstat = &mz->lruvec.reclaim_stat;
5248
5249 recent_rotated[0] += rstat->recent_rotated[0];
5250 recent_rotated[1] += rstat->recent_rotated[1];
5251 recent_scanned[0] += rstat->recent_scanned[0];
5252 recent_scanned[1] += rstat->recent_scanned[1];
5253 }
5254 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5255 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5256 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5257 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5258 }
5259 #endif
5260
5261 return 0;
5262 }
5263
5264 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5265 struct cftype *cft)
5266 {
5267 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5268
5269 return mem_cgroup_swappiness(memcg);
5270 }
5271
5272 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5273 struct cftype *cft, u64 val)
5274 {
5275 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5276
5277 if (val > 100)
5278 return -EINVAL;
5279
5280 if (css->parent)
5281 memcg->swappiness = val;
5282 else
5283 vm_swappiness = val;
5284
5285 return 0;
5286 }
5287
5288 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5289 {
5290 struct mem_cgroup_threshold_ary *t;
5291 u64 usage;
5292 int i;
5293
5294 rcu_read_lock();
5295 if (!swap)
5296 t = rcu_dereference(memcg->thresholds.primary);
5297 else
5298 t = rcu_dereference(memcg->memsw_thresholds.primary);
5299
5300 if (!t)
5301 goto unlock;
5302
5303 usage = mem_cgroup_usage(memcg, swap);
5304
5305 /*
5306 * current_threshold points to threshold just below or equal to usage.
5307 * If it's not true, a threshold was crossed after last
5308 * call of __mem_cgroup_threshold().
5309 */
5310 i = t->current_threshold;
5311
5312 /*
5313 * Iterate backward over array of thresholds starting from
5314 * current_threshold and check if a threshold is crossed.
5315 * If none of thresholds below usage is crossed, we read
5316 * only one element of the array here.
5317 */
5318 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5319 eventfd_signal(t->entries[i].eventfd, 1);
5320
5321 /* i = current_threshold + 1 */
5322 i++;
5323
5324 /*
5325 * Iterate forward over array of thresholds starting from
5326 * current_threshold+1 and check if a threshold is crossed.
5327 * If none of thresholds above usage is crossed, we read
5328 * only one element of the array here.
5329 */
5330 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5331 eventfd_signal(t->entries[i].eventfd, 1);
5332
5333 /* Update current_threshold */
5334 t->current_threshold = i - 1;
5335 unlock:
5336 rcu_read_unlock();
5337 }
5338
5339 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5340 {
5341 while (memcg) {
5342 __mem_cgroup_threshold(memcg, false);
5343 if (do_swap_account)
5344 __mem_cgroup_threshold(memcg, true);
5345
5346 memcg = parent_mem_cgroup(memcg);
5347 }
5348 }
5349
5350 static int compare_thresholds(const void *a, const void *b)
5351 {
5352 const struct mem_cgroup_threshold *_a = a;
5353 const struct mem_cgroup_threshold *_b = b;
5354
5355 if (_a->threshold > _b->threshold)
5356 return 1;
5357
5358 if (_a->threshold < _b->threshold)
5359 return -1;
5360
5361 return 0;
5362 }
5363
5364 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5365 {
5366 struct mem_cgroup_eventfd_list *ev;
5367
5368 spin_lock(&memcg_oom_lock);
5369
5370 list_for_each_entry(ev, &memcg->oom_notify, list)
5371 eventfd_signal(ev->eventfd, 1);
5372
5373 spin_unlock(&memcg_oom_lock);
5374 return 0;
5375 }
5376
5377 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5378 {
5379 struct mem_cgroup *iter;
5380
5381 for_each_mem_cgroup_tree(iter, memcg)
5382 mem_cgroup_oom_notify_cb(iter);
5383 }
5384
5385 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
5386 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
5387 {
5388 struct mem_cgroup_thresholds *thresholds;
5389 struct mem_cgroup_threshold_ary *new;
5390 u64 threshold, usage;
5391 int i, size, ret;
5392
5393 ret = res_counter_memparse_write_strategy(args, &threshold);
5394 if (ret)
5395 return ret;
5396
5397 mutex_lock(&memcg->thresholds_lock);
5398
5399 if (type == _MEM)
5400 thresholds = &memcg->thresholds;
5401 else if (type == _MEMSWAP)
5402 thresholds = &memcg->memsw_thresholds;
5403 else
5404 BUG();
5405
5406 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5407
5408 /* Check if a threshold crossed before adding a new one */
5409 if (thresholds->primary)
5410 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5411
5412 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5413
5414 /* Allocate memory for new array of thresholds */
5415 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5416 GFP_KERNEL);
5417 if (!new) {
5418 ret = -ENOMEM;
5419 goto unlock;
5420 }
5421 new->size = size;
5422
5423 /* Copy thresholds (if any) to new array */
5424 if (thresholds->primary) {
5425 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5426 sizeof(struct mem_cgroup_threshold));
5427 }
5428
5429 /* Add new threshold */
5430 new->entries[size - 1].eventfd = eventfd;
5431 new->entries[size - 1].threshold = threshold;
5432
5433 /* Sort thresholds. Registering of new threshold isn't time-critical */
5434 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5435 compare_thresholds, NULL);
5436
5437 /* Find current threshold */
5438 new->current_threshold = -1;
5439 for (i = 0; i < size; i++) {
5440 if (new->entries[i].threshold <= usage) {
5441 /*
5442 * new->current_threshold will not be used until
5443 * rcu_assign_pointer(), so it's safe to increment
5444 * it here.
5445 */
5446 ++new->current_threshold;
5447 } else
5448 break;
5449 }
5450
5451 /* Free old spare buffer and save old primary buffer as spare */
5452 kfree(thresholds->spare);
5453 thresholds->spare = thresholds->primary;
5454
5455 rcu_assign_pointer(thresholds->primary, new);
5456
5457 /* To be sure that nobody uses thresholds */
5458 synchronize_rcu();
5459
5460 unlock:
5461 mutex_unlock(&memcg->thresholds_lock);
5462
5463 return ret;
5464 }
5465
5466 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
5467 struct eventfd_ctx *eventfd, const char *args)
5468 {
5469 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
5470 }
5471
5472 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
5473 struct eventfd_ctx *eventfd, const char *args)
5474 {
5475 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
5476 }
5477
5478 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5479 struct eventfd_ctx *eventfd, enum res_type type)
5480 {
5481 struct mem_cgroup_thresholds *thresholds;
5482 struct mem_cgroup_threshold_ary *new;
5483 u64 usage;
5484 int i, j, size;
5485
5486 mutex_lock(&memcg->thresholds_lock);
5487 if (type == _MEM)
5488 thresholds = &memcg->thresholds;
5489 else if (type == _MEMSWAP)
5490 thresholds = &memcg->memsw_thresholds;
5491 else
5492 BUG();
5493
5494 if (!thresholds->primary)
5495 goto unlock;
5496
5497 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5498
5499 /* Check if a threshold crossed before removing */
5500 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5501
5502 /* Calculate new number of threshold */
5503 size = 0;
5504 for (i = 0; i < thresholds->primary->size; i++) {
5505 if (thresholds->primary->entries[i].eventfd != eventfd)
5506 size++;
5507 }
5508
5509 new = thresholds->spare;
5510
5511 /* Set thresholds array to NULL if we don't have thresholds */
5512 if (!size) {
5513 kfree(new);
5514 new = NULL;
5515 goto swap_buffers;
5516 }
5517
5518 new->size = size;
5519
5520 /* Copy thresholds and find current threshold */
5521 new->current_threshold = -1;
5522 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5523 if (thresholds->primary->entries[i].eventfd == eventfd)
5524 continue;
5525
5526 new->entries[j] = thresholds->primary->entries[i];
5527 if (new->entries[j].threshold <= usage) {
5528 /*
5529 * new->current_threshold will not be used
5530 * until rcu_assign_pointer(), so it's safe to increment
5531 * it here.
5532 */
5533 ++new->current_threshold;
5534 }
5535 j++;
5536 }
5537
5538 swap_buffers:
5539 /* Swap primary and spare array */
5540 thresholds->spare = thresholds->primary;
5541 /* If all events are unregistered, free the spare array */
5542 if (!new) {
5543 kfree(thresholds->spare);
5544 thresholds->spare = NULL;
5545 }
5546
5547 rcu_assign_pointer(thresholds->primary, new);
5548
5549 /* To be sure that nobody uses thresholds */
5550 synchronize_rcu();
5551 unlock:
5552 mutex_unlock(&memcg->thresholds_lock);
5553 }
5554
5555 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5556 struct eventfd_ctx *eventfd)
5557 {
5558 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
5559 }
5560
5561 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5562 struct eventfd_ctx *eventfd)
5563 {
5564 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
5565 }
5566
5567 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
5568 struct eventfd_ctx *eventfd, const char *args)
5569 {
5570 struct mem_cgroup_eventfd_list *event;
5571
5572 event = kmalloc(sizeof(*event), GFP_KERNEL);
5573 if (!event)
5574 return -ENOMEM;
5575
5576 spin_lock(&memcg_oom_lock);
5577
5578 event->eventfd = eventfd;
5579 list_add(&event->list, &memcg->oom_notify);
5580
5581 /* already in OOM ? */
5582 if (atomic_read(&memcg->under_oom))
5583 eventfd_signal(eventfd, 1);
5584 spin_unlock(&memcg_oom_lock);
5585
5586 return 0;
5587 }
5588
5589 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
5590 struct eventfd_ctx *eventfd)
5591 {
5592 struct mem_cgroup_eventfd_list *ev, *tmp;
5593
5594 spin_lock(&memcg_oom_lock);
5595
5596 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5597 if (ev->eventfd == eventfd) {
5598 list_del(&ev->list);
5599 kfree(ev);
5600 }
5601 }
5602
5603 spin_unlock(&memcg_oom_lock);
5604 }
5605
5606 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
5607 {
5608 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5609
5610 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
5611 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
5612 return 0;
5613 }
5614
5615 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5616 struct cftype *cft, u64 val)
5617 {
5618 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5619
5620 /* cannot set to root cgroup and only 0 and 1 are allowed */
5621 if (!css->parent || !((val == 0) || (val == 1)))
5622 return -EINVAL;
5623
5624 memcg->oom_kill_disable = val;
5625 if (!val)
5626 memcg_oom_recover(memcg);
5627
5628 return 0;
5629 }
5630
5631 #ifdef CONFIG_MEMCG_KMEM
5632 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5633 {
5634 int ret;
5635
5636 memcg->kmemcg_id = -1;
5637 ret = memcg_propagate_kmem(memcg);
5638 if (ret)
5639 return ret;
5640
5641 return mem_cgroup_sockets_init(memcg, ss);
5642 }
5643
5644 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5645 {
5646 mem_cgroup_sockets_destroy(memcg);
5647 }
5648
5649 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5650 {
5651 if (!memcg_kmem_is_active(memcg))
5652 return;
5653
5654 /*
5655 * kmem charges can outlive the cgroup. In the case of slab
5656 * pages, for instance, a page contain objects from various
5657 * processes. As we prevent from taking a reference for every
5658 * such allocation we have to be careful when doing uncharge
5659 * (see memcg_uncharge_kmem) and here during offlining.
5660 *
5661 * The idea is that that only the _last_ uncharge which sees
5662 * the dead memcg will drop the last reference. An additional
5663 * reference is taken here before the group is marked dead
5664 * which is then paired with css_put during uncharge resp. here.
5665 *
5666 * Although this might sound strange as this path is called from
5667 * css_offline() when the referencemight have dropped down to 0 and
5668 * shouldn't be incremented anymore (css_tryget_online() would
5669 * fail) we do not have other options because of the kmem
5670 * allocations lifetime.
5671 */
5672 css_get(&memcg->css);
5673
5674 memcg_kmem_mark_dead(memcg);
5675
5676 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5677 return;
5678
5679 if (memcg_kmem_test_and_clear_dead(memcg))
5680 css_put(&memcg->css);
5681 }
5682 #else
5683 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5684 {
5685 return 0;
5686 }
5687
5688 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5689 {
5690 }
5691
5692 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5693 {
5694 }
5695 #endif
5696
5697 /*
5698 * DO NOT USE IN NEW FILES.
5699 *
5700 * "cgroup.event_control" implementation.
5701 *
5702 * This is way over-engineered. It tries to support fully configurable
5703 * events for each user. Such level of flexibility is completely
5704 * unnecessary especially in the light of the planned unified hierarchy.
5705 *
5706 * Please deprecate this and replace with something simpler if at all
5707 * possible.
5708 */
5709
5710 /*
5711 * Unregister event and free resources.
5712 *
5713 * Gets called from workqueue.
5714 */
5715 static void memcg_event_remove(struct work_struct *work)
5716 {
5717 struct mem_cgroup_event *event =
5718 container_of(work, struct mem_cgroup_event, remove);
5719 struct mem_cgroup *memcg = event->memcg;
5720
5721 remove_wait_queue(event->wqh, &event->wait);
5722
5723 event->unregister_event(memcg, event->eventfd);
5724
5725 /* Notify userspace the event is going away. */
5726 eventfd_signal(event->eventfd, 1);
5727
5728 eventfd_ctx_put(event->eventfd);
5729 kfree(event);
5730 css_put(&memcg->css);
5731 }
5732
5733 /*
5734 * Gets called on POLLHUP on eventfd when user closes it.
5735 *
5736 * Called with wqh->lock held and interrupts disabled.
5737 */
5738 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
5739 int sync, void *key)
5740 {
5741 struct mem_cgroup_event *event =
5742 container_of(wait, struct mem_cgroup_event, wait);
5743 struct mem_cgroup *memcg = event->memcg;
5744 unsigned long flags = (unsigned long)key;
5745
5746 if (flags & POLLHUP) {
5747 /*
5748 * If the event has been detached at cgroup removal, we
5749 * can simply return knowing the other side will cleanup
5750 * for us.
5751 *
5752 * We can't race against event freeing since the other
5753 * side will require wqh->lock via remove_wait_queue(),
5754 * which we hold.
5755 */
5756 spin_lock(&memcg->event_list_lock);
5757 if (!list_empty(&event->list)) {
5758 list_del_init(&event->list);
5759 /*
5760 * We are in atomic context, but cgroup_event_remove()
5761 * may sleep, so we have to call it in workqueue.
5762 */
5763 schedule_work(&event->remove);
5764 }
5765 spin_unlock(&memcg->event_list_lock);
5766 }
5767
5768 return 0;
5769 }
5770
5771 static void memcg_event_ptable_queue_proc(struct file *file,
5772 wait_queue_head_t *wqh, poll_table *pt)
5773 {
5774 struct mem_cgroup_event *event =
5775 container_of(pt, struct mem_cgroup_event, pt);
5776
5777 event->wqh = wqh;
5778 add_wait_queue(wqh, &event->wait);
5779 }
5780
5781 /*
5782 * DO NOT USE IN NEW FILES.
5783 *
5784 * Parse input and register new cgroup event handler.
5785 *
5786 * Input must be in format '<event_fd> <control_fd> <args>'.
5787 * Interpretation of args is defined by control file implementation.
5788 */
5789 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
5790 char *buf, size_t nbytes, loff_t off)
5791 {
5792 struct cgroup_subsys_state *css = of_css(of);
5793 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5794 struct mem_cgroup_event *event;
5795 struct cgroup_subsys_state *cfile_css;
5796 unsigned int efd, cfd;
5797 struct fd efile;
5798 struct fd cfile;
5799 const char *name;
5800 char *endp;
5801 int ret;
5802
5803 buf = strstrip(buf);
5804
5805 efd = simple_strtoul(buf, &endp, 10);
5806 if (*endp != ' ')
5807 return -EINVAL;
5808 buf = endp + 1;
5809
5810 cfd = simple_strtoul(buf, &endp, 10);
5811 if ((*endp != ' ') && (*endp != '\0'))
5812 return -EINVAL;
5813 buf = endp + 1;
5814
5815 event = kzalloc(sizeof(*event), GFP_KERNEL);
5816 if (!event)
5817 return -ENOMEM;
5818
5819 event->memcg = memcg;
5820 INIT_LIST_HEAD(&event->list);
5821 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
5822 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
5823 INIT_WORK(&event->remove, memcg_event_remove);
5824
5825 efile = fdget(efd);
5826 if (!efile.file) {
5827 ret = -EBADF;
5828 goto out_kfree;
5829 }
5830
5831 event->eventfd = eventfd_ctx_fileget(efile.file);
5832 if (IS_ERR(event->eventfd)) {
5833 ret = PTR_ERR(event->eventfd);
5834 goto out_put_efile;
5835 }
5836
5837 cfile = fdget(cfd);
5838 if (!cfile.file) {
5839 ret = -EBADF;
5840 goto out_put_eventfd;
5841 }
5842
5843 /* the process need read permission on control file */
5844 /* AV: shouldn't we check that it's been opened for read instead? */
5845 ret = inode_permission(file_inode(cfile.file), MAY_READ);
5846 if (ret < 0)
5847 goto out_put_cfile;
5848
5849 /*
5850 * Determine the event callbacks and set them in @event. This used
5851 * to be done via struct cftype but cgroup core no longer knows
5852 * about these events. The following is crude but the whole thing
5853 * is for compatibility anyway.
5854 *
5855 * DO NOT ADD NEW FILES.
5856 */
5857 name = cfile.file->f_dentry->d_name.name;
5858
5859 if (!strcmp(name, "memory.usage_in_bytes")) {
5860 event->register_event = mem_cgroup_usage_register_event;
5861 event->unregister_event = mem_cgroup_usage_unregister_event;
5862 } else if (!strcmp(name, "memory.oom_control")) {
5863 event->register_event = mem_cgroup_oom_register_event;
5864 event->unregister_event = mem_cgroup_oom_unregister_event;
5865 } else if (!strcmp(name, "memory.pressure_level")) {
5866 event->register_event = vmpressure_register_event;
5867 event->unregister_event = vmpressure_unregister_event;
5868 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
5869 event->register_event = memsw_cgroup_usage_register_event;
5870 event->unregister_event = memsw_cgroup_usage_unregister_event;
5871 } else {
5872 ret = -EINVAL;
5873 goto out_put_cfile;
5874 }
5875
5876 /*
5877 * Verify @cfile should belong to @css. Also, remaining events are
5878 * automatically removed on cgroup destruction but the removal is
5879 * asynchronous, so take an extra ref on @css.
5880 */
5881 cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
5882 &memory_cgrp_subsys);
5883 ret = -EINVAL;
5884 if (IS_ERR(cfile_css))
5885 goto out_put_cfile;
5886 if (cfile_css != css) {
5887 css_put(cfile_css);
5888 goto out_put_cfile;
5889 }
5890
5891 ret = event->register_event(memcg, event->eventfd, buf);
5892 if (ret)
5893 goto out_put_css;
5894
5895 efile.file->f_op->poll(efile.file, &event->pt);
5896
5897 spin_lock(&memcg->event_list_lock);
5898 list_add(&event->list, &memcg->event_list);
5899 spin_unlock(&memcg->event_list_lock);
5900
5901 fdput(cfile);
5902 fdput(efile);
5903
5904 return nbytes;
5905
5906 out_put_css:
5907 css_put(css);
5908 out_put_cfile:
5909 fdput(cfile);
5910 out_put_eventfd:
5911 eventfd_ctx_put(event->eventfd);
5912 out_put_efile:
5913 fdput(efile);
5914 out_kfree:
5915 kfree(event);
5916
5917 return ret;
5918 }
5919
5920 static struct cftype mem_cgroup_files[] = {
5921 {
5922 .name = "usage_in_bytes",
5923 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5924 .read_u64 = mem_cgroup_read_u64,
5925 },
5926 {
5927 .name = "max_usage_in_bytes",
5928 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5929 .write = mem_cgroup_reset,
5930 .read_u64 = mem_cgroup_read_u64,
5931 },
5932 {
5933 .name = "limit_in_bytes",
5934 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5935 .write = mem_cgroup_write,
5936 .read_u64 = mem_cgroup_read_u64,
5937 },
5938 {
5939 .name = "soft_limit_in_bytes",
5940 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5941 .write = mem_cgroup_write,
5942 .read_u64 = mem_cgroup_read_u64,
5943 },
5944 {
5945 .name = "failcnt",
5946 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5947 .write = mem_cgroup_reset,
5948 .read_u64 = mem_cgroup_read_u64,
5949 },
5950 {
5951 .name = "stat",
5952 .seq_show = memcg_stat_show,
5953 },
5954 {
5955 .name = "force_empty",
5956 .write = mem_cgroup_force_empty_write,
5957 },
5958 {
5959 .name = "use_hierarchy",
5960 .write_u64 = mem_cgroup_hierarchy_write,
5961 .read_u64 = mem_cgroup_hierarchy_read,
5962 },
5963 {
5964 .name = "cgroup.event_control", /* XXX: for compat */
5965 .write = memcg_write_event_control,
5966 .flags = CFTYPE_NO_PREFIX,
5967 .mode = S_IWUGO,
5968 },
5969 {
5970 .name = "swappiness",
5971 .read_u64 = mem_cgroup_swappiness_read,
5972 .write_u64 = mem_cgroup_swappiness_write,
5973 },
5974 {
5975 .name = "move_charge_at_immigrate",
5976 .read_u64 = mem_cgroup_move_charge_read,
5977 .write_u64 = mem_cgroup_move_charge_write,
5978 },
5979 {
5980 .name = "oom_control",
5981 .seq_show = mem_cgroup_oom_control_read,
5982 .write_u64 = mem_cgroup_oom_control_write,
5983 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5984 },
5985 {
5986 .name = "pressure_level",
5987 },
5988 #ifdef CONFIG_NUMA
5989 {
5990 .name = "numa_stat",
5991 .seq_show = memcg_numa_stat_show,
5992 },
5993 #endif
5994 #ifdef CONFIG_MEMCG_KMEM
5995 {
5996 .name = "kmem.limit_in_bytes",
5997 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5998 .write = mem_cgroup_write,
5999 .read_u64 = mem_cgroup_read_u64,
6000 },
6001 {
6002 .name = "kmem.usage_in_bytes",
6003 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6004 .read_u64 = mem_cgroup_read_u64,
6005 },
6006 {
6007 .name = "kmem.failcnt",
6008 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6009 .write = mem_cgroup_reset,
6010 .read_u64 = mem_cgroup_read_u64,
6011 },
6012 {
6013 .name = "kmem.max_usage_in_bytes",
6014 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6015 .write = mem_cgroup_reset,
6016 .read_u64 = mem_cgroup_read_u64,
6017 },
6018 #ifdef CONFIG_SLABINFO
6019 {
6020 .name = "kmem.slabinfo",
6021 .seq_show = mem_cgroup_slabinfo_read,
6022 },
6023 #endif
6024 #endif
6025 { }, /* terminate */
6026 };
6027
6028 #ifdef CONFIG_MEMCG_SWAP
6029 static struct cftype memsw_cgroup_files[] = {
6030 {
6031 .name = "memsw.usage_in_bytes",
6032 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6033 .read_u64 = mem_cgroup_read_u64,
6034 },
6035 {
6036 .name = "memsw.max_usage_in_bytes",
6037 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6038 .write = mem_cgroup_reset,
6039 .read_u64 = mem_cgroup_read_u64,
6040 },
6041 {
6042 .name = "memsw.limit_in_bytes",
6043 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6044 .write = mem_cgroup_write,
6045 .read_u64 = mem_cgroup_read_u64,
6046 },
6047 {
6048 .name = "memsw.failcnt",
6049 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6050 .write = mem_cgroup_reset,
6051 .read_u64 = mem_cgroup_read_u64,
6052 },
6053 { }, /* terminate */
6054 };
6055 #endif
6056 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6057 {
6058 struct mem_cgroup_per_node *pn;
6059 struct mem_cgroup_per_zone *mz;
6060 int zone, tmp = node;
6061 /*
6062 * This routine is called against possible nodes.
6063 * But it's BUG to call kmalloc() against offline node.
6064 *
6065 * TODO: this routine can waste much memory for nodes which will
6066 * never be onlined. It's better to use memory hotplug callback
6067 * function.
6068 */
6069 if (!node_state(node, N_NORMAL_MEMORY))
6070 tmp = -1;
6071 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6072 if (!pn)
6073 return 1;
6074
6075 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6076 mz = &pn->zoneinfo[zone];
6077 lruvec_init(&mz->lruvec);
6078 mz->usage_in_excess = 0;
6079 mz->on_tree = false;
6080 mz->memcg = memcg;
6081 }
6082 memcg->nodeinfo[node] = pn;
6083 return 0;
6084 }
6085
6086 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6087 {
6088 kfree(memcg->nodeinfo[node]);
6089 }
6090
6091 static struct mem_cgroup *mem_cgroup_alloc(void)
6092 {
6093 struct mem_cgroup *memcg;
6094 size_t size;
6095
6096 size = sizeof(struct mem_cgroup);
6097 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
6098
6099 memcg = kzalloc(size, GFP_KERNEL);
6100 if (!memcg)
6101 return NULL;
6102
6103 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6104 if (!memcg->stat)
6105 goto out_free;
6106 spin_lock_init(&memcg->pcp_counter_lock);
6107 return memcg;
6108
6109 out_free:
6110 kfree(memcg);
6111 return NULL;
6112 }
6113
6114 /*
6115 * At destroying mem_cgroup, references from swap_cgroup can remain.
6116 * (scanning all at force_empty is too costly...)
6117 *
6118 * Instead of clearing all references at force_empty, we remember
6119 * the number of reference from swap_cgroup and free mem_cgroup when
6120 * it goes down to 0.
6121 *
6122 * Removal of cgroup itself succeeds regardless of refs from swap.
6123 */
6124
6125 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6126 {
6127 int node;
6128
6129 mem_cgroup_remove_from_trees(memcg);
6130
6131 for_each_node(node)
6132 free_mem_cgroup_per_zone_info(memcg, node);
6133
6134 free_percpu(memcg->stat);
6135
6136 /*
6137 * We need to make sure that (at least for now), the jump label
6138 * destruction code runs outside of the cgroup lock. This is because
6139 * get_online_cpus(), which is called from the static_branch update,
6140 * can't be called inside the cgroup_lock. cpusets are the ones
6141 * enforcing this dependency, so if they ever change, we might as well.
6142 *
6143 * schedule_work() will guarantee this happens. Be careful if you need
6144 * to move this code around, and make sure it is outside
6145 * the cgroup_lock.
6146 */
6147 disarm_static_keys(memcg);
6148 kfree(memcg);
6149 }
6150
6151 /*
6152 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6153 */
6154 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6155 {
6156 if (!memcg->res.parent)
6157 return NULL;
6158 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6159 }
6160 EXPORT_SYMBOL(parent_mem_cgroup);
6161
6162 static void __init mem_cgroup_soft_limit_tree_init(void)
6163 {
6164 struct mem_cgroup_tree_per_node *rtpn;
6165 struct mem_cgroup_tree_per_zone *rtpz;
6166 int tmp, node, zone;
6167
6168 for_each_node(node) {
6169 tmp = node;
6170 if (!node_state(node, N_NORMAL_MEMORY))
6171 tmp = -1;
6172 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6173 BUG_ON(!rtpn);
6174
6175 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6176
6177 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6178 rtpz = &rtpn->rb_tree_per_zone[zone];
6179 rtpz->rb_root = RB_ROOT;
6180 spin_lock_init(&rtpz->lock);
6181 }
6182 }
6183 }
6184
6185 static struct cgroup_subsys_state * __ref
6186 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6187 {
6188 struct mem_cgroup *memcg;
6189 long error = -ENOMEM;
6190 int node;
6191
6192 memcg = mem_cgroup_alloc();
6193 if (!memcg)
6194 return ERR_PTR(error);
6195
6196 for_each_node(node)
6197 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6198 goto free_out;
6199
6200 /* root ? */
6201 if (parent_css == NULL) {
6202 root_mem_cgroup = memcg;
6203 res_counter_init(&memcg->res, NULL);
6204 res_counter_init(&memcg->memsw, NULL);
6205 res_counter_init(&memcg->kmem, NULL);
6206 }
6207
6208 memcg->last_scanned_node = MAX_NUMNODES;
6209 INIT_LIST_HEAD(&memcg->oom_notify);
6210 memcg->move_charge_at_immigrate = 0;
6211 mutex_init(&memcg->thresholds_lock);
6212 spin_lock_init(&memcg->move_lock);
6213 vmpressure_init(&memcg->vmpressure);
6214 INIT_LIST_HEAD(&memcg->event_list);
6215 spin_lock_init(&memcg->event_list_lock);
6216
6217 return &memcg->css;
6218
6219 free_out:
6220 __mem_cgroup_free(memcg);
6221 return ERR_PTR(error);
6222 }
6223
6224 static int
6225 mem_cgroup_css_online(struct cgroup_subsys_state *css)
6226 {
6227 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6228 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
6229
6230 if (css->id > MEM_CGROUP_ID_MAX)
6231 return -ENOSPC;
6232
6233 if (!parent)
6234 return 0;
6235
6236 mutex_lock(&memcg_create_mutex);
6237
6238 memcg->use_hierarchy = parent->use_hierarchy;
6239 memcg->oom_kill_disable = parent->oom_kill_disable;
6240 memcg->swappiness = mem_cgroup_swappiness(parent);
6241
6242 if (parent->use_hierarchy) {
6243 res_counter_init(&memcg->res, &parent->res);
6244 res_counter_init(&memcg->memsw, &parent->memsw);
6245 res_counter_init(&memcg->kmem, &parent->kmem);
6246
6247 /*
6248 * No need to take a reference to the parent because cgroup
6249 * core guarantees its existence.
6250 */
6251 } else {
6252 res_counter_init(&memcg->res, NULL);
6253 res_counter_init(&memcg->memsw, NULL);
6254 res_counter_init(&memcg->kmem, NULL);
6255 /*
6256 * Deeper hierachy with use_hierarchy == false doesn't make
6257 * much sense so let cgroup subsystem know about this
6258 * unfortunate state in our controller.
6259 */
6260 if (parent != root_mem_cgroup)
6261 memory_cgrp_subsys.broken_hierarchy = true;
6262 }
6263 mutex_unlock(&memcg_create_mutex);
6264
6265 return memcg_init_kmem(memcg, &memory_cgrp_subsys);
6266 }
6267
6268 /*
6269 * Announce all parents that a group from their hierarchy is gone.
6270 */
6271 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6272 {
6273 struct mem_cgroup *parent = memcg;
6274
6275 while ((parent = parent_mem_cgroup(parent)))
6276 mem_cgroup_iter_invalidate(parent);
6277
6278 /*
6279 * if the root memcg is not hierarchical we have to check it
6280 * explicitely.
6281 */
6282 if (!root_mem_cgroup->use_hierarchy)
6283 mem_cgroup_iter_invalidate(root_mem_cgroup);
6284 }
6285
6286 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6287 {
6288 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6289 struct mem_cgroup_event *event, *tmp;
6290 struct cgroup_subsys_state *iter;
6291
6292 /*
6293 * Unregister events and notify userspace.
6294 * Notify userspace about cgroup removing only after rmdir of cgroup
6295 * directory to avoid race between userspace and kernelspace.
6296 */
6297 spin_lock(&memcg->event_list_lock);
6298 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
6299 list_del_init(&event->list);
6300 schedule_work(&event->remove);
6301 }
6302 spin_unlock(&memcg->event_list_lock);
6303
6304 kmem_cgroup_css_offline(memcg);
6305
6306 mem_cgroup_invalidate_reclaim_iterators(memcg);
6307
6308 /*
6309 * This requires that offlining is serialized. Right now that is
6310 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
6311 */
6312 css_for_each_descendant_post(iter, css)
6313 mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));
6314
6315 memcg_unregister_all_caches(memcg);
6316 vmpressure_cleanup(&memcg->vmpressure);
6317 }
6318
6319 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6320 {
6321 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6322 /*
6323 * XXX: css_offline() would be where we should reparent all
6324 * memory to prepare the cgroup for destruction. However,
6325 * memcg does not do css_tryget_online() and res_counter charging
6326 * under the same RCU lock region, which means that charging
6327 * could race with offlining. Offlining only happens to
6328 * cgroups with no tasks in them but charges can show up
6329 * without any tasks from the swapin path when the target
6330 * memcg is looked up from the swapout record and not from the
6331 * current task as it usually is. A race like this can leak
6332 * charges and put pages with stale cgroup pointers into
6333 * circulation:
6334 *
6335 * #0 #1
6336 * lookup_swap_cgroup_id()
6337 * rcu_read_lock()
6338 * mem_cgroup_lookup()
6339 * css_tryget_online()
6340 * rcu_read_unlock()
6341 * disable css_tryget_online()
6342 * call_rcu()
6343 * offline_css()
6344 * reparent_charges()
6345 * res_counter_charge()
6346 * css_put()
6347 * css_free()
6348 * pc->mem_cgroup = dead memcg
6349 * add page to lru
6350 *
6351 * The bulk of the charges are still moved in offline_css() to
6352 * avoid pinning a lot of pages in case a long-term reference
6353 * like a swapout record is deferring the css_free() to long
6354 * after offlining. But this makes sure we catch any charges
6355 * made after offlining:
6356 */
6357 mem_cgroup_reparent_charges(memcg);
6358
6359 memcg_destroy_kmem(memcg);
6360 __mem_cgroup_free(memcg);
6361 }
6362
6363 /**
6364 * mem_cgroup_css_reset - reset the states of a mem_cgroup
6365 * @css: the target css
6366 *
6367 * Reset the states of the mem_cgroup associated with @css. This is
6368 * invoked when the userland requests disabling on the default hierarchy
6369 * but the memcg is pinned through dependency. The memcg should stop
6370 * applying policies and should revert to the vanilla state as it may be
6371 * made visible again.
6372 *
6373 * The current implementation only resets the essential configurations.
6374 * This needs to be expanded to cover all the visible parts.
6375 */
6376 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
6377 {
6378 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6379
6380 mem_cgroup_resize_limit(memcg, ULLONG_MAX);
6381 mem_cgroup_resize_memsw_limit(memcg, ULLONG_MAX);
6382 memcg_update_kmem_limit(memcg, ULLONG_MAX);
6383 res_counter_set_soft_limit(&memcg->res, ULLONG_MAX);
6384 }
6385
6386 #ifdef CONFIG_MMU
6387 /* Handlers for move charge at task migration. */
6388 #define PRECHARGE_COUNT_AT_ONCE 256
6389 static int mem_cgroup_do_precharge(unsigned long count)
6390 {
6391 int ret = 0;
6392 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6393 struct mem_cgroup *memcg = mc.to;
6394
6395 if (mem_cgroup_is_root(memcg)) {
6396 mc.precharge += count;
6397 /* we don't need css_get for root */
6398 return ret;
6399 }
6400 /* try to charge at once */
6401 if (count > 1) {
6402 struct res_counter *dummy;
6403 /*
6404 * "memcg" cannot be under rmdir() because we've already checked
6405 * by cgroup_lock_live_cgroup() that it is not removed and we
6406 * are still under the same cgroup_mutex. So we can postpone
6407 * css_get().
6408 */
6409 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6410 goto one_by_one;
6411 if (do_swap_account && res_counter_charge(&memcg->memsw,
6412 PAGE_SIZE * count, &dummy)) {
6413 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6414 goto one_by_one;
6415 }
6416 mc.precharge += count;
6417 return ret;
6418 }
6419 one_by_one:
6420 /* fall back to one by one charge */
6421 while (count--) {
6422 if (signal_pending(current)) {
6423 ret = -EINTR;
6424 break;
6425 }
6426 if (!batch_count--) {
6427 batch_count = PRECHARGE_COUNT_AT_ONCE;
6428 cond_resched();
6429 }
6430 ret = mem_cgroup_try_charge(memcg,
6431 GFP_KERNEL & ~__GFP_NORETRY, 1);
6432 if (ret)
6433 /* mem_cgroup_clear_mc() will do uncharge later */
6434 return ret;
6435 mc.precharge++;
6436 }
6437 return ret;
6438 }
6439
6440 /**
6441 * get_mctgt_type - get target type of moving charge
6442 * @vma: the vma the pte to be checked belongs
6443 * @addr: the address corresponding to the pte to be checked
6444 * @ptent: the pte to be checked
6445 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6446 *
6447 * Returns
6448 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6449 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6450 * move charge. if @target is not NULL, the page is stored in target->page
6451 * with extra refcnt got(Callers should handle it).
6452 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6453 * target for charge migration. if @target is not NULL, the entry is stored
6454 * in target->ent.
6455 *
6456 * Called with pte lock held.
6457 */
6458 union mc_target {
6459 struct page *page;
6460 swp_entry_t ent;
6461 };
6462
6463 enum mc_target_type {
6464 MC_TARGET_NONE = 0,
6465 MC_TARGET_PAGE,
6466 MC_TARGET_SWAP,
6467 };
6468
6469 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6470 unsigned long addr, pte_t ptent)
6471 {
6472 struct page *page = vm_normal_page(vma, addr, ptent);
6473
6474 if (!page || !page_mapped(page))
6475 return NULL;
6476 if (PageAnon(page)) {
6477 /* we don't move shared anon */
6478 if (!move_anon())
6479 return NULL;
6480 } else if (!move_file())
6481 /* we ignore mapcount for file pages */
6482 return NULL;
6483 if (!get_page_unless_zero(page))
6484 return NULL;
6485
6486 return page;
6487 }
6488
6489 #ifdef CONFIG_SWAP
6490 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6491 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6492 {
6493 struct page *page = NULL;
6494 swp_entry_t ent = pte_to_swp_entry(ptent);
6495
6496 if (!move_anon() || non_swap_entry(ent))
6497 return NULL;
6498 /*
6499 * Because lookup_swap_cache() updates some statistics counter,
6500 * we call find_get_page() with swapper_space directly.
6501 */
6502 page = find_get_page(swap_address_space(ent), ent.val);
6503 if (do_swap_account)
6504 entry->val = ent.val;
6505
6506 return page;
6507 }
6508 #else
6509 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6510 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6511 {
6512 return NULL;
6513 }
6514 #endif
6515
6516 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6517 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6518 {
6519 struct page *page = NULL;
6520 struct address_space *mapping;
6521 pgoff_t pgoff;
6522
6523 if (!vma->vm_file) /* anonymous vma */
6524 return NULL;
6525 if (!move_file())
6526 return NULL;
6527
6528 mapping = vma->vm_file->f_mapping;
6529 if (pte_none(ptent))
6530 pgoff = linear_page_index(vma, addr);
6531 else /* pte_file(ptent) is true */
6532 pgoff = pte_to_pgoff(ptent);
6533
6534 /* page is moved even if it's not RSS of this task(page-faulted). */
6535 #ifdef CONFIG_SWAP
6536 /* shmem/tmpfs may report page out on swap: account for that too. */
6537 if (shmem_mapping(mapping)) {
6538 page = find_get_entry(mapping, pgoff);
6539 if (radix_tree_exceptional_entry(page)) {
6540 swp_entry_t swp = radix_to_swp_entry(page);
6541 if (do_swap_account)
6542 *entry = swp;
6543 page = find_get_page(swap_address_space(swp), swp.val);
6544 }
6545 } else
6546 page = find_get_page(mapping, pgoff);
6547 #else
6548 page = find_get_page(mapping, pgoff);
6549 #endif
6550 return page;
6551 }
6552
6553 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6554 unsigned long addr, pte_t ptent, union mc_target *target)
6555 {
6556 struct page *page = NULL;
6557 struct page_cgroup *pc;
6558 enum mc_target_type ret = MC_TARGET_NONE;
6559 swp_entry_t ent = { .val = 0 };
6560
6561 if (pte_present(ptent))
6562 page = mc_handle_present_pte(vma, addr, ptent);
6563 else if (is_swap_pte(ptent))
6564 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6565 else if (pte_none(ptent) || pte_file(ptent))
6566 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6567
6568 if (!page && !ent.val)
6569 return ret;
6570 if (page) {
6571 pc = lookup_page_cgroup(page);
6572 /*
6573 * Do only loose check w/o page_cgroup lock.
6574 * mem_cgroup_move_account() checks the pc is valid or not under
6575 * the lock.
6576 */
6577 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6578 ret = MC_TARGET_PAGE;
6579 if (target)
6580 target->page = page;
6581 }
6582 if (!ret || !target)
6583 put_page(page);
6584 }
6585 /* There is a swap entry and a page doesn't exist or isn't charged */
6586 if (ent.val && !ret &&
6587 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6588 ret = MC_TARGET_SWAP;
6589 if (target)
6590 target->ent = ent;
6591 }
6592 return ret;
6593 }
6594
6595 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6596 /*
6597 * We don't consider swapping or file mapped pages because THP does not
6598 * support them for now.
6599 * Caller should make sure that pmd_trans_huge(pmd) is true.
6600 */
6601 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6602 unsigned long addr, pmd_t pmd, union mc_target *target)
6603 {
6604 struct page *page = NULL;
6605 struct page_cgroup *pc;
6606 enum mc_target_type ret = MC_TARGET_NONE;
6607
6608 page = pmd_page(pmd);
6609 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6610 if (!move_anon())
6611 return ret;
6612 pc = lookup_page_cgroup(page);
6613 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6614 ret = MC_TARGET_PAGE;
6615 if (target) {
6616 get_page(page);
6617 target->page = page;
6618 }
6619 }
6620 return ret;
6621 }
6622 #else
6623 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6624 unsigned long addr, pmd_t pmd, union mc_target *target)
6625 {
6626 return MC_TARGET_NONE;
6627 }
6628 #endif
6629
6630 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6631 unsigned long addr, unsigned long end,
6632 struct mm_walk *walk)
6633 {
6634 struct vm_area_struct *vma = walk->private;
6635 pte_t *pte;
6636 spinlock_t *ptl;
6637
6638 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6639 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6640 mc.precharge += HPAGE_PMD_NR;
6641 spin_unlock(ptl);
6642 return 0;
6643 }
6644
6645 if (pmd_trans_unstable(pmd))
6646 return 0;
6647 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6648 for (; addr != end; pte++, addr += PAGE_SIZE)
6649 if (get_mctgt_type(vma, addr, *pte, NULL))
6650 mc.precharge++; /* increment precharge temporarily */
6651 pte_unmap_unlock(pte - 1, ptl);
6652 cond_resched();
6653
6654 return 0;
6655 }
6656
6657 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6658 {
6659 unsigned long precharge;
6660 struct vm_area_struct *vma;
6661
6662 down_read(&mm->mmap_sem);
6663 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6664 struct mm_walk mem_cgroup_count_precharge_walk = {
6665 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6666 .mm = mm,
6667 .private = vma,
6668 };
6669 if (is_vm_hugetlb_page(vma))
6670 continue;
6671 walk_page_range(vma->vm_start, vma->vm_end,
6672 &mem_cgroup_count_precharge_walk);
6673 }
6674 up_read(&mm->mmap_sem);
6675
6676 precharge = mc.precharge;
6677 mc.precharge = 0;
6678
6679 return precharge;
6680 }
6681
6682 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6683 {
6684 unsigned long precharge = mem_cgroup_count_precharge(mm);
6685
6686 VM_BUG_ON(mc.moving_task);
6687 mc.moving_task = current;
6688 return mem_cgroup_do_precharge(precharge);
6689 }
6690
6691 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6692 static void __mem_cgroup_clear_mc(void)
6693 {
6694 struct mem_cgroup *from = mc.from;
6695 struct mem_cgroup *to = mc.to;
6696 int i;
6697
6698 /* we must uncharge all the leftover precharges from mc.to */
6699 if (mc.precharge) {
6700 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6701 mc.precharge = 0;
6702 }
6703 /*
6704 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6705 * we must uncharge here.
6706 */
6707 if (mc.moved_charge) {
6708 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6709 mc.moved_charge = 0;
6710 }
6711 /* we must fixup refcnts and charges */
6712 if (mc.moved_swap) {
6713 /* uncharge swap account from the old cgroup */
6714 if (!mem_cgroup_is_root(mc.from))
6715 res_counter_uncharge(&mc.from->memsw,
6716 PAGE_SIZE * mc.moved_swap);
6717
6718 for (i = 0; i < mc.moved_swap; i++)
6719 css_put(&mc.from->css);
6720
6721 if (!mem_cgroup_is_root(mc.to)) {
6722 /*
6723 * we charged both to->res and to->memsw, so we should
6724 * uncharge to->res.
6725 */
6726 res_counter_uncharge(&mc.to->res,
6727 PAGE_SIZE * mc.moved_swap);
6728 }
6729 /* we've already done css_get(mc.to) */
6730 mc.moved_swap = 0;
6731 }
6732 memcg_oom_recover(from);
6733 memcg_oom_recover(to);
6734 wake_up_all(&mc.waitq);
6735 }
6736
6737 static void mem_cgroup_clear_mc(void)
6738 {
6739 struct mem_cgroup *from = mc.from;
6740
6741 /*
6742 * we must clear moving_task before waking up waiters at the end of
6743 * task migration.
6744 */
6745 mc.moving_task = NULL;
6746 __mem_cgroup_clear_mc();
6747 spin_lock(&mc.lock);
6748 mc.from = NULL;
6749 mc.to = NULL;
6750 spin_unlock(&mc.lock);
6751 mem_cgroup_end_move(from);
6752 }
6753
6754 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6755 struct cgroup_taskset *tset)
6756 {
6757 struct task_struct *p = cgroup_taskset_first(tset);
6758 int ret = 0;
6759 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6760 unsigned long move_charge_at_immigrate;
6761
6762 /*
6763 * We are now commited to this value whatever it is. Changes in this
6764 * tunable will only affect upcoming migrations, not the current one.
6765 * So we need to save it, and keep it going.
6766 */
6767 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6768 if (move_charge_at_immigrate) {
6769 struct mm_struct *mm;
6770 struct mem_cgroup *from = mem_cgroup_from_task(p);
6771
6772 VM_BUG_ON(from == memcg);
6773
6774 mm = get_task_mm(p);
6775 if (!mm)
6776 return 0;
6777 /* We move charges only when we move a owner of the mm */
6778 if (mm->owner == p) {
6779 VM_BUG_ON(mc.from);
6780 VM_BUG_ON(mc.to);
6781 VM_BUG_ON(mc.precharge);
6782 VM_BUG_ON(mc.moved_charge);
6783 VM_BUG_ON(mc.moved_swap);
6784 mem_cgroup_start_move(from);
6785 spin_lock(&mc.lock);
6786 mc.from = from;
6787 mc.to = memcg;
6788 mc.immigrate_flags = move_charge_at_immigrate;
6789 spin_unlock(&mc.lock);
6790 /* We set mc.moving_task later */
6791
6792 ret = mem_cgroup_precharge_mc(mm);
6793 if (ret)
6794 mem_cgroup_clear_mc();
6795 }
6796 mmput(mm);
6797 }
6798 return ret;
6799 }
6800
6801 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6802 struct cgroup_taskset *tset)
6803 {
6804 mem_cgroup_clear_mc();
6805 }
6806
6807 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6808 unsigned long addr, unsigned long end,
6809 struct mm_walk *walk)
6810 {
6811 int ret = 0;
6812 struct vm_area_struct *vma = walk->private;
6813 pte_t *pte;
6814 spinlock_t *ptl;
6815 enum mc_target_type target_type;
6816 union mc_target target;
6817 struct page *page;
6818 struct page_cgroup *pc;
6819
6820 /*
6821 * We don't take compound_lock() here but no race with splitting thp
6822 * happens because:
6823 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6824 * under splitting, which means there's no concurrent thp split,
6825 * - if another thread runs into split_huge_page() just after we
6826 * entered this if-block, the thread must wait for page table lock
6827 * to be unlocked in __split_huge_page_splitting(), where the main
6828 * part of thp split is not executed yet.
6829 */
6830 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6831 if (mc.precharge < HPAGE_PMD_NR) {
6832 spin_unlock(ptl);
6833 return 0;
6834 }
6835 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6836 if (target_type == MC_TARGET_PAGE) {
6837 page = target.page;
6838 if (!isolate_lru_page(page)) {
6839 pc = lookup_page_cgroup(page);
6840 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6841 pc, mc.from, mc.to)) {
6842 mc.precharge -= HPAGE_PMD_NR;
6843 mc.moved_charge += HPAGE_PMD_NR;
6844 }
6845 putback_lru_page(page);
6846 }
6847 put_page(page);
6848 }
6849 spin_unlock(ptl);
6850 return 0;
6851 }
6852
6853 if (pmd_trans_unstable(pmd))
6854 return 0;
6855 retry:
6856 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6857 for (; addr != end; addr += PAGE_SIZE) {
6858 pte_t ptent = *(pte++);
6859 swp_entry_t ent;
6860
6861 if (!mc.precharge)
6862 break;
6863
6864 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6865 case MC_TARGET_PAGE:
6866 page = target.page;
6867 if (isolate_lru_page(page))
6868 goto put;
6869 pc = lookup_page_cgroup(page);
6870 if (!mem_cgroup_move_account(page, 1, pc,
6871 mc.from, mc.to)) {
6872 mc.precharge--;
6873 /* we uncharge from mc.from later. */
6874 mc.moved_charge++;
6875 }
6876 putback_lru_page(page);
6877 put: /* get_mctgt_type() gets the page */
6878 put_page(page);
6879 break;
6880 case MC_TARGET_SWAP:
6881 ent = target.ent;
6882 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6883 mc.precharge--;
6884 /* we fixup refcnts and charges later. */
6885 mc.moved_swap++;
6886 }
6887 break;
6888 default:
6889 break;
6890 }
6891 }
6892 pte_unmap_unlock(pte - 1, ptl);
6893 cond_resched();
6894
6895 if (addr != end) {
6896 /*
6897 * We have consumed all precharges we got in can_attach().
6898 * We try charge one by one, but don't do any additional
6899 * charges to mc.to if we have failed in charge once in attach()
6900 * phase.
6901 */
6902 ret = mem_cgroup_do_precharge(1);
6903 if (!ret)
6904 goto retry;
6905 }
6906
6907 return ret;
6908 }
6909
6910 static void mem_cgroup_move_charge(struct mm_struct *mm)
6911 {
6912 struct vm_area_struct *vma;
6913
6914 lru_add_drain_all();
6915 retry:
6916 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6917 /*
6918 * Someone who are holding the mmap_sem might be waiting in
6919 * waitq. So we cancel all extra charges, wake up all waiters,
6920 * and retry. Because we cancel precharges, we might not be able
6921 * to move enough charges, but moving charge is a best-effort
6922 * feature anyway, so it wouldn't be a big problem.
6923 */
6924 __mem_cgroup_clear_mc();
6925 cond_resched();
6926 goto retry;
6927 }
6928 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6929 int ret;
6930 struct mm_walk mem_cgroup_move_charge_walk = {
6931 .pmd_entry = mem_cgroup_move_charge_pte_range,
6932 .mm = mm,
6933 .private = vma,
6934 };
6935 if (is_vm_hugetlb_page(vma))
6936 continue;
6937 ret = walk_page_range(vma->vm_start, vma->vm_end,
6938 &mem_cgroup_move_charge_walk);
6939 if (ret)
6940 /*
6941 * means we have consumed all precharges and failed in
6942 * doing additional charge. Just abandon here.
6943 */
6944 break;
6945 }
6946 up_read(&mm->mmap_sem);
6947 }
6948
6949 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6950 struct cgroup_taskset *tset)
6951 {
6952 struct task_struct *p = cgroup_taskset_first(tset);
6953 struct mm_struct *mm = get_task_mm(p);
6954
6955 if (mm) {
6956 if (mc.to)
6957 mem_cgroup_move_charge(mm);
6958 mmput(mm);
6959 }
6960 if (mc.to)
6961 mem_cgroup_clear_mc();
6962 }
6963 #else /* !CONFIG_MMU */
6964 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6965 struct cgroup_taskset *tset)
6966 {
6967 return 0;
6968 }
6969 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6970 struct cgroup_taskset *tset)
6971 {
6972 }
6973 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6974 struct cgroup_taskset *tset)
6975 {
6976 }
6977 #endif
6978
6979 /*
6980 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6981 * to verify whether we're attached to the default hierarchy on each mount
6982 * attempt.
6983 */
6984 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6985 {
6986 /*
6987 * use_hierarchy is forced on the default hierarchy. cgroup core
6988 * guarantees that @root doesn't have any children, so turning it
6989 * on for the root memcg is enough.
6990 */
6991 if (cgroup_on_dfl(root_css->cgroup))
6992 mem_cgroup_from_css(root_css)->use_hierarchy = true;
6993 }
6994
6995 struct cgroup_subsys memory_cgrp_subsys = {
6996 .css_alloc = mem_cgroup_css_alloc,
6997 .css_online = mem_cgroup_css_online,
6998 .css_offline = mem_cgroup_css_offline,
6999 .css_free = mem_cgroup_css_free,
7000 .css_reset = mem_cgroup_css_reset,
7001 .can_attach = mem_cgroup_can_attach,
7002 .cancel_attach = mem_cgroup_cancel_attach,
7003 .attach = mem_cgroup_move_task,
7004 .bind = mem_cgroup_bind,
7005 .legacy_cftypes = mem_cgroup_files,
7006 .early_init = 0,
7007 };
7008
7009 #ifdef CONFIG_MEMCG_SWAP
7010 static int __init enable_swap_account(char *s)
7011 {
7012 if (!strcmp(s, "1"))
7013 really_do_swap_account = 1;
7014 else if (!strcmp(s, "0"))
7015 really_do_swap_account = 0;
7016 return 1;
7017 }
7018 __setup("swapaccount=", enable_swap_account);
7019
7020 static void __init memsw_file_init(void)
7021 {
7022 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
7023 memsw_cgroup_files));
7024 }
7025
7026 static void __init enable_swap_cgroup(void)
7027 {
7028 if (!mem_cgroup_disabled() && really_do_swap_account) {
7029 do_swap_account = 1;
7030 memsw_file_init();
7031 }
7032 }
7033
7034 #else
7035 static void __init enable_swap_cgroup(void)
7036 {
7037 }
7038 #endif
7039
7040 /*
7041 * subsys_initcall() for memory controller.
7042 *
7043 * Some parts like hotcpu_notifier() have to be initialized from this context
7044 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7045 * everything that doesn't depend on a specific mem_cgroup structure should
7046 * be initialized from here.
7047 */
7048 static int __init mem_cgroup_init(void)
7049 {
7050 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7051 enable_swap_cgroup();
7052 mem_cgroup_soft_limit_tree_init();
7053 memcg_stock_init();
7054 return 0;
7055 }
7056 subsys_initcall(mem_cgroup_init);
This page took 0.167179 seconds and 6 git commands to generate.