mm: memcontrol: allow to disable kmem accounting for cgroup2
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include <net/tcp_memcontrol.h>
70 #include "slab.h"
71
72 #include <asm/uaccess.h>
73
74 #include <trace/events/vmscan.h>
75
76 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77 EXPORT_SYMBOL(memory_cgrp_subsys);
78
79 struct mem_cgroup *root_mem_cgroup __read_mostly;
80
81 #define MEM_CGROUP_RECLAIM_RETRIES 5
82
83 /* Socket memory accounting disabled? */
84 static bool cgroup_memory_nosocket;
85
86 /* Kernel memory accounting disabled? */
87 static bool cgroup_memory_nokmem;
88
89 /* Whether the swap controller is active */
90 #ifdef CONFIG_MEMCG_SWAP
91 int do_swap_account __read_mostly;
92 #else
93 #define do_swap_account 0
94 #endif
95
96 /* Whether legacy memory+swap accounting is active */
97 static bool do_memsw_account(void)
98 {
99 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
100 }
101
102 static const char * const mem_cgroup_stat_names[] = {
103 "cache",
104 "rss",
105 "rss_huge",
106 "mapped_file",
107 "dirty",
108 "writeback",
109 "swap",
110 };
111
112 static const char * const mem_cgroup_events_names[] = {
113 "pgpgin",
114 "pgpgout",
115 "pgfault",
116 "pgmajfault",
117 };
118
119 static const char * const mem_cgroup_lru_names[] = {
120 "inactive_anon",
121 "active_anon",
122 "inactive_file",
123 "active_file",
124 "unevictable",
125 };
126
127 #define THRESHOLDS_EVENTS_TARGET 128
128 #define SOFTLIMIT_EVENTS_TARGET 1024
129 #define NUMAINFO_EVENTS_TARGET 1024
130
131 /*
132 * Cgroups above their limits are maintained in a RB-Tree, independent of
133 * their hierarchy representation
134 */
135
136 struct mem_cgroup_tree_per_zone {
137 struct rb_root rb_root;
138 spinlock_t lock;
139 };
140
141 struct mem_cgroup_tree_per_node {
142 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
143 };
144
145 struct mem_cgroup_tree {
146 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
147 };
148
149 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
150
151 /* for OOM */
152 struct mem_cgroup_eventfd_list {
153 struct list_head list;
154 struct eventfd_ctx *eventfd;
155 };
156
157 /*
158 * cgroup_event represents events which userspace want to receive.
159 */
160 struct mem_cgroup_event {
161 /*
162 * memcg which the event belongs to.
163 */
164 struct mem_cgroup *memcg;
165 /*
166 * eventfd to signal userspace about the event.
167 */
168 struct eventfd_ctx *eventfd;
169 /*
170 * Each of these stored in a list by the cgroup.
171 */
172 struct list_head list;
173 /*
174 * register_event() callback will be used to add new userspace
175 * waiter for changes related to this event. Use eventfd_signal()
176 * on eventfd to send notification to userspace.
177 */
178 int (*register_event)(struct mem_cgroup *memcg,
179 struct eventfd_ctx *eventfd, const char *args);
180 /*
181 * unregister_event() callback will be called when userspace closes
182 * the eventfd or on cgroup removing. This callback must be set,
183 * if you want provide notification functionality.
184 */
185 void (*unregister_event)(struct mem_cgroup *memcg,
186 struct eventfd_ctx *eventfd);
187 /*
188 * All fields below needed to unregister event when
189 * userspace closes eventfd.
190 */
191 poll_table pt;
192 wait_queue_head_t *wqh;
193 wait_queue_t wait;
194 struct work_struct remove;
195 };
196
197 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
198 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
199
200 /* Stuffs for move charges at task migration. */
201 /*
202 * Types of charges to be moved.
203 */
204 #define MOVE_ANON 0x1U
205 #define MOVE_FILE 0x2U
206 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
207
208 /* "mc" and its members are protected by cgroup_mutex */
209 static struct move_charge_struct {
210 spinlock_t lock; /* for from, to */
211 struct mem_cgroup *from;
212 struct mem_cgroup *to;
213 unsigned long flags;
214 unsigned long precharge;
215 unsigned long moved_charge;
216 unsigned long moved_swap;
217 struct task_struct *moving_task; /* a task moving charges */
218 wait_queue_head_t waitq; /* a waitq for other context */
219 } mc = {
220 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
221 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
222 };
223
224 /*
225 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
226 * limit reclaim to prevent infinite loops, if they ever occur.
227 */
228 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
229 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
230
231 enum charge_type {
232 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
233 MEM_CGROUP_CHARGE_TYPE_ANON,
234 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
235 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
236 NR_CHARGE_TYPE,
237 };
238
239 /* for encoding cft->private value on file */
240 enum res_type {
241 _MEM,
242 _MEMSWAP,
243 _OOM_TYPE,
244 _KMEM,
245 };
246
247 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
248 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
249 #define MEMFILE_ATTR(val) ((val) & 0xffff)
250 /* Used for OOM nofiier */
251 #define OOM_CONTROL (0)
252
253 /*
254 * The memcg_create_mutex will be held whenever a new cgroup is created.
255 * As a consequence, any change that needs to protect against new child cgroups
256 * appearing has to hold it as well.
257 */
258 static DEFINE_MUTEX(memcg_create_mutex);
259
260 /* Some nice accessors for the vmpressure. */
261 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
262 {
263 if (!memcg)
264 memcg = root_mem_cgroup;
265 return &memcg->vmpressure;
266 }
267
268 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
269 {
270 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
271 }
272
273 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
274 {
275 return (memcg == root_mem_cgroup);
276 }
277
278 /*
279 * We restrict the id in the range of [1, 65535], so it can fit into
280 * an unsigned short.
281 */
282 #define MEM_CGROUP_ID_MAX USHRT_MAX
283
284 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
285 {
286 return memcg->css.id;
287 }
288
289 /*
290 * A helper function to get mem_cgroup from ID. must be called under
291 * rcu_read_lock(). The caller is responsible for calling
292 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
293 * refcnt from swap can be called against removed memcg.)
294 */
295 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
296 {
297 struct cgroup_subsys_state *css;
298
299 css = css_from_id(id, &memory_cgrp_subsys);
300 return mem_cgroup_from_css(css);
301 }
302
303 #ifndef CONFIG_SLOB
304 /*
305 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
306 * The main reason for not using cgroup id for this:
307 * this works better in sparse environments, where we have a lot of memcgs,
308 * but only a few kmem-limited. Or also, if we have, for instance, 200
309 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
310 * 200 entry array for that.
311 *
312 * The current size of the caches array is stored in memcg_nr_cache_ids. It
313 * will double each time we have to increase it.
314 */
315 static DEFINE_IDA(memcg_cache_ida);
316 int memcg_nr_cache_ids;
317
318 /* Protects memcg_nr_cache_ids */
319 static DECLARE_RWSEM(memcg_cache_ids_sem);
320
321 void memcg_get_cache_ids(void)
322 {
323 down_read(&memcg_cache_ids_sem);
324 }
325
326 void memcg_put_cache_ids(void)
327 {
328 up_read(&memcg_cache_ids_sem);
329 }
330
331 /*
332 * MIN_SIZE is different than 1, because we would like to avoid going through
333 * the alloc/free process all the time. In a small machine, 4 kmem-limited
334 * cgroups is a reasonable guess. In the future, it could be a parameter or
335 * tunable, but that is strictly not necessary.
336 *
337 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
338 * this constant directly from cgroup, but it is understandable that this is
339 * better kept as an internal representation in cgroup.c. In any case, the
340 * cgrp_id space is not getting any smaller, and we don't have to necessarily
341 * increase ours as well if it increases.
342 */
343 #define MEMCG_CACHES_MIN_SIZE 4
344 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
345
346 /*
347 * A lot of the calls to the cache allocation functions are expected to be
348 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
349 * conditional to this static branch, we'll have to allow modules that does
350 * kmem_cache_alloc and the such to see this symbol as well
351 */
352 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
353 EXPORT_SYMBOL(memcg_kmem_enabled_key);
354
355 #endif /* !CONFIG_SLOB */
356
357 static struct mem_cgroup_per_zone *
358 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
359 {
360 int nid = zone_to_nid(zone);
361 int zid = zone_idx(zone);
362
363 return &memcg->nodeinfo[nid]->zoneinfo[zid];
364 }
365
366 /**
367 * mem_cgroup_css_from_page - css of the memcg associated with a page
368 * @page: page of interest
369 *
370 * If memcg is bound to the default hierarchy, css of the memcg associated
371 * with @page is returned. The returned css remains associated with @page
372 * until it is released.
373 *
374 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
375 * is returned.
376 *
377 * XXX: The above description of behavior on the default hierarchy isn't
378 * strictly true yet as replace_page_cache_page() can modify the
379 * association before @page is released even on the default hierarchy;
380 * however, the current and planned usages don't mix the the two functions
381 * and replace_page_cache_page() will soon be updated to make the invariant
382 * actually true.
383 */
384 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
385 {
386 struct mem_cgroup *memcg;
387
388 memcg = page->mem_cgroup;
389
390 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
391 memcg = root_mem_cgroup;
392
393 return &memcg->css;
394 }
395
396 /**
397 * page_cgroup_ino - return inode number of the memcg a page is charged to
398 * @page: the page
399 *
400 * Look up the closest online ancestor of the memory cgroup @page is charged to
401 * and return its inode number or 0 if @page is not charged to any cgroup. It
402 * is safe to call this function without holding a reference to @page.
403 *
404 * Note, this function is inherently racy, because there is nothing to prevent
405 * the cgroup inode from getting torn down and potentially reallocated a moment
406 * after page_cgroup_ino() returns, so it only should be used by callers that
407 * do not care (such as procfs interfaces).
408 */
409 ino_t page_cgroup_ino(struct page *page)
410 {
411 struct mem_cgroup *memcg;
412 unsigned long ino = 0;
413
414 rcu_read_lock();
415 memcg = READ_ONCE(page->mem_cgroup);
416 while (memcg && !(memcg->css.flags & CSS_ONLINE))
417 memcg = parent_mem_cgroup(memcg);
418 if (memcg)
419 ino = cgroup_ino(memcg->css.cgroup);
420 rcu_read_unlock();
421 return ino;
422 }
423
424 static struct mem_cgroup_per_zone *
425 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
426 {
427 int nid = page_to_nid(page);
428 int zid = page_zonenum(page);
429
430 return &memcg->nodeinfo[nid]->zoneinfo[zid];
431 }
432
433 static struct mem_cgroup_tree_per_zone *
434 soft_limit_tree_node_zone(int nid, int zid)
435 {
436 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
437 }
438
439 static struct mem_cgroup_tree_per_zone *
440 soft_limit_tree_from_page(struct page *page)
441 {
442 int nid = page_to_nid(page);
443 int zid = page_zonenum(page);
444
445 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
446 }
447
448 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
449 struct mem_cgroup_tree_per_zone *mctz,
450 unsigned long new_usage_in_excess)
451 {
452 struct rb_node **p = &mctz->rb_root.rb_node;
453 struct rb_node *parent = NULL;
454 struct mem_cgroup_per_zone *mz_node;
455
456 if (mz->on_tree)
457 return;
458
459 mz->usage_in_excess = new_usage_in_excess;
460 if (!mz->usage_in_excess)
461 return;
462 while (*p) {
463 parent = *p;
464 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
465 tree_node);
466 if (mz->usage_in_excess < mz_node->usage_in_excess)
467 p = &(*p)->rb_left;
468 /*
469 * We can't avoid mem cgroups that are over their soft
470 * limit by the same amount
471 */
472 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
473 p = &(*p)->rb_right;
474 }
475 rb_link_node(&mz->tree_node, parent, p);
476 rb_insert_color(&mz->tree_node, &mctz->rb_root);
477 mz->on_tree = true;
478 }
479
480 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
481 struct mem_cgroup_tree_per_zone *mctz)
482 {
483 if (!mz->on_tree)
484 return;
485 rb_erase(&mz->tree_node, &mctz->rb_root);
486 mz->on_tree = false;
487 }
488
489 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
490 struct mem_cgroup_tree_per_zone *mctz)
491 {
492 unsigned long flags;
493
494 spin_lock_irqsave(&mctz->lock, flags);
495 __mem_cgroup_remove_exceeded(mz, mctz);
496 spin_unlock_irqrestore(&mctz->lock, flags);
497 }
498
499 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
500 {
501 unsigned long nr_pages = page_counter_read(&memcg->memory);
502 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
503 unsigned long excess = 0;
504
505 if (nr_pages > soft_limit)
506 excess = nr_pages - soft_limit;
507
508 return excess;
509 }
510
511 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
512 {
513 unsigned long excess;
514 struct mem_cgroup_per_zone *mz;
515 struct mem_cgroup_tree_per_zone *mctz;
516
517 mctz = soft_limit_tree_from_page(page);
518 /*
519 * Necessary to update all ancestors when hierarchy is used.
520 * because their event counter is not touched.
521 */
522 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
523 mz = mem_cgroup_page_zoneinfo(memcg, page);
524 excess = soft_limit_excess(memcg);
525 /*
526 * We have to update the tree if mz is on RB-tree or
527 * mem is over its softlimit.
528 */
529 if (excess || mz->on_tree) {
530 unsigned long flags;
531
532 spin_lock_irqsave(&mctz->lock, flags);
533 /* if on-tree, remove it */
534 if (mz->on_tree)
535 __mem_cgroup_remove_exceeded(mz, mctz);
536 /*
537 * Insert again. mz->usage_in_excess will be updated.
538 * If excess is 0, no tree ops.
539 */
540 __mem_cgroup_insert_exceeded(mz, mctz, excess);
541 spin_unlock_irqrestore(&mctz->lock, flags);
542 }
543 }
544 }
545
546 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
547 {
548 struct mem_cgroup_tree_per_zone *mctz;
549 struct mem_cgroup_per_zone *mz;
550 int nid, zid;
551
552 for_each_node(nid) {
553 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
554 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
555 mctz = soft_limit_tree_node_zone(nid, zid);
556 mem_cgroup_remove_exceeded(mz, mctz);
557 }
558 }
559 }
560
561 static struct mem_cgroup_per_zone *
562 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
563 {
564 struct rb_node *rightmost = NULL;
565 struct mem_cgroup_per_zone *mz;
566
567 retry:
568 mz = NULL;
569 rightmost = rb_last(&mctz->rb_root);
570 if (!rightmost)
571 goto done; /* Nothing to reclaim from */
572
573 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
574 /*
575 * Remove the node now but someone else can add it back,
576 * we will to add it back at the end of reclaim to its correct
577 * position in the tree.
578 */
579 __mem_cgroup_remove_exceeded(mz, mctz);
580 if (!soft_limit_excess(mz->memcg) ||
581 !css_tryget_online(&mz->memcg->css))
582 goto retry;
583 done:
584 return mz;
585 }
586
587 static struct mem_cgroup_per_zone *
588 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
589 {
590 struct mem_cgroup_per_zone *mz;
591
592 spin_lock_irq(&mctz->lock);
593 mz = __mem_cgroup_largest_soft_limit_node(mctz);
594 spin_unlock_irq(&mctz->lock);
595 return mz;
596 }
597
598 /*
599 * Return page count for single (non recursive) @memcg.
600 *
601 * Implementation Note: reading percpu statistics for memcg.
602 *
603 * Both of vmstat[] and percpu_counter has threshold and do periodic
604 * synchronization to implement "quick" read. There are trade-off between
605 * reading cost and precision of value. Then, we may have a chance to implement
606 * a periodic synchronization of counter in memcg's counter.
607 *
608 * But this _read() function is used for user interface now. The user accounts
609 * memory usage by memory cgroup and he _always_ requires exact value because
610 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
611 * have to visit all online cpus and make sum. So, for now, unnecessary
612 * synchronization is not implemented. (just implemented for cpu hotplug)
613 *
614 * If there are kernel internal actions which can make use of some not-exact
615 * value, and reading all cpu value can be performance bottleneck in some
616 * common workload, threshold and synchronization as vmstat[] should be
617 * implemented.
618 */
619 static unsigned long
620 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
621 {
622 long val = 0;
623 int cpu;
624
625 /* Per-cpu values can be negative, use a signed accumulator */
626 for_each_possible_cpu(cpu)
627 val += per_cpu(memcg->stat->count[idx], cpu);
628 /*
629 * Summing races with updates, so val may be negative. Avoid exposing
630 * transient negative values.
631 */
632 if (val < 0)
633 val = 0;
634 return val;
635 }
636
637 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
638 enum mem_cgroup_events_index idx)
639 {
640 unsigned long val = 0;
641 int cpu;
642
643 for_each_possible_cpu(cpu)
644 val += per_cpu(memcg->stat->events[idx], cpu);
645 return val;
646 }
647
648 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
649 struct page *page,
650 bool compound, int nr_pages)
651 {
652 /*
653 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
654 * counted as CACHE even if it's on ANON LRU.
655 */
656 if (PageAnon(page))
657 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
658 nr_pages);
659 else
660 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
661 nr_pages);
662
663 if (compound) {
664 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
665 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
666 nr_pages);
667 }
668
669 /* pagein of a big page is an event. So, ignore page size */
670 if (nr_pages > 0)
671 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
672 else {
673 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
674 nr_pages = -nr_pages; /* for event */
675 }
676
677 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
678 }
679
680 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
681 int nid,
682 unsigned int lru_mask)
683 {
684 unsigned long nr = 0;
685 int zid;
686
687 VM_BUG_ON((unsigned)nid >= nr_node_ids);
688
689 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
690 struct mem_cgroup_per_zone *mz;
691 enum lru_list lru;
692
693 for_each_lru(lru) {
694 if (!(BIT(lru) & lru_mask))
695 continue;
696 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
697 nr += mz->lru_size[lru];
698 }
699 }
700 return nr;
701 }
702
703 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
704 unsigned int lru_mask)
705 {
706 unsigned long nr = 0;
707 int nid;
708
709 for_each_node_state(nid, N_MEMORY)
710 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
711 return nr;
712 }
713
714 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
715 enum mem_cgroup_events_target target)
716 {
717 unsigned long val, next;
718
719 val = __this_cpu_read(memcg->stat->nr_page_events);
720 next = __this_cpu_read(memcg->stat->targets[target]);
721 /* from time_after() in jiffies.h */
722 if ((long)next - (long)val < 0) {
723 switch (target) {
724 case MEM_CGROUP_TARGET_THRESH:
725 next = val + THRESHOLDS_EVENTS_TARGET;
726 break;
727 case MEM_CGROUP_TARGET_SOFTLIMIT:
728 next = val + SOFTLIMIT_EVENTS_TARGET;
729 break;
730 case MEM_CGROUP_TARGET_NUMAINFO:
731 next = val + NUMAINFO_EVENTS_TARGET;
732 break;
733 default:
734 break;
735 }
736 __this_cpu_write(memcg->stat->targets[target], next);
737 return true;
738 }
739 return false;
740 }
741
742 /*
743 * Check events in order.
744 *
745 */
746 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
747 {
748 /* threshold event is triggered in finer grain than soft limit */
749 if (unlikely(mem_cgroup_event_ratelimit(memcg,
750 MEM_CGROUP_TARGET_THRESH))) {
751 bool do_softlimit;
752 bool do_numainfo __maybe_unused;
753
754 do_softlimit = mem_cgroup_event_ratelimit(memcg,
755 MEM_CGROUP_TARGET_SOFTLIMIT);
756 #if MAX_NUMNODES > 1
757 do_numainfo = mem_cgroup_event_ratelimit(memcg,
758 MEM_CGROUP_TARGET_NUMAINFO);
759 #endif
760 mem_cgroup_threshold(memcg);
761 if (unlikely(do_softlimit))
762 mem_cgroup_update_tree(memcg, page);
763 #if MAX_NUMNODES > 1
764 if (unlikely(do_numainfo))
765 atomic_inc(&memcg->numainfo_events);
766 #endif
767 }
768 }
769
770 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
771 {
772 /*
773 * mm_update_next_owner() may clear mm->owner to NULL
774 * if it races with swapoff, page migration, etc.
775 * So this can be called with p == NULL.
776 */
777 if (unlikely(!p))
778 return NULL;
779
780 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
781 }
782 EXPORT_SYMBOL(mem_cgroup_from_task);
783
784 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
785 {
786 struct mem_cgroup *memcg = NULL;
787
788 rcu_read_lock();
789 do {
790 /*
791 * Page cache insertions can happen withou an
792 * actual mm context, e.g. during disk probing
793 * on boot, loopback IO, acct() writes etc.
794 */
795 if (unlikely(!mm))
796 memcg = root_mem_cgroup;
797 else {
798 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
799 if (unlikely(!memcg))
800 memcg = root_mem_cgroup;
801 }
802 } while (!css_tryget_online(&memcg->css));
803 rcu_read_unlock();
804 return memcg;
805 }
806
807 /**
808 * mem_cgroup_iter - iterate over memory cgroup hierarchy
809 * @root: hierarchy root
810 * @prev: previously returned memcg, NULL on first invocation
811 * @reclaim: cookie for shared reclaim walks, NULL for full walks
812 *
813 * Returns references to children of the hierarchy below @root, or
814 * @root itself, or %NULL after a full round-trip.
815 *
816 * Caller must pass the return value in @prev on subsequent
817 * invocations for reference counting, or use mem_cgroup_iter_break()
818 * to cancel a hierarchy walk before the round-trip is complete.
819 *
820 * Reclaimers can specify a zone and a priority level in @reclaim to
821 * divide up the memcgs in the hierarchy among all concurrent
822 * reclaimers operating on the same zone and priority.
823 */
824 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
825 struct mem_cgroup *prev,
826 struct mem_cgroup_reclaim_cookie *reclaim)
827 {
828 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
829 struct cgroup_subsys_state *css = NULL;
830 struct mem_cgroup *memcg = NULL;
831 struct mem_cgroup *pos = NULL;
832
833 if (mem_cgroup_disabled())
834 return NULL;
835
836 if (!root)
837 root = root_mem_cgroup;
838
839 if (prev && !reclaim)
840 pos = prev;
841
842 if (!root->use_hierarchy && root != root_mem_cgroup) {
843 if (prev)
844 goto out;
845 return root;
846 }
847
848 rcu_read_lock();
849
850 if (reclaim) {
851 struct mem_cgroup_per_zone *mz;
852
853 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
854 iter = &mz->iter[reclaim->priority];
855
856 if (prev && reclaim->generation != iter->generation)
857 goto out_unlock;
858
859 while (1) {
860 pos = READ_ONCE(iter->position);
861 if (!pos || css_tryget(&pos->css))
862 break;
863 /*
864 * css reference reached zero, so iter->position will
865 * be cleared by ->css_released. However, we should not
866 * rely on this happening soon, because ->css_released
867 * is called from a work queue, and by busy-waiting we
868 * might block it. So we clear iter->position right
869 * away.
870 */
871 (void)cmpxchg(&iter->position, pos, NULL);
872 }
873 }
874
875 if (pos)
876 css = &pos->css;
877
878 for (;;) {
879 css = css_next_descendant_pre(css, &root->css);
880 if (!css) {
881 /*
882 * Reclaimers share the hierarchy walk, and a
883 * new one might jump in right at the end of
884 * the hierarchy - make sure they see at least
885 * one group and restart from the beginning.
886 */
887 if (!prev)
888 continue;
889 break;
890 }
891
892 /*
893 * Verify the css and acquire a reference. The root
894 * is provided by the caller, so we know it's alive
895 * and kicking, and don't take an extra reference.
896 */
897 memcg = mem_cgroup_from_css(css);
898
899 if (css == &root->css)
900 break;
901
902 if (css_tryget(css)) {
903 /*
904 * Make sure the memcg is initialized:
905 * mem_cgroup_css_online() orders the the
906 * initialization against setting the flag.
907 */
908 if (smp_load_acquire(&memcg->initialized))
909 break;
910
911 css_put(css);
912 }
913
914 memcg = NULL;
915 }
916
917 if (reclaim) {
918 /*
919 * The position could have already been updated by a competing
920 * thread, so check that the value hasn't changed since we read
921 * it to avoid reclaiming from the same cgroup twice.
922 */
923 (void)cmpxchg(&iter->position, pos, memcg);
924
925 if (pos)
926 css_put(&pos->css);
927
928 if (!memcg)
929 iter->generation++;
930 else if (!prev)
931 reclaim->generation = iter->generation;
932 }
933
934 out_unlock:
935 rcu_read_unlock();
936 out:
937 if (prev && prev != root)
938 css_put(&prev->css);
939
940 return memcg;
941 }
942
943 /**
944 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
945 * @root: hierarchy root
946 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
947 */
948 void mem_cgroup_iter_break(struct mem_cgroup *root,
949 struct mem_cgroup *prev)
950 {
951 if (!root)
952 root = root_mem_cgroup;
953 if (prev && prev != root)
954 css_put(&prev->css);
955 }
956
957 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
958 {
959 struct mem_cgroup *memcg = dead_memcg;
960 struct mem_cgroup_reclaim_iter *iter;
961 struct mem_cgroup_per_zone *mz;
962 int nid, zid;
963 int i;
964
965 while ((memcg = parent_mem_cgroup(memcg))) {
966 for_each_node(nid) {
967 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
968 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
969 for (i = 0; i <= DEF_PRIORITY; i++) {
970 iter = &mz->iter[i];
971 cmpxchg(&iter->position,
972 dead_memcg, NULL);
973 }
974 }
975 }
976 }
977 }
978
979 /*
980 * Iteration constructs for visiting all cgroups (under a tree). If
981 * loops are exited prematurely (break), mem_cgroup_iter_break() must
982 * be used for reference counting.
983 */
984 #define for_each_mem_cgroup_tree(iter, root) \
985 for (iter = mem_cgroup_iter(root, NULL, NULL); \
986 iter != NULL; \
987 iter = mem_cgroup_iter(root, iter, NULL))
988
989 #define for_each_mem_cgroup(iter) \
990 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
991 iter != NULL; \
992 iter = mem_cgroup_iter(NULL, iter, NULL))
993
994 /**
995 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
996 * @zone: zone of the wanted lruvec
997 * @memcg: memcg of the wanted lruvec
998 *
999 * Returns the lru list vector holding pages for the given @zone and
1000 * @mem. This can be the global zone lruvec, if the memory controller
1001 * is disabled.
1002 */
1003 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1004 struct mem_cgroup *memcg)
1005 {
1006 struct mem_cgroup_per_zone *mz;
1007 struct lruvec *lruvec;
1008
1009 if (mem_cgroup_disabled()) {
1010 lruvec = &zone->lruvec;
1011 goto out;
1012 }
1013
1014 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1015 lruvec = &mz->lruvec;
1016 out:
1017 /*
1018 * Since a node can be onlined after the mem_cgroup was created,
1019 * we have to be prepared to initialize lruvec->zone here;
1020 * and if offlined then reonlined, we need to reinitialize it.
1021 */
1022 if (unlikely(lruvec->zone != zone))
1023 lruvec->zone = zone;
1024 return lruvec;
1025 }
1026
1027 /**
1028 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1029 * @page: the page
1030 * @zone: zone of the page
1031 *
1032 * This function is only safe when following the LRU page isolation
1033 * and putback protocol: the LRU lock must be held, and the page must
1034 * either be PageLRU() or the caller must have isolated/allocated it.
1035 */
1036 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1037 {
1038 struct mem_cgroup_per_zone *mz;
1039 struct mem_cgroup *memcg;
1040 struct lruvec *lruvec;
1041
1042 if (mem_cgroup_disabled()) {
1043 lruvec = &zone->lruvec;
1044 goto out;
1045 }
1046
1047 memcg = page->mem_cgroup;
1048 /*
1049 * Swapcache readahead pages are added to the LRU - and
1050 * possibly migrated - before they are charged.
1051 */
1052 if (!memcg)
1053 memcg = root_mem_cgroup;
1054
1055 mz = mem_cgroup_page_zoneinfo(memcg, page);
1056 lruvec = &mz->lruvec;
1057 out:
1058 /*
1059 * Since a node can be onlined after the mem_cgroup was created,
1060 * we have to be prepared to initialize lruvec->zone here;
1061 * and if offlined then reonlined, we need to reinitialize it.
1062 */
1063 if (unlikely(lruvec->zone != zone))
1064 lruvec->zone = zone;
1065 return lruvec;
1066 }
1067
1068 /**
1069 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1070 * @lruvec: mem_cgroup per zone lru vector
1071 * @lru: index of lru list the page is sitting on
1072 * @nr_pages: positive when adding or negative when removing
1073 *
1074 * This function must be called when a page is added to or removed from an
1075 * lru list.
1076 */
1077 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1078 int nr_pages)
1079 {
1080 struct mem_cgroup_per_zone *mz;
1081 unsigned long *lru_size;
1082
1083 if (mem_cgroup_disabled())
1084 return;
1085
1086 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1087 lru_size = mz->lru_size + lru;
1088 *lru_size += nr_pages;
1089 VM_BUG_ON((long)(*lru_size) < 0);
1090 }
1091
1092 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1093 {
1094 struct mem_cgroup *task_memcg;
1095 struct task_struct *p;
1096 bool ret;
1097
1098 p = find_lock_task_mm(task);
1099 if (p) {
1100 task_memcg = get_mem_cgroup_from_mm(p->mm);
1101 task_unlock(p);
1102 } else {
1103 /*
1104 * All threads may have already detached their mm's, but the oom
1105 * killer still needs to detect if they have already been oom
1106 * killed to prevent needlessly killing additional tasks.
1107 */
1108 rcu_read_lock();
1109 task_memcg = mem_cgroup_from_task(task);
1110 css_get(&task_memcg->css);
1111 rcu_read_unlock();
1112 }
1113 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1114 css_put(&task_memcg->css);
1115 return ret;
1116 }
1117
1118 /**
1119 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1120 * @memcg: the memory cgroup
1121 *
1122 * Returns the maximum amount of memory @mem can be charged with, in
1123 * pages.
1124 */
1125 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1126 {
1127 unsigned long margin = 0;
1128 unsigned long count;
1129 unsigned long limit;
1130
1131 count = page_counter_read(&memcg->memory);
1132 limit = READ_ONCE(memcg->memory.limit);
1133 if (count < limit)
1134 margin = limit - count;
1135
1136 if (do_memsw_account()) {
1137 count = page_counter_read(&memcg->memsw);
1138 limit = READ_ONCE(memcg->memsw.limit);
1139 if (count <= limit)
1140 margin = min(margin, limit - count);
1141 }
1142
1143 return margin;
1144 }
1145
1146 /*
1147 * A routine for checking "mem" is under move_account() or not.
1148 *
1149 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1150 * moving cgroups. This is for waiting at high-memory pressure
1151 * caused by "move".
1152 */
1153 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1154 {
1155 struct mem_cgroup *from;
1156 struct mem_cgroup *to;
1157 bool ret = false;
1158 /*
1159 * Unlike task_move routines, we access mc.to, mc.from not under
1160 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1161 */
1162 spin_lock(&mc.lock);
1163 from = mc.from;
1164 to = mc.to;
1165 if (!from)
1166 goto unlock;
1167
1168 ret = mem_cgroup_is_descendant(from, memcg) ||
1169 mem_cgroup_is_descendant(to, memcg);
1170 unlock:
1171 spin_unlock(&mc.lock);
1172 return ret;
1173 }
1174
1175 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1176 {
1177 if (mc.moving_task && current != mc.moving_task) {
1178 if (mem_cgroup_under_move(memcg)) {
1179 DEFINE_WAIT(wait);
1180 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1181 /* moving charge context might have finished. */
1182 if (mc.moving_task)
1183 schedule();
1184 finish_wait(&mc.waitq, &wait);
1185 return true;
1186 }
1187 }
1188 return false;
1189 }
1190
1191 #define K(x) ((x) << (PAGE_SHIFT-10))
1192 /**
1193 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1194 * @memcg: The memory cgroup that went over limit
1195 * @p: Task that is going to be killed
1196 *
1197 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1198 * enabled
1199 */
1200 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1201 {
1202 /* oom_info_lock ensures that parallel ooms do not interleave */
1203 static DEFINE_MUTEX(oom_info_lock);
1204 struct mem_cgroup *iter;
1205 unsigned int i;
1206
1207 mutex_lock(&oom_info_lock);
1208 rcu_read_lock();
1209
1210 if (p) {
1211 pr_info("Task in ");
1212 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1213 pr_cont(" killed as a result of limit of ");
1214 } else {
1215 pr_info("Memory limit reached of cgroup ");
1216 }
1217
1218 pr_cont_cgroup_path(memcg->css.cgroup);
1219 pr_cont("\n");
1220
1221 rcu_read_unlock();
1222
1223 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1224 K((u64)page_counter_read(&memcg->memory)),
1225 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1226 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1227 K((u64)page_counter_read(&memcg->memsw)),
1228 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1229 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1230 K((u64)page_counter_read(&memcg->kmem)),
1231 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1232
1233 for_each_mem_cgroup_tree(iter, memcg) {
1234 pr_info("Memory cgroup stats for ");
1235 pr_cont_cgroup_path(iter->css.cgroup);
1236 pr_cont(":");
1237
1238 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1239 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1240 continue;
1241 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1242 K(mem_cgroup_read_stat(iter, i)));
1243 }
1244
1245 for (i = 0; i < NR_LRU_LISTS; i++)
1246 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1247 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1248
1249 pr_cont("\n");
1250 }
1251 mutex_unlock(&oom_info_lock);
1252 }
1253
1254 /*
1255 * This function returns the number of memcg under hierarchy tree. Returns
1256 * 1(self count) if no children.
1257 */
1258 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1259 {
1260 int num = 0;
1261 struct mem_cgroup *iter;
1262
1263 for_each_mem_cgroup_tree(iter, memcg)
1264 num++;
1265 return num;
1266 }
1267
1268 /*
1269 * Return the memory (and swap, if configured) limit for a memcg.
1270 */
1271 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1272 {
1273 unsigned long limit;
1274
1275 limit = memcg->memory.limit;
1276 if (mem_cgroup_swappiness(memcg)) {
1277 unsigned long memsw_limit;
1278
1279 memsw_limit = memcg->memsw.limit;
1280 limit = min(limit + total_swap_pages, memsw_limit);
1281 }
1282 return limit;
1283 }
1284
1285 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1286 int order)
1287 {
1288 struct oom_control oc = {
1289 .zonelist = NULL,
1290 .nodemask = NULL,
1291 .gfp_mask = gfp_mask,
1292 .order = order,
1293 };
1294 struct mem_cgroup *iter;
1295 unsigned long chosen_points = 0;
1296 unsigned long totalpages;
1297 unsigned int points = 0;
1298 struct task_struct *chosen = NULL;
1299
1300 mutex_lock(&oom_lock);
1301
1302 /*
1303 * If current has a pending SIGKILL or is exiting, then automatically
1304 * select it. The goal is to allow it to allocate so that it may
1305 * quickly exit and free its memory.
1306 */
1307 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1308 mark_oom_victim(current);
1309 goto unlock;
1310 }
1311
1312 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1313 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1314 for_each_mem_cgroup_tree(iter, memcg) {
1315 struct css_task_iter it;
1316 struct task_struct *task;
1317
1318 css_task_iter_start(&iter->css, &it);
1319 while ((task = css_task_iter_next(&it))) {
1320 switch (oom_scan_process_thread(&oc, task, totalpages)) {
1321 case OOM_SCAN_SELECT:
1322 if (chosen)
1323 put_task_struct(chosen);
1324 chosen = task;
1325 chosen_points = ULONG_MAX;
1326 get_task_struct(chosen);
1327 /* fall through */
1328 case OOM_SCAN_CONTINUE:
1329 continue;
1330 case OOM_SCAN_ABORT:
1331 css_task_iter_end(&it);
1332 mem_cgroup_iter_break(memcg, iter);
1333 if (chosen)
1334 put_task_struct(chosen);
1335 goto unlock;
1336 case OOM_SCAN_OK:
1337 break;
1338 };
1339 points = oom_badness(task, memcg, NULL, totalpages);
1340 if (!points || points < chosen_points)
1341 continue;
1342 /* Prefer thread group leaders for display purposes */
1343 if (points == chosen_points &&
1344 thread_group_leader(chosen))
1345 continue;
1346
1347 if (chosen)
1348 put_task_struct(chosen);
1349 chosen = task;
1350 chosen_points = points;
1351 get_task_struct(chosen);
1352 }
1353 css_task_iter_end(&it);
1354 }
1355
1356 if (chosen) {
1357 points = chosen_points * 1000 / totalpages;
1358 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1359 "Memory cgroup out of memory");
1360 }
1361 unlock:
1362 mutex_unlock(&oom_lock);
1363 }
1364
1365 #if MAX_NUMNODES > 1
1366
1367 /**
1368 * test_mem_cgroup_node_reclaimable
1369 * @memcg: the target memcg
1370 * @nid: the node ID to be checked.
1371 * @noswap : specify true here if the user wants flle only information.
1372 *
1373 * This function returns whether the specified memcg contains any
1374 * reclaimable pages on a node. Returns true if there are any reclaimable
1375 * pages in the node.
1376 */
1377 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1378 int nid, bool noswap)
1379 {
1380 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1381 return true;
1382 if (noswap || !total_swap_pages)
1383 return false;
1384 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1385 return true;
1386 return false;
1387
1388 }
1389
1390 /*
1391 * Always updating the nodemask is not very good - even if we have an empty
1392 * list or the wrong list here, we can start from some node and traverse all
1393 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1394 *
1395 */
1396 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1397 {
1398 int nid;
1399 /*
1400 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1401 * pagein/pageout changes since the last update.
1402 */
1403 if (!atomic_read(&memcg->numainfo_events))
1404 return;
1405 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1406 return;
1407
1408 /* make a nodemask where this memcg uses memory from */
1409 memcg->scan_nodes = node_states[N_MEMORY];
1410
1411 for_each_node_mask(nid, node_states[N_MEMORY]) {
1412
1413 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1414 node_clear(nid, memcg->scan_nodes);
1415 }
1416
1417 atomic_set(&memcg->numainfo_events, 0);
1418 atomic_set(&memcg->numainfo_updating, 0);
1419 }
1420
1421 /*
1422 * Selecting a node where we start reclaim from. Because what we need is just
1423 * reducing usage counter, start from anywhere is O,K. Considering
1424 * memory reclaim from current node, there are pros. and cons.
1425 *
1426 * Freeing memory from current node means freeing memory from a node which
1427 * we'll use or we've used. So, it may make LRU bad. And if several threads
1428 * hit limits, it will see a contention on a node. But freeing from remote
1429 * node means more costs for memory reclaim because of memory latency.
1430 *
1431 * Now, we use round-robin. Better algorithm is welcomed.
1432 */
1433 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1434 {
1435 int node;
1436
1437 mem_cgroup_may_update_nodemask(memcg);
1438 node = memcg->last_scanned_node;
1439
1440 node = next_node(node, memcg->scan_nodes);
1441 if (node == MAX_NUMNODES)
1442 node = first_node(memcg->scan_nodes);
1443 /*
1444 * We call this when we hit limit, not when pages are added to LRU.
1445 * No LRU may hold pages because all pages are UNEVICTABLE or
1446 * memcg is too small and all pages are not on LRU. In that case,
1447 * we use curret node.
1448 */
1449 if (unlikely(node == MAX_NUMNODES))
1450 node = numa_node_id();
1451
1452 memcg->last_scanned_node = node;
1453 return node;
1454 }
1455 #else
1456 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1457 {
1458 return 0;
1459 }
1460 #endif
1461
1462 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1463 struct zone *zone,
1464 gfp_t gfp_mask,
1465 unsigned long *total_scanned)
1466 {
1467 struct mem_cgroup *victim = NULL;
1468 int total = 0;
1469 int loop = 0;
1470 unsigned long excess;
1471 unsigned long nr_scanned;
1472 struct mem_cgroup_reclaim_cookie reclaim = {
1473 .zone = zone,
1474 .priority = 0,
1475 };
1476
1477 excess = soft_limit_excess(root_memcg);
1478
1479 while (1) {
1480 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1481 if (!victim) {
1482 loop++;
1483 if (loop >= 2) {
1484 /*
1485 * If we have not been able to reclaim
1486 * anything, it might because there are
1487 * no reclaimable pages under this hierarchy
1488 */
1489 if (!total)
1490 break;
1491 /*
1492 * We want to do more targeted reclaim.
1493 * excess >> 2 is not to excessive so as to
1494 * reclaim too much, nor too less that we keep
1495 * coming back to reclaim from this cgroup
1496 */
1497 if (total >= (excess >> 2) ||
1498 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1499 break;
1500 }
1501 continue;
1502 }
1503 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1504 zone, &nr_scanned);
1505 *total_scanned += nr_scanned;
1506 if (!soft_limit_excess(root_memcg))
1507 break;
1508 }
1509 mem_cgroup_iter_break(root_memcg, victim);
1510 return total;
1511 }
1512
1513 #ifdef CONFIG_LOCKDEP
1514 static struct lockdep_map memcg_oom_lock_dep_map = {
1515 .name = "memcg_oom_lock",
1516 };
1517 #endif
1518
1519 static DEFINE_SPINLOCK(memcg_oom_lock);
1520
1521 /*
1522 * Check OOM-Killer is already running under our hierarchy.
1523 * If someone is running, return false.
1524 */
1525 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1526 {
1527 struct mem_cgroup *iter, *failed = NULL;
1528
1529 spin_lock(&memcg_oom_lock);
1530
1531 for_each_mem_cgroup_tree(iter, memcg) {
1532 if (iter->oom_lock) {
1533 /*
1534 * this subtree of our hierarchy is already locked
1535 * so we cannot give a lock.
1536 */
1537 failed = iter;
1538 mem_cgroup_iter_break(memcg, iter);
1539 break;
1540 } else
1541 iter->oom_lock = true;
1542 }
1543
1544 if (failed) {
1545 /*
1546 * OK, we failed to lock the whole subtree so we have
1547 * to clean up what we set up to the failing subtree
1548 */
1549 for_each_mem_cgroup_tree(iter, memcg) {
1550 if (iter == failed) {
1551 mem_cgroup_iter_break(memcg, iter);
1552 break;
1553 }
1554 iter->oom_lock = false;
1555 }
1556 } else
1557 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1558
1559 spin_unlock(&memcg_oom_lock);
1560
1561 return !failed;
1562 }
1563
1564 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1565 {
1566 struct mem_cgroup *iter;
1567
1568 spin_lock(&memcg_oom_lock);
1569 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1570 for_each_mem_cgroup_tree(iter, memcg)
1571 iter->oom_lock = false;
1572 spin_unlock(&memcg_oom_lock);
1573 }
1574
1575 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1576 {
1577 struct mem_cgroup *iter;
1578
1579 spin_lock(&memcg_oom_lock);
1580 for_each_mem_cgroup_tree(iter, memcg)
1581 iter->under_oom++;
1582 spin_unlock(&memcg_oom_lock);
1583 }
1584
1585 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1586 {
1587 struct mem_cgroup *iter;
1588
1589 /*
1590 * When a new child is created while the hierarchy is under oom,
1591 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1592 */
1593 spin_lock(&memcg_oom_lock);
1594 for_each_mem_cgroup_tree(iter, memcg)
1595 if (iter->under_oom > 0)
1596 iter->under_oom--;
1597 spin_unlock(&memcg_oom_lock);
1598 }
1599
1600 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1601
1602 struct oom_wait_info {
1603 struct mem_cgroup *memcg;
1604 wait_queue_t wait;
1605 };
1606
1607 static int memcg_oom_wake_function(wait_queue_t *wait,
1608 unsigned mode, int sync, void *arg)
1609 {
1610 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1611 struct mem_cgroup *oom_wait_memcg;
1612 struct oom_wait_info *oom_wait_info;
1613
1614 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1615 oom_wait_memcg = oom_wait_info->memcg;
1616
1617 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1618 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1619 return 0;
1620 return autoremove_wake_function(wait, mode, sync, arg);
1621 }
1622
1623 static void memcg_oom_recover(struct mem_cgroup *memcg)
1624 {
1625 /*
1626 * For the following lockless ->under_oom test, the only required
1627 * guarantee is that it must see the state asserted by an OOM when
1628 * this function is called as a result of userland actions
1629 * triggered by the notification of the OOM. This is trivially
1630 * achieved by invoking mem_cgroup_mark_under_oom() before
1631 * triggering notification.
1632 */
1633 if (memcg && memcg->under_oom)
1634 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1635 }
1636
1637 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1638 {
1639 if (!current->memcg_may_oom)
1640 return;
1641 /*
1642 * We are in the middle of the charge context here, so we
1643 * don't want to block when potentially sitting on a callstack
1644 * that holds all kinds of filesystem and mm locks.
1645 *
1646 * Also, the caller may handle a failed allocation gracefully
1647 * (like optional page cache readahead) and so an OOM killer
1648 * invocation might not even be necessary.
1649 *
1650 * That's why we don't do anything here except remember the
1651 * OOM context and then deal with it at the end of the page
1652 * fault when the stack is unwound, the locks are released,
1653 * and when we know whether the fault was overall successful.
1654 */
1655 css_get(&memcg->css);
1656 current->memcg_in_oom = memcg;
1657 current->memcg_oom_gfp_mask = mask;
1658 current->memcg_oom_order = order;
1659 }
1660
1661 /**
1662 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1663 * @handle: actually kill/wait or just clean up the OOM state
1664 *
1665 * This has to be called at the end of a page fault if the memcg OOM
1666 * handler was enabled.
1667 *
1668 * Memcg supports userspace OOM handling where failed allocations must
1669 * sleep on a waitqueue until the userspace task resolves the
1670 * situation. Sleeping directly in the charge context with all kinds
1671 * of locks held is not a good idea, instead we remember an OOM state
1672 * in the task and mem_cgroup_oom_synchronize() has to be called at
1673 * the end of the page fault to complete the OOM handling.
1674 *
1675 * Returns %true if an ongoing memcg OOM situation was detected and
1676 * completed, %false otherwise.
1677 */
1678 bool mem_cgroup_oom_synchronize(bool handle)
1679 {
1680 struct mem_cgroup *memcg = current->memcg_in_oom;
1681 struct oom_wait_info owait;
1682 bool locked;
1683
1684 /* OOM is global, do not handle */
1685 if (!memcg)
1686 return false;
1687
1688 if (!handle || oom_killer_disabled)
1689 goto cleanup;
1690
1691 owait.memcg = memcg;
1692 owait.wait.flags = 0;
1693 owait.wait.func = memcg_oom_wake_function;
1694 owait.wait.private = current;
1695 INIT_LIST_HEAD(&owait.wait.task_list);
1696
1697 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1698 mem_cgroup_mark_under_oom(memcg);
1699
1700 locked = mem_cgroup_oom_trylock(memcg);
1701
1702 if (locked)
1703 mem_cgroup_oom_notify(memcg);
1704
1705 if (locked && !memcg->oom_kill_disable) {
1706 mem_cgroup_unmark_under_oom(memcg);
1707 finish_wait(&memcg_oom_waitq, &owait.wait);
1708 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1709 current->memcg_oom_order);
1710 } else {
1711 schedule();
1712 mem_cgroup_unmark_under_oom(memcg);
1713 finish_wait(&memcg_oom_waitq, &owait.wait);
1714 }
1715
1716 if (locked) {
1717 mem_cgroup_oom_unlock(memcg);
1718 /*
1719 * There is no guarantee that an OOM-lock contender
1720 * sees the wakeups triggered by the OOM kill
1721 * uncharges. Wake any sleepers explicitely.
1722 */
1723 memcg_oom_recover(memcg);
1724 }
1725 cleanup:
1726 current->memcg_in_oom = NULL;
1727 css_put(&memcg->css);
1728 return true;
1729 }
1730
1731 /**
1732 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1733 * @page: page that is going to change accounted state
1734 *
1735 * This function must mark the beginning of an accounted page state
1736 * change to prevent double accounting when the page is concurrently
1737 * being moved to another memcg:
1738 *
1739 * memcg = mem_cgroup_begin_page_stat(page);
1740 * if (TestClearPageState(page))
1741 * mem_cgroup_update_page_stat(memcg, state, -1);
1742 * mem_cgroup_end_page_stat(memcg);
1743 */
1744 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1745 {
1746 struct mem_cgroup *memcg;
1747 unsigned long flags;
1748
1749 /*
1750 * The RCU lock is held throughout the transaction. The fast
1751 * path can get away without acquiring the memcg->move_lock
1752 * because page moving starts with an RCU grace period.
1753 *
1754 * The RCU lock also protects the memcg from being freed when
1755 * the page state that is going to change is the only thing
1756 * preventing the page from being uncharged.
1757 * E.g. end-writeback clearing PageWriteback(), which allows
1758 * migration to go ahead and uncharge the page before the
1759 * account transaction might be complete.
1760 */
1761 rcu_read_lock();
1762
1763 if (mem_cgroup_disabled())
1764 return NULL;
1765 again:
1766 memcg = page->mem_cgroup;
1767 if (unlikely(!memcg))
1768 return NULL;
1769
1770 if (atomic_read(&memcg->moving_account) <= 0)
1771 return memcg;
1772
1773 spin_lock_irqsave(&memcg->move_lock, flags);
1774 if (memcg != page->mem_cgroup) {
1775 spin_unlock_irqrestore(&memcg->move_lock, flags);
1776 goto again;
1777 }
1778
1779 /*
1780 * When charge migration first begins, we can have locked and
1781 * unlocked page stat updates happening concurrently. Track
1782 * the task who has the lock for mem_cgroup_end_page_stat().
1783 */
1784 memcg->move_lock_task = current;
1785 memcg->move_lock_flags = flags;
1786
1787 return memcg;
1788 }
1789 EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
1790
1791 /**
1792 * mem_cgroup_end_page_stat - finish a page state statistics transaction
1793 * @memcg: the memcg that was accounted against
1794 */
1795 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
1796 {
1797 if (memcg && memcg->move_lock_task == current) {
1798 unsigned long flags = memcg->move_lock_flags;
1799
1800 memcg->move_lock_task = NULL;
1801 memcg->move_lock_flags = 0;
1802
1803 spin_unlock_irqrestore(&memcg->move_lock, flags);
1804 }
1805
1806 rcu_read_unlock();
1807 }
1808 EXPORT_SYMBOL(mem_cgroup_end_page_stat);
1809
1810 /*
1811 * size of first charge trial. "32" comes from vmscan.c's magic value.
1812 * TODO: maybe necessary to use big numbers in big irons.
1813 */
1814 #define CHARGE_BATCH 32U
1815 struct memcg_stock_pcp {
1816 struct mem_cgroup *cached; /* this never be root cgroup */
1817 unsigned int nr_pages;
1818 struct work_struct work;
1819 unsigned long flags;
1820 #define FLUSHING_CACHED_CHARGE 0
1821 };
1822 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1823 static DEFINE_MUTEX(percpu_charge_mutex);
1824
1825 /**
1826 * consume_stock: Try to consume stocked charge on this cpu.
1827 * @memcg: memcg to consume from.
1828 * @nr_pages: how many pages to charge.
1829 *
1830 * The charges will only happen if @memcg matches the current cpu's memcg
1831 * stock, and at least @nr_pages are available in that stock. Failure to
1832 * service an allocation will refill the stock.
1833 *
1834 * returns true if successful, false otherwise.
1835 */
1836 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1837 {
1838 struct memcg_stock_pcp *stock;
1839 bool ret = false;
1840
1841 if (nr_pages > CHARGE_BATCH)
1842 return ret;
1843
1844 stock = &get_cpu_var(memcg_stock);
1845 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1846 stock->nr_pages -= nr_pages;
1847 ret = true;
1848 }
1849 put_cpu_var(memcg_stock);
1850 return ret;
1851 }
1852
1853 /*
1854 * Returns stocks cached in percpu and reset cached information.
1855 */
1856 static void drain_stock(struct memcg_stock_pcp *stock)
1857 {
1858 struct mem_cgroup *old = stock->cached;
1859
1860 if (stock->nr_pages) {
1861 page_counter_uncharge(&old->memory, stock->nr_pages);
1862 if (do_memsw_account())
1863 page_counter_uncharge(&old->memsw, stock->nr_pages);
1864 css_put_many(&old->css, stock->nr_pages);
1865 stock->nr_pages = 0;
1866 }
1867 stock->cached = NULL;
1868 }
1869
1870 /*
1871 * This must be called under preempt disabled or must be called by
1872 * a thread which is pinned to local cpu.
1873 */
1874 static void drain_local_stock(struct work_struct *dummy)
1875 {
1876 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1877 drain_stock(stock);
1878 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1879 }
1880
1881 /*
1882 * Cache charges(val) to local per_cpu area.
1883 * This will be consumed by consume_stock() function, later.
1884 */
1885 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1886 {
1887 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1888
1889 if (stock->cached != memcg) { /* reset if necessary */
1890 drain_stock(stock);
1891 stock->cached = memcg;
1892 }
1893 stock->nr_pages += nr_pages;
1894 put_cpu_var(memcg_stock);
1895 }
1896
1897 /*
1898 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1899 * of the hierarchy under it.
1900 */
1901 static void drain_all_stock(struct mem_cgroup *root_memcg)
1902 {
1903 int cpu, curcpu;
1904
1905 /* If someone's already draining, avoid adding running more workers. */
1906 if (!mutex_trylock(&percpu_charge_mutex))
1907 return;
1908 /* Notify other cpus that system-wide "drain" is running */
1909 get_online_cpus();
1910 curcpu = get_cpu();
1911 for_each_online_cpu(cpu) {
1912 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1913 struct mem_cgroup *memcg;
1914
1915 memcg = stock->cached;
1916 if (!memcg || !stock->nr_pages)
1917 continue;
1918 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1919 continue;
1920 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1921 if (cpu == curcpu)
1922 drain_local_stock(&stock->work);
1923 else
1924 schedule_work_on(cpu, &stock->work);
1925 }
1926 }
1927 put_cpu();
1928 put_online_cpus();
1929 mutex_unlock(&percpu_charge_mutex);
1930 }
1931
1932 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1933 unsigned long action,
1934 void *hcpu)
1935 {
1936 int cpu = (unsigned long)hcpu;
1937 struct memcg_stock_pcp *stock;
1938
1939 if (action == CPU_ONLINE)
1940 return NOTIFY_OK;
1941
1942 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1943 return NOTIFY_OK;
1944
1945 stock = &per_cpu(memcg_stock, cpu);
1946 drain_stock(stock);
1947 return NOTIFY_OK;
1948 }
1949
1950 static void reclaim_high(struct mem_cgroup *memcg,
1951 unsigned int nr_pages,
1952 gfp_t gfp_mask)
1953 {
1954 do {
1955 if (page_counter_read(&memcg->memory) <= memcg->high)
1956 continue;
1957 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1958 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1959 } while ((memcg = parent_mem_cgroup(memcg)));
1960 }
1961
1962 static void high_work_func(struct work_struct *work)
1963 {
1964 struct mem_cgroup *memcg;
1965
1966 memcg = container_of(work, struct mem_cgroup, high_work);
1967 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1968 }
1969
1970 /*
1971 * Scheduled by try_charge() to be executed from the userland return path
1972 * and reclaims memory over the high limit.
1973 */
1974 void mem_cgroup_handle_over_high(void)
1975 {
1976 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1977 struct mem_cgroup *memcg;
1978
1979 if (likely(!nr_pages))
1980 return;
1981
1982 memcg = get_mem_cgroup_from_mm(current->mm);
1983 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1984 css_put(&memcg->css);
1985 current->memcg_nr_pages_over_high = 0;
1986 }
1987
1988 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1989 unsigned int nr_pages)
1990 {
1991 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1992 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1993 struct mem_cgroup *mem_over_limit;
1994 struct page_counter *counter;
1995 unsigned long nr_reclaimed;
1996 bool may_swap = true;
1997 bool drained = false;
1998
1999 if (mem_cgroup_is_root(memcg))
2000 return 0;
2001 retry:
2002 if (consume_stock(memcg, nr_pages))
2003 return 0;
2004
2005 if (!do_memsw_account() ||
2006 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2007 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2008 goto done_restock;
2009 if (do_memsw_account())
2010 page_counter_uncharge(&memcg->memsw, batch);
2011 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2012 } else {
2013 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2014 may_swap = false;
2015 }
2016
2017 if (batch > nr_pages) {
2018 batch = nr_pages;
2019 goto retry;
2020 }
2021
2022 /*
2023 * Unlike in global OOM situations, memcg is not in a physical
2024 * memory shortage. Allow dying and OOM-killed tasks to
2025 * bypass the last charges so that they can exit quickly and
2026 * free their memory.
2027 */
2028 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2029 fatal_signal_pending(current) ||
2030 current->flags & PF_EXITING))
2031 goto force;
2032
2033 if (unlikely(task_in_memcg_oom(current)))
2034 goto nomem;
2035
2036 if (!gfpflags_allow_blocking(gfp_mask))
2037 goto nomem;
2038
2039 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2040
2041 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2042 gfp_mask, may_swap);
2043
2044 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2045 goto retry;
2046
2047 if (!drained) {
2048 drain_all_stock(mem_over_limit);
2049 drained = true;
2050 goto retry;
2051 }
2052
2053 if (gfp_mask & __GFP_NORETRY)
2054 goto nomem;
2055 /*
2056 * Even though the limit is exceeded at this point, reclaim
2057 * may have been able to free some pages. Retry the charge
2058 * before killing the task.
2059 *
2060 * Only for regular pages, though: huge pages are rather
2061 * unlikely to succeed so close to the limit, and we fall back
2062 * to regular pages anyway in case of failure.
2063 */
2064 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2065 goto retry;
2066 /*
2067 * At task move, charge accounts can be doubly counted. So, it's
2068 * better to wait until the end of task_move if something is going on.
2069 */
2070 if (mem_cgroup_wait_acct_move(mem_over_limit))
2071 goto retry;
2072
2073 if (nr_retries--)
2074 goto retry;
2075
2076 if (gfp_mask & __GFP_NOFAIL)
2077 goto force;
2078
2079 if (fatal_signal_pending(current))
2080 goto force;
2081
2082 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2083
2084 mem_cgroup_oom(mem_over_limit, gfp_mask,
2085 get_order(nr_pages * PAGE_SIZE));
2086 nomem:
2087 if (!(gfp_mask & __GFP_NOFAIL))
2088 return -ENOMEM;
2089 force:
2090 /*
2091 * The allocation either can't fail or will lead to more memory
2092 * being freed very soon. Allow memory usage go over the limit
2093 * temporarily by force charging it.
2094 */
2095 page_counter_charge(&memcg->memory, nr_pages);
2096 if (do_memsw_account())
2097 page_counter_charge(&memcg->memsw, nr_pages);
2098 css_get_many(&memcg->css, nr_pages);
2099
2100 return 0;
2101
2102 done_restock:
2103 css_get_many(&memcg->css, batch);
2104 if (batch > nr_pages)
2105 refill_stock(memcg, batch - nr_pages);
2106
2107 /*
2108 * If the hierarchy is above the normal consumption range, schedule
2109 * reclaim on returning to userland. We can perform reclaim here
2110 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2111 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2112 * not recorded as it most likely matches current's and won't
2113 * change in the meantime. As high limit is checked again before
2114 * reclaim, the cost of mismatch is negligible.
2115 */
2116 do {
2117 if (page_counter_read(&memcg->memory) > memcg->high) {
2118 /* Don't bother a random interrupted task */
2119 if (in_interrupt()) {
2120 schedule_work(&memcg->high_work);
2121 break;
2122 }
2123 current->memcg_nr_pages_over_high += batch;
2124 set_notify_resume(current);
2125 break;
2126 }
2127 } while ((memcg = parent_mem_cgroup(memcg)));
2128
2129 return 0;
2130 }
2131
2132 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2133 {
2134 if (mem_cgroup_is_root(memcg))
2135 return;
2136
2137 page_counter_uncharge(&memcg->memory, nr_pages);
2138 if (do_memsw_account())
2139 page_counter_uncharge(&memcg->memsw, nr_pages);
2140
2141 css_put_many(&memcg->css, nr_pages);
2142 }
2143
2144 static void lock_page_lru(struct page *page, int *isolated)
2145 {
2146 struct zone *zone = page_zone(page);
2147
2148 spin_lock_irq(&zone->lru_lock);
2149 if (PageLRU(page)) {
2150 struct lruvec *lruvec;
2151
2152 lruvec = mem_cgroup_page_lruvec(page, zone);
2153 ClearPageLRU(page);
2154 del_page_from_lru_list(page, lruvec, page_lru(page));
2155 *isolated = 1;
2156 } else
2157 *isolated = 0;
2158 }
2159
2160 static void unlock_page_lru(struct page *page, int isolated)
2161 {
2162 struct zone *zone = page_zone(page);
2163
2164 if (isolated) {
2165 struct lruvec *lruvec;
2166
2167 lruvec = mem_cgroup_page_lruvec(page, zone);
2168 VM_BUG_ON_PAGE(PageLRU(page), page);
2169 SetPageLRU(page);
2170 add_page_to_lru_list(page, lruvec, page_lru(page));
2171 }
2172 spin_unlock_irq(&zone->lru_lock);
2173 }
2174
2175 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2176 bool lrucare)
2177 {
2178 int isolated;
2179
2180 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2181
2182 /*
2183 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2184 * may already be on some other mem_cgroup's LRU. Take care of it.
2185 */
2186 if (lrucare)
2187 lock_page_lru(page, &isolated);
2188
2189 /*
2190 * Nobody should be changing or seriously looking at
2191 * page->mem_cgroup at this point:
2192 *
2193 * - the page is uncharged
2194 *
2195 * - the page is off-LRU
2196 *
2197 * - an anonymous fault has exclusive page access, except for
2198 * a locked page table
2199 *
2200 * - a page cache insertion, a swapin fault, or a migration
2201 * have the page locked
2202 */
2203 page->mem_cgroup = memcg;
2204
2205 if (lrucare)
2206 unlock_page_lru(page, isolated);
2207 }
2208
2209 #ifndef CONFIG_SLOB
2210 static int memcg_alloc_cache_id(void)
2211 {
2212 int id, size;
2213 int err;
2214
2215 id = ida_simple_get(&memcg_cache_ida,
2216 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2217 if (id < 0)
2218 return id;
2219
2220 if (id < memcg_nr_cache_ids)
2221 return id;
2222
2223 /*
2224 * There's no space for the new id in memcg_caches arrays,
2225 * so we have to grow them.
2226 */
2227 down_write(&memcg_cache_ids_sem);
2228
2229 size = 2 * (id + 1);
2230 if (size < MEMCG_CACHES_MIN_SIZE)
2231 size = MEMCG_CACHES_MIN_SIZE;
2232 else if (size > MEMCG_CACHES_MAX_SIZE)
2233 size = MEMCG_CACHES_MAX_SIZE;
2234
2235 err = memcg_update_all_caches(size);
2236 if (!err)
2237 err = memcg_update_all_list_lrus(size);
2238 if (!err)
2239 memcg_nr_cache_ids = size;
2240
2241 up_write(&memcg_cache_ids_sem);
2242
2243 if (err) {
2244 ida_simple_remove(&memcg_cache_ida, id);
2245 return err;
2246 }
2247 return id;
2248 }
2249
2250 static void memcg_free_cache_id(int id)
2251 {
2252 ida_simple_remove(&memcg_cache_ida, id);
2253 }
2254
2255 struct memcg_kmem_cache_create_work {
2256 struct mem_cgroup *memcg;
2257 struct kmem_cache *cachep;
2258 struct work_struct work;
2259 };
2260
2261 static void memcg_kmem_cache_create_func(struct work_struct *w)
2262 {
2263 struct memcg_kmem_cache_create_work *cw =
2264 container_of(w, struct memcg_kmem_cache_create_work, work);
2265 struct mem_cgroup *memcg = cw->memcg;
2266 struct kmem_cache *cachep = cw->cachep;
2267
2268 memcg_create_kmem_cache(memcg, cachep);
2269
2270 css_put(&memcg->css);
2271 kfree(cw);
2272 }
2273
2274 /*
2275 * Enqueue the creation of a per-memcg kmem_cache.
2276 */
2277 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2278 struct kmem_cache *cachep)
2279 {
2280 struct memcg_kmem_cache_create_work *cw;
2281
2282 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2283 if (!cw)
2284 return;
2285
2286 css_get(&memcg->css);
2287
2288 cw->memcg = memcg;
2289 cw->cachep = cachep;
2290 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2291
2292 schedule_work(&cw->work);
2293 }
2294
2295 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2296 struct kmem_cache *cachep)
2297 {
2298 /*
2299 * We need to stop accounting when we kmalloc, because if the
2300 * corresponding kmalloc cache is not yet created, the first allocation
2301 * in __memcg_schedule_kmem_cache_create will recurse.
2302 *
2303 * However, it is better to enclose the whole function. Depending on
2304 * the debugging options enabled, INIT_WORK(), for instance, can
2305 * trigger an allocation. This too, will make us recurse. Because at
2306 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2307 * the safest choice is to do it like this, wrapping the whole function.
2308 */
2309 current->memcg_kmem_skip_account = 1;
2310 __memcg_schedule_kmem_cache_create(memcg, cachep);
2311 current->memcg_kmem_skip_account = 0;
2312 }
2313
2314 /*
2315 * Return the kmem_cache we're supposed to use for a slab allocation.
2316 * We try to use the current memcg's version of the cache.
2317 *
2318 * If the cache does not exist yet, if we are the first user of it,
2319 * we either create it immediately, if possible, or create it asynchronously
2320 * in a workqueue.
2321 * In the latter case, we will let the current allocation go through with
2322 * the original cache.
2323 *
2324 * Can't be called in interrupt context or from kernel threads.
2325 * This function needs to be called with rcu_read_lock() held.
2326 */
2327 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2328 {
2329 struct mem_cgroup *memcg;
2330 struct kmem_cache *memcg_cachep;
2331 int kmemcg_id;
2332
2333 VM_BUG_ON(!is_root_cache(cachep));
2334
2335 if (cachep->flags & SLAB_ACCOUNT)
2336 gfp |= __GFP_ACCOUNT;
2337
2338 if (!(gfp & __GFP_ACCOUNT))
2339 return cachep;
2340
2341 if (current->memcg_kmem_skip_account)
2342 return cachep;
2343
2344 memcg = get_mem_cgroup_from_mm(current->mm);
2345 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2346 if (kmemcg_id < 0)
2347 goto out;
2348
2349 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2350 if (likely(memcg_cachep))
2351 return memcg_cachep;
2352
2353 /*
2354 * If we are in a safe context (can wait, and not in interrupt
2355 * context), we could be be predictable and return right away.
2356 * This would guarantee that the allocation being performed
2357 * already belongs in the new cache.
2358 *
2359 * However, there are some clashes that can arrive from locking.
2360 * For instance, because we acquire the slab_mutex while doing
2361 * memcg_create_kmem_cache, this means no further allocation
2362 * could happen with the slab_mutex held. So it's better to
2363 * defer everything.
2364 */
2365 memcg_schedule_kmem_cache_create(memcg, cachep);
2366 out:
2367 css_put(&memcg->css);
2368 return cachep;
2369 }
2370
2371 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2372 {
2373 if (!is_root_cache(cachep))
2374 css_put(&cachep->memcg_params.memcg->css);
2375 }
2376
2377 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2378 struct mem_cgroup *memcg)
2379 {
2380 unsigned int nr_pages = 1 << order;
2381 struct page_counter *counter;
2382 int ret;
2383
2384 if (!memcg_kmem_online(memcg))
2385 return 0;
2386
2387 ret = try_charge(memcg, gfp, nr_pages);
2388 if (ret)
2389 return ret;
2390
2391 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2392 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2393 cancel_charge(memcg, nr_pages);
2394 return -ENOMEM;
2395 }
2396
2397 page->mem_cgroup = memcg;
2398
2399 return 0;
2400 }
2401
2402 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2403 {
2404 struct mem_cgroup *memcg;
2405 int ret;
2406
2407 memcg = get_mem_cgroup_from_mm(current->mm);
2408 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2409 css_put(&memcg->css);
2410 return ret;
2411 }
2412
2413 void __memcg_kmem_uncharge(struct page *page, int order)
2414 {
2415 struct mem_cgroup *memcg = page->mem_cgroup;
2416 unsigned int nr_pages = 1 << order;
2417
2418 if (!memcg)
2419 return;
2420
2421 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2422
2423 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2424 page_counter_uncharge(&memcg->kmem, nr_pages);
2425
2426 page_counter_uncharge(&memcg->memory, nr_pages);
2427 if (do_memsw_account())
2428 page_counter_uncharge(&memcg->memsw, nr_pages);
2429
2430 page->mem_cgroup = NULL;
2431 css_put_many(&memcg->css, nr_pages);
2432 }
2433 #endif /* !CONFIG_SLOB */
2434
2435 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2436
2437 /*
2438 * Because tail pages are not marked as "used", set it. We're under
2439 * zone->lru_lock and migration entries setup in all page mappings.
2440 */
2441 void mem_cgroup_split_huge_fixup(struct page *head)
2442 {
2443 int i;
2444
2445 if (mem_cgroup_disabled())
2446 return;
2447
2448 for (i = 1; i < HPAGE_PMD_NR; i++)
2449 head[i].mem_cgroup = head->mem_cgroup;
2450
2451 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2452 HPAGE_PMD_NR);
2453 }
2454 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2455
2456 #ifdef CONFIG_MEMCG_SWAP
2457 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2458 bool charge)
2459 {
2460 int val = (charge) ? 1 : -1;
2461 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2462 }
2463
2464 /**
2465 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2466 * @entry: swap entry to be moved
2467 * @from: mem_cgroup which the entry is moved from
2468 * @to: mem_cgroup which the entry is moved to
2469 *
2470 * It succeeds only when the swap_cgroup's record for this entry is the same
2471 * as the mem_cgroup's id of @from.
2472 *
2473 * Returns 0 on success, -EINVAL on failure.
2474 *
2475 * The caller must have charged to @to, IOW, called page_counter_charge() about
2476 * both res and memsw, and called css_get().
2477 */
2478 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2479 struct mem_cgroup *from, struct mem_cgroup *to)
2480 {
2481 unsigned short old_id, new_id;
2482
2483 old_id = mem_cgroup_id(from);
2484 new_id = mem_cgroup_id(to);
2485
2486 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2487 mem_cgroup_swap_statistics(from, false);
2488 mem_cgroup_swap_statistics(to, true);
2489 return 0;
2490 }
2491 return -EINVAL;
2492 }
2493 #else
2494 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2495 struct mem_cgroup *from, struct mem_cgroup *to)
2496 {
2497 return -EINVAL;
2498 }
2499 #endif
2500
2501 static DEFINE_MUTEX(memcg_limit_mutex);
2502
2503 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2504 unsigned long limit)
2505 {
2506 unsigned long curusage;
2507 unsigned long oldusage;
2508 bool enlarge = false;
2509 int retry_count;
2510 int ret;
2511
2512 /*
2513 * For keeping hierarchical_reclaim simple, how long we should retry
2514 * is depends on callers. We set our retry-count to be function
2515 * of # of children which we should visit in this loop.
2516 */
2517 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2518 mem_cgroup_count_children(memcg);
2519
2520 oldusage = page_counter_read(&memcg->memory);
2521
2522 do {
2523 if (signal_pending(current)) {
2524 ret = -EINTR;
2525 break;
2526 }
2527
2528 mutex_lock(&memcg_limit_mutex);
2529 if (limit > memcg->memsw.limit) {
2530 mutex_unlock(&memcg_limit_mutex);
2531 ret = -EINVAL;
2532 break;
2533 }
2534 if (limit > memcg->memory.limit)
2535 enlarge = true;
2536 ret = page_counter_limit(&memcg->memory, limit);
2537 mutex_unlock(&memcg_limit_mutex);
2538
2539 if (!ret)
2540 break;
2541
2542 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2543
2544 curusage = page_counter_read(&memcg->memory);
2545 /* Usage is reduced ? */
2546 if (curusage >= oldusage)
2547 retry_count--;
2548 else
2549 oldusage = curusage;
2550 } while (retry_count);
2551
2552 if (!ret && enlarge)
2553 memcg_oom_recover(memcg);
2554
2555 return ret;
2556 }
2557
2558 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2559 unsigned long limit)
2560 {
2561 unsigned long curusage;
2562 unsigned long oldusage;
2563 bool enlarge = false;
2564 int retry_count;
2565 int ret;
2566
2567 /* see mem_cgroup_resize_res_limit */
2568 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2569 mem_cgroup_count_children(memcg);
2570
2571 oldusage = page_counter_read(&memcg->memsw);
2572
2573 do {
2574 if (signal_pending(current)) {
2575 ret = -EINTR;
2576 break;
2577 }
2578
2579 mutex_lock(&memcg_limit_mutex);
2580 if (limit < memcg->memory.limit) {
2581 mutex_unlock(&memcg_limit_mutex);
2582 ret = -EINVAL;
2583 break;
2584 }
2585 if (limit > memcg->memsw.limit)
2586 enlarge = true;
2587 ret = page_counter_limit(&memcg->memsw, limit);
2588 mutex_unlock(&memcg_limit_mutex);
2589
2590 if (!ret)
2591 break;
2592
2593 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2594
2595 curusage = page_counter_read(&memcg->memsw);
2596 /* Usage is reduced ? */
2597 if (curusage >= oldusage)
2598 retry_count--;
2599 else
2600 oldusage = curusage;
2601 } while (retry_count);
2602
2603 if (!ret && enlarge)
2604 memcg_oom_recover(memcg);
2605
2606 return ret;
2607 }
2608
2609 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2610 gfp_t gfp_mask,
2611 unsigned long *total_scanned)
2612 {
2613 unsigned long nr_reclaimed = 0;
2614 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2615 unsigned long reclaimed;
2616 int loop = 0;
2617 struct mem_cgroup_tree_per_zone *mctz;
2618 unsigned long excess;
2619 unsigned long nr_scanned;
2620
2621 if (order > 0)
2622 return 0;
2623
2624 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2625 /*
2626 * This loop can run a while, specially if mem_cgroup's continuously
2627 * keep exceeding their soft limit and putting the system under
2628 * pressure
2629 */
2630 do {
2631 if (next_mz)
2632 mz = next_mz;
2633 else
2634 mz = mem_cgroup_largest_soft_limit_node(mctz);
2635 if (!mz)
2636 break;
2637
2638 nr_scanned = 0;
2639 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2640 gfp_mask, &nr_scanned);
2641 nr_reclaimed += reclaimed;
2642 *total_scanned += nr_scanned;
2643 spin_lock_irq(&mctz->lock);
2644 __mem_cgroup_remove_exceeded(mz, mctz);
2645
2646 /*
2647 * If we failed to reclaim anything from this memory cgroup
2648 * it is time to move on to the next cgroup
2649 */
2650 next_mz = NULL;
2651 if (!reclaimed)
2652 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2653
2654 excess = soft_limit_excess(mz->memcg);
2655 /*
2656 * One school of thought says that we should not add
2657 * back the node to the tree if reclaim returns 0.
2658 * But our reclaim could return 0, simply because due
2659 * to priority we are exposing a smaller subset of
2660 * memory to reclaim from. Consider this as a longer
2661 * term TODO.
2662 */
2663 /* If excess == 0, no tree ops */
2664 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2665 spin_unlock_irq(&mctz->lock);
2666 css_put(&mz->memcg->css);
2667 loop++;
2668 /*
2669 * Could not reclaim anything and there are no more
2670 * mem cgroups to try or we seem to be looping without
2671 * reclaiming anything.
2672 */
2673 if (!nr_reclaimed &&
2674 (next_mz == NULL ||
2675 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2676 break;
2677 } while (!nr_reclaimed);
2678 if (next_mz)
2679 css_put(&next_mz->memcg->css);
2680 return nr_reclaimed;
2681 }
2682
2683 /*
2684 * Test whether @memcg has children, dead or alive. Note that this
2685 * function doesn't care whether @memcg has use_hierarchy enabled and
2686 * returns %true if there are child csses according to the cgroup
2687 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2688 */
2689 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2690 {
2691 bool ret;
2692
2693 /*
2694 * The lock does not prevent addition or deletion of children, but
2695 * it prevents a new child from being initialized based on this
2696 * parent in css_online(), so it's enough to decide whether
2697 * hierarchically inherited attributes can still be changed or not.
2698 */
2699 lockdep_assert_held(&memcg_create_mutex);
2700
2701 rcu_read_lock();
2702 ret = css_next_child(NULL, &memcg->css);
2703 rcu_read_unlock();
2704 return ret;
2705 }
2706
2707 /*
2708 * Reclaims as many pages from the given memcg as possible and moves
2709 * the rest to the parent.
2710 *
2711 * Caller is responsible for holding css reference for memcg.
2712 */
2713 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2714 {
2715 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2716
2717 /* we call try-to-free pages for make this cgroup empty */
2718 lru_add_drain_all();
2719 /* try to free all pages in this cgroup */
2720 while (nr_retries && page_counter_read(&memcg->memory)) {
2721 int progress;
2722
2723 if (signal_pending(current))
2724 return -EINTR;
2725
2726 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2727 GFP_KERNEL, true);
2728 if (!progress) {
2729 nr_retries--;
2730 /* maybe some writeback is necessary */
2731 congestion_wait(BLK_RW_ASYNC, HZ/10);
2732 }
2733
2734 }
2735
2736 return 0;
2737 }
2738
2739 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2740 char *buf, size_t nbytes,
2741 loff_t off)
2742 {
2743 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2744
2745 if (mem_cgroup_is_root(memcg))
2746 return -EINVAL;
2747 return mem_cgroup_force_empty(memcg) ?: nbytes;
2748 }
2749
2750 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2751 struct cftype *cft)
2752 {
2753 return mem_cgroup_from_css(css)->use_hierarchy;
2754 }
2755
2756 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2757 struct cftype *cft, u64 val)
2758 {
2759 int retval = 0;
2760 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2761 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2762
2763 mutex_lock(&memcg_create_mutex);
2764
2765 if (memcg->use_hierarchy == val)
2766 goto out;
2767
2768 /*
2769 * If parent's use_hierarchy is set, we can't make any modifications
2770 * in the child subtrees. If it is unset, then the change can
2771 * occur, provided the current cgroup has no children.
2772 *
2773 * For the root cgroup, parent_mem is NULL, we allow value to be
2774 * set if there are no children.
2775 */
2776 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2777 (val == 1 || val == 0)) {
2778 if (!memcg_has_children(memcg))
2779 memcg->use_hierarchy = val;
2780 else
2781 retval = -EBUSY;
2782 } else
2783 retval = -EINVAL;
2784
2785 out:
2786 mutex_unlock(&memcg_create_mutex);
2787
2788 return retval;
2789 }
2790
2791 static unsigned long tree_stat(struct mem_cgroup *memcg,
2792 enum mem_cgroup_stat_index idx)
2793 {
2794 struct mem_cgroup *iter;
2795 unsigned long val = 0;
2796
2797 for_each_mem_cgroup_tree(iter, memcg)
2798 val += mem_cgroup_read_stat(iter, idx);
2799
2800 return val;
2801 }
2802
2803 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2804 {
2805 unsigned long val;
2806
2807 if (mem_cgroup_is_root(memcg)) {
2808 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2809 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2810 if (swap)
2811 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2812 } else {
2813 if (!swap)
2814 val = page_counter_read(&memcg->memory);
2815 else
2816 val = page_counter_read(&memcg->memsw);
2817 }
2818 return val;
2819 }
2820
2821 enum {
2822 RES_USAGE,
2823 RES_LIMIT,
2824 RES_MAX_USAGE,
2825 RES_FAILCNT,
2826 RES_SOFT_LIMIT,
2827 };
2828
2829 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2830 struct cftype *cft)
2831 {
2832 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2833 struct page_counter *counter;
2834
2835 switch (MEMFILE_TYPE(cft->private)) {
2836 case _MEM:
2837 counter = &memcg->memory;
2838 break;
2839 case _MEMSWAP:
2840 counter = &memcg->memsw;
2841 break;
2842 case _KMEM:
2843 counter = &memcg->kmem;
2844 break;
2845 default:
2846 BUG();
2847 }
2848
2849 switch (MEMFILE_ATTR(cft->private)) {
2850 case RES_USAGE:
2851 if (counter == &memcg->memory)
2852 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2853 if (counter == &memcg->memsw)
2854 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2855 return (u64)page_counter_read(counter) * PAGE_SIZE;
2856 case RES_LIMIT:
2857 return (u64)counter->limit * PAGE_SIZE;
2858 case RES_MAX_USAGE:
2859 return (u64)counter->watermark * PAGE_SIZE;
2860 case RES_FAILCNT:
2861 return counter->failcnt;
2862 case RES_SOFT_LIMIT:
2863 return (u64)memcg->soft_limit * PAGE_SIZE;
2864 default:
2865 BUG();
2866 }
2867 }
2868
2869 #ifndef CONFIG_SLOB
2870 static int memcg_online_kmem(struct mem_cgroup *memcg)
2871 {
2872 int err = 0;
2873 int memcg_id;
2874
2875 BUG_ON(memcg->kmemcg_id >= 0);
2876 BUG_ON(memcg->kmem_state);
2877
2878 /*
2879 * For simplicity, we won't allow this to be disabled. It also can't
2880 * be changed if the cgroup has children already, or if tasks had
2881 * already joined.
2882 *
2883 * If tasks join before we set the limit, a person looking at
2884 * kmem.usage_in_bytes will have no way to determine when it took
2885 * place, which makes the value quite meaningless.
2886 *
2887 * After it first became limited, changes in the value of the limit are
2888 * of course permitted.
2889 */
2890 mutex_lock(&memcg_create_mutex);
2891 if (cgroup_is_populated(memcg->css.cgroup) ||
2892 (memcg->use_hierarchy && memcg_has_children(memcg)))
2893 err = -EBUSY;
2894 mutex_unlock(&memcg_create_mutex);
2895 if (err)
2896 goto out;
2897
2898 memcg_id = memcg_alloc_cache_id();
2899 if (memcg_id < 0) {
2900 err = memcg_id;
2901 goto out;
2902 }
2903
2904 static_branch_inc(&memcg_kmem_enabled_key);
2905 /*
2906 * A memory cgroup is considered kmem-online as soon as it gets
2907 * kmemcg_id. Setting the id after enabling static branching will
2908 * guarantee no one starts accounting before all call sites are
2909 * patched.
2910 */
2911 memcg->kmemcg_id = memcg_id;
2912 memcg->kmem_state = KMEM_ONLINE;
2913 out:
2914 return err;
2915 }
2916
2917 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
2918 {
2919 int ret = 0;
2920 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
2921
2922 if (!parent)
2923 return 0;
2924
2925 mutex_lock(&memcg_limit_mutex);
2926 /*
2927 * If the parent cgroup is not kmem-online now, it cannot be
2928 * onlined after this point, because it has at least one child
2929 * already.
2930 */
2931 if (memcg_kmem_online(parent) ||
2932 (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nokmem))
2933 ret = memcg_online_kmem(memcg);
2934 mutex_unlock(&memcg_limit_mutex);
2935 return ret;
2936 }
2937
2938 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2939 {
2940 struct cgroup_subsys_state *css;
2941 struct mem_cgroup *parent, *child;
2942 int kmemcg_id;
2943
2944 if (memcg->kmem_state != KMEM_ONLINE)
2945 return;
2946 /*
2947 * Clear the online state before clearing memcg_caches array
2948 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2949 * guarantees that no cache will be created for this cgroup
2950 * after we are done (see memcg_create_kmem_cache()).
2951 */
2952 memcg->kmem_state = KMEM_ALLOCATED;
2953
2954 memcg_deactivate_kmem_caches(memcg);
2955
2956 kmemcg_id = memcg->kmemcg_id;
2957 BUG_ON(kmemcg_id < 0);
2958
2959 parent = parent_mem_cgroup(memcg);
2960 if (!parent)
2961 parent = root_mem_cgroup;
2962
2963 /*
2964 * Change kmemcg_id of this cgroup and all its descendants to the
2965 * parent's id, and then move all entries from this cgroup's list_lrus
2966 * to ones of the parent. After we have finished, all list_lrus
2967 * corresponding to this cgroup are guaranteed to remain empty. The
2968 * ordering is imposed by list_lru_node->lock taken by
2969 * memcg_drain_all_list_lrus().
2970 */
2971 css_for_each_descendant_pre(css, &memcg->css) {
2972 child = mem_cgroup_from_css(css);
2973 BUG_ON(child->kmemcg_id != kmemcg_id);
2974 child->kmemcg_id = parent->kmemcg_id;
2975 if (!memcg->use_hierarchy)
2976 break;
2977 }
2978 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2979
2980 memcg_free_cache_id(kmemcg_id);
2981 }
2982
2983 static void memcg_free_kmem(struct mem_cgroup *memcg)
2984 {
2985 if (memcg->kmem_state == KMEM_ALLOCATED) {
2986 memcg_destroy_kmem_caches(memcg);
2987 static_branch_dec(&memcg_kmem_enabled_key);
2988 WARN_ON(page_counter_read(&memcg->kmem));
2989 }
2990 }
2991 #else
2992 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
2993 {
2994 return 0;
2995 }
2996 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2997 {
2998 }
2999 static void memcg_free_kmem(struct mem_cgroup *memcg)
3000 {
3001 }
3002 #endif /* !CONFIG_SLOB */
3003
3004 #ifdef CONFIG_MEMCG_KMEM
3005 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3006 unsigned long limit)
3007 {
3008 int ret;
3009
3010 mutex_lock(&memcg_limit_mutex);
3011 /* Top-level cgroup doesn't propagate from root */
3012 if (!memcg_kmem_online(memcg)) {
3013 ret = memcg_online_kmem(memcg);
3014 if (ret)
3015 goto out;
3016 }
3017 ret = page_counter_limit(&memcg->kmem, limit);
3018 out:
3019 mutex_unlock(&memcg_limit_mutex);
3020 return ret;
3021 }
3022 #else
3023 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3024 unsigned long limit)
3025 {
3026 return -EINVAL;
3027 }
3028 #endif /* CONFIG_MEMCG_KMEM */
3029
3030
3031 /*
3032 * The user of this function is...
3033 * RES_LIMIT.
3034 */
3035 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3036 char *buf, size_t nbytes, loff_t off)
3037 {
3038 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3039 unsigned long nr_pages;
3040 int ret;
3041
3042 buf = strstrip(buf);
3043 ret = page_counter_memparse(buf, "-1", &nr_pages);
3044 if (ret)
3045 return ret;
3046
3047 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3048 case RES_LIMIT:
3049 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3050 ret = -EINVAL;
3051 break;
3052 }
3053 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3054 case _MEM:
3055 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3056 break;
3057 case _MEMSWAP:
3058 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3059 break;
3060 case _KMEM:
3061 ret = memcg_update_kmem_limit(memcg, nr_pages);
3062 break;
3063 }
3064 break;
3065 case RES_SOFT_LIMIT:
3066 memcg->soft_limit = nr_pages;
3067 ret = 0;
3068 break;
3069 }
3070 return ret ?: nbytes;
3071 }
3072
3073 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3074 size_t nbytes, loff_t off)
3075 {
3076 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3077 struct page_counter *counter;
3078
3079 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3080 case _MEM:
3081 counter = &memcg->memory;
3082 break;
3083 case _MEMSWAP:
3084 counter = &memcg->memsw;
3085 break;
3086 case _KMEM:
3087 counter = &memcg->kmem;
3088 break;
3089 default:
3090 BUG();
3091 }
3092
3093 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3094 case RES_MAX_USAGE:
3095 page_counter_reset_watermark(counter);
3096 break;
3097 case RES_FAILCNT:
3098 counter->failcnt = 0;
3099 break;
3100 default:
3101 BUG();
3102 }
3103
3104 return nbytes;
3105 }
3106
3107 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3108 struct cftype *cft)
3109 {
3110 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3111 }
3112
3113 #ifdef CONFIG_MMU
3114 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3115 struct cftype *cft, u64 val)
3116 {
3117 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3118
3119 if (val & ~MOVE_MASK)
3120 return -EINVAL;
3121
3122 /*
3123 * No kind of locking is needed in here, because ->can_attach() will
3124 * check this value once in the beginning of the process, and then carry
3125 * on with stale data. This means that changes to this value will only
3126 * affect task migrations starting after the change.
3127 */
3128 memcg->move_charge_at_immigrate = val;
3129 return 0;
3130 }
3131 #else
3132 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3133 struct cftype *cft, u64 val)
3134 {
3135 return -ENOSYS;
3136 }
3137 #endif
3138
3139 #ifdef CONFIG_NUMA
3140 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3141 {
3142 struct numa_stat {
3143 const char *name;
3144 unsigned int lru_mask;
3145 };
3146
3147 static const struct numa_stat stats[] = {
3148 { "total", LRU_ALL },
3149 { "file", LRU_ALL_FILE },
3150 { "anon", LRU_ALL_ANON },
3151 { "unevictable", BIT(LRU_UNEVICTABLE) },
3152 };
3153 const struct numa_stat *stat;
3154 int nid;
3155 unsigned long nr;
3156 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3157
3158 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3159 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3160 seq_printf(m, "%s=%lu", stat->name, nr);
3161 for_each_node_state(nid, N_MEMORY) {
3162 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3163 stat->lru_mask);
3164 seq_printf(m, " N%d=%lu", nid, nr);
3165 }
3166 seq_putc(m, '\n');
3167 }
3168
3169 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3170 struct mem_cgroup *iter;
3171
3172 nr = 0;
3173 for_each_mem_cgroup_tree(iter, memcg)
3174 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3175 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3176 for_each_node_state(nid, N_MEMORY) {
3177 nr = 0;
3178 for_each_mem_cgroup_tree(iter, memcg)
3179 nr += mem_cgroup_node_nr_lru_pages(
3180 iter, nid, stat->lru_mask);
3181 seq_printf(m, " N%d=%lu", nid, nr);
3182 }
3183 seq_putc(m, '\n');
3184 }
3185
3186 return 0;
3187 }
3188 #endif /* CONFIG_NUMA */
3189
3190 static int memcg_stat_show(struct seq_file *m, void *v)
3191 {
3192 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3193 unsigned long memory, memsw;
3194 struct mem_cgroup *mi;
3195 unsigned int i;
3196
3197 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3198 MEM_CGROUP_STAT_NSTATS);
3199 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3200 MEM_CGROUP_EVENTS_NSTATS);
3201 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3202
3203 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3204 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3205 continue;
3206 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3207 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3208 }
3209
3210 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3211 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3212 mem_cgroup_read_events(memcg, i));
3213
3214 for (i = 0; i < NR_LRU_LISTS; i++)
3215 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3216 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3217
3218 /* Hierarchical information */
3219 memory = memsw = PAGE_COUNTER_MAX;
3220 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3221 memory = min(memory, mi->memory.limit);
3222 memsw = min(memsw, mi->memsw.limit);
3223 }
3224 seq_printf(m, "hierarchical_memory_limit %llu\n",
3225 (u64)memory * PAGE_SIZE);
3226 if (do_memsw_account())
3227 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3228 (u64)memsw * PAGE_SIZE);
3229
3230 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3231 unsigned long long val = 0;
3232
3233 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3234 continue;
3235 for_each_mem_cgroup_tree(mi, memcg)
3236 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3237 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3238 }
3239
3240 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3241 unsigned long long val = 0;
3242
3243 for_each_mem_cgroup_tree(mi, memcg)
3244 val += mem_cgroup_read_events(mi, i);
3245 seq_printf(m, "total_%s %llu\n",
3246 mem_cgroup_events_names[i], val);
3247 }
3248
3249 for (i = 0; i < NR_LRU_LISTS; i++) {
3250 unsigned long long val = 0;
3251
3252 for_each_mem_cgroup_tree(mi, memcg)
3253 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3254 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3255 }
3256
3257 #ifdef CONFIG_DEBUG_VM
3258 {
3259 int nid, zid;
3260 struct mem_cgroup_per_zone *mz;
3261 struct zone_reclaim_stat *rstat;
3262 unsigned long recent_rotated[2] = {0, 0};
3263 unsigned long recent_scanned[2] = {0, 0};
3264
3265 for_each_online_node(nid)
3266 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3267 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3268 rstat = &mz->lruvec.reclaim_stat;
3269
3270 recent_rotated[0] += rstat->recent_rotated[0];
3271 recent_rotated[1] += rstat->recent_rotated[1];
3272 recent_scanned[0] += rstat->recent_scanned[0];
3273 recent_scanned[1] += rstat->recent_scanned[1];
3274 }
3275 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3276 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3277 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3278 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3279 }
3280 #endif
3281
3282 return 0;
3283 }
3284
3285 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3286 struct cftype *cft)
3287 {
3288 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3289
3290 return mem_cgroup_swappiness(memcg);
3291 }
3292
3293 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3294 struct cftype *cft, u64 val)
3295 {
3296 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3297
3298 if (val > 100)
3299 return -EINVAL;
3300
3301 if (css->parent)
3302 memcg->swappiness = val;
3303 else
3304 vm_swappiness = val;
3305
3306 return 0;
3307 }
3308
3309 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3310 {
3311 struct mem_cgroup_threshold_ary *t;
3312 unsigned long usage;
3313 int i;
3314
3315 rcu_read_lock();
3316 if (!swap)
3317 t = rcu_dereference(memcg->thresholds.primary);
3318 else
3319 t = rcu_dereference(memcg->memsw_thresholds.primary);
3320
3321 if (!t)
3322 goto unlock;
3323
3324 usage = mem_cgroup_usage(memcg, swap);
3325
3326 /*
3327 * current_threshold points to threshold just below or equal to usage.
3328 * If it's not true, a threshold was crossed after last
3329 * call of __mem_cgroup_threshold().
3330 */
3331 i = t->current_threshold;
3332
3333 /*
3334 * Iterate backward over array of thresholds starting from
3335 * current_threshold and check if a threshold is crossed.
3336 * If none of thresholds below usage is crossed, we read
3337 * only one element of the array here.
3338 */
3339 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3340 eventfd_signal(t->entries[i].eventfd, 1);
3341
3342 /* i = current_threshold + 1 */
3343 i++;
3344
3345 /*
3346 * Iterate forward over array of thresholds starting from
3347 * current_threshold+1 and check if a threshold is crossed.
3348 * If none of thresholds above usage is crossed, we read
3349 * only one element of the array here.
3350 */
3351 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3352 eventfd_signal(t->entries[i].eventfd, 1);
3353
3354 /* Update current_threshold */
3355 t->current_threshold = i - 1;
3356 unlock:
3357 rcu_read_unlock();
3358 }
3359
3360 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3361 {
3362 while (memcg) {
3363 __mem_cgroup_threshold(memcg, false);
3364 if (do_memsw_account())
3365 __mem_cgroup_threshold(memcg, true);
3366
3367 memcg = parent_mem_cgroup(memcg);
3368 }
3369 }
3370
3371 static int compare_thresholds(const void *a, const void *b)
3372 {
3373 const struct mem_cgroup_threshold *_a = a;
3374 const struct mem_cgroup_threshold *_b = b;
3375
3376 if (_a->threshold > _b->threshold)
3377 return 1;
3378
3379 if (_a->threshold < _b->threshold)
3380 return -1;
3381
3382 return 0;
3383 }
3384
3385 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3386 {
3387 struct mem_cgroup_eventfd_list *ev;
3388
3389 spin_lock(&memcg_oom_lock);
3390
3391 list_for_each_entry(ev, &memcg->oom_notify, list)
3392 eventfd_signal(ev->eventfd, 1);
3393
3394 spin_unlock(&memcg_oom_lock);
3395 return 0;
3396 }
3397
3398 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3399 {
3400 struct mem_cgroup *iter;
3401
3402 for_each_mem_cgroup_tree(iter, memcg)
3403 mem_cgroup_oom_notify_cb(iter);
3404 }
3405
3406 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3407 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3408 {
3409 struct mem_cgroup_thresholds *thresholds;
3410 struct mem_cgroup_threshold_ary *new;
3411 unsigned long threshold;
3412 unsigned long usage;
3413 int i, size, ret;
3414
3415 ret = page_counter_memparse(args, "-1", &threshold);
3416 if (ret)
3417 return ret;
3418
3419 mutex_lock(&memcg->thresholds_lock);
3420
3421 if (type == _MEM) {
3422 thresholds = &memcg->thresholds;
3423 usage = mem_cgroup_usage(memcg, false);
3424 } else if (type == _MEMSWAP) {
3425 thresholds = &memcg->memsw_thresholds;
3426 usage = mem_cgroup_usage(memcg, true);
3427 } else
3428 BUG();
3429
3430 /* Check if a threshold crossed before adding a new one */
3431 if (thresholds->primary)
3432 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3433
3434 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3435
3436 /* Allocate memory for new array of thresholds */
3437 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3438 GFP_KERNEL);
3439 if (!new) {
3440 ret = -ENOMEM;
3441 goto unlock;
3442 }
3443 new->size = size;
3444
3445 /* Copy thresholds (if any) to new array */
3446 if (thresholds->primary) {
3447 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3448 sizeof(struct mem_cgroup_threshold));
3449 }
3450
3451 /* Add new threshold */
3452 new->entries[size - 1].eventfd = eventfd;
3453 new->entries[size - 1].threshold = threshold;
3454
3455 /* Sort thresholds. Registering of new threshold isn't time-critical */
3456 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3457 compare_thresholds, NULL);
3458
3459 /* Find current threshold */
3460 new->current_threshold = -1;
3461 for (i = 0; i < size; i++) {
3462 if (new->entries[i].threshold <= usage) {
3463 /*
3464 * new->current_threshold will not be used until
3465 * rcu_assign_pointer(), so it's safe to increment
3466 * it here.
3467 */
3468 ++new->current_threshold;
3469 } else
3470 break;
3471 }
3472
3473 /* Free old spare buffer and save old primary buffer as spare */
3474 kfree(thresholds->spare);
3475 thresholds->spare = thresholds->primary;
3476
3477 rcu_assign_pointer(thresholds->primary, new);
3478
3479 /* To be sure that nobody uses thresholds */
3480 synchronize_rcu();
3481
3482 unlock:
3483 mutex_unlock(&memcg->thresholds_lock);
3484
3485 return ret;
3486 }
3487
3488 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3489 struct eventfd_ctx *eventfd, const char *args)
3490 {
3491 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3492 }
3493
3494 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3495 struct eventfd_ctx *eventfd, const char *args)
3496 {
3497 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3498 }
3499
3500 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3501 struct eventfd_ctx *eventfd, enum res_type type)
3502 {
3503 struct mem_cgroup_thresholds *thresholds;
3504 struct mem_cgroup_threshold_ary *new;
3505 unsigned long usage;
3506 int i, j, size;
3507
3508 mutex_lock(&memcg->thresholds_lock);
3509
3510 if (type == _MEM) {
3511 thresholds = &memcg->thresholds;
3512 usage = mem_cgroup_usage(memcg, false);
3513 } else if (type == _MEMSWAP) {
3514 thresholds = &memcg->memsw_thresholds;
3515 usage = mem_cgroup_usage(memcg, true);
3516 } else
3517 BUG();
3518
3519 if (!thresholds->primary)
3520 goto unlock;
3521
3522 /* Check if a threshold crossed before removing */
3523 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3524
3525 /* Calculate new number of threshold */
3526 size = 0;
3527 for (i = 0; i < thresholds->primary->size; i++) {
3528 if (thresholds->primary->entries[i].eventfd != eventfd)
3529 size++;
3530 }
3531
3532 new = thresholds->spare;
3533
3534 /* Set thresholds array to NULL if we don't have thresholds */
3535 if (!size) {
3536 kfree(new);
3537 new = NULL;
3538 goto swap_buffers;
3539 }
3540
3541 new->size = size;
3542
3543 /* Copy thresholds and find current threshold */
3544 new->current_threshold = -1;
3545 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3546 if (thresholds->primary->entries[i].eventfd == eventfd)
3547 continue;
3548
3549 new->entries[j] = thresholds->primary->entries[i];
3550 if (new->entries[j].threshold <= usage) {
3551 /*
3552 * new->current_threshold will not be used
3553 * until rcu_assign_pointer(), so it's safe to increment
3554 * it here.
3555 */
3556 ++new->current_threshold;
3557 }
3558 j++;
3559 }
3560
3561 swap_buffers:
3562 /* Swap primary and spare array */
3563 thresholds->spare = thresholds->primary;
3564
3565 rcu_assign_pointer(thresholds->primary, new);
3566
3567 /* To be sure that nobody uses thresholds */
3568 synchronize_rcu();
3569
3570 /* If all events are unregistered, free the spare array */
3571 if (!new) {
3572 kfree(thresholds->spare);
3573 thresholds->spare = NULL;
3574 }
3575 unlock:
3576 mutex_unlock(&memcg->thresholds_lock);
3577 }
3578
3579 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3580 struct eventfd_ctx *eventfd)
3581 {
3582 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3583 }
3584
3585 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3586 struct eventfd_ctx *eventfd)
3587 {
3588 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3589 }
3590
3591 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3592 struct eventfd_ctx *eventfd, const char *args)
3593 {
3594 struct mem_cgroup_eventfd_list *event;
3595
3596 event = kmalloc(sizeof(*event), GFP_KERNEL);
3597 if (!event)
3598 return -ENOMEM;
3599
3600 spin_lock(&memcg_oom_lock);
3601
3602 event->eventfd = eventfd;
3603 list_add(&event->list, &memcg->oom_notify);
3604
3605 /* already in OOM ? */
3606 if (memcg->under_oom)
3607 eventfd_signal(eventfd, 1);
3608 spin_unlock(&memcg_oom_lock);
3609
3610 return 0;
3611 }
3612
3613 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3614 struct eventfd_ctx *eventfd)
3615 {
3616 struct mem_cgroup_eventfd_list *ev, *tmp;
3617
3618 spin_lock(&memcg_oom_lock);
3619
3620 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3621 if (ev->eventfd == eventfd) {
3622 list_del(&ev->list);
3623 kfree(ev);
3624 }
3625 }
3626
3627 spin_unlock(&memcg_oom_lock);
3628 }
3629
3630 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3631 {
3632 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3633
3634 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3635 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3636 return 0;
3637 }
3638
3639 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3640 struct cftype *cft, u64 val)
3641 {
3642 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3643
3644 /* cannot set to root cgroup and only 0 and 1 are allowed */
3645 if (!css->parent || !((val == 0) || (val == 1)))
3646 return -EINVAL;
3647
3648 memcg->oom_kill_disable = val;
3649 if (!val)
3650 memcg_oom_recover(memcg);
3651
3652 return 0;
3653 }
3654
3655 #ifdef CONFIG_CGROUP_WRITEBACK
3656
3657 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3658 {
3659 return &memcg->cgwb_list;
3660 }
3661
3662 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3663 {
3664 return wb_domain_init(&memcg->cgwb_domain, gfp);
3665 }
3666
3667 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3668 {
3669 wb_domain_exit(&memcg->cgwb_domain);
3670 }
3671
3672 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3673 {
3674 wb_domain_size_changed(&memcg->cgwb_domain);
3675 }
3676
3677 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3678 {
3679 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3680
3681 if (!memcg->css.parent)
3682 return NULL;
3683
3684 return &memcg->cgwb_domain;
3685 }
3686
3687 /**
3688 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3689 * @wb: bdi_writeback in question
3690 * @pfilepages: out parameter for number of file pages
3691 * @pheadroom: out parameter for number of allocatable pages according to memcg
3692 * @pdirty: out parameter for number of dirty pages
3693 * @pwriteback: out parameter for number of pages under writeback
3694 *
3695 * Determine the numbers of file, headroom, dirty, and writeback pages in
3696 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3697 * is a bit more involved.
3698 *
3699 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3700 * headroom is calculated as the lowest headroom of itself and the
3701 * ancestors. Note that this doesn't consider the actual amount of
3702 * available memory in the system. The caller should further cap
3703 * *@pheadroom accordingly.
3704 */
3705 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3706 unsigned long *pheadroom, unsigned long *pdirty,
3707 unsigned long *pwriteback)
3708 {
3709 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3710 struct mem_cgroup *parent;
3711
3712 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3713
3714 /* this should eventually include NR_UNSTABLE_NFS */
3715 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3716 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3717 (1 << LRU_ACTIVE_FILE));
3718 *pheadroom = PAGE_COUNTER_MAX;
3719
3720 while ((parent = parent_mem_cgroup(memcg))) {
3721 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3722 unsigned long used = page_counter_read(&memcg->memory);
3723
3724 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3725 memcg = parent;
3726 }
3727 }
3728
3729 #else /* CONFIG_CGROUP_WRITEBACK */
3730
3731 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3732 {
3733 return 0;
3734 }
3735
3736 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3737 {
3738 }
3739
3740 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3741 {
3742 }
3743
3744 #endif /* CONFIG_CGROUP_WRITEBACK */
3745
3746 /*
3747 * DO NOT USE IN NEW FILES.
3748 *
3749 * "cgroup.event_control" implementation.
3750 *
3751 * This is way over-engineered. It tries to support fully configurable
3752 * events for each user. Such level of flexibility is completely
3753 * unnecessary especially in the light of the planned unified hierarchy.
3754 *
3755 * Please deprecate this and replace with something simpler if at all
3756 * possible.
3757 */
3758
3759 /*
3760 * Unregister event and free resources.
3761 *
3762 * Gets called from workqueue.
3763 */
3764 static void memcg_event_remove(struct work_struct *work)
3765 {
3766 struct mem_cgroup_event *event =
3767 container_of(work, struct mem_cgroup_event, remove);
3768 struct mem_cgroup *memcg = event->memcg;
3769
3770 remove_wait_queue(event->wqh, &event->wait);
3771
3772 event->unregister_event(memcg, event->eventfd);
3773
3774 /* Notify userspace the event is going away. */
3775 eventfd_signal(event->eventfd, 1);
3776
3777 eventfd_ctx_put(event->eventfd);
3778 kfree(event);
3779 css_put(&memcg->css);
3780 }
3781
3782 /*
3783 * Gets called on POLLHUP on eventfd when user closes it.
3784 *
3785 * Called with wqh->lock held and interrupts disabled.
3786 */
3787 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3788 int sync, void *key)
3789 {
3790 struct mem_cgroup_event *event =
3791 container_of(wait, struct mem_cgroup_event, wait);
3792 struct mem_cgroup *memcg = event->memcg;
3793 unsigned long flags = (unsigned long)key;
3794
3795 if (flags & POLLHUP) {
3796 /*
3797 * If the event has been detached at cgroup removal, we
3798 * can simply return knowing the other side will cleanup
3799 * for us.
3800 *
3801 * We can't race against event freeing since the other
3802 * side will require wqh->lock via remove_wait_queue(),
3803 * which we hold.
3804 */
3805 spin_lock(&memcg->event_list_lock);
3806 if (!list_empty(&event->list)) {
3807 list_del_init(&event->list);
3808 /*
3809 * We are in atomic context, but cgroup_event_remove()
3810 * may sleep, so we have to call it in workqueue.
3811 */
3812 schedule_work(&event->remove);
3813 }
3814 spin_unlock(&memcg->event_list_lock);
3815 }
3816
3817 return 0;
3818 }
3819
3820 static void memcg_event_ptable_queue_proc(struct file *file,
3821 wait_queue_head_t *wqh, poll_table *pt)
3822 {
3823 struct mem_cgroup_event *event =
3824 container_of(pt, struct mem_cgroup_event, pt);
3825
3826 event->wqh = wqh;
3827 add_wait_queue(wqh, &event->wait);
3828 }
3829
3830 /*
3831 * DO NOT USE IN NEW FILES.
3832 *
3833 * Parse input and register new cgroup event handler.
3834 *
3835 * Input must be in format '<event_fd> <control_fd> <args>'.
3836 * Interpretation of args is defined by control file implementation.
3837 */
3838 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3839 char *buf, size_t nbytes, loff_t off)
3840 {
3841 struct cgroup_subsys_state *css = of_css(of);
3842 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3843 struct mem_cgroup_event *event;
3844 struct cgroup_subsys_state *cfile_css;
3845 unsigned int efd, cfd;
3846 struct fd efile;
3847 struct fd cfile;
3848 const char *name;
3849 char *endp;
3850 int ret;
3851
3852 buf = strstrip(buf);
3853
3854 efd = simple_strtoul(buf, &endp, 10);
3855 if (*endp != ' ')
3856 return -EINVAL;
3857 buf = endp + 1;
3858
3859 cfd = simple_strtoul(buf, &endp, 10);
3860 if ((*endp != ' ') && (*endp != '\0'))
3861 return -EINVAL;
3862 buf = endp + 1;
3863
3864 event = kzalloc(sizeof(*event), GFP_KERNEL);
3865 if (!event)
3866 return -ENOMEM;
3867
3868 event->memcg = memcg;
3869 INIT_LIST_HEAD(&event->list);
3870 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3871 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3872 INIT_WORK(&event->remove, memcg_event_remove);
3873
3874 efile = fdget(efd);
3875 if (!efile.file) {
3876 ret = -EBADF;
3877 goto out_kfree;
3878 }
3879
3880 event->eventfd = eventfd_ctx_fileget(efile.file);
3881 if (IS_ERR(event->eventfd)) {
3882 ret = PTR_ERR(event->eventfd);
3883 goto out_put_efile;
3884 }
3885
3886 cfile = fdget(cfd);
3887 if (!cfile.file) {
3888 ret = -EBADF;
3889 goto out_put_eventfd;
3890 }
3891
3892 /* the process need read permission on control file */
3893 /* AV: shouldn't we check that it's been opened for read instead? */
3894 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3895 if (ret < 0)
3896 goto out_put_cfile;
3897
3898 /*
3899 * Determine the event callbacks and set them in @event. This used
3900 * to be done via struct cftype but cgroup core no longer knows
3901 * about these events. The following is crude but the whole thing
3902 * is for compatibility anyway.
3903 *
3904 * DO NOT ADD NEW FILES.
3905 */
3906 name = cfile.file->f_path.dentry->d_name.name;
3907
3908 if (!strcmp(name, "memory.usage_in_bytes")) {
3909 event->register_event = mem_cgroup_usage_register_event;
3910 event->unregister_event = mem_cgroup_usage_unregister_event;
3911 } else if (!strcmp(name, "memory.oom_control")) {
3912 event->register_event = mem_cgroup_oom_register_event;
3913 event->unregister_event = mem_cgroup_oom_unregister_event;
3914 } else if (!strcmp(name, "memory.pressure_level")) {
3915 event->register_event = vmpressure_register_event;
3916 event->unregister_event = vmpressure_unregister_event;
3917 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3918 event->register_event = memsw_cgroup_usage_register_event;
3919 event->unregister_event = memsw_cgroup_usage_unregister_event;
3920 } else {
3921 ret = -EINVAL;
3922 goto out_put_cfile;
3923 }
3924
3925 /*
3926 * Verify @cfile should belong to @css. Also, remaining events are
3927 * automatically removed on cgroup destruction but the removal is
3928 * asynchronous, so take an extra ref on @css.
3929 */
3930 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3931 &memory_cgrp_subsys);
3932 ret = -EINVAL;
3933 if (IS_ERR(cfile_css))
3934 goto out_put_cfile;
3935 if (cfile_css != css) {
3936 css_put(cfile_css);
3937 goto out_put_cfile;
3938 }
3939
3940 ret = event->register_event(memcg, event->eventfd, buf);
3941 if (ret)
3942 goto out_put_css;
3943
3944 efile.file->f_op->poll(efile.file, &event->pt);
3945
3946 spin_lock(&memcg->event_list_lock);
3947 list_add(&event->list, &memcg->event_list);
3948 spin_unlock(&memcg->event_list_lock);
3949
3950 fdput(cfile);
3951 fdput(efile);
3952
3953 return nbytes;
3954
3955 out_put_css:
3956 css_put(css);
3957 out_put_cfile:
3958 fdput(cfile);
3959 out_put_eventfd:
3960 eventfd_ctx_put(event->eventfd);
3961 out_put_efile:
3962 fdput(efile);
3963 out_kfree:
3964 kfree(event);
3965
3966 return ret;
3967 }
3968
3969 static struct cftype mem_cgroup_legacy_files[] = {
3970 {
3971 .name = "usage_in_bytes",
3972 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3973 .read_u64 = mem_cgroup_read_u64,
3974 },
3975 {
3976 .name = "max_usage_in_bytes",
3977 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3978 .write = mem_cgroup_reset,
3979 .read_u64 = mem_cgroup_read_u64,
3980 },
3981 {
3982 .name = "limit_in_bytes",
3983 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3984 .write = mem_cgroup_write,
3985 .read_u64 = mem_cgroup_read_u64,
3986 },
3987 {
3988 .name = "soft_limit_in_bytes",
3989 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3990 .write = mem_cgroup_write,
3991 .read_u64 = mem_cgroup_read_u64,
3992 },
3993 {
3994 .name = "failcnt",
3995 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3996 .write = mem_cgroup_reset,
3997 .read_u64 = mem_cgroup_read_u64,
3998 },
3999 {
4000 .name = "stat",
4001 .seq_show = memcg_stat_show,
4002 },
4003 {
4004 .name = "force_empty",
4005 .write = mem_cgroup_force_empty_write,
4006 },
4007 {
4008 .name = "use_hierarchy",
4009 .write_u64 = mem_cgroup_hierarchy_write,
4010 .read_u64 = mem_cgroup_hierarchy_read,
4011 },
4012 {
4013 .name = "cgroup.event_control", /* XXX: for compat */
4014 .write = memcg_write_event_control,
4015 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4016 },
4017 {
4018 .name = "swappiness",
4019 .read_u64 = mem_cgroup_swappiness_read,
4020 .write_u64 = mem_cgroup_swappiness_write,
4021 },
4022 {
4023 .name = "move_charge_at_immigrate",
4024 .read_u64 = mem_cgroup_move_charge_read,
4025 .write_u64 = mem_cgroup_move_charge_write,
4026 },
4027 {
4028 .name = "oom_control",
4029 .seq_show = mem_cgroup_oom_control_read,
4030 .write_u64 = mem_cgroup_oom_control_write,
4031 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4032 },
4033 {
4034 .name = "pressure_level",
4035 },
4036 #ifdef CONFIG_NUMA
4037 {
4038 .name = "numa_stat",
4039 .seq_show = memcg_numa_stat_show,
4040 },
4041 #endif
4042 #ifdef CONFIG_MEMCG_KMEM
4043 {
4044 .name = "kmem.limit_in_bytes",
4045 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4046 .write = mem_cgroup_write,
4047 .read_u64 = mem_cgroup_read_u64,
4048 },
4049 {
4050 .name = "kmem.usage_in_bytes",
4051 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4052 .read_u64 = mem_cgroup_read_u64,
4053 },
4054 {
4055 .name = "kmem.failcnt",
4056 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4057 .write = mem_cgroup_reset,
4058 .read_u64 = mem_cgroup_read_u64,
4059 },
4060 {
4061 .name = "kmem.max_usage_in_bytes",
4062 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4063 .write = mem_cgroup_reset,
4064 .read_u64 = mem_cgroup_read_u64,
4065 },
4066 #ifdef CONFIG_SLABINFO
4067 {
4068 .name = "kmem.slabinfo",
4069 .seq_start = slab_start,
4070 .seq_next = slab_next,
4071 .seq_stop = slab_stop,
4072 .seq_show = memcg_slab_show,
4073 },
4074 #endif
4075 #endif
4076 { }, /* terminate */
4077 };
4078
4079 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4080 {
4081 struct mem_cgroup_per_node *pn;
4082 struct mem_cgroup_per_zone *mz;
4083 int zone, tmp = node;
4084 /*
4085 * This routine is called against possible nodes.
4086 * But it's BUG to call kmalloc() against offline node.
4087 *
4088 * TODO: this routine can waste much memory for nodes which will
4089 * never be onlined. It's better to use memory hotplug callback
4090 * function.
4091 */
4092 if (!node_state(node, N_NORMAL_MEMORY))
4093 tmp = -1;
4094 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4095 if (!pn)
4096 return 1;
4097
4098 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4099 mz = &pn->zoneinfo[zone];
4100 lruvec_init(&mz->lruvec);
4101 mz->usage_in_excess = 0;
4102 mz->on_tree = false;
4103 mz->memcg = memcg;
4104 }
4105 memcg->nodeinfo[node] = pn;
4106 return 0;
4107 }
4108
4109 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4110 {
4111 kfree(memcg->nodeinfo[node]);
4112 }
4113
4114 static struct mem_cgroup *mem_cgroup_alloc(void)
4115 {
4116 struct mem_cgroup *memcg;
4117 size_t size;
4118
4119 size = sizeof(struct mem_cgroup);
4120 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4121
4122 memcg = kzalloc(size, GFP_KERNEL);
4123 if (!memcg)
4124 return NULL;
4125
4126 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4127 if (!memcg->stat)
4128 goto out_free;
4129
4130 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4131 goto out_free_stat;
4132
4133 return memcg;
4134
4135 out_free_stat:
4136 free_percpu(memcg->stat);
4137 out_free:
4138 kfree(memcg);
4139 return NULL;
4140 }
4141
4142 /*
4143 * At destroying mem_cgroup, references from swap_cgroup can remain.
4144 * (scanning all at force_empty is too costly...)
4145 *
4146 * Instead of clearing all references at force_empty, we remember
4147 * the number of reference from swap_cgroup and free mem_cgroup when
4148 * it goes down to 0.
4149 *
4150 * Removal of cgroup itself succeeds regardless of refs from swap.
4151 */
4152
4153 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4154 {
4155 int node;
4156
4157 cancel_work_sync(&memcg->high_work);
4158
4159 mem_cgroup_remove_from_trees(memcg);
4160
4161 for_each_node(node)
4162 free_mem_cgroup_per_zone_info(memcg, node);
4163
4164 free_percpu(memcg->stat);
4165 memcg_wb_domain_exit(memcg);
4166 kfree(memcg);
4167 }
4168
4169 static struct cgroup_subsys_state * __ref
4170 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4171 {
4172 struct mem_cgroup *memcg;
4173 long error = -ENOMEM;
4174 int node;
4175
4176 memcg = mem_cgroup_alloc();
4177 if (!memcg)
4178 return ERR_PTR(error);
4179
4180 for_each_node(node)
4181 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4182 goto free_out;
4183
4184 /* root ? */
4185 if (parent_css == NULL) {
4186 root_mem_cgroup = memcg;
4187 page_counter_init(&memcg->memory, NULL);
4188 memcg->high = PAGE_COUNTER_MAX;
4189 memcg->soft_limit = PAGE_COUNTER_MAX;
4190 page_counter_init(&memcg->memsw, NULL);
4191 page_counter_init(&memcg->kmem, NULL);
4192 }
4193
4194 INIT_WORK(&memcg->high_work, high_work_func);
4195 memcg->last_scanned_node = MAX_NUMNODES;
4196 INIT_LIST_HEAD(&memcg->oom_notify);
4197 memcg->move_charge_at_immigrate = 0;
4198 mutex_init(&memcg->thresholds_lock);
4199 spin_lock_init(&memcg->move_lock);
4200 vmpressure_init(&memcg->vmpressure);
4201 INIT_LIST_HEAD(&memcg->event_list);
4202 spin_lock_init(&memcg->event_list_lock);
4203 #ifndef CONFIG_SLOB
4204 memcg->kmemcg_id = -1;
4205 #endif
4206 #ifdef CONFIG_CGROUP_WRITEBACK
4207 INIT_LIST_HEAD(&memcg->cgwb_list);
4208 #endif
4209 #ifdef CONFIG_INET
4210 memcg->socket_pressure = jiffies;
4211 #endif
4212 return &memcg->css;
4213
4214 free_out:
4215 __mem_cgroup_free(memcg);
4216 return ERR_PTR(error);
4217 }
4218
4219 static int
4220 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4221 {
4222 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4223 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4224 int ret;
4225
4226 if (css->id > MEM_CGROUP_ID_MAX)
4227 return -ENOSPC;
4228
4229 if (!parent)
4230 return 0;
4231
4232 mutex_lock(&memcg_create_mutex);
4233
4234 memcg->use_hierarchy = parent->use_hierarchy;
4235 memcg->oom_kill_disable = parent->oom_kill_disable;
4236 memcg->swappiness = mem_cgroup_swappiness(parent);
4237
4238 if (parent->use_hierarchy) {
4239 page_counter_init(&memcg->memory, &parent->memory);
4240 memcg->high = PAGE_COUNTER_MAX;
4241 memcg->soft_limit = PAGE_COUNTER_MAX;
4242 page_counter_init(&memcg->memsw, &parent->memsw);
4243 page_counter_init(&memcg->kmem, &parent->kmem);
4244
4245 /*
4246 * No need to take a reference to the parent because cgroup
4247 * core guarantees its existence.
4248 */
4249 } else {
4250 page_counter_init(&memcg->memory, NULL);
4251 memcg->high = PAGE_COUNTER_MAX;
4252 memcg->soft_limit = PAGE_COUNTER_MAX;
4253 page_counter_init(&memcg->memsw, NULL);
4254 page_counter_init(&memcg->kmem, NULL);
4255 /*
4256 * Deeper hierachy with use_hierarchy == false doesn't make
4257 * much sense so let cgroup subsystem know about this
4258 * unfortunate state in our controller.
4259 */
4260 if (parent != root_mem_cgroup)
4261 memory_cgrp_subsys.broken_hierarchy = true;
4262 }
4263 mutex_unlock(&memcg_create_mutex);
4264
4265 ret = memcg_propagate_kmem(memcg);
4266 if (ret)
4267 return ret;
4268
4269 #ifdef CONFIG_MEMCG_KMEM
4270 ret = tcp_init_cgroup(memcg);
4271 if (ret)
4272 return ret;
4273 #endif
4274
4275 #ifdef CONFIG_INET
4276 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4277 static_branch_inc(&memcg_sockets_enabled_key);
4278 #endif
4279
4280 /*
4281 * Make sure the memcg is initialized: mem_cgroup_iter()
4282 * orders reading memcg->initialized against its callers
4283 * reading the memcg members.
4284 */
4285 smp_store_release(&memcg->initialized, 1);
4286
4287 return 0;
4288 }
4289
4290 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4291 {
4292 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4293 struct mem_cgroup_event *event, *tmp;
4294
4295 /*
4296 * Unregister events and notify userspace.
4297 * Notify userspace about cgroup removing only after rmdir of cgroup
4298 * directory to avoid race between userspace and kernelspace.
4299 */
4300 spin_lock(&memcg->event_list_lock);
4301 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4302 list_del_init(&event->list);
4303 schedule_work(&event->remove);
4304 }
4305 spin_unlock(&memcg->event_list_lock);
4306
4307 vmpressure_cleanup(&memcg->vmpressure);
4308
4309 memcg_offline_kmem(memcg);
4310
4311 wb_memcg_offline(memcg);
4312 }
4313
4314 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4315 {
4316 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4317
4318 invalidate_reclaim_iterators(memcg);
4319 }
4320
4321 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4322 {
4323 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4324
4325 #ifdef CONFIG_INET
4326 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4327 static_branch_dec(&memcg_sockets_enabled_key);
4328 #endif
4329
4330 memcg_free_kmem(memcg);
4331
4332 #ifdef CONFIG_MEMCG_KMEM
4333 tcp_destroy_cgroup(memcg);
4334 #endif
4335
4336 __mem_cgroup_free(memcg);
4337 }
4338
4339 /**
4340 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4341 * @css: the target css
4342 *
4343 * Reset the states of the mem_cgroup associated with @css. This is
4344 * invoked when the userland requests disabling on the default hierarchy
4345 * but the memcg is pinned through dependency. The memcg should stop
4346 * applying policies and should revert to the vanilla state as it may be
4347 * made visible again.
4348 *
4349 * The current implementation only resets the essential configurations.
4350 * This needs to be expanded to cover all the visible parts.
4351 */
4352 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4353 {
4354 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4355
4356 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4357 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4358 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4359 memcg->low = 0;
4360 memcg->high = PAGE_COUNTER_MAX;
4361 memcg->soft_limit = PAGE_COUNTER_MAX;
4362 memcg_wb_domain_size_changed(memcg);
4363 }
4364
4365 #ifdef CONFIG_MMU
4366 /* Handlers for move charge at task migration. */
4367 static int mem_cgroup_do_precharge(unsigned long count)
4368 {
4369 int ret;
4370
4371 /* Try a single bulk charge without reclaim first, kswapd may wake */
4372 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4373 if (!ret) {
4374 mc.precharge += count;
4375 return ret;
4376 }
4377
4378 /* Try charges one by one with reclaim */
4379 while (count--) {
4380 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4381 if (ret)
4382 return ret;
4383 mc.precharge++;
4384 cond_resched();
4385 }
4386 return 0;
4387 }
4388
4389 /**
4390 * get_mctgt_type - get target type of moving charge
4391 * @vma: the vma the pte to be checked belongs
4392 * @addr: the address corresponding to the pte to be checked
4393 * @ptent: the pte to be checked
4394 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4395 *
4396 * Returns
4397 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4398 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4399 * move charge. if @target is not NULL, the page is stored in target->page
4400 * with extra refcnt got(Callers should handle it).
4401 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4402 * target for charge migration. if @target is not NULL, the entry is stored
4403 * in target->ent.
4404 *
4405 * Called with pte lock held.
4406 */
4407 union mc_target {
4408 struct page *page;
4409 swp_entry_t ent;
4410 };
4411
4412 enum mc_target_type {
4413 MC_TARGET_NONE = 0,
4414 MC_TARGET_PAGE,
4415 MC_TARGET_SWAP,
4416 };
4417
4418 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4419 unsigned long addr, pte_t ptent)
4420 {
4421 struct page *page = vm_normal_page(vma, addr, ptent);
4422
4423 if (!page || !page_mapped(page))
4424 return NULL;
4425 if (PageAnon(page)) {
4426 if (!(mc.flags & MOVE_ANON))
4427 return NULL;
4428 } else {
4429 if (!(mc.flags & MOVE_FILE))
4430 return NULL;
4431 }
4432 if (!get_page_unless_zero(page))
4433 return NULL;
4434
4435 return page;
4436 }
4437
4438 #ifdef CONFIG_SWAP
4439 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4440 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4441 {
4442 struct page *page = NULL;
4443 swp_entry_t ent = pte_to_swp_entry(ptent);
4444
4445 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4446 return NULL;
4447 /*
4448 * Because lookup_swap_cache() updates some statistics counter,
4449 * we call find_get_page() with swapper_space directly.
4450 */
4451 page = find_get_page(swap_address_space(ent), ent.val);
4452 if (do_memsw_account())
4453 entry->val = ent.val;
4454
4455 return page;
4456 }
4457 #else
4458 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4459 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4460 {
4461 return NULL;
4462 }
4463 #endif
4464
4465 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4466 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4467 {
4468 struct page *page = NULL;
4469 struct address_space *mapping;
4470 pgoff_t pgoff;
4471
4472 if (!vma->vm_file) /* anonymous vma */
4473 return NULL;
4474 if (!(mc.flags & MOVE_FILE))
4475 return NULL;
4476
4477 mapping = vma->vm_file->f_mapping;
4478 pgoff = linear_page_index(vma, addr);
4479
4480 /* page is moved even if it's not RSS of this task(page-faulted). */
4481 #ifdef CONFIG_SWAP
4482 /* shmem/tmpfs may report page out on swap: account for that too. */
4483 if (shmem_mapping(mapping)) {
4484 page = find_get_entry(mapping, pgoff);
4485 if (radix_tree_exceptional_entry(page)) {
4486 swp_entry_t swp = radix_to_swp_entry(page);
4487 if (do_memsw_account())
4488 *entry = swp;
4489 page = find_get_page(swap_address_space(swp), swp.val);
4490 }
4491 } else
4492 page = find_get_page(mapping, pgoff);
4493 #else
4494 page = find_get_page(mapping, pgoff);
4495 #endif
4496 return page;
4497 }
4498
4499 /**
4500 * mem_cgroup_move_account - move account of the page
4501 * @page: the page
4502 * @nr_pages: number of regular pages (>1 for huge pages)
4503 * @from: mem_cgroup which the page is moved from.
4504 * @to: mem_cgroup which the page is moved to. @from != @to.
4505 *
4506 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4507 *
4508 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4509 * from old cgroup.
4510 */
4511 static int mem_cgroup_move_account(struct page *page,
4512 bool compound,
4513 struct mem_cgroup *from,
4514 struct mem_cgroup *to)
4515 {
4516 unsigned long flags;
4517 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4518 int ret;
4519 bool anon;
4520
4521 VM_BUG_ON(from == to);
4522 VM_BUG_ON_PAGE(PageLRU(page), page);
4523 VM_BUG_ON(compound && !PageTransHuge(page));
4524
4525 /*
4526 * Prevent mem_cgroup_replace_page() from looking at
4527 * page->mem_cgroup of its source page while we change it.
4528 */
4529 ret = -EBUSY;
4530 if (!trylock_page(page))
4531 goto out;
4532
4533 ret = -EINVAL;
4534 if (page->mem_cgroup != from)
4535 goto out_unlock;
4536
4537 anon = PageAnon(page);
4538
4539 spin_lock_irqsave(&from->move_lock, flags);
4540
4541 if (!anon && page_mapped(page)) {
4542 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4543 nr_pages);
4544 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4545 nr_pages);
4546 }
4547
4548 /*
4549 * move_lock grabbed above and caller set from->moving_account, so
4550 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4551 * So mapping should be stable for dirty pages.
4552 */
4553 if (!anon && PageDirty(page)) {
4554 struct address_space *mapping = page_mapping(page);
4555
4556 if (mapping_cap_account_dirty(mapping)) {
4557 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4558 nr_pages);
4559 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4560 nr_pages);
4561 }
4562 }
4563
4564 if (PageWriteback(page)) {
4565 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4566 nr_pages);
4567 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4568 nr_pages);
4569 }
4570
4571 /*
4572 * It is safe to change page->mem_cgroup here because the page
4573 * is referenced, charged, and isolated - we can't race with
4574 * uncharging, charging, migration, or LRU putback.
4575 */
4576
4577 /* caller should have done css_get */
4578 page->mem_cgroup = to;
4579 spin_unlock_irqrestore(&from->move_lock, flags);
4580
4581 ret = 0;
4582
4583 local_irq_disable();
4584 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4585 memcg_check_events(to, page);
4586 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4587 memcg_check_events(from, page);
4588 local_irq_enable();
4589 out_unlock:
4590 unlock_page(page);
4591 out:
4592 return ret;
4593 }
4594
4595 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4596 unsigned long addr, pte_t ptent, union mc_target *target)
4597 {
4598 struct page *page = NULL;
4599 enum mc_target_type ret = MC_TARGET_NONE;
4600 swp_entry_t ent = { .val = 0 };
4601
4602 if (pte_present(ptent))
4603 page = mc_handle_present_pte(vma, addr, ptent);
4604 else if (is_swap_pte(ptent))
4605 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4606 else if (pte_none(ptent))
4607 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4608
4609 if (!page && !ent.val)
4610 return ret;
4611 if (page) {
4612 /*
4613 * Do only loose check w/o serialization.
4614 * mem_cgroup_move_account() checks the page is valid or
4615 * not under LRU exclusion.
4616 */
4617 if (page->mem_cgroup == mc.from) {
4618 ret = MC_TARGET_PAGE;
4619 if (target)
4620 target->page = page;
4621 }
4622 if (!ret || !target)
4623 put_page(page);
4624 }
4625 /* There is a swap entry and a page doesn't exist or isn't charged */
4626 if (ent.val && !ret &&
4627 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4628 ret = MC_TARGET_SWAP;
4629 if (target)
4630 target->ent = ent;
4631 }
4632 return ret;
4633 }
4634
4635 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4636 /*
4637 * We don't consider swapping or file mapped pages because THP does not
4638 * support them for now.
4639 * Caller should make sure that pmd_trans_huge(pmd) is true.
4640 */
4641 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4642 unsigned long addr, pmd_t pmd, union mc_target *target)
4643 {
4644 struct page *page = NULL;
4645 enum mc_target_type ret = MC_TARGET_NONE;
4646
4647 page = pmd_page(pmd);
4648 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4649 if (!(mc.flags & MOVE_ANON))
4650 return ret;
4651 if (page->mem_cgroup == mc.from) {
4652 ret = MC_TARGET_PAGE;
4653 if (target) {
4654 get_page(page);
4655 target->page = page;
4656 }
4657 }
4658 return ret;
4659 }
4660 #else
4661 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4662 unsigned long addr, pmd_t pmd, union mc_target *target)
4663 {
4664 return MC_TARGET_NONE;
4665 }
4666 #endif
4667
4668 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4669 unsigned long addr, unsigned long end,
4670 struct mm_walk *walk)
4671 {
4672 struct vm_area_struct *vma = walk->vma;
4673 pte_t *pte;
4674 spinlock_t *ptl;
4675
4676 if (pmd_trans_huge_lock(pmd, vma, &ptl)) {
4677 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4678 mc.precharge += HPAGE_PMD_NR;
4679 spin_unlock(ptl);
4680 return 0;
4681 }
4682
4683 if (pmd_trans_unstable(pmd))
4684 return 0;
4685 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4686 for (; addr != end; pte++, addr += PAGE_SIZE)
4687 if (get_mctgt_type(vma, addr, *pte, NULL))
4688 mc.precharge++; /* increment precharge temporarily */
4689 pte_unmap_unlock(pte - 1, ptl);
4690 cond_resched();
4691
4692 return 0;
4693 }
4694
4695 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4696 {
4697 unsigned long precharge;
4698
4699 struct mm_walk mem_cgroup_count_precharge_walk = {
4700 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4701 .mm = mm,
4702 };
4703 down_read(&mm->mmap_sem);
4704 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4705 up_read(&mm->mmap_sem);
4706
4707 precharge = mc.precharge;
4708 mc.precharge = 0;
4709
4710 return precharge;
4711 }
4712
4713 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4714 {
4715 unsigned long precharge = mem_cgroup_count_precharge(mm);
4716
4717 VM_BUG_ON(mc.moving_task);
4718 mc.moving_task = current;
4719 return mem_cgroup_do_precharge(precharge);
4720 }
4721
4722 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4723 static void __mem_cgroup_clear_mc(void)
4724 {
4725 struct mem_cgroup *from = mc.from;
4726 struct mem_cgroup *to = mc.to;
4727
4728 /* we must uncharge all the leftover precharges from mc.to */
4729 if (mc.precharge) {
4730 cancel_charge(mc.to, mc.precharge);
4731 mc.precharge = 0;
4732 }
4733 /*
4734 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4735 * we must uncharge here.
4736 */
4737 if (mc.moved_charge) {
4738 cancel_charge(mc.from, mc.moved_charge);
4739 mc.moved_charge = 0;
4740 }
4741 /* we must fixup refcnts and charges */
4742 if (mc.moved_swap) {
4743 /* uncharge swap account from the old cgroup */
4744 if (!mem_cgroup_is_root(mc.from))
4745 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4746
4747 /*
4748 * we charged both to->memory and to->memsw, so we
4749 * should uncharge to->memory.
4750 */
4751 if (!mem_cgroup_is_root(mc.to))
4752 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4753
4754 css_put_many(&mc.from->css, mc.moved_swap);
4755
4756 /* we've already done css_get(mc.to) */
4757 mc.moved_swap = 0;
4758 }
4759 memcg_oom_recover(from);
4760 memcg_oom_recover(to);
4761 wake_up_all(&mc.waitq);
4762 }
4763
4764 static void mem_cgroup_clear_mc(void)
4765 {
4766 /*
4767 * we must clear moving_task before waking up waiters at the end of
4768 * task migration.
4769 */
4770 mc.moving_task = NULL;
4771 __mem_cgroup_clear_mc();
4772 spin_lock(&mc.lock);
4773 mc.from = NULL;
4774 mc.to = NULL;
4775 spin_unlock(&mc.lock);
4776 }
4777
4778 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4779 {
4780 struct cgroup_subsys_state *css;
4781 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4782 struct mem_cgroup *from;
4783 struct task_struct *leader, *p;
4784 struct mm_struct *mm;
4785 unsigned long move_flags;
4786 int ret = 0;
4787
4788 /* charge immigration isn't supported on the default hierarchy */
4789 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4790 return 0;
4791
4792 /*
4793 * Multi-process migrations only happen on the default hierarchy
4794 * where charge immigration is not used. Perform charge
4795 * immigration if @tset contains a leader and whine if there are
4796 * multiple.
4797 */
4798 p = NULL;
4799 cgroup_taskset_for_each_leader(leader, css, tset) {
4800 WARN_ON_ONCE(p);
4801 p = leader;
4802 memcg = mem_cgroup_from_css(css);
4803 }
4804 if (!p)
4805 return 0;
4806
4807 /*
4808 * We are now commited to this value whatever it is. Changes in this
4809 * tunable will only affect upcoming migrations, not the current one.
4810 * So we need to save it, and keep it going.
4811 */
4812 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4813 if (!move_flags)
4814 return 0;
4815
4816 from = mem_cgroup_from_task(p);
4817
4818 VM_BUG_ON(from == memcg);
4819
4820 mm = get_task_mm(p);
4821 if (!mm)
4822 return 0;
4823 /* We move charges only when we move a owner of the mm */
4824 if (mm->owner == p) {
4825 VM_BUG_ON(mc.from);
4826 VM_BUG_ON(mc.to);
4827 VM_BUG_ON(mc.precharge);
4828 VM_BUG_ON(mc.moved_charge);
4829 VM_BUG_ON(mc.moved_swap);
4830
4831 spin_lock(&mc.lock);
4832 mc.from = from;
4833 mc.to = memcg;
4834 mc.flags = move_flags;
4835 spin_unlock(&mc.lock);
4836 /* We set mc.moving_task later */
4837
4838 ret = mem_cgroup_precharge_mc(mm);
4839 if (ret)
4840 mem_cgroup_clear_mc();
4841 }
4842 mmput(mm);
4843 return ret;
4844 }
4845
4846 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4847 {
4848 if (mc.to)
4849 mem_cgroup_clear_mc();
4850 }
4851
4852 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4853 unsigned long addr, unsigned long end,
4854 struct mm_walk *walk)
4855 {
4856 int ret = 0;
4857 struct vm_area_struct *vma = walk->vma;
4858 pte_t *pte;
4859 spinlock_t *ptl;
4860 enum mc_target_type target_type;
4861 union mc_target target;
4862 struct page *page;
4863
4864 if (pmd_trans_huge_lock(pmd, vma, &ptl)) {
4865 if (mc.precharge < HPAGE_PMD_NR) {
4866 spin_unlock(ptl);
4867 return 0;
4868 }
4869 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4870 if (target_type == MC_TARGET_PAGE) {
4871 page = target.page;
4872 if (!isolate_lru_page(page)) {
4873 if (!mem_cgroup_move_account(page, true,
4874 mc.from, mc.to)) {
4875 mc.precharge -= HPAGE_PMD_NR;
4876 mc.moved_charge += HPAGE_PMD_NR;
4877 }
4878 putback_lru_page(page);
4879 }
4880 put_page(page);
4881 }
4882 spin_unlock(ptl);
4883 return 0;
4884 }
4885
4886 if (pmd_trans_unstable(pmd))
4887 return 0;
4888 retry:
4889 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4890 for (; addr != end; addr += PAGE_SIZE) {
4891 pte_t ptent = *(pte++);
4892 swp_entry_t ent;
4893
4894 if (!mc.precharge)
4895 break;
4896
4897 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4898 case MC_TARGET_PAGE:
4899 page = target.page;
4900 /*
4901 * We can have a part of the split pmd here. Moving it
4902 * can be done but it would be too convoluted so simply
4903 * ignore such a partial THP and keep it in original
4904 * memcg. There should be somebody mapping the head.
4905 */
4906 if (PageTransCompound(page))
4907 goto put;
4908 if (isolate_lru_page(page))
4909 goto put;
4910 if (!mem_cgroup_move_account(page, false,
4911 mc.from, mc.to)) {
4912 mc.precharge--;
4913 /* we uncharge from mc.from later. */
4914 mc.moved_charge++;
4915 }
4916 putback_lru_page(page);
4917 put: /* get_mctgt_type() gets the page */
4918 put_page(page);
4919 break;
4920 case MC_TARGET_SWAP:
4921 ent = target.ent;
4922 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4923 mc.precharge--;
4924 /* we fixup refcnts and charges later. */
4925 mc.moved_swap++;
4926 }
4927 break;
4928 default:
4929 break;
4930 }
4931 }
4932 pte_unmap_unlock(pte - 1, ptl);
4933 cond_resched();
4934
4935 if (addr != end) {
4936 /*
4937 * We have consumed all precharges we got in can_attach().
4938 * We try charge one by one, but don't do any additional
4939 * charges to mc.to if we have failed in charge once in attach()
4940 * phase.
4941 */
4942 ret = mem_cgroup_do_precharge(1);
4943 if (!ret)
4944 goto retry;
4945 }
4946
4947 return ret;
4948 }
4949
4950 static void mem_cgroup_move_charge(struct mm_struct *mm)
4951 {
4952 struct mm_walk mem_cgroup_move_charge_walk = {
4953 .pmd_entry = mem_cgroup_move_charge_pte_range,
4954 .mm = mm,
4955 };
4956
4957 lru_add_drain_all();
4958 /*
4959 * Signal mem_cgroup_begin_page_stat() to take the memcg's
4960 * move_lock while we're moving its pages to another memcg.
4961 * Then wait for already started RCU-only updates to finish.
4962 */
4963 atomic_inc(&mc.from->moving_account);
4964 synchronize_rcu();
4965 retry:
4966 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4967 /*
4968 * Someone who are holding the mmap_sem might be waiting in
4969 * waitq. So we cancel all extra charges, wake up all waiters,
4970 * and retry. Because we cancel precharges, we might not be able
4971 * to move enough charges, but moving charge is a best-effort
4972 * feature anyway, so it wouldn't be a big problem.
4973 */
4974 __mem_cgroup_clear_mc();
4975 cond_resched();
4976 goto retry;
4977 }
4978 /*
4979 * When we have consumed all precharges and failed in doing
4980 * additional charge, the page walk just aborts.
4981 */
4982 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4983 up_read(&mm->mmap_sem);
4984 atomic_dec(&mc.from->moving_account);
4985 }
4986
4987 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
4988 {
4989 struct cgroup_subsys_state *css;
4990 struct task_struct *p = cgroup_taskset_first(tset, &css);
4991 struct mm_struct *mm = get_task_mm(p);
4992
4993 if (mm) {
4994 if (mc.to)
4995 mem_cgroup_move_charge(mm);
4996 mmput(mm);
4997 }
4998 if (mc.to)
4999 mem_cgroup_clear_mc();
5000 }
5001 #else /* !CONFIG_MMU */
5002 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5003 {
5004 return 0;
5005 }
5006 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5007 {
5008 }
5009 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
5010 {
5011 }
5012 #endif
5013
5014 /*
5015 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5016 * to verify whether we're attached to the default hierarchy on each mount
5017 * attempt.
5018 */
5019 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5020 {
5021 /*
5022 * use_hierarchy is forced on the default hierarchy. cgroup core
5023 * guarantees that @root doesn't have any children, so turning it
5024 * on for the root memcg is enough.
5025 */
5026 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5027 root_mem_cgroup->use_hierarchy = true;
5028 else
5029 root_mem_cgroup->use_hierarchy = false;
5030 }
5031
5032 static u64 memory_current_read(struct cgroup_subsys_state *css,
5033 struct cftype *cft)
5034 {
5035 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5036
5037 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5038 }
5039
5040 static int memory_low_show(struct seq_file *m, void *v)
5041 {
5042 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5043 unsigned long low = READ_ONCE(memcg->low);
5044
5045 if (low == PAGE_COUNTER_MAX)
5046 seq_puts(m, "max\n");
5047 else
5048 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5049
5050 return 0;
5051 }
5052
5053 static ssize_t memory_low_write(struct kernfs_open_file *of,
5054 char *buf, size_t nbytes, loff_t off)
5055 {
5056 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5057 unsigned long low;
5058 int err;
5059
5060 buf = strstrip(buf);
5061 err = page_counter_memparse(buf, "max", &low);
5062 if (err)
5063 return err;
5064
5065 memcg->low = low;
5066
5067 return nbytes;
5068 }
5069
5070 static int memory_high_show(struct seq_file *m, void *v)
5071 {
5072 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5073 unsigned long high = READ_ONCE(memcg->high);
5074
5075 if (high == PAGE_COUNTER_MAX)
5076 seq_puts(m, "max\n");
5077 else
5078 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5079
5080 return 0;
5081 }
5082
5083 static ssize_t memory_high_write(struct kernfs_open_file *of,
5084 char *buf, size_t nbytes, loff_t off)
5085 {
5086 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5087 unsigned long high;
5088 int err;
5089
5090 buf = strstrip(buf);
5091 err = page_counter_memparse(buf, "max", &high);
5092 if (err)
5093 return err;
5094
5095 memcg->high = high;
5096
5097 memcg_wb_domain_size_changed(memcg);
5098 return nbytes;
5099 }
5100
5101 static int memory_max_show(struct seq_file *m, void *v)
5102 {
5103 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5104 unsigned long max = READ_ONCE(memcg->memory.limit);
5105
5106 if (max == PAGE_COUNTER_MAX)
5107 seq_puts(m, "max\n");
5108 else
5109 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5110
5111 return 0;
5112 }
5113
5114 static ssize_t memory_max_write(struct kernfs_open_file *of,
5115 char *buf, size_t nbytes, loff_t off)
5116 {
5117 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5118 unsigned long max;
5119 int err;
5120
5121 buf = strstrip(buf);
5122 err = page_counter_memparse(buf, "max", &max);
5123 if (err)
5124 return err;
5125
5126 err = mem_cgroup_resize_limit(memcg, max);
5127 if (err)
5128 return err;
5129
5130 memcg_wb_domain_size_changed(memcg);
5131 return nbytes;
5132 }
5133
5134 static int memory_events_show(struct seq_file *m, void *v)
5135 {
5136 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5137
5138 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5139 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5140 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5141 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5142
5143 return 0;
5144 }
5145
5146 static struct cftype memory_files[] = {
5147 {
5148 .name = "current",
5149 .flags = CFTYPE_NOT_ON_ROOT,
5150 .read_u64 = memory_current_read,
5151 },
5152 {
5153 .name = "low",
5154 .flags = CFTYPE_NOT_ON_ROOT,
5155 .seq_show = memory_low_show,
5156 .write = memory_low_write,
5157 },
5158 {
5159 .name = "high",
5160 .flags = CFTYPE_NOT_ON_ROOT,
5161 .seq_show = memory_high_show,
5162 .write = memory_high_write,
5163 },
5164 {
5165 .name = "max",
5166 .flags = CFTYPE_NOT_ON_ROOT,
5167 .seq_show = memory_max_show,
5168 .write = memory_max_write,
5169 },
5170 {
5171 .name = "events",
5172 .flags = CFTYPE_NOT_ON_ROOT,
5173 .file_offset = offsetof(struct mem_cgroup, events_file),
5174 .seq_show = memory_events_show,
5175 },
5176 { } /* terminate */
5177 };
5178
5179 struct cgroup_subsys memory_cgrp_subsys = {
5180 .css_alloc = mem_cgroup_css_alloc,
5181 .css_online = mem_cgroup_css_online,
5182 .css_offline = mem_cgroup_css_offline,
5183 .css_released = mem_cgroup_css_released,
5184 .css_free = mem_cgroup_css_free,
5185 .css_reset = mem_cgroup_css_reset,
5186 .can_attach = mem_cgroup_can_attach,
5187 .cancel_attach = mem_cgroup_cancel_attach,
5188 .attach = mem_cgroup_move_task,
5189 .bind = mem_cgroup_bind,
5190 .dfl_cftypes = memory_files,
5191 .legacy_cftypes = mem_cgroup_legacy_files,
5192 .early_init = 0,
5193 };
5194
5195 /**
5196 * mem_cgroup_low - check if memory consumption is below the normal range
5197 * @root: the highest ancestor to consider
5198 * @memcg: the memory cgroup to check
5199 *
5200 * Returns %true if memory consumption of @memcg, and that of all
5201 * configurable ancestors up to @root, is below the normal range.
5202 */
5203 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5204 {
5205 if (mem_cgroup_disabled())
5206 return false;
5207
5208 /*
5209 * The toplevel group doesn't have a configurable range, so
5210 * it's never low when looked at directly, and it is not
5211 * considered an ancestor when assessing the hierarchy.
5212 */
5213
5214 if (memcg == root_mem_cgroup)
5215 return false;
5216
5217 if (page_counter_read(&memcg->memory) >= memcg->low)
5218 return false;
5219
5220 while (memcg != root) {
5221 memcg = parent_mem_cgroup(memcg);
5222
5223 if (memcg == root_mem_cgroup)
5224 break;
5225
5226 if (page_counter_read(&memcg->memory) >= memcg->low)
5227 return false;
5228 }
5229 return true;
5230 }
5231
5232 /**
5233 * mem_cgroup_try_charge - try charging a page
5234 * @page: page to charge
5235 * @mm: mm context of the victim
5236 * @gfp_mask: reclaim mode
5237 * @memcgp: charged memcg return
5238 *
5239 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5240 * pages according to @gfp_mask if necessary.
5241 *
5242 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5243 * Otherwise, an error code is returned.
5244 *
5245 * After page->mapping has been set up, the caller must finalize the
5246 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5247 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5248 */
5249 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5250 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5251 bool compound)
5252 {
5253 struct mem_cgroup *memcg = NULL;
5254 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5255 int ret = 0;
5256
5257 if (mem_cgroup_disabled())
5258 goto out;
5259
5260 if (PageSwapCache(page)) {
5261 /*
5262 * Every swap fault against a single page tries to charge the
5263 * page, bail as early as possible. shmem_unuse() encounters
5264 * already charged pages, too. The USED bit is protected by
5265 * the page lock, which serializes swap cache removal, which
5266 * in turn serializes uncharging.
5267 */
5268 VM_BUG_ON_PAGE(!PageLocked(page), page);
5269 if (page->mem_cgroup)
5270 goto out;
5271
5272 if (do_memsw_account()) {
5273 swp_entry_t ent = { .val = page_private(page), };
5274 unsigned short id = lookup_swap_cgroup_id(ent);
5275
5276 rcu_read_lock();
5277 memcg = mem_cgroup_from_id(id);
5278 if (memcg && !css_tryget_online(&memcg->css))
5279 memcg = NULL;
5280 rcu_read_unlock();
5281 }
5282 }
5283
5284 if (!memcg)
5285 memcg = get_mem_cgroup_from_mm(mm);
5286
5287 ret = try_charge(memcg, gfp_mask, nr_pages);
5288
5289 css_put(&memcg->css);
5290 out:
5291 *memcgp = memcg;
5292 return ret;
5293 }
5294
5295 /**
5296 * mem_cgroup_commit_charge - commit a page charge
5297 * @page: page to charge
5298 * @memcg: memcg to charge the page to
5299 * @lrucare: page might be on LRU already
5300 *
5301 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5302 * after page->mapping has been set up. This must happen atomically
5303 * as part of the page instantiation, i.e. under the page table lock
5304 * for anonymous pages, under the page lock for page and swap cache.
5305 *
5306 * In addition, the page must not be on the LRU during the commit, to
5307 * prevent racing with task migration. If it might be, use @lrucare.
5308 *
5309 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5310 */
5311 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5312 bool lrucare, bool compound)
5313 {
5314 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5315
5316 VM_BUG_ON_PAGE(!page->mapping, page);
5317 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5318
5319 if (mem_cgroup_disabled())
5320 return;
5321 /*
5322 * Swap faults will attempt to charge the same page multiple
5323 * times. But reuse_swap_page() might have removed the page
5324 * from swapcache already, so we can't check PageSwapCache().
5325 */
5326 if (!memcg)
5327 return;
5328
5329 commit_charge(page, memcg, lrucare);
5330
5331 local_irq_disable();
5332 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5333 memcg_check_events(memcg, page);
5334 local_irq_enable();
5335
5336 if (do_memsw_account() && PageSwapCache(page)) {
5337 swp_entry_t entry = { .val = page_private(page) };
5338 /*
5339 * The swap entry might not get freed for a long time,
5340 * let's not wait for it. The page already received a
5341 * memory+swap charge, drop the swap entry duplicate.
5342 */
5343 mem_cgroup_uncharge_swap(entry);
5344 }
5345 }
5346
5347 /**
5348 * mem_cgroup_cancel_charge - cancel a page charge
5349 * @page: page to charge
5350 * @memcg: memcg to charge the page to
5351 *
5352 * Cancel a charge transaction started by mem_cgroup_try_charge().
5353 */
5354 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5355 bool compound)
5356 {
5357 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5358
5359 if (mem_cgroup_disabled())
5360 return;
5361 /*
5362 * Swap faults will attempt to charge the same page multiple
5363 * times. But reuse_swap_page() might have removed the page
5364 * from swapcache already, so we can't check PageSwapCache().
5365 */
5366 if (!memcg)
5367 return;
5368
5369 cancel_charge(memcg, nr_pages);
5370 }
5371
5372 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5373 unsigned long nr_anon, unsigned long nr_file,
5374 unsigned long nr_huge, struct page *dummy_page)
5375 {
5376 unsigned long nr_pages = nr_anon + nr_file;
5377 unsigned long flags;
5378
5379 if (!mem_cgroup_is_root(memcg)) {
5380 page_counter_uncharge(&memcg->memory, nr_pages);
5381 if (do_memsw_account())
5382 page_counter_uncharge(&memcg->memsw, nr_pages);
5383 memcg_oom_recover(memcg);
5384 }
5385
5386 local_irq_save(flags);
5387 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5388 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5389 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5390 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5391 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5392 memcg_check_events(memcg, dummy_page);
5393 local_irq_restore(flags);
5394
5395 if (!mem_cgroup_is_root(memcg))
5396 css_put_many(&memcg->css, nr_pages);
5397 }
5398
5399 static void uncharge_list(struct list_head *page_list)
5400 {
5401 struct mem_cgroup *memcg = NULL;
5402 unsigned long nr_anon = 0;
5403 unsigned long nr_file = 0;
5404 unsigned long nr_huge = 0;
5405 unsigned long pgpgout = 0;
5406 struct list_head *next;
5407 struct page *page;
5408
5409 next = page_list->next;
5410 do {
5411 unsigned int nr_pages = 1;
5412
5413 page = list_entry(next, struct page, lru);
5414 next = page->lru.next;
5415
5416 VM_BUG_ON_PAGE(PageLRU(page), page);
5417 VM_BUG_ON_PAGE(page_count(page), page);
5418
5419 if (!page->mem_cgroup)
5420 continue;
5421
5422 /*
5423 * Nobody should be changing or seriously looking at
5424 * page->mem_cgroup at this point, we have fully
5425 * exclusive access to the page.
5426 */
5427
5428 if (memcg != page->mem_cgroup) {
5429 if (memcg) {
5430 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5431 nr_huge, page);
5432 pgpgout = nr_anon = nr_file = nr_huge = 0;
5433 }
5434 memcg = page->mem_cgroup;
5435 }
5436
5437 if (PageTransHuge(page)) {
5438 nr_pages <<= compound_order(page);
5439 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5440 nr_huge += nr_pages;
5441 }
5442
5443 if (PageAnon(page))
5444 nr_anon += nr_pages;
5445 else
5446 nr_file += nr_pages;
5447
5448 page->mem_cgroup = NULL;
5449
5450 pgpgout++;
5451 } while (next != page_list);
5452
5453 if (memcg)
5454 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5455 nr_huge, page);
5456 }
5457
5458 /**
5459 * mem_cgroup_uncharge - uncharge a page
5460 * @page: page to uncharge
5461 *
5462 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5463 * mem_cgroup_commit_charge().
5464 */
5465 void mem_cgroup_uncharge(struct page *page)
5466 {
5467 if (mem_cgroup_disabled())
5468 return;
5469
5470 /* Don't touch page->lru of any random page, pre-check: */
5471 if (!page->mem_cgroup)
5472 return;
5473
5474 INIT_LIST_HEAD(&page->lru);
5475 uncharge_list(&page->lru);
5476 }
5477
5478 /**
5479 * mem_cgroup_uncharge_list - uncharge a list of page
5480 * @page_list: list of pages to uncharge
5481 *
5482 * Uncharge a list of pages previously charged with
5483 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5484 */
5485 void mem_cgroup_uncharge_list(struct list_head *page_list)
5486 {
5487 if (mem_cgroup_disabled())
5488 return;
5489
5490 if (!list_empty(page_list))
5491 uncharge_list(page_list);
5492 }
5493
5494 /**
5495 * mem_cgroup_replace_page - migrate a charge to another page
5496 * @oldpage: currently charged page
5497 * @newpage: page to transfer the charge to
5498 *
5499 * Migrate the charge from @oldpage to @newpage.
5500 *
5501 * Both pages must be locked, @newpage->mapping must be set up.
5502 * Either or both pages might be on the LRU already.
5503 */
5504 void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
5505 {
5506 struct mem_cgroup *memcg;
5507 int isolated;
5508
5509 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5510 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5511 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5512 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5513 newpage);
5514
5515 if (mem_cgroup_disabled())
5516 return;
5517
5518 /* Page cache replacement: new page already charged? */
5519 if (newpage->mem_cgroup)
5520 return;
5521
5522 /* Swapcache readahead pages can get replaced before being charged */
5523 memcg = oldpage->mem_cgroup;
5524 if (!memcg)
5525 return;
5526
5527 lock_page_lru(oldpage, &isolated);
5528 oldpage->mem_cgroup = NULL;
5529 unlock_page_lru(oldpage, isolated);
5530
5531 commit_charge(newpage, memcg, true);
5532 }
5533
5534 #ifdef CONFIG_INET
5535
5536 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5537 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5538
5539 void sock_update_memcg(struct sock *sk)
5540 {
5541 struct mem_cgroup *memcg;
5542
5543 /* Socket cloning can throw us here with sk_cgrp already
5544 * filled. It won't however, necessarily happen from
5545 * process context. So the test for root memcg given
5546 * the current task's memcg won't help us in this case.
5547 *
5548 * Respecting the original socket's memcg is a better
5549 * decision in this case.
5550 */
5551 if (sk->sk_memcg) {
5552 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5553 css_get(&sk->sk_memcg->css);
5554 return;
5555 }
5556
5557 rcu_read_lock();
5558 memcg = mem_cgroup_from_task(current);
5559 if (memcg == root_mem_cgroup)
5560 goto out;
5561 #ifdef CONFIG_MEMCG_KMEM
5562 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcp_mem.active)
5563 goto out;
5564 #endif
5565 if (css_tryget_online(&memcg->css))
5566 sk->sk_memcg = memcg;
5567 out:
5568 rcu_read_unlock();
5569 }
5570 EXPORT_SYMBOL(sock_update_memcg);
5571
5572 void sock_release_memcg(struct sock *sk)
5573 {
5574 WARN_ON(!sk->sk_memcg);
5575 css_put(&sk->sk_memcg->css);
5576 }
5577
5578 /**
5579 * mem_cgroup_charge_skmem - charge socket memory
5580 * @memcg: memcg to charge
5581 * @nr_pages: number of pages to charge
5582 *
5583 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5584 * @memcg's configured limit, %false if the charge had to be forced.
5585 */
5586 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5587 {
5588 gfp_t gfp_mask = GFP_KERNEL;
5589
5590 #ifdef CONFIG_MEMCG_KMEM
5591 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5592 struct page_counter *counter;
5593
5594 if (page_counter_try_charge(&memcg->tcp_mem.memory_allocated,
5595 nr_pages, &counter)) {
5596 memcg->tcp_mem.memory_pressure = 0;
5597 return true;
5598 }
5599 page_counter_charge(&memcg->tcp_mem.memory_allocated, nr_pages);
5600 memcg->tcp_mem.memory_pressure = 1;
5601 return false;
5602 }
5603 #endif
5604 /* Don't block in the packet receive path */
5605 if (in_softirq())
5606 gfp_mask = GFP_NOWAIT;
5607
5608 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5609 return true;
5610
5611 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5612 return false;
5613 }
5614
5615 /**
5616 * mem_cgroup_uncharge_skmem - uncharge socket memory
5617 * @memcg - memcg to uncharge
5618 * @nr_pages - number of pages to uncharge
5619 */
5620 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5621 {
5622 #ifdef CONFIG_MEMCG_KMEM
5623 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5624 page_counter_uncharge(&memcg->tcp_mem.memory_allocated,
5625 nr_pages);
5626 return;
5627 }
5628 #endif
5629 page_counter_uncharge(&memcg->memory, nr_pages);
5630 css_put_many(&memcg->css, nr_pages);
5631 }
5632
5633 #endif /* CONFIG_INET */
5634
5635 static int __init cgroup_memory(char *s)
5636 {
5637 char *token;
5638
5639 while ((token = strsep(&s, ",")) != NULL) {
5640 if (!*token)
5641 continue;
5642 if (!strcmp(token, "nosocket"))
5643 cgroup_memory_nosocket = true;
5644 if (!strcmp(token, "nokmem"))
5645 cgroup_memory_nokmem = true;
5646 }
5647 return 0;
5648 }
5649 __setup("cgroup.memory=", cgroup_memory);
5650
5651 /*
5652 * subsys_initcall() for memory controller.
5653 *
5654 * Some parts like hotcpu_notifier() have to be initialized from this context
5655 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5656 * everything that doesn't depend on a specific mem_cgroup structure should
5657 * be initialized from here.
5658 */
5659 static int __init mem_cgroup_init(void)
5660 {
5661 int cpu, node;
5662
5663 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5664
5665 for_each_possible_cpu(cpu)
5666 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5667 drain_local_stock);
5668
5669 for_each_node(node) {
5670 struct mem_cgroup_tree_per_node *rtpn;
5671 int zone;
5672
5673 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5674 node_online(node) ? node : NUMA_NO_NODE);
5675
5676 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5677 struct mem_cgroup_tree_per_zone *rtpz;
5678
5679 rtpz = &rtpn->rb_tree_per_zone[zone];
5680 rtpz->rb_root = RB_ROOT;
5681 spin_lock_init(&rtpz->lock);
5682 }
5683 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5684 }
5685
5686 return 0;
5687 }
5688 subsys_initcall(mem_cgroup_init);
5689
5690 #ifdef CONFIG_MEMCG_SWAP
5691 /**
5692 * mem_cgroup_swapout - transfer a memsw charge to swap
5693 * @page: page whose memsw charge to transfer
5694 * @entry: swap entry to move the charge to
5695 *
5696 * Transfer the memsw charge of @page to @entry.
5697 */
5698 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5699 {
5700 struct mem_cgroup *memcg;
5701 unsigned short oldid;
5702
5703 VM_BUG_ON_PAGE(PageLRU(page), page);
5704 VM_BUG_ON_PAGE(page_count(page), page);
5705
5706 if (!do_memsw_account())
5707 return;
5708
5709 memcg = page->mem_cgroup;
5710
5711 /* Readahead page, never charged */
5712 if (!memcg)
5713 return;
5714
5715 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5716 VM_BUG_ON_PAGE(oldid, page);
5717 mem_cgroup_swap_statistics(memcg, true);
5718
5719 page->mem_cgroup = NULL;
5720
5721 if (!mem_cgroup_is_root(memcg))
5722 page_counter_uncharge(&memcg->memory, 1);
5723
5724 /*
5725 * Interrupts should be disabled here because the caller holds the
5726 * mapping->tree_lock lock which is taken with interrupts-off. It is
5727 * important here to have the interrupts disabled because it is the
5728 * only synchronisation we have for udpating the per-CPU variables.
5729 */
5730 VM_BUG_ON(!irqs_disabled());
5731 mem_cgroup_charge_statistics(memcg, page, false, -1);
5732 memcg_check_events(memcg, page);
5733 }
5734
5735 /**
5736 * mem_cgroup_uncharge_swap - uncharge a swap entry
5737 * @entry: swap entry to uncharge
5738 *
5739 * Drop the memsw charge associated with @entry.
5740 */
5741 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5742 {
5743 struct mem_cgroup *memcg;
5744 unsigned short id;
5745
5746 if (!do_memsw_account())
5747 return;
5748
5749 id = swap_cgroup_record(entry, 0);
5750 rcu_read_lock();
5751 memcg = mem_cgroup_from_id(id);
5752 if (memcg) {
5753 if (!mem_cgroup_is_root(memcg))
5754 page_counter_uncharge(&memcg->memsw, 1);
5755 mem_cgroup_swap_statistics(memcg, false);
5756 css_put(&memcg->css);
5757 }
5758 rcu_read_unlock();
5759 }
5760
5761 /* for remember boot option*/
5762 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5763 static int really_do_swap_account __initdata = 1;
5764 #else
5765 static int really_do_swap_account __initdata;
5766 #endif
5767
5768 static int __init enable_swap_account(char *s)
5769 {
5770 if (!strcmp(s, "1"))
5771 really_do_swap_account = 1;
5772 else if (!strcmp(s, "0"))
5773 really_do_swap_account = 0;
5774 return 1;
5775 }
5776 __setup("swapaccount=", enable_swap_account);
5777
5778 static struct cftype memsw_cgroup_files[] = {
5779 {
5780 .name = "memsw.usage_in_bytes",
5781 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5782 .read_u64 = mem_cgroup_read_u64,
5783 },
5784 {
5785 .name = "memsw.max_usage_in_bytes",
5786 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5787 .write = mem_cgroup_reset,
5788 .read_u64 = mem_cgroup_read_u64,
5789 },
5790 {
5791 .name = "memsw.limit_in_bytes",
5792 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5793 .write = mem_cgroup_write,
5794 .read_u64 = mem_cgroup_read_u64,
5795 },
5796 {
5797 .name = "memsw.failcnt",
5798 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5799 .write = mem_cgroup_reset,
5800 .read_u64 = mem_cgroup_read_u64,
5801 },
5802 { }, /* terminate */
5803 };
5804
5805 static int __init mem_cgroup_swap_init(void)
5806 {
5807 if (!mem_cgroup_disabled() && really_do_swap_account) {
5808 do_swap_account = 1;
5809 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5810 memsw_cgroup_files));
5811 }
5812 return 0;
5813 }
5814 subsys_initcall(mem_cgroup_swap_init);
5815
5816 #endif /* CONFIG_MEMCG_SWAP */
This page took 0.154653 seconds and 6 git commands to generate.