mm: memcontrol: rearrange charging fast path
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include "internal.h"
60 #include <net/sock.h>
61 #include <net/ip.h>
62 #include <net/tcp_memcontrol.h>
63 #include "slab.h"
64
65 #include <asm/uaccess.h>
66
67 #include <trace/events/vmscan.h>
68
69 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70 EXPORT_SYMBOL(memory_cgrp_subsys);
71
72 #define MEM_CGROUP_RECLAIM_RETRIES 5
73 static struct mem_cgroup *root_mem_cgroup __read_mostly;
74
75 #ifdef CONFIG_MEMCG_SWAP
76 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77 int do_swap_account __read_mostly;
78
79 /* for remember boot option*/
80 #ifdef CONFIG_MEMCG_SWAP_ENABLED
81 static int really_do_swap_account __initdata = 1;
82 #else
83 static int really_do_swap_account __initdata;
84 #endif
85
86 #else
87 #define do_swap_account 0
88 #endif
89
90
91 static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
94 "rss_huge",
95 "mapped_file",
96 "writeback",
97 "swap",
98 };
99
100 enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
105 MEM_CGROUP_EVENTS_NSTATS,
106 };
107
108 static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113 };
114
115 static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121 };
122
123 /*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129 enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
131 MEM_CGROUP_TARGET_SOFTLIMIT,
132 MEM_CGROUP_TARGET_NUMAINFO,
133 MEM_CGROUP_NTARGETS,
134 };
135 #define THRESHOLDS_EVENTS_TARGET 128
136 #define SOFTLIMIT_EVENTS_TARGET 1024
137 #define NUMAINFO_EVENTS_TARGET 1024
138
139 struct mem_cgroup_stat_cpu {
140 long count[MEM_CGROUP_STAT_NSTATS];
141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142 unsigned long nr_page_events;
143 unsigned long targets[MEM_CGROUP_NTARGETS];
144 };
145
146 struct mem_cgroup_reclaim_iter {
147 /*
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
150 */
151 struct mem_cgroup *last_visited;
152 int last_dead_count;
153
154 /* scan generation, increased every round-trip */
155 unsigned int generation;
156 };
157
158 /*
159 * per-zone information in memory controller.
160 */
161 struct mem_cgroup_per_zone {
162 struct lruvec lruvec;
163 unsigned long lru_size[NR_LRU_LISTS];
164
165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166
167 struct rb_node tree_node; /* RB tree node */
168 unsigned long long usage_in_excess;/* Set to the value by which */
169 /* the soft limit is exceeded*/
170 bool on_tree;
171 struct mem_cgroup *memcg; /* Back pointer, we cannot */
172 /* use container_of */
173 };
174
175 struct mem_cgroup_per_node {
176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177 };
178
179 /*
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
182 */
183
184 struct mem_cgroup_tree_per_zone {
185 struct rb_root rb_root;
186 spinlock_t lock;
187 };
188
189 struct mem_cgroup_tree_per_node {
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191 };
192
193 struct mem_cgroup_tree {
194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195 };
196
197 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198
199 struct mem_cgroup_threshold {
200 struct eventfd_ctx *eventfd;
201 u64 threshold;
202 };
203
204 /* For threshold */
205 struct mem_cgroup_threshold_ary {
206 /* An array index points to threshold just below or equal to usage. */
207 int current_threshold;
208 /* Size of entries[] */
209 unsigned int size;
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries[0];
212 };
213
214 struct mem_cgroup_thresholds {
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary *primary;
217 /*
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
221 */
222 struct mem_cgroup_threshold_ary *spare;
223 };
224
225 /* for OOM */
226 struct mem_cgroup_eventfd_list {
227 struct list_head list;
228 struct eventfd_ctx *eventfd;
229 };
230
231 /*
232 * cgroup_event represents events which userspace want to receive.
233 */
234 struct mem_cgroup_event {
235 /*
236 * memcg which the event belongs to.
237 */
238 struct mem_cgroup *memcg;
239 /*
240 * eventfd to signal userspace about the event.
241 */
242 struct eventfd_ctx *eventfd;
243 /*
244 * Each of these stored in a list by the cgroup.
245 */
246 struct list_head list;
247 /*
248 * register_event() callback will be used to add new userspace
249 * waiter for changes related to this event. Use eventfd_signal()
250 * on eventfd to send notification to userspace.
251 */
252 int (*register_event)(struct mem_cgroup *memcg,
253 struct eventfd_ctx *eventfd, const char *args);
254 /*
255 * unregister_event() callback will be called when userspace closes
256 * the eventfd or on cgroup removing. This callback must be set,
257 * if you want provide notification functionality.
258 */
259 void (*unregister_event)(struct mem_cgroup *memcg,
260 struct eventfd_ctx *eventfd);
261 /*
262 * All fields below needed to unregister event when
263 * userspace closes eventfd.
264 */
265 poll_table pt;
266 wait_queue_head_t *wqh;
267 wait_queue_t wait;
268 struct work_struct remove;
269 };
270
271 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
273
274 /*
275 * The memory controller data structure. The memory controller controls both
276 * page cache and RSS per cgroup. We would eventually like to provide
277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278 * to help the administrator determine what knobs to tune.
279 *
280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
281 * we hit the water mark. May be even add a low water mark, such that
282 * no reclaim occurs from a cgroup at it's low water mark, this is
283 * a feature that will be implemented much later in the future.
284 */
285 struct mem_cgroup {
286 struct cgroup_subsys_state css;
287 /*
288 * the counter to account for memory usage
289 */
290 struct res_counter res;
291
292 /* vmpressure notifications */
293 struct vmpressure vmpressure;
294
295 /*
296 * the counter to account for mem+swap usage.
297 */
298 struct res_counter memsw;
299
300 /*
301 * the counter to account for kernel memory usage.
302 */
303 struct res_counter kmem;
304 /*
305 * Should the accounting and control be hierarchical, per subtree?
306 */
307 bool use_hierarchy;
308 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
309
310 bool oom_lock;
311 atomic_t under_oom;
312 atomic_t oom_wakeups;
313
314 int swappiness;
315 /* OOM-Killer disable */
316 int oom_kill_disable;
317
318 /* set when res.limit == memsw.limit */
319 bool memsw_is_minimum;
320
321 /* protect arrays of thresholds */
322 struct mutex thresholds_lock;
323
324 /* thresholds for memory usage. RCU-protected */
325 struct mem_cgroup_thresholds thresholds;
326
327 /* thresholds for mem+swap usage. RCU-protected */
328 struct mem_cgroup_thresholds memsw_thresholds;
329
330 /* For oom notifier event fd */
331 struct list_head oom_notify;
332
333 /*
334 * Should we move charges of a task when a task is moved into this
335 * mem_cgroup ? And what type of charges should we move ?
336 */
337 unsigned long move_charge_at_immigrate;
338 /*
339 * set > 0 if pages under this cgroup are moving to other cgroup.
340 */
341 atomic_t moving_account;
342 /* taken only while moving_account > 0 */
343 spinlock_t move_lock;
344 /*
345 * percpu counter.
346 */
347 struct mem_cgroup_stat_cpu __percpu *stat;
348 /*
349 * used when a cpu is offlined or other synchronizations
350 * See mem_cgroup_read_stat().
351 */
352 struct mem_cgroup_stat_cpu nocpu_base;
353 spinlock_t pcp_counter_lock;
354
355 atomic_t dead_count;
356 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
357 struct cg_proto tcp_mem;
358 #endif
359 #if defined(CONFIG_MEMCG_KMEM)
360 /* analogous to slab_common's slab_caches list, but per-memcg;
361 * protected by memcg_slab_mutex */
362 struct list_head memcg_slab_caches;
363 /* Index in the kmem_cache->memcg_params->memcg_caches array */
364 int kmemcg_id;
365 #endif
366
367 int last_scanned_node;
368 #if MAX_NUMNODES > 1
369 nodemask_t scan_nodes;
370 atomic_t numainfo_events;
371 atomic_t numainfo_updating;
372 #endif
373
374 /* List of events which userspace want to receive */
375 struct list_head event_list;
376 spinlock_t event_list_lock;
377
378 struct mem_cgroup_per_node *nodeinfo[0];
379 /* WARNING: nodeinfo must be the last member here */
380 };
381
382 /* internal only representation about the status of kmem accounting. */
383 enum {
384 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
385 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
386 };
387
388 #ifdef CONFIG_MEMCG_KMEM
389 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
390 {
391 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
392 }
393
394 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
395 {
396 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
397 }
398
399 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
400 {
401 /*
402 * Our caller must use css_get() first, because memcg_uncharge_kmem()
403 * will call css_put() if it sees the memcg is dead.
404 */
405 smp_wmb();
406 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
407 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
408 }
409
410 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
411 {
412 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
413 &memcg->kmem_account_flags);
414 }
415 #endif
416
417 /* Stuffs for move charges at task migration. */
418 /*
419 * Types of charges to be moved. "move_charge_at_immitgrate" and
420 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
421 */
422 enum move_type {
423 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
424 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
425 NR_MOVE_TYPE,
426 };
427
428 /* "mc" and its members are protected by cgroup_mutex */
429 static struct move_charge_struct {
430 spinlock_t lock; /* for from, to */
431 struct mem_cgroup *from;
432 struct mem_cgroup *to;
433 unsigned long immigrate_flags;
434 unsigned long precharge;
435 unsigned long moved_charge;
436 unsigned long moved_swap;
437 struct task_struct *moving_task; /* a task moving charges */
438 wait_queue_head_t waitq; /* a waitq for other context */
439 } mc = {
440 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
441 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
442 };
443
444 static bool move_anon(void)
445 {
446 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
447 }
448
449 static bool move_file(void)
450 {
451 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
452 }
453
454 /*
455 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
456 * limit reclaim to prevent infinite loops, if they ever occur.
457 */
458 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
459 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
460
461 enum charge_type {
462 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
463 MEM_CGROUP_CHARGE_TYPE_ANON,
464 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
465 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
466 NR_CHARGE_TYPE,
467 };
468
469 /* for encoding cft->private value on file */
470 enum res_type {
471 _MEM,
472 _MEMSWAP,
473 _OOM_TYPE,
474 _KMEM,
475 };
476
477 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
478 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
479 #define MEMFILE_ATTR(val) ((val) & 0xffff)
480 /* Used for OOM nofiier */
481 #define OOM_CONTROL (0)
482
483 /*
484 * Reclaim flags for mem_cgroup_hierarchical_reclaim
485 */
486 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
487 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
488 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
489 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
490
491 /*
492 * The memcg_create_mutex will be held whenever a new cgroup is created.
493 * As a consequence, any change that needs to protect against new child cgroups
494 * appearing has to hold it as well.
495 */
496 static DEFINE_MUTEX(memcg_create_mutex);
497
498 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
499 {
500 return s ? container_of(s, struct mem_cgroup, css) : NULL;
501 }
502
503 /* Some nice accessors for the vmpressure. */
504 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
505 {
506 if (!memcg)
507 memcg = root_mem_cgroup;
508 return &memcg->vmpressure;
509 }
510
511 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
512 {
513 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
514 }
515
516 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
517 {
518 return (memcg == root_mem_cgroup);
519 }
520
521 /*
522 * We restrict the id in the range of [1, 65535], so it can fit into
523 * an unsigned short.
524 */
525 #define MEM_CGROUP_ID_MAX USHRT_MAX
526
527 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
528 {
529 return memcg->css.id;
530 }
531
532 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
533 {
534 struct cgroup_subsys_state *css;
535
536 css = css_from_id(id, &memory_cgrp_subsys);
537 return mem_cgroup_from_css(css);
538 }
539
540 /* Writing them here to avoid exposing memcg's inner layout */
541 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
542
543 void sock_update_memcg(struct sock *sk)
544 {
545 if (mem_cgroup_sockets_enabled) {
546 struct mem_cgroup *memcg;
547 struct cg_proto *cg_proto;
548
549 BUG_ON(!sk->sk_prot->proto_cgroup);
550
551 /* Socket cloning can throw us here with sk_cgrp already
552 * filled. It won't however, necessarily happen from
553 * process context. So the test for root memcg given
554 * the current task's memcg won't help us in this case.
555 *
556 * Respecting the original socket's memcg is a better
557 * decision in this case.
558 */
559 if (sk->sk_cgrp) {
560 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
561 css_get(&sk->sk_cgrp->memcg->css);
562 return;
563 }
564
565 rcu_read_lock();
566 memcg = mem_cgroup_from_task(current);
567 cg_proto = sk->sk_prot->proto_cgroup(memcg);
568 if (!mem_cgroup_is_root(memcg) &&
569 memcg_proto_active(cg_proto) &&
570 css_tryget_online(&memcg->css)) {
571 sk->sk_cgrp = cg_proto;
572 }
573 rcu_read_unlock();
574 }
575 }
576 EXPORT_SYMBOL(sock_update_memcg);
577
578 void sock_release_memcg(struct sock *sk)
579 {
580 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
581 struct mem_cgroup *memcg;
582 WARN_ON(!sk->sk_cgrp->memcg);
583 memcg = sk->sk_cgrp->memcg;
584 css_put(&sk->sk_cgrp->memcg->css);
585 }
586 }
587
588 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
589 {
590 if (!memcg || mem_cgroup_is_root(memcg))
591 return NULL;
592
593 return &memcg->tcp_mem;
594 }
595 EXPORT_SYMBOL(tcp_proto_cgroup);
596
597 static void disarm_sock_keys(struct mem_cgroup *memcg)
598 {
599 if (!memcg_proto_activated(&memcg->tcp_mem))
600 return;
601 static_key_slow_dec(&memcg_socket_limit_enabled);
602 }
603 #else
604 static void disarm_sock_keys(struct mem_cgroup *memcg)
605 {
606 }
607 #endif
608
609 #ifdef CONFIG_MEMCG_KMEM
610 /*
611 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
612 * The main reason for not using cgroup id for this:
613 * this works better in sparse environments, where we have a lot of memcgs,
614 * but only a few kmem-limited. Or also, if we have, for instance, 200
615 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
616 * 200 entry array for that.
617 *
618 * The current size of the caches array is stored in
619 * memcg_limited_groups_array_size. It will double each time we have to
620 * increase it.
621 */
622 static DEFINE_IDA(kmem_limited_groups);
623 int memcg_limited_groups_array_size;
624
625 /*
626 * MIN_SIZE is different than 1, because we would like to avoid going through
627 * the alloc/free process all the time. In a small machine, 4 kmem-limited
628 * cgroups is a reasonable guess. In the future, it could be a parameter or
629 * tunable, but that is strictly not necessary.
630 *
631 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
632 * this constant directly from cgroup, but it is understandable that this is
633 * better kept as an internal representation in cgroup.c. In any case, the
634 * cgrp_id space is not getting any smaller, and we don't have to necessarily
635 * increase ours as well if it increases.
636 */
637 #define MEMCG_CACHES_MIN_SIZE 4
638 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
639
640 /*
641 * A lot of the calls to the cache allocation functions are expected to be
642 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
643 * conditional to this static branch, we'll have to allow modules that does
644 * kmem_cache_alloc and the such to see this symbol as well
645 */
646 struct static_key memcg_kmem_enabled_key;
647 EXPORT_SYMBOL(memcg_kmem_enabled_key);
648
649 static void disarm_kmem_keys(struct mem_cgroup *memcg)
650 {
651 if (memcg_kmem_is_active(memcg)) {
652 static_key_slow_dec(&memcg_kmem_enabled_key);
653 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
654 }
655 /*
656 * This check can't live in kmem destruction function,
657 * since the charges will outlive the cgroup
658 */
659 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
660 }
661 #else
662 static void disarm_kmem_keys(struct mem_cgroup *memcg)
663 {
664 }
665 #endif /* CONFIG_MEMCG_KMEM */
666
667 static void disarm_static_keys(struct mem_cgroup *memcg)
668 {
669 disarm_sock_keys(memcg);
670 disarm_kmem_keys(memcg);
671 }
672
673 static void drain_all_stock_async(struct mem_cgroup *memcg);
674
675 static struct mem_cgroup_per_zone *
676 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
677 {
678 int nid = zone_to_nid(zone);
679 int zid = zone_idx(zone);
680
681 return &memcg->nodeinfo[nid]->zoneinfo[zid];
682 }
683
684 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
685 {
686 return &memcg->css;
687 }
688
689 static struct mem_cgroup_per_zone *
690 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
691 {
692 int nid = page_to_nid(page);
693 int zid = page_zonenum(page);
694
695 return &memcg->nodeinfo[nid]->zoneinfo[zid];
696 }
697
698 static struct mem_cgroup_tree_per_zone *
699 soft_limit_tree_node_zone(int nid, int zid)
700 {
701 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
702 }
703
704 static struct mem_cgroup_tree_per_zone *
705 soft_limit_tree_from_page(struct page *page)
706 {
707 int nid = page_to_nid(page);
708 int zid = page_zonenum(page);
709
710 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
711 }
712
713 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
714 struct mem_cgroup_tree_per_zone *mctz,
715 unsigned long long new_usage_in_excess)
716 {
717 struct rb_node **p = &mctz->rb_root.rb_node;
718 struct rb_node *parent = NULL;
719 struct mem_cgroup_per_zone *mz_node;
720
721 if (mz->on_tree)
722 return;
723
724 mz->usage_in_excess = new_usage_in_excess;
725 if (!mz->usage_in_excess)
726 return;
727 while (*p) {
728 parent = *p;
729 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
730 tree_node);
731 if (mz->usage_in_excess < mz_node->usage_in_excess)
732 p = &(*p)->rb_left;
733 /*
734 * We can't avoid mem cgroups that are over their soft
735 * limit by the same amount
736 */
737 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
738 p = &(*p)->rb_right;
739 }
740 rb_link_node(&mz->tree_node, parent, p);
741 rb_insert_color(&mz->tree_node, &mctz->rb_root);
742 mz->on_tree = true;
743 }
744
745 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
746 struct mem_cgroup_tree_per_zone *mctz)
747 {
748 if (!mz->on_tree)
749 return;
750 rb_erase(&mz->tree_node, &mctz->rb_root);
751 mz->on_tree = false;
752 }
753
754 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
755 struct mem_cgroup_tree_per_zone *mctz)
756 {
757 spin_lock(&mctz->lock);
758 __mem_cgroup_remove_exceeded(mz, mctz);
759 spin_unlock(&mctz->lock);
760 }
761
762
763 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
764 {
765 unsigned long long excess;
766 struct mem_cgroup_per_zone *mz;
767 struct mem_cgroup_tree_per_zone *mctz;
768
769 mctz = soft_limit_tree_from_page(page);
770 /*
771 * Necessary to update all ancestors when hierarchy is used.
772 * because their event counter is not touched.
773 */
774 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
775 mz = mem_cgroup_page_zoneinfo(memcg, page);
776 excess = res_counter_soft_limit_excess(&memcg->res);
777 /*
778 * We have to update the tree if mz is on RB-tree or
779 * mem is over its softlimit.
780 */
781 if (excess || mz->on_tree) {
782 spin_lock(&mctz->lock);
783 /* if on-tree, remove it */
784 if (mz->on_tree)
785 __mem_cgroup_remove_exceeded(mz, mctz);
786 /*
787 * Insert again. mz->usage_in_excess will be updated.
788 * If excess is 0, no tree ops.
789 */
790 __mem_cgroup_insert_exceeded(mz, mctz, excess);
791 spin_unlock(&mctz->lock);
792 }
793 }
794 }
795
796 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
797 {
798 struct mem_cgroup_tree_per_zone *mctz;
799 struct mem_cgroup_per_zone *mz;
800 int nid, zid;
801
802 for_each_node(nid) {
803 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
804 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
805 mctz = soft_limit_tree_node_zone(nid, zid);
806 mem_cgroup_remove_exceeded(mz, mctz);
807 }
808 }
809 }
810
811 static struct mem_cgroup_per_zone *
812 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
813 {
814 struct rb_node *rightmost = NULL;
815 struct mem_cgroup_per_zone *mz;
816
817 retry:
818 mz = NULL;
819 rightmost = rb_last(&mctz->rb_root);
820 if (!rightmost)
821 goto done; /* Nothing to reclaim from */
822
823 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
824 /*
825 * Remove the node now but someone else can add it back,
826 * we will to add it back at the end of reclaim to its correct
827 * position in the tree.
828 */
829 __mem_cgroup_remove_exceeded(mz, mctz);
830 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
831 !css_tryget_online(&mz->memcg->css))
832 goto retry;
833 done:
834 return mz;
835 }
836
837 static struct mem_cgroup_per_zone *
838 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
839 {
840 struct mem_cgroup_per_zone *mz;
841
842 spin_lock(&mctz->lock);
843 mz = __mem_cgroup_largest_soft_limit_node(mctz);
844 spin_unlock(&mctz->lock);
845 return mz;
846 }
847
848 /*
849 * Implementation Note: reading percpu statistics for memcg.
850 *
851 * Both of vmstat[] and percpu_counter has threshold and do periodic
852 * synchronization to implement "quick" read. There are trade-off between
853 * reading cost and precision of value. Then, we may have a chance to implement
854 * a periodic synchronizion of counter in memcg's counter.
855 *
856 * But this _read() function is used for user interface now. The user accounts
857 * memory usage by memory cgroup and he _always_ requires exact value because
858 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
859 * have to visit all online cpus and make sum. So, for now, unnecessary
860 * synchronization is not implemented. (just implemented for cpu hotplug)
861 *
862 * If there are kernel internal actions which can make use of some not-exact
863 * value, and reading all cpu value can be performance bottleneck in some
864 * common workload, threashold and synchonization as vmstat[] should be
865 * implemented.
866 */
867 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
868 enum mem_cgroup_stat_index idx)
869 {
870 long val = 0;
871 int cpu;
872
873 get_online_cpus();
874 for_each_online_cpu(cpu)
875 val += per_cpu(memcg->stat->count[idx], cpu);
876 #ifdef CONFIG_HOTPLUG_CPU
877 spin_lock(&memcg->pcp_counter_lock);
878 val += memcg->nocpu_base.count[idx];
879 spin_unlock(&memcg->pcp_counter_lock);
880 #endif
881 put_online_cpus();
882 return val;
883 }
884
885 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
886 bool charge)
887 {
888 int val = (charge) ? 1 : -1;
889 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
890 }
891
892 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
893 enum mem_cgroup_events_index idx)
894 {
895 unsigned long val = 0;
896 int cpu;
897
898 get_online_cpus();
899 for_each_online_cpu(cpu)
900 val += per_cpu(memcg->stat->events[idx], cpu);
901 #ifdef CONFIG_HOTPLUG_CPU
902 spin_lock(&memcg->pcp_counter_lock);
903 val += memcg->nocpu_base.events[idx];
904 spin_unlock(&memcg->pcp_counter_lock);
905 #endif
906 put_online_cpus();
907 return val;
908 }
909
910 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
911 struct page *page,
912 bool anon, int nr_pages)
913 {
914 /*
915 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
916 * counted as CACHE even if it's on ANON LRU.
917 */
918 if (anon)
919 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
920 nr_pages);
921 else
922 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
923 nr_pages);
924
925 if (PageTransHuge(page))
926 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
927 nr_pages);
928
929 /* pagein of a big page is an event. So, ignore page size */
930 if (nr_pages > 0)
931 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
932 else {
933 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
934 nr_pages = -nr_pages; /* for event */
935 }
936
937 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
938 }
939
940 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
941 {
942 struct mem_cgroup_per_zone *mz;
943
944 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
945 return mz->lru_size[lru];
946 }
947
948 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
949 int nid,
950 unsigned int lru_mask)
951 {
952 unsigned long nr = 0;
953 int zid;
954
955 VM_BUG_ON((unsigned)nid >= nr_node_ids);
956
957 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
958 struct mem_cgroup_per_zone *mz;
959 enum lru_list lru;
960
961 for_each_lru(lru) {
962 if (!(BIT(lru) & lru_mask))
963 continue;
964 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
965 nr += mz->lru_size[lru];
966 }
967 }
968 return nr;
969 }
970
971 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
972 unsigned int lru_mask)
973 {
974 unsigned long nr = 0;
975 int nid;
976
977 for_each_node_state(nid, N_MEMORY)
978 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
979 return nr;
980 }
981
982 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
983 enum mem_cgroup_events_target target)
984 {
985 unsigned long val, next;
986
987 val = __this_cpu_read(memcg->stat->nr_page_events);
988 next = __this_cpu_read(memcg->stat->targets[target]);
989 /* from time_after() in jiffies.h */
990 if ((long)next - (long)val < 0) {
991 switch (target) {
992 case MEM_CGROUP_TARGET_THRESH:
993 next = val + THRESHOLDS_EVENTS_TARGET;
994 break;
995 case MEM_CGROUP_TARGET_SOFTLIMIT:
996 next = val + SOFTLIMIT_EVENTS_TARGET;
997 break;
998 case MEM_CGROUP_TARGET_NUMAINFO:
999 next = val + NUMAINFO_EVENTS_TARGET;
1000 break;
1001 default:
1002 break;
1003 }
1004 __this_cpu_write(memcg->stat->targets[target], next);
1005 return true;
1006 }
1007 return false;
1008 }
1009
1010 /*
1011 * Check events in order.
1012 *
1013 */
1014 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1015 {
1016 preempt_disable();
1017 /* threshold event is triggered in finer grain than soft limit */
1018 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1019 MEM_CGROUP_TARGET_THRESH))) {
1020 bool do_softlimit;
1021 bool do_numainfo __maybe_unused;
1022
1023 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1024 MEM_CGROUP_TARGET_SOFTLIMIT);
1025 #if MAX_NUMNODES > 1
1026 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1027 MEM_CGROUP_TARGET_NUMAINFO);
1028 #endif
1029 preempt_enable();
1030
1031 mem_cgroup_threshold(memcg);
1032 if (unlikely(do_softlimit))
1033 mem_cgroup_update_tree(memcg, page);
1034 #if MAX_NUMNODES > 1
1035 if (unlikely(do_numainfo))
1036 atomic_inc(&memcg->numainfo_events);
1037 #endif
1038 } else
1039 preempt_enable();
1040 }
1041
1042 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1043 {
1044 /*
1045 * mm_update_next_owner() may clear mm->owner to NULL
1046 * if it races with swapoff, page migration, etc.
1047 * So this can be called with p == NULL.
1048 */
1049 if (unlikely(!p))
1050 return NULL;
1051
1052 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1053 }
1054
1055 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1056 {
1057 struct mem_cgroup *memcg = NULL;
1058
1059 rcu_read_lock();
1060 do {
1061 /*
1062 * Page cache insertions can happen withou an
1063 * actual mm context, e.g. during disk probing
1064 * on boot, loopback IO, acct() writes etc.
1065 */
1066 if (unlikely(!mm))
1067 memcg = root_mem_cgroup;
1068 else {
1069 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1070 if (unlikely(!memcg))
1071 memcg = root_mem_cgroup;
1072 }
1073 } while (!css_tryget_online(&memcg->css));
1074 rcu_read_unlock();
1075 return memcg;
1076 }
1077
1078 /*
1079 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1080 * ref. count) or NULL if the whole root's subtree has been visited.
1081 *
1082 * helper function to be used by mem_cgroup_iter
1083 */
1084 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1085 struct mem_cgroup *last_visited)
1086 {
1087 struct cgroup_subsys_state *prev_css, *next_css;
1088
1089 prev_css = last_visited ? &last_visited->css : NULL;
1090 skip_node:
1091 next_css = css_next_descendant_pre(prev_css, &root->css);
1092
1093 /*
1094 * Even if we found a group we have to make sure it is
1095 * alive. css && !memcg means that the groups should be
1096 * skipped and we should continue the tree walk.
1097 * last_visited css is safe to use because it is
1098 * protected by css_get and the tree walk is rcu safe.
1099 *
1100 * We do not take a reference on the root of the tree walk
1101 * because we might race with the root removal when it would
1102 * be the only node in the iterated hierarchy and mem_cgroup_iter
1103 * would end up in an endless loop because it expects that at
1104 * least one valid node will be returned. Root cannot disappear
1105 * because caller of the iterator should hold it already so
1106 * skipping css reference should be safe.
1107 */
1108 if (next_css) {
1109 if ((next_css == &root->css) ||
1110 ((next_css->flags & CSS_ONLINE) &&
1111 css_tryget_online(next_css)))
1112 return mem_cgroup_from_css(next_css);
1113
1114 prev_css = next_css;
1115 goto skip_node;
1116 }
1117
1118 return NULL;
1119 }
1120
1121 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1122 {
1123 /*
1124 * When a group in the hierarchy below root is destroyed, the
1125 * hierarchy iterator can no longer be trusted since it might
1126 * have pointed to the destroyed group. Invalidate it.
1127 */
1128 atomic_inc(&root->dead_count);
1129 }
1130
1131 static struct mem_cgroup *
1132 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1133 struct mem_cgroup *root,
1134 int *sequence)
1135 {
1136 struct mem_cgroup *position = NULL;
1137 /*
1138 * A cgroup destruction happens in two stages: offlining and
1139 * release. They are separated by a RCU grace period.
1140 *
1141 * If the iterator is valid, we may still race with an
1142 * offlining. The RCU lock ensures the object won't be
1143 * released, tryget will fail if we lost the race.
1144 */
1145 *sequence = atomic_read(&root->dead_count);
1146 if (iter->last_dead_count == *sequence) {
1147 smp_rmb();
1148 position = iter->last_visited;
1149
1150 /*
1151 * We cannot take a reference to root because we might race
1152 * with root removal and returning NULL would end up in
1153 * an endless loop on the iterator user level when root
1154 * would be returned all the time.
1155 */
1156 if (position && position != root &&
1157 !css_tryget_online(&position->css))
1158 position = NULL;
1159 }
1160 return position;
1161 }
1162
1163 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1164 struct mem_cgroup *last_visited,
1165 struct mem_cgroup *new_position,
1166 struct mem_cgroup *root,
1167 int sequence)
1168 {
1169 /* root reference counting symmetric to mem_cgroup_iter_load */
1170 if (last_visited && last_visited != root)
1171 css_put(&last_visited->css);
1172 /*
1173 * We store the sequence count from the time @last_visited was
1174 * loaded successfully instead of rereading it here so that we
1175 * don't lose destruction events in between. We could have
1176 * raced with the destruction of @new_position after all.
1177 */
1178 iter->last_visited = new_position;
1179 smp_wmb();
1180 iter->last_dead_count = sequence;
1181 }
1182
1183 /**
1184 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1185 * @root: hierarchy root
1186 * @prev: previously returned memcg, NULL on first invocation
1187 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1188 *
1189 * Returns references to children of the hierarchy below @root, or
1190 * @root itself, or %NULL after a full round-trip.
1191 *
1192 * Caller must pass the return value in @prev on subsequent
1193 * invocations for reference counting, or use mem_cgroup_iter_break()
1194 * to cancel a hierarchy walk before the round-trip is complete.
1195 *
1196 * Reclaimers can specify a zone and a priority level in @reclaim to
1197 * divide up the memcgs in the hierarchy among all concurrent
1198 * reclaimers operating on the same zone and priority.
1199 */
1200 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1201 struct mem_cgroup *prev,
1202 struct mem_cgroup_reclaim_cookie *reclaim)
1203 {
1204 struct mem_cgroup *memcg = NULL;
1205 struct mem_cgroup *last_visited = NULL;
1206
1207 if (mem_cgroup_disabled())
1208 return NULL;
1209
1210 if (!root)
1211 root = root_mem_cgroup;
1212
1213 if (prev && !reclaim)
1214 last_visited = prev;
1215
1216 if (!root->use_hierarchy && root != root_mem_cgroup) {
1217 if (prev)
1218 goto out_css_put;
1219 return root;
1220 }
1221
1222 rcu_read_lock();
1223 while (!memcg) {
1224 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1225 int uninitialized_var(seq);
1226
1227 if (reclaim) {
1228 struct mem_cgroup_per_zone *mz;
1229
1230 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1231 iter = &mz->reclaim_iter[reclaim->priority];
1232 if (prev && reclaim->generation != iter->generation) {
1233 iter->last_visited = NULL;
1234 goto out_unlock;
1235 }
1236
1237 last_visited = mem_cgroup_iter_load(iter, root, &seq);
1238 }
1239
1240 memcg = __mem_cgroup_iter_next(root, last_visited);
1241
1242 if (reclaim) {
1243 mem_cgroup_iter_update(iter, last_visited, memcg, root,
1244 seq);
1245
1246 if (!memcg)
1247 iter->generation++;
1248 else if (!prev && memcg)
1249 reclaim->generation = iter->generation;
1250 }
1251
1252 if (prev && !memcg)
1253 goto out_unlock;
1254 }
1255 out_unlock:
1256 rcu_read_unlock();
1257 out_css_put:
1258 if (prev && prev != root)
1259 css_put(&prev->css);
1260
1261 return memcg;
1262 }
1263
1264 /**
1265 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1266 * @root: hierarchy root
1267 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1268 */
1269 void mem_cgroup_iter_break(struct mem_cgroup *root,
1270 struct mem_cgroup *prev)
1271 {
1272 if (!root)
1273 root = root_mem_cgroup;
1274 if (prev && prev != root)
1275 css_put(&prev->css);
1276 }
1277
1278 /*
1279 * Iteration constructs for visiting all cgroups (under a tree). If
1280 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1281 * be used for reference counting.
1282 */
1283 #define for_each_mem_cgroup_tree(iter, root) \
1284 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1285 iter != NULL; \
1286 iter = mem_cgroup_iter(root, iter, NULL))
1287
1288 #define for_each_mem_cgroup(iter) \
1289 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1290 iter != NULL; \
1291 iter = mem_cgroup_iter(NULL, iter, NULL))
1292
1293 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1294 {
1295 struct mem_cgroup *memcg;
1296
1297 rcu_read_lock();
1298 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1299 if (unlikely(!memcg))
1300 goto out;
1301
1302 switch (idx) {
1303 case PGFAULT:
1304 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1305 break;
1306 case PGMAJFAULT:
1307 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1308 break;
1309 default:
1310 BUG();
1311 }
1312 out:
1313 rcu_read_unlock();
1314 }
1315 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1316
1317 /**
1318 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1319 * @zone: zone of the wanted lruvec
1320 * @memcg: memcg of the wanted lruvec
1321 *
1322 * Returns the lru list vector holding pages for the given @zone and
1323 * @mem. This can be the global zone lruvec, if the memory controller
1324 * is disabled.
1325 */
1326 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1327 struct mem_cgroup *memcg)
1328 {
1329 struct mem_cgroup_per_zone *mz;
1330 struct lruvec *lruvec;
1331
1332 if (mem_cgroup_disabled()) {
1333 lruvec = &zone->lruvec;
1334 goto out;
1335 }
1336
1337 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1338 lruvec = &mz->lruvec;
1339 out:
1340 /*
1341 * Since a node can be onlined after the mem_cgroup was created,
1342 * we have to be prepared to initialize lruvec->zone here;
1343 * and if offlined then reonlined, we need to reinitialize it.
1344 */
1345 if (unlikely(lruvec->zone != zone))
1346 lruvec->zone = zone;
1347 return lruvec;
1348 }
1349
1350 /*
1351 * Following LRU functions are allowed to be used without PCG_LOCK.
1352 * Operations are called by routine of global LRU independently from memcg.
1353 * What we have to take care of here is validness of pc->mem_cgroup.
1354 *
1355 * Changes to pc->mem_cgroup happens when
1356 * 1. charge
1357 * 2. moving account
1358 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1359 * It is added to LRU before charge.
1360 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1361 * When moving account, the page is not on LRU. It's isolated.
1362 */
1363
1364 /**
1365 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1366 * @page: the page
1367 * @zone: zone of the page
1368 */
1369 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1370 {
1371 struct mem_cgroup_per_zone *mz;
1372 struct mem_cgroup *memcg;
1373 struct page_cgroup *pc;
1374 struct lruvec *lruvec;
1375
1376 if (mem_cgroup_disabled()) {
1377 lruvec = &zone->lruvec;
1378 goto out;
1379 }
1380
1381 pc = lookup_page_cgroup(page);
1382 memcg = pc->mem_cgroup;
1383
1384 /*
1385 * Surreptitiously switch any uncharged offlist page to root:
1386 * an uncharged page off lru does nothing to secure
1387 * its former mem_cgroup from sudden removal.
1388 *
1389 * Our caller holds lru_lock, and PageCgroupUsed is updated
1390 * under page_cgroup lock: between them, they make all uses
1391 * of pc->mem_cgroup safe.
1392 */
1393 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1394 pc->mem_cgroup = memcg = root_mem_cgroup;
1395
1396 mz = mem_cgroup_page_zoneinfo(memcg, page);
1397 lruvec = &mz->lruvec;
1398 out:
1399 /*
1400 * Since a node can be onlined after the mem_cgroup was created,
1401 * we have to be prepared to initialize lruvec->zone here;
1402 * and if offlined then reonlined, we need to reinitialize it.
1403 */
1404 if (unlikely(lruvec->zone != zone))
1405 lruvec->zone = zone;
1406 return lruvec;
1407 }
1408
1409 /**
1410 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1411 * @lruvec: mem_cgroup per zone lru vector
1412 * @lru: index of lru list the page is sitting on
1413 * @nr_pages: positive when adding or negative when removing
1414 *
1415 * This function must be called when a page is added to or removed from an
1416 * lru list.
1417 */
1418 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1419 int nr_pages)
1420 {
1421 struct mem_cgroup_per_zone *mz;
1422 unsigned long *lru_size;
1423
1424 if (mem_cgroup_disabled())
1425 return;
1426
1427 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1428 lru_size = mz->lru_size + lru;
1429 *lru_size += nr_pages;
1430 VM_BUG_ON((long)(*lru_size) < 0);
1431 }
1432
1433 /*
1434 * Checks whether given mem is same or in the root_mem_cgroup's
1435 * hierarchy subtree
1436 */
1437 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1438 struct mem_cgroup *memcg)
1439 {
1440 if (root_memcg == memcg)
1441 return true;
1442 if (!root_memcg->use_hierarchy || !memcg)
1443 return false;
1444 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1445 }
1446
1447 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1448 struct mem_cgroup *memcg)
1449 {
1450 bool ret;
1451
1452 rcu_read_lock();
1453 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1454 rcu_read_unlock();
1455 return ret;
1456 }
1457
1458 bool task_in_mem_cgroup(struct task_struct *task,
1459 const struct mem_cgroup *memcg)
1460 {
1461 struct mem_cgroup *curr = NULL;
1462 struct task_struct *p;
1463 bool ret;
1464
1465 p = find_lock_task_mm(task);
1466 if (p) {
1467 curr = get_mem_cgroup_from_mm(p->mm);
1468 task_unlock(p);
1469 } else {
1470 /*
1471 * All threads may have already detached their mm's, but the oom
1472 * killer still needs to detect if they have already been oom
1473 * killed to prevent needlessly killing additional tasks.
1474 */
1475 rcu_read_lock();
1476 curr = mem_cgroup_from_task(task);
1477 if (curr)
1478 css_get(&curr->css);
1479 rcu_read_unlock();
1480 }
1481 /*
1482 * We should check use_hierarchy of "memcg" not "curr". Because checking
1483 * use_hierarchy of "curr" here make this function true if hierarchy is
1484 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1485 * hierarchy(even if use_hierarchy is disabled in "memcg").
1486 */
1487 ret = mem_cgroup_same_or_subtree(memcg, curr);
1488 css_put(&curr->css);
1489 return ret;
1490 }
1491
1492 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1493 {
1494 unsigned long inactive_ratio;
1495 unsigned long inactive;
1496 unsigned long active;
1497 unsigned long gb;
1498
1499 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1500 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1501
1502 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1503 if (gb)
1504 inactive_ratio = int_sqrt(10 * gb);
1505 else
1506 inactive_ratio = 1;
1507
1508 return inactive * inactive_ratio < active;
1509 }
1510
1511 #define mem_cgroup_from_res_counter(counter, member) \
1512 container_of(counter, struct mem_cgroup, member)
1513
1514 /**
1515 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1516 * @memcg: the memory cgroup
1517 *
1518 * Returns the maximum amount of memory @mem can be charged with, in
1519 * pages.
1520 */
1521 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1522 {
1523 unsigned long long margin;
1524
1525 margin = res_counter_margin(&memcg->res);
1526 if (do_swap_account)
1527 margin = min(margin, res_counter_margin(&memcg->memsw));
1528 return margin >> PAGE_SHIFT;
1529 }
1530
1531 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1532 {
1533 /* root ? */
1534 if (mem_cgroup_disabled() || !memcg->css.parent)
1535 return vm_swappiness;
1536
1537 return memcg->swappiness;
1538 }
1539
1540 /*
1541 * memcg->moving_account is used for checking possibility that some thread is
1542 * calling move_account(). When a thread on CPU-A starts moving pages under
1543 * a memcg, other threads should check memcg->moving_account under
1544 * rcu_read_lock(), like this:
1545 *
1546 * CPU-A CPU-B
1547 * rcu_read_lock()
1548 * memcg->moving_account+1 if (memcg->mocing_account)
1549 * take heavy locks.
1550 * synchronize_rcu() update something.
1551 * rcu_read_unlock()
1552 * start move here.
1553 */
1554
1555 /* for quick checking without looking up memcg */
1556 atomic_t memcg_moving __read_mostly;
1557
1558 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1559 {
1560 atomic_inc(&memcg_moving);
1561 atomic_inc(&memcg->moving_account);
1562 synchronize_rcu();
1563 }
1564
1565 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1566 {
1567 /*
1568 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1569 * We check NULL in callee rather than caller.
1570 */
1571 if (memcg) {
1572 atomic_dec(&memcg_moving);
1573 atomic_dec(&memcg->moving_account);
1574 }
1575 }
1576
1577 /*
1578 * A routine for checking "mem" is under move_account() or not.
1579 *
1580 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1581 * moving cgroups. This is for waiting at high-memory pressure
1582 * caused by "move".
1583 */
1584 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1585 {
1586 struct mem_cgroup *from;
1587 struct mem_cgroup *to;
1588 bool ret = false;
1589 /*
1590 * Unlike task_move routines, we access mc.to, mc.from not under
1591 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1592 */
1593 spin_lock(&mc.lock);
1594 from = mc.from;
1595 to = mc.to;
1596 if (!from)
1597 goto unlock;
1598
1599 ret = mem_cgroup_same_or_subtree(memcg, from)
1600 || mem_cgroup_same_or_subtree(memcg, to);
1601 unlock:
1602 spin_unlock(&mc.lock);
1603 return ret;
1604 }
1605
1606 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1607 {
1608 if (mc.moving_task && current != mc.moving_task) {
1609 if (mem_cgroup_under_move(memcg)) {
1610 DEFINE_WAIT(wait);
1611 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1612 /* moving charge context might have finished. */
1613 if (mc.moving_task)
1614 schedule();
1615 finish_wait(&mc.waitq, &wait);
1616 return true;
1617 }
1618 }
1619 return false;
1620 }
1621
1622 /*
1623 * Take this lock when
1624 * - a code tries to modify page's memcg while it's USED.
1625 * - a code tries to modify page state accounting in a memcg.
1626 */
1627 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1628 unsigned long *flags)
1629 {
1630 spin_lock_irqsave(&memcg->move_lock, *flags);
1631 }
1632
1633 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1634 unsigned long *flags)
1635 {
1636 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1637 }
1638
1639 #define K(x) ((x) << (PAGE_SHIFT-10))
1640 /**
1641 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1642 * @memcg: The memory cgroup that went over limit
1643 * @p: Task that is going to be killed
1644 *
1645 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1646 * enabled
1647 */
1648 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1649 {
1650 /* oom_info_lock ensures that parallel ooms do not interleave */
1651 static DEFINE_MUTEX(oom_info_lock);
1652 struct mem_cgroup *iter;
1653 unsigned int i;
1654
1655 if (!p)
1656 return;
1657
1658 mutex_lock(&oom_info_lock);
1659 rcu_read_lock();
1660
1661 pr_info("Task in ");
1662 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1663 pr_info(" killed as a result of limit of ");
1664 pr_cont_cgroup_path(memcg->css.cgroup);
1665 pr_info("\n");
1666
1667 rcu_read_unlock();
1668
1669 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1670 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1671 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1672 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1673 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1674 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1675 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1676 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1677 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1678 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1679 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1680 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1681
1682 for_each_mem_cgroup_tree(iter, memcg) {
1683 pr_info("Memory cgroup stats for ");
1684 pr_cont_cgroup_path(iter->css.cgroup);
1685 pr_cont(":");
1686
1687 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1688 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1689 continue;
1690 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1691 K(mem_cgroup_read_stat(iter, i)));
1692 }
1693
1694 for (i = 0; i < NR_LRU_LISTS; i++)
1695 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1696 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1697
1698 pr_cont("\n");
1699 }
1700 mutex_unlock(&oom_info_lock);
1701 }
1702
1703 /*
1704 * This function returns the number of memcg under hierarchy tree. Returns
1705 * 1(self count) if no children.
1706 */
1707 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1708 {
1709 int num = 0;
1710 struct mem_cgroup *iter;
1711
1712 for_each_mem_cgroup_tree(iter, memcg)
1713 num++;
1714 return num;
1715 }
1716
1717 /*
1718 * Return the memory (and swap, if configured) limit for a memcg.
1719 */
1720 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1721 {
1722 u64 limit;
1723
1724 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1725
1726 /*
1727 * Do not consider swap space if we cannot swap due to swappiness
1728 */
1729 if (mem_cgroup_swappiness(memcg)) {
1730 u64 memsw;
1731
1732 limit += total_swap_pages << PAGE_SHIFT;
1733 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1734
1735 /*
1736 * If memsw is finite and limits the amount of swap space
1737 * available to this memcg, return that limit.
1738 */
1739 limit = min(limit, memsw);
1740 }
1741
1742 return limit;
1743 }
1744
1745 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1746 int order)
1747 {
1748 struct mem_cgroup *iter;
1749 unsigned long chosen_points = 0;
1750 unsigned long totalpages;
1751 unsigned int points = 0;
1752 struct task_struct *chosen = NULL;
1753
1754 /*
1755 * If current has a pending SIGKILL or is exiting, then automatically
1756 * select it. The goal is to allow it to allocate so that it may
1757 * quickly exit and free its memory.
1758 */
1759 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1760 set_thread_flag(TIF_MEMDIE);
1761 return;
1762 }
1763
1764 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1765 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1766 for_each_mem_cgroup_tree(iter, memcg) {
1767 struct css_task_iter it;
1768 struct task_struct *task;
1769
1770 css_task_iter_start(&iter->css, &it);
1771 while ((task = css_task_iter_next(&it))) {
1772 switch (oom_scan_process_thread(task, totalpages, NULL,
1773 false)) {
1774 case OOM_SCAN_SELECT:
1775 if (chosen)
1776 put_task_struct(chosen);
1777 chosen = task;
1778 chosen_points = ULONG_MAX;
1779 get_task_struct(chosen);
1780 /* fall through */
1781 case OOM_SCAN_CONTINUE:
1782 continue;
1783 case OOM_SCAN_ABORT:
1784 css_task_iter_end(&it);
1785 mem_cgroup_iter_break(memcg, iter);
1786 if (chosen)
1787 put_task_struct(chosen);
1788 return;
1789 case OOM_SCAN_OK:
1790 break;
1791 };
1792 points = oom_badness(task, memcg, NULL, totalpages);
1793 if (!points || points < chosen_points)
1794 continue;
1795 /* Prefer thread group leaders for display purposes */
1796 if (points == chosen_points &&
1797 thread_group_leader(chosen))
1798 continue;
1799
1800 if (chosen)
1801 put_task_struct(chosen);
1802 chosen = task;
1803 chosen_points = points;
1804 get_task_struct(chosen);
1805 }
1806 css_task_iter_end(&it);
1807 }
1808
1809 if (!chosen)
1810 return;
1811 points = chosen_points * 1000 / totalpages;
1812 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1813 NULL, "Memory cgroup out of memory");
1814 }
1815
1816 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1817 gfp_t gfp_mask,
1818 unsigned long flags)
1819 {
1820 unsigned long total = 0;
1821 bool noswap = false;
1822 int loop;
1823
1824 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1825 noswap = true;
1826 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1827 noswap = true;
1828
1829 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1830 if (loop)
1831 drain_all_stock_async(memcg);
1832 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1833 /*
1834 * Allow limit shrinkers, which are triggered directly
1835 * by userspace, to catch signals and stop reclaim
1836 * after minimal progress, regardless of the margin.
1837 */
1838 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1839 break;
1840 if (mem_cgroup_margin(memcg))
1841 break;
1842 /*
1843 * If nothing was reclaimed after two attempts, there
1844 * may be no reclaimable pages in this hierarchy.
1845 */
1846 if (loop && !total)
1847 break;
1848 }
1849 return total;
1850 }
1851
1852 /**
1853 * test_mem_cgroup_node_reclaimable
1854 * @memcg: the target memcg
1855 * @nid: the node ID to be checked.
1856 * @noswap : specify true here if the user wants flle only information.
1857 *
1858 * This function returns whether the specified memcg contains any
1859 * reclaimable pages on a node. Returns true if there are any reclaimable
1860 * pages in the node.
1861 */
1862 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1863 int nid, bool noswap)
1864 {
1865 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1866 return true;
1867 if (noswap || !total_swap_pages)
1868 return false;
1869 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1870 return true;
1871 return false;
1872
1873 }
1874 #if MAX_NUMNODES > 1
1875
1876 /*
1877 * Always updating the nodemask is not very good - even if we have an empty
1878 * list or the wrong list here, we can start from some node and traverse all
1879 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1880 *
1881 */
1882 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1883 {
1884 int nid;
1885 /*
1886 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1887 * pagein/pageout changes since the last update.
1888 */
1889 if (!atomic_read(&memcg->numainfo_events))
1890 return;
1891 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1892 return;
1893
1894 /* make a nodemask where this memcg uses memory from */
1895 memcg->scan_nodes = node_states[N_MEMORY];
1896
1897 for_each_node_mask(nid, node_states[N_MEMORY]) {
1898
1899 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1900 node_clear(nid, memcg->scan_nodes);
1901 }
1902
1903 atomic_set(&memcg->numainfo_events, 0);
1904 atomic_set(&memcg->numainfo_updating, 0);
1905 }
1906
1907 /*
1908 * Selecting a node where we start reclaim from. Because what we need is just
1909 * reducing usage counter, start from anywhere is O,K. Considering
1910 * memory reclaim from current node, there are pros. and cons.
1911 *
1912 * Freeing memory from current node means freeing memory from a node which
1913 * we'll use or we've used. So, it may make LRU bad. And if several threads
1914 * hit limits, it will see a contention on a node. But freeing from remote
1915 * node means more costs for memory reclaim because of memory latency.
1916 *
1917 * Now, we use round-robin. Better algorithm is welcomed.
1918 */
1919 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1920 {
1921 int node;
1922
1923 mem_cgroup_may_update_nodemask(memcg);
1924 node = memcg->last_scanned_node;
1925
1926 node = next_node(node, memcg->scan_nodes);
1927 if (node == MAX_NUMNODES)
1928 node = first_node(memcg->scan_nodes);
1929 /*
1930 * We call this when we hit limit, not when pages are added to LRU.
1931 * No LRU may hold pages because all pages are UNEVICTABLE or
1932 * memcg is too small and all pages are not on LRU. In that case,
1933 * we use curret node.
1934 */
1935 if (unlikely(node == MAX_NUMNODES))
1936 node = numa_node_id();
1937
1938 memcg->last_scanned_node = node;
1939 return node;
1940 }
1941
1942 /*
1943 * Check all nodes whether it contains reclaimable pages or not.
1944 * For quick scan, we make use of scan_nodes. This will allow us to skip
1945 * unused nodes. But scan_nodes is lazily updated and may not cotain
1946 * enough new information. We need to do double check.
1947 */
1948 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1949 {
1950 int nid;
1951
1952 /*
1953 * quick check...making use of scan_node.
1954 * We can skip unused nodes.
1955 */
1956 if (!nodes_empty(memcg->scan_nodes)) {
1957 for (nid = first_node(memcg->scan_nodes);
1958 nid < MAX_NUMNODES;
1959 nid = next_node(nid, memcg->scan_nodes)) {
1960
1961 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1962 return true;
1963 }
1964 }
1965 /*
1966 * Check rest of nodes.
1967 */
1968 for_each_node_state(nid, N_MEMORY) {
1969 if (node_isset(nid, memcg->scan_nodes))
1970 continue;
1971 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1972 return true;
1973 }
1974 return false;
1975 }
1976
1977 #else
1978 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1979 {
1980 return 0;
1981 }
1982
1983 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1984 {
1985 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1986 }
1987 #endif
1988
1989 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1990 struct zone *zone,
1991 gfp_t gfp_mask,
1992 unsigned long *total_scanned)
1993 {
1994 struct mem_cgroup *victim = NULL;
1995 int total = 0;
1996 int loop = 0;
1997 unsigned long excess;
1998 unsigned long nr_scanned;
1999 struct mem_cgroup_reclaim_cookie reclaim = {
2000 .zone = zone,
2001 .priority = 0,
2002 };
2003
2004 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2005
2006 while (1) {
2007 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2008 if (!victim) {
2009 loop++;
2010 if (loop >= 2) {
2011 /*
2012 * If we have not been able to reclaim
2013 * anything, it might because there are
2014 * no reclaimable pages under this hierarchy
2015 */
2016 if (!total)
2017 break;
2018 /*
2019 * We want to do more targeted reclaim.
2020 * excess >> 2 is not to excessive so as to
2021 * reclaim too much, nor too less that we keep
2022 * coming back to reclaim from this cgroup
2023 */
2024 if (total >= (excess >> 2) ||
2025 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2026 break;
2027 }
2028 continue;
2029 }
2030 if (!mem_cgroup_reclaimable(victim, false))
2031 continue;
2032 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2033 zone, &nr_scanned);
2034 *total_scanned += nr_scanned;
2035 if (!res_counter_soft_limit_excess(&root_memcg->res))
2036 break;
2037 }
2038 mem_cgroup_iter_break(root_memcg, victim);
2039 return total;
2040 }
2041
2042 #ifdef CONFIG_LOCKDEP
2043 static struct lockdep_map memcg_oom_lock_dep_map = {
2044 .name = "memcg_oom_lock",
2045 };
2046 #endif
2047
2048 static DEFINE_SPINLOCK(memcg_oom_lock);
2049
2050 /*
2051 * Check OOM-Killer is already running under our hierarchy.
2052 * If someone is running, return false.
2053 */
2054 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2055 {
2056 struct mem_cgroup *iter, *failed = NULL;
2057
2058 spin_lock(&memcg_oom_lock);
2059
2060 for_each_mem_cgroup_tree(iter, memcg) {
2061 if (iter->oom_lock) {
2062 /*
2063 * this subtree of our hierarchy is already locked
2064 * so we cannot give a lock.
2065 */
2066 failed = iter;
2067 mem_cgroup_iter_break(memcg, iter);
2068 break;
2069 } else
2070 iter->oom_lock = true;
2071 }
2072
2073 if (failed) {
2074 /*
2075 * OK, we failed to lock the whole subtree so we have
2076 * to clean up what we set up to the failing subtree
2077 */
2078 for_each_mem_cgroup_tree(iter, memcg) {
2079 if (iter == failed) {
2080 mem_cgroup_iter_break(memcg, iter);
2081 break;
2082 }
2083 iter->oom_lock = false;
2084 }
2085 } else
2086 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2087
2088 spin_unlock(&memcg_oom_lock);
2089
2090 return !failed;
2091 }
2092
2093 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2094 {
2095 struct mem_cgroup *iter;
2096
2097 spin_lock(&memcg_oom_lock);
2098 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2099 for_each_mem_cgroup_tree(iter, memcg)
2100 iter->oom_lock = false;
2101 spin_unlock(&memcg_oom_lock);
2102 }
2103
2104 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2105 {
2106 struct mem_cgroup *iter;
2107
2108 for_each_mem_cgroup_tree(iter, memcg)
2109 atomic_inc(&iter->under_oom);
2110 }
2111
2112 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2113 {
2114 struct mem_cgroup *iter;
2115
2116 /*
2117 * When a new child is created while the hierarchy is under oom,
2118 * mem_cgroup_oom_lock() may not be called. We have to use
2119 * atomic_add_unless() here.
2120 */
2121 for_each_mem_cgroup_tree(iter, memcg)
2122 atomic_add_unless(&iter->under_oom, -1, 0);
2123 }
2124
2125 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2126
2127 struct oom_wait_info {
2128 struct mem_cgroup *memcg;
2129 wait_queue_t wait;
2130 };
2131
2132 static int memcg_oom_wake_function(wait_queue_t *wait,
2133 unsigned mode, int sync, void *arg)
2134 {
2135 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2136 struct mem_cgroup *oom_wait_memcg;
2137 struct oom_wait_info *oom_wait_info;
2138
2139 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2140 oom_wait_memcg = oom_wait_info->memcg;
2141
2142 /*
2143 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2144 * Then we can use css_is_ancestor without taking care of RCU.
2145 */
2146 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2147 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2148 return 0;
2149 return autoremove_wake_function(wait, mode, sync, arg);
2150 }
2151
2152 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2153 {
2154 atomic_inc(&memcg->oom_wakeups);
2155 /* for filtering, pass "memcg" as argument. */
2156 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2157 }
2158
2159 static void memcg_oom_recover(struct mem_cgroup *memcg)
2160 {
2161 if (memcg && atomic_read(&memcg->under_oom))
2162 memcg_wakeup_oom(memcg);
2163 }
2164
2165 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2166 {
2167 if (!current->memcg_oom.may_oom)
2168 return;
2169 /*
2170 * We are in the middle of the charge context here, so we
2171 * don't want to block when potentially sitting on a callstack
2172 * that holds all kinds of filesystem and mm locks.
2173 *
2174 * Also, the caller may handle a failed allocation gracefully
2175 * (like optional page cache readahead) and so an OOM killer
2176 * invocation might not even be necessary.
2177 *
2178 * That's why we don't do anything here except remember the
2179 * OOM context and then deal with it at the end of the page
2180 * fault when the stack is unwound, the locks are released,
2181 * and when we know whether the fault was overall successful.
2182 */
2183 css_get(&memcg->css);
2184 current->memcg_oom.memcg = memcg;
2185 current->memcg_oom.gfp_mask = mask;
2186 current->memcg_oom.order = order;
2187 }
2188
2189 /**
2190 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2191 * @handle: actually kill/wait or just clean up the OOM state
2192 *
2193 * This has to be called at the end of a page fault if the memcg OOM
2194 * handler was enabled.
2195 *
2196 * Memcg supports userspace OOM handling where failed allocations must
2197 * sleep on a waitqueue until the userspace task resolves the
2198 * situation. Sleeping directly in the charge context with all kinds
2199 * of locks held is not a good idea, instead we remember an OOM state
2200 * in the task and mem_cgroup_oom_synchronize() has to be called at
2201 * the end of the page fault to complete the OOM handling.
2202 *
2203 * Returns %true if an ongoing memcg OOM situation was detected and
2204 * completed, %false otherwise.
2205 */
2206 bool mem_cgroup_oom_synchronize(bool handle)
2207 {
2208 struct mem_cgroup *memcg = current->memcg_oom.memcg;
2209 struct oom_wait_info owait;
2210 bool locked;
2211
2212 /* OOM is global, do not handle */
2213 if (!memcg)
2214 return false;
2215
2216 if (!handle)
2217 goto cleanup;
2218
2219 owait.memcg = memcg;
2220 owait.wait.flags = 0;
2221 owait.wait.func = memcg_oom_wake_function;
2222 owait.wait.private = current;
2223 INIT_LIST_HEAD(&owait.wait.task_list);
2224
2225 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2226 mem_cgroup_mark_under_oom(memcg);
2227
2228 locked = mem_cgroup_oom_trylock(memcg);
2229
2230 if (locked)
2231 mem_cgroup_oom_notify(memcg);
2232
2233 if (locked && !memcg->oom_kill_disable) {
2234 mem_cgroup_unmark_under_oom(memcg);
2235 finish_wait(&memcg_oom_waitq, &owait.wait);
2236 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2237 current->memcg_oom.order);
2238 } else {
2239 schedule();
2240 mem_cgroup_unmark_under_oom(memcg);
2241 finish_wait(&memcg_oom_waitq, &owait.wait);
2242 }
2243
2244 if (locked) {
2245 mem_cgroup_oom_unlock(memcg);
2246 /*
2247 * There is no guarantee that an OOM-lock contender
2248 * sees the wakeups triggered by the OOM kill
2249 * uncharges. Wake any sleepers explicitely.
2250 */
2251 memcg_oom_recover(memcg);
2252 }
2253 cleanup:
2254 current->memcg_oom.memcg = NULL;
2255 css_put(&memcg->css);
2256 return true;
2257 }
2258
2259 /*
2260 * Used to update mapped file or writeback or other statistics.
2261 *
2262 * Notes: Race condition
2263 *
2264 * We usually use lock_page_cgroup() for accessing page_cgroup member but
2265 * it tends to be costly. But considering some conditions, we doesn't need
2266 * to do so _always_.
2267 *
2268 * Considering "charge", lock_page_cgroup() is not required because all
2269 * file-stat operations happen after a page is attached to radix-tree. There
2270 * are no race with "charge".
2271 *
2272 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2273 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2274 * if there are race with "uncharge". Statistics itself is properly handled
2275 * by flags.
2276 *
2277 * Considering "move", this is an only case we see a race. To make the race
2278 * small, we check memcg->moving_account and detect there are possibility
2279 * of race or not. If there is, we take a lock.
2280 */
2281
2282 void __mem_cgroup_begin_update_page_stat(struct page *page,
2283 bool *locked, unsigned long *flags)
2284 {
2285 struct mem_cgroup *memcg;
2286 struct page_cgroup *pc;
2287
2288 pc = lookup_page_cgroup(page);
2289 again:
2290 memcg = pc->mem_cgroup;
2291 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2292 return;
2293 /*
2294 * If this memory cgroup is not under account moving, we don't
2295 * need to take move_lock_mem_cgroup(). Because we already hold
2296 * rcu_read_lock(), any calls to move_account will be delayed until
2297 * rcu_read_unlock().
2298 */
2299 VM_BUG_ON(!rcu_read_lock_held());
2300 if (atomic_read(&memcg->moving_account) <= 0)
2301 return;
2302
2303 move_lock_mem_cgroup(memcg, flags);
2304 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2305 move_unlock_mem_cgroup(memcg, flags);
2306 goto again;
2307 }
2308 *locked = true;
2309 }
2310
2311 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2312 {
2313 struct page_cgroup *pc = lookup_page_cgroup(page);
2314
2315 /*
2316 * It's guaranteed that pc->mem_cgroup never changes while
2317 * lock is held because a routine modifies pc->mem_cgroup
2318 * should take move_lock_mem_cgroup().
2319 */
2320 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2321 }
2322
2323 void mem_cgroup_update_page_stat(struct page *page,
2324 enum mem_cgroup_stat_index idx, int val)
2325 {
2326 struct mem_cgroup *memcg;
2327 struct page_cgroup *pc = lookup_page_cgroup(page);
2328 unsigned long uninitialized_var(flags);
2329
2330 if (mem_cgroup_disabled())
2331 return;
2332
2333 VM_BUG_ON(!rcu_read_lock_held());
2334 memcg = pc->mem_cgroup;
2335 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2336 return;
2337
2338 this_cpu_add(memcg->stat->count[idx], val);
2339 }
2340
2341 /*
2342 * size of first charge trial. "32" comes from vmscan.c's magic value.
2343 * TODO: maybe necessary to use big numbers in big irons.
2344 */
2345 #define CHARGE_BATCH 32U
2346 struct memcg_stock_pcp {
2347 struct mem_cgroup *cached; /* this never be root cgroup */
2348 unsigned int nr_pages;
2349 struct work_struct work;
2350 unsigned long flags;
2351 #define FLUSHING_CACHED_CHARGE 0
2352 };
2353 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2354 static DEFINE_MUTEX(percpu_charge_mutex);
2355
2356 /**
2357 * consume_stock: Try to consume stocked charge on this cpu.
2358 * @memcg: memcg to consume from.
2359 * @nr_pages: how many pages to charge.
2360 *
2361 * The charges will only happen if @memcg matches the current cpu's memcg
2362 * stock, and at least @nr_pages are available in that stock. Failure to
2363 * service an allocation will refill the stock.
2364 *
2365 * returns true if successful, false otherwise.
2366 */
2367 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2368 {
2369 struct memcg_stock_pcp *stock;
2370 bool ret = true;
2371
2372 if (nr_pages > CHARGE_BATCH)
2373 return false;
2374
2375 stock = &get_cpu_var(memcg_stock);
2376 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2377 stock->nr_pages -= nr_pages;
2378 else /* need to call res_counter_charge */
2379 ret = false;
2380 put_cpu_var(memcg_stock);
2381 return ret;
2382 }
2383
2384 /*
2385 * Returns stocks cached in percpu to res_counter and reset cached information.
2386 */
2387 static void drain_stock(struct memcg_stock_pcp *stock)
2388 {
2389 struct mem_cgroup *old = stock->cached;
2390
2391 if (stock->nr_pages) {
2392 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2393
2394 res_counter_uncharge(&old->res, bytes);
2395 if (do_swap_account)
2396 res_counter_uncharge(&old->memsw, bytes);
2397 stock->nr_pages = 0;
2398 }
2399 stock->cached = NULL;
2400 }
2401
2402 /*
2403 * This must be called under preempt disabled or must be called by
2404 * a thread which is pinned to local cpu.
2405 */
2406 static void drain_local_stock(struct work_struct *dummy)
2407 {
2408 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2409 drain_stock(stock);
2410 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2411 }
2412
2413 static void __init memcg_stock_init(void)
2414 {
2415 int cpu;
2416
2417 for_each_possible_cpu(cpu) {
2418 struct memcg_stock_pcp *stock =
2419 &per_cpu(memcg_stock, cpu);
2420 INIT_WORK(&stock->work, drain_local_stock);
2421 }
2422 }
2423
2424 /*
2425 * Cache charges(val) which is from res_counter, to local per_cpu area.
2426 * This will be consumed by consume_stock() function, later.
2427 */
2428 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2429 {
2430 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2431
2432 if (stock->cached != memcg) { /* reset if necessary */
2433 drain_stock(stock);
2434 stock->cached = memcg;
2435 }
2436 stock->nr_pages += nr_pages;
2437 put_cpu_var(memcg_stock);
2438 }
2439
2440 /*
2441 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2442 * of the hierarchy under it. sync flag says whether we should block
2443 * until the work is done.
2444 */
2445 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2446 {
2447 int cpu, curcpu;
2448
2449 /* Notify other cpus that system-wide "drain" is running */
2450 get_online_cpus();
2451 curcpu = get_cpu();
2452 for_each_online_cpu(cpu) {
2453 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2454 struct mem_cgroup *memcg;
2455
2456 memcg = stock->cached;
2457 if (!memcg || !stock->nr_pages)
2458 continue;
2459 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2460 continue;
2461 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2462 if (cpu == curcpu)
2463 drain_local_stock(&stock->work);
2464 else
2465 schedule_work_on(cpu, &stock->work);
2466 }
2467 }
2468 put_cpu();
2469
2470 if (!sync)
2471 goto out;
2472
2473 for_each_online_cpu(cpu) {
2474 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2475 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2476 flush_work(&stock->work);
2477 }
2478 out:
2479 put_online_cpus();
2480 }
2481
2482 /*
2483 * Tries to drain stocked charges in other cpus. This function is asynchronous
2484 * and just put a work per cpu for draining localy on each cpu. Caller can
2485 * expects some charges will be back to res_counter later but cannot wait for
2486 * it.
2487 */
2488 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2489 {
2490 /*
2491 * If someone calls draining, avoid adding more kworker runs.
2492 */
2493 if (!mutex_trylock(&percpu_charge_mutex))
2494 return;
2495 drain_all_stock(root_memcg, false);
2496 mutex_unlock(&percpu_charge_mutex);
2497 }
2498
2499 /* This is a synchronous drain interface. */
2500 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2501 {
2502 /* called when force_empty is called */
2503 mutex_lock(&percpu_charge_mutex);
2504 drain_all_stock(root_memcg, true);
2505 mutex_unlock(&percpu_charge_mutex);
2506 }
2507
2508 /*
2509 * This function drains percpu counter value from DEAD cpu and
2510 * move it to local cpu. Note that this function can be preempted.
2511 */
2512 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2513 {
2514 int i;
2515
2516 spin_lock(&memcg->pcp_counter_lock);
2517 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2518 long x = per_cpu(memcg->stat->count[i], cpu);
2519
2520 per_cpu(memcg->stat->count[i], cpu) = 0;
2521 memcg->nocpu_base.count[i] += x;
2522 }
2523 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2524 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2525
2526 per_cpu(memcg->stat->events[i], cpu) = 0;
2527 memcg->nocpu_base.events[i] += x;
2528 }
2529 spin_unlock(&memcg->pcp_counter_lock);
2530 }
2531
2532 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2533 unsigned long action,
2534 void *hcpu)
2535 {
2536 int cpu = (unsigned long)hcpu;
2537 struct memcg_stock_pcp *stock;
2538 struct mem_cgroup *iter;
2539
2540 if (action == CPU_ONLINE)
2541 return NOTIFY_OK;
2542
2543 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2544 return NOTIFY_OK;
2545
2546 for_each_mem_cgroup(iter)
2547 mem_cgroup_drain_pcp_counter(iter, cpu);
2548
2549 stock = &per_cpu(memcg_stock, cpu);
2550 drain_stock(stock);
2551 return NOTIFY_OK;
2552 }
2553
2554 /**
2555 * mem_cgroup_try_charge - try charging a memcg
2556 * @memcg: memcg to charge
2557 * @nr_pages: number of pages to charge
2558 * @oom: trigger OOM if reclaim fails
2559 *
2560 * Returns 0 if @memcg was charged successfully, -EINTR if the charge
2561 * was bypassed to root_mem_cgroup, and -ENOMEM if the charge failed.
2562 */
2563 static int mem_cgroup_try_charge(struct mem_cgroup *memcg,
2564 gfp_t gfp_mask,
2565 unsigned int nr_pages,
2566 bool oom)
2567 {
2568 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2569 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2570 struct mem_cgroup *mem_over_limit;
2571 struct res_counter *fail_res;
2572 unsigned long nr_reclaimed;
2573 unsigned long flags = 0;
2574 unsigned long long size;
2575
2576 if (mem_cgroup_is_root(memcg))
2577 goto done;
2578 retry:
2579 if (consume_stock(memcg, nr_pages))
2580 goto done;
2581
2582 size = batch * PAGE_SIZE;
2583 if (!res_counter_charge(&memcg->res, size, &fail_res)) {
2584 if (!do_swap_account)
2585 goto done_restock;
2586 if (!res_counter_charge(&memcg->memsw, size, &fail_res))
2587 goto done_restock;
2588 res_counter_uncharge(&memcg->res, size);
2589 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2590 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2591 } else
2592 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2593
2594 if (batch > nr_pages) {
2595 batch = nr_pages;
2596 goto retry;
2597 }
2598
2599 /*
2600 * Unlike in global OOM situations, memcg is not in a physical
2601 * memory shortage. Allow dying and OOM-killed tasks to
2602 * bypass the last charges so that they can exit quickly and
2603 * free their memory.
2604 */
2605 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2606 fatal_signal_pending(current) ||
2607 current->flags & PF_EXITING))
2608 goto bypass;
2609
2610 if (unlikely(task_in_memcg_oom(current)))
2611 goto nomem;
2612
2613 if (!(gfp_mask & __GFP_WAIT))
2614 goto nomem;
2615
2616 if (gfp_mask & __GFP_NORETRY)
2617 goto nomem;
2618
2619 nr_reclaimed = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2620
2621 if (mem_cgroup_margin(mem_over_limit) >= batch)
2622 goto retry;
2623 /*
2624 * Even though the limit is exceeded at this point, reclaim
2625 * may have been able to free some pages. Retry the charge
2626 * before killing the task.
2627 *
2628 * Only for regular pages, though: huge pages are rather
2629 * unlikely to succeed so close to the limit, and we fall back
2630 * to regular pages anyway in case of failure.
2631 */
2632 if (nr_reclaimed && batch <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2633 goto retry;
2634 /*
2635 * At task move, charge accounts can be doubly counted. So, it's
2636 * better to wait until the end of task_move if something is going on.
2637 */
2638 if (mem_cgroup_wait_acct_move(mem_over_limit))
2639 goto retry;
2640
2641 if (gfp_mask & __GFP_NOFAIL)
2642 goto bypass;
2643
2644 if (fatal_signal_pending(current))
2645 goto bypass;
2646
2647 if (!oom)
2648 goto nomem;
2649
2650 if (nr_oom_retries--)
2651 goto retry;
2652
2653 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(batch));
2654 nomem:
2655 if (!(gfp_mask & __GFP_NOFAIL))
2656 return -ENOMEM;
2657 bypass:
2658 return -EINTR;
2659
2660 done_restock:
2661 if (batch > nr_pages)
2662 refill_stock(memcg, batch - nr_pages);
2663 done:
2664 return 0;
2665 }
2666
2667 /**
2668 * mem_cgroup_try_charge_mm - try charging a mm
2669 * @mm: mm_struct to charge
2670 * @nr_pages: number of pages to charge
2671 * @oom: trigger OOM if reclaim fails
2672 *
2673 * Returns the charged mem_cgroup associated with the given mm_struct or
2674 * NULL the charge failed.
2675 */
2676 static struct mem_cgroup *mem_cgroup_try_charge_mm(struct mm_struct *mm,
2677 gfp_t gfp_mask,
2678 unsigned int nr_pages,
2679 bool oom)
2680
2681 {
2682 struct mem_cgroup *memcg;
2683 int ret;
2684
2685 memcg = get_mem_cgroup_from_mm(mm);
2686 ret = mem_cgroup_try_charge(memcg, gfp_mask, nr_pages, oom);
2687 css_put(&memcg->css);
2688 if (ret == -EINTR)
2689 memcg = root_mem_cgroup;
2690 else if (ret)
2691 memcg = NULL;
2692
2693 return memcg;
2694 }
2695
2696 /*
2697 * Somemtimes we have to undo a charge we got by try_charge().
2698 * This function is for that and do uncharge, put css's refcnt.
2699 * gotten by try_charge().
2700 */
2701 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2702 unsigned int nr_pages)
2703 {
2704 if (!mem_cgroup_is_root(memcg)) {
2705 unsigned long bytes = nr_pages * PAGE_SIZE;
2706
2707 res_counter_uncharge(&memcg->res, bytes);
2708 if (do_swap_account)
2709 res_counter_uncharge(&memcg->memsw, bytes);
2710 }
2711 }
2712
2713 /*
2714 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2715 * This is useful when moving usage to parent cgroup.
2716 */
2717 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2718 unsigned int nr_pages)
2719 {
2720 unsigned long bytes = nr_pages * PAGE_SIZE;
2721
2722 if (mem_cgroup_is_root(memcg))
2723 return;
2724
2725 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2726 if (do_swap_account)
2727 res_counter_uncharge_until(&memcg->memsw,
2728 memcg->memsw.parent, bytes);
2729 }
2730
2731 /*
2732 * A helper function to get mem_cgroup from ID. must be called under
2733 * rcu_read_lock(). The caller is responsible for calling
2734 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2735 * refcnt from swap can be called against removed memcg.)
2736 */
2737 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2738 {
2739 /* ID 0 is unused ID */
2740 if (!id)
2741 return NULL;
2742 return mem_cgroup_from_id(id);
2743 }
2744
2745 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2746 {
2747 struct mem_cgroup *memcg = NULL;
2748 struct page_cgroup *pc;
2749 unsigned short id;
2750 swp_entry_t ent;
2751
2752 VM_BUG_ON_PAGE(!PageLocked(page), page);
2753
2754 pc = lookup_page_cgroup(page);
2755 lock_page_cgroup(pc);
2756 if (PageCgroupUsed(pc)) {
2757 memcg = pc->mem_cgroup;
2758 if (memcg && !css_tryget_online(&memcg->css))
2759 memcg = NULL;
2760 } else if (PageSwapCache(page)) {
2761 ent.val = page_private(page);
2762 id = lookup_swap_cgroup_id(ent);
2763 rcu_read_lock();
2764 memcg = mem_cgroup_lookup(id);
2765 if (memcg && !css_tryget_online(&memcg->css))
2766 memcg = NULL;
2767 rcu_read_unlock();
2768 }
2769 unlock_page_cgroup(pc);
2770 return memcg;
2771 }
2772
2773 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2774 struct page *page,
2775 unsigned int nr_pages,
2776 enum charge_type ctype,
2777 bool lrucare)
2778 {
2779 struct page_cgroup *pc = lookup_page_cgroup(page);
2780 struct zone *uninitialized_var(zone);
2781 struct lruvec *lruvec;
2782 bool was_on_lru = false;
2783 bool anon;
2784
2785 lock_page_cgroup(pc);
2786 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2787 /*
2788 * we don't need page_cgroup_lock about tail pages, becase they are not
2789 * accessed by any other context at this point.
2790 */
2791
2792 /*
2793 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2794 * may already be on some other mem_cgroup's LRU. Take care of it.
2795 */
2796 if (lrucare) {
2797 zone = page_zone(page);
2798 spin_lock_irq(&zone->lru_lock);
2799 if (PageLRU(page)) {
2800 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2801 ClearPageLRU(page);
2802 del_page_from_lru_list(page, lruvec, page_lru(page));
2803 was_on_lru = true;
2804 }
2805 }
2806
2807 pc->mem_cgroup = memcg;
2808 /*
2809 * We access a page_cgroup asynchronously without lock_page_cgroup().
2810 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2811 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2812 * before USED bit, we need memory barrier here.
2813 * See mem_cgroup_add_lru_list(), etc.
2814 */
2815 smp_wmb();
2816 SetPageCgroupUsed(pc);
2817
2818 if (lrucare) {
2819 if (was_on_lru) {
2820 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2821 VM_BUG_ON_PAGE(PageLRU(page), page);
2822 SetPageLRU(page);
2823 add_page_to_lru_list(page, lruvec, page_lru(page));
2824 }
2825 spin_unlock_irq(&zone->lru_lock);
2826 }
2827
2828 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2829 anon = true;
2830 else
2831 anon = false;
2832
2833 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2834 unlock_page_cgroup(pc);
2835
2836 /*
2837 * "charge_statistics" updated event counter. Then, check it.
2838 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2839 * if they exceeds softlimit.
2840 */
2841 memcg_check_events(memcg, page);
2842 }
2843
2844 static DEFINE_MUTEX(set_limit_mutex);
2845
2846 #ifdef CONFIG_MEMCG_KMEM
2847 /*
2848 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2849 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2850 */
2851 static DEFINE_MUTEX(memcg_slab_mutex);
2852
2853 static DEFINE_MUTEX(activate_kmem_mutex);
2854
2855 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2856 {
2857 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2858 memcg_kmem_is_active(memcg);
2859 }
2860
2861 /*
2862 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2863 * in the memcg_cache_params struct.
2864 */
2865 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2866 {
2867 struct kmem_cache *cachep;
2868
2869 VM_BUG_ON(p->is_root_cache);
2870 cachep = p->root_cache;
2871 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
2872 }
2873
2874 #ifdef CONFIG_SLABINFO
2875 static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
2876 {
2877 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
2878 struct memcg_cache_params *params;
2879
2880 if (!memcg_can_account_kmem(memcg))
2881 return -EIO;
2882
2883 print_slabinfo_header(m);
2884
2885 mutex_lock(&memcg_slab_mutex);
2886 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2887 cache_show(memcg_params_to_cache(params), m);
2888 mutex_unlock(&memcg_slab_mutex);
2889
2890 return 0;
2891 }
2892 #endif
2893
2894 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2895 {
2896 struct res_counter *fail_res;
2897 int ret = 0;
2898
2899 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2900 if (ret)
2901 return ret;
2902
2903 ret = mem_cgroup_try_charge(memcg, gfp, size >> PAGE_SHIFT,
2904 oom_gfp_allowed(gfp));
2905 if (ret == -EINTR) {
2906 /*
2907 * mem_cgroup_try_charge() chosed to bypass to root due to
2908 * OOM kill or fatal signal. Since our only options are to
2909 * either fail the allocation or charge it to this cgroup, do
2910 * it as a temporary condition. But we can't fail. From a
2911 * kmem/slab perspective, the cache has already been selected,
2912 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2913 * our minds.
2914 *
2915 * This condition will only trigger if the task entered
2916 * memcg_charge_kmem in a sane state, but was OOM-killed during
2917 * mem_cgroup_try_charge() above. Tasks that were already
2918 * dying when the allocation triggers should have been already
2919 * directed to the root cgroup in memcontrol.h
2920 */
2921 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2922 if (do_swap_account)
2923 res_counter_charge_nofail(&memcg->memsw, size,
2924 &fail_res);
2925 ret = 0;
2926 } else if (ret)
2927 res_counter_uncharge(&memcg->kmem, size);
2928
2929 return ret;
2930 }
2931
2932 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2933 {
2934 res_counter_uncharge(&memcg->res, size);
2935 if (do_swap_account)
2936 res_counter_uncharge(&memcg->memsw, size);
2937
2938 /* Not down to 0 */
2939 if (res_counter_uncharge(&memcg->kmem, size))
2940 return;
2941
2942 /*
2943 * Releases a reference taken in kmem_cgroup_css_offline in case
2944 * this last uncharge is racing with the offlining code or it is
2945 * outliving the memcg existence.
2946 *
2947 * The memory barrier imposed by test&clear is paired with the
2948 * explicit one in memcg_kmem_mark_dead().
2949 */
2950 if (memcg_kmem_test_and_clear_dead(memcg))
2951 css_put(&memcg->css);
2952 }
2953
2954 /*
2955 * helper for acessing a memcg's index. It will be used as an index in the
2956 * child cache array in kmem_cache, and also to derive its name. This function
2957 * will return -1 when this is not a kmem-limited memcg.
2958 */
2959 int memcg_cache_id(struct mem_cgroup *memcg)
2960 {
2961 return memcg ? memcg->kmemcg_id : -1;
2962 }
2963
2964 static size_t memcg_caches_array_size(int num_groups)
2965 {
2966 ssize_t size;
2967 if (num_groups <= 0)
2968 return 0;
2969
2970 size = 2 * num_groups;
2971 if (size < MEMCG_CACHES_MIN_SIZE)
2972 size = MEMCG_CACHES_MIN_SIZE;
2973 else if (size > MEMCG_CACHES_MAX_SIZE)
2974 size = MEMCG_CACHES_MAX_SIZE;
2975
2976 return size;
2977 }
2978
2979 /*
2980 * We should update the current array size iff all caches updates succeed. This
2981 * can only be done from the slab side. The slab mutex needs to be held when
2982 * calling this.
2983 */
2984 void memcg_update_array_size(int num)
2985 {
2986 if (num > memcg_limited_groups_array_size)
2987 memcg_limited_groups_array_size = memcg_caches_array_size(num);
2988 }
2989
2990 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
2991 {
2992 struct memcg_cache_params *cur_params = s->memcg_params;
2993
2994 VM_BUG_ON(!is_root_cache(s));
2995
2996 if (num_groups > memcg_limited_groups_array_size) {
2997 int i;
2998 struct memcg_cache_params *new_params;
2999 ssize_t size = memcg_caches_array_size(num_groups);
3000
3001 size *= sizeof(void *);
3002 size += offsetof(struct memcg_cache_params, memcg_caches);
3003
3004 new_params = kzalloc(size, GFP_KERNEL);
3005 if (!new_params)
3006 return -ENOMEM;
3007
3008 new_params->is_root_cache = true;
3009
3010 /*
3011 * There is the chance it will be bigger than
3012 * memcg_limited_groups_array_size, if we failed an allocation
3013 * in a cache, in which case all caches updated before it, will
3014 * have a bigger array.
3015 *
3016 * But if that is the case, the data after
3017 * memcg_limited_groups_array_size is certainly unused
3018 */
3019 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3020 if (!cur_params->memcg_caches[i])
3021 continue;
3022 new_params->memcg_caches[i] =
3023 cur_params->memcg_caches[i];
3024 }
3025
3026 /*
3027 * Ideally, we would wait until all caches succeed, and only
3028 * then free the old one. But this is not worth the extra
3029 * pointer per-cache we'd have to have for this.
3030 *
3031 * It is not a big deal if some caches are left with a size
3032 * bigger than the others. And all updates will reset this
3033 * anyway.
3034 */
3035 rcu_assign_pointer(s->memcg_params, new_params);
3036 if (cur_params)
3037 kfree_rcu(cur_params, rcu_head);
3038 }
3039 return 0;
3040 }
3041
3042 int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
3043 struct kmem_cache *root_cache)
3044 {
3045 size_t size;
3046
3047 if (!memcg_kmem_enabled())
3048 return 0;
3049
3050 if (!memcg) {
3051 size = offsetof(struct memcg_cache_params, memcg_caches);
3052 size += memcg_limited_groups_array_size * sizeof(void *);
3053 } else
3054 size = sizeof(struct memcg_cache_params);
3055
3056 s->memcg_params = kzalloc(size, GFP_KERNEL);
3057 if (!s->memcg_params)
3058 return -ENOMEM;
3059
3060 if (memcg) {
3061 s->memcg_params->memcg = memcg;
3062 s->memcg_params->root_cache = root_cache;
3063 css_get(&memcg->css);
3064 } else
3065 s->memcg_params->is_root_cache = true;
3066
3067 return 0;
3068 }
3069
3070 void memcg_free_cache_params(struct kmem_cache *s)
3071 {
3072 if (!s->memcg_params)
3073 return;
3074 if (!s->memcg_params->is_root_cache)
3075 css_put(&s->memcg_params->memcg->css);
3076 kfree(s->memcg_params);
3077 }
3078
3079 static void memcg_register_cache(struct mem_cgroup *memcg,
3080 struct kmem_cache *root_cache)
3081 {
3082 static char memcg_name_buf[NAME_MAX + 1]; /* protected by
3083 memcg_slab_mutex */
3084 struct kmem_cache *cachep;
3085 int id;
3086
3087 lockdep_assert_held(&memcg_slab_mutex);
3088
3089 id = memcg_cache_id(memcg);
3090
3091 /*
3092 * Since per-memcg caches are created asynchronously on first
3093 * allocation (see memcg_kmem_get_cache()), several threads can try to
3094 * create the same cache, but only one of them may succeed.
3095 */
3096 if (cache_from_memcg_idx(root_cache, id))
3097 return;
3098
3099 cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
3100 cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
3101 /*
3102 * If we could not create a memcg cache, do not complain, because
3103 * that's not critical at all as we can always proceed with the root
3104 * cache.
3105 */
3106 if (!cachep)
3107 return;
3108
3109 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3110
3111 /*
3112 * Since readers won't lock (see cache_from_memcg_idx()), we need a
3113 * barrier here to ensure nobody will see the kmem_cache partially
3114 * initialized.
3115 */
3116 smp_wmb();
3117
3118 BUG_ON(root_cache->memcg_params->memcg_caches[id]);
3119 root_cache->memcg_params->memcg_caches[id] = cachep;
3120 }
3121
3122 static void memcg_unregister_cache(struct kmem_cache *cachep)
3123 {
3124 struct kmem_cache *root_cache;
3125 struct mem_cgroup *memcg;
3126 int id;
3127
3128 lockdep_assert_held(&memcg_slab_mutex);
3129
3130 BUG_ON(is_root_cache(cachep));
3131
3132 root_cache = cachep->memcg_params->root_cache;
3133 memcg = cachep->memcg_params->memcg;
3134 id = memcg_cache_id(memcg);
3135
3136 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
3137 root_cache->memcg_params->memcg_caches[id] = NULL;
3138
3139 list_del(&cachep->memcg_params->list);
3140
3141 kmem_cache_destroy(cachep);
3142 }
3143
3144 /*
3145 * During the creation a new cache, we need to disable our accounting mechanism
3146 * altogether. This is true even if we are not creating, but rather just
3147 * enqueing new caches to be created.
3148 *
3149 * This is because that process will trigger allocations; some visible, like
3150 * explicit kmallocs to auxiliary data structures, name strings and internal
3151 * cache structures; some well concealed, like INIT_WORK() that can allocate
3152 * objects during debug.
3153 *
3154 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3155 * to it. This may not be a bounded recursion: since the first cache creation
3156 * failed to complete (waiting on the allocation), we'll just try to create the
3157 * cache again, failing at the same point.
3158 *
3159 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3160 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3161 * inside the following two functions.
3162 */
3163 static inline void memcg_stop_kmem_account(void)
3164 {
3165 VM_BUG_ON(!current->mm);
3166 current->memcg_kmem_skip_account++;
3167 }
3168
3169 static inline void memcg_resume_kmem_account(void)
3170 {
3171 VM_BUG_ON(!current->mm);
3172 current->memcg_kmem_skip_account--;
3173 }
3174
3175 int __memcg_cleanup_cache_params(struct kmem_cache *s)
3176 {
3177 struct kmem_cache *c;
3178 int i, failed = 0;
3179
3180 mutex_lock(&memcg_slab_mutex);
3181 for_each_memcg_cache_index(i) {
3182 c = cache_from_memcg_idx(s, i);
3183 if (!c)
3184 continue;
3185
3186 memcg_unregister_cache(c);
3187
3188 if (cache_from_memcg_idx(s, i))
3189 failed++;
3190 }
3191 mutex_unlock(&memcg_slab_mutex);
3192 return failed;
3193 }
3194
3195 static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
3196 {
3197 struct kmem_cache *cachep;
3198 struct memcg_cache_params *params, *tmp;
3199
3200 if (!memcg_kmem_is_active(memcg))
3201 return;
3202
3203 mutex_lock(&memcg_slab_mutex);
3204 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
3205 cachep = memcg_params_to_cache(params);
3206 kmem_cache_shrink(cachep);
3207 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3208 memcg_unregister_cache(cachep);
3209 }
3210 mutex_unlock(&memcg_slab_mutex);
3211 }
3212
3213 struct memcg_register_cache_work {
3214 struct mem_cgroup *memcg;
3215 struct kmem_cache *cachep;
3216 struct work_struct work;
3217 };
3218
3219 static void memcg_register_cache_func(struct work_struct *w)
3220 {
3221 struct memcg_register_cache_work *cw =
3222 container_of(w, struct memcg_register_cache_work, work);
3223 struct mem_cgroup *memcg = cw->memcg;
3224 struct kmem_cache *cachep = cw->cachep;
3225
3226 mutex_lock(&memcg_slab_mutex);
3227 memcg_register_cache(memcg, cachep);
3228 mutex_unlock(&memcg_slab_mutex);
3229
3230 css_put(&memcg->css);
3231 kfree(cw);
3232 }
3233
3234 /*
3235 * Enqueue the creation of a per-memcg kmem_cache.
3236 */
3237 static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
3238 struct kmem_cache *cachep)
3239 {
3240 struct memcg_register_cache_work *cw;
3241
3242 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
3243 if (cw == NULL) {
3244 css_put(&memcg->css);
3245 return;
3246 }
3247
3248 cw->memcg = memcg;
3249 cw->cachep = cachep;
3250
3251 INIT_WORK(&cw->work, memcg_register_cache_func);
3252 schedule_work(&cw->work);
3253 }
3254
3255 static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
3256 struct kmem_cache *cachep)
3257 {
3258 /*
3259 * We need to stop accounting when we kmalloc, because if the
3260 * corresponding kmalloc cache is not yet created, the first allocation
3261 * in __memcg_schedule_register_cache will recurse.
3262 *
3263 * However, it is better to enclose the whole function. Depending on
3264 * the debugging options enabled, INIT_WORK(), for instance, can
3265 * trigger an allocation. This too, will make us recurse. Because at
3266 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3267 * the safest choice is to do it like this, wrapping the whole function.
3268 */
3269 memcg_stop_kmem_account();
3270 __memcg_schedule_register_cache(memcg, cachep);
3271 memcg_resume_kmem_account();
3272 }
3273
3274 int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
3275 {
3276 int res;
3277
3278 res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp,
3279 PAGE_SIZE << order);
3280 if (!res)
3281 atomic_add(1 << order, &cachep->memcg_params->nr_pages);
3282 return res;
3283 }
3284
3285 void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
3286 {
3287 memcg_uncharge_kmem(cachep->memcg_params->memcg, PAGE_SIZE << order);
3288 atomic_sub(1 << order, &cachep->memcg_params->nr_pages);
3289 }
3290
3291 /*
3292 * Return the kmem_cache we're supposed to use for a slab allocation.
3293 * We try to use the current memcg's version of the cache.
3294 *
3295 * If the cache does not exist yet, if we are the first user of it,
3296 * we either create it immediately, if possible, or create it asynchronously
3297 * in a workqueue.
3298 * In the latter case, we will let the current allocation go through with
3299 * the original cache.
3300 *
3301 * Can't be called in interrupt context or from kernel threads.
3302 * This function needs to be called with rcu_read_lock() held.
3303 */
3304 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3305 gfp_t gfp)
3306 {
3307 struct mem_cgroup *memcg;
3308 struct kmem_cache *memcg_cachep;
3309
3310 VM_BUG_ON(!cachep->memcg_params);
3311 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3312
3313 if (!current->mm || current->memcg_kmem_skip_account)
3314 return cachep;
3315
3316 rcu_read_lock();
3317 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3318
3319 if (!memcg_can_account_kmem(memcg))
3320 goto out;
3321
3322 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3323 if (likely(memcg_cachep)) {
3324 cachep = memcg_cachep;
3325 goto out;
3326 }
3327
3328 /* The corresponding put will be done in the workqueue. */
3329 if (!css_tryget_online(&memcg->css))
3330 goto out;
3331 rcu_read_unlock();
3332
3333 /*
3334 * If we are in a safe context (can wait, and not in interrupt
3335 * context), we could be be predictable and return right away.
3336 * This would guarantee that the allocation being performed
3337 * already belongs in the new cache.
3338 *
3339 * However, there are some clashes that can arrive from locking.
3340 * For instance, because we acquire the slab_mutex while doing
3341 * memcg_create_kmem_cache, this means no further allocation
3342 * could happen with the slab_mutex held. So it's better to
3343 * defer everything.
3344 */
3345 memcg_schedule_register_cache(memcg, cachep);
3346 return cachep;
3347 out:
3348 rcu_read_unlock();
3349 return cachep;
3350 }
3351
3352 /*
3353 * We need to verify if the allocation against current->mm->owner's memcg is
3354 * possible for the given order. But the page is not allocated yet, so we'll
3355 * need a further commit step to do the final arrangements.
3356 *
3357 * It is possible for the task to switch cgroups in this mean time, so at
3358 * commit time, we can't rely on task conversion any longer. We'll then use
3359 * the handle argument to return to the caller which cgroup we should commit
3360 * against. We could also return the memcg directly and avoid the pointer
3361 * passing, but a boolean return value gives better semantics considering
3362 * the compiled-out case as well.
3363 *
3364 * Returning true means the allocation is possible.
3365 */
3366 bool
3367 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3368 {
3369 struct mem_cgroup *memcg;
3370 int ret;
3371
3372 *_memcg = NULL;
3373
3374 /*
3375 * Disabling accounting is only relevant for some specific memcg
3376 * internal allocations. Therefore we would initially not have such
3377 * check here, since direct calls to the page allocator that are
3378 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
3379 * outside memcg core. We are mostly concerned with cache allocations,
3380 * and by having this test at memcg_kmem_get_cache, we are already able
3381 * to relay the allocation to the root cache and bypass the memcg cache
3382 * altogether.
3383 *
3384 * There is one exception, though: the SLUB allocator does not create
3385 * large order caches, but rather service large kmallocs directly from
3386 * the page allocator. Therefore, the following sequence when backed by
3387 * the SLUB allocator:
3388 *
3389 * memcg_stop_kmem_account();
3390 * kmalloc(<large_number>)
3391 * memcg_resume_kmem_account();
3392 *
3393 * would effectively ignore the fact that we should skip accounting,
3394 * since it will drive us directly to this function without passing
3395 * through the cache selector memcg_kmem_get_cache. Such large
3396 * allocations are extremely rare but can happen, for instance, for the
3397 * cache arrays. We bring this test here.
3398 */
3399 if (!current->mm || current->memcg_kmem_skip_account)
3400 return true;
3401
3402 memcg = get_mem_cgroup_from_mm(current->mm);
3403
3404 if (!memcg_can_account_kmem(memcg)) {
3405 css_put(&memcg->css);
3406 return true;
3407 }
3408
3409 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3410 if (!ret)
3411 *_memcg = memcg;
3412
3413 css_put(&memcg->css);
3414 return (ret == 0);
3415 }
3416
3417 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3418 int order)
3419 {
3420 struct page_cgroup *pc;
3421
3422 VM_BUG_ON(mem_cgroup_is_root(memcg));
3423
3424 /* The page allocation failed. Revert */
3425 if (!page) {
3426 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3427 return;
3428 }
3429
3430 pc = lookup_page_cgroup(page);
3431 lock_page_cgroup(pc);
3432 pc->mem_cgroup = memcg;
3433 SetPageCgroupUsed(pc);
3434 unlock_page_cgroup(pc);
3435 }
3436
3437 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3438 {
3439 struct mem_cgroup *memcg = NULL;
3440 struct page_cgroup *pc;
3441
3442
3443 pc = lookup_page_cgroup(page);
3444 /*
3445 * Fast unlocked return. Theoretically might have changed, have to
3446 * check again after locking.
3447 */
3448 if (!PageCgroupUsed(pc))
3449 return;
3450
3451 lock_page_cgroup(pc);
3452 if (PageCgroupUsed(pc)) {
3453 memcg = pc->mem_cgroup;
3454 ClearPageCgroupUsed(pc);
3455 }
3456 unlock_page_cgroup(pc);
3457
3458 /*
3459 * We trust that only if there is a memcg associated with the page, it
3460 * is a valid allocation
3461 */
3462 if (!memcg)
3463 return;
3464
3465 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3466 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3467 }
3468 #else
3469 static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
3470 {
3471 }
3472 #endif /* CONFIG_MEMCG_KMEM */
3473
3474 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3475
3476 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3477 /*
3478 * Because tail pages are not marked as "used", set it. We're under
3479 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3480 * charge/uncharge will be never happen and move_account() is done under
3481 * compound_lock(), so we don't have to take care of races.
3482 */
3483 void mem_cgroup_split_huge_fixup(struct page *head)
3484 {
3485 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3486 struct page_cgroup *pc;
3487 struct mem_cgroup *memcg;
3488 int i;
3489
3490 if (mem_cgroup_disabled())
3491 return;
3492
3493 memcg = head_pc->mem_cgroup;
3494 for (i = 1; i < HPAGE_PMD_NR; i++) {
3495 pc = head_pc + i;
3496 pc->mem_cgroup = memcg;
3497 smp_wmb();/* see __commit_charge() */
3498 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3499 }
3500 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3501 HPAGE_PMD_NR);
3502 }
3503 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3504
3505 /**
3506 * mem_cgroup_move_account - move account of the page
3507 * @page: the page
3508 * @nr_pages: number of regular pages (>1 for huge pages)
3509 * @pc: page_cgroup of the page.
3510 * @from: mem_cgroup which the page is moved from.
3511 * @to: mem_cgroup which the page is moved to. @from != @to.
3512 *
3513 * The caller must confirm following.
3514 * - page is not on LRU (isolate_page() is useful.)
3515 * - compound_lock is held when nr_pages > 1
3516 *
3517 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3518 * from old cgroup.
3519 */
3520 static int mem_cgroup_move_account(struct page *page,
3521 unsigned int nr_pages,
3522 struct page_cgroup *pc,
3523 struct mem_cgroup *from,
3524 struct mem_cgroup *to)
3525 {
3526 unsigned long flags;
3527 int ret;
3528 bool anon = PageAnon(page);
3529
3530 VM_BUG_ON(from == to);
3531 VM_BUG_ON_PAGE(PageLRU(page), page);
3532 /*
3533 * The page is isolated from LRU. So, collapse function
3534 * will not handle this page. But page splitting can happen.
3535 * Do this check under compound_page_lock(). The caller should
3536 * hold it.
3537 */
3538 ret = -EBUSY;
3539 if (nr_pages > 1 && !PageTransHuge(page))
3540 goto out;
3541
3542 lock_page_cgroup(pc);
3543
3544 ret = -EINVAL;
3545 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3546 goto unlock;
3547
3548 move_lock_mem_cgroup(from, &flags);
3549
3550 if (!anon && page_mapped(page)) {
3551 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3552 nr_pages);
3553 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3554 nr_pages);
3555 }
3556
3557 if (PageWriteback(page)) {
3558 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3559 nr_pages);
3560 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3561 nr_pages);
3562 }
3563
3564 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3565
3566 /* caller should have done css_get */
3567 pc->mem_cgroup = to;
3568 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3569 move_unlock_mem_cgroup(from, &flags);
3570 ret = 0;
3571 unlock:
3572 unlock_page_cgroup(pc);
3573 /*
3574 * check events
3575 */
3576 memcg_check_events(to, page);
3577 memcg_check_events(from, page);
3578 out:
3579 return ret;
3580 }
3581
3582 /**
3583 * mem_cgroup_move_parent - moves page to the parent group
3584 * @page: the page to move
3585 * @pc: page_cgroup of the page
3586 * @child: page's cgroup
3587 *
3588 * move charges to its parent or the root cgroup if the group has no
3589 * parent (aka use_hierarchy==0).
3590 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3591 * mem_cgroup_move_account fails) the failure is always temporary and
3592 * it signals a race with a page removal/uncharge or migration. In the
3593 * first case the page is on the way out and it will vanish from the LRU
3594 * on the next attempt and the call should be retried later.
3595 * Isolation from the LRU fails only if page has been isolated from
3596 * the LRU since we looked at it and that usually means either global
3597 * reclaim or migration going on. The page will either get back to the
3598 * LRU or vanish.
3599 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3600 * (!PageCgroupUsed) or moved to a different group. The page will
3601 * disappear in the next attempt.
3602 */
3603 static int mem_cgroup_move_parent(struct page *page,
3604 struct page_cgroup *pc,
3605 struct mem_cgroup *child)
3606 {
3607 struct mem_cgroup *parent;
3608 unsigned int nr_pages;
3609 unsigned long uninitialized_var(flags);
3610 int ret;
3611
3612 VM_BUG_ON(mem_cgroup_is_root(child));
3613
3614 ret = -EBUSY;
3615 if (!get_page_unless_zero(page))
3616 goto out;
3617 if (isolate_lru_page(page))
3618 goto put;
3619
3620 nr_pages = hpage_nr_pages(page);
3621
3622 parent = parent_mem_cgroup(child);
3623 /*
3624 * If no parent, move charges to root cgroup.
3625 */
3626 if (!parent)
3627 parent = root_mem_cgroup;
3628
3629 if (nr_pages > 1) {
3630 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3631 flags = compound_lock_irqsave(page);
3632 }
3633
3634 ret = mem_cgroup_move_account(page, nr_pages,
3635 pc, child, parent);
3636 if (!ret)
3637 __mem_cgroup_cancel_local_charge(child, nr_pages);
3638
3639 if (nr_pages > 1)
3640 compound_unlock_irqrestore(page, flags);
3641 putback_lru_page(page);
3642 put:
3643 put_page(page);
3644 out:
3645 return ret;
3646 }
3647
3648 int mem_cgroup_charge_anon(struct page *page,
3649 struct mm_struct *mm, gfp_t gfp_mask)
3650 {
3651 unsigned int nr_pages = 1;
3652 struct mem_cgroup *memcg;
3653 bool oom = true;
3654
3655 if (mem_cgroup_disabled())
3656 return 0;
3657
3658 VM_BUG_ON_PAGE(page_mapped(page), page);
3659 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
3660 VM_BUG_ON(!mm);
3661
3662 if (PageTransHuge(page)) {
3663 nr_pages <<= compound_order(page);
3664 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3665 /*
3666 * Never OOM-kill a process for a huge page. The
3667 * fault handler will fall back to regular pages.
3668 */
3669 oom = false;
3670 }
3671
3672 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, nr_pages, oom);
3673 if (!memcg)
3674 return -ENOMEM;
3675 __mem_cgroup_commit_charge(memcg, page, nr_pages,
3676 MEM_CGROUP_CHARGE_TYPE_ANON, false);
3677 return 0;
3678 }
3679
3680 /*
3681 * While swap-in, try_charge -> commit or cancel, the page is locked.
3682 * And when try_charge() successfully returns, one refcnt to memcg without
3683 * struct page_cgroup is acquired. This refcnt will be consumed by
3684 * "commit()" or removed by "cancel()"
3685 */
3686 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3687 struct page *page,
3688 gfp_t mask,
3689 struct mem_cgroup **memcgp)
3690 {
3691 struct mem_cgroup *memcg = NULL;
3692 struct page_cgroup *pc;
3693 int ret;
3694
3695 pc = lookup_page_cgroup(page);
3696 /*
3697 * Every swap fault against a single page tries to charge the
3698 * page, bail as early as possible. shmem_unuse() encounters
3699 * already charged pages, too. The USED bit is protected by
3700 * the page lock, which serializes swap cache removal, which
3701 * in turn serializes uncharging.
3702 */
3703 if (PageCgroupUsed(pc))
3704 goto out;
3705 if (do_swap_account)
3706 memcg = try_get_mem_cgroup_from_page(page);
3707 if (!memcg)
3708 memcg = get_mem_cgroup_from_mm(mm);
3709 ret = mem_cgroup_try_charge(memcg, mask, 1, true);
3710 css_put(&memcg->css);
3711 if (ret == -EINTR)
3712 memcg = root_mem_cgroup;
3713 else if (ret)
3714 return ret;
3715 out:
3716 *memcgp = memcg;
3717 return 0;
3718 }
3719
3720 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3721 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3722 {
3723 if (mem_cgroup_disabled()) {
3724 *memcgp = NULL;
3725 return 0;
3726 }
3727 /*
3728 * A racing thread's fault, or swapoff, may have already
3729 * updated the pte, and even removed page from swap cache: in
3730 * those cases unuse_pte()'s pte_same() test will fail; but
3731 * there's also a KSM case which does need to charge the page.
3732 */
3733 if (!PageSwapCache(page)) {
3734 struct mem_cgroup *memcg;
3735
3736 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
3737 if (!memcg)
3738 return -ENOMEM;
3739 *memcgp = memcg;
3740 return 0;
3741 }
3742 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3743 }
3744
3745 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3746 {
3747 if (mem_cgroup_disabled())
3748 return;
3749 if (!memcg)
3750 return;
3751 __mem_cgroup_cancel_charge(memcg, 1);
3752 }
3753
3754 static void
3755 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
3756 enum charge_type ctype)
3757 {
3758 if (mem_cgroup_disabled())
3759 return;
3760 if (!memcg)
3761 return;
3762
3763 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3764 /*
3765 * Now swap is on-memory. This means this page may be
3766 * counted both as mem and swap....double count.
3767 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3768 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3769 * may call delete_from_swap_cache() before reach here.
3770 */
3771 if (do_swap_account && PageSwapCache(page)) {
3772 swp_entry_t ent = {.val = page_private(page)};
3773 mem_cgroup_uncharge_swap(ent);
3774 }
3775 }
3776
3777 void mem_cgroup_commit_charge_swapin(struct page *page,
3778 struct mem_cgroup *memcg)
3779 {
3780 __mem_cgroup_commit_charge_swapin(page, memcg,
3781 MEM_CGROUP_CHARGE_TYPE_ANON);
3782 }
3783
3784 int mem_cgroup_charge_file(struct page *page, struct mm_struct *mm,
3785 gfp_t gfp_mask)
3786 {
3787 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3788 struct mem_cgroup *memcg;
3789 int ret;
3790
3791 if (mem_cgroup_disabled())
3792 return 0;
3793 if (PageCompound(page))
3794 return 0;
3795
3796 if (PageSwapCache(page)) { /* shmem */
3797 ret = __mem_cgroup_try_charge_swapin(mm, page,
3798 gfp_mask, &memcg);
3799 if (ret)
3800 return ret;
3801 __mem_cgroup_commit_charge_swapin(page, memcg, type);
3802 return 0;
3803 }
3804
3805 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
3806 if (!memcg)
3807 return -ENOMEM;
3808 __mem_cgroup_commit_charge(memcg, page, 1, type, false);
3809 return 0;
3810 }
3811
3812 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3813 unsigned int nr_pages,
3814 const enum charge_type ctype)
3815 {
3816 struct memcg_batch_info *batch = NULL;
3817 bool uncharge_memsw = true;
3818
3819 /* If swapout, usage of swap doesn't decrease */
3820 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3821 uncharge_memsw = false;
3822
3823 batch = &current->memcg_batch;
3824 /*
3825 * In usual, we do css_get() when we remember memcg pointer.
3826 * But in this case, we keep res->usage until end of a series of
3827 * uncharges. Then, it's ok to ignore memcg's refcnt.
3828 */
3829 if (!batch->memcg)
3830 batch->memcg = memcg;
3831 /*
3832 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
3833 * In those cases, all pages freed continuously can be expected to be in
3834 * the same cgroup and we have chance to coalesce uncharges.
3835 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3836 * because we want to do uncharge as soon as possible.
3837 */
3838
3839 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
3840 goto direct_uncharge;
3841
3842 if (nr_pages > 1)
3843 goto direct_uncharge;
3844
3845 /*
3846 * In typical case, batch->memcg == mem. This means we can
3847 * merge a series of uncharges to an uncharge of res_counter.
3848 * If not, we uncharge res_counter ony by one.
3849 */
3850 if (batch->memcg != memcg)
3851 goto direct_uncharge;
3852 /* remember freed charge and uncharge it later */
3853 batch->nr_pages++;
3854 if (uncharge_memsw)
3855 batch->memsw_nr_pages++;
3856 return;
3857 direct_uncharge:
3858 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3859 if (uncharge_memsw)
3860 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3861 if (unlikely(batch->memcg != memcg))
3862 memcg_oom_recover(memcg);
3863 }
3864
3865 /*
3866 * uncharge if !page_mapped(page)
3867 */
3868 static struct mem_cgroup *
3869 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
3870 bool end_migration)
3871 {
3872 struct mem_cgroup *memcg = NULL;
3873 unsigned int nr_pages = 1;
3874 struct page_cgroup *pc;
3875 bool anon;
3876
3877 if (mem_cgroup_disabled())
3878 return NULL;
3879
3880 if (PageTransHuge(page)) {
3881 nr_pages <<= compound_order(page);
3882 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3883 }
3884 /*
3885 * Check if our page_cgroup is valid
3886 */
3887 pc = lookup_page_cgroup(page);
3888 if (unlikely(!PageCgroupUsed(pc)))
3889 return NULL;
3890
3891 lock_page_cgroup(pc);
3892
3893 memcg = pc->mem_cgroup;
3894
3895 if (!PageCgroupUsed(pc))
3896 goto unlock_out;
3897
3898 anon = PageAnon(page);
3899
3900 switch (ctype) {
3901 case MEM_CGROUP_CHARGE_TYPE_ANON:
3902 /*
3903 * Generally PageAnon tells if it's the anon statistics to be
3904 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3905 * used before page reached the stage of being marked PageAnon.
3906 */
3907 anon = true;
3908 /* fallthrough */
3909 case MEM_CGROUP_CHARGE_TYPE_DROP:
3910 /* See mem_cgroup_prepare_migration() */
3911 if (page_mapped(page))
3912 goto unlock_out;
3913 /*
3914 * Pages under migration may not be uncharged. But
3915 * end_migration() /must/ be the one uncharging the
3916 * unused post-migration page and so it has to call
3917 * here with the migration bit still set. See the
3918 * res_counter handling below.
3919 */
3920 if (!end_migration && PageCgroupMigration(pc))
3921 goto unlock_out;
3922 break;
3923 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3924 if (!PageAnon(page)) { /* Shared memory */
3925 if (page->mapping && !page_is_file_cache(page))
3926 goto unlock_out;
3927 } else if (page_mapped(page)) /* Anon */
3928 goto unlock_out;
3929 break;
3930 default:
3931 break;
3932 }
3933
3934 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
3935
3936 ClearPageCgroupUsed(pc);
3937 /*
3938 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3939 * freed from LRU. This is safe because uncharged page is expected not
3940 * to be reused (freed soon). Exception is SwapCache, it's handled by
3941 * special functions.
3942 */
3943
3944 unlock_page_cgroup(pc);
3945 /*
3946 * even after unlock, we have memcg->res.usage here and this memcg
3947 * will never be freed, so it's safe to call css_get().
3948 */
3949 memcg_check_events(memcg, page);
3950 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3951 mem_cgroup_swap_statistics(memcg, true);
3952 css_get(&memcg->css);
3953 }
3954 /*
3955 * Migration does not charge the res_counter for the
3956 * replacement page, so leave it alone when phasing out the
3957 * page that is unused after the migration.
3958 */
3959 if (!end_migration && !mem_cgroup_is_root(memcg))
3960 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3961
3962 return memcg;
3963
3964 unlock_out:
3965 unlock_page_cgroup(pc);
3966 return NULL;
3967 }
3968
3969 void mem_cgroup_uncharge_page(struct page *page)
3970 {
3971 /* early check. */
3972 if (page_mapped(page))
3973 return;
3974 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
3975 /*
3976 * If the page is in swap cache, uncharge should be deferred
3977 * to the swap path, which also properly accounts swap usage
3978 * and handles memcg lifetime.
3979 *
3980 * Note that this check is not stable and reclaim may add the
3981 * page to swap cache at any time after this. However, if the
3982 * page is not in swap cache by the time page->mapcount hits
3983 * 0, there won't be any page table references to the swap
3984 * slot, and reclaim will free it and not actually write the
3985 * page to disk.
3986 */
3987 if (PageSwapCache(page))
3988 return;
3989 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
3990 }
3991
3992 void mem_cgroup_uncharge_cache_page(struct page *page)
3993 {
3994 VM_BUG_ON_PAGE(page_mapped(page), page);
3995 VM_BUG_ON_PAGE(page->mapping, page);
3996 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
3997 }
3998
3999 /*
4000 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4001 * In that cases, pages are freed continuously and we can expect pages
4002 * are in the same memcg. All these calls itself limits the number of
4003 * pages freed at once, then uncharge_start/end() is called properly.
4004 * This may be called prural(2) times in a context,
4005 */
4006
4007 void mem_cgroup_uncharge_start(void)
4008 {
4009 current->memcg_batch.do_batch++;
4010 /* We can do nest. */
4011 if (current->memcg_batch.do_batch == 1) {
4012 current->memcg_batch.memcg = NULL;
4013 current->memcg_batch.nr_pages = 0;
4014 current->memcg_batch.memsw_nr_pages = 0;
4015 }
4016 }
4017
4018 void mem_cgroup_uncharge_end(void)
4019 {
4020 struct memcg_batch_info *batch = &current->memcg_batch;
4021
4022 if (!batch->do_batch)
4023 return;
4024
4025 batch->do_batch--;
4026 if (batch->do_batch) /* If stacked, do nothing. */
4027 return;
4028
4029 if (!batch->memcg)
4030 return;
4031 /*
4032 * This "batch->memcg" is valid without any css_get/put etc...
4033 * bacause we hide charges behind us.
4034 */
4035 if (batch->nr_pages)
4036 res_counter_uncharge(&batch->memcg->res,
4037 batch->nr_pages * PAGE_SIZE);
4038 if (batch->memsw_nr_pages)
4039 res_counter_uncharge(&batch->memcg->memsw,
4040 batch->memsw_nr_pages * PAGE_SIZE);
4041 memcg_oom_recover(batch->memcg);
4042 /* forget this pointer (for sanity check) */
4043 batch->memcg = NULL;
4044 }
4045
4046 #ifdef CONFIG_SWAP
4047 /*
4048 * called after __delete_from_swap_cache() and drop "page" account.
4049 * memcg information is recorded to swap_cgroup of "ent"
4050 */
4051 void
4052 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4053 {
4054 struct mem_cgroup *memcg;
4055 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4056
4057 if (!swapout) /* this was a swap cache but the swap is unused ! */
4058 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4059
4060 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4061
4062 /*
4063 * record memcg information, if swapout && memcg != NULL,
4064 * css_get() was called in uncharge().
4065 */
4066 if (do_swap_account && swapout && memcg)
4067 swap_cgroup_record(ent, mem_cgroup_id(memcg));
4068 }
4069 #endif
4070
4071 #ifdef CONFIG_MEMCG_SWAP
4072 /*
4073 * called from swap_entry_free(). remove record in swap_cgroup and
4074 * uncharge "memsw" account.
4075 */
4076 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4077 {
4078 struct mem_cgroup *memcg;
4079 unsigned short id;
4080
4081 if (!do_swap_account)
4082 return;
4083
4084 id = swap_cgroup_record(ent, 0);
4085 rcu_read_lock();
4086 memcg = mem_cgroup_lookup(id);
4087 if (memcg) {
4088 /*
4089 * We uncharge this because swap is freed. This memcg can
4090 * be obsolete one. We avoid calling css_tryget_online().
4091 */
4092 if (!mem_cgroup_is_root(memcg))
4093 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4094 mem_cgroup_swap_statistics(memcg, false);
4095 css_put(&memcg->css);
4096 }
4097 rcu_read_unlock();
4098 }
4099
4100 /**
4101 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4102 * @entry: swap entry to be moved
4103 * @from: mem_cgroup which the entry is moved from
4104 * @to: mem_cgroup which the entry is moved to
4105 *
4106 * It succeeds only when the swap_cgroup's record for this entry is the same
4107 * as the mem_cgroup's id of @from.
4108 *
4109 * Returns 0 on success, -EINVAL on failure.
4110 *
4111 * The caller must have charged to @to, IOW, called res_counter_charge() about
4112 * both res and memsw, and called css_get().
4113 */
4114 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4115 struct mem_cgroup *from, struct mem_cgroup *to)
4116 {
4117 unsigned short old_id, new_id;
4118
4119 old_id = mem_cgroup_id(from);
4120 new_id = mem_cgroup_id(to);
4121
4122 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4123 mem_cgroup_swap_statistics(from, false);
4124 mem_cgroup_swap_statistics(to, true);
4125 /*
4126 * This function is only called from task migration context now.
4127 * It postpones res_counter and refcount handling till the end
4128 * of task migration(mem_cgroup_clear_mc()) for performance
4129 * improvement. But we cannot postpone css_get(to) because if
4130 * the process that has been moved to @to does swap-in, the
4131 * refcount of @to might be decreased to 0.
4132 *
4133 * We are in attach() phase, so the cgroup is guaranteed to be
4134 * alive, so we can just call css_get().
4135 */
4136 css_get(&to->css);
4137 return 0;
4138 }
4139 return -EINVAL;
4140 }
4141 #else
4142 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4143 struct mem_cgroup *from, struct mem_cgroup *to)
4144 {
4145 return -EINVAL;
4146 }
4147 #endif
4148
4149 /*
4150 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4151 * page belongs to.
4152 */
4153 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4154 struct mem_cgroup **memcgp)
4155 {
4156 struct mem_cgroup *memcg = NULL;
4157 unsigned int nr_pages = 1;
4158 struct page_cgroup *pc;
4159 enum charge_type ctype;
4160
4161 *memcgp = NULL;
4162
4163 if (mem_cgroup_disabled())
4164 return;
4165
4166 if (PageTransHuge(page))
4167 nr_pages <<= compound_order(page);
4168
4169 pc = lookup_page_cgroup(page);
4170 lock_page_cgroup(pc);
4171 if (PageCgroupUsed(pc)) {
4172 memcg = pc->mem_cgroup;
4173 css_get(&memcg->css);
4174 /*
4175 * At migrating an anonymous page, its mapcount goes down
4176 * to 0 and uncharge() will be called. But, even if it's fully
4177 * unmapped, migration may fail and this page has to be
4178 * charged again. We set MIGRATION flag here and delay uncharge
4179 * until end_migration() is called
4180 *
4181 * Corner Case Thinking
4182 * A)
4183 * When the old page was mapped as Anon and it's unmap-and-freed
4184 * while migration was ongoing.
4185 * If unmap finds the old page, uncharge() of it will be delayed
4186 * until end_migration(). If unmap finds a new page, it's
4187 * uncharged when it make mapcount to be 1->0. If unmap code
4188 * finds swap_migration_entry, the new page will not be mapped
4189 * and end_migration() will find it(mapcount==0).
4190 *
4191 * B)
4192 * When the old page was mapped but migraion fails, the kernel
4193 * remaps it. A charge for it is kept by MIGRATION flag even
4194 * if mapcount goes down to 0. We can do remap successfully
4195 * without charging it again.
4196 *
4197 * C)
4198 * The "old" page is under lock_page() until the end of
4199 * migration, so, the old page itself will not be swapped-out.
4200 * If the new page is swapped out before end_migraton, our
4201 * hook to usual swap-out path will catch the event.
4202 */
4203 if (PageAnon(page))
4204 SetPageCgroupMigration(pc);
4205 }
4206 unlock_page_cgroup(pc);
4207 /*
4208 * If the page is not charged at this point,
4209 * we return here.
4210 */
4211 if (!memcg)
4212 return;
4213
4214 *memcgp = memcg;
4215 /*
4216 * We charge new page before it's used/mapped. So, even if unlock_page()
4217 * is called before end_migration, we can catch all events on this new
4218 * page. In the case new page is migrated but not remapped, new page's
4219 * mapcount will be finally 0 and we call uncharge in end_migration().
4220 */
4221 if (PageAnon(page))
4222 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4223 else
4224 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4225 /*
4226 * The page is committed to the memcg, but it's not actually
4227 * charged to the res_counter since we plan on replacing the
4228 * old one and only one page is going to be left afterwards.
4229 */
4230 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4231 }
4232
4233 /* remove redundant charge if migration failed*/
4234 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4235 struct page *oldpage, struct page *newpage, bool migration_ok)
4236 {
4237 struct page *used, *unused;
4238 struct page_cgroup *pc;
4239 bool anon;
4240
4241 if (!memcg)
4242 return;
4243
4244 if (!migration_ok) {
4245 used = oldpage;
4246 unused = newpage;
4247 } else {
4248 used = newpage;
4249 unused = oldpage;
4250 }
4251 anon = PageAnon(used);
4252 __mem_cgroup_uncharge_common(unused,
4253 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4254 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4255 true);
4256 css_put(&memcg->css);
4257 /*
4258 * We disallowed uncharge of pages under migration because mapcount
4259 * of the page goes down to zero, temporarly.
4260 * Clear the flag and check the page should be charged.
4261 */
4262 pc = lookup_page_cgroup(oldpage);
4263 lock_page_cgroup(pc);
4264 ClearPageCgroupMigration(pc);
4265 unlock_page_cgroup(pc);
4266
4267 /*
4268 * If a page is a file cache, radix-tree replacement is very atomic
4269 * and we can skip this check. When it was an Anon page, its mapcount
4270 * goes down to 0. But because we added MIGRATION flage, it's not
4271 * uncharged yet. There are several case but page->mapcount check
4272 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4273 * check. (see prepare_charge() also)
4274 */
4275 if (anon)
4276 mem_cgroup_uncharge_page(used);
4277 }
4278
4279 /*
4280 * At replace page cache, newpage is not under any memcg but it's on
4281 * LRU. So, this function doesn't touch res_counter but handles LRU
4282 * in correct way. Both pages are locked so we cannot race with uncharge.
4283 */
4284 void mem_cgroup_replace_page_cache(struct page *oldpage,
4285 struct page *newpage)
4286 {
4287 struct mem_cgroup *memcg = NULL;
4288 struct page_cgroup *pc;
4289 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4290
4291 if (mem_cgroup_disabled())
4292 return;
4293
4294 pc = lookup_page_cgroup(oldpage);
4295 /* fix accounting on old pages */
4296 lock_page_cgroup(pc);
4297 if (PageCgroupUsed(pc)) {
4298 memcg = pc->mem_cgroup;
4299 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4300 ClearPageCgroupUsed(pc);
4301 }
4302 unlock_page_cgroup(pc);
4303
4304 /*
4305 * When called from shmem_replace_page(), in some cases the
4306 * oldpage has already been charged, and in some cases not.
4307 */
4308 if (!memcg)
4309 return;
4310 /*
4311 * Even if newpage->mapping was NULL before starting replacement,
4312 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4313 * LRU while we overwrite pc->mem_cgroup.
4314 */
4315 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4316 }
4317
4318 #ifdef CONFIG_DEBUG_VM
4319 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4320 {
4321 struct page_cgroup *pc;
4322
4323 pc = lookup_page_cgroup(page);
4324 /*
4325 * Can be NULL while feeding pages into the page allocator for
4326 * the first time, i.e. during boot or memory hotplug;
4327 * or when mem_cgroup_disabled().
4328 */
4329 if (likely(pc) && PageCgroupUsed(pc))
4330 return pc;
4331 return NULL;
4332 }
4333
4334 bool mem_cgroup_bad_page_check(struct page *page)
4335 {
4336 if (mem_cgroup_disabled())
4337 return false;
4338
4339 return lookup_page_cgroup_used(page) != NULL;
4340 }
4341
4342 void mem_cgroup_print_bad_page(struct page *page)
4343 {
4344 struct page_cgroup *pc;
4345
4346 pc = lookup_page_cgroup_used(page);
4347 if (pc) {
4348 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4349 pc, pc->flags, pc->mem_cgroup);
4350 }
4351 }
4352 #endif
4353
4354 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4355 unsigned long long val)
4356 {
4357 int retry_count;
4358 u64 memswlimit, memlimit;
4359 int ret = 0;
4360 int children = mem_cgroup_count_children(memcg);
4361 u64 curusage, oldusage;
4362 int enlarge;
4363
4364 /*
4365 * For keeping hierarchical_reclaim simple, how long we should retry
4366 * is depends on callers. We set our retry-count to be function
4367 * of # of children which we should visit in this loop.
4368 */
4369 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4370
4371 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4372
4373 enlarge = 0;
4374 while (retry_count) {
4375 if (signal_pending(current)) {
4376 ret = -EINTR;
4377 break;
4378 }
4379 /*
4380 * Rather than hide all in some function, I do this in
4381 * open coded manner. You see what this really does.
4382 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4383 */
4384 mutex_lock(&set_limit_mutex);
4385 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4386 if (memswlimit < val) {
4387 ret = -EINVAL;
4388 mutex_unlock(&set_limit_mutex);
4389 break;
4390 }
4391
4392 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4393 if (memlimit < val)
4394 enlarge = 1;
4395
4396 ret = res_counter_set_limit(&memcg->res, val);
4397 if (!ret) {
4398 if (memswlimit == val)
4399 memcg->memsw_is_minimum = true;
4400 else
4401 memcg->memsw_is_minimum = false;
4402 }
4403 mutex_unlock(&set_limit_mutex);
4404
4405 if (!ret)
4406 break;
4407
4408 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4409 MEM_CGROUP_RECLAIM_SHRINK);
4410 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4411 /* Usage is reduced ? */
4412 if (curusage >= oldusage)
4413 retry_count--;
4414 else
4415 oldusage = curusage;
4416 }
4417 if (!ret && enlarge)
4418 memcg_oom_recover(memcg);
4419
4420 return ret;
4421 }
4422
4423 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4424 unsigned long long val)
4425 {
4426 int retry_count;
4427 u64 memlimit, memswlimit, oldusage, curusage;
4428 int children = mem_cgroup_count_children(memcg);
4429 int ret = -EBUSY;
4430 int enlarge = 0;
4431
4432 /* see mem_cgroup_resize_res_limit */
4433 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4434 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4435 while (retry_count) {
4436 if (signal_pending(current)) {
4437 ret = -EINTR;
4438 break;
4439 }
4440 /*
4441 * Rather than hide all in some function, I do this in
4442 * open coded manner. You see what this really does.
4443 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4444 */
4445 mutex_lock(&set_limit_mutex);
4446 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4447 if (memlimit > val) {
4448 ret = -EINVAL;
4449 mutex_unlock(&set_limit_mutex);
4450 break;
4451 }
4452 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4453 if (memswlimit < val)
4454 enlarge = 1;
4455 ret = res_counter_set_limit(&memcg->memsw, val);
4456 if (!ret) {
4457 if (memlimit == val)
4458 memcg->memsw_is_minimum = true;
4459 else
4460 memcg->memsw_is_minimum = false;
4461 }
4462 mutex_unlock(&set_limit_mutex);
4463
4464 if (!ret)
4465 break;
4466
4467 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4468 MEM_CGROUP_RECLAIM_NOSWAP |
4469 MEM_CGROUP_RECLAIM_SHRINK);
4470 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4471 /* Usage is reduced ? */
4472 if (curusage >= oldusage)
4473 retry_count--;
4474 else
4475 oldusage = curusage;
4476 }
4477 if (!ret && enlarge)
4478 memcg_oom_recover(memcg);
4479 return ret;
4480 }
4481
4482 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4483 gfp_t gfp_mask,
4484 unsigned long *total_scanned)
4485 {
4486 unsigned long nr_reclaimed = 0;
4487 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4488 unsigned long reclaimed;
4489 int loop = 0;
4490 struct mem_cgroup_tree_per_zone *mctz;
4491 unsigned long long excess;
4492 unsigned long nr_scanned;
4493
4494 if (order > 0)
4495 return 0;
4496
4497 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4498 /*
4499 * This loop can run a while, specially if mem_cgroup's continuously
4500 * keep exceeding their soft limit and putting the system under
4501 * pressure
4502 */
4503 do {
4504 if (next_mz)
4505 mz = next_mz;
4506 else
4507 mz = mem_cgroup_largest_soft_limit_node(mctz);
4508 if (!mz)
4509 break;
4510
4511 nr_scanned = 0;
4512 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4513 gfp_mask, &nr_scanned);
4514 nr_reclaimed += reclaimed;
4515 *total_scanned += nr_scanned;
4516 spin_lock(&mctz->lock);
4517
4518 /*
4519 * If we failed to reclaim anything from this memory cgroup
4520 * it is time to move on to the next cgroup
4521 */
4522 next_mz = NULL;
4523 if (!reclaimed) {
4524 do {
4525 /*
4526 * Loop until we find yet another one.
4527 *
4528 * By the time we get the soft_limit lock
4529 * again, someone might have aded the
4530 * group back on the RB tree. Iterate to
4531 * make sure we get a different mem.
4532 * mem_cgroup_largest_soft_limit_node returns
4533 * NULL if no other cgroup is present on
4534 * the tree
4535 */
4536 next_mz =
4537 __mem_cgroup_largest_soft_limit_node(mctz);
4538 if (next_mz == mz)
4539 css_put(&next_mz->memcg->css);
4540 else /* next_mz == NULL or other memcg */
4541 break;
4542 } while (1);
4543 }
4544 __mem_cgroup_remove_exceeded(mz, mctz);
4545 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4546 /*
4547 * One school of thought says that we should not add
4548 * back the node to the tree if reclaim returns 0.
4549 * But our reclaim could return 0, simply because due
4550 * to priority we are exposing a smaller subset of
4551 * memory to reclaim from. Consider this as a longer
4552 * term TODO.
4553 */
4554 /* If excess == 0, no tree ops */
4555 __mem_cgroup_insert_exceeded(mz, mctz, excess);
4556 spin_unlock(&mctz->lock);
4557 css_put(&mz->memcg->css);
4558 loop++;
4559 /*
4560 * Could not reclaim anything and there are no more
4561 * mem cgroups to try or we seem to be looping without
4562 * reclaiming anything.
4563 */
4564 if (!nr_reclaimed &&
4565 (next_mz == NULL ||
4566 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4567 break;
4568 } while (!nr_reclaimed);
4569 if (next_mz)
4570 css_put(&next_mz->memcg->css);
4571 return nr_reclaimed;
4572 }
4573
4574 /**
4575 * mem_cgroup_force_empty_list - clears LRU of a group
4576 * @memcg: group to clear
4577 * @node: NUMA node
4578 * @zid: zone id
4579 * @lru: lru to to clear
4580 *
4581 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4582 * reclaim the pages page themselves - pages are moved to the parent (or root)
4583 * group.
4584 */
4585 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4586 int node, int zid, enum lru_list lru)
4587 {
4588 struct lruvec *lruvec;
4589 unsigned long flags;
4590 struct list_head *list;
4591 struct page *busy;
4592 struct zone *zone;
4593
4594 zone = &NODE_DATA(node)->node_zones[zid];
4595 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4596 list = &lruvec->lists[lru];
4597
4598 busy = NULL;
4599 do {
4600 struct page_cgroup *pc;
4601 struct page *page;
4602
4603 spin_lock_irqsave(&zone->lru_lock, flags);
4604 if (list_empty(list)) {
4605 spin_unlock_irqrestore(&zone->lru_lock, flags);
4606 break;
4607 }
4608 page = list_entry(list->prev, struct page, lru);
4609 if (busy == page) {
4610 list_move(&page->lru, list);
4611 busy = NULL;
4612 spin_unlock_irqrestore(&zone->lru_lock, flags);
4613 continue;
4614 }
4615 spin_unlock_irqrestore(&zone->lru_lock, flags);
4616
4617 pc = lookup_page_cgroup(page);
4618
4619 if (mem_cgroup_move_parent(page, pc, memcg)) {
4620 /* found lock contention or "pc" is obsolete. */
4621 busy = page;
4622 } else
4623 busy = NULL;
4624 cond_resched();
4625 } while (!list_empty(list));
4626 }
4627
4628 /*
4629 * make mem_cgroup's charge to be 0 if there is no task by moving
4630 * all the charges and pages to the parent.
4631 * This enables deleting this mem_cgroup.
4632 *
4633 * Caller is responsible for holding css reference on the memcg.
4634 */
4635 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4636 {
4637 int node, zid;
4638 u64 usage;
4639
4640 do {
4641 /* This is for making all *used* pages to be on LRU. */
4642 lru_add_drain_all();
4643 drain_all_stock_sync(memcg);
4644 mem_cgroup_start_move(memcg);
4645 for_each_node_state(node, N_MEMORY) {
4646 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4647 enum lru_list lru;
4648 for_each_lru(lru) {
4649 mem_cgroup_force_empty_list(memcg,
4650 node, zid, lru);
4651 }
4652 }
4653 }
4654 mem_cgroup_end_move(memcg);
4655 memcg_oom_recover(memcg);
4656 cond_resched();
4657
4658 /*
4659 * Kernel memory may not necessarily be trackable to a specific
4660 * process. So they are not migrated, and therefore we can't
4661 * expect their value to drop to 0 here.
4662 * Having res filled up with kmem only is enough.
4663 *
4664 * This is a safety check because mem_cgroup_force_empty_list
4665 * could have raced with mem_cgroup_replace_page_cache callers
4666 * so the lru seemed empty but the page could have been added
4667 * right after the check. RES_USAGE should be safe as we always
4668 * charge before adding to the LRU.
4669 */
4670 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4671 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4672 } while (usage > 0);
4673 }
4674
4675 /*
4676 * Test whether @memcg has children, dead or alive. Note that this
4677 * function doesn't care whether @memcg has use_hierarchy enabled and
4678 * returns %true if there are child csses according to the cgroup
4679 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
4680 */
4681 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4682 {
4683 bool ret;
4684
4685 /*
4686 * The lock does not prevent addition or deletion of children, but
4687 * it prevents a new child from being initialized based on this
4688 * parent in css_online(), so it's enough to decide whether
4689 * hierarchically inherited attributes can still be changed or not.
4690 */
4691 lockdep_assert_held(&memcg_create_mutex);
4692
4693 rcu_read_lock();
4694 ret = css_next_child(NULL, &memcg->css);
4695 rcu_read_unlock();
4696 return ret;
4697 }
4698
4699 /*
4700 * Reclaims as many pages from the given memcg as possible and moves
4701 * the rest to the parent.
4702 *
4703 * Caller is responsible for holding css reference for memcg.
4704 */
4705 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4706 {
4707 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4708
4709 /* we call try-to-free pages for make this cgroup empty */
4710 lru_add_drain_all();
4711 /* try to free all pages in this cgroup */
4712 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4713 int progress;
4714
4715 if (signal_pending(current))
4716 return -EINTR;
4717
4718 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4719 false);
4720 if (!progress) {
4721 nr_retries--;
4722 /* maybe some writeback is necessary */
4723 congestion_wait(BLK_RW_ASYNC, HZ/10);
4724 }
4725
4726 }
4727
4728 return 0;
4729 }
4730
4731 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
4732 char *buf, size_t nbytes,
4733 loff_t off)
4734 {
4735 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4736
4737 if (mem_cgroup_is_root(memcg))
4738 return -EINVAL;
4739 return mem_cgroup_force_empty(memcg) ?: nbytes;
4740 }
4741
4742 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
4743 struct cftype *cft)
4744 {
4745 return mem_cgroup_from_css(css)->use_hierarchy;
4746 }
4747
4748 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
4749 struct cftype *cft, u64 val)
4750 {
4751 int retval = 0;
4752 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4753 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
4754
4755 mutex_lock(&memcg_create_mutex);
4756
4757 if (memcg->use_hierarchy == val)
4758 goto out;
4759
4760 /*
4761 * If parent's use_hierarchy is set, we can't make any modifications
4762 * in the child subtrees. If it is unset, then the change can
4763 * occur, provided the current cgroup has no children.
4764 *
4765 * For the root cgroup, parent_mem is NULL, we allow value to be
4766 * set if there are no children.
4767 */
4768 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4769 (val == 1 || val == 0)) {
4770 if (!memcg_has_children(memcg))
4771 memcg->use_hierarchy = val;
4772 else
4773 retval = -EBUSY;
4774 } else
4775 retval = -EINVAL;
4776
4777 out:
4778 mutex_unlock(&memcg_create_mutex);
4779
4780 return retval;
4781 }
4782
4783
4784 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4785 enum mem_cgroup_stat_index idx)
4786 {
4787 struct mem_cgroup *iter;
4788 long val = 0;
4789
4790 /* Per-cpu values can be negative, use a signed accumulator */
4791 for_each_mem_cgroup_tree(iter, memcg)
4792 val += mem_cgroup_read_stat(iter, idx);
4793
4794 if (val < 0) /* race ? */
4795 val = 0;
4796 return val;
4797 }
4798
4799 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4800 {
4801 u64 val;
4802
4803 if (!mem_cgroup_is_root(memcg)) {
4804 if (!swap)
4805 return res_counter_read_u64(&memcg->res, RES_USAGE);
4806 else
4807 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4808 }
4809
4810 /*
4811 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
4812 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
4813 */
4814 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4815 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4816
4817 if (swap)
4818 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4819
4820 return val << PAGE_SHIFT;
4821 }
4822
4823 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
4824 struct cftype *cft)
4825 {
4826 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4827 u64 val;
4828 int name;
4829 enum res_type type;
4830
4831 type = MEMFILE_TYPE(cft->private);
4832 name = MEMFILE_ATTR(cft->private);
4833
4834 switch (type) {
4835 case _MEM:
4836 if (name == RES_USAGE)
4837 val = mem_cgroup_usage(memcg, false);
4838 else
4839 val = res_counter_read_u64(&memcg->res, name);
4840 break;
4841 case _MEMSWAP:
4842 if (name == RES_USAGE)
4843 val = mem_cgroup_usage(memcg, true);
4844 else
4845 val = res_counter_read_u64(&memcg->memsw, name);
4846 break;
4847 case _KMEM:
4848 val = res_counter_read_u64(&memcg->kmem, name);
4849 break;
4850 default:
4851 BUG();
4852 }
4853
4854 return val;
4855 }
4856
4857 #ifdef CONFIG_MEMCG_KMEM
4858 /* should be called with activate_kmem_mutex held */
4859 static int __memcg_activate_kmem(struct mem_cgroup *memcg,
4860 unsigned long long limit)
4861 {
4862 int err = 0;
4863 int memcg_id;
4864
4865 if (memcg_kmem_is_active(memcg))
4866 return 0;
4867
4868 /*
4869 * We are going to allocate memory for data shared by all memory
4870 * cgroups so let's stop accounting here.
4871 */
4872 memcg_stop_kmem_account();
4873
4874 /*
4875 * For simplicity, we won't allow this to be disabled. It also can't
4876 * be changed if the cgroup has children already, or if tasks had
4877 * already joined.
4878 *
4879 * If tasks join before we set the limit, a person looking at
4880 * kmem.usage_in_bytes will have no way to determine when it took
4881 * place, which makes the value quite meaningless.
4882 *
4883 * After it first became limited, changes in the value of the limit are
4884 * of course permitted.
4885 */
4886 mutex_lock(&memcg_create_mutex);
4887 if (cgroup_has_tasks(memcg->css.cgroup) ||
4888 (memcg->use_hierarchy && memcg_has_children(memcg)))
4889 err = -EBUSY;
4890 mutex_unlock(&memcg_create_mutex);
4891 if (err)
4892 goto out;
4893
4894 memcg_id = ida_simple_get(&kmem_limited_groups,
4895 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
4896 if (memcg_id < 0) {
4897 err = memcg_id;
4898 goto out;
4899 }
4900
4901 /*
4902 * Make sure we have enough space for this cgroup in each root cache's
4903 * memcg_params.
4904 */
4905 mutex_lock(&memcg_slab_mutex);
4906 err = memcg_update_all_caches(memcg_id + 1);
4907 mutex_unlock(&memcg_slab_mutex);
4908 if (err)
4909 goto out_rmid;
4910
4911 memcg->kmemcg_id = memcg_id;
4912 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
4913
4914 /*
4915 * We couldn't have accounted to this cgroup, because it hasn't got the
4916 * active bit set yet, so this should succeed.
4917 */
4918 err = res_counter_set_limit(&memcg->kmem, limit);
4919 VM_BUG_ON(err);
4920
4921 static_key_slow_inc(&memcg_kmem_enabled_key);
4922 /*
4923 * Setting the active bit after enabling static branching will
4924 * guarantee no one starts accounting before all call sites are
4925 * patched.
4926 */
4927 memcg_kmem_set_active(memcg);
4928 out:
4929 memcg_resume_kmem_account();
4930 return err;
4931
4932 out_rmid:
4933 ida_simple_remove(&kmem_limited_groups, memcg_id);
4934 goto out;
4935 }
4936
4937 static int memcg_activate_kmem(struct mem_cgroup *memcg,
4938 unsigned long long limit)
4939 {
4940 int ret;
4941
4942 mutex_lock(&activate_kmem_mutex);
4943 ret = __memcg_activate_kmem(memcg, limit);
4944 mutex_unlock(&activate_kmem_mutex);
4945 return ret;
4946 }
4947
4948 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
4949 unsigned long long val)
4950 {
4951 int ret;
4952
4953 if (!memcg_kmem_is_active(memcg))
4954 ret = memcg_activate_kmem(memcg, val);
4955 else
4956 ret = res_counter_set_limit(&memcg->kmem, val);
4957 return ret;
4958 }
4959
4960 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
4961 {
4962 int ret = 0;
4963 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4964
4965 if (!parent)
4966 return 0;
4967
4968 mutex_lock(&activate_kmem_mutex);
4969 /*
4970 * If the parent cgroup is not kmem-active now, it cannot be activated
4971 * after this point, because it has at least one child already.
4972 */
4973 if (memcg_kmem_is_active(parent))
4974 ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
4975 mutex_unlock(&activate_kmem_mutex);
4976 return ret;
4977 }
4978 #else
4979 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
4980 unsigned long long val)
4981 {
4982 return -EINVAL;
4983 }
4984 #endif /* CONFIG_MEMCG_KMEM */
4985
4986 /*
4987 * The user of this function is...
4988 * RES_LIMIT.
4989 */
4990 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
4991 char *buf, size_t nbytes, loff_t off)
4992 {
4993 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4994 enum res_type type;
4995 int name;
4996 unsigned long long val;
4997 int ret;
4998
4999 buf = strstrip(buf);
5000 type = MEMFILE_TYPE(of_cft(of)->private);
5001 name = MEMFILE_ATTR(of_cft(of)->private);
5002
5003 switch (name) {
5004 case RES_LIMIT:
5005 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5006 ret = -EINVAL;
5007 break;
5008 }
5009 /* This function does all necessary parse...reuse it */
5010 ret = res_counter_memparse_write_strategy(buf, &val);
5011 if (ret)
5012 break;
5013 if (type == _MEM)
5014 ret = mem_cgroup_resize_limit(memcg, val);
5015 else if (type == _MEMSWAP)
5016 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5017 else if (type == _KMEM)
5018 ret = memcg_update_kmem_limit(memcg, val);
5019 else
5020 return -EINVAL;
5021 break;
5022 case RES_SOFT_LIMIT:
5023 ret = res_counter_memparse_write_strategy(buf, &val);
5024 if (ret)
5025 break;
5026 /*
5027 * For memsw, soft limits are hard to implement in terms
5028 * of semantics, for now, we support soft limits for
5029 * control without swap
5030 */
5031 if (type == _MEM)
5032 ret = res_counter_set_soft_limit(&memcg->res, val);
5033 else
5034 ret = -EINVAL;
5035 break;
5036 default:
5037 ret = -EINVAL; /* should be BUG() ? */
5038 break;
5039 }
5040 return ret ?: nbytes;
5041 }
5042
5043 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5044 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5045 {
5046 unsigned long long min_limit, min_memsw_limit, tmp;
5047
5048 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5049 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5050 if (!memcg->use_hierarchy)
5051 goto out;
5052
5053 while (memcg->css.parent) {
5054 memcg = mem_cgroup_from_css(memcg->css.parent);
5055 if (!memcg->use_hierarchy)
5056 break;
5057 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5058 min_limit = min(min_limit, tmp);
5059 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5060 min_memsw_limit = min(min_memsw_limit, tmp);
5061 }
5062 out:
5063 *mem_limit = min_limit;
5064 *memsw_limit = min_memsw_limit;
5065 }
5066
5067 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
5068 size_t nbytes, loff_t off)
5069 {
5070 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5071 int name;
5072 enum res_type type;
5073
5074 type = MEMFILE_TYPE(of_cft(of)->private);
5075 name = MEMFILE_ATTR(of_cft(of)->private);
5076
5077 switch (name) {
5078 case RES_MAX_USAGE:
5079 if (type == _MEM)
5080 res_counter_reset_max(&memcg->res);
5081 else if (type == _MEMSWAP)
5082 res_counter_reset_max(&memcg->memsw);
5083 else if (type == _KMEM)
5084 res_counter_reset_max(&memcg->kmem);
5085 else
5086 return -EINVAL;
5087 break;
5088 case RES_FAILCNT:
5089 if (type == _MEM)
5090 res_counter_reset_failcnt(&memcg->res);
5091 else if (type == _MEMSWAP)
5092 res_counter_reset_failcnt(&memcg->memsw);
5093 else if (type == _KMEM)
5094 res_counter_reset_failcnt(&memcg->kmem);
5095 else
5096 return -EINVAL;
5097 break;
5098 }
5099
5100 return nbytes;
5101 }
5102
5103 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5104 struct cftype *cft)
5105 {
5106 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5107 }
5108
5109 #ifdef CONFIG_MMU
5110 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5111 struct cftype *cft, u64 val)
5112 {
5113 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5114
5115 if (val >= (1 << NR_MOVE_TYPE))
5116 return -EINVAL;
5117
5118 /*
5119 * No kind of locking is needed in here, because ->can_attach() will
5120 * check this value once in the beginning of the process, and then carry
5121 * on with stale data. This means that changes to this value will only
5122 * affect task migrations starting after the change.
5123 */
5124 memcg->move_charge_at_immigrate = val;
5125 return 0;
5126 }
5127 #else
5128 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5129 struct cftype *cft, u64 val)
5130 {
5131 return -ENOSYS;
5132 }
5133 #endif
5134
5135 #ifdef CONFIG_NUMA
5136 static int memcg_numa_stat_show(struct seq_file *m, void *v)
5137 {
5138 struct numa_stat {
5139 const char *name;
5140 unsigned int lru_mask;
5141 };
5142
5143 static const struct numa_stat stats[] = {
5144 { "total", LRU_ALL },
5145 { "file", LRU_ALL_FILE },
5146 { "anon", LRU_ALL_ANON },
5147 { "unevictable", BIT(LRU_UNEVICTABLE) },
5148 };
5149 const struct numa_stat *stat;
5150 int nid;
5151 unsigned long nr;
5152 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5153
5154 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5155 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
5156 seq_printf(m, "%s=%lu", stat->name, nr);
5157 for_each_node_state(nid, N_MEMORY) {
5158 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5159 stat->lru_mask);
5160 seq_printf(m, " N%d=%lu", nid, nr);
5161 }
5162 seq_putc(m, '\n');
5163 }
5164
5165 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5166 struct mem_cgroup *iter;
5167
5168 nr = 0;
5169 for_each_mem_cgroup_tree(iter, memcg)
5170 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
5171 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
5172 for_each_node_state(nid, N_MEMORY) {
5173 nr = 0;
5174 for_each_mem_cgroup_tree(iter, memcg)
5175 nr += mem_cgroup_node_nr_lru_pages(
5176 iter, nid, stat->lru_mask);
5177 seq_printf(m, " N%d=%lu", nid, nr);
5178 }
5179 seq_putc(m, '\n');
5180 }
5181
5182 return 0;
5183 }
5184 #endif /* CONFIG_NUMA */
5185
5186 static inline void mem_cgroup_lru_names_not_uptodate(void)
5187 {
5188 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5189 }
5190
5191 static int memcg_stat_show(struct seq_file *m, void *v)
5192 {
5193 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5194 struct mem_cgroup *mi;
5195 unsigned int i;
5196
5197 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5198 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5199 continue;
5200 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5201 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5202 }
5203
5204 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5205 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5206 mem_cgroup_read_events(memcg, i));
5207
5208 for (i = 0; i < NR_LRU_LISTS; i++)
5209 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5210 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5211
5212 /* Hierarchical information */
5213 {
5214 unsigned long long limit, memsw_limit;
5215 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5216 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5217 if (do_swap_account)
5218 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5219 memsw_limit);
5220 }
5221
5222 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5223 long long val = 0;
5224
5225 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5226 continue;
5227 for_each_mem_cgroup_tree(mi, memcg)
5228 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5229 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5230 }
5231
5232 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5233 unsigned long long val = 0;
5234
5235 for_each_mem_cgroup_tree(mi, memcg)
5236 val += mem_cgroup_read_events(mi, i);
5237 seq_printf(m, "total_%s %llu\n",
5238 mem_cgroup_events_names[i], val);
5239 }
5240
5241 for (i = 0; i < NR_LRU_LISTS; i++) {
5242 unsigned long long val = 0;
5243
5244 for_each_mem_cgroup_tree(mi, memcg)
5245 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5246 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5247 }
5248
5249 #ifdef CONFIG_DEBUG_VM
5250 {
5251 int nid, zid;
5252 struct mem_cgroup_per_zone *mz;
5253 struct zone_reclaim_stat *rstat;
5254 unsigned long recent_rotated[2] = {0, 0};
5255 unsigned long recent_scanned[2] = {0, 0};
5256
5257 for_each_online_node(nid)
5258 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5259 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
5260 rstat = &mz->lruvec.reclaim_stat;
5261
5262 recent_rotated[0] += rstat->recent_rotated[0];
5263 recent_rotated[1] += rstat->recent_rotated[1];
5264 recent_scanned[0] += rstat->recent_scanned[0];
5265 recent_scanned[1] += rstat->recent_scanned[1];
5266 }
5267 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5268 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5269 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5270 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5271 }
5272 #endif
5273
5274 return 0;
5275 }
5276
5277 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5278 struct cftype *cft)
5279 {
5280 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5281
5282 return mem_cgroup_swappiness(memcg);
5283 }
5284
5285 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5286 struct cftype *cft, u64 val)
5287 {
5288 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5289
5290 if (val > 100)
5291 return -EINVAL;
5292
5293 if (css->parent)
5294 memcg->swappiness = val;
5295 else
5296 vm_swappiness = val;
5297
5298 return 0;
5299 }
5300
5301 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5302 {
5303 struct mem_cgroup_threshold_ary *t;
5304 u64 usage;
5305 int i;
5306
5307 rcu_read_lock();
5308 if (!swap)
5309 t = rcu_dereference(memcg->thresholds.primary);
5310 else
5311 t = rcu_dereference(memcg->memsw_thresholds.primary);
5312
5313 if (!t)
5314 goto unlock;
5315
5316 usage = mem_cgroup_usage(memcg, swap);
5317
5318 /*
5319 * current_threshold points to threshold just below or equal to usage.
5320 * If it's not true, a threshold was crossed after last
5321 * call of __mem_cgroup_threshold().
5322 */
5323 i = t->current_threshold;
5324
5325 /*
5326 * Iterate backward over array of thresholds starting from
5327 * current_threshold and check if a threshold is crossed.
5328 * If none of thresholds below usage is crossed, we read
5329 * only one element of the array here.
5330 */
5331 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5332 eventfd_signal(t->entries[i].eventfd, 1);
5333
5334 /* i = current_threshold + 1 */
5335 i++;
5336
5337 /*
5338 * Iterate forward over array of thresholds starting from
5339 * current_threshold+1 and check if a threshold is crossed.
5340 * If none of thresholds above usage is crossed, we read
5341 * only one element of the array here.
5342 */
5343 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5344 eventfd_signal(t->entries[i].eventfd, 1);
5345
5346 /* Update current_threshold */
5347 t->current_threshold = i - 1;
5348 unlock:
5349 rcu_read_unlock();
5350 }
5351
5352 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5353 {
5354 while (memcg) {
5355 __mem_cgroup_threshold(memcg, false);
5356 if (do_swap_account)
5357 __mem_cgroup_threshold(memcg, true);
5358
5359 memcg = parent_mem_cgroup(memcg);
5360 }
5361 }
5362
5363 static int compare_thresholds(const void *a, const void *b)
5364 {
5365 const struct mem_cgroup_threshold *_a = a;
5366 const struct mem_cgroup_threshold *_b = b;
5367
5368 if (_a->threshold > _b->threshold)
5369 return 1;
5370
5371 if (_a->threshold < _b->threshold)
5372 return -1;
5373
5374 return 0;
5375 }
5376
5377 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5378 {
5379 struct mem_cgroup_eventfd_list *ev;
5380
5381 spin_lock(&memcg_oom_lock);
5382
5383 list_for_each_entry(ev, &memcg->oom_notify, list)
5384 eventfd_signal(ev->eventfd, 1);
5385
5386 spin_unlock(&memcg_oom_lock);
5387 return 0;
5388 }
5389
5390 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5391 {
5392 struct mem_cgroup *iter;
5393
5394 for_each_mem_cgroup_tree(iter, memcg)
5395 mem_cgroup_oom_notify_cb(iter);
5396 }
5397
5398 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
5399 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
5400 {
5401 struct mem_cgroup_thresholds *thresholds;
5402 struct mem_cgroup_threshold_ary *new;
5403 u64 threshold, usage;
5404 int i, size, ret;
5405
5406 ret = res_counter_memparse_write_strategy(args, &threshold);
5407 if (ret)
5408 return ret;
5409
5410 mutex_lock(&memcg->thresholds_lock);
5411
5412 if (type == _MEM)
5413 thresholds = &memcg->thresholds;
5414 else if (type == _MEMSWAP)
5415 thresholds = &memcg->memsw_thresholds;
5416 else
5417 BUG();
5418
5419 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5420
5421 /* Check if a threshold crossed before adding a new one */
5422 if (thresholds->primary)
5423 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5424
5425 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5426
5427 /* Allocate memory for new array of thresholds */
5428 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5429 GFP_KERNEL);
5430 if (!new) {
5431 ret = -ENOMEM;
5432 goto unlock;
5433 }
5434 new->size = size;
5435
5436 /* Copy thresholds (if any) to new array */
5437 if (thresholds->primary) {
5438 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5439 sizeof(struct mem_cgroup_threshold));
5440 }
5441
5442 /* Add new threshold */
5443 new->entries[size - 1].eventfd = eventfd;
5444 new->entries[size - 1].threshold = threshold;
5445
5446 /* Sort thresholds. Registering of new threshold isn't time-critical */
5447 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5448 compare_thresholds, NULL);
5449
5450 /* Find current threshold */
5451 new->current_threshold = -1;
5452 for (i = 0; i < size; i++) {
5453 if (new->entries[i].threshold <= usage) {
5454 /*
5455 * new->current_threshold will not be used until
5456 * rcu_assign_pointer(), so it's safe to increment
5457 * it here.
5458 */
5459 ++new->current_threshold;
5460 } else
5461 break;
5462 }
5463
5464 /* Free old spare buffer and save old primary buffer as spare */
5465 kfree(thresholds->spare);
5466 thresholds->spare = thresholds->primary;
5467
5468 rcu_assign_pointer(thresholds->primary, new);
5469
5470 /* To be sure that nobody uses thresholds */
5471 synchronize_rcu();
5472
5473 unlock:
5474 mutex_unlock(&memcg->thresholds_lock);
5475
5476 return ret;
5477 }
5478
5479 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
5480 struct eventfd_ctx *eventfd, const char *args)
5481 {
5482 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
5483 }
5484
5485 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
5486 struct eventfd_ctx *eventfd, const char *args)
5487 {
5488 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
5489 }
5490
5491 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5492 struct eventfd_ctx *eventfd, enum res_type type)
5493 {
5494 struct mem_cgroup_thresholds *thresholds;
5495 struct mem_cgroup_threshold_ary *new;
5496 u64 usage;
5497 int i, j, size;
5498
5499 mutex_lock(&memcg->thresholds_lock);
5500 if (type == _MEM)
5501 thresholds = &memcg->thresholds;
5502 else if (type == _MEMSWAP)
5503 thresholds = &memcg->memsw_thresholds;
5504 else
5505 BUG();
5506
5507 if (!thresholds->primary)
5508 goto unlock;
5509
5510 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5511
5512 /* Check if a threshold crossed before removing */
5513 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5514
5515 /* Calculate new number of threshold */
5516 size = 0;
5517 for (i = 0; i < thresholds->primary->size; i++) {
5518 if (thresholds->primary->entries[i].eventfd != eventfd)
5519 size++;
5520 }
5521
5522 new = thresholds->spare;
5523
5524 /* Set thresholds array to NULL if we don't have thresholds */
5525 if (!size) {
5526 kfree(new);
5527 new = NULL;
5528 goto swap_buffers;
5529 }
5530
5531 new->size = size;
5532
5533 /* Copy thresholds and find current threshold */
5534 new->current_threshold = -1;
5535 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5536 if (thresholds->primary->entries[i].eventfd == eventfd)
5537 continue;
5538
5539 new->entries[j] = thresholds->primary->entries[i];
5540 if (new->entries[j].threshold <= usage) {
5541 /*
5542 * new->current_threshold will not be used
5543 * until rcu_assign_pointer(), so it's safe to increment
5544 * it here.
5545 */
5546 ++new->current_threshold;
5547 }
5548 j++;
5549 }
5550
5551 swap_buffers:
5552 /* Swap primary and spare array */
5553 thresholds->spare = thresholds->primary;
5554 /* If all events are unregistered, free the spare array */
5555 if (!new) {
5556 kfree(thresholds->spare);
5557 thresholds->spare = NULL;
5558 }
5559
5560 rcu_assign_pointer(thresholds->primary, new);
5561
5562 /* To be sure that nobody uses thresholds */
5563 synchronize_rcu();
5564 unlock:
5565 mutex_unlock(&memcg->thresholds_lock);
5566 }
5567
5568 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5569 struct eventfd_ctx *eventfd)
5570 {
5571 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
5572 }
5573
5574 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5575 struct eventfd_ctx *eventfd)
5576 {
5577 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
5578 }
5579
5580 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
5581 struct eventfd_ctx *eventfd, const char *args)
5582 {
5583 struct mem_cgroup_eventfd_list *event;
5584
5585 event = kmalloc(sizeof(*event), GFP_KERNEL);
5586 if (!event)
5587 return -ENOMEM;
5588
5589 spin_lock(&memcg_oom_lock);
5590
5591 event->eventfd = eventfd;
5592 list_add(&event->list, &memcg->oom_notify);
5593
5594 /* already in OOM ? */
5595 if (atomic_read(&memcg->under_oom))
5596 eventfd_signal(eventfd, 1);
5597 spin_unlock(&memcg_oom_lock);
5598
5599 return 0;
5600 }
5601
5602 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
5603 struct eventfd_ctx *eventfd)
5604 {
5605 struct mem_cgroup_eventfd_list *ev, *tmp;
5606
5607 spin_lock(&memcg_oom_lock);
5608
5609 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5610 if (ev->eventfd == eventfd) {
5611 list_del(&ev->list);
5612 kfree(ev);
5613 }
5614 }
5615
5616 spin_unlock(&memcg_oom_lock);
5617 }
5618
5619 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
5620 {
5621 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5622
5623 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
5624 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
5625 return 0;
5626 }
5627
5628 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5629 struct cftype *cft, u64 val)
5630 {
5631 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5632
5633 /* cannot set to root cgroup and only 0 and 1 are allowed */
5634 if (!css->parent || !((val == 0) || (val == 1)))
5635 return -EINVAL;
5636
5637 memcg->oom_kill_disable = val;
5638 if (!val)
5639 memcg_oom_recover(memcg);
5640
5641 return 0;
5642 }
5643
5644 #ifdef CONFIG_MEMCG_KMEM
5645 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5646 {
5647 int ret;
5648
5649 memcg->kmemcg_id = -1;
5650 ret = memcg_propagate_kmem(memcg);
5651 if (ret)
5652 return ret;
5653
5654 return mem_cgroup_sockets_init(memcg, ss);
5655 }
5656
5657 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5658 {
5659 mem_cgroup_sockets_destroy(memcg);
5660 }
5661
5662 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5663 {
5664 if (!memcg_kmem_is_active(memcg))
5665 return;
5666
5667 /*
5668 * kmem charges can outlive the cgroup. In the case of slab
5669 * pages, for instance, a page contain objects from various
5670 * processes. As we prevent from taking a reference for every
5671 * such allocation we have to be careful when doing uncharge
5672 * (see memcg_uncharge_kmem) and here during offlining.
5673 *
5674 * The idea is that that only the _last_ uncharge which sees
5675 * the dead memcg will drop the last reference. An additional
5676 * reference is taken here before the group is marked dead
5677 * which is then paired with css_put during uncharge resp. here.
5678 *
5679 * Although this might sound strange as this path is called from
5680 * css_offline() when the referencemight have dropped down to 0 and
5681 * shouldn't be incremented anymore (css_tryget_online() would
5682 * fail) we do not have other options because of the kmem
5683 * allocations lifetime.
5684 */
5685 css_get(&memcg->css);
5686
5687 memcg_kmem_mark_dead(memcg);
5688
5689 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5690 return;
5691
5692 if (memcg_kmem_test_and_clear_dead(memcg))
5693 css_put(&memcg->css);
5694 }
5695 #else
5696 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5697 {
5698 return 0;
5699 }
5700
5701 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5702 {
5703 }
5704
5705 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5706 {
5707 }
5708 #endif
5709
5710 /*
5711 * DO NOT USE IN NEW FILES.
5712 *
5713 * "cgroup.event_control" implementation.
5714 *
5715 * This is way over-engineered. It tries to support fully configurable
5716 * events for each user. Such level of flexibility is completely
5717 * unnecessary especially in the light of the planned unified hierarchy.
5718 *
5719 * Please deprecate this and replace with something simpler if at all
5720 * possible.
5721 */
5722
5723 /*
5724 * Unregister event and free resources.
5725 *
5726 * Gets called from workqueue.
5727 */
5728 static void memcg_event_remove(struct work_struct *work)
5729 {
5730 struct mem_cgroup_event *event =
5731 container_of(work, struct mem_cgroup_event, remove);
5732 struct mem_cgroup *memcg = event->memcg;
5733
5734 remove_wait_queue(event->wqh, &event->wait);
5735
5736 event->unregister_event(memcg, event->eventfd);
5737
5738 /* Notify userspace the event is going away. */
5739 eventfd_signal(event->eventfd, 1);
5740
5741 eventfd_ctx_put(event->eventfd);
5742 kfree(event);
5743 css_put(&memcg->css);
5744 }
5745
5746 /*
5747 * Gets called on POLLHUP on eventfd when user closes it.
5748 *
5749 * Called with wqh->lock held and interrupts disabled.
5750 */
5751 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
5752 int sync, void *key)
5753 {
5754 struct mem_cgroup_event *event =
5755 container_of(wait, struct mem_cgroup_event, wait);
5756 struct mem_cgroup *memcg = event->memcg;
5757 unsigned long flags = (unsigned long)key;
5758
5759 if (flags & POLLHUP) {
5760 /*
5761 * If the event has been detached at cgroup removal, we
5762 * can simply return knowing the other side will cleanup
5763 * for us.
5764 *
5765 * We can't race against event freeing since the other
5766 * side will require wqh->lock via remove_wait_queue(),
5767 * which we hold.
5768 */
5769 spin_lock(&memcg->event_list_lock);
5770 if (!list_empty(&event->list)) {
5771 list_del_init(&event->list);
5772 /*
5773 * We are in atomic context, but cgroup_event_remove()
5774 * may sleep, so we have to call it in workqueue.
5775 */
5776 schedule_work(&event->remove);
5777 }
5778 spin_unlock(&memcg->event_list_lock);
5779 }
5780
5781 return 0;
5782 }
5783
5784 static void memcg_event_ptable_queue_proc(struct file *file,
5785 wait_queue_head_t *wqh, poll_table *pt)
5786 {
5787 struct mem_cgroup_event *event =
5788 container_of(pt, struct mem_cgroup_event, pt);
5789
5790 event->wqh = wqh;
5791 add_wait_queue(wqh, &event->wait);
5792 }
5793
5794 /*
5795 * DO NOT USE IN NEW FILES.
5796 *
5797 * Parse input and register new cgroup event handler.
5798 *
5799 * Input must be in format '<event_fd> <control_fd> <args>'.
5800 * Interpretation of args is defined by control file implementation.
5801 */
5802 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
5803 char *buf, size_t nbytes, loff_t off)
5804 {
5805 struct cgroup_subsys_state *css = of_css(of);
5806 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5807 struct mem_cgroup_event *event;
5808 struct cgroup_subsys_state *cfile_css;
5809 unsigned int efd, cfd;
5810 struct fd efile;
5811 struct fd cfile;
5812 const char *name;
5813 char *endp;
5814 int ret;
5815
5816 buf = strstrip(buf);
5817
5818 efd = simple_strtoul(buf, &endp, 10);
5819 if (*endp != ' ')
5820 return -EINVAL;
5821 buf = endp + 1;
5822
5823 cfd = simple_strtoul(buf, &endp, 10);
5824 if ((*endp != ' ') && (*endp != '\0'))
5825 return -EINVAL;
5826 buf = endp + 1;
5827
5828 event = kzalloc(sizeof(*event), GFP_KERNEL);
5829 if (!event)
5830 return -ENOMEM;
5831
5832 event->memcg = memcg;
5833 INIT_LIST_HEAD(&event->list);
5834 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
5835 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
5836 INIT_WORK(&event->remove, memcg_event_remove);
5837
5838 efile = fdget(efd);
5839 if (!efile.file) {
5840 ret = -EBADF;
5841 goto out_kfree;
5842 }
5843
5844 event->eventfd = eventfd_ctx_fileget(efile.file);
5845 if (IS_ERR(event->eventfd)) {
5846 ret = PTR_ERR(event->eventfd);
5847 goto out_put_efile;
5848 }
5849
5850 cfile = fdget(cfd);
5851 if (!cfile.file) {
5852 ret = -EBADF;
5853 goto out_put_eventfd;
5854 }
5855
5856 /* the process need read permission on control file */
5857 /* AV: shouldn't we check that it's been opened for read instead? */
5858 ret = inode_permission(file_inode(cfile.file), MAY_READ);
5859 if (ret < 0)
5860 goto out_put_cfile;
5861
5862 /*
5863 * Determine the event callbacks and set them in @event. This used
5864 * to be done via struct cftype but cgroup core no longer knows
5865 * about these events. The following is crude but the whole thing
5866 * is for compatibility anyway.
5867 *
5868 * DO NOT ADD NEW FILES.
5869 */
5870 name = cfile.file->f_dentry->d_name.name;
5871
5872 if (!strcmp(name, "memory.usage_in_bytes")) {
5873 event->register_event = mem_cgroup_usage_register_event;
5874 event->unregister_event = mem_cgroup_usage_unregister_event;
5875 } else if (!strcmp(name, "memory.oom_control")) {
5876 event->register_event = mem_cgroup_oom_register_event;
5877 event->unregister_event = mem_cgroup_oom_unregister_event;
5878 } else if (!strcmp(name, "memory.pressure_level")) {
5879 event->register_event = vmpressure_register_event;
5880 event->unregister_event = vmpressure_unregister_event;
5881 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
5882 event->register_event = memsw_cgroup_usage_register_event;
5883 event->unregister_event = memsw_cgroup_usage_unregister_event;
5884 } else {
5885 ret = -EINVAL;
5886 goto out_put_cfile;
5887 }
5888
5889 /*
5890 * Verify @cfile should belong to @css. Also, remaining events are
5891 * automatically removed on cgroup destruction but the removal is
5892 * asynchronous, so take an extra ref on @css.
5893 */
5894 cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
5895 &memory_cgrp_subsys);
5896 ret = -EINVAL;
5897 if (IS_ERR(cfile_css))
5898 goto out_put_cfile;
5899 if (cfile_css != css) {
5900 css_put(cfile_css);
5901 goto out_put_cfile;
5902 }
5903
5904 ret = event->register_event(memcg, event->eventfd, buf);
5905 if (ret)
5906 goto out_put_css;
5907
5908 efile.file->f_op->poll(efile.file, &event->pt);
5909
5910 spin_lock(&memcg->event_list_lock);
5911 list_add(&event->list, &memcg->event_list);
5912 spin_unlock(&memcg->event_list_lock);
5913
5914 fdput(cfile);
5915 fdput(efile);
5916
5917 return nbytes;
5918
5919 out_put_css:
5920 css_put(css);
5921 out_put_cfile:
5922 fdput(cfile);
5923 out_put_eventfd:
5924 eventfd_ctx_put(event->eventfd);
5925 out_put_efile:
5926 fdput(efile);
5927 out_kfree:
5928 kfree(event);
5929
5930 return ret;
5931 }
5932
5933 static struct cftype mem_cgroup_files[] = {
5934 {
5935 .name = "usage_in_bytes",
5936 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5937 .read_u64 = mem_cgroup_read_u64,
5938 },
5939 {
5940 .name = "max_usage_in_bytes",
5941 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5942 .write = mem_cgroup_reset,
5943 .read_u64 = mem_cgroup_read_u64,
5944 },
5945 {
5946 .name = "limit_in_bytes",
5947 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5948 .write = mem_cgroup_write,
5949 .read_u64 = mem_cgroup_read_u64,
5950 },
5951 {
5952 .name = "soft_limit_in_bytes",
5953 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5954 .write = mem_cgroup_write,
5955 .read_u64 = mem_cgroup_read_u64,
5956 },
5957 {
5958 .name = "failcnt",
5959 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5960 .write = mem_cgroup_reset,
5961 .read_u64 = mem_cgroup_read_u64,
5962 },
5963 {
5964 .name = "stat",
5965 .seq_show = memcg_stat_show,
5966 },
5967 {
5968 .name = "force_empty",
5969 .write = mem_cgroup_force_empty_write,
5970 },
5971 {
5972 .name = "use_hierarchy",
5973 .write_u64 = mem_cgroup_hierarchy_write,
5974 .read_u64 = mem_cgroup_hierarchy_read,
5975 },
5976 {
5977 .name = "cgroup.event_control", /* XXX: for compat */
5978 .write = memcg_write_event_control,
5979 .flags = CFTYPE_NO_PREFIX,
5980 .mode = S_IWUGO,
5981 },
5982 {
5983 .name = "swappiness",
5984 .read_u64 = mem_cgroup_swappiness_read,
5985 .write_u64 = mem_cgroup_swappiness_write,
5986 },
5987 {
5988 .name = "move_charge_at_immigrate",
5989 .read_u64 = mem_cgroup_move_charge_read,
5990 .write_u64 = mem_cgroup_move_charge_write,
5991 },
5992 {
5993 .name = "oom_control",
5994 .seq_show = mem_cgroup_oom_control_read,
5995 .write_u64 = mem_cgroup_oom_control_write,
5996 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5997 },
5998 {
5999 .name = "pressure_level",
6000 },
6001 #ifdef CONFIG_NUMA
6002 {
6003 .name = "numa_stat",
6004 .seq_show = memcg_numa_stat_show,
6005 },
6006 #endif
6007 #ifdef CONFIG_MEMCG_KMEM
6008 {
6009 .name = "kmem.limit_in_bytes",
6010 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6011 .write = mem_cgroup_write,
6012 .read_u64 = mem_cgroup_read_u64,
6013 },
6014 {
6015 .name = "kmem.usage_in_bytes",
6016 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6017 .read_u64 = mem_cgroup_read_u64,
6018 },
6019 {
6020 .name = "kmem.failcnt",
6021 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6022 .write = mem_cgroup_reset,
6023 .read_u64 = mem_cgroup_read_u64,
6024 },
6025 {
6026 .name = "kmem.max_usage_in_bytes",
6027 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6028 .write = mem_cgroup_reset,
6029 .read_u64 = mem_cgroup_read_u64,
6030 },
6031 #ifdef CONFIG_SLABINFO
6032 {
6033 .name = "kmem.slabinfo",
6034 .seq_show = mem_cgroup_slabinfo_read,
6035 },
6036 #endif
6037 #endif
6038 { }, /* terminate */
6039 };
6040
6041 #ifdef CONFIG_MEMCG_SWAP
6042 static struct cftype memsw_cgroup_files[] = {
6043 {
6044 .name = "memsw.usage_in_bytes",
6045 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6046 .read_u64 = mem_cgroup_read_u64,
6047 },
6048 {
6049 .name = "memsw.max_usage_in_bytes",
6050 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6051 .write = mem_cgroup_reset,
6052 .read_u64 = mem_cgroup_read_u64,
6053 },
6054 {
6055 .name = "memsw.limit_in_bytes",
6056 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6057 .write = mem_cgroup_write,
6058 .read_u64 = mem_cgroup_read_u64,
6059 },
6060 {
6061 .name = "memsw.failcnt",
6062 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6063 .write = mem_cgroup_reset,
6064 .read_u64 = mem_cgroup_read_u64,
6065 },
6066 { }, /* terminate */
6067 };
6068 #endif
6069 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6070 {
6071 struct mem_cgroup_per_node *pn;
6072 struct mem_cgroup_per_zone *mz;
6073 int zone, tmp = node;
6074 /*
6075 * This routine is called against possible nodes.
6076 * But it's BUG to call kmalloc() against offline node.
6077 *
6078 * TODO: this routine can waste much memory for nodes which will
6079 * never be onlined. It's better to use memory hotplug callback
6080 * function.
6081 */
6082 if (!node_state(node, N_NORMAL_MEMORY))
6083 tmp = -1;
6084 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6085 if (!pn)
6086 return 1;
6087
6088 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6089 mz = &pn->zoneinfo[zone];
6090 lruvec_init(&mz->lruvec);
6091 mz->usage_in_excess = 0;
6092 mz->on_tree = false;
6093 mz->memcg = memcg;
6094 }
6095 memcg->nodeinfo[node] = pn;
6096 return 0;
6097 }
6098
6099 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6100 {
6101 kfree(memcg->nodeinfo[node]);
6102 }
6103
6104 static struct mem_cgroup *mem_cgroup_alloc(void)
6105 {
6106 struct mem_cgroup *memcg;
6107 size_t size;
6108
6109 size = sizeof(struct mem_cgroup);
6110 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
6111
6112 memcg = kzalloc(size, GFP_KERNEL);
6113 if (!memcg)
6114 return NULL;
6115
6116 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6117 if (!memcg->stat)
6118 goto out_free;
6119 spin_lock_init(&memcg->pcp_counter_lock);
6120 return memcg;
6121
6122 out_free:
6123 kfree(memcg);
6124 return NULL;
6125 }
6126
6127 /*
6128 * At destroying mem_cgroup, references from swap_cgroup can remain.
6129 * (scanning all at force_empty is too costly...)
6130 *
6131 * Instead of clearing all references at force_empty, we remember
6132 * the number of reference from swap_cgroup and free mem_cgroup when
6133 * it goes down to 0.
6134 *
6135 * Removal of cgroup itself succeeds regardless of refs from swap.
6136 */
6137
6138 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6139 {
6140 int node;
6141
6142 mem_cgroup_remove_from_trees(memcg);
6143
6144 for_each_node(node)
6145 free_mem_cgroup_per_zone_info(memcg, node);
6146
6147 free_percpu(memcg->stat);
6148
6149 /*
6150 * We need to make sure that (at least for now), the jump label
6151 * destruction code runs outside of the cgroup lock. This is because
6152 * get_online_cpus(), which is called from the static_branch update,
6153 * can't be called inside the cgroup_lock. cpusets are the ones
6154 * enforcing this dependency, so if they ever change, we might as well.
6155 *
6156 * schedule_work() will guarantee this happens. Be careful if you need
6157 * to move this code around, and make sure it is outside
6158 * the cgroup_lock.
6159 */
6160 disarm_static_keys(memcg);
6161 kfree(memcg);
6162 }
6163
6164 /*
6165 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6166 */
6167 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6168 {
6169 if (!memcg->res.parent)
6170 return NULL;
6171 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6172 }
6173 EXPORT_SYMBOL(parent_mem_cgroup);
6174
6175 static void __init mem_cgroup_soft_limit_tree_init(void)
6176 {
6177 struct mem_cgroup_tree_per_node *rtpn;
6178 struct mem_cgroup_tree_per_zone *rtpz;
6179 int tmp, node, zone;
6180
6181 for_each_node(node) {
6182 tmp = node;
6183 if (!node_state(node, N_NORMAL_MEMORY))
6184 tmp = -1;
6185 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6186 BUG_ON(!rtpn);
6187
6188 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6189
6190 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6191 rtpz = &rtpn->rb_tree_per_zone[zone];
6192 rtpz->rb_root = RB_ROOT;
6193 spin_lock_init(&rtpz->lock);
6194 }
6195 }
6196 }
6197
6198 static struct cgroup_subsys_state * __ref
6199 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6200 {
6201 struct mem_cgroup *memcg;
6202 long error = -ENOMEM;
6203 int node;
6204
6205 memcg = mem_cgroup_alloc();
6206 if (!memcg)
6207 return ERR_PTR(error);
6208
6209 for_each_node(node)
6210 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6211 goto free_out;
6212
6213 /* root ? */
6214 if (parent_css == NULL) {
6215 root_mem_cgroup = memcg;
6216 res_counter_init(&memcg->res, NULL);
6217 res_counter_init(&memcg->memsw, NULL);
6218 res_counter_init(&memcg->kmem, NULL);
6219 }
6220
6221 memcg->last_scanned_node = MAX_NUMNODES;
6222 INIT_LIST_HEAD(&memcg->oom_notify);
6223 memcg->move_charge_at_immigrate = 0;
6224 mutex_init(&memcg->thresholds_lock);
6225 spin_lock_init(&memcg->move_lock);
6226 vmpressure_init(&memcg->vmpressure);
6227 INIT_LIST_HEAD(&memcg->event_list);
6228 spin_lock_init(&memcg->event_list_lock);
6229
6230 return &memcg->css;
6231
6232 free_out:
6233 __mem_cgroup_free(memcg);
6234 return ERR_PTR(error);
6235 }
6236
6237 static int
6238 mem_cgroup_css_online(struct cgroup_subsys_state *css)
6239 {
6240 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6241 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
6242
6243 if (css->id > MEM_CGROUP_ID_MAX)
6244 return -ENOSPC;
6245
6246 if (!parent)
6247 return 0;
6248
6249 mutex_lock(&memcg_create_mutex);
6250
6251 memcg->use_hierarchy = parent->use_hierarchy;
6252 memcg->oom_kill_disable = parent->oom_kill_disable;
6253 memcg->swappiness = mem_cgroup_swappiness(parent);
6254
6255 if (parent->use_hierarchy) {
6256 res_counter_init(&memcg->res, &parent->res);
6257 res_counter_init(&memcg->memsw, &parent->memsw);
6258 res_counter_init(&memcg->kmem, &parent->kmem);
6259
6260 /*
6261 * No need to take a reference to the parent because cgroup
6262 * core guarantees its existence.
6263 */
6264 } else {
6265 res_counter_init(&memcg->res, NULL);
6266 res_counter_init(&memcg->memsw, NULL);
6267 res_counter_init(&memcg->kmem, NULL);
6268 /*
6269 * Deeper hierachy with use_hierarchy == false doesn't make
6270 * much sense so let cgroup subsystem know about this
6271 * unfortunate state in our controller.
6272 */
6273 if (parent != root_mem_cgroup)
6274 memory_cgrp_subsys.broken_hierarchy = true;
6275 }
6276 mutex_unlock(&memcg_create_mutex);
6277
6278 return memcg_init_kmem(memcg, &memory_cgrp_subsys);
6279 }
6280
6281 /*
6282 * Announce all parents that a group from their hierarchy is gone.
6283 */
6284 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6285 {
6286 struct mem_cgroup *parent = memcg;
6287
6288 while ((parent = parent_mem_cgroup(parent)))
6289 mem_cgroup_iter_invalidate(parent);
6290
6291 /*
6292 * if the root memcg is not hierarchical we have to check it
6293 * explicitely.
6294 */
6295 if (!root_mem_cgroup->use_hierarchy)
6296 mem_cgroup_iter_invalidate(root_mem_cgroup);
6297 }
6298
6299 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6300 {
6301 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6302 struct mem_cgroup_event *event, *tmp;
6303 struct cgroup_subsys_state *iter;
6304
6305 /*
6306 * Unregister events and notify userspace.
6307 * Notify userspace about cgroup removing only after rmdir of cgroup
6308 * directory to avoid race between userspace and kernelspace.
6309 */
6310 spin_lock(&memcg->event_list_lock);
6311 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
6312 list_del_init(&event->list);
6313 schedule_work(&event->remove);
6314 }
6315 spin_unlock(&memcg->event_list_lock);
6316
6317 kmem_cgroup_css_offline(memcg);
6318
6319 mem_cgroup_invalidate_reclaim_iterators(memcg);
6320
6321 /*
6322 * This requires that offlining is serialized. Right now that is
6323 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
6324 */
6325 css_for_each_descendant_post(iter, css)
6326 mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));
6327
6328 memcg_unregister_all_caches(memcg);
6329 vmpressure_cleanup(&memcg->vmpressure);
6330 }
6331
6332 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6333 {
6334 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6335 /*
6336 * XXX: css_offline() would be where we should reparent all
6337 * memory to prepare the cgroup for destruction. However,
6338 * memcg does not do css_tryget_online() and res_counter charging
6339 * under the same RCU lock region, which means that charging
6340 * could race with offlining. Offlining only happens to
6341 * cgroups with no tasks in them but charges can show up
6342 * without any tasks from the swapin path when the target
6343 * memcg is looked up from the swapout record and not from the
6344 * current task as it usually is. A race like this can leak
6345 * charges and put pages with stale cgroup pointers into
6346 * circulation:
6347 *
6348 * #0 #1
6349 * lookup_swap_cgroup_id()
6350 * rcu_read_lock()
6351 * mem_cgroup_lookup()
6352 * css_tryget_online()
6353 * rcu_read_unlock()
6354 * disable css_tryget_online()
6355 * call_rcu()
6356 * offline_css()
6357 * reparent_charges()
6358 * res_counter_charge()
6359 * css_put()
6360 * css_free()
6361 * pc->mem_cgroup = dead memcg
6362 * add page to lru
6363 *
6364 * The bulk of the charges are still moved in offline_css() to
6365 * avoid pinning a lot of pages in case a long-term reference
6366 * like a swapout record is deferring the css_free() to long
6367 * after offlining. But this makes sure we catch any charges
6368 * made after offlining:
6369 */
6370 mem_cgroup_reparent_charges(memcg);
6371
6372 memcg_destroy_kmem(memcg);
6373 __mem_cgroup_free(memcg);
6374 }
6375
6376 /**
6377 * mem_cgroup_css_reset - reset the states of a mem_cgroup
6378 * @css: the target css
6379 *
6380 * Reset the states of the mem_cgroup associated with @css. This is
6381 * invoked when the userland requests disabling on the default hierarchy
6382 * but the memcg is pinned through dependency. The memcg should stop
6383 * applying policies and should revert to the vanilla state as it may be
6384 * made visible again.
6385 *
6386 * The current implementation only resets the essential configurations.
6387 * This needs to be expanded to cover all the visible parts.
6388 */
6389 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
6390 {
6391 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6392
6393 mem_cgroup_resize_limit(memcg, ULLONG_MAX);
6394 mem_cgroup_resize_memsw_limit(memcg, ULLONG_MAX);
6395 memcg_update_kmem_limit(memcg, ULLONG_MAX);
6396 res_counter_set_soft_limit(&memcg->res, ULLONG_MAX);
6397 }
6398
6399 #ifdef CONFIG_MMU
6400 /* Handlers for move charge at task migration. */
6401 #define PRECHARGE_COUNT_AT_ONCE 256
6402 static int mem_cgroup_do_precharge(unsigned long count)
6403 {
6404 int ret = 0;
6405 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6406 struct mem_cgroup *memcg = mc.to;
6407
6408 if (mem_cgroup_is_root(memcg)) {
6409 mc.precharge += count;
6410 /* we don't need css_get for root */
6411 return ret;
6412 }
6413 /* try to charge at once */
6414 if (count > 1) {
6415 struct res_counter *dummy;
6416 /*
6417 * "memcg" cannot be under rmdir() because we've already checked
6418 * by cgroup_lock_live_cgroup() that it is not removed and we
6419 * are still under the same cgroup_mutex. So we can postpone
6420 * css_get().
6421 */
6422 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6423 goto one_by_one;
6424 if (do_swap_account && res_counter_charge(&memcg->memsw,
6425 PAGE_SIZE * count, &dummy)) {
6426 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6427 goto one_by_one;
6428 }
6429 mc.precharge += count;
6430 return ret;
6431 }
6432 one_by_one:
6433 /* fall back to one by one charge */
6434 while (count--) {
6435 if (signal_pending(current)) {
6436 ret = -EINTR;
6437 break;
6438 }
6439 if (!batch_count--) {
6440 batch_count = PRECHARGE_COUNT_AT_ONCE;
6441 cond_resched();
6442 }
6443 ret = mem_cgroup_try_charge(memcg, GFP_KERNEL, 1, false);
6444 if (ret)
6445 /* mem_cgroup_clear_mc() will do uncharge later */
6446 return ret;
6447 mc.precharge++;
6448 }
6449 return ret;
6450 }
6451
6452 /**
6453 * get_mctgt_type - get target type of moving charge
6454 * @vma: the vma the pte to be checked belongs
6455 * @addr: the address corresponding to the pte to be checked
6456 * @ptent: the pte to be checked
6457 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6458 *
6459 * Returns
6460 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6461 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6462 * move charge. if @target is not NULL, the page is stored in target->page
6463 * with extra refcnt got(Callers should handle it).
6464 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6465 * target for charge migration. if @target is not NULL, the entry is stored
6466 * in target->ent.
6467 *
6468 * Called with pte lock held.
6469 */
6470 union mc_target {
6471 struct page *page;
6472 swp_entry_t ent;
6473 };
6474
6475 enum mc_target_type {
6476 MC_TARGET_NONE = 0,
6477 MC_TARGET_PAGE,
6478 MC_TARGET_SWAP,
6479 };
6480
6481 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6482 unsigned long addr, pte_t ptent)
6483 {
6484 struct page *page = vm_normal_page(vma, addr, ptent);
6485
6486 if (!page || !page_mapped(page))
6487 return NULL;
6488 if (PageAnon(page)) {
6489 /* we don't move shared anon */
6490 if (!move_anon())
6491 return NULL;
6492 } else if (!move_file())
6493 /* we ignore mapcount for file pages */
6494 return NULL;
6495 if (!get_page_unless_zero(page))
6496 return NULL;
6497
6498 return page;
6499 }
6500
6501 #ifdef CONFIG_SWAP
6502 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6503 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6504 {
6505 struct page *page = NULL;
6506 swp_entry_t ent = pte_to_swp_entry(ptent);
6507
6508 if (!move_anon() || non_swap_entry(ent))
6509 return NULL;
6510 /*
6511 * Because lookup_swap_cache() updates some statistics counter,
6512 * we call find_get_page() with swapper_space directly.
6513 */
6514 page = find_get_page(swap_address_space(ent), ent.val);
6515 if (do_swap_account)
6516 entry->val = ent.val;
6517
6518 return page;
6519 }
6520 #else
6521 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6522 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6523 {
6524 return NULL;
6525 }
6526 #endif
6527
6528 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6529 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6530 {
6531 struct page *page = NULL;
6532 struct address_space *mapping;
6533 pgoff_t pgoff;
6534
6535 if (!vma->vm_file) /* anonymous vma */
6536 return NULL;
6537 if (!move_file())
6538 return NULL;
6539
6540 mapping = vma->vm_file->f_mapping;
6541 if (pte_none(ptent))
6542 pgoff = linear_page_index(vma, addr);
6543 else /* pte_file(ptent) is true */
6544 pgoff = pte_to_pgoff(ptent);
6545
6546 /* page is moved even if it's not RSS of this task(page-faulted). */
6547 #ifdef CONFIG_SWAP
6548 /* shmem/tmpfs may report page out on swap: account for that too. */
6549 if (shmem_mapping(mapping)) {
6550 page = find_get_entry(mapping, pgoff);
6551 if (radix_tree_exceptional_entry(page)) {
6552 swp_entry_t swp = radix_to_swp_entry(page);
6553 if (do_swap_account)
6554 *entry = swp;
6555 page = find_get_page(swap_address_space(swp), swp.val);
6556 }
6557 } else
6558 page = find_get_page(mapping, pgoff);
6559 #else
6560 page = find_get_page(mapping, pgoff);
6561 #endif
6562 return page;
6563 }
6564
6565 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6566 unsigned long addr, pte_t ptent, union mc_target *target)
6567 {
6568 struct page *page = NULL;
6569 struct page_cgroup *pc;
6570 enum mc_target_type ret = MC_TARGET_NONE;
6571 swp_entry_t ent = { .val = 0 };
6572
6573 if (pte_present(ptent))
6574 page = mc_handle_present_pte(vma, addr, ptent);
6575 else if (is_swap_pte(ptent))
6576 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6577 else if (pte_none(ptent) || pte_file(ptent))
6578 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6579
6580 if (!page && !ent.val)
6581 return ret;
6582 if (page) {
6583 pc = lookup_page_cgroup(page);
6584 /*
6585 * Do only loose check w/o page_cgroup lock.
6586 * mem_cgroup_move_account() checks the pc is valid or not under
6587 * the lock.
6588 */
6589 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6590 ret = MC_TARGET_PAGE;
6591 if (target)
6592 target->page = page;
6593 }
6594 if (!ret || !target)
6595 put_page(page);
6596 }
6597 /* There is a swap entry and a page doesn't exist or isn't charged */
6598 if (ent.val && !ret &&
6599 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6600 ret = MC_TARGET_SWAP;
6601 if (target)
6602 target->ent = ent;
6603 }
6604 return ret;
6605 }
6606
6607 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6608 /*
6609 * We don't consider swapping or file mapped pages because THP does not
6610 * support them for now.
6611 * Caller should make sure that pmd_trans_huge(pmd) is true.
6612 */
6613 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6614 unsigned long addr, pmd_t pmd, union mc_target *target)
6615 {
6616 struct page *page = NULL;
6617 struct page_cgroup *pc;
6618 enum mc_target_type ret = MC_TARGET_NONE;
6619
6620 page = pmd_page(pmd);
6621 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6622 if (!move_anon())
6623 return ret;
6624 pc = lookup_page_cgroup(page);
6625 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6626 ret = MC_TARGET_PAGE;
6627 if (target) {
6628 get_page(page);
6629 target->page = page;
6630 }
6631 }
6632 return ret;
6633 }
6634 #else
6635 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6636 unsigned long addr, pmd_t pmd, union mc_target *target)
6637 {
6638 return MC_TARGET_NONE;
6639 }
6640 #endif
6641
6642 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6643 unsigned long addr, unsigned long end,
6644 struct mm_walk *walk)
6645 {
6646 struct vm_area_struct *vma = walk->private;
6647 pte_t *pte;
6648 spinlock_t *ptl;
6649
6650 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6651 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6652 mc.precharge += HPAGE_PMD_NR;
6653 spin_unlock(ptl);
6654 return 0;
6655 }
6656
6657 if (pmd_trans_unstable(pmd))
6658 return 0;
6659 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6660 for (; addr != end; pte++, addr += PAGE_SIZE)
6661 if (get_mctgt_type(vma, addr, *pte, NULL))
6662 mc.precharge++; /* increment precharge temporarily */
6663 pte_unmap_unlock(pte - 1, ptl);
6664 cond_resched();
6665
6666 return 0;
6667 }
6668
6669 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6670 {
6671 unsigned long precharge;
6672 struct vm_area_struct *vma;
6673
6674 down_read(&mm->mmap_sem);
6675 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6676 struct mm_walk mem_cgroup_count_precharge_walk = {
6677 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6678 .mm = mm,
6679 .private = vma,
6680 };
6681 if (is_vm_hugetlb_page(vma))
6682 continue;
6683 walk_page_range(vma->vm_start, vma->vm_end,
6684 &mem_cgroup_count_precharge_walk);
6685 }
6686 up_read(&mm->mmap_sem);
6687
6688 precharge = mc.precharge;
6689 mc.precharge = 0;
6690
6691 return precharge;
6692 }
6693
6694 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6695 {
6696 unsigned long precharge = mem_cgroup_count_precharge(mm);
6697
6698 VM_BUG_ON(mc.moving_task);
6699 mc.moving_task = current;
6700 return mem_cgroup_do_precharge(precharge);
6701 }
6702
6703 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6704 static void __mem_cgroup_clear_mc(void)
6705 {
6706 struct mem_cgroup *from = mc.from;
6707 struct mem_cgroup *to = mc.to;
6708 int i;
6709
6710 /* we must uncharge all the leftover precharges from mc.to */
6711 if (mc.precharge) {
6712 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6713 mc.precharge = 0;
6714 }
6715 /*
6716 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6717 * we must uncharge here.
6718 */
6719 if (mc.moved_charge) {
6720 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6721 mc.moved_charge = 0;
6722 }
6723 /* we must fixup refcnts and charges */
6724 if (mc.moved_swap) {
6725 /* uncharge swap account from the old cgroup */
6726 if (!mem_cgroup_is_root(mc.from))
6727 res_counter_uncharge(&mc.from->memsw,
6728 PAGE_SIZE * mc.moved_swap);
6729
6730 for (i = 0; i < mc.moved_swap; i++)
6731 css_put(&mc.from->css);
6732
6733 if (!mem_cgroup_is_root(mc.to)) {
6734 /*
6735 * we charged both to->res and to->memsw, so we should
6736 * uncharge to->res.
6737 */
6738 res_counter_uncharge(&mc.to->res,
6739 PAGE_SIZE * mc.moved_swap);
6740 }
6741 /* we've already done css_get(mc.to) */
6742 mc.moved_swap = 0;
6743 }
6744 memcg_oom_recover(from);
6745 memcg_oom_recover(to);
6746 wake_up_all(&mc.waitq);
6747 }
6748
6749 static void mem_cgroup_clear_mc(void)
6750 {
6751 struct mem_cgroup *from = mc.from;
6752
6753 /*
6754 * we must clear moving_task before waking up waiters at the end of
6755 * task migration.
6756 */
6757 mc.moving_task = NULL;
6758 __mem_cgroup_clear_mc();
6759 spin_lock(&mc.lock);
6760 mc.from = NULL;
6761 mc.to = NULL;
6762 spin_unlock(&mc.lock);
6763 mem_cgroup_end_move(from);
6764 }
6765
6766 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6767 struct cgroup_taskset *tset)
6768 {
6769 struct task_struct *p = cgroup_taskset_first(tset);
6770 int ret = 0;
6771 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6772 unsigned long move_charge_at_immigrate;
6773
6774 /*
6775 * We are now commited to this value whatever it is. Changes in this
6776 * tunable will only affect upcoming migrations, not the current one.
6777 * So we need to save it, and keep it going.
6778 */
6779 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6780 if (move_charge_at_immigrate) {
6781 struct mm_struct *mm;
6782 struct mem_cgroup *from = mem_cgroup_from_task(p);
6783
6784 VM_BUG_ON(from == memcg);
6785
6786 mm = get_task_mm(p);
6787 if (!mm)
6788 return 0;
6789 /* We move charges only when we move a owner of the mm */
6790 if (mm->owner == p) {
6791 VM_BUG_ON(mc.from);
6792 VM_BUG_ON(mc.to);
6793 VM_BUG_ON(mc.precharge);
6794 VM_BUG_ON(mc.moved_charge);
6795 VM_BUG_ON(mc.moved_swap);
6796 mem_cgroup_start_move(from);
6797 spin_lock(&mc.lock);
6798 mc.from = from;
6799 mc.to = memcg;
6800 mc.immigrate_flags = move_charge_at_immigrate;
6801 spin_unlock(&mc.lock);
6802 /* We set mc.moving_task later */
6803
6804 ret = mem_cgroup_precharge_mc(mm);
6805 if (ret)
6806 mem_cgroup_clear_mc();
6807 }
6808 mmput(mm);
6809 }
6810 return ret;
6811 }
6812
6813 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6814 struct cgroup_taskset *tset)
6815 {
6816 mem_cgroup_clear_mc();
6817 }
6818
6819 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6820 unsigned long addr, unsigned long end,
6821 struct mm_walk *walk)
6822 {
6823 int ret = 0;
6824 struct vm_area_struct *vma = walk->private;
6825 pte_t *pte;
6826 spinlock_t *ptl;
6827 enum mc_target_type target_type;
6828 union mc_target target;
6829 struct page *page;
6830 struct page_cgroup *pc;
6831
6832 /*
6833 * We don't take compound_lock() here but no race with splitting thp
6834 * happens because:
6835 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6836 * under splitting, which means there's no concurrent thp split,
6837 * - if another thread runs into split_huge_page() just after we
6838 * entered this if-block, the thread must wait for page table lock
6839 * to be unlocked in __split_huge_page_splitting(), where the main
6840 * part of thp split is not executed yet.
6841 */
6842 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6843 if (mc.precharge < HPAGE_PMD_NR) {
6844 spin_unlock(ptl);
6845 return 0;
6846 }
6847 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6848 if (target_type == MC_TARGET_PAGE) {
6849 page = target.page;
6850 if (!isolate_lru_page(page)) {
6851 pc = lookup_page_cgroup(page);
6852 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6853 pc, mc.from, mc.to)) {
6854 mc.precharge -= HPAGE_PMD_NR;
6855 mc.moved_charge += HPAGE_PMD_NR;
6856 }
6857 putback_lru_page(page);
6858 }
6859 put_page(page);
6860 }
6861 spin_unlock(ptl);
6862 return 0;
6863 }
6864
6865 if (pmd_trans_unstable(pmd))
6866 return 0;
6867 retry:
6868 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6869 for (; addr != end; addr += PAGE_SIZE) {
6870 pte_t ptent = *(pte++);
6871 swp_entry_t ent;
6872
6873 if (!mc.precharge)
6874 break;
6875
6876 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6877 case MC_TARGET_PAGE:
6878 page = target.page;
6879 if (isolate_lru_page(page))
6880 goto put;
6881 pc = lookup_page_cgroup(page);
6882 if (!mem_cgroup_move_account(page, 1, pc,
6883 mc.from, mc.to)) {
6884 mc.precharge--;
6885 /* we uncharge from mc.from later. */
6886 mc.moved_charge++;
6887 }
6888 putback_lru_page(page);
6889 put: /* get_mctgt_type() gets the page */
6890 put_page(page);
6891 break;
6892 case MC_TARGET_SWAP:
6893 ent = target.ent;
6894 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6895 mc.precharge--;
6896 /* we fixup refcnts and charges later. */
6897 mc.moved_swap++;
6898 }
6899 break;
6900 default:
6901 break;
6902 }
6903 }
6904 pte_unmap_unlock(pte - 1, ptl);
6905 cond_resched();
6906
6907 if (addr != end) {
6908 /*
6909 * We have consumed all precharges we got in can_attach().
6910 * We try charge one by one, but don't do any additional
6911 * charges to mc.to if we have failed in charge once in attach()
6912 * phase.
6913 */
6914 ret = mem_cgroup_do_precharge(1);
6915 if (!ret)
6916 goto retry;
6917 }
6918
6919 return ret;
6920 }
6921
6922 static void mem_cgroup_move_charge(struct mm_struct *mm)
6923 {
6924 struct vm_area_struct *vma;
6925
6926 lru_add_drain_all();
6927 retry:
6928 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6929 /*
6930 * Someone who are holding the mmap_sem might be waiting in
6931 * waitq. So we cancel all extra charges, wake up all waiters,
6932 * and retry. Because we cancel precharges, we might not be able
6933 * to move enough charges, but moving charge is a best-effort
6934 * feature anyway, so it wouldn't be a big problem.
6935 */
6936 __mem_cgroup_clear_mc();
6937 cond_resched();
6938 goto retry;
6939 }
6940 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6941 int ret;
6942 struct mm_walk mem_cgroup_move_charge_walk = {
6943 .pmd_entry = mem_cgroup_move_charge_pte_range,
6944 .mm = mm,
6945 .private = vma,
6946 };
6947 if (is_vm_hugetlb_page(vma))
6948 continue;
6949 ret = walk_page_range(vma->vm_start, vma->vm_end,
6950 &mem_cgroup_move_charge_walk);
6951 if (ret)
6952 /*
6953 * means we have consumed all precharges and failed in
6954 * doing additional charge. Just abandon here.
6955 */
6956 break;
6957 }
6958 up_read(&mm->mmap_sem);
6959 }
6960
6961 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6962 struct cgroup_taskset *tset)
6963 {
6964 struct task_struct *p = cgroup_taskset_first(tset);
6965 struct mm_struct *mm = get_task_mm(p);
6966
6967 if (mm) {
6968 if (mc.to)
6969 mem_cgroup_move_charge(mm);
6970 mmput(mm);
6971 }
6972 if (mc.to)
6973 mem_cgroup_clear_mc();
6974 }
6975 #else /* !CONFIG_MMU */
6976 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6977 struct cgroup_taskset *tset)
6978 {
6979 return 0;
6980 }
6981 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6982 struct cgroup_taskset *tset)
6983 {
6984 }
6985 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6986 struct cgroup_taskset *tset)
6987 {
6988 }
6989 #endif
6990
6991 /*
6992 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6993 * to verify whether we're attached to the default hierarchy on each mount
6994 * attempt.
6995 */
6996 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6997 {
6998 /*
6999 * use_hierarchy is forced on the default hierarchy. cgroup core
7000 * guarantees that @root doesn't have any children, so turning it
7001 * on for the root memcg is enough.
7002 */
7003 if (cgroup_on_dfl(root_css->cgroup))
7004 mem_cgroup_from_css(root_css)->use_hierarchy = true;
7005 }
7006
7007 struct cgroup_subsys memory_cgrp_subsys = {
7008 .css_alloc = mem_cgroup_css_alloc,
7009 .css_online = mem_cgroup_css_online,
7010 .css_offline = mem_cgroup_css_offline,
7011 .css_free = mem_cgroup_css_free,
7012 .css_reset = mem_cgroup_css_reset,
7013 .can_attach = mem_cgroup_can_attach,
7014 .cancel_attach = mem_cgroup_cancel_attach,
7015 .attach = mem_cgroup_move_task,
7016 .bind = mem_cgroup_bind,
7017 .legacy_cftypes = mem_cgroup_files,
7018 .early_init = 0,
7019 };
7020
7021 #ifdef CONFIG_MEMCG_SWAP
7022 static int __init enable_swap_account(char *s)
7023 {
7024 if (!strcmp(s, "1"))
7025 really_do_swap_account = 1;
7026 else if (!strcmp(s, "0"))
7027 really_do_swap_account = 0;
7028 return 1;
7029 }
7030 __setup("swapaccount=", enable_swap_account);
7031
7032 static void __init memsw_file_init(void)
7033 {
7034 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
7035 memsw_cgroup_files));
7036 }
7037
7038 static void __init enable_swap_cgroup(void)
7039 {
7040 if (!mem_cgroup_disabled() && really_do_swap_account) {
7041 do_swap_account = 1;
7042 memsw_file_init();
7043 }
7044 }
7045
7046 #else
7047 static void __init enable_swap_cgroup(void)
7048 {
7049 }
7050 #endif
7051
7052 /*
7053 * subsys_initcall() for memory controller.
7054 *
7055 * Some parts like hotcpu_notifier() have to be initialized from this context
7056 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7057 * everything that doesn't depend on a specific mem_cgroup structure should
7058 * be initialized from here.
7059 */
7060 static int __init mem_cgroup_init(void)
7061 {
7062 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7063 enable_swap_cgroup();
7064 mem_cgroup_soft_limit_tree_init();
7065 memcg_stock_init();
7066 return 0;
7067 }
7068 subsys_initcall(mem_cgroup_init);
This page took 0.16625 seconds and 6 git commands to generate.