memcg: count the soft_limit reclaim in global background reclaim
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
51 #include "internal.h"
52
53 #include <asm/uaccess.h>
54
55 #include <trace/events/vmscan.h>
56
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58 #define MEM_CGROUP_RECLAIM_RETRIES 5
59 struct mem_cgroup *root_mem_cgroup __read_mostly;
60
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly;
64
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata = 1;
68 #else
69 static int really_do_swap_account __initdata = 0;
70 #endif
71
72 #else
73 #define do_swap_account (0)
74 #endif
75
76
77 /*
78 * Statistics for memory cgroup.
79 */
80 enum mem_cgroup_stat_index {
81 /*
82 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
83 */
84 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
85 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
86 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
87 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
88 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
89 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
90 MEM_CGROUP_STAT_NSTATS,
91 };
92
93 enum mem_cgroup_events_index {
94 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
95 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
96 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
97 MEM_CGROUP_EVENTS_NSTATS,
98 };
99 /*
100 * Per memcg event counter is incremented at every pagein/pageout. With THP,
101 * it will be incremated by the number of pages. This counter is used for
102 * for trigger some periodic events. This is straightforward and better
103 * than using jiffies etc. to handle periodic memcg event.
104 */
105 enum mem_cgroup_events_target {
106 MEM_CGROUP_TARGET_THRESH,
107 MEM_CGROUP_TARGET_SOFTLIMIT,
108 MEM_CGROUP_NTARGETS,
109 };
110 #define THRESHOLDS_EVENTS_TARGET (128)
111 #define SOFTLIMIT_EVENTS_TARGET (1024)
112
113 struct mem_cgroup_stat_cpu {
114 long count[MEM_CGROUP_STAT_NSTATS];
115 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
116 unsigned long targets[MEM_CGROUP_NTARGETS];
117 };
118
119 /*
120 * per-zone information in memory controller.
121 */
122 struct mem_cgroup_per_zone {
123 /*
124 * spin_lock to protect the per cgroup LRU
125 */
126 struct list_head lists[NR_LRU_LISTS];
127 unsigned long count[NR_LRU_LISTS];
128
129 struct zone_reclaim_stat reclaim_stat;
130 struct rb_node tree_node; /* RB tree node */
131 unsigned long long usage_in_excess;/* Set to the value by which */
132 /* the soft limit is exceeded*/
133 bool on_tree;
134 struct mem_cgroup *mem; /* Back pointer, we cannot */
135 /* use container_of */
136 };
137 /* Macro for accessing counter */
138 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
139
140 struct mem_cgroup_per_node {
141 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
142 };
143
144 struct mem_cgroup_lru_info {
145 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
146 };
147
148 /*
149 * Cgroups above their limits are maintained in a RB-Tree, independent of
150 * their hierarchy representation
151 */
152
153 struct mem_cgroup_tree_per_zone {
154 struct rb_root rb_root;
155 spinlock_t lock;
156 };
157
158 struct mem_cgroup_tree_per_node {
159 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
160 };
161
162 struct mem_cgroup_tree {
163 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
164 };
165
166 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
167
168 struct mem_cgroup_threshold {
169 struct eventfd_ctx *eventfd;
170 u64 threshold;
171 };
172
173 /* For threshold */
174 struct mem_cgroup_threshold_ary {
175 /* An array index points to threshold just below usage. */
176 int current_threshold;
177 /* Size of entries[] */
178 unsigned int size;
179 /* Array of thresholds */
180 struct mem_cgroup_threshold entries[0];
181 };
182
183 struct mem_cgroup_thresholds {
184 /* Primary thresholds array */
185 struct mem_cgroup_threshold_ary *primary;
186 /*
187 * Spare threshold array.
188 * This is needed to make mem_cgroup_unregister_event() "never fail".
189 * It must be able to store at least primary->size - 1 entries.
190 */
191 struct mem_cgroup_threshold_ary *spare;
192 };
193
194 /* for OOM */
195 struct mem_cgroup_eventfd_list {
196 struct list_head list;
197 struct eventfd_ctx *eventfd;
198 };
199
200 static void mem_cgroup_threshold(struct mem_cgroup *mem);
201 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
202
203 /*
204 * The memory controller data structure. The memory controller controls both
205 * page cache and RSS per cgroup. We would eventually like to provide
206 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
207 * to help the administrator determine what knobs to tune.
208 *
209 * TODO: Add a water mark for the memory controller. Reclaim will begin when
210 * we hit the water mark. May be even add a low water mark, such that
211 * no reclaim occurs from a cgroup at it's low water mark, this is
212 * a feature that will be implemented much later in the future.
213 */
214 struct mem_cgroup {
215 struct cgroup_subsys_state css;
216 /*
217 * the counter to account for memory usage
218 */
219 struct res_counter res;
220 /*
221 * the counter to account for mem+swap usage.
222 */
223 struct res_counter memsw;
224 /*
225 * Per cgroup active and inactive list, similar to the
226 * per zone LRU lists.
227 */
228 struct mem_cgroup_lru_info info;
229 /*
230 * While reclaiming in a hierarchy, we cache the last child we
231 * reclaimed from.
232 */
233 int last_scanned_child;
234 /*
235 * Should the accounting and control be hierarchical, per subtree?
236 */
237 bool use_hierarchy;
238 atomic_t oom_lock;
239 atomic_t refcnt;
240
241 unsigned int swappiness;
242 /* OOM-Killer disable */
243 int oom_kill_disable;
244
245 /* set when res.limit == memsw.limit */
246 bool memsw_is_minimum;
247
248 /* protect arrays of thresholds */
249 struct mutex thresholds_lock;
250
251 /* thresholds for memory usage. RCU-protected */
252 struct mem_cgroup_thresholds thresholds;
253
254 /* thresholds for mem+swap usage. RCU-protected */
255 struct mem_cgroup_thresholds memsw_thresholds;
256
257 /* For oom notifier event fd */
258 struct list_head oom_notify;
259
260 /*
261 * Should we move charges of a task when a task is moved into this
262 * mem_cgroup ? And what type of charges should we move ?
263 */
264 unsigned long move_charge_at_immigrate;
265 /*
266 * percpu counter.
267 */
268 struct mem_cgroup_stat_cpu *stat;
269 /*
270 * used when a cpu is offlined or other synchronizations
271 * See mem_cgroup_read_stat().
272 */
273 struct mem_cgroup_stat_cpu nocpu_base;
274 spinlock_t pcp_counter_lock;
275 };
276
277 /* Stuffs for move charges at task migration. */
278 /*
279 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
280 * left-shifted bitmap of these types.
281 */
282 enum move_type {
283 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
284 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
285 NR_MOVE_TYPE,
286 };
287
288 /* "mc" and its members are protected by cgroup_mutex */
289 static struct move_charge_struct {
290 spinlock_t lock; /* for from, to */
291 struct mem_cgroup *from;
292 struct mem_cgroup *to;
293 unsigned long precharge;
294 unsigned long moved_charge;
295 unsigned long moved_swap;
296 struct task_struct *moving_task; /* a task moving charges */
297 wait_queue_head_t waitq; /* a waitq for other context */
298 } mc = {
299 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
300 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
301 };
302
303 static bool move_anon(void)
304 {
305 return test_bit(MOVE_CHARGE_TYPE_ANON,
306 &mc.to->move_charge_at_immigrate);
307 }
308
309 static bool move_file(void)
310 {
311 return test_bit(MOVE_CHARGE_TYPE_FILE,
312 &mc.to->move_charge_at_immigrate);
313 }
314
315 /*
316 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
317 * limit reclaim to prevent infinite loops, if they ever occur.
318 */
319 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
320 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
321
322 enum charge_type {
323 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
324 MEM_CGROUP_CHARGE_TYPE_MAPPED,
325 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
326 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
327 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
328 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
329 NR_CHARGE_TYPE,
330 };
331
332 /* for encoding cft->private value on file */
333 #define _MEM (0)
334 #define _MEMSWAP (1)
335 #define _OOM_TYPE (2)
336 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
337 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
338 #define MEMFILE_ATTR(val) ((val) & 0xffff)
339 /* Used for OOM nofiier */
340 #define OOM_CONTROL (0)
341
342 /*
343 * Reclaim flags for mem_cgroup_hierarchical_reclaim
344 */
345 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
346 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
347 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
348 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
349 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
350 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
351
352 static void mem_cgroup_get(struct mem_cgroup *mem);
353 static void mem_cgroup_put(struct mem_cgroup *mem);
354 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
355 static void drain_all_stock_async(void);
356
357 static struct mem_cgroup_per_zone *
358 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
359 {
360 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
361 }
362
363 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
364 {
365 return &mem->css;
366 }
367
368 static struct mem_cgroup_per_zone *
369 page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
370 {
371 int nid = page_to_nid(page);
372 int zid = page_zonenum(page);
373
374 return mem_cgroup_zoneinfo(mem, nid, zid);
375 }
376
377 static struct mem_cgroup_tree_per_zone *
378 soft_limit_tree_node_zone(int nid, int zid)
379 {
380 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
381 }
382
383 static struct mem_cgroup_tree_per_zone *
384 soft_limit_tree_from_page(struct page *page)
385 {
386 int nid = page_to_nid(page);
387 int zid = page_zonenum(page);
388
389 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
390 }
391
392 static void
393 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
394 struct mem_cgroup_per_zone *mz,
395 struct mem_cgroup_tree_per_zone *mctz,
396 unsigned long long new_usage_in_excess)
397 {
398 struct rb_node **p = &mctz->rb_root.rb_node;
399 struct rb_node *parent = NULL;
400 struct mem_cgroup_per_zone *mz_node;
401
402 if (mz->on_tree)
403 return;
404
405 mz->usage_in_excess = new_usage_in_excess;
406 if (!mz->usage_in_excess)
407 return;
408 while (*p) {
409 parent = *p;
410 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
411 tree_node);
412 if (mz->usage_in_excess < mz_node->usage_in_excess)
413 p = &(*p)->rb_left;
414 /*
415 * We can't avoid mem cgroups that are over their soft
416 * limit by the same amount
417 */
418 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
419 p = &(*p)->rb_right;
420 }
421 rb_link_node(&mz->tree_node, parent, p);
422 rb_insert_color(&mz->tree_node, &mctz->rb_root);
423 mz->on_tree = true;
424 }
425
426 static void
427 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
428 struct mem_cgroup_per_zone *mz,
429 struct mem_cgroup_tree_per_zone *mctz)
430 {
431 if (!mz->on_tree)
432 return;
433 rb_erase(&mz->tree_node, &mctz->rb_root);
434 mz->on_tree = false;
435 }
436
437 static void
438 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
439 struct mem_cgroup_per_zone *mz,
440 struct mem_cgroup_tree_per_zone *mctz)
441 {
442 spin_lock(&mctz->lock);
443 __mem_cgroup_remove_exceeded(mem, mz, mctz);
444 spin_unlock(&mctz->lock);
445 }
446
447
448 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
449 {
450 unsigned long long excess;
451 struct mem_cgroup_per_zone *mz;
452 struct mem_cgroup_tree_per_zone *mctz;
453 int nid = page_to_nid(page);
454 int zid = page_zonenum(page);
455 mctz = soft_limit_tree_from_page(page);
456
457 /*
458 * Necessary to update all ancestors when hierarchy is used.
459 * because their event counter is not touched.
460 */
461 for (; mem; mem = parent_mem_cgroup(mem)) {
462 mz = mem_cgroup_zoneinfo(mem, nid, zid);
463 excess = res_counter_soft_limit_excess(&mem->res);
464 /*
465 * We have to update the tree if mz is on RB-tree or
466 * mem is over its softlimit.
467 */
468 if (excess || mz->on_tree) {
469 spin_lock(&mctz->lock);
470 /* if on-tree, remove it */
471 if (mz->on_tree)
472 __mem_cgroup_remove_exceeded(mem, mz, mctz);
473 /*
474 * Insert again. mz->usage_in_excess will be updated.
475 * If excess is 0, no tree ops.
476 */
477 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
478 spin_unlock(&mctz->lock);
479 }
480 }
481 }
482
483 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
484 {
485 int node, zone;
486 struct mem_cgroup_per_zone *mz;
487 struct mem_cgroup_tree_per_zone *mctz;
488
489 for_each_node_state(node, N_POSSIBLE) {
490 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
491 mz = mem_cgroup_zoneinfo(mem, node, zone);
492 mctz = soft_limit_tree_node_zone(node, zone);
493 mem_cgroup_remove_exceeded(mem, mz, mctz);
494 }
495 }
496 }
497
498 static struct mem_cgroup_per_zone *
499 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
500 {
501 struct rb_node *rightmost = NULL;
502 struct mem_cgroup_per_zone *mz;
503
504 retry:
505 mz = NULL;
506 rightmost = rb_last(&mctz->rb_root);
507 if (!rightmost)
508 goto done; /* Nothing to reclaim from */
509
510 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
511 /*
512 * Remove the node now but someone else can add it back,
513 * we will to add it back at the end of reclaim to its correct
514 * position in the tree.
515 */
516 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
517 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
518 !css_tryget(&mz->mem->css))
519 goto retry;
520 done:
521 return mz;
522 }
523
524 static struct mem_cgroup_per_zone *
525 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
526 {
527 struct mem_cgroup_per_zone *mz;
528
529 spin_lock(&mctz->lock);
530 mz = __mem_cgroup_largest_soft_limit_node(mctz);
531 spin_unlock(&mctz->lock);
532 return mz;
533 }
534
535 /*
536 * Implementation Note: reading percpu statistics for memcg.
537 *
538 * Both of vmstat[] and percpu_counter has threshold and do periodic
539 * synchronization to implement "quick" read. There are trade-off between
540 * reading cost and precision of value. Then, we may have a chance to implement
541 * a periodic synchronizion of counter in memcg's counter.
542 *
543 * But this _read() function is used for user interface now. The user accounts
544 * memory usage by memory cgroup and he _always_ requires exact value because
545 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
546 * have to visit all online cpus and make sum. So, for now, unnecessary
547 * synchronization is not implemented. (just implemented for cpu hotplug)
548 *
549 * If there are kernel internal actions which can make use of some not-exact
550 * value, and reading all cpu value can be performance bottleneck in some
551 * common workload, threashold and synchonization as vmstat[] should be
552 * implemented.
553 */
554 static long mem_cgroup_read_stat(struct mem_cgroup *mem,
555 enum mem_cgroup_stat_index idx)
556 {
557 long val = 0;
558 int cpu;
559
560 get_online_cpus();
561 for_each_online_cpu(cpu)
562 val += per_cpu(mem->stat->count[idx], cpu);
563 #ifdef CONFIG_HOTPLUG_CPU
564 spin_lock(&mem->pcp_counter_lock);
565 val += mem->nocpu_base.count[idx];
566 spin_unlock(&mem->pcp_counter_lock);
567 #endif
568 put_online_cpus();
569 return val;
570 }
571
572 static long mem_cgroup_local_usage(struct mem_cgroup *mem)
573 {
574 long ret;
575
576 ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
577 ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
578 return ret;
579 }
580
581 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
582 bool charge)
583 {
584 int val = (charge) ? 1 : -1;
585 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
586 }
587
588 static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
589 enum mem_cgroup_events_index idx)
590 {
591 unsigned long val = 0;
592 int cpu;
593
594 for_each_online_cpu(cpu)
595 val += per_cpu(mem->stat->events[idx], cpu);
596 #ifdef CONFIG_HOTPLUG_CPU
597 spin_lock(&mem->pcp_counter_lock);
598 val += mem->nocpu_base.events[idx];
599 spin_unlock(&mem->pcp_counter_lock);
600 #endif
601 return val;
602 }
603
604 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
605 bool file, int nr_pages)
606 {
607 preempt_disable();
608
609 if (file)
610 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
611 else
612 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
613
614 /* pagein of a big page is an event. So, ignore page size */
615 if (nr_pages > 0)
616 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
617 else {
618 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
619 nr_pages = -nr_pages; /* for event */
620 }
621
622 __this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
623
624 preempt_enable();
625 }
626
627 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
628 enum lru_list idx)
629 {
630 int nid, zid;
631 struct mem_cgroup_per_zone *mz;
632 u64 total = 0;
633
634 for_each_online_node(nid)
635 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
636 mz = mem_cgroup_zoneinfo(mem, nid, zid);
637 total += MEM_CGROUP_ZSTAT(mz, idx);
638 }
639 return total;
640 }
641
642 static bool __memcg_event_check(struct mem_cgroup *mem, int target)
643 {
644 unsigned long val, next;
645
646 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
647 next = this_cpu_read(mem->stat->targets[target]);
648 /* from time_after() in jiffies.h */
649 return ((long)next - (long)val < 0);
650 }
651
652 static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
653 {
654 unsigned long val, next;
655
656 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
657
658 switch (target) {
659 case MEM_CGROUP_TARGET_THRESH:
660 next = val + THRESHOLDS_EVENTS_TARGET;
661 break;
662 case MEM_CGROUP_TARGET_SOFTLIMIT:
663 next = val + SOFTLIMIT_EVENTS_TARGET;
664 break;
665 default:
666 return;
667 }
668
669 this_cpu_write(mem->stat->targets[target], next);
670 }
671
672 /*
673 * Check events in order.
674 *
675 */
676 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
677 {
678 /* threshold event is triggered in finer grain than soft limit */
679 if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
680 mem_cgroup_threshold(mem);
681 __mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
682 if (unlikely(__memcg_event_check(mem,
683 MEM_CGROUP_TARGET_SOFTLIMIT))){
684 mem_cgroup_update_tree(mem, page);
685 __mem_cgroup_target_update(mem,
686 MEM_CGROUP_TARGET_SOFTLIMIT);
687 }
688 }
689 }
690
691 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
692 {
693 return container_of(cgroup_subsys_state(cont,
694 mem_cgroup_subsys_id), struct mem_cgroup,
695 css);
696 }
697
698 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
699 {
700 /*
701 * mm_update_next_owner() may clear mm->owner to NULL
702 * if it races with swapoff, page migration, etc.
703 * So this can be called with p == NULL.
704 */
705 if (unlikely(!p))
706 return NULL;
707
708 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
709 struct mem_cgroup, css);
710 }
711
712 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
713 {
714 struct mem_cgroup *mem = NULL;
715
716 if (!mm)
717 return NULL;
718 /*
719 * Because we have no locks, mm->owner's may be being moved to other
720 * cgroup. We use css_tryget() here even if this looks
721 * pessimistic (rather than adding locks here).
722 */
723 rcu_read_lock();
724 do {
725 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
726 if (unlikely(!mem))
727 break;
728 } while (!css_tryget(&mem->css));
729 rcu_read_unlock();
730 return mem;
731 }
732
733 /* The caller has to guarantee "mem" exists before calling this */
734 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
735 {
736 struct cgroup_subsys_state *css;
737 int found;
738
739 if (!mem) /* ROOT cgroup has the smallest ID */
740 return root_mem_cgroup; /*css_put/get against root is ignored*/
741 if (!mem->use_hierarchy) {
742 if (css_tryget(&mem->css))
743 return mem;
744 return NULL;
745 }
746 rcu_read_lock();
747 /*
748 * searching a memory cgroup which has the smallest ID under given
749 * ROOT cgroup. (ID >= 1)
750 */
751 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
752 if (css && css_tryget(css))
753 mem = container_of(css, struct mem_cgroup, css);
754 else
755 mem = NULL;
756 rcu_read_unlock();
757 return mem;
758 }
759
760 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
761 struct mem_cgroup *root,
762 bool cond)
763 {
764 int nextid = css_id(&iter->css) + 1;
765 int found;
766 int hierarchy_used;
767 struct cgroup_subsys_state *css;
768
769 hierarchy_used = iter->use_hierarchy;
770
771 css_put(&iter->css);
772 /* If no ROOT, walk all, ignore hierarchy */
773 if (!cond || (root && !hierarchy_used))
774 return NULL;
775
776 if (!root)
777 root = root_mem_cgroup;
778
779 do {
780 iter = NULL;
781 rcu_read_lock();
782
783 css = css_get_next(&mem_cgroup_subsys, nextid,
784 &root->css, &found);
785 if (css && css_tryget(css))
786 iter = container_of(css, struct mem_cgroup, css);
787 rcu_read_unlock();
788 /* If css is NULL, no more cgroups will be found */
789 nextid = found + 1;
790 } while (css && !iter);
791
792 return iter;
793 }
794 /*
795 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
796 * be careful that "break" loop is not allowed. We have reference count.
797 * Instead of that modify "cond" to be false and "continue" to exit the loop.
798 */
799 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
800 for (iter = mem_cgroup_start_loop(root);\
801 iter != NULL;\
802 iter = mem_cgroup_get_next(iter, root, cond))
803
804 #define for_each_mem_cgroup_tree(iter, root) \
805 for_each_mem_cgroup_tree_cond(iter, root, true)
806
807 #define for_each_mem_cgroup_all(iter) \
808 for_each_mem_cgroup_tree_cond(iter, NULL, true)
809
810
811 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
812 {
813 return (mem == root_mem_cgroup);
814 }
815
816 /*
817 * Following LRU functions are allowed to be used without PCG_LOCK.
818 * Operations are called by routine of global LRU independently from memcg.
819 * What we have to take care of here is validness of pc->mem_cgroup.
820 *
821 * Changes to pc->mem_cgroup happens when
822 * 1. charge
823 * 2. moving account
824 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
825 * It is added to LRU before charge.
826 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
827 * When moving account, the page is not on LRU. It's isolated.
828 */
829
830 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
831 {
832 struct page_cgroup *pc;
833 struct mem_cgroup_per_zone *mz;
834
835 if (mem_cgroup_disabled())
836 return;
837 pc = lookup_page_cgroup(page);
838 /* can happen while we handle swapcache. */
839 if (!TestClearPageCgroupAcctLRU(pc))
840 return;
841 VM_BUG_ON(!pc->mem_cgroup);
842 /*
843 * We don't check PCG_USED bit. It's cleared when the "page" is finally
844 * removed from global LRU.
845 */
846 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
847 /* huge page split is done under lru_lock. so, we have no races. */
848 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
849 if (mem_cgroup_is_root(pc->mem_cgroup))
850 return;
851 VM_BUG_ON(list_empty(&pc->lru));
852 list_del_init(&pc->lru);
853 }
854
855 void mem_cgroup_del_lru(struct page *page)
856 {
857 mem_cgroup_del_lru_list(page, page_lru(page));
858 }
859
860 /*
861 * Writeback is about to end against a page which has been marked for immediate
862 * reclaim. If it still appears to be reclaimable, move it to the tail of the
863 * inactive list.
864 */
865 void mem_cgroup_rotate_reclaimable_page(struct page *page)
866 {
867 struct mem_cgroup_per_zone *mz;
868 struct page_cgroup *pc;
869 enum lru_list lru = page_lru(page);
870
871 if (mem_cgroup_disabled())
872 return;
873
874 pc = lookup_page_cgroup(page);
875 /* unused or root page is not rotated. */
876 if (!PageCgroupUsed(pc))
877 return;
878 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
879 smp_rmb();
880 if (mem_cgroup_is_root(pc->mem_cgroup))
881 return;
882 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
883 list_move_tail(&pc->lru, &mz->lists[lru]);
884 }
885
886 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
887 {
888 struct mem_cgroup_per_zone *mz;
889 struct page_cgroup *pc;
890
891 if (mem_cgroup_disabled())
892 return;
893
894 pc = lookup_page_cgroup(page);
895 /* unused or root page is not rotated. */
896 if (!PageCgroupUsed(pc))
897 return;
898 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
899 smp_rmb();
900 if (mem_cgroup_is_root(pc->mem_cgroup))
901 return;
902 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
903 list_move(&pc->lru, &mz->lists[lru]);
904 }
905
906 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
907 {
908 struct page_cgroup *pc;
909 struct mem_cgroup_per_zone *mz;
910
911 if (mem_cgroup_disabled())
912 return;
913 pc = lookup_page_cgroup(page);
914 VM_BUG_ON(PageCgroupAcctLRU(pc));
915 if (!PageCgroupUsed(pc))
916 return;
917 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
918 smp_rmb();
919 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
920 /* huge page split is done under lru_lock. so, we have no races. */
921 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
922 SetPageCgroupAcctLRU(pc);
923 if (mem_cgroup_is_root(pc->mem_cgroup))
924 return;
925 list_add(&pc->lru, &mz->lists[lru]);
926 }
927
928 /*
929 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
930 * while it's linked to lru because the page may be reused after it's fully
931 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
932 * It's done under lock_page and expected that zone->lru_lock isnever held.
933 */
934 static void mem_cgroup_lru_del_before_commit(struct page *page)
935 {
936 unsigned long flags;
937 struct zone *zone = page_zone(page);
938 struct page_cgroup *pc = lookup_page_cgroup(page);
939
940 /*
941 * Doing this check without taking ->lru_lock seems wrong but this
942 * is safe. Because if page_cgroup's USED bit is unset, the page
943 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
944 * set, the commit after this will fail, anyway.
945 * This all charge/uncharge is done under some mutual execustion.
946 * So, we don't need to taking care of changes in USED bit.
947 */
948 if (likely(!PageLRU(page)))
949 return;
950
951 spin_lock_irqsave(&zone->lru_lock, flags);
952 /*
953 * Forget old LRU when this page_cgroup is *not* used. This Used bit
954 * is guarded by lock_page() because the page is SwapCache.
955 */
956 if (!PageCgroupUsed(pc))
957 mem_cgroup_del_lru_list(page, page_lru(page));
958 spin_unlock_irqrestore(&zone->lru_lock, flags);
959 }
960
961 static void mem_cgroup_lru_add_after_commit(struct page *page)
962 {
963 unsigned long flags;
964 struct zone *zone = page_zone(page);
965 struct page_cgroup *pc = lookup_page_cgroup(page);
966
967 /* taking care of that the page is added to LRU while we commit it */
968 if (likely(!PageLRU(page)))
969 return;
970 spin_lock_irqsave(&zone->lru_lock, flags);
971 /* link when the page is linked to LRU but page_cgroup isn't */
972 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
973 mem_cgroup_add_lru_list(page, page_lru(page));
974 spin_unlock_irqrestore(&zone->lru_lock, flags);
975 }
976
977
978 void mem_cgroup_move_lists(struct page *page,
979 enum lru_list from, enum lru_list to)
980 {
981 if (mem_cgroup_disabled())
982 return;
983 mem_cgroup_del_lru_list(page, from);
984 mem_cgroup_add_lru_list(page, to);
985 }
986
987 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
988 {
989 int ret;
990 struct mem_cgroup *curr = NULL;
991 struct task_struct *p;
992
993 p = find_lock_task_mm(task);
994 if (!p)
995 return 0;
996 curr = try_get_mem_cgroup_from_mm(p->mm);
997 task_unlock(p);
998 if (!curr)
999 return 0;
1000 /*
1001 * We should check use_hierarchy of "mem" not "curr". Because checking
1002 * use_hierarchy of "curr" here make this function true if hierarchy is
1003 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
1004 * hierarchy(even if use_hierarchy is disabled in "mem").
1005 */
1006 if (mem->use_hierarchy)
1007 ret = css_is_ancestor(&curr->css, &mem->css);
1008 else
1009 ret = (curr == mem);
1010 css_put(&curr->css);
1011 return ret;
1012 }
1013
1014 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
1015 {
1016 unsigned long active;
1017 unsigned long inactive;
1018 unsigned long gb;
1019 unsigned long inactive_ratio;
1020
1021 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
1022 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
1023
1024 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1025 if (gb)
1026 inactive_ratio = int_sqrt(10 * gb);
1027 else
1028 inactive_ratio = 1;
1029
1030 if (present_pages) {
1031 present_pages[0] = inactive;
1032 present_pages[1] = active;
1033 }
1034
1035 return inactive_ratio;
1036 }
1037
1038 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
1039 {
1040 unsigned long active;
1041 unsigned long inactive;
1042 unsigned long present_pages[2];
1043 unsigned long inactive_ratio;
1044
1045 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
1046
1047 inactive = present_pages[0];
1048 active = present_pages[1];
1049
1050 if (inactive * inactive_ratio < active)
1051 return 1;
1052
1053 return 0;
1054 }
1055
1056 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1057 {
1058 unsigned long active;
1059 unsigned long inactive;
1060
1061 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
1062 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
1063
1064 return (active > inactive);
1065 }
1066
1067 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
1068 struct zone *zone,
1069 enum lru_list lru)
1070 {
1071 int nid = zone_to_nid(zone);
1072 int zid = zone_idx(zone);
1073 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1074
1075 return MEM_CGROUP_ZSTAT(mz, lru);
1076 }
1077
1078 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1079 struct zone *zone)
1080 {
1081 int nid = zone_to_nid(zone);
1082 int zid = zone_idx(zone);
1083 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1084
1085 return &mz->reclaim_stat;
1086 }
1087
1088 struct zone_reclaim_stat *
1089 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1090 {
1091 struct page_cgroup *pc;
1092 struct mem_cgroup_per_zone *mz;
1093
1094 if (mem_cgroup_disabled())
1095 return NULL;
1096
1097 pc = lookup_page_cgroup(page);
1098 if (!PageCgroupUsed(pc))
1099 return NULL;
1100 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1101 smp_rmb();
1102 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1103 return &mz->reclaim_stat;
1104 }
1105
1106 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1107 struct list_head *dst,
1108 unsigned long *scanned, int order,
1109 int mode, struct zone *z,
1110 struct mem_cgroup *mem_cont,
1111 int active, int file)
1112 {
1113 unsigned long nr_taken = 0;
1114 struct page *page;
1115 unsigned long scan;
1116 LIST_HEAD(pc_list);
1117 struct list_head *src;
1118 struct page_cgroup *pc, *tmp;
1119 int nid = zone_to_nid(z);
1120 int zid = zone_idx(z);
1121 struct mem_cgroup_per_zone *mz;
1122 int lru = LRU_FILE * file + active;
1123 int ret;
1124
1125 BUG_ON(!mem_cont);
1126 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1127 src = &mz->lists[lru];
1128
1129 scan = 0;
1130 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1131 if (scan >= nr_to_scan)
1132 break;
1133
1134 if (unlikely(!PageCgroupUsed(pc)))
1135 continue;
1136
1137 page = lookup_cgroup_page(pc);
1138
1139 if (unlikely(!PageLRU(page)))
1140 continue;
1141
1142 scan++;
1143 ret = __isolate_lru_page(page, mode, file);
1144 switch (ret) {
1145 case 0:
1146 list_move(&page->lru, dst);
1147 mem_cgroup_del_lru(page);
1148 nr_taken += hpage_nr_pages(page);
1149 break;
1150 case -EBUSY:
1151 /* we don't affect global LRU but rotate in our LRU */
1152 mem_cgroup_rotate_lru_list(page, page_lru(page));
1153 break;
1154 default:
1155 break;
1156 }
1157 }
1158
1159 *scanned = scan;
1160
1161 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1162 0, 0, 0, mode);
1163
1164 return nr_taken;
1165 }
1166
1167 #define mem_cgroup_from_res_counter(counter, member) \
1168 container_of(counter, struct mem_cgroup, member)
1169
1170 /**
1171 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1172 * @mem: the memory cgroup
1173 *
1174 * Returns the maximum amount of memory @mem can be charged with, in
1175 * pages.
1176 */
1177 static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
1178 {
1179 unsigned long long margin;
1180
1181 margin = res_counter_margin(&mem->res);
1182 if (do_swap_account)
1183 margin = min(margin, res_counter_margin(&mem->memsw));
1184 return margin >> PAGE_SHIFT;
1185 }
1186
1187 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1188 {
1189 struct cgroup *cgrp = memcg->css.cgroup;
1190
1191 /* root ? */
1192 if (cgrp->parent == NULL)
1193 return vm_swappiness;
1194
1195 return memcg->swappiness;
1196 }
1197
1198 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1199 {
1200 int cpu;
1201
1202 get_online_cpus();
1203 spin_lock(&mem->pcp_counter_lock);
1204 for_each_online_cpu(cpu)
1205 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1206 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1207 spin_unlock(&mem->pcp_counter_lock);
1208 put_online_cpus();
1209
1210 synchronize_rcu();
1211 }
1212
1213 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1214 {
1215 int cpu;
1216
1217 if (!mem)
1218 return;
1219 get_online_cpus();
1220 spin_lock(&mem->pcp_counter_lock);
1221 for_each_online_cpu(cpu)
1222 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1223 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1224 spin_unlock(&mem->pcp_counter_lock);
1225 put_online_cpus();
1226 }
1227 /*
1228 * 2 routines for checking "mem" is under move_account() or not.
1229 *
1230 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1231 * for avoiding race in accounting. If true,
1232 * pc->mem_cgroup may be overwritten.
1233 *
1234 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1235 * under hierarchy of moving cgroups. This is for
1236 * waiting at hith-memory prressure caused by "move".
1237 */
1238
1239 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1240 {
1241 VM_BUG_ON(!rcu_read_lock_held());
1242 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1243 }
1244
1245 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1246 {
1247 struct mem_cgroup *from;
1248 struct mem_cgroup *to;
1249 bool ret = false;
1250 /*
1251 * Unlike task_move routines, we access mc.to, mc.from not under
1252 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1253 */
1254 spin_lock(&mc.lock);
1255 from = mc.from;
1256 to = mc.to;
1257 if (!from)
1258 goto unlock;
1259 if (from == mem || to == mem
1260 || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1261 || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1262 ret = true;
1263 unlock:
1264 spin_unlock(&mc.lock);
1265 return ret;
1266 }
1267
1268 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1269 {
1270 if (mc.moving_task && current != mc.moving_task) {
1271 if (mem_cgroup_under_move(mem)) {
1272 DEFINE_WAIT(wait);
1273 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1274 /* moving charge context might have finished. */
1275 if (mc.moving_task)
1276 schedule();
1277 finish_wait(&mc.waitq, &wait);
1278 return true;
1279 }
1280 }
1281 return false;
1282 }
1283
1284 /**
1285 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1286 * @memcg: The memory cgroup that went over limit
1287 * @p: Task that is going to be killed
1288 *
1289 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1290 * enabled
1291 */
1292 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1293 {
1294 struct cgroup *task_cgrp;
1295 struct cgroup *mem_cgrp;
1296 /*
1297 * Need a buffer in BSS, can't rely on allocations. The code relies
1298 * on the assumption that OOM is serialized for memory controller.
1299 * If this assumption is broken, revisit this code.
1300 */
1301 static char memcg_name[PATH_MAX];
1302 int ret;
1303
1304 if (!memcg || !p)
1305 return;
1306
1307
1308 rcu_read_lock();
1309
1310 mem_cgrp = memcg->css.cgroup;
1311 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1312
1313 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1314 if (ret < 0) {
1315 /*
1316 * Unfortunately, we are unable to convert to a useful name
1317 * But we'll still print out the usage information
1318 */
1319 rcu_read_unlock();
1320 goto done;
1321 }
1322 rcu_read_unlock();
1323
1324 printk(KERN_INFO "Task in %s killed", memcg_name);
1325
1326 rcu_read_lock();
1327 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1328 if (ret < 0) {
1329 rcu_read_unlock();
1330 goto done;
1331 }
1332 rcu_read_unlock();
1333
1334 /*
1335 * Continues from above, so we don't need an KERN_ level
1336 */
1337 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1338 done:
1339
1340 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1341 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1342 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1343 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1344 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1345 "failcnt %llu\n",
1346 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1347 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1348 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1349 }
1350
1351 /*
1352 * This function returns the number of memcg under hierarchy tree. Returns
1353 * 1(self count) if no children.
1354 */
1355 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1356 {
1357 int num = 0;
1358 struct mem_cgroup *iter;
1359
1360 for_each_mem_cgroup_tree(iter, mem)
1361 num++;
1362 return num;
1363 }
1364
1365 /*
1366 * Return the memory (and swap, if configured) limit for a memcg.
1367 */
1368 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1369 {
1370 u64 limit;
1371 u64 memsw;
1372
1373 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1374 limit += total_swap_pages << PAGE_SHIFT;
1375
1376 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1377 /*
1378 * If memsw is finite and limits the amount of swap space available
1379 * to this memcg, return that limit.
1380 */
1381 return min(limit, memsw);
1382 }
1383
1384 /*
1385 * Visit the first child (need not be the first child as per the ordering
1386 * of the cgroup list, since we track last_scanned_child) of @mem and use
1387 * that to reclaim free pages from.
1388 */
1389 static struct mem_cgroup *
1390 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1391 {
1392 struct mem_cgroup *ret = NULL;
1393 struct cgroup_subsys_state *css;
1394 int nextid, found;
1395
1396 if (!root_mem->use_hierarchy) {
1397 css_get(&root_mem->css);
1398 ret = root_mem;
1399 }
1400
1401 while (!ret) {
1402 rcu_read_lock();
1403 nextid = root_mem->last_scanned_child + 1;
1404 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1405 &found);
1406 if (css && css_tryget(css))
1407 ret = container_of(css, struct mem_cgroup, css);
1408
1409 rcu_read_unlock();
1410 /* Updates scanning parameter */
1411 if (!css) {
1412 /* this means start scan from ID:1 */
1413 root_mem->last_scanned_child = 0;
1414 } else
1415 root_mem->last_scanned_child = found;
1416 }
1417
1418 return ret;
1419 }
1420
1421 /*
1422 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1423 * we reclaimed from, so that we don't end up penalizing one child extensively
1424 * based on its position in the children list.
1425 *
1426 * root_mem is the original ancestor that we've been reclaim from.
1427 *
1428 * We give up and return to the caller when we visit root_mem twice.
1429 * (other groups can be removed while we're walking....)
1430 *
1431 * If shrink==true, for avoiding to free too much, this returns immedieately.
1432 */
1433 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1434 struct zone *zone,
1435 gfp_t gfp_mask,
1436 unsigned long reclaim_options,
1437 unsigned long *total_scanned)
1438 {
1439 struct mem_cgroup *victim;
1440 int ret, total = 0;
1441 int loop = 0;
1442 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1443 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1444 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1445 unsigned long excess;
1446 unsigned long nr_scanned;
1447
1448 excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
1449
1450 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1451 if (root_mem->memsw_is_minimum)
1452 noswap = true;
1453
1454 while (1) {
1455 victim = mem_cgroup_select_victim(root_mem);
1456 if (victim == root_mem) {
1457 loop++;
1458 if (loop >= 1)
1459 drain_all_stock_async();
1460 if (loop >= 2) {
1461 /*
1462 * If we have not been able to reclaim
1463 * anything, it might because there are
1464 * no reclaimable pages under this hierarchy
1465 */
1466 if (!check_soft || !total) {
1467 css_put(&victim->css);
1468 break;
1469 }
1470 /*
1471 * We want to do more targeted reclaim.
1472 * excess >> 2 is not to excessive so as to
1473 * reclaim too much, nor too less that we keep
1474 * coming back to reclaim from this cgroup
1475 */
1476 if (total >= (excess >> 2) ||
1477 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1478 css_put(&victim->css);
1479 break;
1480 }
1481 }
1482 }
1483 if (!mem_cgroup_local_usage(victim)) {
1484 /* this cgroup's local usage == 0 */
1485 css_put(&victim->css);
1486 continue;
1487 }
1488 /* we use swappiness of local cgroup */
1489 if (check_soft) {
1490 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1491 noswap, get_swappiness(victim), zone,
1492 &nr_scanned);
1493 *total_scanned += nr_scanned;
1494 } else
1495 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1496 noswap, get_swappiness(victim));
1497 css_put(&victim->css);
1498 /*
1499 * At shrinking usage, we can't check we should stop here or
1500 * reclaim more. It's depends on callers. last_scanned_child
1501 * will work enough for keeping fairness under tree.
1502 */
1503 if (shrink)
1504 return ret;
1505 total += ret;
1506 if (check_soft) {
1507 if (!res_counter_soft_limit_excess(&root_mem->res))
1508 return total;
1509 } else if (mem_cgroup_margin(root_mem))
1510 return 1 + total;
1511 }
1512 return total;
1513 }
1514
1515 /*
1516 * Check OOM-Killer is already running under our hierarchy.
1517 * If someone is running, return false.
1518 */
1519 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1520 {
1521 int x, lock_count = 0;
1522 struct mem_cgroup *iter;
1523
1524 for_each_mem_cgroup_tree(iter, mem) {
1525 x = atomic_inc_return(&iter->oom_lock);
1526 lock_count = max(x, lock_count);
1527 }
1528
1529 if (lock_count == 1)
1530 return true;
1531 return false;
1532 }
1533
1534 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1535 {
1536 struct mem_cgroup *iter;
1537
1538 /*
1539 * When a new child is created while the hierarchy is under oom,
1540 * mem_cgroup_oom_lock() may not be called. We have to use
1541 * atomic_add_unless() here.
1542 */
1543 for_each_mem_cgroup_tree(iter, mem)
1544 atomic_add_unless(&iter->oom_lock, -1, 0);
1545 return 0;
1546 }
1547
1548
1549 static DEFINE_MUTEX(memcg_oom_mutex);
1550 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1551
1552 struct oom_wait_info {
1553 struct mem_cgroup *mem;
1554 wait_queue_t wait;
1555 };
1556
1557 static int memcg_oom_wake_function(wait_queue_t *wait,
1558 unsigned mode, int sync, void *arg)
1559 {
1560 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1561 struct oom_wait_info *oom_wait_info;
1562
1563 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1564
1565 if (oom_wait_info->mem == wake_mem)
1566 goto wakeup;
1567 /* if no hierarchy, no match */
1568 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1569 return 0;
1570 /*
1571 * Both of oom_wait_info->mem and wake_mem are stable under us.
1572 * Then we can use css_is_ancestor without taking care of RCU.
1573 */
1574 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1575 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1576 return 0;
1577
1578 wakeup:
1579 return autoremove_wake_function(wait, mode, sync, arg);
1580 }
1581
1582 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1583 {
1584 /* for filtering, pass "mem" as argument. */
1585 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1586 }
1587
1588 static void memcg_oom_recover(struct mem_cgroup *mem)
1589 {
1590 if (mem && atomic_read(&mem->oom_lock))
1591 memcg_wakeup_oom(mem);
1592 }
1593
1594 /*
1595 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1596 */
1597 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1598 {
1599 struct oom_wait_info owait;
1600 bool locked, need_to_kill;
1601
1602 owait.mem = mem;
1603 owait.wait.flags = 0;
1604 owait.wait.func = memcg_oom_wake_function;
1605 owait.wait.private = current;
1606 INIT_LIST_HEAD(&owait.wait.task_list);
1607 need_to_kill = true;
1608 /* At first, try to OOM lock hierarchy under mem.*/
1609 mutex_lock(&memcg_oom_mutex);
1610 locked = mem_cgroup_oom_lock(mem);
1611 /*
1612 * Even if signal_pending(), we can't quit charge() loop without
1613 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1614 * under OOM is always welcomed, use TASK_KILLABLE here.
1615 */
1616 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1617 if (!locked || mem->oom_kill_disable)
1618 need_to_kill = false;
1619 if (locked)
1620 mem_cgroup_oom_notify(mem);
1621 mutex_unlock(&memcg_oom_mutex);
1622
1623 if (need_to_kill) {
1624 finish_wait(&memcg_oom_waitq, &owait.wait);
1625 mem_cgroup_out_of_memory(mem, mask);
1626 } else {
1627 schedule();
1628 finish_wait(&memcg_oom_waitq, &owait.wait);
1629 }
1630 mutex_lock(&memcg_oom_mutex);
1631 mem_cgroup_oom_unlock(mem);
1632 memcg_wakeup_oom(mem);
1633 mutex_unlock(&memcg_oom_mutex);
1634
1635 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1636 return false;
1637 /* Give chance to dying process */
1638 schedule_timeout(1);
1639 return true;
1640 }
1641
1642 /*
1643 * Currently used to update mapped file statistics, but the routine can be
1644 * generalized to update other statistics as well.
1645 *
1646 * Notes: Race condition
1647 *
1648 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1649 * it tends to be costly. But considering some conditions, we doesn't need
1650 * to do so _always_.
1651 *
1652 * Considering "charge", lock_page_cgroup() is not required because all
1653 * file-stat operations happen after a page is attached to radix-tree. There
1654 * are no race with "charge".
1655 *
1656 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1657 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1658 * if there are race with "uncharge". Statistics itself is properly handled
1659 * by flags.
1660 *
1661 * Considering "move", this is an only case we see a race. To make the race
1662 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1663 * possibility of race condition. If there is, we take a lock.
1664 */
1665
1666 void mem_cgroup_update_page_stat(struct page *page,
1667 enum mem_cgroup_page_stat_item idx, int val)
1668 {
1669 struct mem_cgroup *mem;
1670 struct page_cgroup *pc = lookup_page_cgroup(page);
1671 bool need_unlock = false;
1672 unsigned long uninitialized_var(flags);
1673
1674 if (unlikely(!pc))
1675 return;
1676
1677 rcu_read_lock();
1678 mem = pc->mem_cgroup;
1679 if (unlikely(!mem || !PageCgroupUsed(pc)))
1680 goto out;
1681 /* pc->mem_cgroup is unstable ? */
1682 if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1683 /* take a lock against to access pc->mem_cgroup */
1684 move_lock_page_cgroup(pc, &flags);
1685 need_unlock = true;
1686 mem = pc->mem_cgroup;
1687 if (!mem || !PageCgroupUsed(pc))
1688 goto out;
1689 }
1690
1691 switch (idx) {
1692 case MEMCG_NR_FILE_MAPPED:
1693 if (val > 0)
1694 SetPageCgroupFileMapped(pc);
1695 else if (!page_mapped(page))
1696 ClearPageCgroupFileMapped(pc);
1697 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1698 break;
1699 default:
1700 BUG();
1701 }
1702
1703 this_cpu_add(mem->stat->count[idx], val);
1704
1705 out:
1706 if (unlikely(need_unlock))
1707 move_unlock_page_cgroup(pc, &flags);
1708 rcu_read_unlock();
1709 return;
1710 }
1711 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1712
1713 /*
1714 * size of first charge trial. "32" comes from vmscan.c's magic value.
1715 * TODO: maybe necessary to use big numbers in big irons.
1716 */
1717 #define CHARGE_BATCH 32U
1718 struct memcg_stock_pcp {
1719 struct mem_cgroup *cached; /* this never be root cgroup */
1720 unsigned int nr_pages;
1721 struct work_struct work;
1722 };
1723 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1724 static atomic_t memcg_drain_count;
1725
1726 /*
1727 * Try to consume stocked charge on this cpu. If success, one page is consumed
1728 * from local stock and true is returned. If the stock is 0 or charges from a
1729 * cgroup which is not current target, returns false. This stock will be
1730 * refilled.
1731 */
1732 static bool consume_stock(struct mem_cgroup *mem)
1733 {
1734 struct memcg_stock_pcp *stock;
1735 bool ret = true;
1736
1737 stock = &get_cpu_var(memcg_stock);
1738 if (mem == stock->cached && stock->nr_pages)
1739 stock->nr_pages--;
1740 else /* need to call res_counter_charge */
1741 ret = false;
1742 put_cpu_var(memcg_stock);
1743 return ret;
1744 }
1745
1746 /*
1747 * Returns stocks cached in percpu to res_counter and reset cached information.
1748 */
1749 static void drain_stock(struct memcg_stock_pcp *stock)
1750 {
1751 struct mem_cgroup *old = stock->cached;
1752
1753 if (stock->nr_pages) {
1754 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
1755
1756 res_counter_uncharge(&old->res, bytes);
1757 if (do_swap_account)
1758 res_counter_uncharge(&old->memsw, bytes);
1759 stock->nr_pages = 0;
1760 }
1761 stock->cached = NULL;
1762 }
1763
1764 /*
1765 * This must be called under preempt disabled or must be called by
1766 * a thread which is pinned to local cpu.
1767 */
1768 static void drain_local_stock(struct work_struct *dummy)
1769 {
1770 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1771 drain_stock(stock);
1772 }
1773
1774 /*
1775 * Cache charges(val) which is from res_counter, to local per_cpu area.
1776 * This will be consumed by consume_stock() function, later.
1777 */
1778 static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
1779 {
1780 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1781
1782 if (stock->cached != mem) { /* reset if necessary */
1783 drain_stock(stock);
1784 stock->cached = mem;
1785 }
1786 stock->nr_pages += nr_pages;
1787 put_cpu_var(memcg_stock);
1788 }
1789
1790 /*
1791 * Tries to drain stocked charges in other cpus. This function is asynchronous
1792 * and just put a work per cpu for draining localy on each cpu. Caller can
1793 * expects some charges will be back to res_counter later but cannot wait for
1794 * it.
1795 */
1796 static void drain_all_stock_async(void)
1797 {
1798 int cpu;
1799 /* This function is for scheduling "drain" in asynchronous way.
1800 * The result of "drain" is not directly handled by callers. Then,
1801 * if someone is calling drain, we don't have to call drain more.
1802 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1803 * there is a race. We just do loose check here.
1804 */
1805 if (atomic_read(&memcg_drain_count))
1806 return;
1807 /* Notify other cpus that system-wide "drain" is running */
1808 atomic_inc(&memcg_drain_count);
1809 get_online_cpus();
1810 for_each_online_cpu(cpu) {
1811 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1812 schedule_work_on(cpu, &stock->work);
1813 }
1814 put_online_cpus();
1815 atomic_dec(&memcg_drain_count);
1816 /* We don't wait for flush_work */
1817 }
1818
1819 /* This is a synchronous drain interface. */
1820 static void drain_all_stock_sync(void)
1821 {
1822 /* called when force_empty is called */
1823 atomic_inc(&memcg_drain_count);
1824 schedule_on_each_cpu(drain_local_stock);
1825 atomic_dec(&memcg_drain_count);
1826 }
1827
1828 /*
1829 * This function drains percpu counter value from DEAD cpu and
1830 * move it to local cpu. Note that this function can be preempted.
1831 */
1832 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1833 {
1834 int i;
1835
1836 spin_lock(&mem->pcp_counter_lock);
1837 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1838 long x = per_cpu(mem->stat->count[i], cpu);
1839
1840 per_cpu(mem->stat->count[i], cpu) = 0;
1841 mem->nocpu_base.count[i] += x;
1842 }
1843 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
1844 unsigned long x = per_cpu(mem->stat->events[i], cpu);
1845
1846 per_cpu(mem->stat->events[i], cpu) = 0;
1847 mem->nocpu_base.events[i] += x;
1848 }
1849 /* need to clear ON_MOVE value, works as a kind of lock. */
1850 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1851 spin_unlock(&mem->pcp_counter_lock);
1852 }
1853
1854 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1855 {
1856 int idx = MEM_CGROUP_ON_MOVE;
1857
1858 spin_lock(&mem->pcp_counter_lock);
1859 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1860 spin_unlock(&mem->pcp_counter_lock);
1861 }
1862
1863 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1864 unsigned long action,
1865 void *hcpu)
1866 {
1867 int cpu = (unsigned long)hcpu;
1868 struct memcg_stock_pcp *stock;
1869 struct mem_cgroup *iter;
1870
1871 if ((action == CPU_ONLINE)) {
1872 for_each_mem_cgroup_all(iter)
1873 synchronize_mem_cgroup_on_move(iter, cpu);
1874 return NOTIFY_OK;
1875 }
1876
1877 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1878 return NOTIFY_OK;
1879
1880 for_each_mem_cgroup_all(iter)
1881 mem_cgroup_drain_pcp_counter(iter, cpu);
1882
1883 stock = &per_cpu(memcg_stock, cpu);
1884 drain_stock(stock);
1885 return NOTIFY_OK;
1886 }
1887
1888
1889 /* See __mem_cgroup_try_charge() for details */
1890 enum {
1891 CHARGE_OK, /* success */
1892 CHARGE_RETRY, /* need to retry but retry is not bad */
1893 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
1894 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
1895 CHARGE_OOM_DIE, /* the current is killed because of OOM */
1896 };
1897
1898 static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1899 unsigned int nr_pages, bool oom_check)
1900 {
1901 unsigned long csize = nr_pages * PAGE_SIZE;
1902 struct mem_cgroup *mem_over_limit;
1903 struct res_counter *fail_res;
1904 unsigned long flags = 0;
1905 int ret;
1906
1907 ret = res_counter_charge(&mem->res, csize, &fail_res);
1908
1909 if (likely(!ret)) {
1910 if (!do_swap_account)
1911 return CHARGE_OK;
1912 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1913 if (likely(!ret))
1914 return CHARGE_OK;
1915
1916 res_counter_uncharge(&mem->res, csize);
1917 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1918 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1919 } else
1920 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1921 /*
1922 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
1923 * of regular pages (CHARGE_BATCH), or a single regular page (1).
1924 *
1925 * Never reclaim on behalf of optional batching, retry with a
1926 * single page instead.
1927 */
1928 if (nr_pages == CHARGE_BATCH)
1929 return CHARGE_RETRY;
1930
1931 if (!(gfp_mask & __GFP_WAIT))
1932 return CHARGE_WOULDBLOCK;
1933
1934 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1935 gfp_mask, flags, NULL);
1936 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1937 return CHARGE_RETRY;
1938 /*
1939 * Even though the limit is exceeded at this point, reclaim
1940 * may have been able to free some pages. Retry the charge
1941 * before killing the task.
1942 *
1943 * Only for regular pages, though: huge pages are rather
1944 * unlikely to succeed so close to the limit, and we fall back
1945 * to regular pages anyway in case of failure.
1946 */
1947 if (nr_pages == 1 && ret)
1948 return CHARGE_RETRY;
1949
1950 /*
1951 * At task move, charge accounts can be doubly counted. So, it's
1952 * better to wait until the end of task_move if something is going on.
1953 */
1954 if (mem_cgroup_wait_acct_move(mem_over_limit))
1955 return CHARGE_RETRY;
1956
1957 /* If we don't need to call oom-killer at el, return immediately */
1958 if (!oom_check)
1959 return CHARGE_NOMEM;
1960 /* check OOM */
1961 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1962 return CHARGE_OOM_DIE;
1963
1964 return CHARGE_RETRY;
1965 }
1966
1967 /*
1968 * Unlike exported interface, "oom" parameter is added. if oom==true,
1969 * oom-killer can be invoked.
1970 */
1971 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1972 gfp_t gfp_mask,
1973 unsigned int nr_pages,
1974 struct mem_cgroup **memcg,
1975 bool oom)
1976 {
1977 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1978 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1979 struct mem_cgroup *mem = NULL;
1980 int ret;
1981
1982 /*
1983 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1984 * in system level. So, allow to go ahead dying process in addition to
1985 * MEMDIE process.
1986 */
1987 if (unlikely(test_thread_flag(TIF_MEMDIE)
1988 || fatal_signal_pending(current)))
1989 goto bypass;
1990
1991 /*
1992 * We always charge the cgroup the mm_struct belongs to.
1993 * The mm_struct's mem_cgroup changes on task migration if the
1994 * thread group leader migrates. It's possible that mm is not
1995 * set, if so charge the init_mm (happens for pagecache usage).
1996 */
1997 if (!*memcg && !mm)
1998 goto bypass;
1999 again:
2000 if (*memcg) { /* css should be a valid one */
2001 mem = *memcg;
2002 VM_BUG_ON(css_is_removed(&mem->css));
2003 if (mem_cgroup_is_root(mem))
2004 goto done;
2005 if (nr_pages == 1 && consume_stock(mem))
2006 goto done;
2007 css_get(&mem->css);
2008 } else {
2009 struct task_struct *p;
2010
2011 rcu_read_lock();
2012 p = rcu_dereference(mm->owner);
2013 /*
2014 * Because we don't have task_lock(), "p" can exit.
2015 * In that case, "mem" can point to root or p can be NULL with
2016 * race with swapoff. Then, we have small risk of mis-accouning.
2017 * But such kind of mis-account by race always happens because
2018 * we don't have cgroup_mutex(). It's overkill and we allo that
2019 * small race, here.
2020 * (*) swapoff at el will charge against mm-struct not against
2021 * task-struct. So, mm->owner can be NULL.
2022 */
2023 mem = mem_cgroup_from_task(p);
2024 if (!mem || mem_cgroup_is_root(mem)) {
2025 rcu_read_unlock();
2026 goto done;
2027 }
2028 if (nr_pages == 1 && consume_stock(mem)) {
2029 /*
2030 * It seems dagerous to access memcg without css_get().
2031 * But considering how consume_stok works, it's not
2032 * necessary. If consume_stock success, some charges
2033 * from this memcg are cached on this cpu. So, we
2034 * don't need to call css_get()/css_tryget() before
2035 * calling consume_stock().
2036 */
2037 rcu_read_unlock();
2038 goto done;
2039 }
2040 /* after here, we may be blocked. we need to get refcnt */
2041 if (!css_tryget(&mem->css)) {
2042 rcu_read_unlock();
2043 goto again;
2044 }
2045 rcu_read_unlock();
2046 }
2047
2048 do {
2049 bool oom_check;
2050
2051 /* If killed, bypass charge */
2052 if (fatal_signal_pending(current)) {
2053 css_put(&mem->css);
2054 goto bypass;
2055 }
2056
2057 oom_check = false;
2058 if (oom && !nr_oom_retries) {
2059 oom_check = true;
2060 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2061 }
2062
2063 ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
2064 switch (ret) {
2065 case CHARGE_OK:
2066 break;
2067 case CHARGE_RETRY: /* not in OOM situation but retry */
2068 batch = nr_pages;
2069 css_put(&mem->css);
2070 mem = NULL;
2071 goto again;
2072 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2073 css_put(&mem->css);
2074 goto nomem;
2075 case CHARGE_NOMEM: /* OOM routine works */
2076 if (!oom) {
2077 css_put(&mem->css);
2078 goto nomem;
2079 }
2080 /* If oom, we never return -ENOMEM */
2081 nr_oom_retries--;
2082 break;
2083 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2084 css_put(&mem->css);
2085 goto bypass;
2086 }
2087 } while (ret != CHARGE_OK);
2088
2089 if (batch > nr_pages)
2090 refill_stock(mem, batch - nr_pages);
2091 css_put(&mem->css);
2092 done:
2093 *memcg = mem;
2094 return 0;
2095 nomem:
2096 *memcg = NULL;
2097 return -ENOMEM;
2098 bypass:
2099 *memcg = NULL;
2100 return 0;
2101 }
2102
2103 /*
2104 * Somemtimes we have to undo a charge we got by try_charge().
2105 * This function is for that and do uncharge, put css's refcnt.
2106 * gotten by try_charge().
2107 */
2108 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2109 unsigned int nr_pages)
2110 {
2111 if (!mem_cgroup_is_root(mem)) {
2112 unsigned long bytes = nr_pages * PAGE_SIZE;
2113
2114 res_counter_uncharge(&mem->res, bytes);
2115 if (do_swap_account)
2116 res_counter_uncharge(&mem->memsw, bytes);
2117 }
2118 }
2119
2120 /*
2121 * A helper function to get mem_cgroup from ID. must be called under
2122 * rcu_read_lock(). The caller must check css_is_removed() or some if
2123 * it's concern. (dropping refcnt from swap can be called against removed
2124 * memcg.)
2125 */
2126 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2127 {
2128 struct cgroup_subsys_state *css;
2129
2130 /* ID 0 is unused ID */
2131 if (!id)
2132 return NULL;
2133 css = css_lookup(&mem_cgroup_subsys, id);
2134 if (!css)
2135 return NULL;
2136 return container_of(css, struct mem_cgroup, css);
2137 }
2138
2139 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2140 {
2141 struct mem_cgroup *mem = NULL;
2142 struct page_cgroup *pc;
2143 unsigned short id;
2144 swp_entry_t ent;
2145
2146 VM_BUG_ON(!PageLocked(page));
2147
2148 pc = lookup_page_cgroup(page);
2149 lock_page_cgroup(pc);
2150 if (PageCgroupUsed(pc)) {
2151 mem = pc->mem_cgroup;
2152 if (mem && !css_tryget(&mem->css))
2153 mem = NULL;
2154 } else if (PageSwapCache(page)) {
2155 ent.val = page_private(page);
2156 id = lookup_swap_cgroup(ent);
2157 rcu_read_lock();
2158 mem = mem_cgroup_lookup(id);
2159 if (mem && !css_tryget(&mem->css))
2160 mem = NULL;
2161 rcu_read_unlock();
2162 }
2163 unlock_page_cgroup(pc);
2164 return mem;
2165 }
2166
2167 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2168 struct page *page,
2169 unsigned int nr_pages,
2170 struct page_cgroup *pc,
2171 enum charge_type ctype)
2172 {
2173 lock_page_cgroup(pc);
2174 if (unlikely(PageCgroupUsed(pc))) {
2175 unlock_page_cgroup(pc);
2176 __mem_cgroup_cancel_charge(mem, nr_pages);
2177 return;
2178 }
2179 /*
2180 * we don't need page_cgroup_lock about tail pages, becase they are not
2181 * accessed by any other context at this point.
2182 */
2183 pc->mem_cgroup = mem;
2184 /*
2185 * We access a page_cgroup asynchronously without lock_page_cgroup().
2186 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2187 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2188 * before USED bit, we need memory barrier here.
2189 * See mem_cgroup_add_lru_list(), etc.
2190 */
2191 smp_wmb();
2192 switch (ctype) {
2193 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2194 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2195 SetPageCgroupCache(pc);
2196 SetPageCgroupUsed(pc);
2197 break;
2198 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2199 ClearPageCgroupCache(pc);
2200 SetPageCgroupUsed(pc);
2201 break;
2202 default:
2203 break;
2204 }
2205
2206 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2207 unlock_page_cgroup(pc);
2208 /*
2209 * "charge_statistics" updated event counter. Then, check it.
2210 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2211 * if they exceeds softlimit.
2212 */
2213 memcg_check_events(mem, page);
2214 }
2215
2216 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2217
2218 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2219 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2220 /*
2221 * Because tail pages are not marked as "used", set it. We're under
2222 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2223 */
2224 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2225 {
2226 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2227 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2228 unsigned long flags;
2229
2230 if (mem_cgroup_disabled())
2231 return;
2232 /*
2233 * We have no races with charge/uncharge but will have races with
2234 * page state accounting.
2235 */
2236 move_lock_page_cgroup(head_pc, &flags);
2237
2238 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2239 smp_wmb(); /* see __commit_charge() */
2240 if (PageCgroupAcctLRU(head_pc)) {
2241 enum lru_list lru;
2242 struct mem_cgroup_per_zone *mz;
2243
2244 /*
2245 * LRU flags cannot be copied because we need to add tail
2246 *.page to LRU by generic call and our hook will be called.
2247 * We hold lru_lock, then, reduce counter directly.
2248 */
2249 lru = page_lru(head);
2250 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2251 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2252 }
2253 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2254 move_unlock_page_cgroup(head_pc, &flags);
2255 }
2256 #endif
2257
2258 /**
2259 * mem_cgroup_move_account - move account of the page
2260 * @page: the page
2261 * @nr_pages: number of regular pages (>1 for huge pages)
2262 * @pc: page_cgroup of the page.
2263 * @from: mem_cgroup which the page is moved from.
2264 * @to: mem_cgroup which the page is moved to. @from != @to.
2265 * @uncharge: whether we should call uncharge and css_put against @from.
2266 *
2267 * The caller must confirm following.
2268 * - page is not on LRU (isolate_page() is useful.)
2269 * - compound_lock is held when nr_pages > 1
2270 *
2271 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2272 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2273 * true, this function does "uncharge" from old cgroup, but it doesn't if
2274 * @uncharge is false, so a caller should do "uncharge".
2275 */
2276 static int mem_cgroup_move_account(struct page *page,
2277 unsigned int nr_pages,
2278 struct page_cgroup *pc,
2279 struct mem_cgroup *from,
2280 struct mem_cgroup *to,
2281 bool uncharge)
2282 {
2283 unsigned long flags;
2284 int ret;
2285
2286 VM_BUG_ON(from == to);
2287 VM_BUG_ON(PageLRU(page));
2288 /*
2289 * The page is isolated from LRU. So, collapse function
2290 * will not handle this page. But page splitting can happen.
2291 * Do this check under compound_page_lock(). The caller should
2292 * hold it.
2293 */
2294 ret = -EBUSY;
2295 if (nr_pages > 1 && !PageTransHuge(page))
2296 goto out;
2297
2298 lock_page_cgroup(pc);
2299
2300 ret = -EINVAL;
2301 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2302 goto unlock;
2303
2304 move_lock_page_cgroup(pc, &flags);
2305
2306 if (PageCgroupFileMapped(pc)) {
2307 /* Update mapped_file data for mem_cgroup */
2308 preempt_disable();
2309 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2310 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2311 preempt_enable();
2312 }
2313 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2314 if (uncharge)
2315 /* This is not "cancel", but cancel_charge does all we need. */
2316 __mem_cgroup_cancel_charge(from, nr_pages);
2317
2318 /* caller should have done css_get */
2319 pc->mem_cgroup = to;
2320 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2321 /*
2322 * We charges against "to" which may not have any tasks. Then, "to"
2323 * can be under rmdir(). But in current implementation, caller of
2324 * this function is just force_empty() and move charge, so it's
2325 * guaranteed that "to" is never removed. So, we don't check rmdir
2326 * status here.
2327 */
2328 move_unlock_page_cgroup(pc, &flags);
2329 ret = 0;
2330 unlock:
2331 unlock_page_cgroup(pc);
2332 /*
2333 * check events
2334 */
2335 memcg_check_events(to, page);
2336 memcg_check_events(from, page);
2337 out:
2338 return ret;
2339 }
2340
2341 /*
2342 * move charges to its parent.
2343 */
2344
2345 static int mem_cgroup_move_parent(struct page *page,
2346 struct page_cgroup *pc,
2347 struct mem_cgroup *child,
2348 gfp_t gfp_mask)
2349 {
2350 struct cgroup *cg = child->css.cgroup;
2351 struct cgroup *pcg = cg->parent;
2352 struct mem_cgroup *parent;
2353 unsigned int nr_pages;
2354 unsigned long uninitialized_var(flags);
2355 int ret;
2356
2357 /* Is ROOT ? */
2358 if (!pcg)
2359 return -EINVAL;
2360
2361 ret = -EBUSY;
2362 if (!get_page_unless_zero(page))
2363 goto out;
2364 if (isolate_lru_page(page))
2365 goto put;
2366
2367 nr_pages = hpage_nr_pages(page);
2368
2369 parent = mem_cgroup_from_cont(pcg);
2370 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2371 if (ret || !parent)
2372 goto put_back;
2373
2374 if (nr_pages > 1)
2375 flags = compound_lock_irqsave(page);
2376
2377 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2378 if (ret)
2379 __mem_cgroup_cancel_charge(parent, nr_pages);
2380
2381 if (nr_pages > 1)
2382 compound_unlock_irqrestore(page, flags);
2383 put_back:
2384 putback_lru_page(page);
2385 put:
2386 put_page(page);
2387 out:
2388 return ret;
2389 }
2390
2391 /*
2392 * Charge the memory controller for page usage.
2393 * Return
2394 * 0 if the charge was successful
2395 * < 0 if the cgroup is over its limit
2396 */
2397 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2398 gfp_t gfp_mask, enum charge_type ctype)
2399 {
2400 struct mem_cgroup *mem = NULL;
2401 unsigned int nr_pages = 1;
2402 struct page_cgroup *pc;
2403 bool oom = true;
2404 int ret;
2405
2406 if (PageTransHuge(page)) {
2407 nr_pages <<= compound_order(page);
2408 VM_BUG_ON(!PageTransHuge(page));
2409 /*
2410 * Never OOM-kill a process for a huge page. The
2411 * fault handler will fall back to regular pages.
2412 */
2413 oom = false;
2414 }
2415
2416 pc = lookup_page_cgroup(page);
2417 BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2418
2419 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
2420 if (ret || !mem)
2421 return ret;
2422
2423 __mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
2424 return 0;
2425 }
2426
2427 int mem_cgroup_newpage_charge(struct page *page,
2428 struct mm_struct *mm, gfp_t gfp_mask)
2429 {
2430 if (mem_cgroup_disabled())
2431 return 0;
2432 /*
2433 * If already mapped, we don't have to account.
2434 * If page cache, page->mapping has address_space.
2435 * But page->mapping may have out-of-use anon_vma pointer,
2436 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2437 * is NULL.
2438 */
2439 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2440 return 0;
2441 if (unlikely(!mm))
2442 mm = &init_mm;
2443 return mem_cgroup_charge_common(page, mm, gfp_mask,
2444 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2445 }
2446
2447 static void
2448 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2449 enum charge_type ctype);
2450
2451 static void
2452 __mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
2453 enum charge_type ctype)
2454 {
2455 struct page_cgroup *pc = lookup_page_cgroup(page);
2456 /*
2457 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2458 * is already on LRU. It means the page may on some other page_cgroup's
2459 * LRU. Take care of it.
2460 */
2461 mem_cgroup_lru_del_before_commit(page);
2462 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
2463 mem_cgroup_lru_add_after_commit(page);
2464 return;
2465 }
2466
2467 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2468 gfp_t gfp_mask)
2469 {
2470 struct mem_cgroup *mem = NULL;
2471 int ret;
2472
2473 if (mem_cgroup_disabled())
2474 return 0;
2475 if (PageCompound(page))
2476 return 0;
2477 /*
2478 * Corner case handling. This is called from add_to_page_cache()
2479 * in usual. But some FS (shmem) precharges this page before calling it
2480 * and call add_to_page_cache() with GFP_NOWAIT.
2481 *
2482 * For GFP_NOWAIT case, the page may be pre-charged before calling
2483 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2484 * charge twice. (It works but has to pay a bit larger cost.)
2485 * And when the page is SwapCache, it should take swap information
2486 * into account. This is under lock_page() now.
2487 */
2488 if (!(gfp_mask & __GFP_WAIT)) {
2489 struct page_cgroup *pc;
2490
2491 pc = lookup_page_cgroup(page);
2492 if (!pc)
2493 return 0;
2494 lock_page_cgroup(pc);
2495 if (PageCgroupUsed(pc)) {
2496 unlock_page_cgroup(pc);
2497 return 0;
2498 }
2499 unlock_page_cgroup(pc);
2500 }
2501
2502 if (unlikely(!mm))
2503 mm = &init_mm;
2504
2505 if (page_is_file_cache(page)) {
2506 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
2507 if (ret || !mem)
2508 return ret;
2509
2510 /*
2511 * FUSE reuses pages without going through the final
2512 * put that would remove them from the LRU list, make
2513 * sure that they get relinked properly.
2514 */
2515 __mem_cgroup_commit_charge_lrucare(page, mem,
2516 MEM_CGROUP_CHARGE_TYPE_CACHE);
2517 return ret;
2518 }
2519 /* shmem */
2520 if (PageSwapCache(page)) {
2521 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2522 if (!ret)
2523 __mem_cgroup_commit_charge_swapin(page, mem,
2524 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2525 } else
2526 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2527 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2528
2529 return ret;
2530 }
2531
2532 /*
2533 * While swap-in, try_charge -> commit or cancel, the page is locked.
2534 * And when try_charge() successfully returns, one refcnt to memcg without
2535 * struct page_cgroup is acquired. This refcnt will be consumed by
2536 * "commit()" or removed by "cancel()"
2537 */
2538 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2539 struct page *page,
2540 gfp_t mask, struct mem_cgroup **ptr)
2541 {
2542 struct mem_cgroup *mem;
2543 int ret;
2544
2545 *ptr = NULL;
2546
2547 if (mem_cgroup_disabled())
2548 return 0;
2549
2550 if (!do_swap_account)
2551 goto charge_cur_mm;
2552 /*
2553 * A racing thread's fault, or swapoff, may have already updated
2554 * the pte, and even removed page from swap cache: in those cases
2555 * do_swap_page()'s pte_same() test will fail; but there's also a
2556 * KSM case which does need to charge the page.
2557 */
2558 if (!PageSwapCache(page))
2559 goto charge_cur_mm;
2560 mem = try_get_mem_cgroup_from_page(page);
2561 if (!mem)
2562 goto charge_cur_mm;
2563 *ptr = mem;
2564 ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2565 css_put(&mem->css);
2566 return ret;
2567 charge_cur_mm:
2568 if (unlikely(!mm))
2569 mm = &init_mm;
2570 return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2571 }
2572
2573 static void
2574 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2575 enum charge_type ctype)
2576 {
2577 if (mem_cgroup_disabled())
2578 return;
2579 if (!ptr)
2580 return;
2581 cgroup_exclude_rmdir(&ptr->css);
2582
2583 __mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2584 /*
2585 * Now swap is on-memory. This means this page may be
2586 * counted both as mem and swap....double count.
2587 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2588 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2589 * may call delete_from_swap_cache() before reach here.
2590 */
2591 if (do_swap_account && PageSwapCache(page)) {
2592 swp_entry_t ent = {.val = page_private(page)};
2593 unsigned short id;
2594 struct mem_cgroup *memcg;
2595
2596 id = swap_cgroup_record(ent, 0);
2597 rcu_read_lock();
2598 memcg = mem_cgroup_lookup(id);
2599 if (memcg) {
2600 /*
2601 * This recorded memcg can be obsolete one. So, avoid
2602 * calling css_tryget
2603 */
2604 if (!mem_cgroup_is_root(memcg))
2605 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2606 mem_cgroup_swap_statistics(memcg, false);
2607 mem_cgroup_put(memcg);
2608 }
2609 rcu_read_unlock();
2610 }
2611 /*
2612 * At swapin, we may charge account against cgroup which has no tasks.
2613 * So, rmdir()->pre_destroy() can be called while we do this charge.
2614 * In that case, we need to call pre_destroy() again. check it here.
2615 */
2616 cgroup_release_and_wakeup_rmdir(&ptr->css);
2617 }
2618
2619 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2620 {
2621 __mem_cgroup_commit_charge_swapin(page, ptr,
2622 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2623 }
2624
2625 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2626 {
2627 if (mem_cgroup_disabled())
2628 return;
2629 if (!mem)
2630 return;
2631 __mem_cgroup_cancel_charge(mem, 1);
2632 }
2633
2634 static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
2635 unsigned int nr_pages,
2636 const enum charge_type ctype)
2637 {
2638 struct memcg_batch_info *batch = NULL;
2639 bool uncharge_memsw = true;
2640
2641 /* If swapout, usage of swap doesn't decrease */
2642 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2643 uncharge_memsw = false;
2644
2645 batch = &current->memcg_batch;
2646 /*
2647 * In usual, we do css_get() when we remember memcg pointer.
2648 * But in this case, we keep res->usage until end of a series of
2649 * uncharges. Then, it's ok to ignore memcg's refcnt.
2650 */
2651 if (!batch->memcg)
2652 batch->memcg = mem;
2653 /*
2654 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2655 * In those cases, all pages freed continuously can be expected to be in
2656 * the same cgroup and we have chance to coalesce uncharges.
2657 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2658 * because we want to do uncharge as soon as possible.
2659 */
2660
2661 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2662 goto direct_uncharge;
2663
2664 if (nr_pages > 1)
2665 goto direct_uncharge;
2666
2667 /*
2668 * In typical case, batch->memcg == mem. This means we can
2669 * merge a series of uncharges to an uncharge of res_counter.
2670 * If not, we uncharge res_counter ony by one.
2671 */
2672 if (batch->memcg != mem)
2673 goto direct_uncharge;
2674 /* remember freed charge and uncharge it later */
2675 batch->nr_pages++;
2676 if (uncharge_memsw)
2677 batch->memsw_nr_pages++;
2678 return;
2679 direct_uncharge:
2680 res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
2681 if (uncharge_memsw)
2682 res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
2683 if (unlikely(batch->memcg != mem))
2684 memcg_oom_recover(mem);
2685 return;
2686 }
2687
2688 /*
2689 * uncharge if !page_mapped(page)
2690 */
2691 static struct mem_cgroup *
2692 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2693 {
2694 struct mem_cgroup *mem = NULL;
2695 unsigned int nr_pages = 1;
2696 struct page_cgroup *pc;
2697
2698 if (mem_cgroup_disabled())
2699 return NULL;
2700
2701 if (PageSwapCache(page))
2702 return NULL;
2703
2704 if (PageTransHuge(page)) {
2705 nr_pages <<= compound_order(page);
2706 VM_BUG_ON(!PageTransHuge(page));
2707 }
2708 /*
2709 * Check if our page_cgroup is valid
2710 */
2711 pc = lookup_page_cgroup(page);
2712 if (unlikely(!pc || !PageCgroupUsed(pc)))
2713 return NULL;
2714
2715 lock_page_cgroup(pc);
2716
2717 mem = pc->mem_cgroup;
2718
2719 if (!PageCgroupUsed(pc))
2720 goto unlock_out;
2721
2722 switch (ctype) {
2723 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2724 case MEM_CGROUP_CHARGE_TYPE_DROP:
2725 /* See mem_cgroup_prepare_migration() */
2726 if (page_mapped(page) || PageCgroupMigration(pc))
2727 goto unlock_out;
2728 break;
2729 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2730 if (!PageAnon(page)) { /* Shared memory */
2731 if (page->mapping && !page_is_file_cache(page))
2732 goto unlock_out;
2733 } else if (page_mapped(page)) /* Anon */
2734 goto unlock_out;
2735 break;
2736 default:
2737 break;
2738 }
2739
2740 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
2741
2742 ClearPageCgroupUsed(pc);
2743 /*
2744 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2745 * freed from LRU. This is safe because uncharged page is expected not
2746 * to be reused (freed soon). Exception is SwapCache, it's handled by
2747 * special functions.
2748 */
2749
2750 unlock_page_cgroup(pc);
2751 /*
2752 * even after unlock, we have mem->res.usage here and this memcg
2753 * will never be freed.
2754 */
2755 memcg_check_events(mem, page);
2756 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2757 mem_cgroup_swap_statistics(mem, true);
2758 mem_cgroup_get(mem);
2759 }
2760 if (!mem_cgroup_is_root(mem))
2761 mem_cgroup_do_uncharge(mem, nr_pages, ctype);
2762
2763 return mem;
2764
2765 unlock_out:
2766 unlock_page_cgroup(pc);
2767 return NULL;
2768 }
2769
2770 void mem_cgroup_uncharge_page(struct page *page)
2771 {
2772 /* early check. */
2773 if (page_mapped(page))
2774 return;
2775 if (page->mapping && !PageAnon(page))
2776 return;
2777 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2778 }
2779
2780 void mem_cgroup_uncharge_cache_page(struct page *page)
2781 {
2782 VM_BUG_ON(page_mapped(page));
2783 VM_BUG_ON(page->mapping);
2784 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2785 }
2786
2787 /*
2788 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2789 * In that cases, pages are freed continuously and we can expect pages
2790 * are in the same memcg. All these calls itself limits the number of
2791 * pages freed at once, then uncharge_start/end() is called properly.
2792 * This may be called prural(2) times in a context,
2793 */
2794
2795 void mem_cgroup_uncharge_start(void)
2796 {
2797 current->memcg_batch.do_batch++;
2798 /* We can do nest. */
2799 if (current->memcg_batch.do_batch == 1) {
2800 current->memcg_batch.memcg = NULL;
2801 current->memcg_batch.nr_pages = 0;
2802 current->memcg_batch.memsw_nr_pages = 0;
2803 }
2804 }
2805
2806 void mem_cgroup_uncharge_end(void)
2807 {
2808 struct memcg_batch_info *batch = &current->memcg_batch;
2809
2810 if (!batch->do_batch)
2811 return;
2812
2813 batch->do_batch--;
2814 if (batch->do_batch) /* If stacked, do nothing. */
2815 return;
2816
2817 if (!batch->memcg)
2818 return;
2819 /*
2820 * This "batch->memcg" is valid without any css_get/put etc...
2821 * bacause we hide charges behind us.
2822 */
2823 if (batch->nr_pages)
2824 res_counter_uncharge(&batch->memcg->res,
2825 batch->nr_pages * PAGE_SIZE);
2826 if (batch->memsw_nr_pages)
2827 res_counter_uncharge(&batch->memcg->memsw,
2828 batch->memsw_nr_pages * PAGE_SIZE);
2829 memcg_oom_recover(batch->memcg);
2830 /* forget this pointer (for sanity check) */
2831 batch->memcg = NULL;
2832 }
2833
2834 #ifdef CONFIG_SWAP
2835 /*
2836 * called after __delete_from_swap_cache() and drop "page" account.
2837 * memcg information is recorded to swap_cgroup of "ent"
2838 */
2839 void
2840 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2841 {
2842 struct mem_cgroup *memcg;
2843 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2844
2845 if (!swapout) /* this was a swap cache but the swap is unused ! */
2846 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2847
2848 memcg = __mem_cgroup_uncharge_common(page, ctype);
2849
2850 /*
2851 * record memcg information, if swapout && memcg != NULL,
2852 * mem_cgroup_get() was called in uncharge().
2853 */
2854 if (do_swap_account && swapout && memcg)
2855 swap_cgroup_record(ent, css_id(&memcg->css));
2856 }
2857 #endif
2858
2859 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2860 /*
2861 * called from swap_entry_free(). remove record in swap_cgroup and
2862 * uncharge "memsw" account.
2863 */
2864 void mem_cgroup_uncharge_swap(swp_entry_t ent)
2865 {
2866 struct mem_cgroup *memcg;
2867 unsigned short id;
2868
2869 if (!do_swap_account)
2870 return;
2871
2872 id = swap_cgroup_record(ent, 0);
2873 rcu_read_lock();
2874 memcg = mem_cgroup_lookup(id);
2875 if (memcg) {
2876 /*
2877 * We uncharge this because swap is freed.
2878 * This memcg can be obsolete one. We avoid calling css_tryget
2879 */
2880 if (!mem_cgroup_is_root(memcg))
2881 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2882 mem_cgroup_swap_statistics(memcg, false);
2883 mem_cgroup_put(memcg);
2884 }
2885 rcu_read_unlock();
2886 }
2887
2888 /**
2889 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2890 * @entry: swap entry to be moved
2891 * @from: mem_cgroup which the entry is moved from
2892 * @to: mem_cgroup which the entry is moved to
2893 * @need_fixup: whether we should fixup res_counters and refcounts.
2894 *
2895 * It succeeds only when the swap_cgroup's record for this entry is the same
2896 * as the mem_cgroup's id of @from.
2897 *
2898 * Returns 0 on success, -EINVAL on failure.
2899 *
2900 * The caller must have charged to @to, IOW, called res_counter_charge() about
2901 * both res and memsw, and called css_get().
2902 */
2903 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2904 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2905 {
2906 unsigned short old_id, new_id;
2907
2908 old_id = css_id(&from->css);
2909 new_id = css_id(&to->css);
2910
2911 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2912 mem_cgroup_swap_statistics(from, false);
2913 mem_cgroup_swap_statistics(to, true);
2914 /*
2915 * This function is only called from task migration context now.
2916 * It postpones res_counter and refcount handling till the end
2917 * of task migration(mem_cgroup_clear_mc()) for performance
2918 * improvement. But we cannot postpone mem_cgroup_get(to)
2919 * because if the process that has been moved to @to does
2920 * swap-in, the refcount of @to might be decreased to 0.
2921 */
2922 mem_cgroup_get(to);
2923 if (need_fixup) {
2924 if (!mem_cgroup_is_root(from))
2925 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2926 mem_cgroup_put(from);
2927 /*
2928 * we charged both to->res and to->memsw, so we should
2929 * uncharge to->res.
2930 */
2931 if (!mem_cgroup_is_root(to))
2932 res_counter_uncharge(&to->res, PAGE_SIZE);
2933 }
2934 return 0;
2935 }
2936 return -EINVAL;
2937 }
2938 #else
2939 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2940 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2941 {
2942 return -EINVAL;
2943 }
2944 #endif
2945
2946 /*
2947 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2948 * page belongs to.
2949 */
2950 int mem_cgroup_prepare_migration(struct page *page,
2951 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
2952 {
2953 struct mem_cgroup *mem = NULL;
2954 struct page_cgroup *pc;
2955 enum charge_type ctype;
2956 int ret = 0;
2957
2958 *ptr = NULL;
2959
2960 VM_BUG_ON(PageTransHuge(page));
2961 if (mem_cgroup_disabled())
2962 return 0;
2963
2964 pc = lookup_page_cgroup(page);
2965 lock_page_cgroup(pc);
2966 if (PageCgroupUsed(pc)) {
2967 mem = pc->mem_cgroup;
2968 css_get(&mem->css);
2969 /*
2970 * At migrating an anonymous page, its mapcount goes down
2971 * to 0 and uncharge() will be called. But, even if it's fully
2972 * unmapped, migration may fail and this page has to be
2973 * charged again. We set MIGRATION flag here and delay uncharge
2974 * until end_migration() is called
2975 *
2976 * Corner Case Thinking
2977 * A)
2978 * When the old page was mapped as Anon and it's unmap-and-freed
2979 * while migration was ongoing.
2980 * If unmap finds the old page, uncharge() of it will be delayed
2981 * until end_migration(). If unmap finds a new page, it's
2982 * uncharged when it make mapcount to be 1->0. If unmap code
2983 * finds swap_migration_entry, the new page will not be mapped
2984 * and end_migration() will find it(mapcount==0).
2985 *
2986 * B)
2987 * When the old page was mapped but migraion fails, the kernel
2988 * remaps it. A charge for it is kept by MIGRATION flag even
2989 * if mapcount goes down to 0. We can do remap successfully
2990 * without charging it again.
2991 *
2992 * C)
2993 * The "old" page is under lock_page() until the end of
2994 * migration, so, the old page itself will not be swapped-out.
2995 * If the new page is swapped out before end_migraton, our
2996 * hook to usual swap-out path will catch the event.
2997 */
2998 if (PageAnon(page))
2999 SetPageCgroupMigration(pc);
3000 }
3001 unlock_page_cgroup(pc);
3002 /*
3003 * If the page is not charged at this point,
3004 * we return here.
3005 */
3006 if (!mem)
3007 return 0;
3008
3009 *ptr = mem;
3010 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3011 css_put(&mem->css);/* drop extra refcnt */
3012 if (ret || *ptr == NULL) {
3013 if (PageAnon(page)) {
3014 lock_page_cgroup(pc);
3015 ClearPageCgroupMigration(pc);
3016 unlock_page_cgroup(pc);
3017 /*
3018 * The old page may be fully unmapped while we kept it.
3019 */
3020 mem_cgroup_uncharge_page(page);
3021 }
3022 return -ENOMEM;
3023 }
3024 /*
3025 * We charge new page before it's used/mapped. So, even if unlock_page()
3026 * is called before end_migration, we can catch all events on this new
3027 * page. In the case new page is migrated but not remapped, new page's
3028 * mapcount will be finally 0 and we call uncharge in end_migration().
3029 */
3030 pc = lookup_page_cgroup(newpage);
3031 if (PageAnon(page))
3032 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3033 else if (page_is_file_cache(page))
3034 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3035 else
3036 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3037 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
3038 return ret;
3039 }
3040
3041 /* remove redundant charge if migration failed*/
3042 void mem_cgroup_end_migration(struct mem_cgroup *mem,
3043 struct page *oldpage, struct page *newpage, bool migration_ok)
3044 {
3045 struct page *used, *unused;
3046 struct page_cgroup *pc;
3047
3048 if (!mem)
3049 return;
3050 /* blocks rmdir() */
3051 cgroup_exclude_rmdir(&mem->css);
3052 if (!migration_ok) {
3053 used = oldpage;
3054 unused = newpage;
3055 } else {
3056 used = newpage;
3057 unused = oldpage;
3058 }
3059 /*
3060 * We disallowed uncharge of pages under migration because mapcount
3061 * of the page goes down to zero, temporarly.
3062 * Clear the flag and check the page should be charged.
3063 */
3064 pc = lookup_page_cgroup(oldpage);
3065 lock_page_cgroup(pc);
3066 ClearPageCgroupMigration(pc);
3067 unlock_page_cgroup(pc);
3068
3069 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3070
3071 /*
3072 * If a page is a file cache, radix-tree replacement is very atomic
3073 * and we can skip this check. When it was an Anon page, its mapcount
3074 * goes down to 0. But because we added MIGRATION flage, it's not
3075 * uncharged yet. There are several case but page->mapcount check
3076 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3077 * check. (see prepare_charge() also)
3078 */
3079 if (PageAnon(used))
3080 mem_cgroup_uncharge_page(used);
3081 /*
3082 * At migration, we may charge account against cgroup which has no
3083 * tasks.
3084 * So, rmdir()->pre_destroy() can be called while we do this charge.
3085 * In that case, we need to call pre_destroy() again. check it here.
3086 */
3087 cgroup_release_and_wakeup_rmdir(&mem->css);
3088 }
3089
3090 /*
3091 * A call to try to shrink memory usage on charge failure at shmem's swapin.
3092 * Calling hierarchical_reclaim is not enough because we should update
3093 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3094 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3095 * not from the memcg which this page would be charged to.
3096 * try_charge_swapin does all of these works properly.
3097 */
3098 int mem_cgroup_shmem_charge_fallback(struct page *page,
3099 struct mm_struct *mm,
3100 gfp_t gfp_mask)
3101 {
3102 struct mem_cgroup *mem;
3103 int ret;
3104
3105 if (mem_cgroup_disabled())
3106 return 0;
3107
3108 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3109 if (!ret)
3110 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3111
3112 return ret;
3113 }
3114
3115 #ifdef CONFIG_DEBUG_VM
3116 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3117 {
3118 struct page_cgroup *pc;
3119
3120 pc = lookup_page_cgroup(page);
3121 if (likely(pc) && PageCgroupUsed(pc))
3122 return pc;
3123 return NULL;
3124 }
3125
3126 bool mem_cgroup_bad_page_check(struct page *page)
3127 {
3128 if (mem_cgroup_disabled())
3129 return false;
3130
3131 return lookup_page_cgroup_used(page) != NULL;
3132 }
3133
3134 void mem_cgroup_print_bad_page(struct page *page)
3135 {
3136 struct page_cgroup *pc;
3137
3138 pc = lookup_page_cgroup_used(page);
3139 if (pc) {
3140 int ret = -1;
3141 char *path;
3142
3143 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3144 pc, pc->flags, pc->mem_cgroup);
3145
3146 path = kmalloc(PATH_MAX, GFP_KERNEL);
3147 if (path) {
3148 rcu_read_lock();
3149 ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3150 path, PATH_MAX);
3151 rcu_read_unlock();
3152 }
3153
3154 printk(KERN_CONT "(%s)\n",
3155 (ret < 0) ? "cannot get the path" : path);
3156 kfree(path);
3157 }
3158 }
3159 #endif
3160
3161 static DEFINE_MUTEX(set_limit_mutex);
3162
3163 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3164 unsigned long long val)
3165 {
3166 int retry_count;
3167 u64 memswlimit, memlimit;
3168 int ret = 0;
3169 int children = mem_cgroup_count_children(memcg);
3170 u64 curusage, oldusage;
3171 int enlarge;
3172
3173 /*
3174 * For keeping hierarchical_reclaim simple, how long we should retry
3175 * is depends on callers. We set our retry-count to be function
3176 * of # of children which we should visit in this loop.
3177 */
3178 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3179
3180 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3181
3182 enlarge = 0;
3183 while (retry_count) {
3184 if (signal_pending(current)) {
3185 ret = -EINTR;
3186 break;
3187 }
3188 /*
3189 * Rather than hide all in some function, I do this in
3190 * open coded manner. You see what this really does.
3191 * We have to guarantee mem->res.limit < mem->memsw.limit.
3192 */
3193 mutex_lock(&set_limit_mutex);
3194 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3195 if (memswlimit < val) {
3196 ret = -EINVAL;
3197 mutex_unlock(&set_limit_mutex);
3198 break;
3199 }
3200
3201 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3202 if (memlimit < val)
3203 enlarge = 1;
3204
3205 ret = res_counter_set_limit(&memcg->res, val);
3206 if (!ret) {
3207 if (memswlimit == val)
3208 memcg->memsw_is_minimum = true;
3209 else
3210 memcg->memsw_is_minimum = false;
3211 }
3212 mutex_unlock(&set_limit_mutex);
3213
3214 if (!ret)
3215 break;
3216
3217 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3218 MEM_CGROUP_RECLAIM_SHRINK,
3219 NULL);
3220 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3221 /* Usage is reduced ? */
3222 if (curusage >= oldusage)
3223 retry_count--;
3224 else
3225 oldusage = curusage;
3226 }
3227 if (!ret && enlarge)
3228 memcg_oom_recover(memcg);
3229
3230 return ret;
3231 }
3232
3233 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3234 unsigned long long val)
3235 {
3236 int retry_count;
3237 u64 memlimit, memswlimit, oldusage, curusage;
3238 int children = mem_cgroup_count_children(memcg);
3239 int ret = -EBUSY;
3240 int enlarge = 0;
3241
3242 /* see mem_cgroup_resize_res_limit */
3243 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3244 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3245 while (retry_count) {
3246 if (signal_pending(current)) {
3247 ret = -EINTR;
3248 break;
3249 }
3250 /*
3251 * Rather than hide all in some function, I do this in
3252 * open coded manner. You see what this really does.
3253 * We have to guarantee mem->res.limit < mem->memsw.limit.
3254 */
3255 mutex_lock(&set_limit_mutex);
3256 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3257 if (memlimit > val) {
3258 ret = -EINVAL;
3259 mutex_unlock(&set_limit_mutex);
3260 break;
3261 }
3262 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3263 if (memswlimit < val)
3264 enlarge = 1;
3265 ret = res_counter_set_limit(&memcg->memsw, val);
3266 if (!ret) {
3267 if (memlimit == val)
3268 memcg->memsw_is_minimum = true;
3269 else
3270 memcg->memsw_is_minimum = false;
3271 }
3272 mutex_unlock(&set_limit_mutex);
3273
3274 if (!ret)
3275 break;
3276
3277 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3278 MEM_CGROUP_RECLAIM_NOSWAP |
3279 MEM_CGROUP_RECLAIM_SHRINK,
3280 NULL);
3281 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3282 /* Usage is reduced ? */
3283 if (curusage >= oldusage)
3284 retry_count--;
3285 else
3286 oldusage = curusage;
3287 }
3288 if (!ret && enlarge)
3289 memcg_oom_recover(memcg);
3290 return ret;
3291 }
3292
3293 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3294 gfp_t gfp_mask,
3295 unsigned long *total_scanned)
3296 {
3297 unsigned long nr_reclaimed = 0;
3298 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3299 unsigned long reclaimed;
3300 int loop = 0;
3301 struct mem_cgroup_tree_per_zone *mctz;
3302 unsigned long long excess;
3303 unsigned long nr_scanned;
3304
3305 if (order > 0)
3306 return 0;
3307
3308 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3309 /*
3310 * This loop can run a while, specially if mem_cgroup's continuously
3311 * keep exceeding their soft limit and putting the system under
3312 * pressure
3313 */
3314 do {
3315 if (next_mz)
3316 mz = next_mz;
3317 else
3318 mz = mem_cgroup_largest_soft_limit_node(mctz);
3319 if (!mz)
3320 break;
3321
3322 nr_scanned = 0;
3323 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3324 gfp_mask,
3325 MEM_CGROUP_RECLAIM_SOFT,
3326 &nr_scanned);
3327 nr_reclaimed += reclaimed;
3328 *total_scanned += nr_scanned;
3329 spin_lock(&mctz->lock);
3330
3331 /*
3332 * If we failed to reclaim anything from this memory cgroup
3333 * it is time to move on to the next cgroup
3334 */
3335 next_mz = NULL;
3336 if (!reclaimed) {
3337 do {
3338 /*
3339 * Loop until we find yet another one.
3340 *
3341 * By the time we get the soft_limit lock
3342 * again, someone might have aded the
3343 * group back on the RB tree. Iterate to
3344 * make sure we get a different mem.
3345 * mem_cgroup_largest_soft_limit_node returns
3346 * NULL if no other cgroup is present on
3347 * the tree
3348 */
3349 next_mz =
3350 __mem_cgroup_largest_soft_limit_node(mctz);
3351 if (next_mz == mz) {
3352 css_put(&next_mz->mem->css);
3353 next_mz = NULL;
3354 } else /* next_mz == NULL or other memcg */
3355 break;
3356 } while (1);
3357 }
3358 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3359 excess = res_counter_soft_limit_excess(&mz->mem->res);
3360 /*
3361 * One school of thought says that we should not add
3362 * back the node to the tree if reclaim returns 0.
3363 * But our reclaim could return 0, simply because due
3364 * to priority we are exposing a smaller subset of
3365 * memory to reclaim from. Consider this as a longer
3366 * term TODO.
3367 */
3368 /* If excess == 0, no tree ops */
3369 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3370 spin_unlock(&mctz->lock);
3371 css_put(&mz->mem->css);
3372 loop++;
3373 /*
3374 * Could not reclaim anything and there are no more
3375 * mem cgroups to try or we seem to be looping without
3376 * reclaiming anything.
3377 */
3378 if (!nr_reclaimed &&
3379 (next_mz == NULL ||
3380 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3381 break;
3382 } while (!nr_reclaimed);
3383 if (next_mz)
3384 css_put(&next_mz->mem->css);
3385 return nr_reclaimed;
3386 }
3387
3388 /*
3389 * This routine traverse page_cgroup in given list and drop them all.
3390 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3391 */
3392 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3393 int node, int zid, enum lru_list lru)
3394 {
3395 struct zone *zone;
3396 struct mem_cgroup_per_zone *mz;
3397 struct page_cgroup *pc, *busy;
3398 unsigned long flags, loop;
3399 struct list_head *list;
3400 int ret = 0;
3401
3402 zone = &NODE_DATA(node)->node_zones[zid];
3403 mz = mem_cgroup_zoneinfo(mem, node, zid);
3404 list = &mz->lists[lru];
3405
3406 loop = MEM_CGROUP_ZSTAT(mz, lru);
3407 /* give some margin against EBUSY etc...*/
3408 loop += 256;
3409 busy = NULL;
3410 while (loop--) {
3411 struct page *page;
3412
3413 ret = 0;
3414 spin_lock_irqsave(&zone->lru_lock, flags);
3415 if (list_empty(list)) {
3416 spin_unlock_irqrestore(&zone->lru_lock, flags);
3417 break;
3418 }
3419 pc = list_entry(list->prev, struct page_cgroup, lru);
3420 if (busy == pc) {
3421 list_move(&pc->lru, list);
3422 busy = NULL;
3423 spin_unlock_irqrestore(&zone->lru_lock, flags);
3424 continue;
3425 }
3426 spin_unlock_irqrestore(&zone->lru_lock, flags);
3427
3428 page = lookup_cgroup_page(pc);
3429
3430 ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3431 if (ret == -ENOMEM)
3432 break;
3433
3434 if (ret == -EBUSY || ret == -EINVAL) {
3435 /* found lock contention or "pc" is obsolete. */
3436 busy = pc;
3437 cond_resched();
3438 } else
3439 busy = NULL;
3440 }
3441
3442 if (!ret && !list_empty(list))
3443 return -EBUSY;
3444 return ret;
3445 }
3446
3447 /*
3448 * make mem_cgroup's charge to be 0 if there is no task.
3449 * This enables deleting this mem_cgroup.
3450 */
3451 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3452 {
3453 int ret;
3454 int node, zid, shrink;
3455 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3456 struct cgroup *cgrp = mem->css.cgroup;
3457
3458 css_get(&mem->css);
3459
3460 shrink = 0;
3461 /* should free all ? */
3462 if (free_all)
3463 goto try_to_free;
3464 move_account:
3465 do {
3466 ret = -EBUSY;
3467 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3468 goto out;
3469 ret = -EINTR;
3470 if (signal_pending(current))
3471 goto out;
3472 /* This is for making all *used* pages to be on LRU. */
3473 lru_add_drain_all();
3474 drain_all_stock_sync();
3475 ret = 0;
3476 mem_cgroup_start_move(mem);
3477 for_each_node_state(node, N_HIGH_MEMORY) {
3478 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3479 enum lru_list l;
3480 for_each_lru(l) {
3481 ret = mem_cgroup_force_empty_list(mem,
3482 node, zid, l);
3483 if (ret)
3484 break;
3485 }
3486 }
3487 if (ret)
3488 break;
3489 }
3490 mem_cgroup_end_move(mem);
3491 memcg_oom_recover(mem);
3492 /* it seems parent cgroup doesn't have enough mem */
3493 if (ret == -ENOMEM)
3494 goto try_to_free;
3495 cond_resched();
3496 /* "ret" should also be checked to ensure all lists are empty. */
3497 } while (mem->res.usage > 0 || ret);
3498 out:
3499 css_put(&mem->css);
3500 return ret;
3501
3502 try_to_free:
3503 /* returns EBUSY if there is a task or if we come here twice. */
3504 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3505 ret = -EBUSY;
3506 goto out;
3507 }
3508 /* we call try-to-free pages for make this cgroup empty */
3509 lru_add_drain_all();
3510 /* try to free all pages in this cgroup */
3511 shrink = 1;
3512 while (nr_retries && mem->res.usage > 0) {
3513 int progress;
3514
3515 if (signal_pending(current)) {
3516 ret = -EINTR;
3517 goto out;
3518 }
3519 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3520 false, get_swappiness(mem));
3521 if (!progress) {
3522 nr_retries--;
3523 /* maybe some writeback is necessary */
3524 congestion_wait(BLK_RW_ASYNC, HZ/10);
3525 }
3526
3527 }
3528 lru_add_drain();
3529 /* try move_account...there may be some *locked* pages. */
3530 goto move_account;
3531 }
3532
3533 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3534 {
3535 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3536 }
3537
3538
3539 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3540 {
3541 return mem_cgroup_from_cont(cont)->use_hierarchy;
3542 }
3543
3544 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3545 u64 val)
3546 {
3547 int retval = 0;
3548 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3549 struct cgroup *parent = cont->parent;
3550 struct mem_cgroup *parent_mem = NULL;
3551
3552 if (parent)
3553 parent_mem = mem_cgroup_from_cont(parent);
3554
3555 cgroup_lock();
3556 /*
3557 * If parent's use_hierarchy is set, we can't make any modifications
3558 * in the child subtrees. If it is unset, then the change can
3559 * occur, provided the current cgroup has no children.
3560 *
3561 * For the root cgroup, parent_mem is NULL, we allow value to be
3562 * set if there are no children.
3563 */
3564 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3565 (val == 1 || val == 0)) {
3566 if (list_empty(&cont->children))
3567 mem->use_hierarchy = val;
3568 else
3569 retval = -EBUSY;
3570 } else
3571 retval = -EINVAL;
3572 cgroup_unlock();
3573
3574 return retval;
3575 }
3576
3577
3578 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
3579 enum mem_cgroup_stat_index idx)
3580 {
3581 struct mem_cgroup *iter;
3582 long val = 0;
3583
3584 /* Per-cpu values can be negative, use a signed accumulator */
3585 for_each_mem_cgroup_tree(iter, mem)
3586 val += mem_cgroup_read_stat(iter, idx);
3587
3588 if (val < 0) /* race ? */
3589 val = 0;
3590 return val;
3591 }
3592
3593 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3594 {
3595 u64 val;
3596
3597 if (!mem_cgroup_is_root(mem)) {
3598 if (!swap)
3599 return res_counter_read_u64(&mem->res, RES_USAGE);
3600 else
3601 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3602 }
3603
3604 val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
3605 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
3606
3607 if (swap)
3608 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3609
3610 return val << PAGE_SHIFT;
3611 }
3612
3613 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3614 {
3615 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3616 u64 val;
3617 int type, name;
3618
3619 type = MEMFILE_TYPE(cft->private);
3620 name = MEMFILE_ATTR(cft->private);
3621 switch (type) {
3622 case _MEM:
3623 if (name == RES_USAGE)
3624 val = mem_cgroup_usage(mem, false);
3625 else
3626 val = res_counter_read_u64(&mem->res, name);
3627 break;
3628 case _MEMSWAP:
3629 if (name == RES_USAGE)
3630 val = mem_cgroup_usage(mem, true);
3631 else
3632 val = res_counter_read_u64(&mem->memsw, name);
3633 break;
3634 default:
3635 BUG();
3636 break;
3637 }
3638 return val;
3639 }
3640 /*
3641 * The user of this function is...
3642 * RES_LIMIT.
3643 */
3644 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3645 const char *buffer)
3646 {
3647 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3648 int type, name;
3649 unsigned long long val;
3650 int ret;
3651
3652 type = MEMFILE_TYPE(cft->private);
3653 name = MEMFILE_ATTR(cft->private);
3654 switch (name) {
3655 case RES_LIMIT:
3656 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3657 ret = -EINVAL;
3658 break;
3659 }
3660 /* This function does all necessary parse...reuse it */
3661 ret = res_counter_memparse_write_strategy(buffer, &val);
3662 if (ret)
3663 break;
3664 if (type == _MEM)
3665 ret = mem_cgroup_resize_limit(memcg, val);
3666 else
3667 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3668 break;
3669 case RES_SOFT_LIMIT:
3670 ret = res_counter_memparse_write_strategy(buffer, &val);
3671 if (ret)
3672 break;
3673 /*
3674 * For memsw, soft limits are hard to implement in terms
3675 * of semantics, for now, we support soft limits for
3676 * control without swap
3677 */
3678 if (type == _MEM)
3679 ret = res_counter_set_soft_limit(&memcg->res, val);
3680 else
3681 ret = -EINVAL;
3682 break;
3683 default:
3684 ret = -EINVAL; /* should be BUG() ? */
3685 break;
3686 }
3687 return ret;
3688 }
3689
3690 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3691 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3692 {
3693 struct cgroup *cgroup;
3694 unsigned long long min_limit, min_memsw_limit, tmp;
3695
3696 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3697 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3698 cgroup = memcg->css.cgroup;
3699 if (!memcg->use_hierarchy)
3700 goto out;
3701
3702 while (cgroup->parent) {
3703 cgroup = cgroup->parent;
3704 memcg = mem_cgroup_from_cont(cgroup);
3705 if (!memcg->use_hierarchy)
3706 break;
3707 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3708 min_limit = min(min_limit, tmp);
3709 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3710 min_memsw_limit = min(min_memsw_limit, tmp);
3711 }
3712 out:
3713 *mem_limit = min_limit;
3714 *memsw_limit = min_memsw_limit;
3715 return;
3716 }
3717
3718 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3719 {
3720 struct mem_cgroup *mem;
3721 int type, name;
3722
3723 mem = mem_cgroup_from_cont(cont);
3724 type = MEMFILE_TYPE(event);
3725 name = MEMFILE_ATTR(event);
3726 switch (name) {
3727 case RES_MAX_USAGE:
3728 if (type == _MEM)
3729 res_counter_reset_max(&mem->res);
3730 else
3731 res_counter_reset_max(&mem->memsw);
3732 break;
3733 case RES_FAILCNT:
3734 if (type == _MEM)
3735 res_counter_reset_failcnt(&mem->res);
3736 else
3737 res_counter_reset_failcnt(&mem->memsw);
3738 break;
3739 }
3740
3741 return 0;
3742 }
3743
3744 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3745 struct cftype *cft)
3746 {
3747 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3748 }
3749
3750 #ifdef CONFIG_MMU
3751 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3752 struct cftype *cft, u64 val)
3753 {
3754 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3755
3756 if (val >= (1 << NR_MOVE_TYPE))
3757 return -EINVAL;
3758 /*
3759 * We check this value several times in both in can_attach() and
3760 * attach(), so we need cgroup lock to prevent this value from being
3761 * inconsistent.
3762 */
3763 cgroup_lock();
3764 mem->move_charge_at_immigrate = val;
3765 cgroup_unlock();
3766
3767 return 0;
3768 }
3769 #else
3770 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3771 struct cftype *cft, u64 val)
3772 {
3773 return -ENOSYS;
3774 }
3775 #endif
3776
3777
3778 /* For read statistics */
3779 enum {
3780 MCS_CACHE,
3781 MCS_RSS,
3782 MCS_FILE_MAPPED,
3783 MCS_PGPGIN,
3784 MCS_PGPGOUT,
3785 MCS_SWAP,
3786 MCS_INACTIVE_ANON,
3787 MCS_ACTIVE_ANON,
3788 MCS_INACTIVE_FILE,
3789 MCS_ACTIVE_FILE,
3790 MCS_UNEVICTABLE,
3791 NR_MCS_STAT,
3792 };
3793
3794 struct mcs_total_stat {
3795 s64 stat[NR_MCS_STAT];
3796 };
3797
3798 struct {
3799 char *local_name;
3800 char *total_name;
3801 } memcg_stat_strings[NR_MCS_STAT] = {
3802 {"cache", "total_cache"},
3803 {"rss", "total_rss"},
3804 {"mapped_file", "total_mapped_file"},
3805 {"pgpgin", "total_pgpgin"},
3806 {"pgpgout", "total_pgpgout"},
3807 {"swap", "total_swap"},
3808 {"inactive_anon", "total_inactive_anon"},
3809 {"active_anon", "total_active_anon"},
3810 {"inactive_file", "total_inactive_file"},
3811 {"active_file", "total_active_file"},
3812 {"unevictable", "total_unevictable"}
3813 };
3814
3815
3816 static void
3817 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3818 {
3819 s64 val;
3820
3821 /* per cpu stat */
3822 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3823 s->stat[MCS_CACHE] += val * PAGE_SIZE;
3824 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3825 s->stat[MCS_RSS] += val * PAGE_SIZE;
3826 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3827 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3828 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
3829 s->stat[MCS_PGPGIN] += val;
3830 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
3831 s->stat[MCS_PGPGOUT] += val;
3832 if (do_swap_account) {
3833 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3834 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3835 }
3836
3837 /* per zone stat */
3838 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3839 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3840 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3841 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3842 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3843 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3844 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3845 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3846 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3847 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3848 }
3849
3850 static void
3851 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3852 {
3853 struct mem_cgroup *iter;
3854
3855 for_each_mem_cgroup_tree(iter, mem)
3856 mem_cgroup_get_local_stat(iter, s);
3857 }
3858
3859 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3860 struct cgroup_map_cb *cb)
3861 {
3862 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3863 struct mcs_total_stat mystat;
3864 int i;
3865
3866 memset(&mystat, 0, sizeof(mystat));
3867 mem_cgroup_get_local_stat(mem_cont, &mystat);
3868
3869 for (i = 0; i < NR_MCS_STAT; i++) {
3870 if (i == MCS_SWAP && !do_swap_account)
3871 continue;
3872 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3873 }
3874
3875 /* Hierarchical information */
3876 {
3877 unsigned long long limit, memsw_limit;
3878 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3879 cb->fill(cb, "hierarchical_memory_limit", limit);
3880 if (do_swap_account)
3881 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3882 }
3883
3884 memset(&mystat, 0, sizeof(mystat));
3885 mem_cgroup_get_total_stat(mem_cont, &mystat);
3886 for (i = 0; i < NR_MCS_STAT; i++) {
3887 if (i == MCS_SWAP && !do_swap_account)
3888 continue;
3889 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3890 }
3891
3892 #ifdef CONFIG_DEBUG_VM
3893 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3894
3895 {
3896 int nid, zid;
3897 struct mem_cgroup_per_zone *mz;
3898 unsigned long recent_rotated[2] = {0, 0};
3899 unsigned long recent_scanned[2] = {0, 0};
3900
3901 for_each_online_node(nid)
3902 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3903 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3904
3905 recent_rotated[0] +=
3906 mz->reclaim_stat.recent_rotated[0];
3907 recent_rotated[1] +=
3908 mz->reclaim_stat.recent_rotated[1];
3909 recent_scanned[0] +=
3910 mz->reclaim_stat.recent_scanned[0];
3911 recent_scanned[1] +=
3912 mz->reclaim_stat.recent_scanned[1];
3913 }
3914 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3915 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3916 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3917 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3918 }
3919 #endif
3920
3921 return 0;
3922 }
3923
3924 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3925 {
3926 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3927
3928 return get_swappiness(memcg);
3929 }
3930
3931 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3932 u64 val)
3933 {
3934 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3935 struct mem_cgroup *parent;
3936
3937 if (val > 100)
3938 return -EINVAL;
3939
3940 if (cgrp->parent == NULL)
3941 return -EINVAL;
3942
3943 parent = mem_cgroup_from_cont(cgrp->parent);
3944
3945 cgroup_lock();
3946
3947 /* If under hierarchy, only empty-root can set this value */
3948 if ((parent->use_hierarchy) ||
3949 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3950 cgroup_unlock();
3951 return -EINVAL;
3952 }
3953
3954 memcg->swappiness = val;
3955
3956 cgroup_unlock();
3957
3958 return 0;
3959 }
3960
3961 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3962 {
3963 struct mem_cgroup_threshold_ary *t;
3964 u64 usage;
3965 int i;
3966
3967 rcu_read_lock();
3968 if (!swap)
3969 t = rcu_dereference(memcg->thresholds.primary);
3970 else
3971 t = rcu_dereference(memcg->memsw_thresholds.primary);
3972
3973 if (!t)
3974 goto unlock;
3975
3976 usage = mem_cgroup_usage(memcg, swap);
3977
3978 /*
3979 * current_threshold points to threshold just below usage.
3980 * If it's not true, a threshold was crossed after last
3981 * call of __mem_cgroup_threshold().
3982 */
3983 i = t->current_threshold;
3984
3985 /*
3986 * Iterate backward over array of thresholds starting from
3987 * current_threshold and check if a threshold is crossed.
3988 * If none of thresholds below usage is crossed, we read
3989 * only one element of the array here.
3990 */
3991 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3992 eventfd_signal(t->entries[i].eventfd, 1);
3993
3994 /* i = current_threshold + 1 */
3995 i++;
3996
3997 /*
3998 * Iterate forward over array of thresholds starting from
3999 * current_threshold+1 and check if a threshold is crossed.
4000 * If none of thresholds above usage is crossed, we read
4001 * only one element of the array here.
4002 */
4003 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4004 eventfd_signal(t->entries[i].eventfd, 1);
4005
4006 /* Update current_threshold */
4007 t->current_threshold = i - 1;
4008 unlock:
4009 rcu_read_unlock();
4010 }
4011
4012 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4013 {
4014 while (memcg) {
4015 __mem_cgroup_threshold(memcg, false);
4016 if (do_swap_account)
4017 __mem_cgroup_threshold(memcg, true);
4018
4019 memcg = parent_mem_cgroup(memcg);
4020 }
4021 }
4022
4023 static int compare_thresholds(const void *a, const void *b)
4024 {
4025 const struct mem_cgroup_threshold *_a = a;
4026 const struct mem_cgroup_threshold *_b = b;
4027
4028 return _a->threshold - _b->threshold;
4029 }
4030
4031 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
4032 {
4033 struct mem_cgroup_eventfd_list *ev;
4034
4035 list_for_each_entry(ev, &mem->oom_notify, list)
4036 eventfd_signal(ev->eventfd, 1);
4037 return 0;
4038 }
4039
4040 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
4041 {
4042 struct mem_cgroup *iter;
4043
4044 for_each_mem_cgroup_tree(iter, mem)
4045 mem_cgroup_oom_notify_cb(iter);
4046 }
4047
4048 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4049 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4050 {
4051 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4052 struct mem_cgroup_thresholds *thresholds;
4053 struct mem_cgroup_threshold_ary *new;
4054 int type = MEMFILE_TYPE(cft->private);
4055 u64 threshold, usage;
4056 int i, size, ret;
4057
4058 ret = res_counter_memparse_write_strategy(args, &threshold);
4059 if (ret)
4060 return ret;
4061
4062 mutex_lock(&memcg->thresholds_lock);
4063
4064 if (type == _MEM)
4065 thresholds = &memcg->thresholds;
4066 else if (type == _MEMSWAP)
4067 thresholds = &memcg->memsw_thresholds;
4068 else
4069 BUG();
4070
4071 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4072
4073 /* Check if a threshold crossed before adding a new one */
4074 if (thresholds->primary)
4075 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4076
4077 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4078
4079 /* Allocate memory for new array of thresholds */
4080 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4081 GFP_KERNEL);
4082 if (!new) {
4083 ret = -ENOMEM;
4084 goto unlock;
4085 }
4086 new->size = size;
4087
4088 /* Copy thresholds (if any) to new array */
4089 if (thresholds->primary) {
4090 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4091 sizeof(struct mem_cgroup_threshold));
4092 }
4093
4094 /* Add new threshold */
4095 new->entries[size - 1].eventfd = eventfd;
4096 new->entries[size - 1].threshold = threshold;
4097
4098 /* Sort thresholds. Registering of new threshold isn't time-critical */
4099 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4100 compare_thresholds, NULL);
4101
4102 /* Find current threshold */
4103 new->current_threshold = -1;
4104 for (i = 0; i < size; i++) {
4105 if (new->entries[i].threshold < usage) {
4106 /*
4107 * new->current_threshold will not be used until
4108 * rcu_assign_pointer(), so it's safe to increment
4109 * it here.
4110 */
4111 ++new->current_threshold;
4112 }
4113 }
4114
4115 /* Free old spare buffer and save old primary buffer as spare */
4116 kfree(thresholds->spare);
4117 thresholds->spare = thresholds->primary;
4118
4119 rcu_assign_pointer(thresholds->primary, new);
4120
4121 /* To be sure that nobody uses thresholds */
4122 synchronize_rcu();
4123
4124 unlock:
4125 mutex_unlock(&memcg->thresholds_lock);
4126
4127 return ret;
4128 }
4129
4130 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4131 struct cftype *cft, struct eventfd_ctx *eventfd)
4132 {
4133 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4134 struct mem_cgroup_thresholds *thresholds;
4135 struct mem_cgroup_threshold_ary *new;
4136 int type = MEMFILE_TYPE(cft->private);
4137 u64 usage;
4138 int i, j, size;
4139
4140 mutex_lock(&memcg->thresholds_lock);
4141 if (type == _MEM)
4142 thresholds = &memcg->thresholds;
4143 else if (type == _MEMSWAP)
4144 thresholds = &memcg->memsw_thresholds;
4145 else
4146 BUG();
4147
4148 /*
4149 * Something went wrong if we trying to unregister a threshold
4150 * if we don't have thresholds
4151 */
4152 BUG_ON(!thresholds);
4153
4154 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4155
4156 /* Check if a threshold crossed before removing */
4157 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4158
4159 /* Calculate new number of threshold */
4160 size = 0;
4161 for (i = 0; i < thresholds->primary->size; i++) {
4162 if (thresholds->primary->entries[i].eventfd != eventfd)
4163 size++;
4164 }
4165
4166 new = thresholds->spare;
4167
4168 /* Set thresholds array to NULL if we don't have thresholds */
4169 if (!size) {
4170 kfree(new);
4171 new = NULL;
4172 goto swap_buffers;
4173 }
4174
4175 new->size = size;
4176
4177 /* Copy thresholds and find current threshold */
4178 new->current_threshold = -1;
4179 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4180 if (thresholds->primary->entries[i].eventfd == eventfd)
4181 continue;
4182
4183 new->entries[j] = thresholds->primary->entries[i];
4184 if (new->entries[j].threshold < usage) {
4185 /*
4186 * new->current_threshold will not be used
4187 * until rcu_assign_pointer(), so it's safe to increment
4188 * it here.
4189 */
4190 ++new->current_threshold;
4191 }
4192 j++;
4193 }
4194
4195 swap_buffers:
4196 /* Swap primary and spare array */
4197 thresholds->spare = thresholds->primary;
4198 rcu_assign_pointer(thresholds->primary, new);
4199
4200 /* To be sure that nobody uses thresholds */
4201 synchronize_rcu();
4202
4203 mutex_unlock(&memcg->thresholds_lock);
4204 }
4205
4206 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4207 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4208 {
4209 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4210 struct mem_cgroup_eventfd_list *event;
4211 int type = MEMFILE_TYPE(cft->private);
4212
4213 BUG_ON(type != _OOM_TYPE);
4214 event = kmalloc(sizeof(*event), GFP_KERNEL);
4215 if (!event)
4216 return -ENOMEM;
4217
4218 mutex_lock(&memcg_oom_mutex);
4219
4220 event->eventfd = eventfd;
4221 list_add(&event->list, &memcg->oom_notify);
4222
4223 /* already in OOM ? */
4224 if (atomic_read(&memcg->oom_lock))
4225 eventfd_signal(eventfd, 1);
4226 mutex_unlock(&memcg_oom_mutex);
4227
4228 return 0;
4229 }
4230
4231 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4232 struct cftype *cft, struct eventfd_ctx *eventfd)
4233 {
4234 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4235 struct mem_cgroup_eventfd_list *ev, *tmp;
4236 int type = MEMFILE_TYPE(cft->private);
4237
4238 BUG_ON(type != _OOM_TYPE);
4239
4240 mutex_lock(&memcg_oom_mutex);
4241
4242 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4243 if (ev->eventfd == eventfd) {
4244 list_del(&ev->list);
4245 kfree(ev);
4246 }
4247 }
4248
4249 mutex_unlock(&memcg_oom_mutex);
4250 }
4251
4252 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4253 struct cftype *cft, struct cgroup_map_cb *cb)
4254 {
4255 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4256
4257 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4258
4259 if (atomic_read(&mem->oom_lock))
4260 cb->fill(cb, "under_oom", 1);
4261 else
4262 cb->fill(cb, "under_oom", 0);
4263 return 0;
4264 }
4265
4266 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4267 struct cftype *cft, u64 val)
4268 {
4269 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4270 struct mem_cgroup *parent;
4271
4272 /* cannot set to root cgroup and only 0 and 1 are allowed */
4273 if (!cgrp->parent || !((val == 0) || (val == 1)))
4274 return -EINVAL;
4275
4276 parent = mem_cgroup_from_cont(cgrp->parent);
4277
4278 cgroup_lock();
4279 /* oom-kill-disable is a flag for subhierarchy. */
4280 if ((parent->use_hierarchy) ||
4281 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4282 cgroup_unlock();
4283 return -EINVAL;
4284 }
4285 mem->oom_kill_disable = val;
4286 if (!val)
4287 memcg_oom_recover(mem);
4288 cgroup_unlock();
4289 return 0;
4290 }
4291
4292 static struct cftype mem_cgroup_files[] = {
4293 {
4294 .name = "usage_in_bytes",
4295 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4296 .read_u64 = mem_cgroup_read,
4297 .register_event = mem_cgroup_usage_register_event,
4298 .unregister_event = mem_cgroup_usage_unregister_event,
4299 },
4300 {
4301 .name = "max_usage_in_bytes",
4302 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4303 .trigger = mem_cgroup_reset,
4304 .read_u64 = mem_cgroup_read,
4305 },
4306 {
4307 .name = "limit_in_bytes",
4308 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4309 .write_string = mem_cgroup_write,
4310 .read_u64 = mem_cgroup_read,
4311 },
4312 {
4313 .name = "soft_limit_in_bytes",
4314 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4315 .write_string = mem_cgroup_write,
4316 .read_u64 = mem_cgroup_read,
4317 },
4318 {
4319 .name = "failcnt",
4320 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4321 .trigger = mem_cgroup_reset,
4322 .read_u64 = mem_cgroup_read,
4323 },
4324 {
4325 .name = "stat",
4326 .read_map = mem_control_stat_show,
4327 },
4328 {
4329 .name = "force_empty",
4330 .trigger = mem_cgroup_force_empty_write,
4331 },
4332 {
4333 .name = "use_hierarchy",
4334 .write_u64 = mem_cgroup_hierarchy_write,
4335 .read_u64 = mem_cgroup_hierarchy_read,
4336 },
4337 {
4338 .name = "swappiness",
4339 .read_u64 = mem_cgroup_swappiness_read,
4340 .write_u64 = mem_cgroup_swappiness_write,
4341 },
4342 {
4343 .name = "move_charge_at_immigrate",
4344 .read_u64 = mem_cgroup_move_charge_read,
4345 .write_u64 = mem_cgroup_move_charge_write,
4346 },
4347 {
4348 .name = "oom_control",
4349 .read_map = mem_cgroup_oom_control_read,
4350 .write_u64 = mem_cgroup_oom_control_write,
4351 .register_event = mem_cgroup_oom_register_event,
4352 .unregister_event = mem_cgroup_oom_unregister_event,
4353 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4354 },
4355 };
4356
4357 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4358 static struct cftype memsw_cgroup_files[] = {
4359 {
4360 .name = "memsw.usage_in_bytes",
4361 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4362 .read_u64 = mem_cgroup_read,
4363 .register_event = mem_cgroup_usage_register_event,
4364 .unregister_event = mem_cgroup_usage_unregister_event,
4365 },
4366 {
4367 .name = "memsw.max_usage_in_bytes",
4368 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4369 .trigger = mem_cgroup_reset,
4370 .read_u64 = mem_cgroup_read,
4371 },
4372 {
4373 .name = "memsw.limit_in_bytes",
4374 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4375 .write_string = mem_cgroup_write,
4376 .read_u64 = mem_cgroup_read,
4377 },
4378 {
4379 .name = "memsw.failcnt",
4380 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4381 .trigger = mem_cgroup_reset,
4382 .read_u64 = mem_cgroup_read,
4383 },
4384 };
4385
4386 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4387 {
4388 if (!do_swap_account)
4389 return 0;
4390 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4391 ARRAY_SIZE(memsw_cgroup_files));
4392 };
4393 #else
4394 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4395 {
4396 return 0;
4397 }
4398 #endif
4399
4400 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4401 {
4402 struct mem_cgroup_per_node *pn;
4403 struct mem_cgroup_per_zone *mz;
4404 enum lru_list l;
4405 int zone, tmp = node;
4406 /*
4407 * This routine is called against possible nodes.
4408 * But it's BUG to call kmalloc() against offline node.
4409 *
4410 * TODO: this routine can waste much memory for nodes which will
4411 * never be onlined. It's better to use memory hotplug callback
4412 * function.
4413 */
4414 if (!node_state(node, N_NORMAL_MEMORY))
4415 tmp = -1;
4416 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4417 if (!pn)
4418 return 1;
4419
4420 mem->info.nodeinfo[node] = pn;
4421 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4422 mz = &pn->zoneinfo[zone];
4423 for_each_lru(l)
4424 INIT_LIST_HEAD(&mz->lists[l]);
4425 mz->usage_in_excess = 0;
4426 mz->on_tree = false;
4427 mz->mem = mem;
4428 }
4429 return 0;
4430 }
4431
4432 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4433 {
4434 kfree(mem->info.nodeinfo[node]);
4435 }
4436
4437 static struct mem_cgroup *mem_cgroup_alloc(void)
4438 {
4439 struct mem_cgroup *mem;
4440 int size = sizeof(struct mem_cgroup);
4441
4442 /* Can be very big if MAX_NUMNODES is very big */
4443 if (size < PAGE_SIZE)
4444 mem = kzalloc(size, GFP_KERNEL);
4445 else
4446 mem = vzalloc(size);
4447
4448 if (!mem)
4449 return NULL;
4450
4451 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4452 if (!mem->stat)
4453 goto out_free;
4454 spin_lock_init(&mem->pcp_counter_lock);
4455 return mem;
4456
4457 out_free:
4458 if (size < PAGE_SIZE)
4459 kfree(mem);
4460 else
4461 vfree(mem);
4462 return NULL;
4463 }
4464
4465 /*
4466 * At destroying mem_cgroup, references from swap_cgroup can remain.
4467 * (scanning all at force_empty is too costly...)
4468 *
4469 * Instead of clearing all references at force_empty, we remember
4470 * the number of reference from swap_cgroup and free mem_cgroup when
4471 * it goes down to 0.
4472 *
4473 * Removal of cgroup itself succeeds regardless of refs from swap.
4474 */
4475
4476 static void __mem_cgroup_free(struct mem_cgroup *mem)
4477 {
4478 int node;
4479
4480 mem_cgroup_remove_from_trees(mem);
4481 free_css_id(&mem_cgroup_subsys, &mem->css);
4482
4483 for_each_node_state(node, N_POSSIBLE)
4484 free_mem_cgroup_per_zone_info(mem, node);
4485
4486 free_percpu(mem->stat);
4487 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4488 kfree(mem);
4489 else
4490 vfree(mem);
4491 }
4492
4493 static void mem_cgroup_get(struct mem_cgroup *mem)
4494 {
4495 atomic_inc(&mem->refcnt);
4496 }
4497
4498 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4499 {
4500 if (atomic_sub_and_test(count, &mem->refcnt)) {
4501 struct mem_cgroup *parent = parent_mem_cgroup(mem);
4502 __mem_cgroup_free(mem);
4503 if (parent)
4504 mem_cgroup_put(parent);
4505 }
4506 }
4507
4508 static void mem_cgroup_put(struct mem_cgroup *mem)
4509 {
4510 __mem_cgroup_put(mem, 1);
4511 }
4512
4513 /*
4514 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4515 */
4516 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4517 {
4518 if (!mem->res.parent)
4519 return NULL;
4520 return mem_cgroup_from_res_counter(mem->res.parent, res);
4521 }
4522
4523 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4524 static void __init enable_swap_cgroup(void)
4525 {
4526 if (!mem_cgroup_disabled() && really_do_swap_account)
4527 do_swap_account = 1;
4528 }
4529 #else
4530 static void __init enable_swap_cgroup(void)
4531 {
4532 }
4533 #endif
4534
4535 static int mem_cgroup_soft_limit_tree_init(void)
4536 {
4537 struct mem_cgroup_tree_per_node *rtpn;
4538 struct mem_cgroup_tree_per_zone *rtpz;
4539 int tmp, node, zone;
4540
4541 for_each_node_state(node, N_POSSIBLE) {
4542 tmp = node;
4543 if (!node_state(node, N_NORMAL_MEMORY))
4544 tmp = -1;
4545 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4546 if (!rtpn)
4547 return 1;
4548
4549 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4550
4551 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4552 rtpz = &rtpn->rb_tree_per_zone[zone];
4553 rtpz->rb_root = RB_ROOT;
4554 spin_lock_init(&rtpz->lock);
4555 }
4556 }
4557 return 0;
4558 }
4559
4560 static struct cgroup_subsys_state * __ref
4561 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4562 {
4563 struct mem_cgroup *mem, *parent;
4564 long error = -ENOMEM;
4565 int node;
4566
4567 mem = mem_cgroup_alloc();
4568 if (!mem)
4569 return ERR_PTR(error);
4570
4571 for_each_node_state(node, N_POSSIBLE)
4572 if (alloc_mem_cgroup_per_zone_info(mem, node))
4573 goto free_out;
4574
4575 /* root ? */
4576 if (cont->parent == NULL) {
4577 int cpu;
4578 enable_swap_cgroup();
4579 parent = NULL;
4580 root_mem_cgroup = mem;
4581 if (mem_cgroup_soft_limit_tree_init())
4582 goto free_out;
4583 for_each_possible_cpu(cpu) {
4584 struct memcg_stock_pcp *stock =
4585 &per_cpu(memcg_stock, cpu);
4586 INIT_WORK(&stock->work, drain_local_stock);
4587 }
4588 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4589 } else {
4590 parent = mem_cgroup_from_cont(cont->parent);
4591 mem->use_hierarchy = parent->use_hierarchy;
4592 mem->oom_kill_disable = parent->oom_kill_disable;
4593 }
4594
4595 if (parent && parent->use_hierarchy) {
4596 res_counter_init(&mem->res, &parent->res);
4597 res_counter_init(&mem->memsw, &parent->memsw);
4598 /*
4599 * We increment refcnt of the parent to ensure that we can
4600 * safely access it on res_counter_charge/uncharge.
4601 * This refcnt will be decremented when freeing this
4602 * mem_cgroup(see mem_cgroup_put).
4603 */
4604 mem_cgroup_get(parent);
4605 } else {
4606 res_counter_init(&mem->res, NULL);
4607 res_counter_init(&mem->memsw, NULL);
4608 }
4609 mem->last_scanned_child = 0;
4610 INIT_LIST_HEAD(&mem->oom_notify);
4611
4612 if (parent)
4613 mem->swappiness = get_swappiness(parent);
4614 atomic_set(&mem->refcnt, 1);
4615 mem->move_charge_at_immigrate = 0;
4616 mutex_init(&mem->thresholds_lock);
4617 return &mem->css;
4618 free_out:
4619 __mem_cgroup_free(mem);
4620 root_mem_cgroup = NULL;
4621 return ERR_PTR(error);
4622 }
4623
4624 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4625 struct cgroup *cont)
4626 {
4627 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4628
4629 return mem_cgroup_force_empty(mem, false);
4630 }
4631
4632 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4633 struct cgroup *cont)
4634 {
4635 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4636
4637 mem_cgroup_put(mem);
4638 }
4639
4640 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4641 struct cgroup *cont)
4642 {
4643 int ret;
4644
4645 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4646 ARRAY_SIZE(mem_cgroup_files));
4647
4648 if (!ret)
4649 ret = register_memsw_files(cont, ss);
4650 return ret;
4651 }
4652
4653 #ifdef CONFIG_MMU
4654 /* Handlers for move charge at task migration. */
4655 #define PRECHARGE_COUNT_AT_ONCE 256
4656 static int mem_cgroup_do_precharge(unsigned long count)
4657 {
4658 int ret = 0;
4659 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4660 struct mem_cgroup *mem = mc.to;
4661
4662 if (mem_cgroup_is_root(mem)) {
4663 mc.precharge += count;
4664 /* we don't need css_get for root */
4665 return ret;
4666 }
4667 /* try to charge at once */
4668 if (count > 1) {
4669 struct res_counter *dummy;
4670 /*
4671 * "mem" cannot be under rmdir() because we've already checked
4672 * by cgroup_lock_live_cgroup() that it is not removed and we
4673 * are still under the same cgroup_mutex. So we can postpone
4674 * css_get().
4675 */
4676 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4677 goto one_by_one;
4678 if (do_swap_account && res_counter_charge(&mem->memsw,
4679 PAGE_SIZE * count, &dummy)) {
4680 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4681 goto one_by_one;
4682 }
4683 mc.precharge += count;
4684 return ret;
4685 }
4686 one_by_one:
4687 /* fall back to one by one charge */
4688 while (count--) {
4689 if (signal_pending(current)) {
4690 ret = -EINTR;
4691 break;
4692 }
4693 if (!batch_count--) {
4694 batch_count = PRECHARGE_COUNT_AT_ONCE;
4695 cond_resched();
4696 }
4697 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
4698 if (ret || !mem)
4699 /* mem_cgroup_clear_mc() will do uncharge later */
4700 return -ENOMEM;
4701 mc.precharge++;
4702 }
4703 return ret;
4704 }
4705
4706 /**
4707 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4708 * @vma: the vma the pte to be checked belongs
4709 * @addr: the address corresponding to the pte to be checked
4710 * @ptent: the pte to be checked
4711 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4712 *
4713 * Returns
4714 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4715 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4716 * move charge. if @target is not NULL, the page is stored in target->page
4717 * with extra refcnt got(Callers should handle it).
4718 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4719 * target for charge migration. if @target is not NULL, the entry is stored
4720 * in target->ent.
4721 *
4722 * Called with pte lock held.
4723 */
4724 union mc_target {
4725 struct page *page;
4726 swp_entry_t ent;
4727 };
4728
4729 enum mc_target_type {
4730 MC_TARGET_NONE, /* not used */
4731 MC_TARGET_PAGE,
4732 MC_TARGET_SWAP,
4733 };
4734
4735 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4736 unsigned long addr, pte_t ptent)
4737 {
4738 struct page *page = vm_normal_page(vma, addr, ptent);
4739
4740 if (!page || !page_mapped(page))
4741 return NULL;
4742 if (PageAnon(page)) {
4743 /* we don't move shared anon */
4744 if (!move_anon() || page_mapcount(page) > 2)
4745 return NULL;
4746 } else if (!move_file())
4747 /* we ignore mapcount for file pages */
4748 return NULL;
4749 if (!get_page_unless_zero(page))
4750 return NULL;
4751
4752 return page;
4753 }
4754
4755 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4756 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4757 {
4758 int usage_count;
4759 struct page *page = NULL;
4760 swp_entry_t ent = pte_to_swp_entry(ptent);
4761
4762 if (!move_anon() || non_swap_entry(ent))
4763 return NULL;
4764 usage_count = mem_cgroup_count_swap_user(ent, &page);
4765 if (usage_count > 1) { /* we don't move shared anon */
4766 if (page)
4767 put_page(page);
4768 return NULL;
4769 }
4770 if (do_swap_account)
4771 entry->val = ent.val;
4772
4773 return page;
4774 }
4775
4776 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4777 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4778 {
4779 struct page *page = NULL;
4780 struct inode *inode;
4781 struct address_space *mapping;
4782 pgoff_t pgoff;
4783
4784 if (!vma->vm_file) /* anonymous vma */
4785 return NULL;
4786 if (!move_file())
4787 return NULL;
4788
4789 inode = vma->vm_file->f_path.dentry->d_inode;
4790 mapping = vma->vm_file->f_mapping;
4791 if (pte_none(ptent))
4792 pgoff = linear_page_index(vma, addr);
4793 else /* pte_file(ptent) is true */
4794 pgoff = pte_to_pgoff(ptent);
4795
4796 /* page is moved even if it's not RSS of this task(page-faulted). */
4797 if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4798 page = find_get_page(mapping, pgoff);
4799 } else { /* shmem/tmpfs file. we should take account of swap too. */
4800 swp_entry_t ent;
4801 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4802 if (do_swap_account)
4803 entry->val = ent.val;
4804 }
4805
4806 return page;
4807 }
4808
4809 static int is_target_pte_for_mc(struct vm_area_struct *vma,
4810 unsigned long addr, pte_t ptent, union mc_target *target)
4811 {
4812 struct page *page = NULL;
4813 struct page_cgroup *pc;
4814 int ret = 0;
4815 swp_entry_t ent = { .val = 0 };
4816
4817 if (pte_present(ptent))
4818 page = mc_handle_present_pte(vma, addr, ptent);
4819 else if (is_swap_pte(ptent))
4820 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4821 else if (pte_none(ptent) || pte_file(ptent))
4822 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4823
4824 if (!page && !ent.val)
4825 return 0;
4826 if (page) {
4827 pc = lookup_page_cgroup(page);
4828 /*
4829 * Do only loose check w/o page_cgroup lock.
4830 * mem_cgroup_move_account() checks the pc is valid or not under
4831 * the lock.
4832 */
4833 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4834 ret = MC_TARGET_PAGE;
4835 if (target)
4836 target->page = page;
4837 }
4838 if (!ret || !target)
4839 put_page(page);
4840 }
4841 /* There is a swap entry and a page doesn't exist or isn't charged */
4842 if (ent.val && !ret &&
4843 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4844 ret = MC_TARGET_SWAP;
4845 if (target)
4846 target->ent = ent;
4847 }
4848 return ret;
4849 }
4850
4851 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4852 unsigned long addr, unsigned long end,
4853 struct mm_walk *walk)
4854 {
4855 struct vm_area_struct *vma = walk->private;
4856 pte_t *pte;
4857 spinlock_t *ptl;
4858
4859 split_huge_page_pmd(walk->mm, pmd);
4860
4861 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4862 for (; addr != end; pte++, addr += PAGE_SIZE)
4863 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4864 mc.precharge++; /* increment precharge temporarily */
4865 pte_unmap_unlock(pte - 1, ptl);
4866 cond_resched();
4867
4868 return 0;
4869 }
4870
4871 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4872 {
4873 unsigned long precharge;
4874 struct vm_area_struct *vma;
4875
4876 down_read(&mm->mmap_sem);
4877 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4878 struct mm_walk mem_cgroup_count_precharge_walk = {
4879 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4880 .mm = mm,
4881 .private = vma,
4882 };
4883 if (is_vm_hugetlb_page(vma))
4884 continue;
4885 walk_page_range(vma->vm_start, vma->vm_end,
4886 &mem_cgroup_count_precharge_walk);
4887 }
4888 up_read(&mm->mmap_sem);
4889
4890 precharge = mc.precharge;
4891 mc.precharge = 0;
4892
4893 return precharge;
4894 }
4895
4896 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4897 {
4898 unsigned long precharge = mem_cgroup_count_precharge(mm);
4899
4900 VM_BUG_ON(mc.moving_task);
4901 mc.moving_task = current;
4902 return mem_cgroup_do_precharge(precharge);
4903 }
4904
4905 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4906 static void __mem_cgroup_clear_mc(void)
4907 {
4908 struct mem_cgroup *from = mc.from;
4909 struct mem_cgroup *to = mc.to;
4910
4911 /* we must uncharge all the leftover precharges from mc.to */
4912 if (mc.precharge) {
4913 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4914 mc.precharge = 0;
4915 }
4916 /*
4917 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4918 * we must uncharge here.
4919 */
4920 if (mc.moved_charge) {
4921 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4922 mc.moved_charge = 0;
4923 }
4924 /* we must fixup refcnts and charges */
4925 if (mc.moved_swap) {
4926 /* uncharge swap account from the old cgroup */
4927 if (!mem_cgroup_is_root(mc.from))
4928 res_counter_uncharge(&mc.from->memsw,
4929 PAGE_SIZE * mc.moved_swap);
4930 __mem_cgroup_put(mc.from, mc.moved_swap);
4931
4932 if (!mem_cgroup_is_root(mc.to)) {
4933 /*
4934 * we charged both to->res and to->memsw, so we should
4935 * uncharge to->res.
4936 */
4937 res_counter_uncharge(&mc.to->res,
4938 PAGE_SIZE * mc.moved_swap);
4939 }
4940 /* we've already done mem_cgroup_get(mc.to) */
4941 mc.moved_swap = 0;
4942 }
4943 memcg_oom_recover(from);
4944 memcg_oom_recover(to);
4945 wake_up_all(&mc.waitq);
4946 }
4947
4948 static void mem_cgroup_clear_mc(void)
4949 {
4950 struct mem_cgroup *from = mc.from;
4951
4952 /*
4953 * we must clear moving_task before waking up waiters at the end of
4954 * task migration.
4955 */
4956 mc.moving_task = NULL;
4957 __mem_cgroup_clear_mc();
4958 spin_lock(&mc.lock);
4959 mc.from = NULL;
4960 mc.to = NULL;
4961 spin_unlock(&mc.lock);
4962 mem_cgroup_end_move(from);
4963 }
4964
4965 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4966 struct cgroup *cgroup,
4967 struct task_struct *p)
4968 {
4969 int ret = 0;
4970 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4971
4972 if (mem->move_charge_at_immigrate) {
4973 struct mm_struct *mm;
4974 struct mem_cgroup *from = mem_cgroup_from_task(p);
4975
4976 VM_BUG_ON(from == mem);
4977
4978 mm = get_task_mm(p);
4979 if (!mm)
4980 return 0;
4981 /* We move charges only when we move a owner of the mm */
4982 if (mm->owner == p) {
4983 VM_BUG_ON(mc.from);
4984 VM_BUG_ON(mc.to);
4985 VM_BUG_ON(mc.precharge);
4986 VM_BUG_ON(mc.moved_charge);
4987 VM_BUG_ON(mc.moved_swap);
4988 mem_cgroup_start_move(from);
4989 spin_lock(&mc.lock);
4990 mc.from = from;
4991 mc.to = mem;
4992 spin_unlock(&mc.lock);
4993 /* We set mc.moving_task later */
4994
4995 ret = mem_cgroup_precharge_mc(mm);
4996 if (ret)
4997 mem_cgroup_clear_mc();
4998 }
4999 mmput(mm);
5000 }
5001 return ret;
5002 }
5003
5004 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5005 struct cgroup *cgroup,
5006 struct task_struct *p)
5007 {
5008 mem_cgroup_clear_mc();
5009 }
5010
5011 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5012 unsigned long addr, unsigned long end,
5013 struct mm_walk *walk)
5014 {
5015 int ret = 0;
5016 struct vm_area_struct *vma = walk->private;
5017 pte_t *pte;
5018 spinlock_t *ptl;
5019
5020 split_huge_page_pmd(walk->mm, pmd);
5021 retry:
5022 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5023 for (; addr != end; addr += PAGE_SIZE) {
5024 pte_t ptent = *(pte++);
5025 union mc_target target;
5026 int type;
5027 struct page *page;
5028 struct page_cgroup *pc;
5029 swp_entry_t ent;
5030
5031 if (!mc.precharge)
5032 break;
5033
5034 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5035 switch (type) {
5036 case MC_TARGET_PAGE:
5037 page = target.page;
5038 if (isolate_lru_page(page))
5039 goto put;
5040 pc = lookup_page_cgroup(page);
5041 if (!mem_cgroup_move_account(page, 1, pc,
5042 mc.from, mc.to, false)) {
5043 mc.precharge--;
5044 /* we uncharge from mc.from later. */
5045 mc.moved_charge++;
5046 }
5047 putback_lru_page(page);
5048 put: /* is_target_pte_for_mc() gets the page */
5049 put_page(page);
5050 break;
5051 case MC_TARGET_SWAP:
5052 ent = target.ent;
5053 if (!mem_cgroup_move_swap_account(ent,
5054 mc.from, mc.to, false)) {
5055 mc.precharge--;
5056 /* we fixup refcnts and charges later. */
5057 mc.moved_swap++;
5058 }
5059 break;
5060 default:
5061 break;
5062 }
5063 }
5064 pte_unmap_unlock(pte - 1, ptl);
5065 cond_resched();
5066
5067 if (addr != end) {
5068 /*
5069 * We have consumed all precharges we got in can_attach().
5070 * We try charge one by one, but don't do any additional
5071 * charges to mc.to if we have failed in charge once in attach()
5072 * phase.
5073 */
5074 ret = mem_cgroup_do_precharge(1);
5075 if (!ret)
5076 goto retry;
5077 }
5078
5079 return ret;
5080 }
5081
5082 static void mem_cgroup_move_charge(struct mm_struct *mm)
5083 {
5084 struct vm_area_struct *vma;
5085
5086 lru_add_drain_all();
5087 retry:
5088 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5089 /*
5090 * Someone who are holding the mmap_sem might be waiting in
5091 * waitq. So we cancel all extra charges, wake up all waiters,
5092 * and retry. Because we cancel precharges, we might not be able
5093 * to move enough charges, but moving charge is a best-effort
5094 * feature anyway, so it wouldn't be a big problem.
5095 */
5096 __mem_cgroup_clear_mc();
5097 cond_resched();
5098 goto retry;
5099 }
5100 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5101 int ret;
5102 struct mm_walk mem_cgroup_move_charge_walk = {
5103 .pmd_entry = mem_cgroup_move_charge_pte_range,
5104 .mm = mm,
5105 .private = vma,
5106 };
5107 if (is_vm_hugetlb_page(vma))
5108 continue;
5109 ret = walk_page_range(vma->vm_start, vma->vm_end,
5110 &mem_cgroup_move_charge_walk);
5111 if (ret)
5112 /*
5113 * means we have consumed all precharges and failed in
5114 * doing additional charge. Just abandon here.
5115 */
5116 break;
5117 }
5118 up_read(&mm->mmap_sem);
5119 }
5120
5121 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5122 struct cgroup *cont,
5123 struct cgroup *old_cont,
5124 struct task_struct *p)
5125 {
5126 struct mm_struct *mm;
5127
5128 if (!mc.to)
5129 /* no need to move charge */
5130 return;
5131
5132 mm = get_task_mm(p);
5133 if (mm) {
5134 mem_cgroup_move_charge(mm);
5135 mmput(mm);
5136 }
5137 mem_cgroup_clear_mc();
5138 }
5139 #else /* !CONFIG_MMU */
5140 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5141 struct cgroup *cgroup,
5142 struct task_struct *p)
5143 {
5144 return 0;
5145 }
5146 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5147 struct cgroup *cgroup,
5148 struct task_struct *p)
5149 {
5150 }
5151 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5152 struct cgroup *cont,
5153 struct cgroup *old_cont,
5154 struct task_struct *p)
5155 {
5156 }
5157 #endif
5158
5159 struct cgroup_subsys mem_cgroup_subsys = {
5160 .name = "memory",
5161 .subsys_id = mem_cgroup_subsys_id,
5162 .create = mem_cgroup_create,
5163 .pre_destroy = mem_cgroup_pre_destroy,
5164 .destroy = mem_cgroup_destroy,
5165 .populate = mem_cgroup_populate,
5166 .can_attach = mem_cgroup_can_attach,
5167 .cancel_attach = mem_cgroup_cancel_attach,
5168 .attach = mem_cgroup_move_task,
5169 .early_init = 0,
5170 .use_id = 1,
5171 };
5172
5173 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5174 static int __init enable_swap_account(char *s)
5175 {
5176 /* consider enabled if no parameter or 1 is given */
5177 if (!strcmp(s, "1"))
5178 really_do_swap_account = 1;
5179 else if (!strcmp(s, "0"))
5180 really_do_swap_account = 0;
5181 return 1;
5182 }
5183 __setup("swapaccount=", enable_swap_account);
5184
5185 #endif
This page took 0.37403 seconds and 6 git commands to generate.