memcg: fix behavior of mem_cgroup_resize_limit()
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/shmem_fs.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53
54 #include <asm/uaccess.h>
55
56 #include <trace/events/vmscan.h>
57
58 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
59 #define MEM_CGROUP_RECLAIM_RETRIES 5
60 struct mem_cgroup *root_mem_cgroup __read_mostly;
61
62 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
63 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
64 int do_swap_account __read_mostly;
65
66 /* for remember boot option*/
67 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
68 static int really_do_swap_account __initdata = 1;
69 #else
70 static int really_do_swap_account __initdata = 0;
71 #endif
72
73 #else
74 #define do_swap_account (0)
75 #endif
76
77
78 /*
79 * Statistics for memory cgroup.
80 */
81 enum mem_cgroup_stat_index {
82 /*
83 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
84 */
85 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
86 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
87 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
88 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
89 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
90 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
91 MEM_CGROUP_STAT_NSTATS,
92 };
93
94 enum mem_cgroup_events_index {
95 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
96 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
97 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
98 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
99 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
100 MEM_CGROUP_EVENTS_NSTATS,
101 };
102 /*
103 * Per memcg event counter is incremented at every pagein/pageout. With THP,
104 * it will be incremated by the number of pages. This counter is used for
105 * for trigger some periodic events. This is straightforward and better
106 * than using jiffies etc. to handle periodic memcg event.
107 */
108 enum mem_cgroup_events_target {
109 MEM_CGROUP_TARGET_THRESH,
110 MEM_CGROUP_TARGET_SOFTLIMIT,
111 MEM_CGROUP_TARGET_NUMAINFO,
112 MEM_CGROUP_NTARGETS,
113 };
114 #define THRESHOLDS_EVENTS_TARGET (128)
115 #define SOFTLIMIT_EVENTS_TARGET (1024)
116 #define NUMAINFO_EVENTS_TARGET (1024)
117
118 struct mem_cgroup_stat_cpu {
119 long count[MEM_CGROUP_STAT_NSTATS];
120 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
121 unsigned long targets[MEM_CGROUP_NTARGETS];
122 };
123
124 /*
125 * per-zone information in memory controller.
126 */
127 struct mem_cgroup_per_zone {
128 /*
129 * spin_lock to protect the per cgroup LRU
130 */
131 struct list_head lists[NR_LRU_LISTS];
132 unsigned long count[NR_LRU_LISTS];
133
134 struct zone_reclaim_stat reclaim_stat;
135 struct rb_node tree_node; /* RB tree node */
136 unsigned long long usage_in_excess;/* Set to the value by which */
137 /* the soft limit is exceeded*/
138 bool on_tree;
139 struct mem_cgroup *mem; /* Back pointer, we cannot */
140 /* use container_of */
141 };
142 /* Macro for accessing counter */
143 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
144
145 struct mem_cgroup_per_node {
146 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
147 };
148
149 struct mem_cgroup_lru_info {
150 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
151 };
152
153 /*
154 * Cgroups above their limits are maintained in a RB-Tree, independent of
155 * their hierarchy representation
156 */
157
158 struct mem_cgroup_tree_per_zone {
159 struct rb_root rb_root;
160 spinlock_t lock;
161 };
162
163 struct mem_cgroup_tree_per_node {
164 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
165 };
166
167 struct mem_cgroup_tree {
168 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
169 };
170
171 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
172
173 struct mem_cgroup_threshold {
174 struct eventfd_ctx *eventfd;
175 u64 threshold;
176 };
177
178 /* For threshold */
179 struct mem_cgroup_threshold_ary {
180 /* An array index points to threshold just below usage. */
181 int current_threshold;
182 /* Size of entries[] */
183 unsigned int size;
184 /* Array of thresholds */
185 struct mem_cgroup_threshold entries[0];
186 };
187
188 struct mem_cgroup_thresholds {
189 /* Primary thresholds array */
190 struct mem_cgroup_threshold_ary *primary;
191 /*
192 * Spare threshold array.
193 * This is needed to make mem_cgroup_unregister_event() "never fail".
194 * It must be able to store at least primary->size - 1 entries.
195 */
196 struct mem_cgroup_threshold_ary *spare;
197 };
198
199 /* for OOM */
200 struct mem_cgroup_eventfd_list {
201 struct list_head list;
202 struct eventfd_ctx *eventfd;
203 };
204
205 static void mem_cgroup_threshold(struct mem_cgroup *mem);
206 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
207
208 /*
209 * The memory controller data structure. The memory controller controls both
210 * page cache and RSS per cgroup. We would eventually like to provide
211 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
212 * to help the administrator determine what knobs to tune.
213 *
214 * TODO: Add a water mark for the memory controller. Reclaim will begin when
215 * we hit the water mark. May be even add a low water mark, such that
216 * no reclaim occurs from a cgroup at it's low water mark, this is
217 * a feature that will be implemented much later in the future.
218 */
219 struct mem_cgroup {
220 struct cgroup_subsys_state css;
221 /*
222 * the counter to account for memory usage
223 */
224 struct res_counter res;
225 /*
226 * the counter to account for mem+swap usage.
227 */
228 struct res_counter memsw;
229 /*
230 * Per cgroup active and inactive list, similar to the
231 * per zone LRU lists.
232 */
233 struct mem_cgroup_lru_info info;
234 /*
235 * While reclaiming in a hierarchy, we cache the last child we
236 * reclaimed from.
237 */
238 int last_scanned_child;
239 int last_scanned_node;
240 #if MAX_NUMNODES > 1
241 nodemask_t scan_nodes;
242 atomic_t numainfo_events;
243 atomic_t numainfo_updating;
244 #endif
245 /*
246 * Should the accounting and control be hierarchical, per subtree?
247 */
248 bool use_hierarchy;
249
250 bool oom_lock;
251 atomic_t under_oom;
252
253 atomic_t refcnt;
254
255 int swappiness;
256 /* OOM-Killer disable */
257 int oom_kill_disable;
258
259 /* set when res.limit == memsw.limit */
260 bool memsw_is_minimum;
261
262 /* protect arrays of thresholds */
263 struct mutex thresholds_lock;
264
265 /* thresholds for memory usage. RCU-protected */
266 struct mem_cgroup_thresholds thresholds;
267
268 /* thresholds for mem+swap usage. RCU-protected */
269 struct mem_cgroup_thresholds memsw_thresholds;
270
271 /* For oom notifier event fd */
272 struct list_head oom_notify;
273
274 /*
275 * Should we move charges of a task when a task is moved into this
276 * mem_cgroup ? And what type of charges should we move ?
277 */
278 unsigned long move_charge_at_immigrate;
279 /*
280 * percpu counter.
281 */
282 struct mem_cgroup_stat_cpu *stat;
283 /*
284 * used when a cpu is offlined or other synchronizations
285 * See mem_cgroup_read_stat().
286 */
287 struct mem_cgroup_stat_cpu nocpu_base;
288 spinlock_t pcp_counter_lock;
289 };
290
291 /* Stuffs for move charges at task migration. */
292 /*
293 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
294 * left-shifted bitmap of these types.
295 */
296 enum move_type {
297 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
298 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
299 NR_MOVE_TYPE,
300 };
301
302 /* "mc" and its members are protected by cgroup_mutex */
303 static struct move_charge_struct {
304 spinlock_t lock; /* for from, to */
305 struct mem_cgroup *from;
306 struct mem_cgroup *to;
307 unsigned long precharge;
308 unsigned long moved_charge;
309 unsigned long moved_swap;
310 struct task_struct *moving_task; /* a task moving charges */
311 wait_queue_head_t waitq; /* a waitq for other context */
312 } mc = {
313 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
314 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
315 };
316
317 static bool move_anon(void)
318 {
319 return test_bit(MOVE_CHARGE_TYPE_ANON,
320 &mc.to->move_charge_at_immigrate);
321 }
322
323 static bool move_file(void)
324 {
325 return test_bit(MOVE_CHARGE_TYPE_FILE,
326 &mc.to->move_charge_at_immigrate);
327 }
328
329 /*
330 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
331 * limit reclaim to prevent infinite loops, if they ever occur.
332 */
333 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
334 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
335
336 enum charge_type {
337 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
338 MEM_CGROUP_CHARGE_TYPE_MAPPED,
339 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
340 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
341 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
342 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
343 NR_CHARGE_TYPE,
344 };
345
346 /* for encoding cft->private value on file */
347 #define _MEM (0)
348 #define _MEMSWAP (1)
349 #define _OOM_TYPE (2)
350 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
351 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
352 #define MEMFILE_ATTR(val) ((val) & 0xffff)
353 /* Used for OOM nofiier */
354 #define OOM_CONTROL (0)
355
356 /*
357 * Reclaim flags for mem_cgroup_hierarchical_reclaim
358 */
359 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
360 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
361 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
362 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
363 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
364 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
365
366 static void mem_cgroup_get(struct mem_cgroup *mem);
367 static void mem_cgroup_put(struct mem_cgroup *mem);
368 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
369 static void drain_all_stock_async(struct mem_cgroup *mem);
370
371 static struct mem_cgroup_per_zone *
372 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
373 {
374 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
375 }
376
377 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
378 {
379 return &mem->css;
380 }
381
382 static struct mem_cgroup_per_zone *
383 page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
384 {
385 int nid = page_to_nid(page);
386 int zid = page_zonenum(page);
387
388 return mem_cgroup_zoneinfo(mem, nid, zid);
389 }
390
391 static struct mem_cgroup_tree_per_zone *
392 soft_limit_tree_node_zone(int nid, int zid)
393 {
394 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
395 }
396
397 static struct mem_cgroup_tree_per_zone *
398 soft_limit_tree_from_page(struct page *page)
399 {
400 int nid = page_to_nid(page);
401 int zid = page_zonenum(page);
402
403 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
404 }
405
406 static void
407 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
408 struct mem_cgroup_per_zone *mz,
409 struct mem_cgroup_tree_per_zone *mctz,
410 unsigned long long new_usage_in_excess)
411 {
412 struct rb_node **p = &mctz->rb_root.rb_node;
413 struct rb_node *parent = NULL;
414 struct mem_cgroup_per_zone *mz_node;
415
416 if (mz->on_tree)
417 return;
418
419 mz->usage_in_excess = new_usage_in_excess;
420 if (!mz->usage_in_excess)
421 return;
422 while (*p) {
423 parent = *p;
424 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
425 tree_node);
426 if (mz->usage_in_excess < mz_node->usage_in_excess)
427 p = &(*p)->rb_left;
428 /*
429 * We can't avoid mem cgroups that are over their soft
430 * limit by the same amount
431 */
432 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
433 p = &(*p)->rb_right;
434 }
435 rb_link_node(&mz->tree_node, parent, p);
436 rb_insert_color(&mz->tree_node, &mctz->rb_root);
437 mz->on_tree = true;
438 }
439
440 static void
441 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
442 struct mem_cgroup_per_zone *mz,
443 struct mem_cgroup_tree_per_zone *mctz)
444 {
445 if (!mz->on_tree)
446 return;
447 rb_erase(&mz->tree_node, &mctz->rb_root);
448 mz->on_tree = false;
449 }
450
451 static void
452 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
453 struct mem_cgroup_per_zone *mz,
454 struct mem_cgroup_tree_per_zone *mctz)
455 {
456 spin_lock(&mctz->lock);
457 __mem_cgroup_remove_exceeded(mem, mz, mctz);
458 spin_unlock(&mctz->lock);
459 }
460
461
462 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
463 {
464 unsigned long long excess;
465 struct mem_cgroup_per_zone *mz;
466 struct mem_cgroup_tree_per_zone *mctz;
467 int nid = page_to_nid(page);
468 int zid = page_zonenum(page);
469 mctz = soft_limit_tree_from_page(page);
470
471 /*
472 * Necessary to update all ancestors when hierarchy is used.
473 * because their event counter is not touched.
474 */
475 for (; mem; mem = parent_mem_cgroup(mem)) {
476 mz = mem_cgroup_zoneinfo(mem, nid, zid);
477 excess = res_counter_soft_limit_excess(&mem->res);
478 /*
479 * We have to update the tree if mz is on RB-tree or
480 * mem is over its softlimit.
481 */
482 if (excess || mz->on_tree) {
483 spin_lock(&mctz->lock);
484 /* if on-tree, remove it */
485 if (mz->on_tree)
486 __mem_cgroup_remove_exceeded(mem, mz, mctz);
487 /*
488 * Insert again. mz->usage_in_excess will be updated.
489 * If excess is 0, no tree ops.
490 */
491 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
492 spin_unlock(&mctz->lock);
493 }
494 }
495 }
496
497 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
498 {
499 int node, zone;
500 struct mem_cgroup_per_zone *mz;
501 struct mem_cgroup_tree_per_zone *mctz;
502
503 for_each_node_state(node, N_POSSIBLE) {
504 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
505 mz = mem_cgroup_zoneinfo(mem, node, zone);
506 mctz = soft_limit_tree_node_zone(node, zone);
507 mem_cgroup_remove_exceeded(mem, mz, mctz);
508 }
509 }
510 }
511
512 static struct mem_cgroup_per_zone *
513 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
514 {
515 struct rb_node *rightmost = NULL;
516 struct mem_cgroup_per_zone *mz;
517
518 retry:
519 mz = NULL;
520 rightmost = rb_last(&mctz->rb_root);
521 if (!rightmost)
522 goto done; /* Nothing to reclaim from */
523
524 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
525 /*
526 * Remove the node now but someone else can add it back,
527 * we will to add it back at the end of reclaim to its correct
528 * position in the tree.
529 */
530 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
531 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
532 !css_tryget(&mz->mem->css))
533 goto retry;
534 done:
535 return mz;
536 }
537
538 static struct mem_cgroup_per_zone *
539 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
540 {
541 struct mem_cgroup_per_zone *mz;
542
543 spin_lock(&mctz->lock);
544 mz = __mem_cgroup_largest_soft_limit_node(mctz);
545 spin_unlock(&mctz->lock);
546 return mz;
547 }
548
549 /*
550 * Implementation Note: reading percpu statistics for memcg.
551 *
552 * Both of vmstat[] and percpu_counter has threshold and do periodic
553 * synchronization to implement "quick" read. There are trade-off between
554 * reading cost and precision of value. Then, we may have a chance to implement
555 * a periodic synchronizion of counter in memcg's counter.
556 *
557 * But this _read() function is used for user interface now. The user accounts
558 * memory usage by memory cgroup and he _always_ requires exact value because
559 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
560 * have to visit all online cpus and make sum. So, for now, unnecessary
561 * synchronization is not implemented. (just implemented for cpu hotplug)
562 *
563 * If there are kernel internal actions which can make use of some not-exact
564 * value, and reading all cpu value can be performance bottleneck in some
565 * common workload, threashold and synchonization as vmstat[] should be
566 * implemented.
567 */
568 static long mem_cgroup_read_stat(struct mem_cgroup *mem,
569 enum mem_cgroup_stat_index idx)
570 {
571 long val = 0;
572 int cpu;
573
574 get_online_cpus();
575 for_each_online_cpu(cpu)
576 val += per_cpu(mem->stat->count[idx], cpu);
577 #ifdef CONFIG_HOTPLUG_CPU
578 spin_lock(&mem->pcp_counter_lock);
579 val += mem->nocpu_base.count[idx];
580 spin_unlock(&mem->pcp_counter_lock);
581 #endif
582 put_online_cpus();
583 return val;
584 }
585
586 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
587 bool charge)
588 {
589 int val = (charge) ? 1 : -1;
590 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
591 }
592
593 void mem_cgroup_pgfault(struct mem_cgroup *mem, int val)
594 {
595 this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
596 }
597
598 void mem_cgroup_pgmajfault(struct mem_cgroup *mem, int val)
599 {
600 this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
601 }
602
603 static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
604 enum mem_cgroup_events_index idx)
605 {
606 unsigned long val = 0;
607 int cpu;
608
609 for_each_online_cpu(cpu)
610 val += per_cpu(mem->stat->events[idx], cpu);
611 #ifdef CONFIG_HOTPLUG_CPU
612 spin_lock(&mem->pcp_counter_lock);
613 val += mem->nocpu_base.events[idx];
614 spin_unlock(&mem->pcp_counter_lock);
615 #endif
616 return val;
617 }
618
619 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
620 bool file, int nr_pages)
621 {
622 preempt_disable();
623
624 if (file)
625 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
626 else
627 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
628
629 /* pagein of a big page is an event. So, ignore page size */
630 if (nr_pages > 0)
631 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
632 else {
633 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
634 nr_pages = -nr_pages; /* for event */
635 }
636
637 __this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
638
639 preempt_enable();
640 }
641
642 unsigned long
643 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *mem, int nid, int zid,
644 unsigned int lru_mask)
645 {
646 struct mem_cgroup_per_zone *mz;
647 enum lru_list l;
648 unsigned long ret = 0;
649
650 mz = mem_cgroup_zoneinfo(mem, nid, zid);
651
652 for_each_lru(l) {
653 if (BIT(l) & lru_mask)
654 ret += MEM_CGROUP_ZSTAT(mz, l);
655 }
656 return ret;
657 }
658
659 static unsigned long
660 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *mem,
661 int nid, unsigned int lru_mask)
662 {
663 u64 total = 0;
664 int zid;
665
666 for (zid = 0; zid < MAX_NR_ZONES; zid++)
667 total += mem_cgroup_zone_nr_lru_pages(mem, nid, zid, lru_mask);
668
669 return total;
670 }
671
672 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *mem,
673 unsigned int lru_mask)
674 {
675 int nid;
676 u64 total = 0;
677
678 for_each_node_state(nid, N_HIGH_MEMORY)
679 total += mem_cgroup_node_nr_lru_pages(mem, nid, lru_mask);
680 return total;
681 }
682
683 static bool __memcg_event_check(struct mem_cgroup *mem, int target)
684 {
685 unsigned long val, next;
686
687 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
688 next = this_cpu_read(mem->stat->targets[target]);
689 /* from time_after() in jiffies.h */
690 return ((long)next - (long)val < 0);
691 }
692
693 static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
694 {
695 unsigned long val, next;
696
697 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
698
699 switch (target) {
700 case MEM_CGROUP_TARGET_THRESH:
701 next = val + THRESHOLDS_EVENTS_TARGET;
702 break;
703 case MEM_CGROUP_TARGET_SOFTLIMIT:
704 next = val + SOFTLIMIT_EVENTS_TARGET;
705 break;
706 case MEM_CGROUP_TARGET_NUMAINFO:
707 next = val + NUMAINFO_EVENTS_TARGET;
708 break;
709 default:
710 return;
711 }
712
713 this_cpu_write(mem->stat->targets[target], next);
714 }
715
716 /*
717 * Check events in order.
718 *
719 */
720 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
721 {
722 /* threshold event is triggered in finer grain than soft limit */
723 if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
724 mem_cgroup_threshold(mem);
725 __mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
726 if (unlikely(__memcg_event_check(mem,
727 MEM_CGROUP_TARGET_SOFTLIMIT))) {
728 mem_cgroup_update_tree(mem, page);
729 __mem_cgroup_target_update(mem,
730 MEM_CGROUP_TARGET_SOFTLIMIT);
731 }
732 #if MAX_NUMNODES > 1
733 if (unlikely(__memcg_event_check(mem,
734 MEM_CGROUP_TARGET_NUMAINFO))) {
735 atomic_inc(&mem->numainfo_events);
736 __mem_cgroup_target_update(mem,
737 MEM_CGROUP_TARGET_NUMAINFO);
738 }
739 #endif
740 }
741 }
742
743 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
744 {
745 return container_of(cgroup_subsys_state(cont,
746 mem_cgroup_subsys_id), struct mem_cgroup,
747 css);
748 }
749
750 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
751 {
752 /*
753 * mm_update_next_owner() may clear mm->owner to NULL
754 * if it races with swapoff, page migration, etc.
755 * So this can be called with p == NULL.
756 */
757 if (unlikely(!p))
758 return NULL;
759
760 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
761 struct mem_cgroup, css);
762 }
763
764 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
765 {
766 struct mem_cgroup *mem = NULL;
767
768 if (!mm)
769 return NULL;
770 /*
771 * Because we have no locks, mm->owner's may be being moved to other
772 * cgroup. We use css_tryget() here even if this looks
773 * pessimistic (rather than adding locks here).
774 */
775 rcu_read_lock();
776 do {
777 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
778 if (unlikely(!mem))
779 break;
780 } while (!css_tryget(&mem->css));
781 rcu_read_unlock();
782 return mem;
783 }
784
785 /* The caller has to guarantee "mem" exists before calling this */
786 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
787 {
788 struct cgroup_subsys_state *css;
789 int found;
790
791 if (!mem) /* ROOT cgroup has the smallest ID */
792 return root_mem_cgroup; /*css_put/get against root is ignored*/
793 if (!mem->use_hierarchy) {
794 if (css_tryget(&mem->css))
795 return mem;
796 return NULL;
797 }
798 rcu_read_lock();
799 /*
800 * searching a memory cgroup which has the smallest ID under given
801 * ROOT cgroup. (ID >= 1)
802 */
803 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
804 if (css && css_tryget(css))
805 mem = container_of(css, struct mem_cgroup, css);
806 else
807 mem = NULL;
808 rcu_read_unlock();
809 return mem;
810 }
811
812 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
813 struct mem_cgroup *root,
814 bool cond)
815 {
816 int nextid = css_id(&iter->css) + 1;
817 int found;
818 int hierarchy_used;
819 struct cgroup_subsys_state *css;
820
821 hierarchy_used = iter->use_hierarchy;
822
823 css_put(&iter->css);
824 /* If no ROOT, walk all, ignore hierarchy */
825 if (!cond || (root && !hierarchy_used))
826 return NULL;
827
828 if (!root)
829 root = root_mem_cgroup;
830
831 do {
832 iter = NULL;
833 rcu_read_lock();
834
835 css = css_get_next(&mem_cgroup_subsys, nextid,
836 &root->css, &found);
837 if (css && css_tryget(css))
838 iter = container_of(css, struct mem_cgroup, css);
839 rcu_read_unlock();
840 /* If css is NULL, no more cgroups will be found */
841 nextid = found + 1;
842 } while (css && !iter);
843
844 return iter;
845 }
846 /*
847 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
848 * be careful that "break" loop is not allowed. We have reference count.
849 * Instead of that modify "cond" to be false and "continue" to exit the loop.
850 */
851 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
852 for (iter = mem_cgroup_start_loop(root);\
853 iter != NULL;\
854 iter = mem_cgroup_get_next(iter, root, cond))
855
856 #define for_each_mem_cgroup_tree(iter, root) \
857 for_each_mem_cgroup_tree_cond(iter, root, true)
858
859 #define for_each_mem_cgroup_all(iter) \
860 for_each_mem_cgroup_tree_cond(iter, NULL, true)
861
862
863 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
864 {
865 return (mem == root_mem_cgroup);
866 }
867
868 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
869 {
870 struct mem_cgroup *mem;
871
872 if (!mm)
873 return;
874
875 rcu_read_lock();
876 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
877 if (unlikely(!mem))
878 goto out;
879
880 switch (idx) {
881 case PGMAJFAULT:
882 mem_cgroup_pgmajfault(mem, 1);
883 break;
884 case PGFAULT:
885 mem_cgroup_pgfault(mem, 1);
886 break;
887 default:
888 BUG();
889 }
890 out:
891 rcu_read_unlock();
892 }
893 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
894
895 /*
896 * Following LRU functions are allowed to be used without PCG_LOCK.
897 * Operations are called by routine of global LRU independently from memcg.
898 * What we have to take care of here is validness of pc->mem_cgroup.
899 *
900 * Changes to pc->mem_cgroup happens when
901 * 1. charge
902 * 2. moving account
903 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
904 * It is added to LRU before charge.
905 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
906 * When moving account, the page is not on LRU. It's isolated.
907 */
908
909 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
910 {
911 struct page_cgroup *pc;
912 struct mem_cgroup_per_zone *mz;
913
914 if (mem_cgroup_disabled())
915 return;
916 pc = lookup_page_cgroup(page);
917 /* can happen while we handle swapcache. */
918 if (!TestClearPageCgroupAcctLRU(pc))
919 return;
920 VM_BUG_ON(!pc->mem_cgroup);
921 /*
922 * We don't check PCG_USED bit. It's cleared when the "page" is finally
923 * removed from global LRU.
924 */
925 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
926 /* huge page split is done under lru_lock. so, we have no races. */
927 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
928 if (mem_cgroup_is_root(pc->mem_cgroup))
929 return;
930 VM_BUG_ON(list_empty(&pc->lru));
931 list_del_init(&pc->lru);
932 }
933
934 void mem_cgroup_del_lru(struct page *page)
935 {
936 mem_cgroup_del_lru_list(page, page_lru(page));
937 }
938
939 /*
940 * Writeback is about to end against a page which has been marked for immediate
941 * reclaim. If it still appears to be reclaimable, move it to the tail of the
942 * inactive list.
943 */
944 void mem_cgroup_rotate_reclaimable_page(struct page *page)
945 {
946 struct mem_cgroup_per_zone *mz;
947 struct page_cgroup *pc;
948 enum lru_list lru = page_lru(page);
949
950 if (mem_cgroup_disabled())
951 return;
952
953 pc = lookup_page_cgroup(page);
954 /* unused or root page is not rotated. */
955 if (!PageCgroupUsed(pc))
956 return;
957 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
958 smp_rmb();
959 if (mem_cgroup_is_root(pc->mem_cgroup))
960 return;
961 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
962 list_move_tail(&pc->lru, &mz->lists[lru]);
963 }
964
965 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
966 {
967 struct mem_cgroup_per_zone *mz;
968 struct page_cgroup *pc;
969
970 if (mem_cgroup_disabled())
971 return;
972
973 pc = lookup_page_cgroup(page);
974 /* unused or root page is not rotated. */
975 if (!PageCgroupUsed(pc))
976 return;
977 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
978 smp_rmb();
979 if (mem_cgroup_is_root(pc->mem_cgroup))
980 return;
981 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
982 list_move(&pc->lru, &mz->lists[lru]);
983 }
984
985 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
986 {
987 struct page_cgroup *pc;
988 struct mem_cgroup_per_zone *mz;
989
990 if (mem_cgroup_disabled())
991 return;
992 pc = lookup_page_cgroup(page);
993 VM_BUG_ON(PageCgroupAcctLRU(pc));
994 if (!PageCgroupUsed(pc))
995 return;
996 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
997 smp_rmb();
998 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
999 /* huge page split is done under lru_lock. so, we have no races. */
1000 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1001 SetPageCgroupAcctLRU(pc);
1002 if (mem_cgroup_is_root(pc->mem_cgroup))
1003 return;
1004 list_add(&pc->lru, &mz->lists[lru]);
1005 }
1006
1007 /*
1008 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1009 * while it's linked to lru because the page may be reused after it's fully
1010 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1011 * It's done under lock_page and expected that zone->lru_lock isnever held.
1012 */
1013 static void mem_cgroup_lru_del_before_commit(struct page *page)
1014 {
1015 unsigned long flags;
1016 struct zone *zone = page_zone(page);
1017 struct page_cgroup *pc = lookup_page_cgroup(page);
1018
1019 /*
1020 * Doing this check without taking ->lru_lock seems wrong but this
1021 * is safe. Because if page_cgroup's USED bit is unset, the page
1022 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1023 * set, the commit after this will fail, anyway.
1024 * This all charge/uncharge is done under some mutual execustion.
1025 * So, we don't need to taking care of changes in USED bit.
1026 */
1027 if (likely(!PageLRU(page)))
1028 return;
1029
1030 spin_lock_irqsave(&zone->lru_lock, flags);
1031 /*
1032 * Forget old LRU when this page_cgroup is *not* used. This Used bit
1033 * is guarded by lock_page() because the page is SwapCache.
1034 */
1035 if (!PageCgroupUsed(pc))
1036 mem_cgroup_del_lru_list(page, page_lru(page));
1037 spin_unlock_irqrestore(&zone->lru_lock, flags);
1038 }
1039
1040 static void mem_cgroup_lru_add_after_commit(struct page *page)
1041 {
1042 unsigned long flags;
1043 struct zone *zone = page_zone(page);
1044 struct page_cgroup *pc = lookup_page_cgroup(page);
1045
1046 /* taking care of that the page is added to LRU while we commit it */
1047 if (likely(!PageLRU(page)))
1048 return;
1049 spin_lock_irqsave(&zone->lru_lock, flags);
1050 /* link when the page is linked to LRU but page_cgroup isn't */
1051 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1052 mem_cgroup_add_lru_list(page, page_lru(page));
1053 spin_unlock_irqrestore(&zone->lru_lock, flags);
1054 }
1055
1056
1057 void mem_cgroup_move_lists(struct page *page,
1058 enum lru_list from, enum lru_list to)
1059 {
1060 if (mem_cgroup_disabled())
1061 return;
1062 mem_cgroup_del_lru_list(page, from);
1063 mem_cgroup_add_lru_list(page, to);
1064 }
1065
1066 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
1067 {
1068 int ret;
1069 struct mem_cgroup *curr = NULL;
1070 struct task_struct *p;
1071
1072 p = find_lock_task_mm(task);
1073 if (!p)
1074 return 0;
1075 curr = try_get_mem_cgroup_from_mm(p->mm);
1076 task_unlock(p);
1077 if (!curr)
1078 return 0;
1079 /*
1080 * We should check use_hierarchy of "mem" not "curr". Because checking
1081 * use_hierarchy of "curr" here make this function true if hierarchy is
1082 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
1083 * hierarchy(even if use_hierarchy is disabled in "mem").
1084 */
1085 if (mem->use_hierarchy)
1086 ret = css_is_ancestor(&curr->css, &mem->css);
1087 else
1088 ret = (curr == mem);
1089 css_put(&curr->css);
1090 return ret;
1091 }
1092
1093 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
1094 {
1095 unsigned long active;
1096 unsigned long inactive;
1097 unsigned long gb;
1098 unsigned long inactive_ratio;
1099
1100 inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
1101 active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
1102
1103 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1104 if (gb)
1105 inactive_ratio = int_sqrt(10 * gb);
1106 else
1107 inactive_ratio = 1;
1108
1109 if (present_pages) {
1110 present_pages[0] = inactive;
1111 present_pages[1] = active;
1112 }
1113
1114 return inactive_ratio;
1115 }
1116
1117 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
1118 {
1119 unsigned long active;
1120 unsigned long inactive;
1121 unsigned long present_pages[2];
1122 unsigned long inactive_ratio;
1123
1124 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
1125
1126 inactive = present_pages[0];
1127 active = present_pages[1];
1128
1129 if (inactive * inactive_ratio < active)
1130 return 1;
1131
1132 return 0;
1133 }
1134
1135 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1136 {
1137 unsigned long active;
1138 unsigned long inactive;
1139
1140 inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
1141 active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
1142
1143 return (active > inactive);
1144 }
1145
1146 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1147 struct zone *zone)
1148 {
1149 int nid = zone_to_nid(zone);
1150 int zid = zone_idx(zone);
1151 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1152
1153 return &mz->reclaim_stat;
1154 }
1155
1156 struct zone_reclaim_stat *
1157 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1158 {
1159 struct page_cgroup *pc;
1160 struct mem_cgroup_per_zone *mz;
1161
1162 if (mem_cgroup_disabled())
1163 return NULL;
1164
1165 pc = lookup_page_cgroup(page);
1166 if (!PageCgroupUsed(pc))
1167 return NULL;
1168 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1169 smp_rmb();
1170 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1171 return &mz->reclaim_stat;
1172 }
1173
1174 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1175 struct list_head *dst,
1176 unsigned long *scanned, int order,
1177 int mode, struct zone *z,
1178 struct mem_cgroup *mem_cont,
1179 int active, int file)
1180 {
1181 unsigned long nr_taken = 0;
1182 struct page *page;
1183 unsigned long scan;
1184 LIST_HEAD(pc_list);
1185 struct list_head *src;
1186 struct page_cgroup *pc, *tmp;
1187 int nid = zone_to_nid(z);
1188 int zid = zone_idx(z);
1189 struct mem_cgroup_per_zone *mz;
1190 int lru = LRU_FILE * file + active;
1191 int ret;
1192
1193 BUG_ON(!mem_cont);
1194 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1195 src = &mz->lists[lru];
1196
1197 scan = 0;
1198 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1199 if (scan >= nr_to_scan)
1200 break;
1201
1202 if (unlikely(!PageCgroupUsed(pc)))
1203 continue;
1204
1205 page = lookup_cgroup_page(pc);
1206
1207 if (unlikely(!PageLRU(page)))
1208 continue;
1209
1210 scan++;
1211 ret = __isolate_lru_page(page, mode, file);
1212 switch (ret) {
1213 case 0:
1214 list_move(&page->lru, dst);
1215 mem_cgroup_del_lru(page);
1216 nr_taken += hpage_nr_pages(page);
1217 break;
1218 case -EBUSY:
1219 /* we don't affect global LRU but rotate in our LRU */
1220 mem_cgroup_rotate_lru_list(page, page_lru(page));
1221 break;
1222 default:
1223 break;
1224 }
1225 }
1226
1227 *scanned = scan;
1228
1229 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1230 0, 0, 0, mode);
1231
1232 return nr_taken;
1233 }
1234
1235 #define mem_cgroup_from_res_counter(counter, member) \
1236 container_of(counter, struct mem_cgroup, member)
1237
1238 /**
1239 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1240 * @mem: the memory cgroup
1241 *
1242 * Returns the maximum amount of memory @mem can be charged with, in
1243 * pages.
1244 */
1245 static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
1246 {
1247 unsigned long long margin;
1248
1249 margin = res_counter_margin(&mem->res);
1250 if (do_swap_account)
1251 margin = min(margin, res_counter_margin(&mem->memsw));
1252 return margin >> PAGE_SHIFT;
1253 }
1254
1255 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1256 {
1257 struct cgroup *cgrp = memcg->css.cgroup;
1258
1259 /* root ? */
1260 if (cgrp->parent == NULL)
1261 return vm_swappiness;
1262
1263 return memcg->swappiness;
1264 }
1265
1266 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1267 {
1268 int cpu;
1269
1270 get_online_cpus();
1271 spin_lock(&mem->pcp_counter_lock);
1272 for_each_online_cpu(cpu)
1273 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1274 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1275 spin_unlock(&mem->pcp_counter_lock);
1276 put_online_cpus();
1277
1278 synchronize_rcu();
1279 }
1280
1281 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1282 {
1283 int cpu;
1284
1285 if (!mem)
1286 return;
1287 get_online_cpus();
1288 spin_lock(&mem->pcp_counter_lock);
1289 for_each_online_cpu(cpu)
1290 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1291 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1292 spin_unlock(&mem->pcp_counter_lock);
1293 put_online_cpus();
1294 }
1295 /*
1296 * 2 routines for checking "mem" is under move_account() or not.
1297 *
1298 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1299 * for avoiding race in accounting. If true,
1300 * pc->mem_cgroup may be overwritten.
1301 *
1302 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1303 * under hierarchy of moving cgroups. This is for
1304 * waiting at hith-memory prressure caused by "move".
1305 */
1306
1307 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1308 {
1309 VM_BUG_ON(!rcu_read_lock_held());
1310 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1311 }
1312
1313 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1314 {
1315 struct mem_cgroup *from;
1316 struct mem_cgroup *to;
1317 bool ret = false;
1318 /*
1319 * Unlike task_move routines, we access mc.to, mc.from not under
1320 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1321 */
1322 spin_lock(&mc.lock);
1323 from = mc.from;
1324 to = mc.to;
1325 if (!from)
1326 goto unlock;
1327 if (from == mem || to == mem
1328 || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1329 || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1330 ret = true;
1331 unlock:
1332 spin_unlock(&mc.lock);
1333 return ret;
1334 }
1335
1336 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1337 {
1338 if (mc.moving_task && current != mc.moving_task) {
1339 if (mem_cgroup_under_move(mem)) {
1340 DEFINE_WAIT(wait);
1341 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1342 /* moving charge context might have finished. */
1343 if (mc.moving_task)
1344 schedule();
1345 finish_wait(&mc.waitq, &wait);
1346 return true;
1347 }
1348 }
1349 return false;
1350 }
1351
1352 /**
1353 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1354 * @memcg: The memory cgroup that went over limit
1355 * @p: Task that is going to be killed
1356 *
1357 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1358 * enabled
1359 */
1360 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1361 {
1362 struct cgroup *task_cgrp;
1363 struct cgroup *mem_cgrp;
1364 /*
1365 * Need a buffer in BSS, can't rely on allocations. The code relies
1366 * on the assumption that OOM is serialized for memory controller.
1367 * If this assumption is broken, revisit this code.
1368 */
1369 static char memcg_name[PATH_MAX];
1370 int ret;
1371
1372 if (!memcg || !p)
1373 return;
1374
1375
1376 rcu_read_lock();
1377
1378 mem_cgrp = memcg->css.cgroup;
1379 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1380
1381 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1382 if (ret < 0) {
1383 /*
1384 * Unfortunately, we are unable to convert to a useful name
1385 * But we'll still print out the usage information
1386 */
1387 rcu_read_unlock();
1388 goto done;
1389 }
1390 rcu_read_unlock();
1391
1392 printk(KERN_INFO "Task in %s killed", memcg_name);
1393
1394 rcu_read_lock();
1395 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1396 if (ret < 0) {
1397 rcu_read_unlock();
1398 goto done;
1399 }
1400 rcu_read_unlock();
1401
1402 /*
1403 * Continues from above, so we don't need an KERN_ level
1404 */
1405 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1406 done:
1407
1408 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1409 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1410 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1411 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1412 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1413 "failcnt %llu\n",
1414 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1415 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1416 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1417 }
1418
1419 /*
1420 * This function returns the number of memcg under hierarchy tree. Returns
1421 * 1(self count) if no children.
1422 */
1423 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1424 {
1425 int num = 0;
1426 struct mem_cgroup *iter;
1427
1428 for_each_mem_cgroup_tree(iter, mem)
1429 num++;
1430 return num;
1431 }
1432
1433 /*
1434 * Return the memory (and swap, if configured) limit for a memcg.
1435 */
1436 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1437 {
1438 u64 limit;
1439 u64 memsw;
1440
1441 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1442 limit += total_swap_pages << PAGE_SHIFT;
1443
1444 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1445 /*
1446 * If memsw is finite and limits the amount of swap space available
1447 * to this memcg, return that limit.
1448 */
1449 return min(limit, memsw);
1450 }
1451
1452 /*
1453 * Visit the first child (need not be the first child as per the ordering
1454 * of the cgroup list, since we track last_scanned_child) of @mem and use
1455 * that to reclaim free pages from.
1456 */
1457 static struct mem_cgroup *
1458 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1459 {
1460 struct mem_cgroup *ret = NULL;
1461 struct cgroup_subsys_state *css;
1462 int nextid, found;
1463
1464 if (!root_mem->use_hierarchy) {
1465 css_get(&root_mem->css);
1466 ret = root_mem;
1467 }
1468
1469 while (!ret) {
1470 rcu_read_lock();
1471 nextid = root_mem->last_scanned_child + 1;
1472 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1473 &found);
1474 if (css && css_tryget(css))
1475 ret = container_of(css, struct mem_cgroup, css);
1476
1477 rcu_read_unlock();
1478 /* Updates scanning parameter */
1479 if (!css) {
1480 /* this means start scan from ID:1 */
1481 root_mem->last_scanned_child = 0;
1482 } else
1483 root_mem->last_scanned_child = found;
1484 }
1485
1486 return ret;
1487 }
1488
1489 /**
1490 * test_mem_cgroup_node_reclaimable
1491 * @mem: the target memcg
1492 * @nid: the node ID to be checked.
1493 * @noswap : specify true here if the user wants flle only information.
1494 *
1495 * This function returns whether the specified memcg contains any
1496 * reclaimable pages on a node. Returns true if there are any reclaimable
1497 * pages in the node.
1498 */
1499 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *mem,
1500 int nid, bool noswap)
1501 {
1502 if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_FILE))
1503 return true;
1504 if (noswap || !total_swap_pages)
1505 return false;
1506 if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_ANON))
1507 return true;
1508 return false;
1509
1510 }
1511 #if MAX_NUMNODES > 1
1512
1513 /*
1514 * Always updating the nodemask is not very good - even if we have an empty
1515 * list or the wrong list here, we can start from some node and traverse all
1516 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1517 *
1518 */
1519 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
1520 {
1521 int nid;
1522 /*
1523 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1524 * pagein/pageout changes since the last update.
1525 */
1526 if (!atomic_read(&mem->numainfo_events))
1527 return;
1528 if (atomic_inc_return(&mem->numainfo_updating) > 1)
1529 return;
1530
1531 /* make a nodemask where this memcg uses memory from */
1532 mem->scan_nodes = node_states[N_HIGH_MEMORY];
1533
1534 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1535
1536 if (!test_mem_cgroup_node_reclaimable(mem, nid, false))
1537 node_clear(nid, mem->scan_nodes);
1538 }
1539
1540 atomic_set(&mem->numainfo_events, 0);
1541 atomic_set(&mem->numainfo_updating, 0);
1542 }
1543
1544 /*
1545 * Selecting a node where we start reclaim from. Because what we need is just
1546 * reducing usage counter, start from anywhere is O,K. Considering
1547 * memory reclaim from current node, there are pros. and cons.
1548 *
1549 * Freeing memory from current node means freeing memory from a node which
1550 * we'll use or we've used. So, it may make LRU bad. And if several threads
1551 * hit limits, it will see a contention on a node. But freeing from remote
1552 * node means more costs for memory reclaim because of memory latency.
1553 *
1554 * Now, we use round-robin. Better algorithm is welcomed.
1555 */
1556 int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1557 {
1558 int node;
1559
1560 mem_cgroup_may_update_nodemask(mem);
1561 node = mem->last_scanned_node;
1562
1563 node = next_node(node, mem->scan_nodes);
1564 if (node == MAX_NUMNODES)
1565 node = first_node(mem->scan_nodes);
1566 /*
1567 * We call this when we hit limit, not when pages are added to LRU.
1568 * No LRU may hold pages because all pages are UNEVICTABLE or
1569 * memcg is too small and all pages are not on LRU. In that case,
1570 * we use curret node.
1571 */
1572 if (unlikely(node == MAX_NUMNODES))
1573 node = numa_node_id();
1574
1575 mem->last_scanned_node = node;
1576 return node;
1577 }
1578
1579 /*
1580 * Check all nodes whether it contains reclaimable pages or not.
1581 * For quick scan, we make use of scan_nodes. This will allow us to skip
1582 * unused nodes. But scan_nodes is lazily updated and may not cotain
1583 * enough new information. We need to do double check.
1584 */
1585 bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1586 {
1587 int nid;
1588
1589 /*
1590 * quick check...making use of scan_node.
1591 * We can skip unused nodes.
1592 */
1593 if (!nodes_empty(mem->scan_nodes)) {
1594 for (nid = first_node(mem->scan_nodes);
1595 nid < MAX_NUMNODES;
1596 nid = next_node(nid, mem->scan_nodes)) {
1597
1598 if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1599 return true;
1600 }
1601 }
1602 /*
1603 * Check rest of nodes.
1604 */
1605 for_each_node_state(nid, N_HIGH_MEMORY) {
1606 if (node_isset(nid, mem->scan_nodes))
1607 continue;
1608 if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1609 return true;
1610 }
1611 return false;
1612 }
1613
1614 #else
1615 int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1616 {
1617 return 0;
1618 }
1619
1620 bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1621 {
1622 return test_mem_cgroup_node_reclaimable(mem, 0, noswap);
1623 }
1624 #endif
1625
1626 /*
1627 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1628 * we reclaimed from, so that we don't end up penalizing one child extensively
1629 * based on its position in the children list.
1630 *
1631 * root_mem is the original ancestor that we've been reclaim from.
1632 *
1633 * We give up and return to the caller when we visit root_mem twice.
1634 * (other groups can be removed while we're walking....)
1635 *
1636 * If shrink==true, for avoiding to free too much, this returns immedieately.
1637 */
1638 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1639 struct zone *zone,
1640 gfp_t gfp_mask,
1641 unsigned long reclaim_options,
1642 unsigned long *total_scanned)
1643 {
1644 struct mem_cgroup *victim;
1645 int ret, total = 0;
1646 int loop = 0;
1647 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1648 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1649 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1650 unsigned long excess;
1651 unsigned long nr_scanned;
1652
1653 excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
1654
1655 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1656 if (!check_soft && !shrink && root_mem->memsw_is_minimum)
1657 noswap = true;
1658
1659 while (1) {
1660 victim = mem_cgroup_select_victim(root_mem);
1661 if (victim == root_mem) {
1662 loop++;
1663 /*
1664 * We are not draining per cpu cached charges during
1665 * soft limit reclaim because global reclaim doesn't
1666 * care about charges. It tries to free some memory and
1667 * charges will not give any.
1668 */
1669 if (!check_soft && loop >= 1)
1670 drain_all_stock_async(root_mem);
1671 if (loop >= 2) {
1672 /*
1673 * If we have not been able to reclaim
1674 * anything, it might because there are
1675 * no reclaimable pages under this hierarchy
1676 */
1677 if (!check_soft || !total) {
1678 css_put(&victim->css);
1679 break;
1680 }
1681 /*
1682 * We want to do more targeted reclaim.
1683 * excess >> 2 is not to excessive so as to
1684 * reclaim too much, nor too less that we keep
1685 * coming back to reclaim from this cgroup
1686 */
1687 if (total >= (excess >> 2) ||
1688 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1689 css_put(&victim->css);
1690 break;
1691 }
1692 }
1693 }
1694 if (!mem_cgroup_reclaimable(victim, noswap)) {
1695 /* this cgroup's local usage == 0 */
1696 css_put(&victim->css);
1697 continue;
1698 }
1699 /* we use swappiness of local cgroup */
1700 if (check_soft) {
1701 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1702 noswap, zone, &nr_scanned);
1703 *total_scanned += nr_scanned;
1704 } else
1705 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1706 noswap);
1707 css_put(&victim->css);
1708 /*
1709 * At shrinking usage, we can't check we should stop here or
1710 * reclaim more. It's depends on callers. last_scanned_child
1711 * will work enough for keeping fairness under tree.
1712 */
1713 if (shrink)
1714 return ret;
1715 total += ret;
1716 if (check_soft) {
1717 if (!res_counter_soft_limit_excess(&root_mem->res))
1718 return total;
1719 } else if (mem_cgroup_margin(root_mem))
1720 return total;
1721 }
1722 return total;
1723 }
1724
1725 /*
1726 * Check OOM-Killer is already running under our hierarchy.
1727 * If someone is running, return false.
1728 * Has to be called with memcg_oom_lock
1729 */
1730 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1731 {
1732 int lock_count = -1;
1733 struct mem_cgroup *iter, *failed = NULL;
1734 bool cond = true;
1735
1736 for_each_mem_cgroup_tree_cond(iter, mem, cond) {
1737 bool locked = iter->oom_lock;
1738
1739 iter->oom_lock = true;
1740 if (lock_count == -1)
1741 lock_count = iter->oom_lock;
1742 else if (lock_count != locked) {
1743 /*
1744 * this subtree of our hierarchy is already locked
1745 * so we cannot give a lock.
1746 */
1747 lock_count = 0;
1748 failed = iter;
1749 cond = false;
1750 }
1751 }
1752
1753 if (!failed)
1754 goto done;
1755
1756 /*
1757 * OK, we failed to lock the whole subtree so we have to clean up
1758 * what we set up to the failing subtree
1759 */
1760 cond = true;
1761 for_each_mem_cgroup_tree_cond(iter, mem, cond) {
1762 if (iter == failed) {
1763 cond = false;
1764 continue;
1765 }
1766 iter->oom_lock = false;
1767 }
1768 done:
1769 return lock_count;
1770 }
1771
1772 /*
1773 * Has to be called with memcg_oom_lock
1774 */
1775 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1776 {
1777 struct mem_cgroup *iter;
1778
1779 for_each_mem_cgroup_tree(iter, mem)
1780 iter->oom_lock = false;
1781 return 0;
1782 }
1783
1784 static void mem_cgroup_mark_under_oom(struct mem_cgroup *mem)
1785 {
1786 struct mem_cgroup *iter;
1787
1788 for_each_mem_cgroup_tree(iter, mem)
1789 atomic_inc(&iter->under_oom);
1790 }
1791
1792 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *mem)
1793 {
1794 struct mem_cgroup *iter;
1795
1796 /*
1797 * When a new child is created while the hierarchy is under oom,
1798 * mem_cgroup_oom_lock() may not be called. We have to use
1799 * atomic_add_unless() here.
1800 */
1801 for_each_mem_cgroup_tree(iter, mem)
1802 atomic_add_unless(&iter->under_oom, -1, 0);
1803 }
1804
1805 static DEFINE_SPINLOCK(memcg_oom_lock);
1806 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1807
1808 struct oom_wait_info {
1809 struct mem_cgroup *mem;
1810 wait_queue_t wait;
1811 };
1812
1813 static int memcg_oom_wake_function(wait_queue_t *wait,
1814 unsigned mode, int sync, void *arg)
1815 {
1816 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1817 struct oom_wait_info *oom_wait_info;
1818
1819 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1820
1821 if (oom_wait_info->mem == wake_mem)
1822 goto wakeup;
1823 /* if no hierarchy, no match */
1824 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1825 return 0;
1826 /*
1827 * Both of oom_wait_info->mem and wake_mem are stable under us.
1828 * Then we can use css_is_ancestor without taking care of RCU.
1829 */
1830 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1831 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1832 return 0;
1833
1834 wakeup:
1835 return autoremove_wake_function(wait, mode, sync, arg);
1836 }
1837
1838 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1839 {
1840 /* for filtering, pass "mem" as argument. */
1841 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1842 }
1843
1844 static void memcg_oom_recover(struct mem_cgroup *mem)
1845 {
1846 if (mem && atomic_read(&mem->under_oom))
1847 memcg_wakeup_oom(mem);
1848 }
1849
1850 /*
1851 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1852 */
1853 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1854 {
1855 struct oom_wait_info owait;
1856 bool locked, need_to_kill;
1857
1858 owait.mem = mem;
1859 owait.wait.flags = 0;
1860 owait.wait.func = memcg_oom_wake_function;
1861 owait.wait.private = current;
1862 INIT_LIST_HEAD(&owait.wait.task_list);
1863 need_to_kill = true;
1864 mem_cgroup_mark_under_oom(mem);
1865
1866 /* At first, try to OOM lock hierarchy under mem.*/
1867 spin_lock(&memcg_oom_lock);
1868 locked = mem_cgroup_oom_lock(mem);
1869 /*
1870 * Even if signal_pending(), we can't quit charge() loop without
1871 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1872 * under OOM is always welcomed, use TASK_KILLABLE here.
1873 */
1874 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1875 if (!locked || mem->oom_kill_disable)
1876 need_to_kill = false;
1877 if (locked)
1878 mem_cgroup_oom_notify(mem);
1879 spin_unlock(&memcg_oom_lock);
1880
1881 if (need_to_kill) {
1882 finish_wait(&memcg_oom_waitq, &owait.wait);
1883 mem_cgroup_out_of_memory(mem, mask);
1884 } else {
1885 schedule();
1886 finish_wait(&memcg_oom_waitq, &owait.wait);
1887 }
1888 spin_lock(&memcg_oom_lock);
1889 if (locked)
1890 mem_cgroup_oom_unlock(mem);
1891 memcg_wakeup_oom(mem);
1892 spin_unlock(&memcg_oom_lock);
1893
1894 mem_cgroup_unmark_under_oom(mem);
1895
1896 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1897 return false;
1898 /* Give chance to dying process */
1899 schedule_timeout(1);
1900 return true;
1901 }
1902
1903 /*
1904 * Currently used to update mapped file statistics, but the routine can be
1905 * generalized to update other statistics as well.
1906 *
1907 * Notes: Race condition
1908 *
1909 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1910 * it tends to be costly. But considering some conditions, we doesn't need
1911 * to do so _always_.
1912 *
1913 * Considering "charge", lock_page_cgroup() is not required because all
1914 * file-stat operations happen after a page is attached to radix-tree. There
1915 * are no race with "charge".
1916 *
1917 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1918 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1919 * if there are race with "uncharge". Statistics itself is properly handled
1920 * by flags.
1921 *
1922 * Considering "move", this is an only case we see a race. To make the race
1923 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1924 * possibility of race condition. If there is, we take a lock.
1925 */
1926
1927 void mem_cgroup_update_page_stat(struct page *page,
1928 enum mem_cgroup_page_stat_item idx, int val)
1929 {
1930 struct mem_cgroup *mem;
1931 struct page_cgroup *pc = lookup_page_cgroup(page);
1932 bool need_unlock = false;
1933 unsigned long uninitialized_var(flags);
1934
1935 if (unlikely(!pc))
1936 return;
1937
1938 rcu_read_lock();
1939 mem = pc->mem_cgroup;
1940 if (unlikely(!mem || !PageCgroupUsed(pc)))
1941 goto out;
1942 /* pc->mem_cgroup is unstable ? */
1943 if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1944 /* take a lock against to access pc->mem_cgroup */
1945 move_lock_page_cgroup(pc, &flags);
1946 need_unlock = true;
1947 mem = pc->mem_cgroup;
1948 if (!mem || !PageCgroupUsed(pc))
1949 goto out;
1950 }
1951
1952 switch (idx) {
1953 case MEMCG_NR_FILE_MAPPED:
1954 if (val > 0)
1955 SetPageCgroupFileMapped(pc);
1956 else if (!page_mapped(page))
1957 ClearPageCgroupFileMapped(pc);
1958 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1959 break;
1960 default:
1961 BUG();
1962 }
1963
1964 this_cpu_add(mem->stat->count[idx], val);
1965
1966 out:
1967 if (unlikely(need_unlock))
1968 move_unlock_page_cgroup(pc, &flags);
1969 rcu_read_unlock();
1970 return;
1971 }
1972 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1973
1974 /*
1975 * size of first charge trial. "32" comes from vmscan.c's magic value.
1976 * TODO: maybe necessary to use big numbers in big irons.
1977 */
1978 #define CHARGE_BATCH 32U
1979 struct memcg_stock_pcp {
1980 struct mem_cgroup *cached; /* this never be root cgroup */
1981 unsigned int nr_pages;
1982 struct work_struct work;
1983 unsigned long flags;
1984 #define FLUSHING_CACHED_CHARGE (0)
1985 };
1986 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1987 static DEFINE_MUTEX(percpu_charge_mutex);
1988
1989 /*
1990 * Try to consume stocked charge on this cpu. If success, one page is consumed
1991 * from local stock and true is returned. If the stock is 0 or charges from a
1992 * cgroup which is not current target, returns false. This stock will be
1993 * refilled.
1994 */
1995 static bool consume_stock(struct mem_cgroup *mem)
1996 {
1997 struct memcg_stock_pcp *stock;
1998 bool ret = true;
1999
2000 stock = &get_cpu_var(memcg_stock);
2001 if (mem == stock->cached && stock->nr_pages)
2002 stock->nr_pages--;
2003 else /* need to call res_counter_charge */
2004 ret = false;
2005 put_cpu_var(memcg_stock);
2006 return ret;
2007 }
2008
2009 /*
2010 * Returns stocks cached in percpu to res_counter and reset cached information.
2011 */
2012 static void drain_stock(struct memcg_stock_pcp *stock)
2013 {
2014 struct mem_cgroup *old = stock->cached;
2015
2016 if (stock->nr_pages) {
2017 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2018
2019 res_counter_uncharge(&old->res, bytes);
2020 if (do_swap_account)
2021 res_counter_uncharge(&old->memsw, bytes);
2022 stock->nr_pages = 0;
2023 }
2024 stock->cached = NULL;
2025 }
2026
2027 /*
2028 * This must be called under preempt disabled or must be called by
2029 * a thread which is pinned to local cpu.
2030 */
2031 static void drain_local_stock(struct work_struct *dummy)
2032 {
2033 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2034 drain_stock(stock);
2035 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2036 }
2037
2038 /*
2039 * Cache charges(val) which is from res_counter, to local per_cpu area.
2040 * This will be consumed by consume_stock() function, later.
2041 */
2042 static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
2043 {
2044 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2045
2046 if (stock->cached != mem) { /* reset if necessary */
2047 drain_stock(stock);
2048 stock->cached = mem;
2049 }
2050 stock->nr_pages += nr_pages;
2051 put_cpu_var(memcg_stock);
2052 }
2053
2054 /*
2055 * Tries to drain stocked charges in other cpus. This function is asynchronous
2056 * and just put a work per cpu for draining localy on each cpu. Caller can
2057 * expects some charges will be back to res_counter later but cannot wait for
2058 * it.
2059 */
2060 static void drain_all_stock_async(struct mem_cgroup *root_mem)
2061 {
2062 int cpu, curcpu;
2063 /*
2064 * If someone calls draining, avoid adding more kworker runs.
2065 */
2066 if (!mutex_trylock(&percpu_charge_mutex))
2067 return;
2068 /* Notify other cpus that system-wide "drain" is running */
2069 get_online_cpus();
2070 /*
2071 * Get a hint for avoiding draining charges on the current cpu,
2072 * which must be exhausted by our charging. It is not required that
2073 * this be a precise check, so we use raw_smp_processor_id() instead of
2074 * getcpu()/putcpu().
2075 */
2076 curcpu = raw_smp_processor_id();
2077 for_each_online_cpu(cpu) {
2078 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2079 struct mem_cgroup *mem;
2080
2081 if (cpu == curcpu)
2082 continue;
2083
2084 mem = stock->cached;
2085 if (!mem)
2086 continue;
2087 if (mem != root_mem) {
2088 if (!root_mem->use_hierarchy)
2089 continue;
2090 /* check whether "mem" is under tree of "root_mem" */
2091 if (!css_is_ancestor(&mem->css, &root_mem->css))
2092 continue;
2093 }
2094 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2095 schedule_work_on(cpu, &stock->work);
2096 }
2097 put_online_cpus();
2098 mutex_unlock(&percpu_charge_mutex);
2099 /* We don't wait for flush_work */
2100 }
2101
2102 /* This is a synchronous drain interface. */
2103 static void drain_all_stock_sync(void)
2104 {
2105 /* called when force_empty is called */
2106 mutex_lock(&percpu_charge_mutex);
2107 schedule_on_each_cpu(drain_local_stock);
2108 mutex_unlock(&percpu_charge_mutex);
2109 }
2110
2111 /*
2112 * This function drains percpu counter value from DEAD cpu and
2113 * move it to local cpu. Note that this function can be preempted.
2114 */
2115 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
2116 {
2117 int i;
2118
2119 spin_lock(&mem->pcp_counter_lock);
2120 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2121 long x = per_cpu(mem->stat->count[i], cpu);
2122
2123 per_cpu(mem->stat->count[i], cpu) = 0;
2124 mem->nocpu_base.count[i] += x;
2125 }
2126 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2127 unsigned long x = per_cpu(mem->stat->events[i], cpu);
2128
2129 per_cpu(mem->stat->events[i], cpu) = 0;
2130 mem->nocpu_base.events[i] += x;
2131 }
2132 /* need to clear ON_MOVE value, works as a kind of lock. */
2133 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2134 spin_unlock(&mem->pcp_counter_lock);
2135 }
2136
2137 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
2138 {
2139 int idx = MEM_CGROUP_ON_MOVE;
2140
2141 spin_lock(&mem->pcp_counter_lock);
2142 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
2143 spin_unlock(&mem->pcp_counter_lock);
2144 }
2145
2146 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2147 unsigned long action,
2148 void *hcpu)
2149 {
2150 int cpu = (unsigned long)hcpu;
2151 struct memcg_stock_pcp *stock;
2152 struct mem_cgroup *iter;
2153
2154 if ((action == CPU_ONLINE)) {
2155 for_each_mem_cgroup_all(iter)
2156 synchronize_mem_cgroup_on_move(iter, cpu);
2157 return NOTIFY_OK;
2158 }
2159
2160 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2161 return NOTIFY_OK;
2162
2163 for_each_mem_cgroup_all(iter)
2164 mem_cgroup_drain_pcp_counter(iter, cpu);
2165
2166 stock = &per_cpu(memcg_stock, cpu);
2167 drain_stock(stock);
2168 return NOTIFY_OK;
2169 }
2170
2171
2172 /* See __mem_cgroup_try_charge() for details */
2173 enum {
2174 CHARGE_OK, /* success */
2175 CHARGE_RETRY, /* need to retry but retry is not bad */
2176 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2177 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2178 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2179 };
2180
2181 static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
2182 unsigned int nr_pages, bool oom_check)
2183 {
2184 unsigned long csize = nr_pages * PAGE_SIZE;
2185 struct mem_cgroup *mem_over_limit;
2186 struct res_counter *fail_res;
2187 unsigned long flags = 0;
2188 int ret;
2189
2190 ret = res_counter_charge(&mem->res, csize, &fail_res);
2191
2192 if (likely(!ret)) {
2193 if (!do_swap_account)
2194 return CHARGE_OK;
2195 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
2196 if (likely(!ret))
2197 return CHARGE_OK;
2198
2199 res_counter_uncharge(&mem->res, csize);
2200 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2201 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2202 } else
2203 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2204 /*
2205 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2206 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2207 *
2208 * Never reclaim on behalf of optional batching, retry with a
2209 * single page instead.
2210 */
2211 if (nr_pages == CHARGE_BATCH)
2212 return CHARGE_RETRY;
2213
2214 if (!(gfp_mask & __GFP_WAIT))
2215 return CHARGE_WOULDBLOCK;
2216
2217 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2218 gfp_mask, flags, NULL);
2219 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2220 return CHARGE_RETRY;
2221 /*
2222 * Even though the limit is exceeded at this point, reclaim
2223 * may have been able to free some pages. Retry the charge
2224 * before killing the task.
2225 *
2226 * Only for regular pages, though: huge pages are rather
2227 * unlikely to succeed so close to the limit, and we fall back
2228 * to regular pages anyway in case of failure.
2229 */
2230 if (nr_pages == 1 && ret)
2231 return CHARGE_RETRY;
2232
2233 /*
2234 * At task move, charge accounts can be doubly counted. So, it's
2235 * better to wait until the end of task_move if something is going on.
2236 */
2237 if (mem_cgroup_wait_acct_move(mem_over_limit))
2238 return CHARGE_RETRY;
2239
2240 /* If we don't need to call oom-killer at el, return immediately */
2241 if (!oom_check)
2242 return CHARGE_NOMEM;
2243 /* check OOM */
2244 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2245 return CHARGE_OOM_DIE;
2246
2247 return CHARGE_RETRY;
2248 }
2249
2250 /*
2251 * Unlike exported interface, "oom" parameter is added. if oom==true,
2252 * oom-killer can be invoked.
2253 */
2254 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2255 gfp_t gfp_mask,
2256 unsigned int nr_pages,
2257 struct mem_cgroup **memcg,
2258 bool oom)
2259 {
2260 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2261 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2262 struct mem_cgroup *mem = NULL;
2263 int ret;
2264
2265 /*
2266 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2267 * in system level. So, allow to go ahead dying process in addition to
2268 * MEMDIE process.
2269 */
2270 if (unlikely(test_thread_flag(TIF_MEMDIE)
2271 || fatal_signal_pending(current)))
2272 goto bypass;
2273
2274 /*
2275 * We always charge the cgroup the mm_struct belongs to.
2276 * The mm_struct's mem_cgroup changes on task migration if the
2277 * thread group leader migrates. It's possible that mm is not
2278 * set, if so charge the init_mm (happens for pagecache usage).
2279 */
2280 if (!*memcg && !mm)
2281 goto bypass;
2282 again:
2283 if (*memcg) { /* css should be a valid one */
2284 mem = *memcg;
2285 VM_BUG_ON(css_is_removed(&mem->css));
2286 if (mem_cgroup_is_root(mem))
2287 goto done;
2288 if (nr_pages == 1 && consume_stock(mem))
2289 goto done;
2290 css_get(&mem->css);
2291 } else {
2292 struct task_struct *p;
2293
2294 rcu_read_lock();
2295 p = rcu_dereference(mm->owner);
2296 /*
2297 * Because we don't have task_lock(), "p" can exit.
2298 * In that case, "mem" can point to root or p can be NULL with
2299 * race with swapoff. Then, we have small risk of mis-accouning.
2300 * But such kind of mis-account by race always happens because
2301 * we don't have cgroup_mutex(). It's overkill and we allo that
2302 * small race, here.
2303 * (*) swapoff at el will charge against mm-struct not against
2304 * task-struct. So, mm->owner can be NULL.
2305 */
2306 mem = mem_cgroup_from_task(p);
2307 if (!mem || mem_cgroup_is_root(mem)) {
2308 rcu_read_unlock();
2309 goto done;
2310 }
2311 if (nr_pages == 1 && consume_stock(mem)) {
2312 /*
2313 * It seems dagerous to access memcg without css_get().
2314 * But considering how consume_stok works, it's not
2315 * necessary. If consume_stock success, some charges
2316 * from this memcg are cached on this cpu. So, we
2317 * don't need to call css_get()/css_tryget() before
2318 * calling consume_stock().
2319 */
2320 rcu_read_unlock();
2321 goto done;
2322 }
2323 /* after here, we may be blocked. we need to get refcnt */
2324 if (!css_tryget(&mem->css)) {
2325 rcu_read_unlock();
2326 goto again;
2327 }
2328 rcu_read_unlock();
2329 }
2330
2331 do {
2332 bool oom_check;
2333
2334 /* If killed, bypass charge */
2335 if (fatal_signal_pending(current)) {
2336 css_put(&mem->css);
2337 goto bypass;
2338 }
2339
2340 oom_check = false;
2341 if (oom && !nr_oom_retries) {
2342 oom_check = true;
2343 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2344 }
2345
2346 ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
2347 switch (ret) {
2348 case CHARGE_OK:
2349 break;
2350 case CHARGE_RETRY: /* not in OOM situation but retry */
2351 batch = nr_pages;
2352 css_put(&mem->css);
2353 mem = NULL;
2354 goto again;
2355 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2356 css_put(&mem->css);
2357 goto nomem;
2358 case CHARGE_NOMEM: /* OOM routine works */
2359 if (!oom) {
2360 css_put(&mem->css);
2361 goto nomem;
2362 }
2363 /* If oom, we never return -ENOMEM */
2364 nr_oom_retries--;
2365 break;
2366 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2367 css_put(&mem->css);
2368 goto bypass;
2369 }
2370 } while (ret != CHARGE_OK);
2371
2372 if (batch > nr_pages)
2373 refill_stock(mem, batch - nr_pages);
2374 css_put(&mem->css);
2375 done:
2376 *memcg = mem;
2377 return 0;
2378 nomem:
2379 *memcg = NULL;
2380 return -ENOMEM;
2381 bypass:
2382 *memcg = NULL;
2383 return 0;
2384 }
2385
2386 /*
2387 * Somemtimes we have to undo a charge we got by try_charge().
2388 * This function is for that and do uncharge, put css's refcnt.
2389 * gotten by try_charge().
2390 */
2391 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2392 unsigned int nr_pages)
2393 {
2394 if (!mem_cgroup_is_root(mem)) {
2395 unsigned long bytes = nr_pages * PAGE_SIZE;
2396
2397 res_counter_uncharge(&mem->res, bytes);
2398 if (do_swap_account)
2399 res_counter_uncharge(&mem->memsw, bytes);
2400 }
2401 }
2402
2403 /*
2404 * A helper function to get mem_cgroup from ID. must be called under
2405 * rcu_read_lock(). The caller must check css_is_removed() or some if
2406 * it's concern. (dropping refcnt from swap can be called against removed
2407 * memcg.)
2408 */
2409 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2410 {
2411 struct cgroup_subsys_state *css;
2412
2413 /* ID 0 is unused ID */
2414 if (!id)
2415 return NULL;
2416 css = css_lookup(&mem_cgroup_subsys, id);
2417 if (!css)
2418 return NULL;
2419 return container_of(css, struct mem_cgroup, css);
2420 }
2421
2422 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2423 {
2424 struct mem_cgroup *mem = NULL;
2425 struct page_cgroup *pc;
2426 unsigned short id;
2427 swp_entry_t ent;
2428
2429 VM_BUG_ON(!PageLocked(page));
2430
2431 pc = lookup_page_cgroup(page);
2432 lock_page_cgroup(pc);
2433 if (PageCgroupUsed(pc)) {
2434 mem = pc->mem_cgroup;
2435 if (mem && !css_tryget(&mem->css))
2436 mem = NULL;
2437 } else if (PageSwapCache(page)) {
2438 ent.val = page_private(page);
2439 id = lookup_swap_cgroup(ent);
2440 rcu_read_lock();
2441 mem = mem_cgroup_lookup(id);
2442 if (mem && !css_tryget(&mem->css))
2443 mem = NULL;
2444 rcu_read_unlock();
2445 }
2446 unlock_page_cgroup(pc);
2447 return mem;
2448 }
2449
2450 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2451 struct page *page,
2452 unsigned int nr_pages,
2453 struct page_cgroup *pc,
2454 enum charge_type ctype)
2455 {
2456 lock_page_cgroup(pc);
2457 if (unlikely(PageCgroupUsed(pc))) {
2458 unlock_page_cgroup(pc);
2459 __mem_cgroup_cancel_charge(mem, nr_pages);
2460 return;
2461 }
2462 /*
2463 * we don't need page_cgroup_lock about tail pages, becase they are not
2464 * accessed by any other context at this point.
2465 */
2466 pc->mem_cgroup = mem;
2467 /*
2468 * We access a page_cgroup asynchronously without lock_page_cgroup().
2469 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2470 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2471 * before USED bit, we need memory barrier here.
2472 * See mem_cgroup_add_lru_list(), etc.
2473 */
2474 smp_wmb();
2475 switch (ctype) {
2476 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2477 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2478 SetPageCgroupCache(pc);
2479 SetPageCgroupUsed(pc);
2480 break;
2481 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2482 ClearPageCgroupCache(pc);
2483 SetPageCgroupUsed(pc);
2484 break;
2485 default:
2486 break;
2487 }
2488
2489 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2490 unlock_page_cgroup(pc);
2491 /*
2492 * "charge_statistics" updated event counter. Then, check it.
2493 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2494 * if they exceeds softlimit.
2495 */
2496 memcg_check_events(mem, page);
2497 }
2498
2499 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2500
2501 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2502 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2503 /*
2504 * Because tail pages are not marked as "used", set it. We're under
2505 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2506 */
2507 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2508 {
2509 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2510 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2511 unsigned long flags;
2512
2513 if (mem_cgroup_disabled())
2514 return;
2515 /*
2516 * We have no races with charge/uncharge but will have races with
2517 * page state accounting.
2518 */
2519 move_lock_page_cgroup(head_pc, &flags);
2520
2521 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2522 smp_wmb(); /* see __commit_charge() */
2523 if (PageCgroupAcctLRU(head_pc)) {
2524 enum lru_list lru;
2525 struct mem_cgroup_per_zone *mz;
2526
2527 /*
2528 * LRU flags cannot be copied because we need to add tail
2529 *.page to LRU by generic call and our hook will be called.
2530 * We hold lru_lock, then, reduce counter directly.
2531 */
2532 lru = page_lru(head);
2533 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2534 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2535 }
2536 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2537 move_unlock_page_cgroup(head_pc, &flags);
2538 }
2539 #endif
2540
2541 /**
2542 * mem_cgroup_move_account - move account of the page
2543 * @page: the page
2544 * @nr_pages: number of regular pages (>1 for huge pages)
2545 * @pc: page_cgroup of the page.
2546 * @from: mem_cgroup which the page is moved from.
2547 * @to: mem_cgroup which the page is moved to. @from != @to.
2548 * @uncharge: whether we should call uncharge and css_put against @from.
2549 *
2550 * The caller must confirm following.
2551 * - page is not on LRU (isolate_page() is useful.)
2552 * - compound_lock is held when nr_pages > 1
2553 *
2554 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2555 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2556 * true, this function does "uncharge" from old cgroup, but it doesn't if
2557 * @uncharge is false, so a caller should do "uncharge".
2558 */
2559 static int mem_cgroup_move_account(struct page *page,
2560 unsigned int nr_pages,
2561 struct page_cgroup *pc,
2562 struct mem_cgroup *from,
2563 struct mem_cgroup *to,
2564 bool uncharge)
2565 {
2566 unsigned long flags;
2567 int ret;
2568
2569 VM_BUG_ON(from == to);
2570 VM_BUG_ON(PageLRU(page));
2571 /*
2572 * The page is isolated from LRU. So, collapse function
2573 * will not handle this page. But page splitting can happen.
2574 * Do this check under compound_page_lock(). The caller should
2575 * hold it.
2576 */
2577 ret = -EBUSY;
2578 if (nr_pages > 1 && !PageTransHuge(page))
2579 goto out;
2580
2581 lock_page_cgroup(pc);
2582
2583 ret = -EINVAL;
2584 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2585 goto unlock;
2586
2587 move_lock_page_cgroup(pc, &flags);
2588
2589 if (PageCgroupFileMapped(pc)) {
2590 /* Update mapped_file data for mem_cgroup */
2591 preempt_disable();
2592 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2593 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2594 preempt_enable();
2595 }
2596 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2597 if (uncharge)
2598 /* This is not "cancel", but cancel_charge does all we need. */
2599 __mem_cgroup_cancel_charge(from, nr_pages);
2600
2601 /* caller should have done css_get */
2602 pc->mem_cgroup = to;
2603 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2604 /*
2605 * We charges against "to" which may not have any tasks. Then, "to"
2606 * can be under rmdir(). But in current implementation, caller of
2607 * this function is just force_empty() and move charge, so it's
2608 * guaranteed that "to" is never removed. So, we don't check rmdir
2609 * status here.
2610 */
2611 move_unlock_page_cgroup(pc, &flags);
2612 ret = 0;
2613 unlock:
2614 unlock_page_cgroup(pc);
2615 /*
2616 * check events
2617 */
2618 memcg_check_events(to, page);
2619 memcg_check_events(from, page);
2620 out:
2621 return ret;
2622 }
2623
2624 /*
2625 * move charges to its parent.
2626 */
2627
2628 static int mem_cgroup_move_parent(struct page *page,
2629 struct page_cgroup *pc,
2630 struct mem_cgroup *child,
2631 gfp_t gfp_mask)
2632 {
2633 struct cgroup *cg = child->css.cgroup;
2634 struct cgroup *pcg = cg->parent;
2635 struct mem_cgroup *parent;
2636 unsigned int nr_pages;
2637 unsigned long uninitialized_var(flags);
2638 int ret;
2639
2640 /* Is ROOT ? */
2641 if (!pcg)
2642 return -EINVAL;
2643
2644 ret = -EBUSY;
2645 if (!get_page_unless_zero(page))
2646 goto out;
2647 if (isolate_lru_page(page))
2648 goto put;
2649
2650 nr_pages = hpage_nr_pages(page);
2651
2652 parent = mem_cgroup_from_cont(pcg);
2653 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2654 if (ret || !parent)
2655 goto put_back;
2656
2657 if (nr_pages > 1)
2658 flags = compound_lock_irqsave(page);
2659
2660 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2661 if (ret)
2662 __mem_cgroup_cancel_charge(parent, nr_pages);
2663
2664 if (nr_pages > 1)
2665 compound_unlock_irqrestore(page, flags);
2666 put_back:
2667 putback_lru_page(page);
2668 put:
2669 put_page(page);
2670 out:
2671 return ret;
2672 }
2673
2674 /*
2675 * Charge the memory controller for page usage.
2676 * Return
2677 * 0 if the charge was successful
2678 * < 0 if the cgroup is over its limit
2679 */
2680 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2681 gfp_t gfp_mask, enum charge_type ctype)
2682 {
2683 struct mem_cgroup *mem = NULL;
2684 unsigned int nr_pages = 1;
2685 struct page_cgroup *pc;
2686 bool oom = true;
2687 int ret;
2688
2689 if (PageTransHuge(page)) {
2690 nr_pages <<= compound_order(page);
2691 VM_BUG_ON(!PageTransHuge(page));
2692 /*
2693 * Never OOM-kill a process for a huge page. The
2694 * fault handler will fall back to regular pages.
2695 */
2696 oom = false;
2697 }
2698
2699 pc = lookup_page_cgroup(page);
2700 BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2701
2702 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
2703 if (ret || !mem)
2704 return ret;
2705
2706 __mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
2707 return 0;
2708 }
2709
2710 int mem_cgroup_newpage_charge(struct page *page,
2711 struct mm_struct *mm, gfp_t gfp_mask)
2712 {
2713 if (mem_cgroup_disabled())
2714 return 0;
2715 /*
2716 * If already mapped, we don't have to account.
2717 * If page cache, page->mapping has address_space.
2718 * But page->mapping may have out-of-use anon_vma pointer,
2719 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2720 * is NULL.
2721 */
2722 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2723 return 0;
2724 if (unlikely(!mm))
2725 mm = &init_mm;
2726 return mem_cgroup_charge_common(page, mm, gfp_mask,
2727 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2728 }
2729
2730 static void
2731 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2732 enum charge_type ctype);
2733
2734 static void
2735 __mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
2736 enum charge_type ctype)
2737 {
2738 struct page_cgroup *pc = lookup_page_cgroup(page);
2739 /*
2740 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2741 * is already on LRU. It means the page may on some other page_cgroup's
2742 * LRU. Take care of it.
2743 */
2744 mem_cgroup_lru_del_before_commit(page);
2745 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
2746 mem_cgroup_lru_add_after_commit(page);
2747 return;
2748 }
2749
2750 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2751 gfp_t gfp_mask)
2752 {
2753 struct mem_cgroup *mem = NULL;
2754 int ret;
2755
2756 if (mem_cgroup_disabled())
2757 return 0;
2758 if (PageCompound(page))
2759 return 0;
2760 /*
2761 * Corner case handling. This is called from add_to_page_cache()
2762 * in usual. But some FS (shmem) precharges this page before calling it
2763 * and call add_to_page_cache() with GFP_NOWAIT.
2764 *
2765 * For GFP_NOWAIT case, the page may be pre-charged before calling
2766 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2767 * charge twice. (It works but has to pay a bit larger cost.)
2768 * And when the page is SwapCache, it should take swap information
2769 * into account. This is under lock_page() now.
2770 */
2771 if (!(gfp_mask & __GFP_WAIT)) {
2772 struct page_cgroup *pc;
2773
2774 pc = lookup_page_cgroup(page);
2775 if (!pc)
2776 return 0;
2777 lock_page_cgroup(pc);
2778 if (PageCgroupUsed(pc)) {
2779 unlock_page_cgroup(pc);
2780 return 0;
2781 }
2782 unlock_page_cgroup(pc);
2783 }
2784
2785 if (unlikely(!mm))
2786 mm = &init_mm;
2787
2788 if (page_is_file_cache(page)) {
2789 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
2790 if (ret || !mem)
2791 return ret;
2792
2793 /*
2794 * FUSE reuses pages without going through the final
2795 * put that would remove them from the LRU list, make
2796 * sure that they get relinked properly.
2797 */
2798 __mem_cgroup_commit_charge_lrucare(page, mem,
2799 MEM_CGROUP_CHARGE_TYPE_CACHE);
2800 return ret;
2801 }
2802 /* shmem */
2803 if (PageSwapCache(page)) {
2804 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2805 if (!ret)
2806 __mem_cgroup_commit_charge_swapin(page, mem,
2807 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2808 } else
2809 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2810 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2811
2812 return ret;
2813 }
2814
2815 /*
2816 * While swap-in, try_charge -> commit or cancel, the page is locked.
2817 * And when try_charge() successfully returns, one refcnt to memcg without
2818 * struct page_cgroup is acquired. This refcnt will be consumed by
2819 * "commit()" or removed by "cancel()"
2820 */
2821 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2822 struct page *page,
2823 gfp_t mask, struct mem_cgroup **ptr)
2824 {
2825 struct mem_cgroup *mem;
2826 int ret;
2827
2828 *ptr = NULL;
2829
2830 if (mem_cgroup_disabled())
2831 return 0;
2832
2833 if (!do_swap_account)
2834 goto charge_cur_mm;
2835 /*
2836 * A racing thread's fault, or swapoff, may have already updated
2837 * the pte, and even removed page from swap cache: in those cases
2838 * do_swap_page()'s pte_same() test will fail; but there's also a
2839 * KSM case which does need to charge the page.
2840 */
2841 if (!PageSwapCache(page))
2842 goto charge_cur_mm;
2843 mem = try_get_mem_cgroup_from_page(page);
2844 if (!mem)
2845 goto charge_cur_mm;
2846 *ptr = mem;
2847 ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2848 css_put(&mem->css);
2849 return ret;
2850 charge_cur_mm:
2851 if (unlikely(!mm))
2852 mm = &init_mm;
2853 return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2854 }
2855
2856 static void
2857 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2858 enum charge_type ctype)
2859 {
2860 if (mem_cgroup_disabled())
2861 return;
2862 if (!ptr)
2863 return;
2864 cgroup_exclude_rmdir(&ptr->css);
2865
2866 __mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2867 /*
2868 * Now swap is on-memory. This means this page may be
2869 * counted both as mem and swap....double count.
2870 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2871 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2872 * may call delete_from_swap_cache() before reach here.
2873 */
2874 if (do_swap_account && PageSwapCache(page)) {
2875 swp_entry_t ent = {.val = page_private(page)};
2876 unsigned short id;
2877 struct mem_cgroup *memcg;
2878
2879 id = swap_cgroup_record(ent, 0);
2880 rcu_read_lock();
2881 memcg = mem_cgroup_lookup(id);
2882 if (memcg) {
2883 /*
2884 * This recorded memcg can be obsolete one. So, avoid
2885 * calling css_tryget
2886 */
2887 if (!mem_cgroup_is_root(memcg))
2888 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2889 mem_cgroup_swap_statistics(memcg, false);
2890 mem_cgroup_put(memcg);
2891 }
2892 rcu_read_unlock();
2893 }
2894 /*
2895 * At swapin, we may charge account against cgroup which has no tasks.
2896 * So, rmdir()->pre_destroy() can be called while we do this charge.
2897 * In that case, we need to call pre_destroy() again. check it here.
2898 */
2899 cgroup_release_and_wakeup_rmdir(&ptr->css);
2900 }
2901
2902 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2903 {
2904 __mem_cgroup_commit_charge_swapin(page, ptr,
2905 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2906 }
2907
2908 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2909 {
2910 if (mem_cgroup_disabled())
2911 return;
2912 if (!mem)
2913 return;
2914 __mem_cgroup_cancel_charge(mem, 1);
2915 }
2916
2917 static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
2918 unsigned int nr_pages,
2919 const enum charge_type ctype)
2920 {
2921 struct memcg_batch_info *batch = NULL;
2922 bool uncharge_memsw = true;
2923
2924 /* If swapout, usage of swap doesn't decrease */
2925 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2926 uncharge_memsw = false;
2927
2928 batch = &current->memcg_batch;
2929 /*
2930 * In usual, we do css_get() when we remember memcg pointer.
2931 * But in this case, we keep res->usage until end of a series of
2932 * uncharges. Then, it's ok to ignore memcg's refcnt.
2933 */
2934 if (!batch->memcg)
2935 batch->memcg = mem;
2936 /*
2937 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2938 * In those cases, all pages freed continuously can be expected to be in
2939 * the same cgroup and we have chance to coalesce uncharges.
2940 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2941 * because we want to do uncharge as soon as possible.
2942 */
2943
2944 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2945 goto direct_uncharge;
2946
2947 if (nr_pages > 1)
2948 goto direct_uncharge;
2949
2950 /*
2951 * In typical case, batch->memcg == mem. This means we can
2952 * merge a series of uncharges to an uncharge of res_counter.
2953 * If not, we uncharge res_counter ony by one.
2954 */
2955 if (batch->memcg != mem)
2956 goto direct_uncharge;
2957 /* remember freed charge and uncharge it later */
2958 batch->nr_pages++;
2959 if (uncharge_memsw)
2960 batch->memsw_nr_pages++;
2961 return;
2962 direct_uncharge:
2963 res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
2964 if (uncharge_memsw)
2965 res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
2966 if (unlikely(batch->memcg != mem))
2967 memcg_oom_recover(mem);
2968 return;
2969 }
2970
2971 /*
2972 * uncharge if !page_mapped(page)
2973 */
2974 static struct mem_cgroup *
2975 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2976 {
2977 struct mem_cgroup *mem = NULL;
2978 unsigned int nr_pages = 1;
2979 struct page_cgroup *pc;
2980
2981 if (mem_cgroup_disabled())
2982 return NULL;
2983
2984 if (PageSwapCache(page))
2985 return NULL;
2986
2987 if (PageTransHuge(page)) {
2988 nr_pages <<= compound_order(page);
2989 VM_BUG_ON(!PageTransHuge(page));
2990 }
2991 /*
2992 * Check if our page_cgroup is valid
2993 */
2994 pc = lookup_page_cgroup(page);
2995 if (unlikely(!pc || !PageCgroupUsed(pc)))
2996 return NULL;
2997
2998 lock_page_cgroup(pc);
2999
3000 mem = pc->mem_cgroup;
3001
3002 if (!PageCgroupUsed(pc))
3003 goto unlock_out;
3004
3005 switch (ctype) {
3006 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
3007 case MEM_CGROUP_CHARGE_TYPE_DROP:
3008 /* See mem_cgroup_prepare_migration() */
3009 if (page_mapped(page) || PageCgroupMigration(pc))
3010 goto unlock_out;
3011 break;
3012 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3013 if (!PageAnon(page)) { /* Shared memory */
3014 if (page->mapping && !page_is_file_cache(page))
3015 goto unlock_out;
3016 } else if (page_mapped(page)) /* Anon */
3017 goto unlock_out;
3018 break;
3019 default:
3020 break;
3021 }
3022
3023 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
3024
3025 ClearPageCgroupUsed(pc);
3026 /*
3027 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3028 * freed from LRU. This is safe because uncharged page is expected not
3029 * to be reused (freed soon). Exception is SwapCache, it's handled by
3030 * special functions.
3031 */
3032
3033 unlock_page_cgroup(pc);
3034 /*
3035 * even after unlock, we have mem->res.usage here and this memcg
3036 * will never be freed.
3037 */
3038 memcg_check_events(mem, page);
3039 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3040 mem_cgroup_swap_statistics(mem, true);
3041 mem_cgroup_get(mem);
3042 }
3043 if (!mem_cgroup_is_root(mem))
3044 mem_cgroup_do_uncharge(mem, nr_pages, ctype);
3045
3046 return mem;
3047
3048 unlock_out:
3049 unlock_page_cgroup(pc);
3050 return NULL;
3051 }
3052
3053 void mem_cgroup_uncharge_page(struct page *page)
3054 {
3055 /* early check. */
3056 if (page_mapped(page))
3057 return;
3058 if (page->mapping && !PageAnon(page))
3059 return;
3060 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3061 }
3062
3063 void mem_cgroup_uncharge_cache_page(struct page *page)
3064 {
3065 VM_BUG_ON(page_mapped(page));
3066 VM_BUG_ON(page->mapping);
3067 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3068 }
3069
3070 /*
3071 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3072 * In that cases, pages are freed continuously and we can expect pages
3073 * are in the same memcg. All these calls itself limits the number of
3074 * pages freed at once, then uncharge_start/end() is called properly.
3075 * This may be called prural(2) times in a context,
3076 */
3077
3078 void mem_cgroup_uncharge_start(void)
3079 {
3080 current->memcg_batch.do_batch++;
3081 /* We can do nest. */
3082 if (current->memcg_batch.do_batch == 1) {
3083 current->memcg_batch.memcg = NULL;
3084 current->memcg_batch.nr_pages = 0;
3085 current->memcg_batch.memsw_nr_pages = 0;
3086 }
3087 }
3088
3089 void mem_cgroup_uncharge_end(void)
3090 {
3091 struct memcg_batch_info *batch = &current->memcg_batch;
3092
3093 if (!batch->do_batch)
3094 return;
3095
3096 batch->do_batch--;
3097 if (batch->do_batch) /* If stacked, do nothing. */
3098 return;
3099
3100 if (!batch->memcg)
3101 return;
3102 /*
3103 * This "batch->memcg" is valid without any css_get/put etc...
3104 * bacause we hide charges behind us.
3105 */
3106 if (batch->nr_pages)
3107 res_counter_uncharge(&batch->memcg->res,
3108 batch->nr_pages * PAGE_SIZE);
3109 if (batch->memsw_nr_pages)
3110 res_counter_uncharge(&batch->memcg->memsw,
3111 batch->memsw_nr_pages * PAGE_SIZE);
3112 memcg_oom_recover(batch->memcg);
3113 /* forget this pointer (for sanity check) */
3114 batch->memcg = NULL;
3115 }
3116
3117 #ifdef CONFIG_SWAP
3118 /*
3119 * called after __delete_from_swap_cache() and drop "page" account.
3120 * memcg information is recorded to swap_cgroup of "ent"
3121 */
3122 void
3123 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3124 {
3125 struct mem_cgroup *memcg;
3126 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3127
3128 if (!swapout) /* this was a swap cache but the swap is unused ! */
3129 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3130
3131 memcg = __mem_cgroup_uncharge_common(page, ctype);
3132
3133 /*
3134 * record memcg information, if swapout && memcg != NULL,
3135 * mem_cgroup_get() was called in uncharge().
3136 */
3137 if (do_swap_account && swapout && memcg)
3138 swap_cgroup_record(ent, css_id(&memcg->css));
3139 }
3140 #endif
3141
3142 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3143 /*
3144 * called from swap_entry_free(). remove record in swap_cgroup and
3145 * uncharge "memsw" account.
3146 */
3147 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3148 {
3149 struct mem_cgroup *memcg;
3150 unsigned short id;
3151
3152 if (!do_swap_account)
3153 return;
3154
3155 id = swap_cgroup_record(ent, 0);
3156 rcu_read_lock();
3157 memcg = mem_cgroup_lookup(id);
3158 if (memcg) {
3159 /*
3160 * We uncharge this because swap is freed.
3161 * This memcg can be obsolete one. We avoid calling css_tryget
3162 */
3163 if (!mem_cgroup_is_root(memcg))
3164 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3165 mem_cgroup_swap_statistics(memcg, false);
3166 mem_cgroup_put(memcg);
3167 }
3168 rcu_read_unlock();
3169 }
3170
3171 /**
3172 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3173 * @entry: swap entry to be moved
3174 * @from: mem_cgroup which the entry is moved from
3175 * @to: mem_cgroup which the entry is moved to
3176 * @need_fixup: whether we should fixup res_counters and refcounts.
3177 *
3178 * It succeeds only when the swap_cgroup's record for this entry is the same
3179 * as the mem_cgroup's id of @from.
3180 *
3181 * Returns 0 on success, -EINVAL on failure.
3182 *
3183 * The caller must have charged to @to, IOW, called res_counter_charge() about
3184 * both res and memsw, and called css_get().
3185 */
3186 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3187 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3188 {
3189 unsigned short old_id, new_id;
3190
3191 old_id = css_id(&from->css);
3192 new_id = css_id(&to->css);
3193
3194 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3195 mem_cgroup_swap_statistics(from, false);
3196 mem_cgroup_swap_statistics(to, true);
3197 /*
3198 * This function is only called from task migration context now.
3199 * It postpones res_counter and refcount handling till the end
3200 * of task migration(mem_cgroup_clear_mc()) for performance
3201 * improvement. But we cannot postpone mem_cgroup_get(to)
3202 * because if the process that has been moved to @to does
3203 * swap-in, the refcount of @to might be decreased to 0.
3204 */
3205 mem_cgroup_get(to);
3206 if (need_fixup) {
3207 if (!mem_cgroup_is_root(from))
3208 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3209 mem_cgroup_put(from);
3210 /*
3211 * we charged both to->res and to->memsw, so we should
3212 * uncharge to->res.
3213 */
3214 if (!mem_cgroup_is_root(to))
3215 res_counter_uncharge(&to->res, PAGE_SIZE);
3216 }
3217 return 0;
3218 }
3219 return -EINVAL;
3220 }
3221 #else
3222 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3223 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3224 {
3225 return -EINVAL;
3226 }
3227 #endif
3228
3229 /*
3230 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3231 * page belongs to.
3232 */
3233 int mem_cgroup_prepare_migration(struct page *page,
3234 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3235 {
3236 struct mem_cgroup *mem = NULL;
3237 struct page_cgroup *pc;
3238 enum charge_type ctype;
3239 int ret = 0;
3240
3241 *ptr = NULL;
3242
3243 VM_BUG_ON(PageTransHuge(page));
3244 if (mem_cgroup_disabled())
3245 return 0;
3246
3247 pc = lookup_page_cgroup(page);
3248 lock_page_cgroup(pc);
3249 if (PageCgroupUsed(pc)) {
3250 mem = pc->mem_cgroup;
3251 css_get(&mem->css);
3252 /*
3253 * At migrating an anonymous page, its mapcount goes down
3254 * to 0 and uncharge() will be called. But, even if it's fully
3255 * unmapped, migration may fail and this page has to be
3256 * charged again. We set MIGRATION flag here and delay uncharge
3257 * until end_migration() is called
3258 *
3259 * Corner Case Thinking
3260 * A)
3261 * When the old page was mapped as Anon and it's unmap-and-freed
3262 * while migration was ongoing.
3263 * If unmap finds the old page, uncharge() of it will be delayed
3264 * until end_migration(). If unmap finds a new page, it's
3265 * uncharged when it make mapcount to be 1->0. If unmap code
3266 * finds swap_migration_entry, the new page will not be mapped
3267 * and end_migration() will find it(mapcount==0).
3268 *
3269 * B)
3270 * When the old page was mapped but migraion fails, the kernel
3271 * remaps it. A charge for it is kept by MIGRATION flag even
3272 * if mapcount goes down to 0. We can do remap successfully
3273 * without charging it again.
3274 *
3275 * C)
3276 * The "old" page is under lock_page() until the end of
3277 * migration, so, the old page itself will not be swapped-out.
3278 * If the new page is swapped out before end_migraton, our
3279 * hook to usual swap-out path will catch the event.
3280 */
3281 if (PageAnon(page))
3282 SetPageCgroupMigration(pc);
3283 }
3284 unlock_page_cgroup(pc);
3285 /*
3286 * If the page is not charged at this point,
3287 * we return here.
3288 */
3289 if (!mem)
3290 return 0;
3291
3292 *ptr = mem;
3293 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3294 css_put(&mem->css);/* drop extra refcnt */
3295 if (ret || *ptr == NULL) {
3296 if (PageAnon(page)) {
3297 lock_page_cgroup(pc);
3298 ClearPageCgroupMigration(pc);
3299 unlock_page_cgroup(pc);
3300 /*
3301 * The old page may be fully unmapped while we kept it.
3302 */
3303 mem_cgroup_uncharge_page(page);
3304 }
3305 return -ENOMEM;
3306 }
3307 /*
3308 * We charge new page before it's used/mapped. So, even if unlock_page()
3309 * is called before end_migration, we can catch all events on this new
3310 * page. In the case new page is migrated but not remapped, new page's
3311 * mapcount will be finally 0 and we call uncharge in end_migration().
3312 */
3313 pc = lookup_page_cgroup(newpage);
3314 if (PageAnon(page))
3315 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3316 else if (page_is_file_cache(page))
3317 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3318 else
3319 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3320 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
3321 return ret;
3322 }
3323
3324 /* remove redundant charge if migration failed*/
3325 void mem_cgroup_end_migration(struct mem_cgroup *mem,
3326 struct page *oldpage, struct page *newpage, bool migration_ok)
3327 {
3328 struct page *used, *unused;
3329 struct page_cgroup *pc;
3330
3331 if (!mem)
3332 return;
3333 /* blocks rmdir() */
3334 cgroup_exclude_rmdir(&mem->css);
3335 if (!migration_ok) {
3336 used = oldpage;
3337 unused = newpage;
3338 } else {
3339 used = newpage;
3340 unused = oldpage;
3341 }
3342 /*
3343 * We disallowed uncharge of pages under migration because mapcount
3344 * of the page goes down to zero, temporarly.
3345 * Clear the flag and check the page should be charged.
3346 */
3347 pc = lookup_page_cgroup(oldpage);
3348 lock_page_cgroup(pc);
3349 ClearPageCgroupMigration(pc);
3350 unlock_page_cgroup(pc);
3351
3352 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3353
3354 /*
3355 * If a page is a file cache, radix-tree replacement is very atomic
3356 * and we can skip this check. When it was an Anon page, its mapcount
3357 * goes down to 0. But because we added MIGRATION flage, it's not
3358 * uncharged yet. There are several case but page->mapcount check
3359 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3360 * check. (see prepare_charge() also)
3361 */
3362 if (PageAnon(used))
3363 mem_cgroup_uncharge_page(used);
3364 /*
3365 * At migration, we may charge account against cgroup which has no
3366 * tasks.
3367 * So, rmdir()->pre_destroy() can be called while we do this charge.
3368 * In that case, we need to call pre_destroy() again. check it here.
3369 */
3370 cgroup_release_and_wakeup_rmdir(&mem->css);
3371 }
3372
3373 /*
3374 * A call to try to shrink memory usage on charge failure at shmem's swapin.
3375 * Calling hierarchical_reclaim is not enough because we should update
3376 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3377 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3378 * not from the memcg which this page would be charged to.
3379 * try_charge_swapin does all of these works properly.
3380 */
3381 int mem_cgroup_shmem_charge_fallback(struct page *page,
3382 struct mm_struct *mm,
3383 gfp_t gfp_mask)
3384 {
3385 struct mem_cgroup *mem;
3386 int ret;
3387
3388 if (mem_cgroup_disabled())
3389 return 0;
3390
3391 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3392 if (!ret)
3393 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3394
3395 return ret;
3396 }
3397
3398 #ifdef CONFIG_DEBUG_VM
3399 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3400 {
3401 struct page_cgroup *pc;
3402
3403 pc = lookup_page_cgroup(page);
3404 if (likely(pc) && PageCgroupUsed(pc))
3405 return pc;
3406 return NULL;
3407 }
3408
3409 bool mem_cgroup_bad_page_check(struct page *page)
3410 {
3411 if (mem_cgroup_disabled())
3412 return false;
3413
3414 return lookup_page_cgroup_used(page) != NULL;
3415 }
3416
3417 void mem_cgroup_print_bad_page(struct page *page)
3418 {
3419 struct page_cgroup *pc;
3420
3421 pc = lookup_page_cgroup_used(page);
3422 if (pc) {
3423 int ret = -1;
3424 char *path;
3425
3426 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3427 pc, pc->flags, pc->mem_cgroup);
3428
3429 path = kmalloc(PATH_MAX, GFP_KERNEL);
3430 if (path) {
3431 rcu_read_lock();
3432 ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3433 path, PATH_MAX);
3434 rcu_read_unlock();
3435 }
3436
3437 printk(KERN_CONT "(%s)\n",
3438 (ret < 0) ? "cannot get the path" : path);
3439 kfree(path);
3440 }
3441 }
3442 #endif
3443
3444 static DEFINE_MUTEX(set_limit_mutex);
3445
3446 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3447 unsigned long long val)
3448 {
3449 int retry_count;
3450 u64 memswlimit, memlimit;
3451 int ret = 0;
3452 int children = mem_cgroup_count_children(memcg);
3453 u64 curusage, oldusage;
3454 int enlarge;
3455
3456 /*
3457 * For keeping hierarchical_reclaim simple, how long we should retry
3458 * is depends on callers. We set our retry-count to be function
3459 * of # of children which we should visit in this loop.
3460 */
3461 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3462
3463 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3464
3465 enlarge = 0;
3466 while (retry_count) {
3467 if (signal_pending(current)) {
3468 ret = -EINTR;
3469 break;
3470 }
3471 /*
3472 * Rather than hide all in some function, I do this in
3473 * open coded manner. You see what this really does.
3474 * We have to guarantee mem->res.limit < mem->memsw.limit.
3475 */
3476 mutex_lock(&set_limit_mutex);
3477 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3478 if (memswlimit < val) {
3479 ret = -EINVAL;
3480 mutex_unlock(&set_limit_mutex);
3481 break;
3482 }
3483
3484 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3485 if (memlimit < val)
3486 enlarge = 1;
3487
3488 ret = res_counter_set_limit(&memcg->res, val);
3489 if (!ret) {
3490 if (memswlimit == val)
3491 memcg->memsw_is_minimum = true;
3492 else
3493 memcg->memsw_is_minimum = false;
3494 }
3495 mutex_unlock(&set_limit_mutex);
3496
3497 if (!ret)
3498 break;
3499
3500 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3501 MEM_CGROUP_RECLAIM_SHRINK,
3502 NULL);
3503 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3504 /* Usage is reduced ? */
3505 if (curusage >= oldusage)
3506 retry_count--;
3507 else
3508 oldusage = curusage;
3509 }
3510 if (!ret && enlarge)
3511 memcg_oom_recover(memcg);
3512
3513 return ret;
3514 }
3515
3516 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3517 unsigned long long val)
3518 {
3519 int retry_count;
3520 u64 memlimit, memswlimit, oldusage, curusage;
3521 int children = mem_cgroup_count_children(memcg);
3522 int ret = -EBUSY;
3523 int enlarge = 0;
3524
3525 /* see mem_cgroup_resize_res_limit */
3526 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3527 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3528 while (retry_count) {
3529 if (signal_pending(current)) {
3530 ret = -EINTR;
3531 break;
3532 }
3533 /*
3534 * Rather than hide all in some function, I do this in
3535 * open coded manner. You see what this really does.
3536 * We have to guarantee mem->res.limit < mem->memsw.limit.
3537 */
3538 mutex_lock(&set_limit_mutex);
3539 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3540 if (memlimit > val) {
3541 ret = -EINVAL;
3542 mutex_unlock(&set_limit_mutex);
3543 break;
3544 }
3545 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3546 if (memswlimit < val)
3547 enlarge = 1;
3548 ret = res_counter_set_limit(&memcg->memsw, val);
3549 if (!ret) {
3550 if (memlimit == val)
3551 memcg->memsw_is_minimum = true;
3552 else
3553 memcg->memsw_is_minimum = false;
3554 }
3555 mutex_unlock(&set_limit_mutex);
3556
3557 if (!ret)
3558 break;
3559
3560 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3561 MEM_CGROUP_RECLAIM_NOSWAP |
3562 MEM_CGROUP_RECLAIM_SHRINK,
3563 NULL);
3564 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3565 /* Usage is reduced ? */
3566 if (curusage >= oldusage)
3567 retry_count--;
3568 else
3569 oldusage = curusage;
3570 }
3571 if (!ret && enlarge)
3572 memcg_oom_recover(memcg);
3573 return ret;
3574 }
3575
3576 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3577 gfp_t gfp_mask,
3578 unsigned long *total_scanned)
3579 {
3580 unsigned long nr_reclaimed = 0;
3581 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3582 unsigned long reclaimed;
3583 int loop = 0;
3584 struct mem_cgroup_tree_per_zone *mctz;
3585 unsigned long long excess;
3586 unsigned long nr_scanned;
3587
3588 if (order > 0)
3589 return 0;
3590
3591 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3592 /*
3593 * This loop can run a while, specially if mem_cgroup's continuously
3594 * keep exceeding their soft limit and putting the system under
3595 * pressure
3596 */
3597 do {
3598 if (next_mz)
3599 mz = next_mz;
3600 else
3601 mz = mem_cgroup_largest_soft_limit_node(mctz);
3602 if (!mz)
3603 break;
3604
3605 nr_scanned = 0;
3606 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3607 gfp_mask,
3608 MEM_CGROUP_RECLAIM_SOFT,
3609 &nr_scanned);
3610 nr_reclaimed += reclaimed;
3611 *total_scanned += nr_scanned;
3612 spin_lock(&mctz->lock);
3613
3614 /*
3615 * If we failed to reclaim anything from this memory cgroup
3616 * it is time to move on to the next cgroup
3617 */
3618 next_mz = NULL;
3619 if (!reclaimed) {
3620 do {
3621 /*
3622 * Loop until we find yet another one.
3623 *
3624 * By the time we get the soft_limit lock
3625 * again, someone might have aded the
3626 * group back on the RB tree. Iterate to
3627 * make sure we get a different mem.
3628 * mem_cgroup_largest_soft_limit_node returns
3629 * NULL if no other cgroup is present on
3630 * the tree
3631 */
3632 next_mz =
3633 __mem_cgroup_largest_soft_limit_node(mctz);
3634 if (next_mz == mz)
3635 css_put(&next_mz->mem->css);
3636 else /* next_mz == NULL or other memcg */
3637 break;
3638 } while (1);
3639 }
3640 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3641 excess = res_counter_soft_limit_excess(&mz->mem->res);
3642 /*
3643 * One school of thought says that we should not add
3644 * back the node to the tree if reclaim returns 0.
3645 * But our reclaim could return 0, simply because due
3646 * to priority we are exposing a smaller subset of
3647 * memory to reclaim from. Consider this as a longer
3648 * term TODO.
3649 */
3650 /* If excess == 0, no tree ops */
3651 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3652 spin_unlock(&mctz->lock);
3653 css_put(&mz->mem->css);
3654 loop++;
3655 /*
3656 * Could not reclaim anything and there are no more
3657 * mem cgroups to try or we seem to be looping without
3658 * reclaiming anything.
3659 */
3660 if (!nr_reclaimed &&
3661 (next_mz == NULL ||
3662 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3663 break;
3664 } while (!nr_reclaimed);
3665 if (next_mz)
3666 css_put(&next_mz->mem->css);
3667 return nr_reclaimed;
3668 }
3669
3670 /*
3671 * This routine traverse page_cgroup in given list and drop them all.
3672 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3673 */
3674 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3675 int node, int zid, enum lru_list lru)
3676 {
3677 struct zone *zone;
3678 struct mem_cgroup_per_zone *mz;
3679 struct page_cgroup *pc, *busy;
3680 unsigned long flags, loop;
3681 struct list_head *list;
3682 int ret = 0;
3683
3684 zone = &NODE_DATA(node)->node_zones[zid];
3685 mz = mem_cgroup_zoneinfo(mem, node, zid);
3686 list = &mz->lists[lru];
3687
3688 loop = MEM_CGROUP_ZSTAT(mz, lru);
3689 /* give some margin against EBUSY etc...*/
3690 loop += 256;
3691 busy = NULL;
3692 while (loop--) {
3693 struct page *page;
3694
3695 ret = 0;
3696 spin_lock_irqsave(&zone->lru_lock, flags);
3697 if (list_empty(list)) {
3698 spin_unlock_irqrestore(&zone->lru_lock, flags);
3699 break;
3700 }
3701 pc = list_entry(list->prev, struct page_cgroup, lru);
3702 if (busy == pc) {
3703 list_move(&pc->lru, list);
3704 busy = NULL;
3705 spin_unlock_irqrestore(&zone->lru_lock, flags);
3706 continue;
3707 }
3708 spin_unlock_irqrestore(&zone->lru_lock, flags);
3709
3710 page = lookup_cgroup_page(pc);
3711
3712 ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3713 if (ret == -ENOMEM)
3714 break;
3715
3716 if (ret == -EBUSY || ret == -EINVAL) {
3717 /* found lock contention or "pc" is obsolete. */
3718 busy = pc;
3719 cond_resched();
3720 } else
3721 busy = NULL;
3722 }
3723
3724 if (!ret && !list_empty(list))
3725 return -EBUSY;
3726 return ret;
3727 }
3728
3729 /*
3730 * make mem_cgroup's charge to be 0 if there is no task.
3731 * This enables deleting this mem_cgroup.
3732 */
3733 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3734 {
3735 int ret;
3736 int node, zid, shrink;
3737 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3738 struct cgroup *cgrp = mem->css.cgroup;
3739
3740 css_get(&mem->css);
3741
3742 shrink = 0;
3743 /* should free all ? */
3744 if (free_all)
3745 goto try_to_free;
3746 move_account:
3747 do {
3748 ret = -EBUSY;
3749 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3750 goto out;
3751 ret = -EINTR;
3752 if (signal_pending(current))
3753 goto out;
3754 /* This is for making all *used* pages to be on LRU. */
3755 lru_add_drain_all();
3756 drain_all_stock_sync();
3757 ret = 0;
3758 mem_cgroup_start_move(mem);
3759 for_each_node_state(node, N_HIGH_MEMORY) {
3760 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3761 enum lru_list l;
3762 for_each_lru(l) {
3763 ret = mem_cgroup_force_empty_list(mem,
3764 node, zid, l);
3765 if (ret)
3766 break;
3767 }
3768 }
3769 if (ret)
3770 break;
3771 }
3772 mem_cgroup_end_move(mem);
3773 memcg_oom_recover(mem);
3774 /* it seems parent cgroup doesn't have enough mem */
3775 if (ret == -ENOMEM)
3776 goto try_to_free;
3777 cond_resched();
3778 /* "ret" should also be checked to ensure all lists are empty. */
3779 } while (mem->res.usage > 0 || ret);
3780 out:
3781 css_put(&mem->css);
3782 return ret;
3783
3784 try_to_free:
3785 /* returns EBUSY if there is a task or if we come here twice. */
3786 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3787 ret = -EBUSY;
3788 goto out;
3789 }
3790 /* we call try-to-free pages for make this cgroup empty */
3791 lru_add_drain_all();
3792 /* try to free all pages in this cgroup */
3793 shrink = 1;
3794 while (nr_retries && mem->res.usage > 0) {
3795 int progress;
3796
3797 if (signal_pending(current)) {
3798 ret = -EINTR;
3799 goto out;
3800 }
3801 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3802 false);
3803 if (!progress) {
3804 nr_retries--;
3805 /* maybe some writeback is necessary */
3806 congestion_wait(BLK_RW_ASYNC, HZ/10);
3807 }
3808
3809 }
3810 lru_add_drain();
3811 /* try move_account...there may be some *locked* pages. */
3812 goto move_account;
3813 }
3814
3815 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3816 {
3817 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3818 }
3819
3820
3821 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3822 {
3823 return mem_cgroup_from_cont(cont)->use_hierarchy;
3824 }
3825
3826 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3827 u64 val)
3828 {
3829 int retval = 0;
3830 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3831 struct cgroup *parent = cont->parent;
3832 struct mem_cgroup *parent_mem = NULL;
3833
3834 if (parent)
3835 parent_mem = mem_cgroup_from_cont(parent);
3836
3837 cgroup_lock();
3838 /*
3839 * If parent's use_hierarchy is set, we can't make any modifications
3840 * in the child subtrees. If it is unset, then the change can
3841 * occur, provided the current cgroup has no children.
3842 *
3843 * For the root cgroup, parent_mem is NULL, we allow value to be
3844 * set if there are no children.
3845 */
3846 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3847 (val == 1 || val == 0)) {
3848 if (list_empty(&cont->children))
3849 mem->use_hierarchy = val;
3850 else
3851 retval = -EBUSY;
3852 } else
3853 retval = -EINVAL;
3854 cgroup_unlock();
3855
3856 return retval;
3857 }
3858
3859
3860 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
3861 enum mem_cgroup_stat_index idx)
3862 {
3863 struct mem_cgroup *iter;
3864 long val = 0;
3865
3866 /* Per-cpu values can be negative, use a signed accumulator */
3867 for_each_mem_cgroup_tree(iter, mem)
3868 val += mem_cgroup_read_stat(iter, idx);
3869
3870 if (val < 0) /* race ? */
3871 val = 0;
3872 return val;
3873 }
3874
3875 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3876 {
3877 u64 val;
3878
3879 if (!mem_cgroup_is_root(mem)) {
3880 if (!swap)
3881 return res_counter_read_u64(&mem->res, RES_USAGE);
3882 else
3883 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3884 }
3885
3886 val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
3887 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
3888
3889 if (swap)
3890 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3891
3892 return val << PAGE_SHIFT;
3893 }
3894
3895 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3896 {
3897 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3898 u64 val;
3899 int type, name;
3900
3901 type = MEMFILE_TYPE(cft->private);
3902 name = MEMFILE_ATTR(cft->private);
3903 switch (type) {
3904 case _MEM:
3905 if (name == RES_USAGE)
3906 val = mem_cgroup_usage(mem, false);
3907 else
3908 val = res_counter_read_u64(&mem->res, name);
3909 break;
3910 case _MEMSWAP:
3911 if (name == RES_USAGE)
3912 val = mem_cgroup_usage(mem, true);
3913 else
3914 val = res_counter_read_u64(&mem->memsw, name);
3915 break;
3916 default:
3917 BUG();
3918 break;
3919 }
3920 return val;
3921 }
3922 /*
3923 * The user of this function is...
3924 * RES_LIMIT.
3925 */
3926 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3927 const char *buffer)
3928 {
3929 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3930 int type, name;
3931 unsigned long long val;
3932 int ret;
3933
3934 type = MEMFILE_TYPE(cft->private);
3935 name = MEMFILE_ATTR(cft->private);
3936 switch (name) {
3937 case RES_LIMIT:
3938 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3939 ret = -EINVAL;
3940 break;
3941 }
3942 /* This function does all necessary parse...reuse it */
3943 ret = res_counter_memparse_write_strategy(buffer, &val);
3944 if (ret)
3945 break;
3946 if (type == _MEM)
3947 ret = mem_cgroup_resize_limit(memcg, val);
3948 else
3949 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3950 break;
3951 case RES_SOFT_LIMIT:
3952 ret = res_counter_memparse_write_strategy(buffer, &val);
3953 if (ret)
3954 break;
3955 /*
3956 * For memsw, soft limits are hard to implement in terms
3957 * of semantics, for now, we support soft limits for
3958 * control without swap
3959 */
3960 if (type == _MEM)
3961 ret = res_counter_set_soft_limit(&memcg->res, val);
3962 else
3963 ret = -EINVAL;
3964 break;
3965 default:
3966 ret = -EINVAL; /* should be BUG() ? */
3967 break;
3968 }
3969 return ret;
3970 }
3971
3972 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3973 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3974 {
3975 struct cgroup *cgroup;
3976 unsigned long long min_limit, min_memsw_limit, tmp;
3977
3978 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3979 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3980 cgroup = memcg->css.cgroup;
3981 if (!memcg->use_hierarchy)
3982 goto out;
3983
3984 while (cgroup->parent) {
3985 cgroup = cgroup->parent;
3986 memcg = mem_cgroup_from_cont(cgroup);
3987 if (!memcg->use_hierarchy)
3988 break;
3989 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3990 min_limit = min(min_limit, tmp);
3991 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3992 min_memsw_limit = min(min_memsw_limit, tmp);
3993 }
3994 out:
3995 *mem_limit = min_limit;
3996 *memsw_limit = min_memsw_limit;
3997 return;
3998 }
3999
4000 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4001 {
4002 struct mem_cgroup *mem;
4003 int type, name;
4004
4005 mem = mem_cgroup_from_cont(cont);
4006 type = MEMFILE_TYPE(event);
4007 name = MEMFILE_ATTR(event);
4008 switch (name) {
4009 case RES_MAX_USAGE:
4010 if (type == _MEM)
4011 res_counter_reset_max(&mem->res);
4012 else
4013 res_counter_reset_max(&mem->memsw);
4014 break;
4015 case RES_FAILCNT:
4016 if (type == _MEM)
4017 res_counter_reset_failcnt(&mem->res);
4018 else
4019 res_counter_reset_failcnt(&mem->memsw);
4020 break;
4021 }
4022
4023 return 0;
4024 }
4025
4026 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4027 struct cftype *cft)
4028 {
4029 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4030 }
4031
4032 #ifdef CONFIG_MMU
4033 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4034 struct cftype *cft, u64 val)
4035 {
4036 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4037
4038 if (val >= (1 << NR_MOVE_TYPE))
4039 return -EINVAL;
4040 /*
4041 * We check this value several times in both in can_attach() and
4042 * attach(), so we need cgroup lock to prevent this value from being
4043 * inconsistent.
4044 */
4045 cgroup_lock();
4046 mem->move_charge_at_immigrate = val;
4047 cgroup_unlock();
4048
4049 return 0;
4050 }
4051 #else
4052 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4053 struct cftype *cft, u64 val)
4054 {
4055 return -ENOSYS;
4056 }
4057 #endif
4058
4059
4060 /* For read statistics */
4061 enum {
4062 MCS_CACHE,
4063 MCS_RSS,
4064 MCS_FILE_MAPPED,
4065 MCS_PGPGIN,
4066 MCS_PGPGOUT,
4067 MCS_SWAP,
4068 MCS_PGFAULT,
4069 MCS_PGMAJFAULT,
4070 MCS_INACTIVE_ANON,
4071 MCS_ACTIVE_ANON,
4072 MCS_INACTIVE_FILE,
4073 MCS_ACTIVE_FILE,
4074 MCS_UNEVICTABLE,
4075 NR_MCS_STAT,
4076 };
4077
4078 struct mcs_total_stat {
4079 s64 stat[NR_MCS_STAT];
4080 };
4081
4082 struct {
4083 char *local_name;
4084 char *total_name;
4085 } memcg_stat_strings[NR_MCS_STAT] = {
4086 {"cache", "total_cache"},
4087 {"rss", "total_rss"},
4088 {"mapped_file", "total_mapped_file"},
4089 {"pgpgin", "total_pgpgin"},
4090 {"pgpgout", "total_pgpgout"},
4091 {"swap", "total_swap"},
4092 {"pgfault", "total_pgfault"},
4093 {"pgmajfault", "total_pgmajfault"},
4094 {"inactive_anon", "total_inactive_anon"},
4095 {"active_anon", "total_active_anon"},
4096 {"inactive_file", "total_inactive_file"},
4097 {"active_file", "total_active_file"},
4098 {"unevictable", "total_unevictable"}
4099 };
4100
4101
4102 static void
4103 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4104 {
4105 s64 val;
4106
4107 /* per cpu stat */
4108 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
4109 s->stat[MCS_CACHE] += val * PAGE_SIZE;
4110 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
4111 s->stat[MCS_RSS] += val * PAGE_SIZE;
4112 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
4113 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4114 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
4115 s->stat[MCS_PGPGIN] += val;
4116 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
4117 s->stat[MCS_PGPGOUT] += val;
4118 if (do_swap_account) {
4119 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
4120 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4121 }
4122 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT);
4123 s->stat[MCS_PGFAULT] += val;
4124 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT);
4125 s->stat[MCS_PGMAJFAULT] += val;
4126
4127 /* per zone stat */
4128 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_ANON));
4129 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4130 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_ANON));
4131 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4132 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_FILE));
4133 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4134 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_FILE));
4135 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4136 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_UNEVICTABLE));
4137 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4138 }
4139
4140 static void
4141 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4142 {
4143 struct mem_cgroup *iter;
4144
4145 for_each_mem_cgroup_tree(iter, mem)
4146 mem_cgroup_get_local_stat(iter, s);
4147 }
4148
4149 #ifdef CONFIG_NUMA
4150 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4151 {
4152 int nid;
4153 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4154 unsigned long node_nr;
4155 struct cgroup *cont = m->private;
4156 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4157
4158 total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4159 seq_printf(m, "total=%lu", total_nr);
4160 for_each_node_state(nid, N_HIGH_MEMORY) {
4161 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4162 seq_printf(m, " N%d=%lu", nid, node_nr);
4163 }
4164 seq_putc(m, '\n');
4165
4166 file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4167 seq_printf(m, "file=%lu", file_nr);
4168 for_each_node_state(nid, N_HIGH_MEMORY) {
4169 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4170 LRU_ALL_FILE);
4171 seq_printf(m, " N%d=%lu", nid, node_nr);
4172 }
4173 seq_putc(m, '\n');
4174
4175 anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4176 seq_printf(m, "anon=%lu", anon_nr);
4177 for_each_node_state(nid, N_HIGH_MEMORY) {
4178 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4179 LRU_ALL_ANON);
4180 seq_printf(m, " N%d=%lu", nid, node_nr);
4181 }
4182 seq_putc(m, '\n');
4183
4184 unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4185 seq_printf(m, "unevictable=%lu", unevictable_nr);
4186 for_each_node_state(nid, N_HIGH_MEMORY) {
4187 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4188 BIT(LRU_UNEVICTABLE));
4189 seq_printf(m, " N%d=%lu", nid, node_nr);
4190 }
4191 seq_putc(m, '\n');
4192 return 0;
4193 }
4194 #endif /* CONFIG_NUMA */
4195
4196 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4197 struct cgroup_map_cb *cb)
4198 {
4199 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4200 struct mcs_total_stat mystat;
4201 int i;
4202
4203 memset(&mystat, 0, sizeof(mystat));
4204 mem_cgroup_get_local_stat(mem_cont, &mystat);
4205
4206
4207 for (i = 0; i < NR_MCS_STAT; i++) {
4208 if (i == MCS_SWAP && !do_swap_account)
4209 continue;
4210 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4211 }
4212
4213 /* Hierarchical information */
4214 {
4215 unsigned long long limit, memsw_limit;
4216 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4217 cb->fill(cb, "hierarchical_memory_limit", limit);
4218 if (do_swap_account)
4219 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4220 }
4221
4222 memset(&mystat, 0, sizeof(mystat));
4223 mem_cgroup_get_total_stat(mem_cont, &mystat);
4224 for (i = 0; i < NR_MCS_STAT; i++) {
4225 if (i == MCS_SWAP && !do_swap_account)
4226 continue;
4227 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4228 }
4229
4230 #ifdef CONFIG_DEBUG_VM
4231 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
4232
4233 {
4234 int nid, zid;
4235 struct mem_cgroup_per_zone *mz;
4236 unsigned long recent_rotated[2] = {0, 0};
4237 unsigned long recent_scanned[2] = {0, 0};
4238
4239 for_each_online_node(nid)
4240 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4241 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4242
4243 recent_rotated[0] +=
4244 mz->reclaim_stat.recent_rotated[0];
4245 recent_rotated[1] +=
4246 mz->reclaim_stat.recent_rotated[1];
4247 recent_scanned[0] +=
4248 mz->reclaim_stat.recent_scanned[0];
4249 recent_scanned[1] +=
4250 mz->reclaim_stat.recent_scanned[1];
4251 }
4252 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4253 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4254 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4255 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4256 }
4257 #endif
4258
4259 return 0;
4260 }
4261
4262 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4263 {
4264 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4265
4266 return mem_cgroup_swappiness(memcg);
4267 }
4268
4269 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4270 u64 val)
4271 {
4272 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4273 struct mem_cgroup *parent;
4274
4275 if (val > 100)
4276 return -EINVAL;
4277
4278 if (cgrp->parent == NULL)
4279 return -EINVAL;
4280
4281 parent = mem_cgroup_from_cont(cgrp->parent);
4282
4283 cgroup_lock();
4284
4285 /* If under hierarchy, only empty-root can set this value */
4286 if ((parent->use_hierarchy) ||
4287 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4288 cgroup_unlock();
4289 return -EINVAL;
4290 }
4291
4292 memcg->swappiness = val;
4293
4294 cgroup_unlock();
4295
4296 return 0;
4297 }
4298
4299 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4300 {
4301 struct mem_cgroup_threshold_ary *t;
4302 u64 usage;
4303 int i;
4304
4305 rcu_read_lock();
4306 if (!swap)
4307 t = rcu_dereference(memcg->thresholds.primary);
4308 else
4309 t = rcu_dereference(memcg->memsw_thresholds.primary);
4310
4311 if (!t)
4312 goto unlock;
4313
4314 usage = mem_cgroup_usage(memcg, swap);
4315
4316 /*
4317 * current_threshold points to threshold just below usage.
4318 * If it's not true, a threshold was crossed after last
4319 * call of __mem_cgroup_threshold().
4320 */
4321 i = t->current_threshold;
4322
4323 /*
4324 * Iterate backward over array of thresholds starting from
4325 * current_threshold and check if a threshold is crossed.
4326 * If none of thresholds below usage is crossed, we read
4327 * only one element of the array here.
4328 */
4329 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4330 eventfd_signal(t->entries[i].eventfd, 1);
4331
4332 /* i = current_threshold + 1 */
4333 i++;
4334
4335 /*
4336 * Iterate forward over array of thresholds starting from
4337 * current_threshold+1 and check if a threshold is crossed.
4338 * If none of thresholds above usage is crossed, we read
4339 * only one element of the array here.
4340 */
4341 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4342 eventfd_signal(t->entries[i].eventfd, 1);
4343
4344 /* Update current_threshold */
4345 t->current_threshold = i - 1;
4346 unlock:
4347 rcu_read_unlock();
4348 }
4349
4350 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4351 {
4352 while (memcg) {
4353 __mem_cgroup_threshold(memcg, false);
4354 if (do_swap_account)
4355 __mem_cgroup_threshold(memcg, true);
4356
4357 memcg = parent_mem_cgroup(memcg);
4358 }
4359 }
4360
4361 static int compare_thresholds(const void *a, const void *b)
4362 {
4363 const struct mem_cgroup_threshold *_a = a;
4364 const struct mem_cgroup_threshold *_b = b;
4365
4366 return _a->threshold - _b->threshold;
4367 }
4368
4369 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
4370 {
4371 struct mem_cgroup_eventfd_list *ev;
4372
4373 list_for_each_entry(ev, &mem->oom_notify, list)
4374 eventfd_signal(ev->eventfd, 1);
4375 return 0;
4376 }
4377
4378 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
4379 {
4380 struct mem_cgroup *iter;
4381
4382 for_each_mem_cgroup_tree(iter, mem)
4383 mem_cgroup_oom_notify_cb(iter);
4384 }
4385
4386 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4387 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4388 {
4389 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4390 struct mem_cgroup_thresholds *thresholds;
4391 struct mem_cgroup_threshold_ary *new;
4392 int type = MEMFILE_TYPE(cft->private);
4393 u64 threshold, usage;
4394 int i, size, ret;
4395
4396 ret = res_counter_memparse_write_strategy(args, &threshold);
4397 if (ret)
4398 return ret;
4399
4400 mutex_lock(&memcg->thresholds_lock);
4401
4402 if (type == _MEM)
4403 thresholds = &memcg->thresholds;
4404 else if (type == _MEMSWAP)
4405 thresholds = &memcg->memsw_thresholds;
4406 else
4407 BUG();
4408
4409 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4410
4411 /* Check if a threshold crossed before adding a new one */
4412 if (thresholds->primary)
4413 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4414
4415 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4416
4417 /* Allocate memory for new array of thresholds */
4418 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4419 GFP_KERNEL);
4420 if (!new) {
4421 ret = -ENOMEM;
4422 goto unlock;
4423 }
4424 new->size = size;
4425
4426 /* Copy thresholds (if any) to new array */
4427 if (thresholds->primary) {
4428 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4429 sizeof(struct mem_cgroup_threshold));
4430 }
4431
4432 /* Add new threshold */
4433 new->entries[size - 1].eventfd = eventfd;
4434 new->entries[size - 1].threshold = threshold;
4435
4436 /* Sort thresholds. Registering of new threshold isn't time-critical */
4437 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4438 compare_thresholds, NULL);
4439
4440 /* Find current threshold */
4441 new->current_threshold = -1;
4442 for (i = 0; i < size; i++) {
4443 if (new->entries[i].threshold < usage) {
4444 /*
4445 * new->current_threshold will not be used until
4446 * rcu_assign_pointer(), so it's safe to increment
4447 * it here.
4448 */
4449 ++new->current_threshold;
4450 }
4451 }
4452
4453 /* Free old spare buffer and save old primary buffer as spare */
4454 kfree(thresholds->spare);
4455 thresholds->spare = thresholds->primary;
4456
4457 rcu_assign_pointer(thresholds->primary, new);
4458
4459 /* To be sure that nobody uses thresholds */
4460 synchronize_rcu();
4461
4462 unlock:
4463 mutex_unlock(&memcg->thresholds_lock);
4464
4465 return ret;
4466 }
4467
4468 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4469 struct cftype *cft, struct eventfd_ctx *eventfd)
4470 {
4471 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4472 struct mem_cgroup_thresholds *thresholds;
4473 struct mem_cgroup_threshold_ary *new;
4474 int type = MEMFILE_TYPE(cft->private);
4475 u64 usage;
4476 int i, j, size;
4477
4478 mutex_lock(&memcg->thresholds_lock);
4479 if (type == _MEM)
4480 thresholds = &memcg->thresholds;
4481 else if (type == _MEMSWAP)
4482 thresholds = &memcg->memsw_thresholds;
4483 else
4484 BUG();
4485
4486 /*
4487 * Something went wrong if we trying to unregister a threshold
4488 * if we don't have thresholds
4489 */
4490 BUG_ON(!thresholds);
4491
4492 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4493
4494 /* Check if a threshold crossed before removing */
4495 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4496
4497 /* Calculate new number of threshold */
4498 size = 0;
4499 for (i = 0; i < thresholds->primary->size; i++) {
4500 if (thresholds->primary->entries[i].eventfd != eventfd)
4501 size++;
4502 }
4503
4504 new = thresholds->spare;
4505
4506 /* Set thresholds array to NULL if we don't have thresholds */
4507 if (!size) {
4508 kfree(new);
4509 new = NULL;
4510 goto swap_buffers;
4511 }
4512
4513 new->size = size;
4514
4515 /* Copy thresholds and find current threshold */
4516 new->current_threshold = -1;
4517 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4518 if (thresholds->primary->entries[i].eventfd == eventfd)
4519 continue;
4520
4521 new->entries[j] = thresholds->primary->entries[i];
4522 if (new->entries[j].threshold < usage) {
4523 /*
4524 * new->current_threshold will not be used
4525 * until rcu_assign_pointer(), so it's safe to increment
4526 * it here.
4527 */
4528 ++new->current_threshold;
4529 }
4530 j++;
4531 }
4532
4533 swap_buffers:
4534 /* Swap primary and spare array */
4535 thresholds->spare = thresholds->primary;
4536 rcu_assign_pointer(thresholds->primary, new);
4537
4538 /* To be sure that nobody uses thresholds */
4539 synchronize_rcu();
4540
4541 mutex_unlock(&memcg->thresholds_lock);
4542 }
4543
4544 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4545 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4546 {
4547 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4548 struct mem_cgroup_eventfd_list *event;
4549 int type = MEMFILE_TYPE(cft->private);
4550
4551 BUG_ON(type != _OOM_TYPE);
4552 event = kmalloc(sizeof(*event), GFP_KERNEL);
4553 if (!event)
4554 return -ENOMEM;
4555
4556 spin_lock(&memcg_oom_lock);
4557
4558 event->eventfd = eventfd;
4559 list_add(&event->list, &memcg->oom_notify);
4560
4561 /* already in OOM ? */
4562 if (atomic_read(&memcg->under_oom))
4563 eventfd_signal(eventfd, 1);
4564 spin_unlock(&memcg_oom_lock);
4565
4566 return 0;
4567 }
4568
4569 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4570 struct cftype *cft, struct eventfd_ctx *eventfd)
4571 {
4572 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4573 struct mem_cgroup_eventfd_list *ev, *tmp;
4574 int type = MEMFILE_TYPE(cft->private);
4575
4576 BUG_ON(type != _OOM_TYPE);
4577
4578 spin_lock(&memcg_oom_lock);
4579
4580 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4581 if (ev->eventfd == eventfd) {
4582 list_del(&ev->list);
4583 kfree(ev);
4584 }
4585 }
4586
4587 spin_unlock(&memcg_oom_lock);
4588 }
4589
4590 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4591 struct cftype *cft, struct cgroup_map_cb *cb)
4592 {
4593 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4594
4595 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4596
4597 if (atomic_read(&mem->under_oom))
4598 cb->fill(cb, "under_oom", 1);
4599 else
4600 cb->fill(cb, "under_oom", 0);
4601 return 0;
4602 }
4603
4604 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4605 struct cftype *cft, u64 val)
4606 {
4607 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4608 struct mem_cgroup *parent;
4609
4610 /* cannot set to root cgroup and only 0 and 1 are allowed */
4611 if (!cgrp->parent || !((val == 0) || (val == 1)))
4612 return -EINVAL;
4613
4614 parent = mem_cgroup_from_cont(cgrp->parent);
4615
4616 cgroup_lock();
4617 /* oom-kill-disable is a flag for subhierarchy. */
4618 if ((parent->use_hierarchy) ||
4619 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4620 cgroup_unlock();
4621 return -EINVAL;
4622 }
4623 mem->oom_kill_disable = val;
4624 if (!val)
4625 memcg_oom_recover(mem);
4626 cgroup_unlock();
4627 return 0;
4628 }
4629
4630 #ifdef CONFIG_NUMA
4631 static const struct file_operations mem_control_numa_stat_file_operations = {
4632 .read = seq_read,
4633 .llseek = seq_lseek,
4634 .release = single_release,
4635 };
4636
4637 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4638 {
4639 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4640
4641 file->f_op = &mem_control_numa_stat_file_operations;
4642 return single_open(file, mem_control_numa_stat_show, cont);
4643 }
4644 #endif /* CONFIG_NUMA */
4645
4646 static struct cftype mem_cgroup_files[] = {
4647 {
4648 .name = "usage_in_bytes",
4649 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4650 .read_u64 = mem_cgroup_read,
4651 .register_event = mem_cgroup_usage_register_event,
4652 .unregister_event = mem_cgroup_usage_unregister_event,
4653 },
4654 {
4655 .name = "max_usage_in_bytes",
4656 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4657 .trigger = mem_cgroup_reset,
4658 .read_u64 = mem_cgroup_read,
4659 },
4660 {
4661 .name = "limit_in_bytes",
4662 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4663 .write_string = mem_cgroup_write,
4664 .read_u64 = mem_cgroup_read,
4665 },
4666 {
4667 .name = "soft_limit_in_bytes",
4668 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4669 .write_string = mem_cgroup_write,
4670 .read_u64 = mem_cgroup_read,
4671 },
4672 {
4673 .name = "failcnt",
4674 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4675 .trigger = mem_cgroup_reset,
4676 .read_u64 = mem_cgroup_read,
4677 },
4678 {
4679 .name = "stat",
4680 .read_map = mem_control_stat_show,
4681 },
4682 {
4683 .name = "force_empty",
4684 .trigger = mem_cgroup_force_empty_write,
4685 },
4686 {
4687 .name = "use_hierarchy",
4688 .write_u64 = mem_cgroup_hierarchy_write,
4689 .read_u64 = mem_cgroup_hierarchy_read,
4690 },
4691 {
4692 .name = "swappiness",
4693 .read_u64 = mem_cgroup_swappiness_read,
4694 .write_u64 = mem_cgroup_swappiness_write,
4695 },
4696 {
4697 .name = "move_charge_at_immigrate",
4698 .read_u64 = mem_cgroup_move_charge_read,
4699 .write_u64 = mem_cgroup_move_charge_write,
4700 },
4701 {
4702 .name = "oom_control",
4703 .read_map = mem_cgroup_oom_control_read,
4704 .write_u64 = mem_cgroup_oom_control_write,
4705 .register_event = mem_cgroup_oom_register_event,
4706 .unregister_event = mem_cgroup_oom_unregister_event,
4707 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4708 },
4709 #ifdef CONFIG_NUMA
4710 {
4711 .name = "numa_stat",
4712 .open = mem_control_numa_stat_open,
4713 .mode = S_IRUGO,
4714 },
4715 #endif
4716 };
4717
4718 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4719 static struct cftype memsw_cgroup_files[] = {
4720 {
4721 .name = "memsw.usage_in_bytes",
4722 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4723 .read_u64 = mem_cgroup_read,
4724 .register_event = mem_cgroup_usage_register_event,
4725 .unregister_event = mem_cgroup_usage_unregister_event,
4726 },
4727 {
4728 .name = "memsw.max_usage_in_bytes",
4729 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4730 .trigger = mem_cgroup_reset,
4731 .read_u64 = mem_cgroup_read,
4732 },
4733 {
4734 .name = "memsw.limit_in_bytes",
4735 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4736 .write_string = mem_cgroup_write,
4737 .read_u64 = mem_cgroup_read,
4738 },
4739 {
4740 .name = "memsw.failcnt",
4741 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4742 .trigger = mem_cgroup_reset,
4743 .read_u64 = mem_cgroup_read,
4744 },
4745 };
4746
4747 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4748 {
4749 if (!do_swap_account)
4750 return 0;
4751 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4752 ARRAY_SIZE(memsw_cgroup_files));
4753 };
4754 #else
4755 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4756 {
4757 return 0;
4758 }
4759 #endif
4760
4761 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4762 {
4763 struct mem_cgroup_per_node *pn;
4764 struct mem_cgroup_per_zone *mz;
4765 enum lru_list l;
4766 int zone, tmp = node;
4767 /*
4768 * This routine is called against possible nodes.
4769 * But it's BUG to call kmalloc() against offline node.
4770 *
4771 * TODO: this routine can waste much memory for nodes which will
4772 * never be onlined. It's better to use memory hotplug callback
4773 * function.
4774 */
4775 if (!node_state(node, N_NORMAL_MEMORY))
4776 tmp = -1;
4777 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4778 if (!pn)
4779 return 1;
4780
4781 mem->info.nodeinfo[node] = pn;
4782 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4783 mz = &pn->zoneinfo[zone];
4784 for_each_lru(l)
4785 INIT_LIST_HEAD(&mz->lists[l]);
4786 mz->usage_in_excess = 0;
4787 mz->on_tree = false;
4788 mz->mem = mem;
4789 }
4790 return 0;
4791 }
4792
4793 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4794 {
4795 kfree(mem->info.nodeinfo[node]);
4796 }
4797
4798 static struct mem_cgroup *mem_cgroup_alloc(void)
4799 {
4800 struct mem_cgroup *mem;
4801 int size = sizeof(struct mem_cgroup);
4802
4803 /* Can be very big if MAX_NUMNODES is very big */
4804 if (size < PAGE_SIZE)
4805 mem = kzalloc(size, GFP_KERNEL);
4806 else
4807 mem = vzalloc(size);
4808
4809 if (!mem)
4810 return NULL;
4811
4812 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4813 if (!mem->stat)
4814 goto out_free;
4815 spin_lock_init(&mem->pcp_counter_lock);
4816 return mem;
4817
4818 out_free:
4819 if (size < PAGE_SIZE)
4820 kfree(mem);
4821 else
4822 vfree(mem);
4823 return NULL;
4824 }
4825
4826 /*
4827 * At destroying mem_cgroup, references from swap_cgroup can remain.
4828 * (scanning all at force_empty is too costly...)
4829 *
4830 * Instead of clearing all references at force_empty, we remember
4831 * the number of reference from swap_cgroup and free mem_cgroup when
4832 * it goes down to 0.
4833 *
4834 * Removal of cgroup itself succeeds regardless of refs from swap.
4835 */
4836
4837 static void __mem_cgroup_free(struct mem_cgroup *mem)
4838 {
4839 int node;
4840
4841 mem_cgroup_remove_from_trees(mem);
4842 free_css_id(&mem_cgroup_subsys, &mem->css);
4843
4844 for_each_node_state(node, N_POSSIBLE)
4845 free_mem_cgroup_per_zone_info(mem, node);
4846
4847 free_percpu(mem->stat);
4848 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4849 kfree(mem);
4850 else
4851 vfree(mem);
4852 }
4853
4854 static void mem_cgroup_get(struct mem_cgroup *mem)
4855 {
4856 atomic_inc(&mem->refcnt);
4857 }
4858
4859 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4860 {
4861 if (atomic_sub_and_test(count, &mem->refcnt)) {
4862 struct mem_cgroup *parent = parent_mem_cgroup(mem);
4863 __mem_cgroup_free(mem);
4864 if (parent)
4865 mem_cgroup_put(parent);
4866 }
4867 }
4868
4869 static void mem_cgroup_put(struct mem_cgroup *mem)
4870 {
4871 __mem_cgroup_put(mem, 1);
4872 }
4873
4874 /*
4875 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4876 */
4877 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4878 {
4879 if (!mem->res.parent)
4880 return NULL;
4881 return mem_cgroup_from_res_counter(mem->res.parent, res);
4882 }
4883
4884 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4885 static void __init enable_swap_cgroup(void)
4886 {
4887 if (!mem_cgroup_disabled() && really_do_swap_account)
4888 do_swap_account = 1;
4889 }
4890 #else
4891 static void __init enable_swap_cgroup(void)
4892 {
4893 }
4894 #endif
4895
4896 static int mem_cgroup_soft_limit_tree_init(void)
4897 {
4898 struct mem_cgroup_tree_per_node *rtpn;
4899 struct mem_cgroup_tree_per_zone *rtpz;
4900 int tmp, node, zone;
4901
4902 for_each_node_state(node, N_POSSIBLE) {
4903 tmp = node;
4904 if (!node_state(node, N_NORMAL_MEMORY))
4905 tmp = -1;
4906 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4907 if (!rtpn)
4908 return 1;
4909
4910 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4911
4912 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4913 rtpz = &rtpn->rb_tree_per_zone[zone];
4914 rtpz->rb_root = RB_ROOT;
4915 spin_lock_init(&rtpz->lock);
4916 }
4917 }
4918 return 0;
4919 }
4920
4921 static struct cgroup_subsys_state * __ref
4922 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4923 {
4924 struct mem_cgroup *mem, *parent;
4925 long error = -ENOMEM;
4926 int node;
4927
4928 mem = mem_cgroup_alloc();
4929 if (!mem)
4930 return ERR_PTR(error);
4931
4932 for_each_node_state(node, N_POSSIBLE)
4933 if (alloc_mem_cgroup_per_zone_info(mem, node))
4934 goto free_out;
4935
4936 /* root ? */
4937 if (cont->parent == NULL) {
4938 int cpu;
4939 enable_swap_cgroup();
4940 parent = NULL;
4941 root_mem_cgroup = mem;
4942 if (mem_cgroup_soft_limit_tree_init())
4943 goto free_out;
4944 for_each_possible_cpu(cpu) {
4945 struct memcg_stock_pcp *stock =
4946 &per_cpu(memcg_stock, cpu);
4947 INIT_WORK(&stock->work, drain_local_stock);
4948 }
4949 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4950 } else {
4951 parent = mem_cgroup_from_cont(cont->parent);
4952 mem->use_hierarchy = parent->use_hierarchy;
4953 mem->oom_kill_disable = parent->oom_kill_disable;
4954 }
4955
4956 if (parent && parent->use_hierarchy) {
4957 res_counter_init(&mem->res, &parent->res);
4958 res_counter_init(&mem->memsw, &parent->memsw);
4959 /*
4960 * We increment refcnt of the parent to ensure that we can
4961 * safely access it on res_counter_charge/uncharge.
4962 * This refcnt will be decremented when freeing this
4963 * mem_cgroup(see mem_cgroup_put).
4964 */
4965 mem_cgroup_get(parent);
4966 } else {
4967 res_counter_init(&mem->res, NULL);
4968 res_counter_init(&mem->memsw, NULL);
4969 }
4970 mem->last_scanned_child = 0;
4971 mem->last_scanned_node = MAX_NUMNODES;
4972 INIT_LIST_HEAD(&mem->oom_notify);
4973
4974 if (parent)
4975 mem->swappiness = mem_cgroup_swappiness(parent);
4976 atomic_set(&mem->refcnt, 1);
4977 mem->move_charge_at_immigrate = 0;
4978 mutex_init(&mem->thresholds_lock);
4979 return &mem->css;
4980 free_out:
4981 __mem_cgroup_free(mem);
4982 root_mem_cgroup = NULL;
4983 return ERR_PTR(error);
4984 }
4985
4986 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4987 struct cgroup *cont)
4988 {
4989 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4990
4991 return mem_cgroup_force_empty(mem, false);
4992 }
4993
4994 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4995 struct cgroup *cont)
4996 {
4997 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4998
4999 mem_cgroup_put(mem);
5000 }
5001
5002 static int mem_cgroup_populate(struct cgroup_subsys *ss,
5003 struct cgroup *cont)
5004 {
5005 int ret;
5006
5007 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5008 ARRAY_SIZE(mem_cgroup_files));
5009
5010 if (!ret)
5011 ret = register_memsw_files(cont, ss);
5012 return ret;
5013 }
5014
5015 #ifdef CONFIG_MMU
5016 /* Handlers for move charge at task migration. */
5017 #define PRECHARGE_COUNT_AT_ONCE 256
5018 static int mem_cgroup_do_precharge(unsigned long count)
5019 {
5020 int ret = 0;
5021 int batch_count = PRECHARGE_COUNT_AT_ONCE;
5022 struct mem_cgroup *mem = mc.to;
5023
5024 if (mem_cgroup_is_root(mem)) {
5025 mc.precharge += count;
5026 /* we don't need css_get for root */
5027 return ret;
5028 }
5029 /* try to charge at once */
5030 if (count > 1) {
5031 struct res_counter *dummy;
5032 /*
5033 * "mem" cannot be under rmdir() because we've already checked
5034 * by cgroup_lock_live_cgroup() that it is not removed and we
5035 * are still under the same cgroup_mutex. So we can postpone
5036 * css_get().
5037 */
5038 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
5039 goto one_by_one;
5040 if (do_swap_account && res_counter_charge(&mem->memsw,
5041 PAGE_SIZE * count, &dummy)) {
5042 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
5043 goto one_by_one;
5044 }
5045 mc.precharge += count;
5046 return ret;
5047 }
5048 one_by_one:
5049 /* fall back to one by one charge */
5050 while (count--) {
5051 if (signal_pending(current)) {
5052 ret = -EINTR;
5053 break;
5054 }
5055 if (!batch_count--) {
5056 batch_count = PRECHARGE_COUNT_AT_ONCE;
5057 cond_resched();
5058 }
5059 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
5060 if (ret || !mem)
5061 /* mem_cgroup_clear_mc() will do uncharge later */
5062 return -ENOMEM;
5063 mc.precharge++;
5064 }
5065 return ret;
5066 }
5067
5068 /**
5069 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5070 * @vma: the vma the pte to be checked belongs
5071 * @addr: the address corresponding to the pte to be checked
5072 * @ptent: the pte to be checked
5073 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5074 *
5075 * Returns
5076 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5077 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5078 * move charge. if @target is not NULL, the page is stored in target->page
5079 * with extra refcnt got(Callers should handle it).
5080 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5081 * target for charge migration. if @target is not NULL, the entry is stored
5082 * in target->ent.
5083 *
5084 * Called with pte lock held.
5085 */
5086 union mc_target {
5087 struct page *page;
5088 swp_entry_t ent;
5089 };
5090
5091 enum mc_target_type {
5092 MC_TARGET_NONE, /* not used */
5093 MC_TARGET_PAGE,
5094 MC_TARGET_SWAP,
5095 };
5096
5097 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5098 unsigned long addr, pte_t ptent)
5099 {
5100 struct page *page = vm_normal_page(vma, addr, ptent);
5101
5102 if (!page || !page_mapped(page))
5103 return NULL;
5104 if (PageAnon(page)) {
5105 /* we don't move shared anon */
5106 if (!move_anon() || page_mapcount(page) > 2)
5107 return NULL;
5108 } else if (!move_file())
5109 /* we ignore mapcount for file pages */
5110 return NULL;
5111 if (!get_page_unless_zero(page))
5112 return NULL;
5113
5114 return page;
5115 }
5116
5117 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5118 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5119 {
5120 int usage_count;
5121 struct page *page = NULL;
5122 swp_entry_t ent = pte_to_swp_entry(ptent);
5123
5124 if (!move_anon() || non_swap_entry(ent))
5125 return NULL;
5126 usage_count = mem_cgroup_count_swap_user(ent, &page);
5127 if (usage_count > 1) { /* we don't move shared anon */
5128 if (page)
5129 put_page(page);
5130 return NULL;
5131 }
5132 if (do_swap_account)
5133 entry->val = ent.val;
5134
5135 return page;
5136 }
5137
5138 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5139 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5140 {
5141 struct page *page = NULL;
5142 struct inode *inode;
5143 struct address_space *mapping;
5144 pgoff_t pgoff;
5145
5146 if (!vma->vm_file) /* anonymous vma */
5147 return NULL;
5148 if (!move_file())
5149 return NULL;
5150
5151 inode = vma->vm_file->f_path.dentry->d_inode;
5152 mapping = vma->vm_file->f_mapping;
5153 if (pte_none(ptent))
5154 pgoff = linear_page_index(vma, addr);
5155 else /* pte_file(ptent) is true */
5156 pgoff = pte_to_pgoff(ptent);
5157
5158 /* page is moved even if it's not RSS of this task(page-faulted). */
5159 if (!mapping_cap_swap_backed(mapping)) { /* normal file */
5160 page = find_get_page(mapping, pgoff);
5161 } else { /* shmem/tmpfs file. we should take account of swap too. */
5162 swp_entry_t ent;
5163 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
5164 if (do_swap_account)
5165 entry->val = ent.val;
5166 }
5167
5168 return page;
5169 }
5170
5171 static int is_target_pte_for_mc(struct vm_area_struct *vma,
5172 unsigned long addr, pte_t ptent, union mc_target *target)
5173 {
5174 struct page *page = NULL;
5175 struct page_cgroup *pc;
5176 int ret = 0;
5177 swp_entry_t ent = { .val = 0 };
5178
5179 if (pte_present(ptent))
5180 page = mc_handle_present_pte(vma, addr, ptent);
5181 else if (is_swap_pte(ptent))
5182 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5183 else if (pte_none(ptent) || pte_file(ptent))
5184 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5185
5186 if (!page && !ent.val)
5187 return 0;
5188 if (page) {
5189 pc = lookup_page_cgroup(page);
5190 /*
5191 * Do only loose check w/o page_cgroup lock.
5192 * mem_cgroup_move_account() checks the pc is valid or not under
5193 * the lock.
5194 */
5195 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5196 ret = MC_TARGET_PAGE;
5197 if (target)
5198 target->page = page;
5199 }
5200 if (!ret || !target)
5201 put_page(page);
5202 }
5203 /* There is a swap entry and a page doesn't exist or isn't charged */
5204 if (ent.val && !ret &&
5205 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5206 ret = MC_TARGET_SWAP;
5207 if (target)
5208 target->ent = ent;
5209 }
5210 return ret;
5211 }
5212
5213 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5214 unsigned long addr, unsigned long end,
5215 struct mm_walk *walk)
5216 {
5217 struct vm_area_struct *vma = walk->private;
5218 pte_t *pte;
5219 spinlock_t *ptl;
5220
5221 split_huge_page_pmd(walk->mm, pmd);
5222
5223 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5224 for (; addr != end; pte++, addr += PAGE_SIZE)
5225 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5226 mc.precharge++; /* increment precharge temporarily */
5227 pte_unmap_unlock(pte - 1, ptl);
5228 cond_resched();
5229
5230 return 0;
5231 }
5232
5233 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5234 {
5235 unsigned long precharge;
5236 struct vm_area_struct *vma;
5237
5238 down_read(&mm->mmap_sem);
5239 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5240 struct mm_walk mem_cgroup_count_precharge_walk = {
5241 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5242 .mm = mm,
5243 .private = vma,
5244 };
5245 if (is_vm_hugetlb_page(vma))
5246 continue;
5247 walk_page_range(vma->vm_start, vma->vm_end,
5248 &mem_cgroup_count_precharge_walk);
5249 }
5250 up_read(&mm->mmap_sem);
5251
5252 precharge = mc.precharge;
5253 mc.precharge = 0;
5254
5255 return precharge;
5256 }
5257
5258 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5259 {
5260 unsigned long precharge = mem_cgroup_count_precharge(mm);
5261
5262 VM_BUG_ON(mc.moving_task);
5263 mc.moving_task = current;
5264 return mem_cgroup_do_precharge(precharge);
5265 }
5266
5267 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5268 static void __mem_cgroup_clear_mc(void)
5269 {
5270 struct mem_cgroup *from = mc.from;
5271 struct mem_cgroup *to = mc.to;
5272
5273 /* we must uncharge all the leftover precharges from mc.to */
5274 if (mc.precharge) {
5275 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5276 mc.precharge = 0;
5277 }
5278 /*
5279 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5280 * we must uncharge here.
5281 */
5282 if (mc.moved_charge) {
5283 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5284 mc.moved_charge = 0;
5285 }
5286 /* we must fixup refcnts and charges */
5287 if (mc.moved_swap) {
5288 /* uncharge swap account from the old cgroup */
5289 if (!mem_cgroup_is_root(mc.from))
5290 res_counter_uncharge(&mc.from->memsw,
5291 PAGE_SIZE * mc.moved_swap);
5292 __mem_cgroup_put(mc.from, mc.moved_swap);
5293
5294 if (!mem_cgroup_is_root(mc.to)) {
5295 /*
5296 * we charged both to->res and to->memsw, so we should
5297 * uncharge to->res.
5298 */
5299 res_counter_uncharge(&mc.to->res,
5300 PAGE_SIZE * mc.moved_swap);
5301 }
5302 /* we've already done mem_cgroup_get(mc.to) */
5303 mc.moved_swap = 0;
5304 }
5305 memcg_oom_recover(from);
5306 memcg_oom_recover(to);
5307 wake_up_all(&mc.waitq);
5308 }
5309
5310 static void mem_cgroup_clear_mc(void)
5311 {
5312 struct mem_cgroup *from = mc.from;
5313
5314 /*
5315 * we must clear moving_task before waking up waiters at the end of
5316 * task migration.
5317 */
5318 mc.moving_task = NULL;
5319 __mem_cgroup_clear_mc();
5320 spin_lock(&mc.lock);
5321 mc.from = NULL;
5322 mc.to = NULL;
5323 spin_unlock(&mc.lock);
5324 mem_cgroup_end_move(from);
5325 }
5326
5327 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5328 struct cgroup *cgroup,
5329 struct task_struct *p)
5330 {
5331 int ret = 0;
5332 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
5333
5334 if (mem->move_charge_at_immigrate) {
5335 struct mm_struct *mm;
5336 struct mem_cgroup *from = mem_cgroup_from_task(p);
5337
5338 VM_BUG_ON(from == mem);
5339
5340 mm = get_task_mm(p);
5341 if (!mm)
5342 return 0;
5343 /* We move charges only when we move a owner of the mm */
5344 if (mm->owner == p) {
5345 VM_BUG_ON(mc.from);
5346 VM_BUG_ON(mc.to);
5347 VM_BUG_ON(mc.precharge);
5348 VM_BUG_ON(mc.moved_charge);
5349 VM_BUG_ON(mc.moved_swap);
5350 mem_cgroup_start_move(from);
5351 spin_lock(&mc.lock);
5352 mc.from = from;
5353 mc.to = mem;
5354 spin_unlock(&mc.lock);
5355 /* We set mc.moving_task later */
5356
5357 ret = mem_cgroup_precharge_mc(mm);
5358 if (ret)
5359 mem_cgroup_clear_mc();
5360 }
5361 mmput(mm);
5362 }
5363 return ret;
5364 }
5365
5366 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5367 struct cgroup *cgroup,
5368 struct task_struct *p)
5369 {
5370 mem_cgroup_clear_mc();
5371 }
5372
5373 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5374 unsigned long addr, unsigned long end,
5375 struct mm_walk *walk)
5376 {
5377 int ret = 0;
5378 struct vm_area_struct *vma = walk->private;
5379 pte_t *pte;
5380 spinlock_t *ptl;
5381
5382 split_huge_page_pmd(walk->mm, pmd);
5383 retry:
5384 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5385 for (; addr != end; addr += PAGE_SIZE) {
5386 pte_t ptent = *(pte++);
5387 union mc_target target;
5388 int type;
5389 struct page *page;
5390 struct page_cgroup *pc;
5391 swp_entry_t ent;
5392
5393 if (!mc.precharge)
5394 break;
5395
5396 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5397 switch (type) {
5398 case MC_TARGET_PAGE:
5399 page = target.page;
5400 if (isolate_lru_page(page))
5401 goto put;
5402 pc = lookup_page_cgroup(page);
5403 if (!mem_cgroup_move_account(page, 1, pc,
5404 mc.from, mc.to, false)) {
5405 mc.precharge--;
5406 /* we uncharge from mc.from later. */
5407 mc.moved_charge++;
5408 }
5409 putback_lru_page(page);
5410 put: /* is_target_pte_for_mc() gets the page */
5411 put_page(page);
5412 break;
5413 case MC_TARGET_SWAP:
5414 ent = target.ent;
5415 if (!mem_cgroup_move_swap_account(ent,
5416 mc.from, mc.to, false)) {
5417 mc.precharge--;
5418 /* we fixup refcnts and charges later. */
5419 mc.moved_swap++;
5420 }
5421 break;
5422 default:
5423 break;
5424 }
5425 }
5426 pte_unmap_unlock(pte - 1, ptl);
5427 cond_resched();
5428
5429 if (addr != end) {
5430 /*
5431 * We have consumed all precharges we got in can_attach().
5432 * We try charge one by one, but don't do any additional
5433 * charges to mc.to if we have failed in charge once in attach()
5434 * phase.
5435 */
5436 ret = mem_cgroup_do_precharge(1);
5437 if (!ret)
5438 goto retry;
5439 }
5440
5441 return ret;
5442 }
5443
5444 static void mem_cgroup_move_charge(struct mm_struct *mm)
5445 {
5446 struct vm_area_struct *vma;
5447
5448 lru_add_drain_all();
5449 retry:
5450 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5451 /*
5452 * Someone who are holding the mmap_sem might be waiting in
5453 * waitq. So we cancel all extra charges, wake up all waiters,
5454 * and retry. Because we cancel precharges, we might not be able
5455 * to move enough charges, but moving charge is a best-effort
5456 * feature anyway, so it wouldn't be a big problem.
5457 */
5458 __mem_cgroup_clear_mc();
5459 cond_resched();
5460 goto retry;
5461 }
5462 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5463 int ret;
5464 struct mm_walk mem_cgroup_move_charge_walk = {
5465 .pmd_entry = mem_cgroup_move_charge_pte_range,
5466 .mm = mm,
5467 .private = vma,
5468 };
5469 if (is_vm_hugetlb_page(vma))
5470 continue;
5471 ret = walk_page_range(vma->vm_start, vma->vm_end,
5472 &mem_cgroup_move_charge_walk);
5473 if (ret)
5474 /*
5475 * means we have consumed all precharges and failed in
5476 * doing additional charge. Just abandon here.
5477 */
5478 break;
5479 }
5480 up_read(&mm->mmap_sem);
5481 }
5482
5483 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5484 struct cgroup *cont,
5485 struct cgroup *old_cont,
5486 struct task_struct *p)
5487 {
5488 struct mm_struct *mm = get_task_mm(p);
5489
5490 if (mm) {
5491 if (mc.to)
5492 mem_cgroup_move_charge(mm);
5493 put_swap_token(mm);
5494 mmput(mm);
5495 }
5496 if (mc.to)
5497 mem_cgroup_clear_mc();
5498 }
5499 #else /* !CONFIG_MMU */
5500 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5501 struct cgroup *cgroup,
5502 struct task_struct *p)
5503 {
5504 return 0;
5505 }
5506 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5507 struct cgroup *cgroup,
5508 struct task_struct *p)
5509 {
5510 }
5511 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5512 struct cgroup *cont,
5513 struct cgroup *old_cont,
5514 struct task_struct *p)
5515 {
5516 }
5517 #endif
5518
5519 struct cgroup_subsys mem_cgroup_subsys = {
5520 .name = "memory",
5521 .subsys_id = mem_cgroup_subsys_id,
5522 .create = mem_cgroup_create,
5523 .pre_destroy = mem_cgroup_pre_destroy,
5524 .destroy = mem_cgroup_destroy,
5525 .populate = mem_cgroup_populate,
5526 .can_attach = mem_cgroup_can_attach,
5527 .cancel_attach = mem_cgroup_cancel_attach,
5528 .attach = mem_cgroup_move_task,
5529 .early_init = 0,
5530 .use_id = 1,
5531 };
5532
5533 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5534 static int __init enable_swap_account(char *s)
5535 {
5536 /* consider enabled if no parameter or 1 is given */
5537 if (!strcmp(s, "1"))
5538 really_do_swap_account = 1;
5539 else if (!strcmp(s, "0"))
5540 really_do_swap_account = 0;
5541 return 1;
5542 }
5543 __setup("swapaccount=", enable_swap_account);
5544
5545 #endif
This page took 0.219241 seconds and 6 git commands to generate.