cgroup: pass around cgroup_subsys_state instead of cgroup in file methods
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/sort.h>
49 #include <linux/fs.h>
50 #include <linux/seq_file.h>
51 #include <linux/vmalloc.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include "internal.h"
58 #include <net/sock.h>
59 #include <net/ip.h>
60 #include <net/tcp_memcontrol.h>
61
62 #include <asm/uaccess.h>
63
64 #include <trace/events/vmscan.h>
65
66 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
67 EXPORT_SYMBOL(mem_cgroup_subsys);
68
69 #define MEM_CGROUP_RECLAIM_RETRIES 5
70 static struct mem_cgroup *root_mem_cgroup __read_mostly;
71
72 #ifdef CONFIG_MEMCG_SWAP
73 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
74 int do_swap_account __read_mostly;
75
76 /* for remember boot option*/
77 #ifdef CONFIG_MEMCG_SWAP_ENABLED
78 static int really_do_swap_account __initdata = 1;
79 #else
80 static int really_do_swap_account __initdata = 0;
81 #endif
82
83 #else
84 #define do_swap_account 0
85 #endif
86
87
88 /*
89 * Statistics for memory cgroup.
90 */
91 enum mem_cgroup_stat_index {
92 /*
93 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
94 */
95 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
96 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
97 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */
98 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
99 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
100 MEM_CGROUP_STAT_NSTATS,
101 };
102
103 static const char * const mem_cgroup_stat_names[] = {
104 "cache",
105 "rss",
106 "rss_huge",
107 "mapped_file",
108 "swap",
109 };
110
111 enum mem_cgroup_events_index {
112 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
113 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
114 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
115 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
116 MEM_CGROUP_EVENTS_NSTATS,
117 };
118
119 static const char * const mem_cgroup_events_names[] = {
120 "pgpgin",
121 "pgpgout",
122 "pgfault",
123 "pgmajfault",
124 };
125
126 static const char * const mem_cgroup_lru_names[] = {
127 "inactive_anon",
128 "active_anon",
129 "inactive_file",
130 "active_file",
131 "unevictable",
132 };
133
134 /*
135 * Per memcg event counter is incremented at every pagein/pageout. With THP,
136 * it will be incremated by the number of pages. This counter is used for
137 * for trigger some periodic events. This is straightforward and better
138 * than using jiffies etc. to handle periodic memcg event.
139 */
140 enum mem_cgroup_events_target {
141 MEM_CGROUP_TARGET_THRESH,
142 MEM_CGROUP_TARGET_SOFTLIMIT,
143 MEM_CGROUP_TARGET_NUMAINFO,
144 MEM_CGROUP_NTARGETS,
145 };
146 #define THRESHOLDS_EVENTS_TARGET 128
147 #define SOFTLIMIT_EVENTS_TARGET 1024
148 #define NUMAINFO_EVENTS_TARGET 1024
149
150 struct mem_cgroup_stat_cpu {
151 long count[MEM_CGROUP_STAT_NSTATS];
152 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
153 unsigned long nr_page_events;
154 unsigned long targets[MEM_CGROUP_NTARGETS];
155 };
156
157 struct mem_cgroup_reclaim_iter {
158 /*
159 * last scanned hierarchy member. Valid only if last_dead_count
160 * matches memcg->dead_count of the hierarchy root group.
161 */
162 struct mem_cgroup *last_visited;
163 unsigned long last_dead_count;
164
165 /* scan generation, increased every round-trip */
166 unsigned int generation;
167 };
168
169 /*
170 * per-zone information in memory controller.
171 */
172 struct mem_cgroup_per_zone {
173 struct lruvec lruvec;
174 unsigned long lru_size[NR_LRU_LISTS];
175
176 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
177
178 struct rb_node tree_node; /* RB tree node */
179 unsigned long long usage_in_excess;/* Set to the value by which */
180 /* the soft limit is exceeded*/
181 bool on_tree;
182 struct mem_cgroup *memcg; /* Back pointer, we cannot */
183 /* use container_of */
184 };
185
186 struct mem_cgroup_per_node {
187 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
188 };
189
190 /*
191 * Cgroups above their limits are maintained in a RB-Tree, independent of
192 * their hierarchy representation
193 */
194
195 struct mem_cgroup_tree_per_zone {
196 struct rb_root rb_root;
197 spinlock_t lock;
198 };
199
200 struct mem_cgroup_tree_per_node {
201 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
202 };
203
204 struct mem_cgroup_tree {
205 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
206 };
207
208 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
209
210 struct mem_cgroup_threshold {
211 struct eventfd_ctx *eventfd;
212 u64 threshold;
213 };
214
215 /* For threshold */
216 struct mem_cgroup_threshold_ary {
217 /* An array index points to threshold just below or equal to usage. */
218 int current_threshold;
219 /* Size of entries[] */
220 unsigned int size;
221 /* Array of thresholds */
222 struct mem_cgroup_threshold entries[0];
223 };
224
225 struct mem_cgroup_thresholds {
226 /* Primary thresholds array */
227 struct mem_cgroup_threshold_ary *primary;
228 /*
229 * Spare threshold array.
230 * This is needed to make mem_cgroup_unregister_event() "never fail".
231 * It must be able to store at least primary->size - 1 entries.
232 */
233 struct mem_cgroup_threshold_ary *spare;
234 };
235
236 /* for OOM */
237 struct mem_cgroup_eventfd_list {
238 struct list_head list;
239 struct eventfd_ctx *eventfd;
240 };
241
242 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
243 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
244
245 /*
246 * The memory controller data structure. The memory controller controls both
247 * page cache and RSS per cgroup. We would eventually like to provide
248 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
249 * to help the administrator determine what knobs to tune.
250 *
251 * TODO: Add a water mark for the memory controller. Reclaim will begin when
252 * we hit the water mark. May be even add a low water mark, such that
253 * no reclaim occurs from a cgroup at it's low water mark, this is
254 * a feature that will be implemented much later in the future.
255 */
256 struct mem_cgroup {
257 struct cgroup_subsys_state css;
258 /*
259 * the counter to account for memory usage
260 */
261 struct res_counter res;
262
263 /* vmpressure notifications */
264 struct vmpressure vmpressure;
265
266 /*
267 * the counter to account for mem+swap usage.
268 */
269 struct res_counter memsw;
270
271 /*
272 * the counter to account for kernel memory usage.
273 */
274 struct res_counter kmem;
275 /*
276 * Should the accounting and control be hierarchical, per subtree?
277 */
278 bool use_hierarchy;
279 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
280
281 bool oom_lock;
282 atomic_t under_oom;
283
284 int swappiness;
285 /* OOM-Killer disable */
286 int oom_kill_disable;
287
288 /* set when res.limit == memsw.limit */
289 bool memsw_is_minimum;
290
291 /* protect arrays of thresholds */
292 struct mutex thresholds_lock;
293
294 /* thresholds for memory usage. RCU-protected */
295 struct mem_cgroup_thresholds thresholds;
296
297 /* thresholds for mem+swap usage. RCU-protected */
298 struct mem_cgroup_thresholds memsw_thresholds;
299
300 /* For oom notifier event fd */
301 struct list_head oom_notify;
302
303 /*
304 * Should we move charges of a task when a task is moved into this
305 * mem_cgroup ? And what type of charges should we move ?
306 */
307 unsigned long move_charge_at_immigrate;
308 /*
309 * set > 0 if pages under this cgroup are moving to other cgroup.
310 */
311 atomic_t moving_account;
312 /* taken only while moving_account > 0 */
313 spinlock_t move_lock;
314 /*
315 * percpu counter.
316 */
317 struct mem_cgroup_stat_cpu __percpu *stat;
318 /*
319 * used when a cpu is offlined or other synchronizations
320 * See mem_cgroup_read_stat().
321 */
322 struct mem_cgroup_stat_cpu nocpu_base;
323 spinlock_t pcp_counter_lock;
324
325 atomic_t dead_count;
326 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
327 struct tcp_memcontrol tcp_mem;
328 #endif
329 #if defined(CONFIG_MEMCG_KMEM)
330 /* analogous to slab_common's slab_caches list. per-memcg */
331 struct list_head memcg_slab_caches;
332 /* Not a spinlock, we can take a lot of time walking the list */
333 struct mutex slab_caches_mutex;
334 /* Index in the kmem_cache->memcg_params->memcg_caches array */
335 int kmemcg_id;
336 #endif
337
338 int last_scanned_node;
339 #if MAX_NUMNODES > 1
340 nodemask_t scan_nodes;
341 atomic_t numainfo_events;
342 atomic_t numainfo_updating;
343 #endif
344
345 struct mem_cgroup_per_node *nodeinfo[0];
346 /* WARNING: nodeinfo must be the last member here */
347 };
348
349 static size_t memcg_size(void)
350 {
351 return sizeof(struct mem_cgroup) +
352 nr_node_ids * sizeof(struct mem_cgroup_per_node);
353 }
354
355 /* internal only representation about the status of kmem accounting. */
356 enum {
357 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
358 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
359 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
360 };
361
362 /* We account when limit is on, but only after call sites are patched */
363 #define KMEM_ACCOUNTED_MASK \
364 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
365
366 #ifdef CONFIG_MEMCG_KMEM
367 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
368 {
369 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
370 }
371
372 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
373 {
374 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
375 }
376
377 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
378 {
379 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
380 }
381
382 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
383 {
384 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
385 }
386
387 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
388 {
389 /*
390 * Our caller must use css_get() first, because memcg_uncharge_kmem()
391 * will call css_put() if it sees the memcg is dead.
392 */
393 smp_wmb();
394 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
395 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
396 }
397
398 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
399 {
400 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
401 &memcg->kmem_account_flags);
402 }
403 #endif
404
405 /* Stuffs for move charges at task migration. */
406 /*
407 * Types of charges to be moved. "move_charge_at_immitgrate" and
408 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
409 */
410 enum move_type {
411 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
412 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
413 NR_MOVE_TYPE,
414 };
415
416 /* "mc" and its members are protected by cgroup_mutex */
417 static struct move_charge_struct {
418 spinlock_t lock; /* for from, to */
419 struct mem_cgroup *from;
420 struct mem_cgroup *to;
421 unsigned long immigrate_flags;
422 unsigned long precharge;
423 unsigned long moved_charge;
424 unsigned long moved_swap;
425 struct task_struct *moving_task; /* a task moving charges */
426 wait_queue_head_t waitq; /* a waitq for other context */
427 } mc = {
428 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
429 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
430 };
431
432 static bool move_anon(void)
433 {
434 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
435 }
436
437 static bool move_file(void)
438 {
439 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
440 }
441
442 /*
443 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
444 * limit reclaim to prevent infinite loops, if they ever occur.
445 */
446 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
447 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
448
449 enum charge_type {
450 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
451 MEM_CGROUP_CHARGE_TYPE_ANON,
452 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
453 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
454 NR_CHARGE_TYPE,
455 };
456
457 /* for encoding cft->private value on file */
458 enum res_type {
459 _MEM,
460 _MEMSWAP,
461 _OOM_TYPE,
462 _KMEM,
463 };
464
465 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
466 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
467 #define MEMFILE_ATTR(val) ((val) & 0xffff)
468 /* Used for OOM nofiier */
469 #define OOM_CONTROL (0)
470
471 /*
472 * Reclaim flags for mem_cgroup_hierarchical_reclaim
473 */
474 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
475 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
476 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
477 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
478
479 /*
480 * The memcg_create_mutex will be held whenever a new cgroup is created.
481 * As a consequence, any change that needs to protect against new child cgroups
482 * appearing has to hold it as well.
483 */
484 static DEFINE_MUTEX(memcg_create_mutex);
485
486 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
487 {
488 return s ? container_of(s, struct mem_cgroup, css) : NULL;
489 }
490
491 /* Some nice accessors for the vmpressure. */
492 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
493 {
494 if (!memcg)
495 memcg = root_mem_cgroup;
496 return &memcg->vmpressure;
497 }
498
499 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
500 {
501 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
502 }
503
504 struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
505 {
506 return &mem_cgroup_from_css(css)->vmpressure;
507 }
508
509 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
510 {
511 return (memcg == root_mem_cgroup);
512 }
513
514 /* Writing them here to avoid exposing memcg's inner layout */
515 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
516
517 void sock_update_memcg(struct sock *sk)
518 {
519 if (mem_cgroup_sockets_enabled) {
520 struct mem_cgroup *memcg;
521 struct cg_proto *cg_proto;
522
523 BUG_ON(!sk->sk_prot->proto_cgroup);
524
525 /* Socket cloning can throw us here with sk_cgrp already
526 * filled. It won't however, necessarily happen from
527 * process context. So the test for root memcg given
528 * the current task's memcg won't help us in this case.
529 *
530 * Respecting the original socket's memcg is a better
531 * decision in this case.
532 */
533 if (sk->sk_cgrp) {
534 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
535 css_get(&sk->sk_cgrp->memcg->css);
536 return;
537 }
538
539 rcu_read_lock();
540 memcg = mem_cgroup_from_task(current);
541 cg_proto = sk->sk_prot->proto_cgroup(memcg);
542 if (!mem_cgroup_is_root(memcg) &&
543 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
544 sk->sk_cgrp = cg_proto;
545 }
546 rcu_read_unlock();
547 }
548 }
549 EXPORT_SYMBOL(sock_update_memcg);
550
551 void sock_release_memcg(struct sock *sk)
552 {
553 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
554 struct mem_cgroup *memcg;
555 WARN_ON(!sk->sk_cgrp->memcg);
556 memcg = sk->sk_cgrp->memcg;
557 css_put(&sk->sk_cgrp->memcg->css);
558 }
559 }
560
561 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
562 {
563 if (!memcg || mem_cgroup_is_root(memcg))
564 return NULL;
565
566 return &memcg->tcp_mem.cg_proto;
567 }
568 EXPORT_SYMBOL(tcp_proto_cgroup);
569
570 static void disarm_sock_keys(struct mem_cgroup *memcg)
571 {
572 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
573 return;
574 static_key_slow_dec(&memcg_socket_limit_enabled);
575 }
576 #else
577 static void disarm_sock_keys(struct mem_cgroup *memcg)
578 {
579 }
580 #endif
581
582 #ifdef CONFIG_MEMCG_KMEM
583 /*
584 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
585 * There are two main reasons for not using the css_id for this:
586 * 1) this works better in sparse environments, where we have a lot of memcgs,
587 * but only a few kmem-limited. Or also, if we have, for instance, 200
588 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
589 * 200 entry array for that.
590 *
591 * 2) In order not to violate the cgroup API, we would like to do all memory
592 * allocation in ->create(). At that point, we haven't yet allocated the
593 * css_id. Having a separate index prevents us from messing with the cgroup
594 * core for this
595 *
596 * The current size of the caches array is stored in
597 * memcg_limited_groups_array_size. It will double each time we have to
598 * increase it.
599 */
600 static DEFINE_IDA(kmem_limited_groups);
601 int memcg_limited_groups_array_size;
602
603 /*
604 * MIN_SIZE is different than 1, because we would like to avoid going through
605 * the alloc/free process all the time. In a small machine, 4 kmem-limited
606 * cgroups is a reasonable guess. In the future, it could be a parameter or
607 * tunable, but that is strictly not necessary.
608 *
609 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
610 * this constant directly from cgroup, but it is understandable that this is
611 * better kept as an internal representation in cgroup.c. In any case, the
612 * css_id space is not getting any smaller, and we don't have to necessarily
613 * increase ours as well if it increases.
614 */
615 #define MEMCG_CACHES_MIN_SIZE 4
616 #define MEMCG_CACHES_MAX_SIZE 65535
617
618 /*
619 * A lot of the calls to the cache allocation functions are expected to be
620 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
621 * conditional to this static branch, we'll have to allow modules that does
622 * kmem_cache_alloc and the such to see this symbol as well
623 */
624 struct static_key memcg_kmem_enabled_key;
625 EXPORT_SYMBOL(memcg_kmem_enabled_key);
626
627 static void disarm_kmem_keys(struct mem_cgroup *memcg)
628 {
629 if (memcg_kmem_is_active(memcg)) {
630 static_key_slow_dec(&memcg_kmem_enabled_key);
631 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
632 }
633 /*
634 * This check can't live in kmem destruction function,
635 * since the charges will outlive the cgroup
636 */
637 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
638 }
639 #else
640 static void disarm_kmem_keys(struct mem_cgroup *memcg)
641 {
642 }
643 #endif /* CONFIG_MEMCG_KMEM */
644
645 static void disarm_static_keys(struct mem_cgroup *memcg)
646 {
647 disarm_sock_keys(memcg);
648 disarm_kmem_keys(memcg);
649 }
650
651 static void drain_all_stock_async(struct mem_cgroup *memcg);
652
653 static struct mem_cgroup_per_zone *
654 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
655 {
656 VM_BUG_ON((unsigned)nid >= nr_node_ids);
657 return &memcg->nodeinfo[nid]->zoneinfo[zid];
658 }
659
660 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
661 {
662 return &memcg->css;
663 }
664
665 static struct mem_cgroup_per_zone *
666 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
667 {
668 int nid = page_to_nid(page);
669 int zid = page_zonenum(page);
670
671 return mem_cgroup_zoneinfo(memcg, nid, zid);
672 }
673
674 static struct mem_cgroup_tree_per_zone *
675 soft_limit_tree_node_zone(int nid, int zid)
676 {
677 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
678 }
679
680 static struct mem_cgroup_tree_per_zone *
681 soft_limit_tree_from_page(struct page *page)
682 {
683 int nid = page_to_nid(page);
684 int zid = page_zonenum(page);
685
686 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
687 }
688
689 static void
690 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
691 struct mem_cgroup_per_zone *mz,
692 struct mem_cgroup_tree_per_zone *mctz,
693 unsigned long long new_usage_in_excess)
694 {
695 struct rb_node **p = &mctz->rb_root.rb_node;
696 struct rb_node *parent = NULL;
697 struct mem_cgroup_per_zone *mz_node;
698
699 if (mz->on_tree)
700 return;
701
702 mz->usage_in_excess = new_usage_in_excess;
703 if (!mz->usage_in_excess)
704 return;
705 while (*p) {
706 parent = *p;
707 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
708 tree_node);
709 if (mz->usage_in_excess < mz_node->usage_in_excess)
710 p = &(*p)->rb_left;
711 /*
712 * We can't avoid mem cgroups that are over their soft
713 * limit by the same amount
714 */
715 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
716 p = &(*p)->rb_right;
717 }
718 rb_link_node(&mz->tree_node, parent, p);
719 rb_insert_color(&mz->tree_node, &mctz->rb_root);
720 mz->on_tree = true;
721 }
722
723 static void
724 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
725 struct mem_cgroup_per_zone *mz,
726 struct mem_cgroup_tree_per_zone *mctz)
727 {
728 if (!mz->on_tree)
729 return;
730 rb_erase(&mz->tree_node, &mctz->rb_root);
731 mz->on_tree = false;
732 }
733
734 static void
735 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
736 struct mem_cgroup_per_zone *mz,
737 struct mem_cgroup_tree_per_zone *mctz)
738 {
739 spin_lock(&mctz->lock);
740 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
741 spin_unlock(&mctz->lock);
742 }
743
744
745 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
746 {
747 unsigned long long excess;
748 struct mem_cgroup_per_zone *mz;
749 struct mem_cgroup_tree_per_zone *mctz;
750 int nid = page_to_nid(page);
751 int zid = page_zonenum(page);
752 mctz = soft_limit_tree_from_page(page);
753
754 /*
755 * Necessary to update all ancestors when hierarchy is used.
756 * because their event counter is not touched.
757 */
758 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
759 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
760 excess = res_counter_soft_limit_excess(&memcg->res);
761 /*
762 * We have to update the tree if mz is on RB-tree or
763 * mem is over its softlimit.
764 */
765 if (excess || mz->on_tree) {
766 spin_lock(&mctz->lock);
767 /* if on-tree, remove it */
768 if (mz->on_tree)
769 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
770 /*
771 * Insert again. mz->usage_in_excess will be updated.
772 * If excess is 0, no tree ops.
773 */
774 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
775 spin_unlock(&mctz->lock);
776 }
777 }
778 }
779
780 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
781 {
782 int node, zone;
783 struct mem_cgroup_per_zone *mz;
784 struct mem_cgroup_tree_per_zone *mctz;
785
786 for_each_node(node) {
787 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
788 mz = mem_cgroup_zoneinfo(memcg, node, zone);
789 mctz = soft_limit_tree_node_zone(node, zone);
790 mem_cgroup_remove_exceeded(memcg, mz, mctz);
791 }
792 }
793 }
794
795 static struct mem_cgroup_per_zone *
796 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
797 {
798 struct rb_node *rightmost = NULL;
799 struct mem_cgroup_per_zone *mz;
800
801 retry:
802 mz = NULL;
803 rightmost = rb_last(&mctz->rb_root);
804 if (!rightmost)
805 goto done; /* Nothing to reclaim from */
806
807 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
808 /*
809 * Remove the node now but someone else can add it back,
810 * we will to add it back at the end of reclaim to its correct
811 * position in the tree.
812 */
813 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
814 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
815 !css_tryget(&mz->memcg->css))
816 goto retry;
817 done:
818 return mz;
819 }
820
821 static struct mem_cgroup_per_zone *
822 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
823 {
824 struct mem_cgroup_per_zone *mz;
825
826 spin_lock(&mctz->lock);
827 mz = __mem_cgroup_largest_soft_limit_node(mctz);
828 spin_unlock(&mctz->lock);
829 return mz;
830 }
831
832 /*
833 * Implementation Note: reading percpu statistics for memcg.
834 *
835 * Both of vmstat[] and percpu_counter has threshold and do periodic
836 * synchronization to implement "quick" read. There are trade-off between
837 * reading cost and precision of value. Then, we may have a chance to implement
838 * a periodic synchronizion of counter in memcg's counter.
839 *
840 * But this _read() function is used for user interface now. The user accounts
841 * memory usage by memory cgroup and he _always_ requires exact value because
842 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
843 * have to visit all online cpus and make sum. So, for now, unnecessary
844 * synchronization is not implemented. (just implemented for cpu hotplug)
845 *
846 * If there are kernel internal actions which can make use of some not-exact
847 * value, and reading all cpu value can be performance bottleneck in some
848 * common workload, threashold and synchonization as vmstat[] should be
849 * implemented.
850 */
851 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
852 enum mem_cgroup_stat_index idx)
853 {
854 long val = 0;
855 int cpu;
856
857 get_online_cpus();
858 for_each_online_cpu(cpu)
859 val += per_cpu(memcg->stat->count[idx], cpu);
860 #ifdef CONFIG_HOTPLUG_CPU
861 spin_lock(&memcg->pcp_counter_lock);
862 val += memcg->nocpu_base.count[idx];
863 spin_unlock(&memcg->pcp_counter_lock);
864 #endif
865 put_online_cpus();
866 return val;
867 }
868
869 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
870 bool charge)
871 {
872 int val = (charge) ? 1 : -1;
873 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
874 }
875
876 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
877 enum mem_cgroup_events_index idx)
878 {
879 unsigned long val = 0;
880 int cpu;
881
882 for_each_online_cpu(cpu)
883 val += per_cpu(memcg->stat->events[idx], cpu);
884 #ifdef CONFIG_HOTPLUG_CPU
885 spin_lock(&memcg->pcp_counter_lock);
886 val += memcg->nocpu_base.events[idx];
887 spin_unlock(&memcg->pcp_counter_lock);
888 #endif
889 return val;
890 }
891
892 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
893 struct page *page,
894 bool anon, int nr_pages)
895 {
896 preempt_disable();
897
898 /*
899 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
900 * counted as CACHE even if it's on ANON LRU.
901 */
902 if (anon)
903 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
904 nr_pages);
905 else
906 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
907 nr_pages);
908
909 if (PageTransHuge(page))
910 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
911 nr_pages);
912
913 /* pagein of a big page is an event. So, ignore page size */
914 if (nr_pages > 0)
915 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
916 else {
917 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
918 nr_pages = -nr_pages; /* for event */
919 }
920
921 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
922
923 preempt_enable();
924 }
925
926 unsigned long
927 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
928 {
929 struct mem_cgroup_per_zone *mz;
930
931 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
932 return mz->lru_size[lru];
933 }
934
935 static unsigned long
936 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
937 unsigned int lru_mask)
938 {
939 struct mem_cgroup_per_zone *mz;
940 enum lru_list lru;
941 unsigned long ret = 0;
942
943 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
944
945 for_each_lru(lru) {
946 if (BIT(lru) & lru_mask)
947 ret += mz->lru_size[lru];
948 }
949 return ret;
950 }
951
952 static unsigned long
953 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
954 int nid, unsigned int lru_mask)
955 {
956 u64 total = 0;
957 int zid;
958
959 for (zid = 0; zid < MAX_NR_ZONES; zid++)
960 total += mem_cgroup_zone_nr_lru_pages(memcg,
961 nid, zid, lru_mask);
962
963 return total;
964 }
965
966 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
967 unsigned int lru_mask)
968 {
969 int nid;
970 u64 total = 0;
971
972 for_each_node_state(nid, N_MEMORY)
973 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
974 return total;
975 }
976
977 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
978 enum mem_cgroup_events_target target)
979 {
980 unsigned long val, next;
981
982 val = __this_cpu_read(memcg->stat->nr_page_events);
983 next = __this_cpu_read(memcg->stat->targets[target]);
984 /* from time_after() in jiffies.h */
985 if ((long)next - (long)val < 0) {
986 switch (target) {
987 case MEM_CGROUP_TARGET_THRESH:
988 next = val + THRESHOLDS_EVENTS_TARGET;
989 break;
990 case MEM_CGROUP_TARGET_SOFTLIMIT:
991 next = val + SOFTLIMIT_EVENTS_TARGET;
992 break;
993 case MEM_CGROUP_TARGET_NUMAINFO:
994 next = val + NUMAINFO_EVENTS_TARGET;
995 break;
996 default:
997 break;
998 }
999 __this_cpu_write(memcg->stat->targets[target], next);
1000 return true;
1001 }
1002 return false;
1003 }
1004
1005 /*
1006 * Check events in order.
1007 *
1008 */
1009 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1010 {
1011 preempt_disable();
1012 /* threshold event is triggered in finer grain than soft limit */
1013 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1014 MEM_CGROUP_TARGET_THRESH))) {
1015 bool do_softlimit;
1016 bool do_numainfo __maybe_unused;
1017
1018 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1019 MEM_CGROUP_TARGET_SOFTLIMIT);
1020 #if MAX_NUMNODES > 1
1021 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1022 MEM_CGROUP_TARGET_NUMAINFO);
1023 #endif
1024 preempt_enable();
1025
1026 mem_cgroup_threshold(memcg);
1027 if (unlikely(do_softlimit))
1028 mem_cgroup_update_tree(memcg, page);
1029 #if MAX_NUMNODES > 1
1030 if (unlikely(do_numainfo))
1031 atomic_inc(&memcg->numainfo_events);
1032 #endif
1033 } else
1034 preempt_enable();
1035 }
1036
1037 static inline struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
1038 {
1039 return mem_cgroup_from_css(cgroup_css(cont, mem_cgroup_subsys_id));
1040 }
1041
1042 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1043 {
1044 /*
1045 * mm_update_next_owner() may clear mm->owner to NULL
1046 * if it races with swapoff, page migration, etc.
1047 * So this can be called with p == NULL.
1048 */
1049 if (unlikely(!p))
1050 return NULL;
1051
1052 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1053 }
1054
1055 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1056 {
1057 struct mem_cgroup *memcg = NULL;
1058
1059 if (!mm)
1060 return NULL;
1061 /*
1062 * Because we have no locks, mm->owner's may be being moved to other
1063 * cgroup. We use css_tryget() here even if this looks
1064 * pessimistic (rather than adding locks here).
1065 */
1066 rcu_read_lock();
1067 do {
1068 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1069 if (unlikely(!memcg))
1070 break;
1071 } while (!css_tryget(&memcg->css));
1072 rcu_read_unlock();
1073 return memcg;
1074 }
1075
1076 /*
1077 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1078 * ref. count) or NULL if the whole root's subtree has been visited.
1079 *
1080 * helper function to be used by mem_cgroup_iter
1081 */
1082 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1083 struct mem_cgroup *last_visited)
1084 {
1085 struct cgroup *prev_cgroup, *next_cgroup;
1086
1087 /*
1088 * Root is not visited by cgroup iterators so it needs an
1089 * explicit visit.
1090 */
1091 if (!last_visited)
1092 return root;
1093
1094 prev_cgroup = (last_visited == root) ? NULL
1095 : last_visited->css.cgroup;
1096 skip_node:
1097 next_cgroup = cgroup_next_descendant_pre(
1098 prev_cgroup, root->css.cgroup);
1099
1100 /*
1101 * Even if we found a group we have to make sure it is
1102 * alive. css && !memcg means that the groups should be
1103 * skipped and we should continue the tree walk.
1104 * last_visited css is safe to use because it is
1105 * protected by css_get and the tree walk is rcu safe.
1106 */
1107 if (next_cgroup) {
1108 struct mem_cgroup *mem = mem_cgroup_from_cont(
1109 next_cgroup);
1110 if (css_tryget(&mem->css))
1111 return mem;
1112 else {
1113 prev_cgroup = next_cgroup;
1114 goto skip_node;
1115 }
1116 }
1117
1118 return NULL;
1119 }
1120
1121 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1122 {
1123 /*
1124 * When a group in the hierarchy below root is destroyed, the
1125 * hierarchy iterator can no longer be trusted since it might
1126 * have pointed to the destroyed group. Invalidate it.
1127 */
1128 atomic_inc(&root->dead_count);
1129 }
1130
1131 static struct mem_cgroup *
1132 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1133 struct mem_cgroup *root,
1134 int *sequence)
1135 {
1136 struct mem_cgroup *position = NULL;
1137 /*
1138 * A cgroup destruction happens in two stages: offlining and
1139 * release. They are separated by a RCU grace period.
1140 *
1141 * If the iterator is valid, we may still race with an
1142 * offlining. The RCU lock ensures the object won't be
1143 * released, tryget will fail if we lost the race.
1144 */
1145 *sequence = atomic_read(&root->dead_count);
1146 if (iter->last_dead_count == *sequence) {
1147 smp_rmb();
1148 position = iter->last_visited;
1149 if (position && !css_tryget(&position->css))
1150 position = NULL;
1151 }
1152 return position;
1153 }
1154
1155 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1156 struct mem_cgroup *last_visited,
1157 struct mem_cgroup *new_position,
1158 int sequence)
1159 {
1160 if (last_visited)
1161 css_put(&last_visited->css);
1162 /*
1163 * We store the sequence count from the time @last_visited was
1164 * loaded successfully instead of rereading it here so that we
1165 * don't lose destruction events in between. We could have
1166 * raced with the destruction of @new_position after all.
1167 */
1168 iter->last_visited = new_position;
1169 smp_wmb();
1170 iter->last_dead_count = sequence;
1171 }
1172
1173 /**
1174 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1175 * @root: hierarchy root
1176 * @prev: previously returned memcg, NULL on first invocation
1177 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1178 *
1179 * Returns references to children of the hierarchy below @root, or
1180 * @root itself, or %NULL after a full round-trip.
1181 *
1182 * Caller must pass the return value in @prev on subsequent
1183 * invocations for reference counting, or use mem_cgroup_iter_break()
1184 * to cancel a hierarchy walk before the round-trip is complete.
1185 *
1186 * Reclaimers can specify a zone and a priority level in @reclaim to
1187 * divide up the memcgs in the hierarchy among all concurrent
1188 * reclaimers operating on the same zone and priority.
1189 */
1190 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1191 struct mem_cgroup *prev,
1192 struct mem_cgroup_reclaim_cookie *reclaim)
1193 {
1194 struct mem_cgroup *memcg = NULL;
1195 struct mem_cgroup *last_visited = NULL;
1196
1197 if (mem_cgroup_disabled())
1198 return NULL;
1199
1200 if (!root)
1201 root = root_mem_cgroup;
1202
1203 if (prev && !reclaim)
1204 last_visited = prev;
1205
1206 if (!root->use_hierarchy && root != root_mem_cgroup) {
1207 if (prev)
1208 goto out_css_put;
1209 return root;
1210 }
1211
1212 rcu_read_lock();
1213 while (!memcg) {
1214 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1215 int uninitialized_var(seq);
1216
1217 if (reclaim) {
1218 int nid = zone_to_nid(reclaim->zone);
1219 int zid = zone_idx(reclaim->zone);
1220 struct mem_cgroup_per_zone *mz;
1221
1222 mz = mem_cgroup_zoneinfo(root, nid, zid);
1223 iter = &mz->reclaim_iter[reclaim->priority];
1224 if (prev && reclaim->generation != iter->generation) {
1225 iter->last_visited = NULL;
1226 goto out_unlock;
1227 }
1228
1229 last_visited = mem_cgroup_iter_load(iter, root, &seq);
1230 }
1231
1232 memcg = __mem_cgroup_iter_next(root, last_visited);
1233
1234 if (reclaim) {
1235 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1236
1237 if (!memcg)
1238 iter->generation++;
1239 else if (!prev && memcg)
1240 reclaim->generation = iter->generation;
1241 }
1242
1243 if (prev && !memcg)
1244 goto out_unlock;
1245 }
1246 out_unlock:
1247 rcu_read_unlock();
1248 out_css_put:
1249 if (prev && prev != root)
1250 css_put(&prev->css);
1251
1252 return memcg;
1253 }
1254
1255 /**
1256 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1257 * @root: hierarchy root
1258 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1259 */
1260 void mem_cgroup_iter_break(struct mem_cgroup *root,
1261 struct mem_cgroup *prev)
1262 {
1263 if (!root)
1264 root = root_mem_cgroup;
1265 if (prev && prev != root)
1266 css_put(&prev->css);
1267 }
1268
1269 /*
1270 * Iteration constructs for visiting all cgroups (under a tree). If
1271 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1272 * be used for reference counting.
1273 */
1274 #define for_each_mem_cgroup_tree(iter, root) \
1275 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1276 iter != NULL; \
1277 iter = mem_cgroup_iter(root, iter, NULL))
1278
1279 #define for_each_mem_cgroup(iter) \
1280 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1281 iter != NULL; \
1282 iter = mem_cgroup_iter(NULL, iter, NULL))
1283
1284 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1285 {
1286 struct mem_cgroup *memcg;
1287
1288 rcu_read_lock();
1289 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1290 if (unlikely(!memcg))
1291 goto out;
1292
1293 switch (idx) {
1294 case PGFAULT:
1295 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1296 break;
1297 case PGMAJFAULT:
1298 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1299 break;
1300 default:
1301 BUG();
1302 }
1303 out:
1304 rcu_read_unlock();
1305 }
1306 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1307
1308 /**
1309 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1310 * @zone: zone of the wanted lruvec
1311 * @memcg: memcg of the wanted lruvec
1312 *
1313 * Returns the lru list vector holding pages for the given @zone and
1314 * @mem. This can be the global zone lruvec, if the memory controller
1315 * is disabled.
1316 */
1317 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1318 struct mem_cgroup *memcg)
1319 {
1320 struct mem_cgroup_per_zone *mz;
1321 struct lruvec *lruvec;
1322
1323 if (mem_cgroup_disabled()) {
1324 lruvec = &zone->lruvec;
1325 goto out;
1326 }
1327
1328 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1329 lruvec = &mz->lruvec;
1330 out:
1331 /*
1332 * Since a node can be onlined after the mem_cgroup was created,
1333 * we have to be prepared to initialize lruvec->zone here;
1334 * and if offlined then reonlined, we need to reinitialize it.
1335 */
1336 if (unlikely(lruvec->zone != zone))
1337 lruvec->zone = zone;
1338 return lruvec;
1339 }
1340
1341 /*
1342 * Following LRU functions are allowed to be used without PCG_LOCK.
1343 * Operations are called by routine of global LRU independently from memcg.
1344 * What we have to take care of here is validness of pc->mem_cgroup.
1345 *
1346 * Changes to pc->mem_cgroup happens when
1347 * 1. charge
1348 * 2. moving account
1349 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1350 * It is added to LRU before charge.
1351 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1352 * When moving account, the page is not on LRU. It's isolated.
1353 */
1354
1355 /**
1356 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1357 * @page: the page
1358 * @zone: zone of the page
1359 */
1360 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1361 {
1362 struct mem_cgroup_per_zone *mz;
1363 struct mem_cgroup *memcg;
1364 struct page_cgroup *pc;
1365 struct lruvec *lruvec;
1366
1367 if (mem_cgroup_disabled()) {
1368 lruvec = &zone->lruvec;
1369 goto out;
1370 }
1371
1372 pc = lookup_page_cgroup(page);
1373 memcg = pc->mem_cgroup;
1374
1375 /*
1376 * Surreptitiously switch any uncharged offlist page to root:
1377 * an uncharged page off lru does nothing to secure
1378 * its former mem_cgroup from sudden removal.
1379 *
1380 * Our caller holds lru_lock, and PageCgroupUsed is updated
1381 * under page_cgroup lock: between them, they make all uses
1382 * of pc->mem_cgroup safe.
1383 */
1384 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1385 pc->mem_cgroup = memcg = root_mem_cgroup;
1386
1387 mz = page_cgroup_zoneinfo(memcg, page);
1388 lruvec = &mz->lruvec;
1389 out:
1390 /*
1391 * Since a node can be onlined after the mem_cgroup was created,
1392 * we have to be prepared to initialize lruvec->zone here;
1393 * and if offlined then reonlined, we need to reinitialize it.
1394 */
1395 if (unlikely(lruvec->zone != zone))
1396 lruvec->zone = zone;
1397 return lruvec;
1398 }
1399
1400 /**
1401 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1402 * @lruvec: mem_cgroup per zone lru vector
1403 * @lru: index of lru list the page is sitting on
1404 * @nr_pages: positive when adding or negative when removing
1405 *
1406 * This function must be called when a page is added to or removed from an
1407 * lru list.
1408 */
1409 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1410 int nr_pages)
1411 {
1412 struct mem_cgroup_per_zone *mz;
1413 unsigned long *lru_size;
1414
1415 if (mem_cgroup_disabled())
1416 return;
1417
1418 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1419 lru_size = mz->lru_size + lru;
1420 *lru_size += nr_pages;
1421 VM_BUG_ON((long)(*lru_size) < 0);
1422 }
1423
1424 /*
1425 * Checks whether given mem is same or in the root_mem_cgroup's
1426 * hierarchy subtree
1427 */
1428 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1429 struct mem_cgroup *memcg)
1430 {
1431 if (root_memcg == memcg)
1432 return true;
1433 if (!root_memcg->use_hierarchy || !memcg)
1434 return false;
1435 return css_is_ancestor(&memcg->css, &root_memcg->css);
1436 }
1437
1438 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1439 struct mem_cgroup *memcg)
1440 {
1441 bool ret;
1442
1443 rcu_read_lock();
1444 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1445 rcu_read_unlock();
1446 return ret;
1447 }
1448
1449 bool task_in_mem_cgroup(struct task_struct *task,
1450 const struct mem_cgroup *memcg)
1451 {
1452 struct mem_cgroup *curr = NULL;
1453 struct task_struct *p;
1454 bool ret;
1455
1456 p = find_lock_task_mm(task);
1457 if (p) {
1458 curr = try_get_mem_cgroup_from_mm(p->mm);
1459 task_unlock(p);
1460 } else {
1461 /*
1462 * All threads may have already detached their mm's, but the oom
1463 * killer still needs to detect if they have already been oom
1464 * killed to prevent needlessly killing additional tasks.
1465 */
1466 rcu_read_lock();
1467 curr = mem_cgroup_from_task(task);
1468 if (curr)
1469 css_get(&curr->css);
1470 rcu_read_unlock();
1471 }
1472 if (!curr)
1473 return false;
1474 /*
1475 * We should check use_hierarchy of "memcg" not "curr". Because checking
1476 * use_hierarchy of "curr" here make this function true if hierarchy is
1477 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1478 * hierarchy(even if use_hierarchy is disabled in "memcg").
1479 */
1480 ret = mem_cgroup_same_or_subtree(memcg, curr);
1481 css_put(&curr->css);
1482 return ret;
1483 }
1484
1485 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1486 {
1487 unsigned long inactive_ratio;
1488 unsigned long inactive;
1489 unsigned long active;
1490 unsigned long gb;
1491
1492 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1493 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1494
1495 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1496 if (gb)
1497 inactive_ratio = int_sqrt(10 * gb);
1498 else
1499 inactive_ratio = 1;
1500
1501 return inactive * inactive_ratio < active;
1502 }
1503
1504 #define mem_cgroup_from_res_counter(counter, member) \
1505 container_of(counter, struct mem_cgroup, member)
1506
1507 /**
1508 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1509 * @memcg: the memory cgroup
1510 *
1511 * Returns the maximum amount of memory @mem can be charged with, in
1512 * pages.
1513 */
1514 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1515 {
1516 unsigned long long margin;
1517
1518 margin = res_counter_margin(&memcg->res);
1519 if (do_swap_account)
1520 margin = min(margin, res_counter_margin(&memcg->memsw));
1521 return margin >> PAGE_SHIFT;
1522 }
1523
1524 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1525 {
1526 /* root ? */
1527 if (!css_parent(&memcg->css))
1528 return vm_swappiness;
1529
1530 return memcg->swappiness;
1531 }
1532
1533 /*
1534 * memcg->moving_account is used for checking possibility that some thread is
1535 * calling move_account(). When a thread on CPU-A starts moving pages under
1536 * a memcg, other threads should check memcg->moving_account under
1537 * rcu_read_lock(), like this:
1538 *
1539 * CPU-A CPU-B
1540 * rcu_read_lock()
1541 * memcg->moving_account+1 if (memcg->mocing_account)
1542 * take heavy locks.
1543 * synchronize_rcu() update something.
1544 * rcu_read_unlock()
1545 * start move here.
1546 */
1547
1548 /* for quick checking without looking up memcg */
1549 atomic_t memcg_moving __read_mostly;
1550
1551 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1552 {
1553 atomic_inc(&memcg_moving);
1554 atomic_inc(&memcg->moving_account);
1555 synchronize_rcu();
1556 }
1557
1558 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1559 {
1560 /*
1561 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1562 * We check NULL in callee rather than caller.
1563 */
1564 if (memcg) {
1565 atomic_dec(&memcg_moving);
1566 atomic_dec(&memcg->moving_account);
1567 }
1568 }
1569
1570 /*
1571 * 2 routines for checking "mem" is under move_account() or not.
1572 *
1573 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1574 * is used for avoiding races in accounting. If true,
1575 * pc->mem_cgroup may be overwritten.
1576 *
1577 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1578 * under hierarchy of moving cgroups. This is for
1579 * waiting at hith-memory prressure caused by "move".
1580 */
1581
1582 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1583 {
1584 VM_BUG_ON(!rcu_read_lock_held());
1585 return atomic_read(&memcg->moving_account) > 0;
1586 }
1587
1588 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1589 {
1590 struct mem_cgroup *from;
1591 struct mem_cgroup *to;
1592 bool ret = false;
1593 /*
1594 * Unlike task_move routines, we access mc.to, mc.from not under
1595 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1596 */
1597 spin_lock(&mc.lock);
1598 from = mc.from;
1599 to = mc.to;
1600 if (!from)
1601 goto unlock;
1602
1603 ret = mem_cgroup_same_or_subtree(memcg, from)
1604 || mem_cgroup_same_or_subtree(memcg, to);
1605 unlock:
1606 spin_unlock(&mc.lock);
1607 return ret;
1608 }
1609
1610 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1611 {
1612 if (mc.moving_task && current != mc.moving_task) {
1613 if (mem_cgroup_under_move(memcg)) {
1614 DEFINE_WAIT(wait);
1615 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1616 /* moving charge context might have finished. */
1617 if (mc.moving_task)
1618 schedule();
1619 finish_wait(&mc.waitq, &wait);
1620 return true;
1621 }
1622 }
1623 return false;
1624 }
1625
1626 /*
1627 * Take this lock when
1628 * - a code tries to modify page's memcg while it's USED.
1629 * - a code tries to modify page state accounting in a memcg.
1630 * see mem_cgroup_stolen(), too.
1631 */
1632 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1633 unsigned long *flags)
1634 {
1635 spin_lock_irqsave(&memcg->move_lock, *flags);
1636 }
1637
1638 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1639 unsigned long *flags)
1640 {
1641 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1642 }
1643
1644 #define K(x) ((x) << (PAGE_SHIFT-10))
1645 /**
1646 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1647 * @memcg: The memory cgroup that went over limit
1648 * @p: Task that is going to be killed
1649 *
1650 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1651 * enabled
1652 */
1653 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1654 {
1655 struct cgroup *task_cgrp;
1656 struct cgroup *mem_cgrp;
1657 /*
1658 * Need a buffer in BSS, can't rely on allocations. The code relies
1659 * on the assumption that OOM is serialized for memory controller.
1660 * If this assumption is broken, revisit this code.
1661 */
1662 static char memcg_name[PATH_MAX];
1663 int ret;
1664 struct mem_cgroup *iter;
1665 unsigned int i;
1666
1667 if (!p)
1668 return;
1669
1670 rcu_read_lock();
1671
1672 mem_cgrp = memcg->css.cgroup;
1673 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1674
1675 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1676 if (ret < 0) {
1677 /*
1678 * Unfortunately, we are unable to convert to a useful name
1679 * But we'll still print out the usage information
1680 */
1681 rcu_read_unlock();
1682 goto done;
1683 }
1684 rcu_read_unlock();
1685
1686 pr_info("Task in %s killed", memcg_name);
1687
1688 rcu_read_lock();
1689 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1690 if (ret < 0) {
1691 rcu_read_unlock();
1692 goto done;
1693 }
1694 rcu_read_unlock();
1695
1696 /*
1697 * Continues from above, so we don't need an KERN_ level
1698 */
1699 pr_cont(" as a result of limit of %s\n", memcg_name);
1700 done:
1701
1702 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1703 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1704 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1705 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1706 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1707 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1708 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1709 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1710 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1711 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1712 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1713 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1714
1715 for_each_mem_cgroup_tree(iter, memcg) {
1716 pr_info("Memory cgroup stats");
1717
1718 rcu_read_lock();
1719 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1720 if (!ret)
1721 pr_cont(" for %s", memcg_name);
1722 rcu_read_unlock();
1723 pr_cont(":");
1724
1725 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1726 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1727 continue;
1728 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1729 K(mem_cgroup_read_stat(iter, i)));
1730 }
1731
1732 for (i = 0; i < NR_LRU_LISTS; i++)
1733 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1734 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1735
1736 pr_cont("\n");
1737 }
1738 }
1739
1740 /*
1741 * This function returns the number of memcg under hierarchy tree. Returns
1742 * 1(self count) if no children.
1743 */
1744 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1745 {
1746 int num = 0;
1747 struct mem_cgroup *iter;
1748
1749 for_each_mem_cgroup_tree(iter, memcg)
1750 num++;
1751 return num;
1752 }
1753
1754 /*
1755 * Return the memory (and swap, if configured) limit for a memcg.
1756 */
1757 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1758 {
1759 u64 limit;
1760
1761 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1762
1763 /*
1764 * Do not consider swap space if we cannot swap due to swappiness
1765 */
1766 if (mem_cgroup_swappiness(memcg)) {
1767 u64 memsw;
1768
1769 limit += total_swap_pages << PAGE_SHIFT;
1770 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1771
1772 /*
1773 * If memsw is finite and limits the amount of swap space
1774 * available to this memcg, return that limit.
1775 */
1776 limit = min(limit, memsw);
1777 }
1778
1779 return limit;
1780 }
1781
1782 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1783 int order)
1784 {
1785 struct mem_cgroup *iter;
1786 unsigned long chosen_points = 0;
1787 unsigned long totalpages;
1788 unsigned int points = 0;
1789 struct task_struct *chosen = NULL;
1790
1791 /*
1792 * If current has a pending SIGKILL or is exiting, then automatically
1793 * select it. The goal is to allow it to allocate so that it may
1794 * quickly exit and free its memory.
1795 */
1796 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1797 set_thread_flag(TIF_MEMDIE);
1798 return;
1799 }
1800
1801 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1802 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1803 for_each_mem_cgroup_tree(iter, memcg) {
1804 struct cgroup *cgroup = iter->css.cgroup;
1805 struct cgroup_iter it;
1806 struct task_struct *task;
1807
1808 cgroup_iter_start(cgroup, &it);
1809 while ((task = cgroup_iter_next(cgroup, &it))) {
1810 switch (oom_scan_process_thread(task, totalpages, NULL,
1811 false)) {
1812 case OOM_SCAN_SELECT:
1813 if (chosen)
1814 put_task_struct(chosen);
1815 chosen = task;
1816 chosen_points = ULONG_MAX;
1817 get_task_struct(chosen);
1818 /* fall through */
1819 case OOM_SCAN_CONTINUE:
1820 continue;
1821 case OOM_SCAN_ABORT:
1822 cgroup_iter_end(cgroup, &it);
1823 mem_cgroup_iter_break(memcg, iter);
1824 if (chosen)
1825 put_task_struct(chosen);
1826 return;
1827 case OOM_SCAN_OK:
1828 break;
1829 };
1830 points = oom_badness(task, memcg, NULL, totalpages);
1831 if (points > chosen_points) {
1832 if (chosen)
1833 put_task_struct(chosen);
1834 chosen = task;
1835 chosen_points = points;
1836 get_task_struct(chosen);
1837 }
1838 }
1839 cgroup_iter_end(cgroup, &it);
1840 }
1841
1842 if (!chosen)
1843 return;
1844 points = chosen_points * 1000 / totalpages;
1845 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1846 NULL, "Memory cgroup out of memory");
1847 }
1848
1849 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1850 gfp_t gfp_mask,
1851 unsigned long flags)
1852 {
1853 unsigned long total = 0;
1854 bool noswap = false;
1855 int loop;
1856
1857 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1858 noswap = true;
1859 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1860 noswap = true;
1861
1862 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1863 if (loop)
1864 drain_all_stock_async(memcg);
1865 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1866 /*
1867 * Allow limit shrinkers, which are triggered directly
1868 * by userspace, to catch signals and stop reclaim
1869 * after minimal progress, regardless of the margin.
1870 */
1871 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1872 break;
1873 if (mem_cgroup_margin(memcg))
1874 break;
1875 /*
1876 * If nothing was reclaimed after two attempts, there
1877 * may be no reclaimable pages in this hierarchy.
1878 */
1879 if (loop && !total)
1880 break;
1881 }
1882 return total;
1883 }
1884
1885 /**
1886 * test_mem_cgroup_node_reclaimable
1887 * @memcg: the target memcg
1888 * @nid: the node ID to be checked.
1889 * @noswap : specify true here if the user wants flle only information.
1890 *
1891 * This function returns whether the specified memcg contains any
1892 * reclaimable pages on a node. Returns true if there are any reclaimable
1893 * pages in the node.
1894 */
1895 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1896 int nid, bool noswap)
1897 {
1898 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1899 return true;
1900 if (noswap || !total_swap_pages)
1901 return false;
1902 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1903 return true;
1904 return false;
1905
1906 }
1907 #if MAX_NUMNODES > 1
1908
1909 /*
1910 * Always updating the nodemask is not very good - even if we have an empty
1911 * list or the wrong list here, we can start from some node and traverse all
1912 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1913 *
1914 */
1915 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1916 {
1917 int nid;
1918 /*
1919 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1920 * pagein/pageout changes since the last update.
1921 */
1922 if (!atomic_read(&memcg->numainfo_events))
1923 return;
1924 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1925 return;
1926
1927 /* make a nodemask where this memcg uses memory from */
1928 memcg->scan_nodes = node_states[N_MEMORY];
1929
1930 for_each_node_mask(nid, node_states[N_MEMORY]) {
1931
1932 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1933 node_clear(nid, memcg->scan_nodes);
1934 }
1935
1936 atomic_set(&memcg->numainfo_events, 0);
1937 atomic_set(&memcg->numainfo_updating, 0);
1938 }
1939
1940 /*
1941 * Selecting a node where we start reclaim from. Because what we need is just
1942 * reducing usage counter, start from anywhere is O,K. Considering
1943 * memory reclaim from current node, there are pros. and cons.
1944 *
1945 * Freeing memory from current node means freeing memory from a node which
1946 * we'll use or we've used. So, it may make LRU bad. And if several threads
1947 * hit limits, it will see a contention on a node. But freeing from remote
1948 * node means more costs for memory reclaim because of memory latency.
1949 *
1950 * Now, we use round-robin. Better algorithm is welcomed.
1951 */
1952 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1953 {
1954 int node;
1955
1956 mem_cgroup_may_update_nodemask(memcg);
1957 node = memcg->last_scanned_node;
1958
1959 node = next_node(node, memcg->scan_nodes);
1960 if (node == MAX_NUMNODES)
1961 node = first_node(memcg->scan_nodes);
1962 /*
1963 * We call this when we hit limit, not when pages are added to LRU.
1964 * No LRU may hold pages because all pages are UNEVICTABLE or
1965 * memcg is too small and all pages are not on LRU. In that case,
1966 * we use curret node.
1967 */
1968 if (unlikely(node == MAX_NUMNODES))
1969 node = numa_node_id();
1970
1971 memcg->last_scanned_node = node;
1972 return node;
1973 }
1974
1975 /*
1976 * Check all nodes whether it contains reclaimable pages or not.
1977 * For quick scan, we make use of scan_nodes. This will allow us to skip
1978 * unused nodes. But scan_nodes is lazily updated and may not cotain
1979 * enough new information. We need to do double check.
1980 */
1981 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1982 {
1983 int nid;
1984
1985 /*
1986 * quick check...making use of scan_node.
1987 * We can skip unused nodes.
1988 */
1989 if (!nodes_empty(memcg->scan_nodes)) {
1990 for (nid = first_node(memcg->scan_nodes);
1991 nid < MAX_NUMNODES;
1992 nid = next_node(nid, memcg->scan_nodes)) {
1993
1994 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1995 return true;
1996 }
1997 }
1998 /*
1999 * Check rest of nodes.
2000 */
2001 for_each_node_state(nid, N_MEMORY) {
2002 if (node_isset(nid, memcg->scan_nodes))
2003 continue;
2004 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2005 return true;
2006 }
2007 return false;
2008 }
2009
2010 #else
2011 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2012 {
2013 return 0;
2014 }
2015
2016 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2017 {
2018 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2019 }
2020 #endif
2021
2022 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2023 struct zone *zone,
2024 gfp_t gfp_mask,
2025 unsigned long *total_scanned)
2026 {
2027 struct mem_cgroup *victim = NULL;
2028 int total = 0;
2029 int loop = 0;
2030 unsigned long excess;
2031 unsigned long nr_scanned;
2032 struct mem_cgroup_reclaim_cookie reclaim = {
2033 .zone = zone,
2034 .priority = 0,
2035 };
2036
2037 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2038
2039 while (1) {
2040 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2041 if (!victim) {
2042 loop++;
2043 if (loop >= 2) {
2044 /*
2045 * If we have not been able to reclaim
2046 * anything, it might because there are
2047 * no reclaimable pages under this hierarchy
2048 */
2049 if (!total)
2050 break;
2051 /*
2052 * We want to do more targeted reclaim.
2053 * excess >> 2 is not to excessive so as to
2054 * reclaim too much, nor too less that we keep
2055 * coming back to reclaim from this cgroup
2056 */
2057 if (total >= (excess >> 2) ||
2058 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2059 break;
2060 }
2061 continue;
2062 }
2063 if (!mem_cgroup_reclaimable(victim, false))
2064 continue;
2065 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2066 zone, &nr_scanned);
2067 *total_scanned += nr_scanned;
2068 if (!res_counter_soft_limit_excess(&root_memcg->res))
2069 break;
2070 }
2071 mem_cgroup_iter_break(root_memcg, victim);
2072 return total;
2073 }
2074
2075 /*
2076 * Check OOM-Killer is already running under our hierarchy.
2077 * If someone is running, return false.
2078 * Has to be called with memcg_oom_lock
2079 */
2080 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
2081 {
2082 struct mem_cgroup *iter, *failed = NULL;
2083
2084 for_each_mem_cgroup_tree(iter, memcg) {
2085 if (iter->oom_lock) {
2086 /*
2087 * this subtree of our hierarchy is already locked
2088 * so we cannot give a lock.
2089 */
2090 failed = iter;
2091 mem_cgroup_iter_break(memcg, iter);
2092 break;
2093 } else
2094 iter->oom_lock = true;
2095 }
2096
2097 if (!failed)
2098 return true;
2099
2100 /*
2101 * OK, we failed to lock the whole subtree so we have to clean up
2102 * what we set up to the failing subtree
2103 */
2104 for_each_mem_cgroup_tree(iter, memcg) {
2105 if (iter == failed) {
2106 mem_cgroup_iter_break(memcg, iter);
2107 break;
2108 }
2109 iter->oom_lock = false;
2110 }
2111 return false;
2112 }
2113
2114 /*
2115 * Has to be called with memcg_oom_lock
2116 */
2117 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2118 {
2119 struct mem_cgroup *iter;
2120
2121 for_each_mem_cgroup_tree(iter, memcg)
2122 iter->oom_lock = false;
2123 return 0;
2124 }
2125
2126 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2127 {
2128 struct mem_cgroup *iter;
2129
2130 for_each_mem_cgroup_tree(iter, memcg)
2131 atomic_inc(&iter->under_oom);
2132 }
2133
2134 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2135 {
2136 struct mem_cgroup *iter;
2137
2138 /*
2139 * When a new child is created while the hierarchy is under oom,
2140 * mem_cgroup_oom_lock() may not be called. We have to use
2141 * atomic_add_unless() here.
2142 */
2143 for_each_mem_cgroup_tree(iter, memcg)
2144 atomic_add_unless(&iter->under_oom, -1, 0);
2145 }
2146
2147 static DEFINE_SPINLOCK(memcg_oom_lock);
2148 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2149
2150 struct oom_wait_info {
2151 struct mem_cgroup *memcg;
2152 wait_queue_t wait;
2153 };
2154
2155 static int memcg_oom_wake_function(wait_queue_t *wait,
2156 unsigned mode, int sync, void *arg)
2157 {
2158 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2159 struct mem_cgroup *oom_wait_memcg;
2160 struct oom_wait_info *oom_wait_info;
2161
2162 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2163 oom_wait_memcg = oom_wait_info->memcg;
2164
2165 /*
2166 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2167 * Then we can use css_is_ancestor without taking care of RCU.
2168 */
2169 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2170 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2171 return 0;
2172 return autoremove_wake_function(wait, mode, sync, arg);
2173 }
2174
2175 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2176 {
2177 /* for filtering, pass "memcg" as argument. */
2178 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2179 }
2180
2181 static void memcg_oom_recover(struct mem_cgroup *memcg)
2182 {
2183 if (memcg && atomic_read(&memcg->under_oom))
2184 memcg_wakeup_oom(memcg);
2185 }
2186
2187 /*
2188 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
2189 */
2190 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
2191 int order)
2192 {
2193 struct oom_wait_info owait;
2194 bool locked, need_to_kill;
2195
2196 owait.memcg = memcg;
2197 owait.wait.flags = 0;
2198 owait.wait.func = memcg_oom_wake_function;
2199 owait.wait.private = current;
2200 INIT_LIST_HEAD(&owait.wait.task_list);
2201 need_to_kill = true;
2202 mem_cgroup_mark_under_oom(memcg);
2203
2204 /* At first, try to OOM lock hierarchy under memcg.*/
2205 spin_lock(&memcg_oom_lock);
2206 locked = mem_cgroup_oom_lock(memcg);
2207 /*
2208 * Even if signal_pending(), we can't quit charge() loop without
2209 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
2210 * under OOM is always welcomed, use TASK_KILLABLE here.
2211 */
2212 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2213 if (!locked || memcg->oom_kill_disable)
2214 need_to_kill = false;
2215 if (locked)
2216 mem_cgroup_oom_notify(memcg);
2217 spin_unlock(&memcg_oom_lock);
2218
2219 if (need_to_kill) {
2220 finish_wait(&memcg_oom_waitq, &owait.wait);
2221 mem_cgroup_out_of_memory(memcg, mask, order);
2222 } else {
2223 schedule();
2224 finish_wait(&memcg_oom_waitq, &owait.wait);
2225 }
2226 spin_lock(&memcg_oom_lock);
2227 if (locked)
2228 mem_cgroup_oom_unlock(memcg);
2229 memcg_wakeup_oom(memcg);
2230 spin_unlock(&memcg_oom_lock);
2231
2232 mem_cgroup_unmark_under_oom(memcg);
2233
2234 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2235 return false;
2236 /* Give chance to dying process */
2237 schedule_timeout_uninterruptible(1);
2238 return true;
2239 }
2240
2241 /*
2242 * Currently used to update mapped file statistics, but the routine can be
2243 * generalized to update other statistics as well.
2244 *
2245 * Notes: Race condition
2246 *
2247 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2248 * it tends to be costly. But considering some conditions, we doesn't need
2249 * to do so _always_.
2250 *
2251 * Considering "charge", lock_page_cgroup() is not required because all
2252 * file-stat operations happen after a page is attached to radix-tree. There
2253 * are no race with "charge".
2254 *
2255 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2256 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2257 * if there are race with "uncharge". Statistics itself is properly handled
2258 * by flags.
2259 *
2260 * Considering "move", this is an only case we see a race. To make the race
2261 * small, we check mm->moving_account and detect there are possibility of race
2262 * If there is, we take a lock.
2263 */
2264
2265 void __mem_cgroup_begin_update_page_stat(struct page *page,
2266 bool *locked, unsigned long *flags)
2267 {
2268 struct mem_cgroup *memcg;
2269 struct page_cgroup *pc;
2270
2271 pc = lookup_page_cgroup(page);
2272 again:
2273 memcg = pc->mem_cgroup;
2274 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2275 return;
2276 /*
2277 * If this memory cgroup is not under account moving, we don't
2278 * need to take move_lock_mem_cgroup(). Because we already hold
2279 * rcu_read_lock(), any calls to move_account will be delayed until
2280 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2281 */
2282 if (!mem_cgroup_stolen(memcg))
2283 return;
2284
2285 move_lock_mem_cgroup(memcg, flags);
2286 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2287 move_unlock_mem_cgroup(memcg, flags);
2288 goto again;
2289 }
2290 *locked = true;
2291 }
2292
2293 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2294 {
2295 struct page_cgroup *pc = lookup_page_cgroup(page);
2296
2297 /*
2298 * It's guaranteed that pc->mem_cgroup never changes while
2299 * lock is held because a routine modifies pc->mem_cgroup
2300 * should take move_lock_mem_cgroup().
2301 */
2302 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2303 }
2304
2305 void mem_cgroup_update_page_stat(struct page *page,
2306 enum mem_cgroup_page_stat_item idx, int val)
2307 {
2308 struct mem_cgroup *memcg;
2309 struct page_cgroup *pc = lookup_page_cgroup(page);
2310 unsigned long uninitialized_var(flags);
2311
2312 if (mem_cgroup_disabled())
2313 return;
2314
2315 memcg = pc->mem_cgroup;
2316 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2317 return;
2318
2319 switch (idx) {
2320 case MEMCG_NR_FILE_MAPPED:
2321 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2322 break;
2323 default:
2324 BUG();
2325 }
2326
2327 this_cpu_add(memcg->stat->count[idx], val);
2328 }
2329
2330 /*
2331 * size of first charge trial. "32" comes from vmscan.c's magic value.
2332 * TODO: maybe necessary to use big numbers in big irons.
2333 */
2334 #define CHARGE_BATCH 32U
2335 struct memcg_stock_pcp {
2336 struct mem_cgroup *cached; /* this never be root cgroup */
2337 unsigned int nr_pages;
2338 struct work_struct work;
2339 unsigned long flags;
2340 #define FLUSHING_CACHED_CHARGE 0
2341 };
2342 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2343 static DEFINE_MUTEX(percpu_charge_mutex);
2344
2345 /**
2346 * consume_stock: Try to consume stocked charge on this cpu.
2347 * @memcg: memcg to consume from.
2348 * @nr_pages: how many pages to charge.
2349 *
2350 * The charges will only happen if @memcg matches the current cpu's memcg
2351 * stock, and at least @nr_pages are available in that stock. Failure to
2352 * service an allocation will refill the stock.
2353 *
2354 * returns true if successful, false otherwise.
2355 */
2356 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2357 {
2358 struct memcg_stock_pcp *stock;
2359 bool ret = true;
2360
2361 if (nr_pages > CHARGE_BATCH)
2362 return false;
2363
2364 stock = &get_cpu_var(memcg_stock);
2365 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2366 stock->nr_pages -= nr_pages;
2367 else /* need to call res_counter_charge */
2368 ret = false;
2369 put_cpu_var(memcg_stock);
2370 return ret;
2371 }
2372
2373 /*
2374 * Returns stocks cached in percpu to res_counter and reset cached information.
2375 */
2376 static void drain_stock(struct memcg_stock_pcp *stock)
2377 {
2378 struct mem_cgroup *old = stock->cached;
2379
2380 if (stock->nr_pages) {
2381 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2382
2383 res_counter_uncharge(&old->res, bytes);
2384 if (do_swap_account)
2385 res_counter_uncharge(&old->memsw, bytes);
2386 stock->nr_pages = 0;
2387 }
2388 stock->cached = NULL;
2389 }
2390
2391 /*
2392 * This must be called under preempt disabled or must be called by
2393 * a thread which is pinned to local cpu.
2394 */
2395 static void drain_local_stock(struct work_struct *dummy)
2396 {
2397 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2398 drain_stock(stock);
2399 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2400 }
2401
2402 static void __init memcg_stock_init(void)
2403 {
2404 int cpu;
2405
2406 for_each_possible_cpu(cpu) {
2407 struct memcg_stock_pcp *stock =
2408 &per_cpu(memcg_stock, cpu);
2409 INIT_WORK(&stock->work, drain_local_stock);
2410 }
2411 }
2412
2413 /*
2414 * Cache charges(val) which is from res_counter, to local per_cpu area.
2415 * This will be consumed by consume_stock() function, later.
2416 */
2417 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2418 {
2419 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2420
2421 if (stock->cached != memcg) { /* reset if necessary */
2422 drain_stock(stock);
2423 stock->cached = memcg;
2424 }
2425 stock->nr_pages += nr_pages;
2426 put_cpu_var(memcg_stock);
2427 }
2428
2429 /*
2430 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2431 * of the hierarchy under it. sync flag says whether we should block
2432 * until the work is done.
2433 */
2434 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2435 {
2436 int cpu, curcpu;
2437
2438 /* Notify other cpus that system-wide "drain" is running */
2439 get_online_cpus();
2440 curcpu = get_cpu();
2441 for_each_online_cpu(cpu) {
2442 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2443 struct mem_cgroup *memcg;
2444
2445 memcg = stock->cached;
2446 if (!memcg || !stock->nr_pages)
2447 continue;
2448 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2449 continue;
2450 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2451 if (cpu == curcpu)
2452 drain_local_stock(&stock->work);
2453 else
2454 schedule_work_on(cpu, &stock->work);
2455 }
2456 }
2457 put_cpu();
2458
2459 if (!sync)
2460 goto out;
2461
2462 for_each_online_cpu(cpu) {
2463 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2464 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2465 flush_work(&stock->work);
2466 }
2467 out:
2468 put_online_cpus();
2469 }
2470
2471 /*
2472 * Tries to drain stocked charges in other cpus. This function is asynchronous
2473 * and just put a work per cpu for draining localy on each cpu. Caller can
2474 * expects some charges will be back to res_counter later but cannot wait for
2475 * it.
2476 */
2477 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2478 {
2479 /*
2480 * If someone calls draining, avoid adding more kworker runs.
2481 */
2482 if (!mutex_trylock(&percpu_charge_mutex))
2483 return;
2484 drain_all_stock(root_memcg, false);
2485 mutex_unlock(&percpu_charge_mutex);
2486 }
2487
2488 /* This is a synchronous drain interface. */
2489 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2490 {
2491 /* called when force_empty is called */
2492 mutex_lock(&percpu_charge_mutex);
2493 drain_all_stock(root_memcg, true);
2494 mutex_unlock(&percpu_charge_mutex);
2495 }
2496
2497 /*
2498 * This function drains percpu counter value from DEAD cpu and
2499 * move it to local cpu. Note that this function can be preempted.
2500 */
2501 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2502 {
2503 int i;
2504
2505 spin_lock(&memcg->pcp_counter_lock);
2506 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2507 long x = per_cpu(memcg->stat->count[i], cpu);
2508
2509 per_cpu(memcg->stat->count[i], cpu) = 0;
2510 memcg->nocpu_base.count[i] += x;
2511 }
2512 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2513 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2514
2515 per_cpu(memcg->stat->events[i], cpu) = 0;
2516 memcg->nocpu_base.events[i] += x;
2517 }
2518 spin_unlock(&memcg->pcp_counter_lock);
2519 }
2520
2521 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2522 unsigned long action,
2523 void *hcpu)
2524 {
2525 int cpu = (unsigned long)hcpu;
2526 struct memcg_stock_pcp *stock;
2527 struct mem_cgroup *iter;
2528
2529 if (action == CPU_ONLINE)
2530 return NOTIFY_OK;
2531
2532 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2533 return NOTIFY_OK;
2534
2535 for_each_mem_cgroup(iter)
2536 mem_cgroup_drain_pcp_counter(iter, cpu);
2537
2538 stock = &per_cpu(memcg_stock, cpu);
2539 drain_stock(stock);
2540 return NOTIFY_OK;
2541 }
2542
2543
2544 /* See __mem_cgroup_try_charge() for details */
2545 enum {
2546 CHARGE_OK, /* success */
2547 CHARGE_RETRY, /* need to retry but retry is not bad */
2548 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2549 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2550 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2551 };
2552
2553 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2554 unsigned int nr_pages, unsigned int min_pages,
2555 bool oom_check)
2556 {
2557 unsigned long csize = nr_pages * PAGE_SIZE;
2558 struct mem_cgroup *mem_over_limit;
2559 struct res_counter *fail_res;
2560 unsigned long flags = 0;
2561 int ret;
2562
2563 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2564
2565 if (likely(!ret)) {
2566 if (!do_swap_account)
2567 return CHARGE_OK;
2568 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2569 if (likely(!ret))
2570 return CHARGE_OK;
2571
2572 res_counter_uncharge(&memcg->res, csize);
2573 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2574 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2575 } else
2576 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2577 /*
2578 * Never reclaim on behalf of optional batching, retry with a
2579 * single page instead.
2580 */
2581 if (nr_pages > min_pages)
2582 return CHARGE_RETRY;
2583
2584 if (!(gfp_mask & __GFP_WAIT))
2585 return CHARGE_WOULDBLOCK;
2586
2587 if (gfp_mask & __GFP_NORETRY)
2588 return CHARGE_NOMEM;
2589
2590 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2591 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2592 return CHARGE_RETRY;
2593 /*
2594 * Even though the limit is exceeded at this point, reclaim
2595 * may have been able to free some pages. Retry the charge
2596 * before killing the task.
2597 *
2598 * Only for regular pages, though: huge pages are rather
2599 * unlikely to succeed so close to the limit, and we fall back
2600 * to regular pages anyway in case of failure.
2601 */
2602 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2603 return CHARGE_RETRY;
2604
2605 /*
2606 * At task move, charge accounts can be doubly counted. So, it's
2607 * better to wait until the end of task_move if something is going on.
2608 */
2609 if (mem_cgroup_wait_acct_move(mem_over_limit))
2610 return CHARGE_RETRY;
2611
2612 /* If we don't need to call oom-killer at el, return immediately */
2613 if (!oom_check)
2614 return CHARGE_NOMEM;
2615 /* check OOM */
2616 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2617 return CHARGE_OOM_DIE;
2618
2619 return CHARGE_RETRY;
2620 }
2621
2622 /*
2623 * __mem_cgroup_try_charge() does
2624 * 1. detect memcg to be charged against from passed *mm and *ptr,
2625 * 2. update res_counter
2626 * 3. call memory reclaim if necessary.
2627 *
2628 * In some special case, if the task is fatal, fatal_signal_pending() or
2629 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2630 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2631 * as possible without any hazards. 2: all pages should have a valid
2632 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2633 * pointer, that is treated as a charge to root_mem_cgroup.
2634 *
2635 * So __mem_cgroup_try_charge() will return
2636 * 0 ... on success, filling *ptr with a valid memcg pointer.
2637 * -ENOMEM ... charge failure because of resource limits.
2638 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2639 *
2640 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2641 * the oom-killer can be invoked.
2642 */
2643 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2644 gfp_t gfp_mask,
2645 unsigned int nr_pages,
2646 struct mem_cgroup **ptr,
2647 bool oom)
2648 {
2649 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2650 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2651 struct mem_cgroup *memcg = NULL;
2652 int ret;
2653
2654 /*
2655 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2656 * in system level. So, allow to go ahead dying process in addition to
2657 * MEMDIE process.
2658 */
2659 if (unlikely(test_thread_flag(TIF_MEMDIE)
2660 || fatal_signal_pending(current)))
2661 goto bypass;
2662
2663 /*
2664 * We always charge the cgroup the mm_struct belongs to.
2665 * The mm_struct's mem_cgroup changes on task migration if the
2666 * thread group leader migrates. It's possible that mm is not
2667 * set, if so charge the root memcg (happens for pagecache usage).
2668 */
2669 if (!*ptr && !mm)
2670 *ptr = root_mem_cgroup;
2671 again:
2672 if (*ptr) { /* css should be a valid one */
2673 memcg = *ptr;
2674 if (mem_cgroup_is_root(memcg))
2675 goto done;
2676 if (consume_stock(memcg, nr_pages))
2677 goto done;
2678 css_get(&memcg->css);
2679 } else {
2680 struct task_struct *p;
2681
2682 rcu_read_lock();
2683 p = rcu_dereference(mm->owner);
2684 /*
2685 * Because we don't have task_lock(), "p" can exit.
2686 * In that case, "memcg" can point to root or p can be NULL with
2687 * race with swapoff. Then, we have small risk of mis-accouning.
2688 * But such kind of mis-account by race always happens because
2689 * we don't have cgroup_mutex(). It's overkill and we allo that
2690 * small race, here.
2691 * (*) swapoff at el will charge against mm-struct not against
2692 * task-struct. So, mm->owner can be NULL.
2693 */
2694 memcg = mem_cgroup_from_task(p);
2695 if (!memcg)
2696 memcg = root_mem_cgroup;
2697 if (mem_cgroup_is_root(memcg)) {
2698 rcu_read_unlock();
2699 goto done;
2700 }
2701 if (consume_stock(memcg, nr_pages)) {
2702 /*
2703 * It seems dagerous to access memcg without css_get().
2704 * But considering how consume_stok works, it's not
2705 * necessary. If consume_stock success, some charges
2706 * from this memcg are cached on this cpu. So, we
2707 * don't need to call css_get()/css_tryget() before
2708 * calling consume_stock().
2709 */
2710 rcu_read_unlock();
2711 goto done;
2712 }
2713 /* after here, we may be blocked. we need to get refcnt */
2714 if (!css_tryget(&memcg->css)) {
2715 rcu_read_unlock();
2716 goto again;
2717 }
2718 rcu_read_unlock();
2719 }
2720
2721 do {
2722 bool oom_check;
2723
2724 /* If killed, bypass charge */
2725 if (fatal_signal_pending(current)) {
2726 css_put(&memcg->css);
2727 goto bypass;
2728 }
2729
2730 oom_check = false;
2731 if (oom && !nr_oom_retries) {
2732 oom_check = true;
2733 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2734 }
2735
2736 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2737 oom_check);
2738 switch (ret) {
2739 case CHARGE_OK:
2740 break;
2741 case CHARGE_RETRY: /* not in OOM situation but retry */
2742 batch = nr_pages;
2743 css_put(&memcg->css);
2744 memcg = NULL;
2745 goto again;
2746 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2747 css_put(&memcg->css);
2748 goto nomem;
2749 case CHARGE_NOMEM: /* OOM routine works */
2750 if (!oom) {
2751 css_put(&memcg->css);
2752 goto nomem;
2753 }
2754 /* If oom, we never return -ENOMEM */
2755 nr_oom_retries--;
2756 break;
2757 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2758 css_put(&memcg->css);
2759 goto bypass;
2760 }
2761 } while (ret != CHARGE_OK);
2762
2763 if (batch > nr_pages)
2764 refill_stock(memcg, batch - nr_pages);
2765 css_put(&memcg->css);
2766 done:
2767 *ptr = memcg;
2768 return 0;
2769 nomem:
2770 *ptr = NULL;
2771 return -ENOMEM;
2772 bypass:
2773 *ptr = root_mem_cgroup;
2774 return -EINTR;
2775 }
2776
2777 /*
2778 * Somemtimes we have to undo a charge we got by try_charge().
2779 * This function is for that and do uncharge, put css's refcnt.
2780 * gotten by try_charge().
2781 */
2782 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2783 unsigned int nr_pages)
2784 {
2785 if (!mem_cgroup_is_root(memcg)) {
2786 unsigned long bytes = nr_pages * PAGE_SIZE;
2787
2788 res_counter_uncharge(&memcg->res, bytes);
2789 if (do_swap_account)
2790 res_counter_uncharge(&memcg->memsw, bytes);
2791 }
2792 }
2793
2794 /*
2795 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2796 * This is useful when moving usage to parent cgroup.
2797 */
2798 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2799 unsigned int nr_pages)
2800 {
2801 unsigned long bytes = nr_pages * PAGE_SIZE;
2802
2803 if (mem_cgroup_is_root(memcg))
2804 return;
2805
2806 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2807 if (do_swap_account)
2808 res_counter_uncharge_until(&memcg->memsw,
2809 memcg->memsw.parent, bytes);
2810 }
2811
2812 /*
2813 * A helper function to get mem_cgroup from ID. must be called under
2814 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2815 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2816 * called against removed memcg.)
2817 */
2818 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2819 {
2820 struct cgroup_subsys_state *css;
2821
2822 /* ID 0 is unused ID */
2823 if (!id)
2824 return NULL;
2825 css = css_lookup(&mem_cgroup_subsys, id);
2826 if (!css)
2827 return NULL;
2828 return mem_cgroup_from_css(css);
2829 }
2830
2831 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2832 {
2833 struct mem_cgroup *memcg = NULL;
2834 struct page_cgroup *pc;
2835 unsigned short id;
2836 swp_entry_t ent;
2837
2838 VM_BUG_ON(!PageLocked(page));
2839
2840 pc = lookup_page_cgroup(page);
2841 lock_page_cgroup(pc);
2842 if (PageCgroupUsed(pc)) {
2843 memcg = pc->mem_cgroup;
2844 if (memcg && !css_tryget(&memcg->css))
2845 memcg = NULL;
2846 } else if (PageSwapCache(page)) {
2847 ent.val = page_private(page);
2848 id = lookup_swap_cgroup_id(ent);
2849 rcu_read_lock();
2850 memcg = mem_cgroup_lookup(id);
2851 if (memcg && !css_tryget(&memcg->css))
2852 memcg = NULL;
2853 rcu_read_unlock();
2854 }
2855 unlock_page_cgroup(pc);
2856 return memcg;
2857 }
2858
2859 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2860 struct page *page,
2861 unsigned int nr_pages,
2862 enum charge_type ctype,
2863 bool lrucare)
2864 {
2865 struct page_cgroup *pc = lookup_page_cgroup(page);
2866 struct zone *uninitialized_var(zone);
2867 struct lruvec *lruvec;
2868 bool was_on_lru = false;
2869 bool anon;
2870
2871 lock_page_cgroup(pc);
2872 VM_BUG_ON(PageCgroupUsed(pc));
2873 /*
2874 * we don't need page_cgroup_lock about tail pages, becase they are not
2875 * accessed by any other context at this point.
2876 */
2877
2878 /*
2879 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2880 * may already be on some other mem_cgroup's LRU. Take care of it.
2881 */
2882 if (lrucare) {
2883 zone = page_zone(page);
2884 spin_lock_irq(&zone->lru_lock);
2885 if (PageLRU(page)) {
2886 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2887 ClearPageLRU(page);
2888 del_page_from_lru_list(page, lruvec, page_lru(page));
2889 was_on_lru = true;
2890 }
2891 }
2892
2893 pc->mem_cgroup = memcg;
2894 /*
2895 * We access a page_cgroup asynchronously without lock_page_cgroup().
2896 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2897 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2898 * before USED bit, we need memory barrier here.
2899 * See mem_cgroup_add_lru_list(), etc.
2900 */
2901 smp_wmb();
2902 SetPageCgroupUsed(pc);
2903
2904 if (lrucare) {
2905 if (was_on_lru) {
2906 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2907 VM_BUG_ON(PageLRU(page));
2908 SetPageLRU(page);
2909 add_page_to_lru_list(page, lruvec, page_lru(page));
2910 }
2911 spin_unlock_irq(&zone->lru_lock);
2912 }
2913
2914 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2915 anon = true;
2916 else
2917 anon = false;
2918
2919 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2920 unlock_page_cgroup(pc);
2921
2922 /*
2923 * "charge_statistics" updated event counter. Then, check it.
2924 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2925 * if they exceeds softlimit.
2926 */
2927 memcg_check_events(memcg, page);
2928 }
2929
2930 static DEFINE_MUTEX(set_limit_mutex);
2931
2932 #ifdef CONFIG_MEMCG_KMEM
2933 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2934 {
2935 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2936 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2937 }
2938
2939 /*
2940 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2941 * in the memcg_cache_params struct.
2942 */
2943 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2944 {
2945 struct kmem_cache *cachep;
2946
2947 VM_BUG_ON(p->is_root_cache);
2948 cachep = p->root_cache;
2949 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2950 }
2951
2952 #ifdef CONFIG_SLABINFO
2953 static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
2954 struct cftype *cft, struct seq_file *m)
2955 {
2956 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2957 struct memcg_cache_params *params;
2958
2959 if (!memcg_can_account_kmem(memcg))
2960 return -EIO;
2961
2962 print_slabinfo_header(m);
2963
2964 mutex_lock(&memcg->slab_caches_mutex);
2965 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2966 cache_show(memcg_params_to_cache(params), m);
2967 mutex_unlock(&memcg->slab_caches_mutex);
2968
2969 return 0;
2970 }
2971 #endif
2972
2973 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2974 {
2975 struct res_counter *fail_res;
2976 struct mem_cgroup *_memcg;
2977 int ret = 0;
2978 bool may_oom;
2979
2980 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2981 if (ret)
2982 return ret;
2983
2984 /*
2985 * Conditions under which we can wait for the oom_killer. Those are
2986 * the same conditions tested by the core page allocator
2987 */
2988 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2989
2990 _memcg = memcg;
2991 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2992 &_memcg, may_oom);
2993
2994 if (ret == -EINTR) {
2995 /*
2996 * __mem_cgroup_try_charge() chosed to bypass to root due to
2997 * OOM kill or fatal signal. Since our only options are to
2998 * either fail the allocation or charge it to this cgroup, do
2999 * it as a temporary condition. But we can't fail. From a
3000 * kmem/slab perspective, the cache has already been selected,
3001 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3002 * our minds.
3003 *
3004 * This condition will only trigger if the task entered
3005 * memcg_charge_kmem in a sane state, but was OOM-killed during
3006 * __mem_cgroup_try_charge() above. Tasks that were already
3007 * dying when the allocation triggers should have been already
3008 * directed to the root cgroup in memcontrol.h
3009 */
3010 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3011 if (do_swap_account)
3012 res_counter_charge_nofail(&memcg->memsw, size,
3013 &fail_res);
3014 ret = 0;
3015 } else if (ret)
3016 res_counter_uncharge(&memcg->kmem, size);
3017
3018 return ret;
3019 }
3020
3021 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3022 {
3023 res_counter_uncharge(&memcg->res, size);
3024 if (do_swap_account)
3025 res_counter_uncharge(&memcg->memsw, size);
3026
3027 /* Not down to 0 */
3028 if (res_counter_uncharge(&memcg->kmem, size))
3029 return;
3030
3031 /*
3032 * Releases a reference taken in kmem_cgroup_css_offline in case
3033 * this last uncharge is racing with the offlining code or it is
3034 * outliving the memcg existence.
3035 *
3036 * The memory barrier imposed by test&clear is paired with the
3037 * explicit one in memcg_kmem_mark_dead().
3038 */
3039 if (memcg_kmem_test_and_clear_dead(memcg))
3040 css_put(&memcg->css);
3041 }
3042
3043 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3044 {
3045 if (!memcg)
3046 return;
3047
3048 mutex_lock(&memcg->slab_caches_mutex);
3049 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3050 mutex_unlock(&memcg->slab_caches_mutex);
3051 }
3052
3053 /*
3054 * helper for acessing a memcg's index. It will be used as an index in the
3055 * child cache array in kmem_cache, and also to derive its name. This function
3056 * will return -1 when this is not a kmem-limited memcg.
3057 */
3058 int memcg_cache_id(struct mem_cgroup *memcg)
3059 {
3060 return memcg ? memcg->kmemcg_id : -1;
3061 }
3062
3063 /*
3064 * This ends up being protected by the set_limit mutex, during normal
3065 * operation, because that is its main call site.
3066 *
3067 * But when we create a new cache, we can call this as well if its parent
3068 * is kmem-limited. That will have to hold set_limit_mutex as well.
3069 */
3070 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3071 {
3072 int num, ret;
3073
3074 num = ida_simple_get(&kmem_limited_groups,
3075 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3076 if (num < 0)
3077 return num;
3078 /*
3079 * After this point, kmem_accounted (that we test atomically in
3080 * the beginning of this conditional), is no longer 0. This
3081 * guarantees only one process will set the following boolean
3082 * to true. We don't need test_and_set because we're protected
3083 * by the set_limit_mutex anyway.
3084 */
3085 memcg_kmem_set_activated(memcg);
3086
3087 ret = memcg_update_all_caches(num+1);
3088 if (ret) {
3089 ida_simple_remove(&kmem_limited_groups, num);
3090 memcg_kmem_clear_activated(memcg);
3091 return ret;
3092 }
3093
3094 memcg->kmemcg_id = num;
3095 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3096 mutex_init(&memcg->slab_caches_mutex);
3097 return 0;
3098 }
3099
3100 static size_t memcg_caches_array_size(int num_groups)
3101 {
3102 ssize_t size;
3103 if (num_groups <= 0)
3104 return 0;
3105
3106 size = 2 * num_groups;
3107 if (size < MEMCG_CACHES_MIN_SIZE)
3108 size = MEMCG_CACHES_MIN_SIZE;
3109 else if (size > MEMCG_CACHES_MAX_SIZE)
3110 size = MEMCG_CACHES_MAX_SIZE;
3111
3112 return size;
3113 }
3114
3115 /*
3116 * We should update the current array size iff all caches updates succeed. This
3117 * can only be done from the slab side. The slab mutex needs to be held when
3118 * calling this.
3119 */
3120 void memcg_update_array_size(int num)
3121 {
3122 if (num > memcg_limited_groups_array_size)
3123 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3124 }
3125
3126 static void kmem_cache_destroy_work_func(struct work_struct *w);
3127
3128 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3129 {
3130 struct memcg_cache_params *cur_params = s->memcg_params;
3131
3132 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3133
3134 if (num_groups > memcg_limited_groups_array_size) {
3135 int i;
3136 ssize_t size = memcg_caches_array_size(num_groups);
3137
3138 size *= sizeof(void *);
3139 size += sizeof(struct memcg_cache_params);
3140
3141 s->memcg_params = kzalloc(size, GFP_KERNEL);
3142 if (!s->memcg_params) {
3143 s->memcg_params = cur_params;
3144 return -ENOMEM;
3145 }
3146
3147 s->memcg_params->is_root_cache = true;
3148
3149 /*
3150 * There is the chance it will be bigger than
3151 * memcg_limited_groups_array_size, if we failed an allocation
3152 * in a cache, in which case all caches updated before it, will
3153 * have a bigger array.
3154 *
3155 * But if that is the case, the data after
3156 * memcg_limited_groups_array_size is certainly unused
3157 */
3158 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3159 if (!cur_params->memcg_caches[i])
3160 continue;
3161 s->memcg_params->memcg_caches[i] =
3162 cur_params->memcg_caches[i];
3163 }
3164
3165 /*
3166 * Ideally, we would wait until all caches succeed, and only
3167 * then free the old one. But this is not worth the extra
3168 * pointer per-cache we'd have to have for this.
3169 *
3170 * It is not a big deal if some caches are left with a size
3171 * bigger than the others. And all updates will reset this
3172 * anyway.
3173 */
3174 kfree(cur_params);
3175 }
3176 return 0;
3177 }
3178
3179 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3180 struct kmem_cache *root_cache)
3181 {
3182 size_t size = sizeof(struct memcg_cache_params);
3183
3184 if (!memcg_kmem_enabled())
3185 return 0;
3186
3187 if (!memcg)
3188 size += memcg_limited_groups_array_size * sizeof(void *);
3189
3190 s->memcg_params = kzalloc(size, GFP_KERNEL);
3191 if (!s->memcg_params)
3192 return -ENOMEM;
3193
3194 INIT_WORK(&s->memcg_params->destroy,
3195 kmem_cache_destroy_work_func);
3196 if (memcg) {
3197 s->memcg_params->memcg = memcg;
3198 s->memcg_params->root_cache = root_cache;
3199 } else
3200 s->memcg_params->is_root_cache = true;
3201
3202 return 0;
3203 }
3204
3205 void memcg_release_cache(struct kmem_cache *s)
3206 {
3207 struct kmem_cache *root;
3208 struct mem_cgroup *memcg;
3209 int id;
3210
3211 /*
3212 * This happens, for instance, when a root cache goes away before we
3213 * add any memcg.
3214 */
3215 if (!s->memcg_params)
3216 return;
3217
3218 if (s->memcg_params->is_root_cache)
3219 goto out;
3220
3221 memcg = s->memcg_params->memcg;
3222 id = memcg_cache_id(memcg);
3223
3224 root = s->memcg_params->root_cache;
3225 root->memcg_params->memcg_caches[id] = NULL;
3226
3227 mutex_lock(&memcg->slab_caches_mutex);
3228 list_del(&s->memcg_params->list);
3229 mutex_unlock(&memcg->slab_caches_mutex);
3230
3231 css_put(&memcg->css);
3232 out:
3233 kfree(s->memcg_params);
3234 }
3235
3236 /*
3237 * During the creation a new cache, we need to disable our accounting mechanism
3238 * altogether. This is true even if we are not creating, but rather just
3239 * enqueing new caches to be created.
3240 *
3241 * This is because that process will trigger allocations; some visible, like
3242 * explicit kmallocs to auxiliary data structures, name strings and internal
3243 * cache structures; some well concealed, like INIT_WORK() that can allocate
3244 * objects during debug.
3245 *
3246 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3247 * to it. This may not be a bounded recursion: since the first cache creation
3248 * failed to complete (waiting on the allocation), we'll just try to create the
3249 * cache again, failing at the same point.
3250 *
3251 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3252 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3253 * inside the following two functions.
3254 */
3255 static inline void memcg_stop_kmem_account(void)
3256 {
3257 VM_BUG_ON(!current->mm);
3258 current->memcg_kmem_skip_account++;
3259 }
3260
3261 static inline void memcg_resume_kmem_account(void)
3262 {
3263 VM_BUG_ON(!current->mm);
3264 current->memcg_kmem_skip_account--;
3265 }
3266
3267 static void kmem_cache_destroy_work_func(struct work_struct *w)
3268 {
3269 struct kmem_cache *cachep;
3270 struct memcg_cache_params *p;
3271
3272 p = container_of(w, struct memcg_cache_params, destroy);
3273
3274 cachep = memcg_params_to_cache(p);
3275
3276 /*
3277 * If we get down to 0 after shrink, we could delete right away.
3278 * However, memcg_release_pages() already puts us back in the workqueue
3279 * in that case. If we proceed deleting, we'll get a dangling
3280 * reference, and removing the object from the workqueue in that case
3281 * is unnecessary complication. We are not a fast path.
3282 *
3283 * Note that this case is fundamentally different from racing with
3284 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3285 * kmem_cache_shrink, not only we would be reinserting a dead cache
3286 * into the queue, but doing so from inside the worker racing to
3287 * destroy it.
3288 *
3289 * So if we aren't down to zero, we'll just schedule a worker and try
3290 * again
3291 */
3292 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3293 kmem_cache_shrink(cachep);
3294 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3295 return;
3296 } else
3297 kmem_cache_destroy(cachep);
3298 }
3299
3300 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3301 {
3302 if (!cachep->memcg_params->dead)
3303 return;
3304
3305 /*
3306 * There are many ways in which we can get here.
3307 *
3308 * We can get to a memory-pressure situation while the delayed work is
3309 * still pending to run. The vmscan shrinkers can then release all
3310 * cache memory and get us to destruction. If this is the case, we'll
3311 * be executed twice, which is a bug (the second time will execute over
3312 * bogus data). In this case, cancelling the work should be fine.
3313 *
3314 * But we can also get here from the worker itself, if
3315 * kmem_cache_shrink is enough to shake all the remaining objects and
3316 * get the page count to 0. In this case, we'll deadlock if we try to
3317 * cancel the work (the worker runs with an internal lock held, which
3318 * is the same lock we would hold for cancel_work_sync().)
3319 *
3320 * Since we can't possibly know who got us here, just refrain from
3321 * running if there is already work pending
3322 */
3323 if (work_pending(&cachep->memcg_params->destroy))
3324 return;
3325 /*
3326 * We have to defer the actual destroying to a workqueue, because
3327 * we might currently be in a context that cannot sleep.
3328 */
3329 schedule_work(&cachep->memcg_params->destroy);
3330 }
3331
3332 /*
3333 * This lock protects updaters, not readers. We want readers to be as fast as
3334 * they can, and they will either see NULL or a valid cache value. Our model
3335 * allow them to see NULL, in which case the root memcg will be selected.
3336 *
3337 * We need this lock because multiple allocations to the same cache from a non
3338 * will span more than one worker. Only one of them can create the cache.
3339 */
3340 static DEFINE_MUTEX(memcg_cache_mutex);
3341
3342 /*
3343 * Called with memcg_cache_mutex held
3344 */
3345 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3346 struct kmem_cache *s)
3347 {
3348 struct kmem_cache *new;
3349 static char *tmp_name = NULL;
3350
3351 lockdep_assert_held(&memcg_cache_mutex);
3352
3353 /*
3354 * kmem_cache_create_memcg duplicates the given name and
3355 * cgroup_name for this name requires RCU context.
3356 * This static temporary buffer is used to prevent from
3357 * pointless shortliving allocation.
3358 */
3359 if (!tmp_name) {
3360 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3361 if (!tmp_name)
3362 return NULL;
3363 }
3364
3365 rcu_read_lock();
3366 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3367 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3368 rcu_read_unlock();
3369
3370 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3371 (s->flags & ~SLAB_PANIC), s->ctor, s);
3372
3373 if (new)
3374 new->allocflags |= __GFP_KMEMCG;
3375
3376 return new;
3377 }
3378
3379 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3380 struct kmem_cache *cachep)
3381 {
3382 struct kmem_cache *new_cachep;
3383 int idx;
3384
3385 BUG_ON(!memcg_can_account_kmem(memcg));
3386
3387 idx = memcg_cache_id(memcg);
3388
3389 mutex_lock(&memcg_cache_mutex);
3390 new_cachep = cachep->memcg_params->memcg_caches[idx];
3391 if (new_cachep) {
3392 css_put(&memcg->css);
3393 goto out;
3394 }
3395
3396 new_cachep = kmem_cache_dup(memcg, cachep);
3397 if (new_cachep == NULL) {
3398 new_cachep = cachep;
3399 css_put(&memcg->css);
3400 goto out;
3401 }
3402
3403 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3404
3405 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3406 /*
3407 * the readers won't lock, make sure everybody sees the updated value,
3408 * so they won't put stuff in the queue again for no reason
3409 */
3410 wmb();
3411 out:
3412 mutex_unlock(&memcg_cache_mutex);
3413 return new_cachep;
3414 }
3415
3416 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3417 {
3418 struct kmem_cache *c;
3419 int i;
3420
3421 if (!s->memcg_params)
3422 return;
3423 if (!s->memcg_params->is_root_cache)
3424 return;
3425
3426 /*
3427 * If the cache is being destroyed, we trust that there is no one else
3428 * requesting objects from it. Even if there are, the sanity checks in
3429 * kmem_cache_destroy should caught this ill-case.
3430 *
3431 * Still, we don't want anyone else freeing memcg_caches under our
3432 * noses, which can happen if a new memcg comes to life. As usual,
3433 * we'll take the set_limit_mutex to protect ourselves against this.
3434 */
3435 mutex_lock(&set_limit_mutex);
3436 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3437 c = s->memcg_params->memcg_caches[i];
3438 if (!c)
3439 continue;
3440
3441 /*
3442 * We will now manually delete the caches, so to avoid races
3443 * we need to cancel all pending destruction workers and
3444 * proceed with destruction ourselves.
3445 *
3446 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3447 * and that could spawn the workers again: it is likely that
3448 * the cache still have active pages until this very moment.
3449 * This would lead us back to mem_cgroup_destroy_cache.
3450 *
3451 * But that will not execute at all if the "dead" flag is not
3452 * set, so flip it down to guarantee we are in control.
3453 */
3454 c->memcg_params->dead = false;
3455 cancel_work_sync(&c->memcg_params->destroy);
3456 kmem_cache_destroy(c);
3457 }
3458 mutex_unlock(&set_limit_mutex);
3459 }
3460
3461 struct create_work {
3462 struct mem_cgroup *memcg;
3463 struct kmem_cache *cachep;
3464 struct work_struct work;
3465 };
3466
3467 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3468 {
3469 struct kmem_cache *cachep;
3470 struct memcg_cache_params *params;
3471
3472 if (!memcg_kmem_is_active(memcg))
3473 return;
3474
3475 mutex_lock(&memcg->slab_caches_mutex);
3476 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3477 cachep = memcg_params_to_cache(params);
3478 cachep->memcg_params->dead = true;
3479 schedule_work(&cachep->memcg_params->destroy);
3480 }
3481 mutex_unlock(&memcg->slab_caches_mutex);
3482 }
3483
3484 static void memcg_create_cache_work_func(struct work_struct *w)
3485 {
3486 struct create_work *cw;
3487
3488 cw = container_of(w, struct create_work, work);
3489 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3490 kfree(cw);
3491 }
3492
3493 /*
3494 * Enqueue the creation of a per-memcg kmem_cache.
3495 */
3496 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3497 struct kmem_cache *cachep)
3498 {
3499 struct create_work *cw;
3500
3501 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3502 if (cw == NULL) {
3503 css_put(&memcg->css);
3504 return;
3505 }
3506
3507 cw->memcg = memcg;
3508 cw->cachep = cachep;
3509
3510 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3511 schedule_work(&cw->work);
3512 }
3513
3514 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3515 struct kmem_cache *cachep)
3516 {
3517 /*
3518 * We need to stop accounting when we kmalloc, because if the
3519 * corresponding kmalloc cache is not yet created, the first allocation
3520 * in __memcg_create_cache_enqueue will recurse.
3521 *
3522 * However, it is better to enclose the whole function. Depending on
3523 * the debugging options enabled, INIT_WORK(), for instance, can
3524 * trigger an allocation. This too, will make us recurse. Because at
3525 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3526 * the safest choice is to do it like this, wrapping the whole function.
3527 */
3528 memcg_stop_kmem_account();
3529 __memcg_create_cache_enqueue(memcg, cachep);
3530 memcg_resume_kmem_account();
3531 }
3532 /*
3533 * Return the kmem_cache we're supposed to use for a slab allocation.
3534 * We try to use the current memcg's version of the cache.
3535 *
3536 * If the cache does not exist yet, if we are the first user of it,
3537 * we either create it immediately, if possible, or create it asynchronously
3538 * in a workqueue.
3539 * In the latter case, we will let the current allocation go through with
3540 * the original cache.
3541 *
3542 * Can't be called in interrupt context or from kernel threads.
3543 * This function needs to be called with rcu_read_lock() held.
3544 */
3545 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3546 gfp_t gfp)
3547 {
3548 struct mem_cgroup *memcg;
3549 int idx;
3550
3551 VM_BUG_ON(!cachep->memcg_params);
3552 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3553
3554 if (!current->mm || current->memcg_kmem_skip_account)
3555 return cachep;
3556
3557 rcu_read_lock();
3558 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3559
3560 if (!memcg_can_account_kmem(memcg))
3561 goto out;
3562
3563 idx = memcg_cache_id(memcg);
3564
3565 /*
3566 * barrier to mare sure we're always seeing the up to date value. The
3567 * code updating memcg_caches will issue a write barrier to match this.
3568 */
3569 read_barrier_depends();
3570 if (likely(cachep->memcg_params->memcg_caches[idx])) {
3571 cachep = cachep->memcg_params->memcg_caches[idx];
3572 goto out;
3573 }
3574
3575 /* The corresponding put will be done in the workqueue. */
3576 if (!css_tryget(&memcg->css))
3577 goto out;
3578 rcu_read_unlock();
3579
3580 /*
3581 * If we are in a safe context (can wait, and not in interrupt
3582 * context), we could be be predictable and return right away.
3583 * This would guarantee that the allocation being performed
3584 * already belongs in the new cache.
3585 *
3586 * However, there are some clashes that can arrive from locking.
3587 * For instance, because we acquire the slab_mutex while doing
3588 * kmem_cache_dup, this means no further allocation could happen
3589 * with the slab_mutex held.
3590 *
3591 * Also, because cache creation issue get_online_cpus(), this
3592 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3593 * that ends up reversed during cpu hotplug. (cpuset allocates
3594 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3595 * better to defer everything.
3596 */
3597 memcg_create_cache_enqueue(memcg, cachep);
3598 return cachep;
3599 out:
3600 rcu_read_unlock();
3601 return cachep;
3602 }
3603 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3604
3605 /*
3606 * We need to verify if the allocation against current->mm->owner's memcg is
3607 * possible for the given order. But the page is not allocated yet, so we'll
3608 * need a further commit step to do the final arrangements.
3609 *
3610 * It is possible for the task to switch cgroups in this mean time, so at
3611 * commit time, we can't rely on task conversion any longer. We'll then use
3612 * the handle argument to return to the caller which cgroup we should commit
3613 * against. We could also return the memcg directly and avoid the pointer
3614 * passing, but a boolean return value gives better semantics considering
3615 * the compiled-out case as well.
3616 *
3617 * Returning true means the allocation is possible.
3618 */
3619 bool
3620 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3621 {
3622 struct mem_cgroup *memcg;
3623 int ret;
3624
3625 *_memcg = NULL;
3626
3627 /*
3628 * Disabling accounting is only relevant for some specific memcg
3629 * internal allocations. Therefore we would initially not have such
3630 * check here, since direct calls to the page allocator that are marked
3631 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3632 * concerned with cache allocations, and by having this test at
3633 * memcg_kmem_get_cache, we are already able to relay the allocation to
3634 * the root cache and bypass the memcg cache altogether.
3635 *
3636 * There is one exception, though: the SLUB allocator does not create
3637 * large order caches, but rather service large kmallocs directly from
3638 * the page allocator. Therefore, the following sequence when backed by
3639 * the SLUB allocator:
3640 *
3641 * memcg_stop_kmem_account();
3642 * kmalloc(<large_number>)
3643 * memcg_resume_kmem_account();
3644 *
3645 * would effectively ignore the fact that we should skip accounting,
3646 * since it will drive us directly to this function without passing
3647 * through the cache selector memcg_kmem_get_cache. Such large
3648 * allocations are extremely rare but can happen, for instance, for the
3649 * cache arrays. We bring this test here.
3650 */
3651 if (!current->mm || current->memcg_kmem_skip_account)
3652 return true;
3653
3654 memcg = try_get_mem_cgroup_from_mm(current->mm);
3655
3656 /*
3657 * very rare case described in mem_cgroup_from_task. Unfortunately there
3658 * isn't much we can do without complicating this too much, and it would
3659 * be gfp-dependent anyway. Just let it go
3660 */
3661 if (unlikely(!memcg))
3662 return true;
3663
3664 if (!memcg_can_account_kmem(memcg)) {
3665 css_put(&memcg->css);
3666 return true;
3667 }
3668
3669 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3670 if (!ret)
3671 *_memcg = memcg;
3672
3673 css_put(&memcg->css);
3674 return (ret == 0);
3675 }
3676
3677 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3678 int order)
3679 {
3680 struct page_cgroup *pc;
3681
3682 VM_BUG_ON(mem_cgroup_is_root(memcg));
3683
3684 /* The page allocation failed. Revert */
3685 if (!page) {
3686 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3687 return;
3688 }
3689
3690 pc = lookup_page_cgroup(page);
3691 lock_page_cgroup(pc);
3692 pc->mem_cgroup = memcg;
3693 SetPageCgroupUsed(pc);
3694 unlock_page_cgroup(pc);
3695 }
3696
3697 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3698 {
3699 struct mem_cgroup *memcg = NULL;
3700 struct page_cgroup *pc;
3701
3702
3703 pc = lookup_page_cgroup(page);
3704 /*
3705 * Fast unlocked return. Theoretically might have changed, have to
3706 * check again after locking.
3707 */
3708 if (!PageCgroupUsed(pc))
3709 return;
3710
3711 lock_page_cgroup(pc);
3712 if (PageCgroupUsed(pc)) {
3713 memcg = pc->mem_cgroup;
3714 ClearPageCgroupUsed(pc);
3715 }
3716 unlock_page_cgroup(pc);
3717
3718 /*
3719 * We trust that only if there is a memcg associated with the page, it
3720 * is a valid allocation
3721 */
3722 if (!memcg)
3723 return;
3724
3725 VM_BUG_ON(mem_cgroup_is_root(memcg));
3726 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3727 }
3728 #else
3729 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3730 {
3731 }
3732 #endif /* CONFIG_MEMCG_KMEM */
3733
3734 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3735
3736 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3737 /*
3738 * Because tail pages are not marked as "used", set it. We're under
3739 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3740 * charge/uncharge will be never happen and move_account() is done under
3741 * compound_lock(), so we don't have to take care of races.
3742 */
3743 void mem_cgroup_split_huge_fixup(struct page *head)
3744 {
3745 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3746 struct page_cgroup *pc;
3747 struct mem_cgroup *memcg;
3748 int i;
3749
3750 if (mem_cgroup_disabled())
3751 return;
3752
3753 memcg = head_pc->mem_cgroup;
3754 for (i = 1; i < HPAGE_PMD_NR; i++) {
3755 pc = head_pc + i;
3756 pc->mem_cgroup = memcg;
3757 smp_wmb();/* see __commit_charge() */
3758 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3759 }
3760 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3761 HPAGE_PMD_NR);
3762 }
3763 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3764
3765 /**
3766 * mem_cgroup_move_account - move account of the page
3767 * @page: the page
3768 * @nr_pages: number of regular pages (>1 for huge pages)
3769 * @pc: page_cgroup of the page.
3770 * @from: mem_cgroup which the page is moved from.
3771 * @to: mem_cgroup which the page is moved to. @from != @to.
3772 *
3773 * The caller must confirm following.
3774 * - page is not on LRU (isolate_page() is useful.)
3775 * - compound_lock is held when nr_pages > 1
3776 *
3777 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3778 * from old cgroup.
3779 */
3780 static int mem_cgroup_move_account(struct page *page,
3781 unsigned int nr_pages,
3782 struct page_cgroup *pc,
3783 struct mem_cgroup *from,
3784 struct mem_cgroup *to)
3785 {
3786 unsigned long flags;
3787 int ret;
3788 bool anon = PageAnon(page);
3789
3790 VM_BUG_ON(from == to);
3791 VM_BUG_ON(PageLRU(page));
3792 /*
3793 * The page is isolated from LRU. So, collapse function
3794 * will not handle this page. But page splitting can happen.
3795 * Do this check under compound_page_lock(). The caller should
3796 * hold it.
3797 */
3798 ret = -EBUSY;
3799 if (nr_pages > 1 && !PageTransHuge(page))
3800 goto out;
3801
3802 lock_page_cgroup(pc);
3803
3804 ret = -EINVAL;
3805 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3806 goto unlock;
3807
3808 move_lock_mem_cgroup(from, &flags);
3809
3810 if (!anon && page_mapped(page)) {
3811 /* Update mapped_file data for mem_cgroup */
3812 preempt_disable();
3813 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3814 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3815 preempt_enable();
3816 }
3817 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3818
3819 /* caller should have done css_get */
3820 pc->mem_cgroup = to;
3821 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3822 move_unlock_mem_cgroup(from, &flags);
3823 ret = 0;
3824 unlock:
3825 unlock_page_cgroup(pc);
3826 /*
3827 * check events
3828 */
3829 memcg_check_events(to, page);
3830 memcg_check_events(from, page);
3831 out:
3832 return ret;
3833 }
3834
3835 /**
3836 * mem_cgroup_move_parent - moves page to the parent group
3837 * @page: the page to move
3838 * @pc: page_cgroup of the page
3839 * @child: page's cgroup
3840 *
3841 * move charges to its parent or the root cgroup if the group has no
3842 * parent (aka use_hierarchy==0).
3843 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3844 * mem_cgroup_move_account fails) the failure is always temporary and
3845 * it signals a race with a page removal/uncharge or migration. In the
3846 * first case the page is on the way out and it will vanish from the LRU
3847 * on the next attempt and the call should be retried later.
3848 * Isolation from the LRU fails only if page has been isolated from
3849 * the LRU since we looked at it and that usually means either global
3850 * reclaim or migration going on. The page will either get back to the
3851 * LRU or vanish.
3852 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3853 * (!PageCgroupUsed) or moved to a different group. The page will
3854 * disappear in the next attempt.
3855 */
3856 static int mem_cgroup_move_parent(struct page *page,
3857 struct page_cgroup *pc,
3858 struct mem_cgroup *child)
3859 {
3860 struct mem_cgroup *parent;
3861 unsigned int nr_pages;
3862 unsigned long uninitialized_var(flags);
3863 int ret;
3864
3865 VM_BUG_ON(mem_cgroup_is_root(child));
3866
3867 ret = -EBUSY;
3868 if (!get_page_unless_zero(page))
3869 goto out;
3870 if (isolate_lru_page(page))
3871 goto put;
3872
3873 nr_pages = hpage_nr_pages(page);
3874
3875 parent = parent_mem_cgroup(child);
3876 /*
3877 * If no parent, move charges to root cgroup.
3878 */
3879 if (!parent)
3880 parent = root_mem_cgroup;
3881
3882 if (nr_pages > 1) {
3883 VM_BUG_ON(!PageTransHuge(page));
3884 flags = compound_lock_irqsave(page);
3885 }
3886
3887 ret = mem_cgroup_move_account(page, nr_pages,
3888 pc, child, parent);
3889 if (!ret)
3890 __mem_cgroup_cancel_local_charge(child, nr_pages);
3891
3892 if (nr_pages > 1)
3893 compound_unlock_irqrestore(page, flags);
3894 putback_lru_page(page);
3895 put:
3896 put_page(page);
3897 out:
3898 return ret;
3899 }
3900
3901 /*
3902 * Charge the memory controller for page usage.
3903 * Return
3904 * 0 if the charge was successful
3905 * < 0 if the cgroup is over its limit
3906 */
3907 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3908 gfp_t gfp_mask, enum charge_type ctype)
3909 {
3910 struct mem_cgroup *memcg = NULL;
3911 unsigned int nr_pages = 1;
3912 bool oom = true;
3913 int ret;
3914
3915 if (PageTransHuge(page)) {
3916 nr_pages <<= compound_order(page);
3917 VM_BUG_ON(!PageTransHuge(page));
3918 /*
3919 * Never OOM-kill a process for a huge page. The
3920 * fault handler will fall back to regular pages.
3921 */
3922 oom = false;
3923 }
3924
3925 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3926 if (ret == -ENOMEM)
3927 return ret;
3928 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3929 return 0;
3930 }
3931
3932 int mem_cgroup_newpage_charge(struct page *page,
3933 struct mm_struct *mm, gfp_t gfp_mask)
3934 {
3935 if (mem_cgroup_disabled())
3936 return 0;
3937 VM_BUG_ON(page_mapped(page));
3938 VM_BUG_ON(page->mapping && !PageAnon(page));
3939 VM_BUG_ON(!mm);
3940 return mem_cgroup_charge_common(page, mm, gfp_mask,
3941 MEM_CGROUP_CHARGE_TYPE_ANON);
3942 }
3943
3944 /*
3945 * While swap-in, try_charge -> commit or cancel, the page is locked.
3946 * And when try_charge() successfully returns, one refcnt to memcg without
3947 * struct page_cgroup is acquired. This refcnt will be consumed by
3948 * "commit()" or removed by "cancel()"
3949 */
3950 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3951 struct page *page,
3952 gfp_t mask,
3953 struct mem_cgroup **memcgp)
3954 {
3955 struct mem_cgroup *memcg;
3956 struct page_cgroup *pc;
3957 int ret;
3958
3959 pc = lookup_page_cgroup(page);
3960 /*
3961 * Every swap fault against a single page tries to charge the
3962 * page, bail as early as possible. shmem_unuse() encounters
3963 * already charged pages, too. The USED bit is protected by
3964 * the page lock, which serializes swap cache removal, which
3965 * in turn serializes uncharging.
3966 */
3967 if (PageCgroupUsed(pc))
3968 return 0;
3969 if (!do_swap_account)
3970 goto charge_cur_mm;
3971 memcg = try_get_mem_cgroup_from_page(page);
3972 if (!memcg)
3973 goto charge_cur_mm;
3974 *memcgp = memcg;
3975 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3976 css_put(&memcg->css);
3977 if (ret == -EINTR)
3978 ret = 0;
3979 return ret;
3980 charge_cur_mm:
3981 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3982 if (ret == -EINTR)
3983 ret = 0;
3984 return ret;
3985 }
3986
3987 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3988 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3989 {
3990 *memcgp = NULL;
3991 if (mem_cgroup_disabled())
3992 return 0;
3993 /*
3994 * A racing thread's fault, or swapoff, may have already
3995 * updated the pte, and even removed page from swap cache: in
3996 * those cases unuse_pte()'s pte_same() test will fail; but
3997 * there's also a KSM case which does need to charge the page.
3998 */
3999 if (!PageSwapCache(page)) {
4000 int ret;
4001
4002 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4003 if (ret == -EINTR)
4004 ret = 0;
4005 return ret;
4006 }
4007 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4008 }
4009
4010 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4011 {
4012 if (mem_cgroup_disabled())
4013 return;
4014 if (!memcg)
4015 return;
4016 __mem_cgroup_cancel_charge(memcg, 1);
4017 }
4018
4019 static void
4020 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
4021 enum charge_type ctype)
4022 {
4023 if (mem_cgroup_disabled())
4024 return;
4025 if (!memcg)
4026 return;
4027
4028 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4029 /*
4030 * Now swap is on-memory. This means this page may be
4031 * counted both as mem and swap....double count.
4032 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4033 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4034 * may call delete_from_swap_cache() before reach here.
4035 */
4036 if (do_swap_account && PageSwapCache(page)) {
4037 swp_entry_t ent = {.val = page_private(page)};
4038 mem_cgroup_uncharge_swap(ent);
4039 }
4040 }
4041
4042 void mem_cgroup_commit_charge_swapin(struct page *page,
4043 struct mem_cgroup *memcg)
4044 {
4045 __mem_cgroup_commit_charge_swapin(page, memcg,
4046 MEM_CGROUP_CHARGE_TYPE_ANON);
4047 }
4048
4049 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4050 gfp_t gfp_mask)
4051 {
4052 struct mem_cgroup *memcg = NULL;
4053 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4054 int ret;
4055
4056 if (mem_cgroup_disabled())
4057 return 0;
4058 if (PageCompound(page))
4059 return 0;
4060
4061 if (!PageSwapCache(page))
4062 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4063 else { /* page is swapcache/shmem */
4064 ret = __mem_cgroup_try_charge_swapin(mm, page,
4065 gfp_mask, &memcg);
4066 if (!ret)
4067 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4068 }
4069 return ret;
4070 }
4071
4072 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4073 unsigned int nr_pages,
4074 const enum charge_type ctype)
4075 {
4076 struct memcg_batch_info *batch = NULL;
4077 bool uncharge_memsw = true;
4078
4079 /* If swapout, usage of swap doesn't decrease */
4080 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4081 uncharge_memsw = false;
4082
4083 batch = &current->memcg_batch;
4084 /*
4085 * In usual, we do css_get() when we remember memcg pointer.
4086 * But in this case, we keep res->usage until end of a series of
4087 * uncharges. Then, it's ok to ignore memcg's refcnt.
4088 */
4089 if (!batch->memcg)
4090 batch->memcg = memcg;
4091 /*
4092 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4093 * In those cases, all pages freed continuously can be expected to be in
4094 * the same cgroup and we have chance to coalesce uncharges.
4095 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4096 * because we want to do uncharge as soon as possible.
4097 */
4098
4099 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4100 goto direct_uncharge;
4101
4102 if (nr_pages > 1)
4103 goto direct_uncharge;
4104
4105 /*
4106 * In typical case, batch->memcg == mem. This means we can
4107 * merge a series of uncharges to an uncharge of res_counter.
4108 * If not, we uncharge res_counter ony by one.
4109 */
4110 if (batch->memcg != memcg)
4111 goto direct_uncharge;
4112 /* remember freed charge and uncharge it later */
4113 batch->nr_pages++;
4114 if (uncharge_memsw)
4115 batch->memsw_nr_pages++;
4116 return;
4117 direct_uncharge:
4118 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4119 if (uncharge_memsw)
4120 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4121 if (unlikely(batch->memcg != memcg))
4122 memcg_oom_recover(memcg);
4123 }
4124
4125 /*
4126 * uncharge if !page_mapped(page)
4127 */
4128 static struct mem_cgroup *
4129 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4130 bool end_migration)
4131 {
4132 struct mem_cgroup *memcg = NULL;
4133 unsigned int nr_pages = 1;
4134 struct page_cgroup *pc;
4135 bool anon;
4136
4137 if (mem_cgroup_disabled())
4138 return NULL;
4139
4140 if (PageTransHuge(page)) {
4141 nr_pages <<= compound_order(page);
4142 VM_BUG_ON(!PageTransHuge(page));
4143 }
4144 /*
4145 * Check if our page_cgroup is valid
4146 */
4147 pc = lookup_page_cgroup(page);
4148 if (unlikely(!PageCgroupUsed(pc)))
4149 return NULL;
4150
4151 lock_page_cgroup(pc);
4152
4153 memcg = pc->mem_cgroup;
4154
4155 if (!PageCgroupUsed(pc))
4156 goto unlock_out;
4157
4158 anon = PageAnon(page);
4159
4160 switch (ctype) {
4161 case MEM_CGROUP_CHARGE_TYPE_ANON:
4162 /*
4163 * Generally PageAnon tells if it's the anon statistics to be
4164 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4165 * used before page reached the stage of being marked PageAnon.
4166 */
4167 anon = true;
4168 /* fallthrough */
4169 case MEM_CGROUP_CHARGE_TYPE_DROP:
4170 /* See mem_cgroup_prepare_migration() */
4171 if (page_mapped(page))
4172 goto unlock_out;
4173 /*
4174 * Pages under migration may not be uncharged. But
4175 * end_migration() /must/ be the one uncharging the
4176 * unused post-migration page and so it has to call
4177 * here with the migration bit still set. See the
4178 * res_counter handling below.
4179 */
4180 if (!end_migration && PageCgroupMigration(pc))
4181 goto unlock_out;
4182 break;
4183 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4184 if (!PageAnon(page)) { /* Shared memory */
4185 if (page->mapping && !page_is_file_cache(page))
4186 goto unlock_out;
4187 } else if (page_mapped(page)) /* Anon */
4188 goto unlock_out;
4189 break;
4190 default:
4191 break;
4192 }
4193
4194 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4195
4196 ClearPageCgroupUsed(pc);
4197 /*
4198 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4199 * freed from LRU. This is safe because uncharged page is expected not
4200 * to be reused (freed soon). Exception is SwapCache, it's handled by
4201 * special functions.
4202 */
4203
4204 unlock_page_cgroup(pc);
4205 /*
4206 * even after unlock, we have memcg->res.usage here and this memcg
4207 * will never be freed, so it's safe to call css_get().
4208 */
4209 memcg_check_events(memcg, page);
4210 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4211 mem_cgroup_swap_statistics(memcg, true);
4212 css_get(&memcg->css);
4213 }
4214 /*
4215 * Migration does not charge the res_counter for the
4216 * replacement page, so leave it alone when phasing out the
4217 * page that is unused after the migration.
4218 */
4219 if (!end_migration && !mem_cgroup_is_root(memcg))
4220 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4221
4222 return memcg;
4223
4224 unlock_out:
4225 unlock_page_cgroup(pc);
4226 return NULL;
4227 }
4228
4229 void mem_cgroup_uncharge_page(struct page *page)
4230 {
4231 /* early check. */
4232 if (page_mapped(page))
4233 return;
4234 VM_BUG_ON(page->mapping && !PageAnon(page));
4235 /*
4236 * If the page is in swap cache, uncharge should be deferred
4237 * to the swap path, which also properly accounts swap usage
4238 * and handles memcg lifetime.
4239 *
4240 * Note that this check is not stable and reclaim may add the
4241 * page to swap cache at any time after this. However, if the
4242 * page is not in swap cache by the time page->mapcount hits
4243 * 0, there won't be any page table references to the swap
4244 * slot, and reclaim will free it and not actually write the
4245 * page to disk.
4246 */
4247 if (PageSwapCache(page))
4248 return;
4249 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4250 }
4251
4252 void mem_cgroup_uncharge_cache_page(struct page *page)
4253 {
4254 VM_BUG_ON(page_mapped(page));
4255 VM_BUG_ON(page->mapping);
4256 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4257 }
4258
4259 /*
4260 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4261 * In that cases, pages are freed continuously and we can expect pages
4262 * are in the same memcg. All these calls itself limits the number of
4263 * pages freed at once, then uncharge_start/end() is called properly.
4264 * This may be called prural(2) times in a context,
4265 */
4266
4267 void mem_cgroup_uncharge_start(void)
4268 {
4269 current->memcg_batch.do_batch++;
4270 /* We can do nest. */
4271 if (current->memcg_batch.do_batch == 1) {
4272 current->memcg_batch.memcg = NULL;
4273 current->memcg_batch.nr_pages = 0;
4274 current->memcg_batch.memsw_nr_pages = 0;
4275 }
4276 }
4277
4278 void mem_cgroup_uncharge_end(void)
4279 {
4280 struct memcg_batch_info *batch = &current->memcg_batch;
4281
4282 if (!batch->do_batch)
4283 return;
4284
4285 batch->do_batch--;
4286 if (batch->do_batch) /* If stacked, do nothing. */
4287 return;
4288
4289 if (!batch->memcg)
4290 return;
4291 /*
4292 * This "batch->memcg" is valid without any css_get/put etc...
4293 * bacause we hide charges behind us.
4294 */
4295 if (batch->nr_pages)
4296 res_counter_uncharge(&batch->memcg->res,
4297 batch->nr_pages * PAGE_SIZE);
4298 if (batch->memsw_nr_pages)
4299 res_counter_uncharge(&batch->memcg->memsw,
4300 batch->memsw_nr_pages * PAGE_SIZE);
4301 memcg_oom_recover(batch->memcg);
4302 /* forget this pointer (for sanity check) */
4303 batch->memcg = NULL;
4304 }
4305
4306 #ifdef CONFIG_SWAP
4307 /*
4308 * called after __delete_from_swap_cache() and drop "page" account.
4309 * memcg information is recorded to swap_cgroup of "ent"
4310 */
4311 void
4312 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4313 {
4314 struct mem_cgroup *memcg;
4315 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4316
4317 if (!swapout) /* this was a swap cache but the swap is unused ! */
4318 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4319
4320 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4321
4322 /*
4323 * record memcg information, if swapout && memcg != NULL,
4324 * css_get() was called in uncharge().
4325 */
4326 if (do_swap_account && swapout && memcg)
4327 swap_cgroup_record(ent, css_id(&memcg->css));
4328 }
4329 #endif
4330
4331 #ifdef CONFIG_MEMCG_SWAP
4332 /*
4333 * called from swap_entry_free(). remove record in swap_cgroup and
4334 * uncharge "memsw" account.
4335 */
4336 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4337 {
4338 struct mem_cgroup *memcg;
4339 unsigned short id;
4340
4341 if (!do_swap_account)
4342 return;
4343
4344 id = swap_cgroup_record(ent, 0);
4345 rcu_read_lock();
4346 memcg = mem_cgroup_lookup(id);
4347 if (memcg) {
4348 /*
4349 * We uncharge this because swap is freed.
4350 * This memcg can be obsolete one. We avoid calling css_tryget
4351 */
4352 if (!mem_cgroup_is_root(memcg))
4353 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4354 mem_cgroup_swap_statistics(memcg, false);
4355 css_put(&memcg->css);
4356 }
4357 rcu_read_unlock();
4358 }
4359
4360 /**
4361 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4362 * @entry: swap entry to be moved
4363 * @from: mem_cgroup which the entry is moved from
4364 * @to: mem_cgroup which the entry is moved to
4365 *
4366 * It succeeds only when the swap_cgroup's record for this entry is the same
4367 * as the mem_cgroup's id of @from.
4368 *
4369 * Returns 0 on success, -EINVAL on failure.
4370 *
4371 * The caller must have charged to @to, IOW, called res_counter_charge() about
4372 * both res and memsw, and called css_get().
4373 */
4374 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4375 struct mem_cgroup *from, struct mem_cgroup *to)
4376 {
4377 unsigned short old_id, new_id;
4378
4379 old_id = css_id(&from->css);
4380 new_id = css_id(&to->css);
4381
4382 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4383 mem_cgroup_swap_statistics(from, false);
4384 mem_cgroup_swap_statistics(to, true);
4385 /*
4386 * This function is only called from task migration context now.
4387 * It postpones res_counter and refcount handling till the end
4388 * of task migration(mem_cgroup_clear_mc()) for performance
4389 * improvement. But we cannot postpone css_get(to) because if
4390 * the process that has been moved to @to does swap-in, the
4391 * refcount of @to might be decreased to 0.
4392 *
4393 * We are in attach() phase, so the cgroup is guaranteed to be
4394 * alive, so we can just call css_get().
4395 */
4396 css_get(&to->css);
4397 return 0;
4398 }
4399 return -EINVAL;
4400 }
4401 #else
4402 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4403 struct mem_cgroup *from, struct mem_cgroup *to)
4404 {
4405 return -EINVAL;
4406 }
4407 #endif
4408
4409 /*
4410 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4411 * page belongs to.
4412 */
4413 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4414 struct mem_cgroup **memcgp)
4415 {
4416 struct mem_cgroup *memcg = NULL;
4417 unsigned int nr_pages = 1;
4418 struct page_cgroup *pc;
4419 enum charge_type ctype;
4420
4421 *memcgp = NULL;
4422
4423 if (mem_cgroup_disabled())
4424 return;
4425
4426 if (PageTransHuge(page))
4427 nr_pages <<= compound_order(page);
4428
4429 pc = lookup_page_cgroup(page);
4430 lock_page_cgroup(pc);
4431 if (PageCgroupUsed(pc)) {
4432 memcg = pc->mem_cgroup;
4433 css_get(&memcg->css);
4434 /*
4435 * At migrating an anonymous page, its mapcount goes down
4436 * to 0 and uncharge() will be called. But, even if it's fully
4437 * unmapped, migration may fail and this page has to be
4438 * charged again. We set MIGRATION flag here and delay uncharge
4439 * until end_migration() is called
4440 *
4441 * Corner Case Thinking
4442 * A)
4443 * When the old page was mapped as Anon and it's unmap-and-freed
4444 * while migration was ongoing.
4445 * If unmap finds the old page, uncharge() of it will be delayed
4446 * until end_migration(). If unmap finds a new page, it's
4447 * uncharged when it make mapcount to be 1->0. If unmap code
4448 * finds swap_migration_entry, the new page will not be mapped
4449 * and end_migration() will find it(mapcount==0).
4450 *
4451 * B)
4452 * When the old page was mapped but migraion fails, the kernel
4453 * remaps it. A charge for it is kept by MIGRATION flag even
4454 * if mapcount goes down to 0. We can do remap successfully
4455 * without charging it again.
4456 *
4457 * C)
4458 * The "old" page is under lock_page() until the end of
4459 * migration, so, the old page itself will not be swapped-out.
4460 * If the new page is swapped out before end_migraton, our
4461 * hook to usual swap-out path will catch the event.
4462 */
4463 if (PageAnon(page))
4464 SetPageCgroupMigration(pc);
4465 }
4466 unlock_page_cgroup(pc);
4467 /*
4468 * If the page is not charged at this point,
4469 * we return here.
4470 */
4471 if (!memcg)
4472 return;
4473
4474 *memcgp = memcg;
4475 /*
4476 * We charge new page before it's used/mapped. So, even if unlock_page()
4477 * is called before end_migration, we can catch all events on this new
4478 * page. In the case new page is migrated but not remapped, new page's
4479 * mapcount will be finally 0 and we call uncharge in end_migration().
4480 */
4481 if (PageAnon(page))
4482 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4483 else
4484 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4485 /*
4486 * The page is committed to the memcg, but it's not actually
4487 * charged to the res_counter since we plan on replacing the
4488 * old one and only one page is going to be left afterwards.
4489 */
4490 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4491 }
4492
4493 /* remove redundant charge if migration failed*/
4494 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4495 struct page *oldpage, struct page *newpage, bool migration_ok)
4496 {
4497 struct page *used, *unused;
4498 struct page_cgroup *pc;
4499 bool anon;
4500
4501 if (!memcg)
4502 return;
4503
4504 if (!migration_ok) {
4505 used = oldpage;
4506 unused = newpage;
4507 } else {
4508 used = newpage;
4509 unused = oldpage;
4510 }
4511 anon = PageAnon(used);
4512 __mem_cgroup_uncharge_common(unused,
4513 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4514 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4515 true);
4516 css_put(&memcg->css);
4517 /*
4518 * We disallowed uncharge of pages under migration because mapcount
4519 * of the page goes down to zero, temporarly.
4520 * Clear the flag and check the page should be charged.
4521 */
4522 pc = lookup_page_cgroup(oldpage);
4523 lock_page_cgroup(pc);
4524 ClearPageCgroupMigration(pc);
4525 unlock_page_cgroup(pc);
4526
4527 /*
4528 * If a page is a file cache, radix-tree replacement is very atomic
4529 * and we can skip this check. When it was an Anon page, its mapcount
4530 * goes down to 0. But because we added MIGRATION flage, it's not
4531 * uncharged yet. There are several case but page->mapcount check
4532 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4533 * check. (see prepare_charge() also)
4534 */
4535 if (anon)
4536 mem_cgroup_uncharge_page(used);
4537 }
4538
4539 /*
4540 * At replace page cache, newpage is not under any memcg but it's on
4541 * LRU. So, this function doesn't touch res_counter but handles LRU
4542 * in correct way. Both pages are locked so we cannot race with uncharge.
4543 */
4544 void mem_cgroup_replace_page_cache(struct page *oldpage,
4545 struct page *newpage)
4546 {
4547 struct mem_cgroup *memcg = NULL;
4548 struct page_cgroup *pc;
4549 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4550
4551 if (mem_cgroup_disabled())
4552 return;
4553
4554 pc = lookup_page_cgroup(oldpage);
4555 /* fix accounting on old pages */
4556 lock_page_cgroup(pc);
4557 if (PageCgroupUsed(pc)) {
4558 memcg = pc->mem_cgroup;
4559 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4560 ClearPageCgroupUsed(pc);
4561 }
4562 unlock_page_cgroup(pc);
4563
4564 /*
4565 * When called from shmem_replace_page(), in some cases the
4566 * oldpage has already been charged, and in some cases not.
4567 */
4568 if (!memcg)
4569 return;
4570 /*
4571 * Even if newpage->mapping was NULL before starting replacement,
4572 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4573 * LRU while we overwrite pc->mem_cgroup.
4574 */
4575 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4576 }
4577
4578 #ifdef CONFIG_DEBUG_VM
4579 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4580 {
4581 struct page_cgroup *pc;
4582
4583 pc = lookup_page_cgroup(page);
4584 /*
4585 * Can be NULL while feeding pages into the page allocator for
4586 * the first time, i.e. during boot or memory hotplug;
4587 * or when mem_cgroup_disabled().
4588 */
4589 if (likely(pc) && PageCgroupUsed(pc))
4590 return pc;
4591 return NULL;
4592 }
4593
4594 bool mem_cgroup_bad_page_check(struct page *page)
4595 {
4596 if (mem_cgroup_disabled())
4597 return false;
4598
4599 return lookup_page_cgroup_used(page) != NULL;
4600 }
4601
4602 void mem_cgroup_print_bad_page(struct page *page)
4603 {
4604 struct page_cgroup *pc;
4605
4606 pc = lookup_page_cgroup_used(page);
4607 if (pc) {
4608 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4609 pc, pc->flags, pc->mem_cgroup);
4610 }
4611 }
4612 #endif
4613
4614 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4615 unsigned long long val)
4616 {
4617 int retry_count;
4618 u64 memswlimit, memlimit;
4619 int ret = 0;
4620 int children = mem_cgroup_count_children(memcg);
4621 u64 curusage, oldusage;
4622 int enlarge;
4623
4624 /*
4625 * For keeping hierarchical_reclaim simple, how long we should retry
4626 * is depends on callers. We set our retry-count to be function
4627 * of # of children which we should visit in this loop.
4628 */
4629 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4630
4631 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4632
4633 enlarge = 0;
4634 while (retry_count) {
4635 if (signal_pending(current)) {
4636 ret = -EINTR;
4637 break;
4638 }
4639 /*
4640 * Rather than hide all in some function, I do this in
4641 * open coded manner. You see what this really does.
4642 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4643 */
4644 mutex_lock(&set_limit_mutex);
4645 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4646 if (memswlimit < val) {
4647 ret = -EINVAL;
4648 mutex_unlock(&set_limit_mutex);
4649 break;
4650 }
4651
4652 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4653 if (memlimit < val)
4654 enlarge = 1;
4655
4656 ret = res_counter_set_limit(&memcg->res, val);
4657 if (!ret) {
4658 if (memswlimit == val)
4659 memcg->memsw_is_minimum = true;
4660 else
4661 memcg->memsw_is_minimum = false;
4662 }
4663 mutex_unlock(&set_limit_mutex);
4664
4665 if (!ret)
4666 break;
4667
4668 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4669 MEM_CGROUP_RECLAIM_SHRINK);
4670 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4671 /* Usage is reduced ? */
4672 if (curusage >= oldusage)
4673 retry_count--;
4674 else
4675 oldusage = curusage;
4676 }
4677 if (!ret && enlarge)
4678 memcg_oom_recover(memcg);
4679
4680 return ret;
4681 }
4682
4683 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4684 unsigned long long val)
4685 {
4686 int retry_count;
4687 u64 memlimit, memswlimit, oldusage, curusage;
4688 int children = mem_cgroup_count_children(memcg);
4689 int ret = -EBUSY;
4690 int enlarge = 0;
4691
4692 /* see mem_cgroup_resize_res_limit */
4693 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4694 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4695 while (retry_count) {
4696 if (signal_pending(current)) {
4697 ret = -EINTR;
4698 break;
4699 }
4700 /*
4701 * Rather than hide all in some function, I do this in
4702 * open coded manner. You see what this really does.
4703 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4704 */
4705 mutex_lock(&set_limit_mutex);
4706 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4707 if (memlimit > val) {
4708 ret = -EINVAL;
4709 mutex_unlock(&set_limit_mutex);
4710 break;
4711 }
4712 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4713 if (memswlimit < val)
4714 enlarge = 1;
4715 ret = res_counter_set_limit(&memcg->memsw, val);
4716 if (!ret) {
4717 if (memlimit == val)
4718 memcg->memsw_is_minimum = true;
4719 else
4720 memcg->memsw_is_minimum = false;
4721 }
4722 mutex_unlock(&set_limit_mutex);
4723
4724 if (!ret)
4725 break;
4726
4727 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4728 MEM_CGROUP_RECLAIM_NOSWAP |
4729 MEM_CGROUP_RECLAIM_SHRINK);
4730 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4731 /* Usage is reduced ? */
4732 if (curusage >= oldusage)
4733 retry_count--;
4734 else
4735 oldusage = curusage;
4736 }
4737 if (!ret && enlarge)
4738 memcg_oom_recover(memcg);
4739 return ret;
4740 }
4741
4742 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4743 gfp_t gfp_mask,
4744 unsigned long *total_scanned)
4745 {
4746 unsigned long nr_reclaimed = 0;
4747 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4748 unsigned long reclaimed;
4749 int loop = 0;
4750 struct mem_cgroup_tree_per_zone *mctz;
4751 unsigned long long excess;
4752 unsigned long nr_scanned;
4753
4754 if (order > 0)
4755 return 0;
4756
4757 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4758 /*
4759 * This loop can run a while, specially if mem_cgroup's continuously
4760 * keep exceeding their soft limit and putting the system under
4761 * pressure
4762 */
4763 do {
4764 if (next_mz)
4765 mz = next_mz;
4766 else
4767 mz = mem_cgroup_largest_soft_limit_node(mctz);
4768 if (!mz)
4769 break;
4770
4771 nr_scanned = 0;
4772 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4773 gfp_mask, &nr_scanned);
4774 nr_reclaimed += reclaimed;
4775 *total_scanned += nr_scanned;
4776 spin_lock(&mctz->lock);
4777
4778 /*
4779 * If we failed to reclaim anything from this memory cgroup
4780 * it is time to move on to the next cgroup
4781 */
4782 next_mz = NULL;
4783 if (!reclaimed) {
4784 do {
4785 /*
4786 * Loop until we find yet another one.
4787 *
4788 * By the time we get the soft_limit lock
4789 * again, someone might have aded the
4790 * group back on the RB tree. Iterate to
4791 * make sure we get a different mem.
4792 * mem_cgroup_largest_soft_limit_node returns
4793 * NULL if no other cgroup is present on
4794 * the tree
4795 */
4796 next_mz =
4797 __mem_cgroup_largest_soft_limit_node(mctz);
4798 if (next_mz == mz)
4799 css_put(&next_mz->memcg->css);
4800 else /* next_mz == NULL or other memcg */
4801 break;
4802 } while (1);
4803 }
4804 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4805 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4806 /*
4807 * One school of thought says that we should not add
4808 * back the node to the tree if reclaim returns 0.
4809 * But our reclaim could return 0, simply because due
4810 * to priority we are exposing a smaller subset of
4811 * memory to reclaim from. Consider this as a longer
4812 * term TODO.
4813 */
4814 /* If excess == 0, no tree ops */
4815 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4816 spin_unlock(&mctz->lock);
4817 css_put(&mz->memcg->css);
4818 loop++;
4819 /*
4820 * Could not reclaim anything and there are no more
4821 * mem cgroups to try or we seem to be looping without
4822 * reclaiming anything.
4823 */
4824 if (!nr_reclaimed &&
4825 (next_mz == NULL ||
4826 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4827 break;
4828 } while (!nr_reclaimed);
4829 if (next_mz)
4830 css_put(&next_mz->memcg->css);
4831 return nr_reclaimed;
4832 }
4833
4834 /**
4835 * mem_cgroup_force_empty_list - clears LRU of a group
4836 * @memcg: group to clear
4837 * @node: NUMA node
4838 * @zid: zone id
4839 * @lru: lru to to clear
4840 *
4841 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4842 * reclaim the pages page themselves - pages are moved to the parent (or root)
4843 * group.
4844 */
4845 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4846 int node, int zid, enum lru_list lru)
4847 {
4848 struct lruvec *lruvec;
4849 unsigned long flags;
4850 struct list_head *list;
4851 struct page *busy;
4852 struct zone *zone;
4853
4854 zone = &NODE_DATA(node)->node_zones[zid];
4855 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4856 list = &lruvec->lists[lru];
4857
4858 busy = NULL;
4859 do {
4860 struct page_cgroup *pc;
4861 struct page *page;
4862
4863 spin_lock_irqsave(&zone->lru_lock, flags);
4864 if (list_empty(list)) {
4865 spin_unlock_irqrestore(&zone->lru_lock, flags);
4866 break;
4867 }
4868 page = list_entry(list->prev, struct page, lru);
4869 if (busy == page) {
4870 list_move(&page->lru, list);
4871 busy = NULL;
4872 spin_unlock_irqrestore(&zone->lru_lock, flags);
4873 continue;
4874 }
4875 spin_unlock_irqrestore(&zone->lru_lock, flags);
4876
4877 pc = lookup_page_cgroup(page);
4878
4879 if (mem_cgroup_move_parent(page, pc, memcg)) {
4880 /* found lock contention or "pc" is obsolete. */
4881 busy = page;
4882 cond_resched();
4883 } else
4884 busy = NULL;
4885 } while (!list_empty(list));
4886 }
4887
4888 /*
4889 * make mem_cgroup's charge to be 0 if there is no task by moving
4890 * all the charges and pages to the parent.
4891 * This enables deleting this mem_cgroup.
4892 *
4893 * Caller is responsible for holding css reference on the memcg.
4894 */
4895 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4896 {
4897 int node, zid;
4898 u64 usage;
4899
4900 do {
4901 /* This is for making all *used* pages to be on LRU. */
4902 lru_add_drain_all();
4903 drain_all_stock_sync(memcg);
4904 mem_cgroup_start_move(memcg);
4905 for_each_node_state(node, N_MEMORY) {
4906 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4907 enum lru_list lru;
4908 for_each_lru(lru) {
4909 mem_cgroup_force_empty_list(memcg,
4910 node, zid, lru);
4911 }
4912 }
4913 }
4914 mem_cgroup_end_move(memcg);
4915 memcg_oom_recover(memcg);
4916 cond_resched();
4917
4918 /*
4919 * Kernel memory may not necessarily be trackable to a specific
4920 * process. So they are not migrated, and therefore we can't
4921 * expect their value to drop to 0 here.
4922 * Having res filled up with kmem only is enough.
4923 *
4924 * This is a safety check because mem_cgroup_force_empty_list
4925 * could have raced with mem_cgroup_replace_page_cache callers
4926 * so the lru seemed empty but the page could have been added
4927 * right after the check. RES_USAGE should be safe as we always
4928 * charge before adding to the LRU.
4929 */
4930 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4931 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4932 } while (usage > 0);
4933 }
4934
4935 /*
4936 * This mainly exists for tests during the setting of set of use_hierarchy.
4937 * Since this is the very setting we are changing, the current hierarchy value
4938 * is meaningless
4939 */
4940 static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4941 {
4942 struct cgroup *pos;
4943
4944 /* bounce at first found */
4945 cgroup_for_each_child(pos, memcg->css.cgroup)
4946 return true;
4947 return false;
4948 }
4949
4950 /*
4951 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4952 * to be already dead (as in mem_cgroup_force_empty, for instance). This is
4953 * from mem_cgroup_count_children(), in the sense that we don't really care how
4954 * many children we have; we only need to know if we have any. It also counts
4955 * any memcg without hierarchy as infertile.
4956 */
4957 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4958 {
4959 return memcg->use_hierarchy && __memcg_has_children(memcg);
4960 }
4961
4962 /*
4963 * Reclaims as many pages from the given memcg as possible and moves
4964 * the rest to the parent.
4965 *
4966 * Caller is responsible for holding css reference for memcg.
4967 */
4968 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4969 {
4970 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4971 struct cgroup *cgrp = memcg->css.cgroup;
4972
4973 /* returns EBUSY if there is a task or if we come here twice. */
4974 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4975 return -EBUSY;
4976
4977 /* we call try-to-free pages for make this cgroup empty */
4978 lru_add_drain_all();
4979 /* try to free all pages in this cgroup */
4980 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4981 int progress;
4982
4983 if (signal_pending(current))
4984 return -EINTR;
4985
4986 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4987 false);
4988 if (!progress) {
4989 nr_retries--;
4990 /* maybe some writeback is necessary */
4991 congestion_wait(BLK_RW_ASYNC, HZ/10);
4992 }
4993
4994 }
4995 lru_add_drain();
4996 mem_cgroup_reparent_charges(memcg);
4997
4998 return 0;
4999 }
5000
5001 static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
5002 unsigned int event)
5003 {
5004 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5005 int ret;
5006
5007 if (mem_cgroup_is_root(memcg))
5008 return -EINVAL;
5009 css_get(&memcg->css);
5010 ret = mem_cgroup_force_empty(memcg);
5011 css_put(&memcg->css);
5012
5013 return ret;
5014 }
5015
5016
5017 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
5018 struct cftype *cft)
5019 {
5020 return mem_cgroup_from_css(css)->use_hierarchy;
5021 }
5022
5023 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
5024 struct cftype *cft, u64 val)
5025 {
5026 int retval = 0;
5027 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5028 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5029
5030 mutex_lock(&memcg_create_mutex);
5031
5032 if (memcg->use_hierarchy == val)
5033 goto out;
5034
5035 /*
5036 * If parent's use_hierarchy is set, we can't make any modifications
5037 * in the child subtrees. If it is unset, then the change can
5038 * occur, provided the current cgroup has no children.
5039 *
5040 * For the root cgroup, parent_mem is NULL, we allow value to be
5041 * set if there are no children.
5042 */
5043 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5044 (val == 1 || val == 0)) {
5045 if (!__memcg_has_children(memcg))
5046 memcg->use_hierarchy = val;
5047 else
5048 retval = -EBUSY;
5049 } else
5050 retval = -EINVAL;
5051
5052 out:
5053 mutex_unlock(&memcg_create_mutex);
5054
5055 return retval;
5056 }
5057
5058
5059 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5060 enum mem_cgroup_stat_index idx)
5061 {
5062 struct mem_cgroup *iter;
5063 long val = 0;
5064
5065 /* Per-cpu values can be negative, use a signed accumulator */
5066 for_each_mem_cgroup_tree(iter, memcg)
5067 val += mem_cgroup_read_stat(iter, idx);
5068
5069 if (val < 0) /* race ? */
5070 val = 0;
5071 return val;
5072 }
5073
5074 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5075 {
5076 u64 val;
5077
5078 if (!mem_cgroup_is_root(memcg)) {
5079 if (!swap)
5080 return res_counter_read_u64(&memcg->res, RES_USAGE);
5081 else
5082 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5083 }
5084
5085 /*
5086 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5087 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5088 */
5089 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5090 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5091
5092 if (swap)
5093 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5094
5095 return val << PAGE_SHIFT;
5096 }
5097
5098 static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
5099 struct cftype *cft, struct file *file,
5100 char __user *buf, size_t nbytes, loff_t *ppos)
5101 {
5102 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5103 char str[64];
5104 u64 val;
5105 int name, len;
5106 enum res_type type;
5107
5108 type = MEMFILE_TYPE(cft->private);
5109 name = MEMFILE_ATTR(cft->private);
5110
5111 switch (type) {
5112 case _MEM:
5113 if (name == RES_USAGE)
5114 val = mem_cgroup_usage(memcg, false);
5115 else
5116 val = res_counter_read_u64(&memcg->res, name);
5117 break;
5118 case _MEMSWAP:
5119 if (name == RES_USAGE)
5120 val = mem_cgroup_usage(memcg, true);
5121 else
5122 val = res_counter_read_u64(&memcg->memsw, name);
5123 break;
5124 case _KMEM:
5125 val = res_counter_read_u64(&memcg->kmem, name);
5126 break;
5127 default:
5128 BUG();
5129 }
5130
5131 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5132 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
5133 }
5134
5135 static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
5136 {
5137 int ret = -EINVAL;
5138 #ifdef CONFIG_MEMCG_KMEM
5139 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5140 /*
5141 * For simplicity, we won't allow this to be disabled. It also can't
5142 * be changed if the cgroup has children already, or if tasks had
5143 * already joined.
5144 *
5145 * If tasks join before we set the limit, a person looking at
5146 * kmem.usage_in_bytes will have no way to determine when it took
5147 * place, which makes the value quite meaningless.
5148 *
5149 * After it first became limited, changes in the value of the limit are
5150 * of course permitted.
5151 */
5152 mutex_lock(&memcg_create_mutex);
5153 mutex_lock(&set_limit_mutex);
5154 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
5155 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
5156 ret = -EBUSY;
5157 goto out;
5158 }
5159 ret = res_counter_set_limit(&memcg->kmem, val);
5160 VM_BUG_ON(ret);
5161
5162 ret = memcg_update_cache_sizes(memcg);
5163 if (ret) {
5164 res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
5165 goto out;
5166 }
5167 static_key_slow_inc(&memcg_kmem_enabled_key);
5168 /*
5169 * setting the active bit after the inc will guarantee no one
5170 * starts accounting before all call sites are patched
5171 */
5172 memcg_kmem_set_active(memcg);
5173 } else
5174 ret = res_counter_set_limit(&memcg->kmem, val);
5175 out:
5176 mutex_unlock(&set_limit_mutex);
5177 mutex_unlock(&memcg_create_mutex);
5178 #endif
5179 return ret;
5180 }
5181
5182 #ifdef CONFIG_MEMCG_KMEM
5183 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5184 {
5185 int ret = 0;
5186 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5187 if (!parent)
5188 goto out;
5189
5190 memcg->kmem_account_flags = parent->kmem_account_flags;
5191 /*
5192 * When that happen, we need to disable the static branch only on those
5193 * memcgs that enabled it. To achieve this, we would be forced to
5194 * complicate the code by keeping track of which memcgs were the ones
5195 * that actually enabled limits, and which ones got it from its
5196 * parents.
5197 *
5198 * It is a lot simpler just to do static_key_slow_inc() on every child
5199 * that is accounted.
5200 */
5201 if (!memcg_kmem_is_active(memcg))
5202 goto out;
5203
5204 /*
5205 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5206 * memcg is active already. If the later initialization fails then the
5207 * cgroup core triggers the cleanup so we do not have to do it here.
5208 */
5209 static_key_slow_inc(&memcg_kmem_enabled_key);
5210
5211 mutex_lock(&set_limit_mutex);
5212 memcg_stop_kmem_account();
5213 ret = memcg_update_cache_sizes(memcg);
5214 memcg_resume_kmem_account();
5215 mutex_unlock(&set_limit_mutex);
5216 out:
5217 return ret;
5218 }
5219 #endif /* CONFIG_MEMCG_KMEM */
5220
5221 /*
5222 * The user of this function is...
5223 * RES_LIMIT.
5224 */
5225 static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5226 const char *buffer)
5227 {
5228 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5229 enum res_type type;
5230 int name;
5231 unsigned long long val;
5232 int ret;
5233
5234 type = MEMFILE_TYPE(cft->private);
5235 name = MEMFILE_ATTR(cft->private);
5236
5237 switch (name) {
5238 case RES_LIMIT:
5239 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5240 ret = -EINVAL;
5241 break;
5242 }
5243 /* This function does all necessary parse...reuse it */
5244 ret = res_counter_memparse_write_strategy(buffer, &val);
5245 if (ret)
5246 break;
5247 if (type == _MEM)
5248 ret = mem_cgroup_resize_limit(memcg, val);
5249 else if (type == _MEMSWAP)
5250 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5251 else if (type == _KMEM)
5252 ret = memcg_update_kmem_limit(css, val);
5253 else
5254 return -EINVAL;
5255 break;
5256 case RES_SOFT_LIMIT:
5257 ret = res_counter_memparse_write_strategy(buffer, &val);
5258 if (ret)
5259 break;
5260 /*
5261 * For memsw, soft limits are hard to implement in terms
5262 * of semantics, for now, we support soft limits for
5263 * control without swap
5264 */
5265 if (type == _MEM)
5266 ret = res_counter_set_soft_limit(&memcg->res, val);
5267 else
5268 ret = -EINVAL;
5269 break;
5270 default:
5271 ret = -EINVAL; /* should be BUG() ? */
5272 break;
5273 }
5274 return ret;
5275 }
5276
5277 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5278 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5279 {
5280 unsigned long long min_limit, min_memsw_limit, tmp;
5281
5282 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5283 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5284 if (!memcg->use_hierarchy)
5285 goto out;
5286
5287 while (css_parent(&memcg->css)) {
5288 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5289 if (!memcg->use_hierarchy)
5290 break;
5291 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5292 min_limit = min(min_limit, tmp);
5293 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5294 min_memsw_limit = min(min_memsw_limit, tmp);
5295 }
5296 out:
5297 *mem_limit = min_limit;
5298 *memsw_limit = min_memsw_limit;
5299 }
5300
5301 static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5302 {
5303 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5304 int name;
5305 enum res_type type;
5306
5307 type = MEMFILE_TYPE(event);
5308 name = MEMFILE_ATTR(event);
5309
5310 switch (name) {
5311 case RES_MAX_USAGE:
5312 if (type == _MEM)
5313 res_counter_reset_max(&memcg->res);
5314 else if (type == _MEMSWAP)
5315 res_counter_reset_max(&memcg->memsw);
5316 else if (type == _KMEM)
5317 res_counter_reset_max(&memcg->kmem);
5318 else
5319 return -EINVAL;
5320 break;
5321 case RES_FAILCNT:
5322 if (type == _MEM)
5323 res_counter_reset_failcnt(&memcg->res);
5324 else if (type == _MEMSWAP)
5325 res_counter_reset_failcnt(&memcg->memsw);
5326 else if (type == _KMEM)
5327 res_counter_reset_failcnt(&memcg->kmem);
5328 else
5329 return -EINVAL;
5330 break;
5331 }
5332
5333 return 0;
5334 }
5335
5336 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5337 struct cftype *cft)
5338 {
5339 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5340 }
5341
5342 #ifdef CONFIG_MMU
5343 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5344 struct cftype *cft, u64 val)
5345 {
5346 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5347
5348 if (val >= (1 << NR_MOVE_TYPE))
5349 return -EINVAL;
5350
5351 /*
5352 * No kind of locking is needed in here, because ->can_attach() will
5353 * check this value once in the beginning of the process, and then carry
5354 * on with stale data. This means that changes to this value will only
5355 * affect task migrations starting after the change.
5356 */
5357 memcg->move_charge_at_immigrate = val;
5358 return 0;
5359 }
5360 #else
5361 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5362 struct cftype *cft, u64 val)
5363 {
5364 return -ENOSYS;
5365 }
5366 #endif
5367
5368 #ifdef CONFIG_NUMA
5369 static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
5370 struct cftype *cft, struct seq_file *m)
5371 {
5372 int nid;
5373 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5374 unsigned long node_nr;
5375 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5376
5377 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5378 seq_printf(m, "total=%lu", total_nr);
5379 for_each_node_state(nid, N_MEMORY) {
5380 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5381 seq_printf(m, " N%d=%lu", nid, node_nr);
5382 }
5383 seq_putc(m, '\n');
5384
5385 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5386 seq_printf(m, "file=%lu", file_nr);
5387 for_each_node_state(nid, N_MEMORY) {
5388 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5389 LRU_ALL_FILE);
5390 seq_printf(m, " N%d=%lu", nid, node_nr);
5391 }
5392 seq_putc(m, '\n');
5393
5394 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5395 seq_printf(m, "anon=%lu", anon_nr);
5396 for_each_node_state(nid, N_MEMORY) {
5397 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5398 LRU_ALL_ANON);
5399 seq_printf(m, " N%d=%lu", nid, node_nr);
5400 }
5401 seq_putc(m, '\n');
5402
5403 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5404 seq_printf(m, "unevictable=%lu", unevictable_nr);
5405 for_each_node_state(nid, N_MEMORY) {
5406 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5407 BIT(LRU_UNEVICTABLE));
5408 seq_printf(m, " N%d=%lu", nid, node_nr);
5409 }
5410 seq_putc(m, '\n');
5411 return 0;
5412 }
5413 #endif /* CONFIG_NUMA */
5414
5415 static inline void mem_cgroup_lru_names_not_uptodate(void)
5416 {
5417 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5418 }
5419
5420 static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5421 struct seq_file *m)
5422 {
5423 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5424 struct mem_cgroup *mi;
5425 unsigned int i;
5426
5427 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5428 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5429 continue;
5430 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5431 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5432 }
5433
5434 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5435 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5436 mem_cgroup_read_events(memcg, i));
5437
5438 for (i = 0; i < NR_LRU_LISTS; i++)
5439 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5440 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5441
5442 /* Hierarchical information */
5443 {
5444 unsigned long long limit, memsw_limit;
5445 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5446 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5447 if (do_swap_account)
5448 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5449 memsw_limit);
5450 }
5451
5452 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5453 long long val = 0;
5454
5455 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5456 continue;
5457 for_each_mem_cgroup_tree(mi, memcg)
5458 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5459 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5460 }
5461
5462 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5463 unsigned long long val = 0;
5464
5465 for_each_mem_cgroup_tree(mi, memcg)
5466 val += mem_cgroup_read_events(mi, i);
5467 seq_printf(m, "total_%s %llu\n",
5468 mem_cgroup_events_names[i], val);
5469 }
5470
5471 for (i = 0; i < NR_LRU_LISTS; i++) {
5472 unsigned long long val = 0;
5473
5474 for_each_mem_cgroup_tree(mi, memcg)
5475 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5476 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5477 }
5478
5479 #ifdef CONFIG_DEBUG_VM
5480 {
5481 int nid, zid;
5482 struct mem_cgroup_per_zone *mz;
5483 struct zone_reclaim_stat *rstat;
5484 unsigned long recent_rotated[2] = {0, 0};
5485 unsigned long recent_scanned[2] = {0, 0};
5486
5487 for_each_online_node(nid)
5488 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5489 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5490 rstat = &mz->lruvec.reclaim_stat;
5491
5492 recent_rotated[0] += rstat->recent_rotated[0];
5493 recent_rotated[1] += rstat->recent_rotated[1];
5494 recent_scanned[0] += rstat->recent_scanned[0];
5495 recent_scanned[1] += rstat->recent_scanned[1];
5496 }
5497 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5498 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5499 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5500 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5501 }
5502 #endif
5503
5504 return 0;
5505 }
5506
5507 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5508 struct cftype *cft)
5509 {
5510 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5511
5512 return mem_cgroup_swappiness(memcg);
5513 }
5514
5515 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5516 struct cftype *cft, u64 val)
5517 {
5518 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5519 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5520
5521 if (val > 100 || !parent)
5522 return -EINVAL;
5523
5524 mutex_lock(&memcg_create_mutex);
5525
5526 /* If under hierarchy, only empty-root can set this value */
5527 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5528 mutex_unlock(&memcg_create_mutex);
5529 return -EINVAL;
5530 }
5531
5532 memcg->swappiness = val;
5533
5534 mutex_unlock(&memcg_create_mutex);
5535
5536 return 0;
5537 }
5538
5539 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5540 {
5541 struct mem_cgroup_threshold_ary *t;
5542 u64 usage;
5543 int i;
5544
5545 rcu_read_lock();
5546 if (!swap)
5547 t = rcu_dereference(memcg->thresholds.primary);
5548 else
5549 t = rcu_dereference(memcg->memsw_thresholds.primary);
5550
5551 if (!t)
5552 goto unlock;
5553
5554 usage = mem_cgroup_usage(memcg, swap);
5555
5556 /*
5557 * current_threshold points to threshold just below or equal to usage.
5558 * If it's not true, a threshold was crossed after last
5559 * call of __mem_cgroup_threshold().
5560 */
5561 i = t->current_threshold;
5562
5563 /*
5564 * Iterate backward over array of thresholds starting from
5565 * current_threshold and check if a threshold is crossed.
5566 * If none of thresholds below usage is crossed, we read
5567 * only one element of the array here.
5568 */
5569 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5570 eventfd_signal(t->entries[i].eventfd, 1);
5571
5572 /* i = current_threshold + 1 */
5573 i++;
5574
5575 /*
5576 * Iterate forward over array of thresholds starting from
5577 * current_threshold+1 and check if a threshold is crossed.
5578 * If none of thresholds above usage is crossed, we read
5579 * only one element of the array here.
5580 */
5581 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5582 eventfd_signal(t->entries[i].eventfd, 1);
5583
5584 /* Update current_threshold */
5585 t->current_threshold = i - 1;
5586 unlock:
5587 rcu_read_unlock();
5588 }
5589
5590 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5591 {
5592 while (memcg) {
5593 __mem_cgroup_threshold(memcg, false);
5594 if (do_swap_account)
5595 __mem_cgroup_threshold(memcg, true);
5596
5597 memcg = parent_mem_cgroup(memcg);
5598 }
5599 }
5600
5601 static int compare_thresholds(const void *a, const void *b)
5602 {
5603 const struct mem_cgroup_threshold *_a = a;
5604 const struct mem_cgroup_threshold *_b = b;
5605
5606 return _a->threshold - _b->threshold;
5607 }
5608
5609 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5610 {
5611 struct mem_cgroup_eventfd_list *ev;
5612
5613 list_for_each_entry(ev, &memcg->oom_notify, list)
5614 eventfd_signal(ev->eventfd, 1);
5615 return 0;
5616 }
5617
5618 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5619 {
5620 struct mem_cgroup *iter;
5621
5622 for_each_mem_cgroup_tree(iter, memcg)
5623 mem_cgroup_oom_notify_cb(iter);
5624 }
5625
5626 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
5627 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5628 {
5629 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5630 struct mem_cgroup_thresholds *thresholds;
5631 struct mem_cgroup_threshold_ary *new;
5632 enum res_type type = MEMFILE_TYPE(cft->private);
5633 u64 threshold, usage;
5634 int i, size, ret;
5635
5636 ret = res_counter_memparse_write_strategy(args, &threshold);
5637 if (ret)
5638 return ret;
5639
5640 mutex_lock(&memcg->thresholds_lock);
5641
5642 if (type == _MEM)
5643 thresholds = &memcg->thresholds;
5644 else if (type == _MEMSWAP)
5645 thresholds = &memcg->memsw_thresholds;
5646 else
5647 BUG();
5648
5649 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5650
5651 /* Check if a threshold crossed before adding a new one */
5652 if (thresholds->primary)
5653 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5654
5655 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5656
5657 /* Allocate memory for new array of thresholds */
5658 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5659 GFP_KERNEL);
5660 if (!new) {
5661 ret = -ENOMEM;
5662 goto unlock;
5663 }
5664 new->size = size;
5665
5666 /* Copy thresholds (if any) to new array */
5667 if (thresholds->primary) {
5668 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5669 sizeof(struct mem_cgroup_threshold));
5670 }
5671
5672 /* Add new threshold */
5673 new->entries[size - 1].eventfd = eventfd;
5674 new->entries[size - 1].threshold = threshold;
5675
5676 /* Sort thresholds. Registering of new threshold isn't time-critical */
5677 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5678 compare_thresholds, NULL);
5679
5680 /* Find current threshold */
5681 new->current_threshold = -1;
5682 for (i = 0; i < size; i++) {
5683 if (new->entries[i].threshold <= usage) {
5684 /*
5685 * new->current_threshold will not be used until
5686 * rcu_assign_pointer(), so it's safe to increment
5687 * it here.
5688 */
5689 ++new->current_threshold;
5690 } else
5691 break;
5692 }
5693
5694 /* Free old spare buffer and save old primary buffer as spare */
5695 kfree(thresholds->spare);
5696 thresholds->spare = thresholds->primary;
5697
5698 rcu_assign_pointer(thresholds->primary, new);
5699
5700 /* To be sure that nobody uses thresholds */
5701 synchronize_rcu();
5702
5703 unlock:
5704 mutex_unlock(&memcg->thresholds_lock);
5705
5706 return ret;
5707 }
5708
5709 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
5710 struct cftype *cft, struct eventfd_ctx *eventfd)
5711 {
5712 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5713 struct mem_cgroup_thresholds *thresholds;
5714 struct mem_cgroup_threshold_ary *new;
5715 enum res_type type = MEMFILE_TYPE(cft->private);
5716 u64 usage;
5717 int i, j, size;
5718
5719 mutex_lock(&memcg->thresholds_lock);
5720 if (type == _MEM)
5721 thresholds = &memcg->thresholds;
5722 else if (type == _MEMSWAP)
5723 thresholds = &memcg->memsw_thresholds;
5724 else
5725 BUG();
5726
5727 if (!thresholds->primary)
5728 goto unlock;
5729
5730 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5731
5732 /* Check if a threshold crossed before removing */
5733 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5734
5735 /* Calculate new number of threshold */
5736 size = 0;
5737 for (i = 0; i < thresholds->primary->size; i++) {
5738 if (thresholds->primary->entries[i].eventfd != eventfd)
5739 size++;
5740 }
5741
5742 new = thresholds->spare;
5743
5744 /* Set thresholds array to NULL if we don't have thresholds */
5745 if (!size) {
5746 kfree(new);
5747 new = NULL;
5748 goto swap_buffers;
5749 }
5750
5751 new->size = size;
5752
5753 /* Copy thresholds and find current threshold */
5754 new->current_threshold = -1;
5755 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5756 if (thresholds->primary->entries[i].eventfd == eventfd)
5757 continue;
5758
5759 new->entries[j] = thresholds->primary->entries[i];
5760 if (new->entries[j].threshold <= usage) {
5761 /*
5762 * new->current_threshold will not be used
5763 * until rcu_assign_pointer(), so it's safe to increment
5764 * it here.
5765 */
5766 ++new->current_threshold;
5767 }
5768 j++;
5769 }
5770
5771 swap_buffers:
5772 /* Swap primary and spare array */
5773 thresholds->spare = thresholds->primary;
5774 /* If all events are unregistered, free the spare array */
5775 if (!new) {
5776 kfree(thresholds->spare);
5777 thresholds->spare = NULL;
5778 }
5779
5780 rcu_assign_pointer(thresholds->primary, new);
5781
5782 /* To be sure that nobody uses thresholds */
5783 synchronize_rcu();
5784 unlock:
5785 mutex_unlock(&memcg->thresholds_lock);
5786 }
5787
5788 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
5789 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5790 {
5791 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5792 struct mem_cgroup_eventfd_list *event;
5793 enum res_type type = MEMFILE_TYPE(cft->private);
5794
5795 BUG_ON(type != _OOM_TYPE);
5796 event = kmalloc(sizeof(*event), GFP_KERNEL);
5797 if (!event)
5798 return -ENOMEM;
5799
5800 spin_lock(&memcg_oom_lock);
5801
5802 event->eventfd = eventfd;
5803 list_add(&event->list, &memcg->oom_notify);
5804
5805 /* already in OOM ? */
5806 if (atomic_read(&memcg->under_oom))
5807 eventfd_signal(eventfd, 1);
5808 spin_unlock(&memcg_oom_lock);
5809
5810 return 0;
5811 }
5812
5813 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
5814 struct cftype *cft, struct eventfd_ctx *eventfd)
5815 {
5816 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5817 struct mem_cgroup_eventfd_list *ev, *tmp;
5818 enum res_type type = MEMFILE_TYPE(cft->private);
5819
5820 BUG_ON(type != _OOM_TYPE);
5821
5822 spin_lock(&memcg_oom_lock);
5823
5824 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5825 if (ev->eventfd == eventfd) {
5826 list_del(&ev->list);
5827 kfree(ev);
5828 }
5829 }
5830
5831 spin_unlock(&memcg_oom_lock);
5832 }
5833
5834 static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5835 struct cftype *cft, struct cgroup_map_cb *cb)
5836 {
5837 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5838
5839 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5840
5841 if (atomic_read(&memcg->under_oom))
5842 cb->fill(cb, "under_oom", 1);
5843 else
5844 cb->fill(cb, "under_oom", 0);
5845 return 0;
5846 }
5847
5848 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5849 struct cftype *cft, u64 val)
5850 {
5851 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5852 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5853
5854 /* cannot set to root cgroup and only 0 and 1 are allowed */
5855 if (!parent || !((val == 0) || (val == 1)))
5856 return -EINVAL;
5857
5858 mutex_lock(&memcg_create_mutex);
5859 /* oom-kill-disable is a flag for subhierarchy. */
5860 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5861 mutex_unlock(&memcg_create_mutex);
5862 return -EINVAL;
5863 }
5864 memcg->oom_kill_disable = val;
5865 if (!val)
5866 memcg_oom_recover(memcg);
5867 mutex_unlock(&memcg_create_mutex);
5868 return 0;
5869 }
5870
5871 #ifdef CONFIG_MEMCG_KMEM
5872 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5873 {
5874 int ret;
5875
5876 memcg->kmemcg_id = -1;
5877 ret = memcg_propagate_kmem(memcg);
5878 if (ret)
5879 return ret;
5880
5881 return mem_cgroup_sockets_init(memcg, ss);
5882 }
5883
5884 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5885 {
5886 mem_cgroup_sockets_destroy(memcg);
5887 }
5888
5889 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5890 {
5891 if (!memcg_kmem_is_active(memcg))
5892 return;
5893
5894 /*
5895 * kmem charges can outlive the cgroup. In the case of slab
5896 * pages, for instance, a page contain objects from various
5897 * processes. As we prevent from taking a reference for every
5898 * such allocation we have to be careful when doing uncharge
5899 * (see memcg_uncharge_kmem) and here during offlining.
5900 *
5901 * The idea is that that only the _last_ uncharge which sees
5902 * the dead memcg will drop the last reference. An additional
5903 * reference is taken here before the group is marked dead
5904 * which is then paired with css_put during uncharge resp. here.
5905 *
5906 * Although this might sound strange as this path is called from
5907 * css_offline() when the referencemight have dropped down to 0
5908 * and shouldn't be incremented anymore (css_tryget would fail)
5909 * we do not have other options because of the kmem allocations
5910 * lifetime.
5911 */
5912 css_get(&memcg->css);
5913
5914 memcg_kmem_mark_dead(memcg);
5915
5916 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5917 return;
5918
5919 if (memcg_kmem_test_and_clear_dead(memcg))
5920 css_put(&memcg->css);
5921 }
5922 #else
5923 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5924 {
5925 return 0;
5926 }
5927
5928 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5929 {
5930 }
5931
5932 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5933 {
5934 }
5935 #endif
5936
5937 static struct cftype mem_cgroup_files[] = {
5938 {
5939 .name = "usage_in_bytes",
5940 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5941 .read = mem_cgroup_read,
5942 .register_event = mem_cgroup_usage_register_event,
5943 .unregister_event = mem_cgroup_usage_unregister_event,
5944 },
5945 {
5946 .name = "max_usage_in_bytes",
5947 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5948 .trigger = mem_cgroup_reset,
5949 .read = mem_cgroup_read,
5950 },
5951 {
5952 .name = "limit_in_bytes",
5953 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5954 .write_string = mem_cgroup_write,
5955 .read = mem_cgroup_read,
5956 },
5957 {
5958 .name = "soft_limit_in_bytes",
5959 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5960 .write_string = mem_cgroup_write,
5961 .read = mem_cgroup_read,
5962 },
5963 {
5964 .name = "failcnt",
5965 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5966 .trigger = mem_cgroup_reset,
5967 .read = mem_cgroup_read,
5968 },
5969 {
5970 .name = "stat",
5971 .read_seq_string = memcg_stat_show,
5972 },
5973 {
5974 .name = "force_empty",
5975 .trigger = mem_cgroup_force_empty_write,
5976 },
5977 {
5978 .name = "use_hierarchy",
5979 .flags = CFTYPE_INSANE,
5980 .write_u64 = mem_cgroup_hierarchy_write,
5981 .read_u64 = mem_cgroup_hierarchy_read,
5982 },
5983 {
5984 .name = "swappiness",
5985 .read_u64 = mem_cgroup_swappiness_read,
5986 .write_u64 = mem_cgroup_swappiness_write,
5987 },
5988 {
5989 .name = "move_charge_at_immigrate",
5990 .read_u64 = mem_cgroup_move_charge_read,
5991 .write_u64 = mem_cgroup_move_charge_write,
5992 },
5993 {
5994 .name = "oom_control",
5995 .read_map = mem_cgroup_oom_control_read,
5996 .write_u64 = mem_cgroup_oom_control_write,
5997 .register_event = mem_cgroup_oom_register_event,
5998 .unregister_event = mem_cgroup_oom_unregister_event,
5999 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6000 },
6001 {
6002 .name = "pressure_level",
6003 .register_event = vmpressure_register_event,
6004 .unregister_event = vmpressure_unregister_event,
6005 },
6006 #ifdef CONFIG_NUMA
6007 {
6008 .name = "numa_stat",
6009 .read_seq_string = memcg_numa_stat_show,
6010 },
6011 #endif
6012 #ifdef CONFIG_MEMCG_KMEM
6013 {
6014 .name = "kmem.limit_in_bytes",
6015 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6016 .write_string = mem_cgroup_write,
6017 .read = mem_cgroup_read,
6018 },
6019 {
6020 .name = "kmem.usage_in_bytes",
6021 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6022 .read = mem_cgroup_read,
6023 },
6024 {
6025 .name = "kmem.failcnt",
6026 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6027 .trigger = mem_cgroup_reset,
6028 .read = mem_cgroup_read,
6029 },
6030 {
6031 .name = "kmem.max_usage_in_bytes",
6032 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6033 .trigger = mem_cgroup_reset,
6034 .read = mem_cgroup_read,
6035 },
6036 #ifdef CONFIG_SLABINFO
6037 {
6038 .name = "kmem.slabinfo",
6039 .read_seq_string = mem_cgroup_slabinfo_read,
6040 },
6041 #endif
6042 #endif
6043 { }, /* terminate */
6044 };
6045
6046 #ifdef CONFIG_MEMCG_SWAP
6047 static struct cftype memsw_cgroup_files[] = {
6048 {
6049 .name = "memsw.usage_in_bytes",
6050 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6051 .read = mem_cgroup_read,
6052 .register_event = mem_cgroup_usage_register_event,
6053 .unregister_event = mem_cgroup_usage_unregister_event,
6054 },
6055 {
6056 .name = "memsw.max_usage_in_bytes",
6057 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6058 .trigger = mem_cgroup_reset,
6059 .read = mem_cgroup_read,
6060 },
6061 {
6062 .name = "memsw.limit_in_bytes",
6063 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6064 .write_string = mem_cgroup_write,
6065 .read = mem_cgroup_read,
6066 },
6067 {
6068 .name = "memsw.failcnt",
6069 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6070 .trigger = mem_cgroup_reset,
6071 .read = mem_cgroup_read,
6072 },
6073 { }, /* terminate */
6074 };
6075 #endif
6076 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6077 {
6078 struct mem_cgroup_per_node *pn;
6079 struct mem_cgroup_per_zone *mz;
6080 int zone, tmp = node;
6081 /*
6082 * This routine is called against possible nodes.
6083 * But it's BUG to call kmalloc() against offline node.
6084 *
6085 * TODO: this routine can waste much memory for nodes which will
6086 * never be onlined. It's better to use memory hotplug callback
6087 * function.
6088 */
6089 if (!node_state(node, N_NORMAL_MEMORY))
6090 tmp = -1;
6091 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6092 if (!pn)
6093 return 1;
6094
6095 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6096 mz = &pn->zoneinfo[zone];
6097 lruvec_init(&mz->lruvec);
6098 mz->usage_in_excess = 0;
6099 mz->on_tree = false;
6100 mz->memcg = memcg;
6101 }
6102 memcg->nodeinfo[node] = pn;
6103 return 0;
6104 }
6105
6106 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6107 {
6108 kfree(memcg->nodeinfo[node]);
6109 }
6110
6111 static struct mem_cgroup *mem_cgroup_alloc(void)
6112 {
6113 struct mem_cgroup *memcg;
6114 size_t size = memcg_size();
6115
6116 /* Can be very big if nr_node_ids is very big */
6117 if (size < PAGE_SIZE)
6118 memcg = kzalloc(size, GFP_KERNEL);
6119 else
6120 memcg = vzalloc(size);
6121
6122 if (!memcg)
6123 return NULL;
6124
6125 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6126 if (!memcg->stat)
6127 goto out_free;
6128 spin_lock_init(&memcg->pcp_counter_lock);
6129 return memcg;
6130
6131 out_free:
6132 if (size < PAGE_SIZE)
6133 kfree(memcg);
6134 else
6135 vfree(memcg);
6136 return NULL;
6137 }
6138
6139 /*
6140 * At destroying mem_cgroup, references from swap_cgroup can remain.
6141 * (scanning all at force_empty is too costly...)
6142 *
6143 * Instead of clearing all references at force_empty, we remember
6144 * the number of reference from swap_cgroup and free mem_cgroup when
6145 * it goes down to 0.
6146 *
6147 * Removal of cgroup itself succeeds regardless of refs from swap.
6148 */
6149
6150 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6151 {
6152 int node;
6153 size_t size = memcg_size();
6154
6155 mem_cgroup_remove_from_trees(memcg);
6156 free_css_id(&mem_cgroup_subsys, &memcg->css);
6157
6158 for_each_node(node)
6159 free_mem_cgroup_per_zone_info(memcg, node);
6160
6161 free_percpu(memcg->stat);
6162
6163 /*
6164 * We need to make sure that (at least for now), the jump label
6165 * destruction code runs outside of the cgroup lock. This is because
6166 * get_online_cpus(), which is called from the static_branch update,
6167 * can't be called inside the cgroup_lock. cpusets are the ones
6168 * enforcing this dependency, so if they ever change, we might as well.
6169 *
6170 * schedule_work() will guarantee this happens. Be careful if you need
6171 * to move this code around, and make sure it is outside
6172 * the cgroup_lock.
6173 */
6174 disarm_static_keys(memcg);
6175 if (size < PAGE_SIZE)
6176 kfree(memcg);
6177 else
6178 vfree(memcg);
6179 }
6180
6181 /*
6182 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6183 */
6184 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6185 {
6186 if (!memcg->res.parent)
6187 return NULL;
6188 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6189 }
6190 EXPORT_SYMBOL(parent_mem_cgroup);
6191
6192 static void __init mem_cgroup_soft_limit_tree_init(void)
6193 {
6194 struct mem_cgroup_tree_per_node *rtpn;
6195 struct mem_cgroup_tree_per_zone *rtpz;
6196 int tmp, node, zone;
6197
6198 for_each_node(node) {
6199 tmp = node;
6200 if (!node_state(node, N_NORMAL_MEMORY))
6201 tmp = -1;
6202 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6203 BUG_ON(!rtpn);
6204
6205 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6206
6207 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6208 rtpz = &rtpn->rb_tree_per_zone[zone];
6209 rtpz->rb_root = RB_ROOT;
6210 spin_lock_init(&rtpz->lock);
6211 }
6212 }
6213 }
6214
6215 static struct cgroup_subsys_state * __ref
6216 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6217 {
6218 struct mem_cgroup *memcg;
6219 long error = -ENOMEM;
6220 int node;
6221
6222 memcg = mem_cgroup_alloc();
6223 if (!memcg)
6224 return ERR_PTR(error);
6225
6226 for_each_node(node)
6227 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6228 goto free_out;
6229
6230 /* root ? */
6231 if (parent_css == NULL) {
6232 root_mem_cgroup = memcg;
6233 res_counter_init(&memcg->res, NULL);
6234 res_counter_init(&memcg->memsw, NULL);
6235 res_counter_init(&memcg->kmem, NULL);
6236 }
6237
6238 memcg->last_scanned_node = MAX_NUMNODES;
6239 INIT_LIST_HEAD(&memcg->oom_notify);
6240 memcg->move_charge_at_immigrate = 0;
6241 mutex_init(&memcg->thresholds_lock);
6242 spin_lock_init(&memcg->move_lock);
6243 vmpressure_init(&memcg->vmpressure);
6244
6245 return &memcg->css;
6246
6247 free_out:
6248 __mem_cgroup_free(memcg);
6249 return ERR_PTR(error);
6250 }
6251
6252 static int
6253 mem_cgroup_css_online(struct cgroup_subsys_state *css)
6254 {
6255 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6256 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6257 int error = 0;
6258
6259 if (!parent)
6260 return 0;
6261
6262 mutex_lock(&memcg_create_mutex);
6263
6264 memcg->use_hierarchy = parent->use_hierarchy;
6265 memcg->oom_kill_disable = parent->oom_kill_disable;
6266 memcg->swappiness = mem_cgroup_swappiness(parent);
6267
6268 if (parent->use_hierarchy) {
6269 res_counter_init(&memcg->res, &parent->res);
6270 res_counter_init(&memcg->memsw, &parent->memsw);
6271 res_counter_init(&memcg->kmem, &parent->kmem);
6272
6273 /*
6274 * No need to take a reference to the parent because cgroup
6275 * core guarantees its existence.
6276 */
6277 } else {
6278 res_counter_init(&memcg->res, NULL);
6279 res_counter_init(&memcg->memsw, NULL);
6280 res_counter_init(&memcg->kmem, NULL);
6281 /*
6282 * Deeper hierachy with use_hierarchy == false doesn't make
6283 * much sense so let cgroup subsystem know about this
6284 * unfortunate state in our controller.
6285 */
6286 if (parent != root_mem_cgroup)
6287 mem_cgroup_subsys.broken_hierarchy = true;
6288 }
6289
6290 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6291 mutex_unlock(&memcg_create_mutex);
6292 return error;
6293 }
6294
6295 /*
6296 * Announce all parents that a group from their hierarchy is gone.
6297 */
6298 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6299 {
6300 struct mem_cgroup *parent = memcg;
6301
6302 while ((parent = parent_mem_cgroup(parent)))
6303 mem_cgroup_iter_invalidate(parent);
6304
6305 /*
6306 * if the root memcg is not hierarchical we have to check it
6307 * explicitely.
6308 */
6309 if (!root_mem_cgroup->use_hierarchy)
6310 mem_cgroup_iter_invalidate(root_mem_cgroup);
6311 }
6312
6313 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6314 {
6315 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6316
6317 kmem_cgroup_css_offline(memcg);
6318
6319 mem_cgroup_invalidate_reclaim_iterators(memcg);
6320 mem_cgroup_reparent_charges(memcg);
6321 mem_cgroup_destroy_all_caches(memcg);
6322 }
6323
6324 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6325 {
6326 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6327
6328 memcg_destroy_kmem(memcg);
6329 __mem_cgroup_free(memcg);
6330 }
6331
6332 #ifdef CONFIG_MMU
6333 /* Handlers for move charge at task migration. */
6334 #define PRECHARGE_COUNT_AT_ONCE 256
6335 static int mem_cgroup_do_precharge(unsigned long count)
6336 {
6337 int ret = 0;
6338 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6339 struct mem_cgroup *memcg = mc.to;
6340
6341 if (mem_cgroup_is_root(memcg)) {
6342 mc.precharge += count;
6343 /* we don't need css_get for root */
6344 return ret;
6345 }
6346 /* try to charge at once */
6347 if (count > 1) {
6348 struct res_counter *dummy;
6349 /*
6350 * "memcg" cannot be under rmdir() because we've already checked
6351 * by cgroup_lock_live_cgroup() that it is not removed and we
6352 * are still under the same cgroup_mutex. So we can postpone
6353 * css_get().
6354 */
6355 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6356 goto one_by_one;
6357 if (do_swap_account && res_counter_charge(&memcg->memsw,
6358 PAGE_SIZE * count, &dummy)) {
6359 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6360 goto one_by_one;
6361 }
6362 mc.precharge += count;
6363 return ret;
6364 }
6365 one_by_one:
6366 /* fall back to one by one charge */
6367 while (count--) {
6368 if (signal_pending(current)) {
6369 ret = -EINTR;
6370 break;
6371 }
6372 if (!batch_count--) {
6373 batch_count = PRECHARGE_COUNT_AT_ONCE;
6374 cond_resched();
6375 }
6376 ret = __mem_cgroup_try_charge(NULL,
6377 GFP_KERNEL, 1, &memcg, false);
6378 if (ret)
6379 /* mem_cgroup_clear_mc() will do uncharge later */
6380 return ret;
6381 mc.precharge++;
6382 }
6383 return ret;
6384 }
6385
6386 /**
6387 * get_mctgt_type - get target type of moving charge
6388 * @vma: the vma the pte to be checked belongs
6389 * @addr: the address corresponding to the pte to be checked
6390 * @ptent: the pte to be checked
6391 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6392 *
6393 * Returns
6394 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6395 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6396 * move charge. if @target is not NULL, the page is stored in target->page
6397 * with extra refcnt got(Callers should handle it).
6398 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6399 * target for charge migration. if @target is not NULL, the entry is stored
6400 * in target->ent.
6401 *
6402 * Called with pte lock held.
6403 */
6404 union mc_target {
6405 struct page *page;
6406 swp_entry_t ent;
6407 };
6408
6409 enum mc_target_type {
6410 MC_TARGET_NONE = 0,
6411 MC_TARGET_PAGE,
6412 MC_TARGET_SWAP,
6413 };
6414
6415 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6416 unsigned long addr, pte_t ptent)
6417 {
6418 struct page *page = vm_normal_page(vma, addr, ptent);
6419
6420 if (!page || !page_mapped(page))
6421 return NULL;
6422 if (PageAnon(page)) {
6423 /* we don't move shared anon */
6424 if (!move_anon())
6425 return NULL;
6426 } else if (!move_file())
6427 /* we ignore mapcount for file pages */
6428 return NULL;
6429 if (!get_page_unless_zero(page))
6430 return NULL;
6431
6432 return page;
6433 }
6434
6435 #ifdef CONFIG_SWAP
6436 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6437 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6438 {
6439 struct page *page = NULL;
6440 swp_entry_t ent = pte_to_swp_entry(ptent);
6441
6442 if (!move_anon() || non_swap_entry(ent))
6443 return NULL;
6444 /*
6445 * Because lookup_swap_cache() updates some statistics counter,
6446 * we call find_get_page() with swapper_space directly.
6447 */
6448 page = find_get_page(swap_address_space(ent), ent.val);
6449 if (do_swap_account)
6450 entry->val = ent.val;
6451
6452 return page;
6453 }
6454 #else
6455 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6456 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6457 {
6458 return NULL;
6459 }
6460 #endif
6461
6462 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6463 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6464 {
6465 struct page *page = NULL;
6466 struct address_space *mapping;
6467 pgoff_t pgoff;
6468
6469 if (!vma->vm_file) /* anonymous vma */
6470 return NULL;
6471 if (!move_file())
6472 return NULL;
6473
6474 mapping = vma->vm_file->f_mapping;
6475 if (pte_none(ptent))
6476 pgoff = linear_page_index(vma, addr);
6477 else /* pte_file(ptent) is true */
6478 pgoff = pte_to_pgoff(ptent);
6479
6480 /* page is moved even if it's not RSS of this task(page-faulted). */
6481 page = find_get_page(mapping, pgoff);
6482
6483 #ifdef CONFIG_SWAP
6484 /* shmem/tmpfs may report page out on swap: account for that too. */
6485 if (radix_tree_exceptional_entry(page)) {
6486 swp_entry_t swap = radix_to_swp_entry(page);
6487 if (do_swap_account)
6488 *entry = swap;
6489 page = find_get_page(swap_address_space(swap), swap.val);
6490 }
6491 #endif
6492 return page;
6493 }
6494
6495 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6496 unsigned long addr, pte_t ptent, union mc_target *target)
6497 {
6498 struct page *page = NULL;
6499 struct page_cgroup *pc;
6500 enum mc_target_type ret = MC_TARGET_NONE;
6501 swp_entry_t ent = { .val = 0 };
6502
6503 if (pte_present(ptent))
6504 page = mc_handle_present_pte(vma, addr, ptent);
6505 else if (is_swap_pte(ptent))
6506 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6507 else if (pte_none(ptent) || pte_file(ptent))
6508 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6509
6510 if (!page && !ent.val)
6511 return ret;
6512 if (page) {
6513 pc = lookup_page_cgroup(page);
6514 /*
6515 * Do only loose check w/o page_cgroup lock.
6516 * mem_cgroup_move_account() checks the pc is valid or not under
6517 * the lock.
6518 */
6519 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6520 ret = MC_TARGET_PAGE;
6521 if (target)
6522 target->page = page;
6523 }
6524 if (!ret || !target)
6525 put_page(page);
6526 }
6527 /* There is a swap entry and a page doesn't exist or isn't charged */
6528 if (ent.val && !ret &&
6529 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6530 ret = MC_TARGET_SWAP;
6531 if (target)
6532 target->ent = ent;
6533 }
6534 return ret;
6535 }
6536
6537 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6538 /*
6539 * We don't consider swapping or file mapped pages because THP does not
6540 * support them for now.
6541 * Caller should make sure that pmd_trans_huge(pmd) is true.
6542 */
6543 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6544 unsigned long addr, pmd_t pmd, union mc_target *target)
6545 {
6546 struct page *page = NULL;
6547 struct page_cgroup *pc;
6548 enum mc_target_type ret = MC_TARGET_NONE;
6549
6550 page = pmd_page(pmd);
6551 VM_BUG_ON(!page || !PageHead(page));
6552 if (!move_anon())
6553 return ret;
6554 pc = lookup_page_cgroup(page);
6555 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6556 ret = MC_TARGET_PAGE;
6557 if (target) {
6558 get_page(page);
6559 target->page = page;
6560 }
6561 }
6562 return ret;
6563 }
6564 #else
6565 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6566 unsigned long addr, pmd_t pmd, union mc_target *target)
6567 {
6568 return MC_TARGET_NONE;
6569 }
6570 #endif
6571
6572 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6573 unsigned long addr, unsigned long end,
6574 struct mm_walk *walk)
6575 {
6576 struct vm_area_struct *vma = walk->private;
6577 pte_t *pte;
6578 spinlock_t *ptl;
6579
6580 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6581 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6582 mc.precharge += HPAGE_PMD_NR;
6583 spin_unlock(&vma->vm_mm->page_table_lock);
6584 return 0;
6585 }
6586
6587 if (pmd_trans_unstable(pmd))
6588 return 0;
6589 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6590 for (; addr != end; pte++, addr += PAGE_SIZE)
6591 if (get_mctgt_type(vma, addr, *pte, NULL))
6592 mc.precharge++; /* increment precharge temporarily */
6593 pte_unmap_unlock(pte - 1, ptl);
6594 cond_resched();
6595
6596 return 0;
6597 }
6598
6599 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6600 {
6601 unsigned long precharge;
6602 struct vm_area_struct *vma;
6603
6604 down_read(&mm->mmap_sem);
6605 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6606 struct mm_walk mem_cgroup_count_precharge_walk = {
6607 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6608 .mm = mm,
6609 .private = vma,
6610 };
6611 if (is_vm_hugetlb_page(vma))
6612 continue;
6613 walk_page_range(vma->vm_start, vma->vm_end,
6614 &mem_cgroup_count_precharge_walk);
6615 }
6616 up_read(&mm->mmap_sem);
6617
6618 precharge = mc.precharge;
6619 mc.precharge = 0;
6620
6621 return precharge;
6622 }
6623
6624 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6625 {
6626 unsigned long precharge = mem_cgroup_count_precharge(mm);
6627
6628 VM_BUG_ON(mc.moving_task);
6629 mc.moving_task = current;
6630 return mem_cgroup_do_precharge(precharge);
6631 }
6632
6633 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6634 static void __mem_cgroup_clear_mc(void)
6635 {
6636 struct mem_cgroup *from = mc.from;
6637 struct mem_cgroup *to = mc.to;
6638 int i;
6639
6640 /* we must uncharge all the leftover precharges from mc.to */
6641 if (mc.precharge) {
6642 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6643 mc.precharge = 0;
6644 }
6645 /*
6646 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6647 * we must uncharge here.
6648 */
6649 if (mc.moved_charge) {
6650 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6651 mc.moved_charge = 0;
6652 }
6653 /* we must fixup refcnts and charges */
6654 if (mc.moved_swap) {
6655 /* uncharge swap account from the old cgroup */
6656 if (!mem_cgroup_is_root(mc.from))
6657 res_counter_uncharge(&mc.from->memsw,
6658 PAGE_SIZE * mc.moved_swap);
6659
6660 for (i = 0; i < mc.moved_swap; i++)
6661 css_put(&mc.from->css);
6662
6663 if (!mem_cgroup_is_root(mc.to)) {
6664 /*
6665 * we charged both to->res and to->memsw, so we should
6666 * uncharge to->res.
6667 */
6668 res_counter_uncharge(&mc.to->res,
6669 PAGE_SIZE * mc.moved_swap);
6670 }
6671 /* we've already done css_get(mc.to) */
6672 mc.moved_swap = 0;
6673 }
6674 memcg_oom_recover(from);
6675 memcg_oom_recover(to);
6676 wake_up_all(&mc.waitq);
6677 }
6678
6679 static void mem_cgroup_clear_mc(void)
6680 {
6681 struct mem_cgroup *from = mc.from;
6682
6683 /*
6684 * we must clear moving_task before waking up waiters at the end of
6685 * task migration.
6686 */
6687 mc.moving_task = NULL;
6688 __mem_cgroup_clear_mc();
6689 spin_lock(&mc.lock);
6690 mc.from = NULL;
6691 mc.to = NULL;
6692 spin_unlock(&mc.lock);
6693 mem_cgroup_end_move(from);
6694 }
6695
6696 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6697 struct cgroup_taskset *tset)
6698 {
6699 struct task_struct *p = cgroup_taskset_first(tset);
6700 int ret = 0;
6701 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6702 unsigned long move_charge_at_immigrate;
6703
6704 /*
6705 * We are now commited to this value whatever it is. Changes in this
6706 * tunable will only affect upcoming migrations, not the current one.
6707 * So we need to save it, and keep it going.
6708 */
6709 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6710 if (move_charge_at_immigrate) {
6711 struct mm_struct *mm;
6712 struct mem_cgroup *from = mem_cgroup_from_task(p);
6713
6714 VM_BUG_ON(from == memcg);
6715
6716 mm = get_task_mm(p);
6717 if (!mm)
6718 return 0;
6719 /* We move charges only when we move a owner of the mm */
6720 if (mm->owner == p) {
6721 VM_BUG_ON(mc.from);
6722 VM_BUG_ON(mc.to);
6723 VM_BUG_ON(mc.precharge);
6724 VM_BUG_ON(mc.moved_charge);
6725 VM_BUG_ON(mc.moved_swap);
6726 mem_cgroup_start_move(from);
6727 spin_lock(&mc.lock);
6728 mc.from = from;
6729 mc.to = memcg;
6730 mc.immigrate_flags = move_charge_at_immigrate;
6731 spin_unlock(&mc.lock);
6732 /* We set mc.moving_task later */
6733
6734 ret = mem_cgroup_precharge_mc(mm);
6735 if (ret)
6736 mem_cgroup_clear_mc();
6737 }
6738 mmput(mm);
6739 }
6740 return ret;
6741 }
6742
6743 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6744 struct cgroup_taskset *tset)
6745 {
6746 mem_cgroup_clear_mc();
6747 }
6748
6749 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6750 unsigned long addr, unsigned long end,
6751 struct mm_walk *walk)
6752 {
6753 int ret = 0;
6754 struct vm_area_struct *vma = walk->private;
6755 pte_t *pte;
6756 spinlock_t *ptl;
6757 enum mc_target_type target_type;
6758 union mc_target target;
6759 struct page *page;
6760 struct page_cgroup *pc;
6761
6762 /*
6763 * We don't take compound_lock() here but no race with splitting thp
6764 * happens because:
6765 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6766 * under splitting, which means there's no concurrent thp split,
6767 * - if another thread runs into split_huge_page() just after we
6768 * entered this if-block, the thread must wait for page table lock
6769 * to be unlocked in __split_huge_page_splitting(), where the main
6770 * part of thp split is not executed yet.
6771 */
6772 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6773 if (mc.precharge < HPAGE_PMD_NR) {
6774 spin_unlock(&vma->vm_mm->page_table_lock);
6775 return 0;
6776 }
6777 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6778 if (target_type == MC_TARGET_PAGE) {
6779 page = target.page;
6780 if (!isolate_lru_page(page)) {
6781 pc = lookup_page_cgroup(page);
6782 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6783 pc, mc.from, mc.to)) {
6784 mc.precharge -= HPAGE_PMD_NR;
6785 mc.moved_charge += HPAGE_PMD_NR;
6786 }
6787 putback_lru_page(page);
6788 }
6789 put_page(page);
6790 }
6791 spin_unlock(&vma->vm_mm->page_table_lock);
6792 return 0;
6793 }
6794
6795 if (pmd_trans_unstable(pmd))
6796 return 0;
6797 retry:
6798 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6799 for (; addr != end; addr += PAGE_SIZE) {
6800 pte_t ptent = *(pte++);
6801 swp_entry_t ent;
6802
6803 if (!mc.precharge)
6804 break;
6805
6806 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6807 case MC_TARGET_PAGE:
6808 page = target.page;
6809 if (isolate_lru_page(page))
6810 goto put;
6811 pc = lookup_page_cgroup(page);
6812 if (!mem_cgroup_move_account(page, 1, pc,
6813 mc.from, mc.to)) {
6814 mc.precharge--;
6815 /* we uncharge from mc.from later. */
6816 mc.moved_charge++;
6817 }
6818 putback_lru_page(page);
6819 put: /* get_mctgt_type() gets the page */
6820 put_page(page);
6821 break;
6822 case MC_TARGET_SWAP:
6823 ent = target.ent;
6824 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6825 mc.precharge--;
6826 /* we fixup refcnts and charges later. */
6827 mc.moved_swap++;
6828 }
6829 break;
6830 default:
6831 break;
6832 }
6833 }
6834 pte_unmap_unlock(pte - 1, ptl);
6835 cond_resched();
6836
6837 if (addr != end) {
6838 /*
6839 * We have consumed all precharges we got in can_attach().
6840 * We try charge one by one, but don't do any additional
6841 * charges to mc.to if we have failed in charge once in attach()
6842 * phase.
6843 */
6844 ret = mem_cgroup_do_precharge(1);
6845 if (!ret)
6846 goto retry;
6847 }
6848
6849 return ret;
6850 }
6851
6852 static void mem_cgroup_move_charge(struct mm_struct *mm)
6853 {
6854 struct vm_area_struct *vma;
6855
6856 lru_add_drain_all();
6857 retry:
6858 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6859 /*
6860 * Someone who are holding the mmap_sem might be waiting in
6861 * waitq. So we cancel all extra charges, wake up all waiters,
6862 * and retry. Because we cancel precharges, we might not be able
6863 * to move enough charges, but moving charge is a best-effort
6864 * feature anyway, so it wouldn't be a big problem.
6865 */
6866 __mem_cgroup_clear_mc();
6867 cond_resched();
6868 goto retry;
6869 }
6870 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6871 int ret;
6872 struct mm_walk mem_cgroup_move_charge_walk = {
6873 .pmd_entry = mem_cgroup_move_charge_pte_range,
6874 .mm = mm,
6875 .private = vma,
6876 };
6877 if (is_vm_hugetlb_page(vma))
6878 continue;
6879 ret = walk_page_range(vma->vm_start, vma->vm_end,
6880 &mem_cgroup_move_charge_walk);
6881 if (ret)
6882 /*
6883 * means we have consumed all precharges and failed in
6884 * doing additional charge. Just abandon here.
6885 */
6886 break;
6887 }
6888 up_read(&mm->mmap_sem);
6889 }
6890
6891 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6892 struct cgroup_taskset *tset)
6893 {
6894 struct task_struct *p = cgroup_taskset_first(tset);
6895 struct mm_struct *mm = get_task_mm(p);
6896
6897 if (mm) {
6898 if (mc.to)
6899 mem_cgroup_move_charge(mm);
6900 mmput(mm);
6901 }
6902 if (mc.to)
6903 mem_cgroup_clear_mc();
6904 }
6905 #else /* !CONFIG_MMU */
6906 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6907 struct cgroup_taskset *tset)
6908 {
6909 return 0;
6910 }
6911 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6912 struct cgroup_taskset *tset)
6913 {
6914 }
6915 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6916 struct cgroup_taskset *tset)
6917 {
6918 }
6919 #endif
6920
6921 /*
6922 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6923 * to verify sane_behavior flag on each mount attempt.
6924 */
6925 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6926 {
6927 /*
6928 * use_hierarchy is forced with sane_behavior. cgroup core
6929 * guarantees that @root doesn't have any children, so turning it
6930 * on for the root memcg is enough.
6931 */
6932 if (cgroup_sane_behavior(root_css->cgroup))
6933 mem_cgroup_from_css(root_css)->use_hierarchy = true;
6934 }
6935
6936 struct cgroup_subsys mem_cgroup_subsys = {
6937 .name = "memory",
6938 .subsys_id = mem_cgroup_subsys_id,
6939 .css_alloc = mem_cgroup_css_alloc,
6940 .css_online = mem_cgroup_css_online,
6941 .css_offline = mem_cgroup_css_offline,
6942 .css_free = mem_cgroup_css_free,
6943 .can_attach = mem_cgroup_can_attach,
6944 .cancel_attach = mem_cgroup_cancel_attach,
6945 .attach = mem_cgroup_move_task,
6946 .bind = mem_cgroup_bind,
6947 .base_cftypes = mem_cgroup_files,
6948 .early_init = 0,
6949 .use_id = 1,
6950 };
6951
6952 #ifdef CONFIG_MEMCG_SWAP
6953 static int __init enable_swap_account(char *s)
6954 {
6955 /* consider enabled if no parameter or 1 is given */
6956 if (!strcmp(s, "1"))
6957 really_do_swap_account = 1;
6958 else if (!strcmp(s, "0"))
6959 really_do_swap_account = 0;
6960 return 1;
6961 }
6962 __setup("swapaccount=", enable_swap_account);
6963
6964 static void __init memsw_file_init(void)
6965 {
6966 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6967 }
6968
6969 static void __init enable_swap_cgroup(void)
6970 {
6971 if (!mem_cgroup_disabled() && really_do_swap_account) {
6972 do_swap_account = 1;
6973 memsw_file_init();
6974 }
6975 }
6976
6977 #else
6978 static void __init enable_swap_cgroup(void)
6979 {
6980 }
6981 #endif
6982
6983 /*
6984 * subsys_initcall() for memory controller.
6985 *
6986 * Some parts like hotcpu_notifier() have to be initialized from this context
6987 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6988 * everything that doesn't depend on a specific mem_cgroup structure should
6989 * be initialized from here.
6990 */
6991 static int __init mem_cgroup_init(void)
6992 {
6993 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6994 enable_swap_cgroup();
6995 mem_cgroup_soft_limit_tree_init();
6996 memcg_stock_init();
6997 return 0;
6998 }
6999 subsys_initcall(mem_cgroup_init);
This page took 0.246484 seconds and 6 git commands to generate.