Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 #include <net/sock.h>
54 #include <net/tcp_memcontrol.h>
55
56 #include <asm/uaccess.h>
57
58 #include <trace/events/vmscan.h>
59
60 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61 #define MEM_CGROUP_RECLAIM_RETRIES 5
62 struct mem_cgroup *root_mem_cgroup __read_mostly;
63
64 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66 int do_swap_account __read_mostly;
67
68 /* for remember boot option*/
69 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70 static int really_do_swap_account __initdata = 1;
71 #else
72 static int really_do_swap_account __initdata = 0;
73 #endif
74
75 #else
76 #define do_swap_account (0)
77 #endif
78
79
80 /*
81 * Statistics for memory cgroup.
82 */
83 enum mem_cgroup_stat_index {
84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
93 MEM_CGROUP_STAT_NSTATS,
94 };
95
96 enum mem_cgroup_events_index {
97 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
98 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
99 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
100 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
101 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
102 MEM_CGROUP_EVENTS_NSTATS,
103 };
104 /*
105 * Per memcg event counter is incremented at every pagein/pageout. With THP,
106 * it will be incremated by the number of pages. This counter is used for
107 * for trigger some periodic events. This is straightforward and better
108 * than using jiffies etc. to handle periodic memcg event.
109 */
110 enum mem_cgroup_events_target {
111 MEM_CGROUP_TARGET_THRESH,
112 MEM_CGROUP_TARGET_SOFTLIMIT,
113 MEM_CGROUP_TARGET_NUMAINFO,
114 MEM_CGROUP_NTARGETS,
115 };
116 #define THRESHOLDS_EVENTS_TARGET (128)
117 #define SOFTLIMIT_EVENTS_TARGET (1024)
118 #define NUMAINFO_EVENTS_TARGET (1024)
119
120 struct mem_cgroup_stat_cpu {
121 long count[MEM_CGROUP_STAT_NSTATS];
122 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
123 unsigned long targets[MEM_CGROUP_NTARGETS];
124 };
125
126 /*
127 * per-zone information in memory controller.
128 */
129 struct mem_cgroup_per_zone {
130 /*
131 * spin_lock to protect the per cgroup LRU
132 */
133 struct list_head lists[NR_LRU_LISTS];
134 unsigned long count[NR_LRU_LISTS];
135
136 struct zone_reclaim_stat reclaim_stat;
137 struct rb_node tree_node; /* RB tree node */
138 unsigned long long usage_in_excess;/* Set to the value by which */
139 /* the soft limit is exceeded*/
140 bool on_tree;
141 struct mem_cgroup *mem; /* Back pointer, we cannot */
142 /* use container_of */
143 };
144 /* Macro for accessing counter */
145 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
146
147 struct mem_cgroup_per_node {
148 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
149 };
150
151 struct mem_cgroup_lru_info {
152 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
153 };
154
155 /*
156 * Cgroups above their limits are maintained in a RB-Tree, independent of
157 * their hierarchy representation
158 */
159
160 struct mem_cgroup_tree_per_zone {
161 struct rb_root rb_root;
162 spinlock_t lock;
163 };
164
165 struct mem_cgroup_tree_per_node {
166 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
167 };
168
169 struct mem_cgroup_tree {
170 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
171 };
172
173 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
174
175 struct mem_cgroup_threshold {
176 struct eventfd_ctx *eventfd;
177 u64 threshold;
178 };
179
180 /* For threshold */
181 struct mem_cgroup_threshold_ary {
182 /* An array index points to threshold just below usage. */
183 int current_threshold;
184 /* Size of entries[] */
185 unsigned int size;
186 /* Array of thresholds */
187 struct mem_cgroup_threshold entries[0];
188 };
189
190 struct mem_cgroup_thresholds {
191 /* Primary thresholds array */
192 struct mem_cgroup_threshold_ary *primary;
193 /*
194 * Spare threshold array.
195 * This is needed to make mem_cgroup_unregister_event() "never fail".
196 * It must be able to store at least primary->size - 1 entries.
197 */
198 struct mem_cgroup_threshold_ary *spare;
199 };
200
201 /* for OOM */
202 struct mem_cgroup_eventfd_list {
203 struct list_head list;
204 struct eventfd_ctx *eventfd;
205 };
206
207 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
208 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
209
210 /*
211 * The memory controller data structure. The memory controller controls both
212 * page cache and RSS per cgroup. We would eventually like to provide
213 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
214 * to help the administrator determine what knobs to tune.
215 *
216 * TODO: Add a water mark for the memory controller. Reclaim will begin when
217 * we hit the water mark. May be even add a low water mark, such that
218 * no reclaim occurs from a cgroup at it's low water mark, this is
219 * a feature that will be implemented much later in the future.
220 */
221 struct mem_cgroup {
222 struct cgroup_subsys_state css;
223 /*
224 * the counter to account for memory usage
225 */
226 struct res_counter res;
227 /*
228 * the counter to account for mem+swap usage.
229 */
230 struct res_counter memsw;
231 /*
232 * Per cgroup active and inactive list, similar to the
233 * per zone LRU lists.
234 */
235 struct mem_cgroup_lru_info info;
236 /*
237 * While reclaiming in a hierarchy, we cache the last child we
238 * reclaimed from.
239 */
240 int last_scanned_child;
241 int last_scanned_node;
242 #if MAX_NUMNODES > 1
243 nodemask_t scan_nodes;
244 atomic_t numainfo_events;
245 atomic_t numainfo_updating;
246 #endif
247 /*
248 * Should the accounting and control be hierarchical, per subtree?
249 */
250 bool use_hierarchy;
251
252 bool oom_lock;
253 atomic_t under_oom;
254
255 atomic_t refcnt;
256
257 int swappiness;
258 /* OOM-Killer disable */
259 int oom_kill_disable;
260
261 /* set when res.limit == memsw.limit */
262 bool memsw_is_minimum;
263
264 /* protect arrays of thresholds */
265 struct mutex thresholds_lock;
266
267 /* thresholds for memory usage. RCU-protected */
268 struct mem_cgroup_thresholds thresholds;
269
270 /* thresholds for mem+swap usage. RCU-protected */
271 struct mem_cgroup_thresholds memsw_thresholds;
272
273 /* For oom notifier event fd */
274 struct list_head oom_notify;
275
276 /*
277 * Should we move charges of a task when a task is moved into this
278 * mem_cgroup ? And what type of charges should we move ?
279 */
280 unsigned long move_charge_at_immigrate;
281 /*
282 * percpu counter.
283 */
284 struct mem_cgroup_stat_cpu *stat;
285 /*
286 * used when a cpu is offlined or other synchronizations
287 * See mem_cgroup_read_stat().
288 */
289 struct mem_cgroup_stat_cpu nocpu_base;
290 spinlock_t pcp_counter_lock;
291
292 #ifdef CONFIG_INET
293 struct tcp_memcontrol tcp_mem;
294 #endif
295 };
296
297 /* Stuffs for move charges at task migration. */
298 /*
299 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
300 * left-shifted bitmap of these types.
301 */
302 enum move_type {
303 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
304 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
305 NR_MOVE_TYPE,
306 };
307
308 /* "mc" and its members are protected by cgroup_mutex */
309 static struct move_charge_struct {
310 spinlock_t lock; /* for from, to */
311 struct mem_cgroup *from;
312 struct mem_cgroup *to;
313 unsigned long precharge;
314 unsigned long moved_charge;
315 unsigned long moved_swap;
316 struct task_struct *moving_task; /* a task moving charges */
317 wait_queue_head_t waitq; /* a waitq for other context */
318 } mc = {
319 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
320 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
321 };
322
323 static bool move_anon(void)
324 {
325 return test_bit(MOVE_CHARGE_TYPE_ANON,
326 &mc.to->move_charge_at_immigrate);
327 }
328
329 static bool move_file(void)
330 {
331 return test_bit(MOVE_CHARGE_TYPE_FILE,
332 &mc.to->move_charge_at_immigrate);
333 }
334
335 /*
336 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
337 * limit reclaim to prevent infinite loops, if they ever occur.
338 */
339 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
340 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
341
342 enum charge_type {
343 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
344 MEM_CGROUP_CHARGE_TYPE_MAPPED,
345 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
346 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
347 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
348 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
349 NR_CHARGE_TYPE,
350 };
351
352 /* for encoding cft->private value on file */
353 #define _MEM (0)
354 #define _MEMSWAP (1)
355 #define _OOM_TYPE (2)
356 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
357 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
358 #define MEMFILE_ATTR(val) ((val) & 0xffff)
359 /* Used for OOM nofiier */
360 #define OOM_CONTROL (0)
361
362 /*
363 * Reclaim flags for mem_cgroup_hierarchical_reclaim
364 */
365 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
366 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
367 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
368 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
369 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
370 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
371
372 static void mem_cgroup_get(struct mem_cgroup *memcg);
373 static void mem_cgroup_put(struct mem_cgroup *memcg);
374
375 /* Writing them here to avoid exposing memcg's inner layout */
376 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
377 #ifdef CONFIG_INET
378 #include <net/sock.h>
379 #include <net/ip.h>
380
381 static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
382 void sock_update_memcg(struct sock *sk)
383 {
384 if (static_branch(&memcg_socket_limit_enabled)) {
385 struct mem_cgroup *memcg;
386
387 BUG_ON(!sk->sk_prot->proto_cgroup);
388
389 /* Socket cloning can throw us here with sk_cgrp already
390 * filled. It won't however, necessarily happen from
391 * process context. So the test for root memcg given
392 * the current task's memcg won't help us in this case.
393 *
394 * Respecting the original socket's memcg is a better
395 * decision in this case.
396 */
397 if (sk->sk_cgrp) {
398 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
399 mem_cgroup_get(sk->sk_cgrp->memcg);
400 return;
401 }
402
403 rcu_read_lock();
404 memcg = mem_cgroup_from_task(current);
405 if (!mem_cgroup_is_root(memcg)) {
406 mem_cgroup_get(memcg);
407 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
408 }
409 rcu_read_unlock();
410 }
411 }
412 EXPORT_SYMBOL(sock_update_memcg);
413
414 void sock_release_memcg(struct sock *sk)
415 {
416 if (static_branch(&memcg_socket_limit_enabled) && sk->sk_cgrp) {
417 struct mem_cgroup *memcg;
418 WARN_ON(!sk->sk_cgrp->memcg);
419 memcg = sk->sk_cgrp->memcg;
420 mem_cgroup_put(memcg);
421 }
422 }
423
424 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
425 {
426 if (!memcg || mem_cgroup_is_root(memcg))
427 return NULL;
428
429 return &memcg->tcp_mem.cg_proto;
430 }
431 EXPORT_SYMBOL(tcp_proto_cgroup);
432 #endif /* CONFIG_INET */
433 #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
434
435 static void drain_all_stock_async(struct mem_cgroup *memcg);
436
437 static struct mem_cgroup_per_zone *
438 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
439 {
440 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
441 }
442
443 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
444 {
445 return &memcg->css;
446 }
447
448 static struct mem_cgroup_per_zone *
449 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
450 {
451 int nid = page_to_nid(page);
452 int zid = page_zonenum(page);
453
454 return mem_cgroup_zoneinfo(memcg, nid, zid);
455 }
456
457 static struct mem_cgroup_tree_per_zone *
458 soft_limit_tree_node_zone(int nid, int zid)
459 {
460 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
461 }
462
463 static struct mem_cgroup_tree_per_zone *
464 soft_limit_tree_from_page(struct page *page)
465 {
466 int nid = page_to_nid(page);
467 int zid = page_zonenum(page);
468
469 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
470 }
471
472 static void
473 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
474 struct mem_cgroup_per_zone *mz,
475 struct mem_cgroup_tree_per_zone *mctz,
476 unsigned long long new_usage_in_excess)
477 {
478 struct rb_node **p = &mctz->rb_root.rb_node;
479 struct rb_node *parent = NULL;
480 struct mem_cgroup_per_zone *mz_node;
481
482 if (mz->on_tree)
483 return;
484
485 mz->usage_in_excess = new_usage_in_excess;
486 if (!mz->usage_in_excess)
487 return;
488 while (*p) {
489 parent = *p;
490 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
491 tree_node);
492 if (mz->usage_in_excess < mz_node->usage_in_excess)
493 p = &(*p)->rb_left;
494 /*
495 * We can't avoid mem cgroups that are over their soft
496 * limit by the same amount
497 */
498 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
499 p = &(*p)->rb_right;
500 }
501 rb_link_node(&mz->tree_node, parent, p);
502 rb_insert_color(&mz->tree_node, &mctz->rb_root);
503 mz->on_tree = true;
504 }
505
506 static void
507 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
508 struct mem_cgroup_per_zone *mz,
509 struct mem_cgroup_tree_per_zone *mctz)
510 {
511 if (!mz->on_tree)
512 return;
513 rb_erase(&mz->tree_node, &mctz->rb_root);
514 mz->on_tree = false;
515 }
516
517 static void
518 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
519 struct mem_cgroup_per_zone *mz,
520 struct mem_cgroup_tree_per_zone *mctz)
521 {
522 spin_lock(&mctz->lock);
523 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
524 spin_unlock(&mctz->lock);
525 }
526
527
528 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
529 {
530 unsigned long long excess;
531 struct mem_cgroup_per_zone *mz;
532 struct mem_cgroup_tree_per_zone *mctz;
533 int nid = page_to_nid(page);
534 int zid = page_zonenum(page);
535 mctz = soft_limit_tree_from_page(page);
536
537 /*
538 * Necessary to update all ancestors when hierarchy is used.
539 * because their event counter is not touched.
540 */
541 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
542 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
543 excess = res_counter_soft_limit_excess(&memcg->res);
544 /*
545 * We have to update the tree if mz is on RB-tree or
546 * mem is over its softlimit.
547 */
548 if (excess || mz->on_tree) {
549 spin_lock(&mctz->lock);
550 /* if on-tree, remove it */
551 if (mz->on_tree)
552 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
553 /*
554 * Insert again. mz->usage_in_excess will be updated.
555 * If excess is 0, no tree ops.
556 */
557 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
558 spin_unlock(&mctz->lock);
559 }
560 }
561 }
562
563 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
564 {
565 int node, zone;
566 struct mem_cgroup_per_zone *mz;
567 struct mem_cgroup_tree_per_zone *mctz;
568
569 for_each_node_state(node, N_POSSIBLE) {
570 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
571 mz = mem_cgroup_zoneinfo(memcg, node, zone);
572 mctz = soft_limit_tree_node_zone(node, zone);
573 mem_cgroup_remove_exceeded(memcg, mz, mctz);
574 }
575 }
576 }
577
578 static struct mem_cgroup_per_zone *
579 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
580 {
581 struct rb_node *rightmost = NULL;
582 struct mem_cgroup_per_zone *mz;
583
584 retry:
585 mz = NULL;
586 rightmost = rb_last(&mctz->rb_root);
587 if (!rightmost)
588 goto done; /* Nothing to reclaim from */
589
590 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
591 /*
592 * Remove the node now but someone else can add it back,
593 * we will to add it back at the end of reclaim to its correct
594 * position in the tree.
595 */
596 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
597 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
598 !css_tryget(&mz->mem->css))
599 goto retry;
600 done:
601 return mz;
602 }
603
604 static struct mem_cgroup_per_zone *
605 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
606 {
607 struct mem_cgroup_per_zone *mz;
608
609 spin_lock(&mctz->lock);
610 mz = __mem_cgroup_largest_soft_limit_node(mctz);
611 spin_unlock(&mctz->lock);
612 return mz;
613 }
614
615 /*
616 * Implementation Note: reading percpu statistics for memcg.
617 *
618 * Both of vmstat[] and percpu_counter has threshold and do periodic
619 * synchronization to implement "quick" read. There are trade-off between
620 * reading cost and precision of value. Then, we may have a chance to implement
621 * a periodic synchronizion of counter in memcg's counter.
622 *
623 * But this _read() function is used for user interface now. The user accounts
624 * memory usage by memory cgroup and he _always_ requires exact value because
625 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
626 * have to visit all online cpus and make sum. So, for now, unnecessary
627 * synchronization is not implemented. (just implemented for cpu hotplug)
628 *
629 * If there are kernel internal actions which can make use of some not-exact
630 * value, and reading all cpu value can be performance bottleneck in some
631 * common workload, threashold and synchonization as vmstat[] should be
632 * implemented.
633 */
634 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
635 enum mem_cgroup_stat_index idx)
636 {
637 long val = 0;
638 int cpu;
639
640 get_online_cpus();
641 for_each_online_cpu(cpu)
642 val += per_cpu(memcg->stat->count[idx], cpu);
643 #ifdef CONFIG_HOTPLUG_CPU
644 spin_lock(&memcg->pcp_counter_lock);
645 val += memcg->nocpu_base.count[idx];
646 spin_unlock(&memcg->pcp_counter_lock);
647 #endif
648 put_online_cpus();
649 return val;
650 }
651
652 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
653 bool charge)
654 {
655 int val = (charge) ? 1 : -1;
656 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
657 }
658
659 void mem_cgroup_pgfault(struct mem_cgroup *memcg, int val)
660 {
661 this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
662 }
663
664 void mem_cgroup_pgmajfault(struct mem_cgroup *memcg, int val)
665 {
666 this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
667 }
668
669 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
670 enum mem_cgroup_events_index idx)
671 {
672 unsigned long val = 0;
673 int cpu;
674
675 for_each_online_cpu(cpu)
676 val += per_cpu(memcg->stat->events[idx], cpu);
677 #ifdef CONFIG_HOTPLUG_CPU
678 spin_lock(&memcg->pcp_counter_lock);
679 val += memcg->nocpu_base.events[idx];
680 spin_unlock(&memcg->pcp_counter_lock);
681 #endif
682 return val;
683 }
684
685 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
686 bool file, int nr_pages)
687 {
688 preempt_disable();
689
690 if (file)
691 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
692 nr_pages);
693 else
694 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
695 nr_pages);
696
697 /* pagein of a big page is an event. So, ignore page size */
698 if (nr_pages > 0)
699 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
700 else {
701 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
702 nr_pages = -nr_pages; /* for event */
703 }
704
705 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
706
707 preempt_enable();
708 }
709
710 unsigned long
711 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
712 unsigned int lru_mask)
713 {
714 struct mem_cgroup_per_zone *mz;
715 enum lru_list l;
716 unsigned long ret = 0;
717
718 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
719
720 for_each_lru(l) {
721 if (BIT(l) & lru_mask)
722 ret += MEM_CGROUP_ZSTAT(mz, l);
723 }
724 return ret;
725 }
726
727 static unsigned long
728 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
729 int nid, unsigned int lru_mask)
730 {
731 u64 total = 0;
732 int zid;
733
734 for (zid = 0; zid < MAX_NR_ZONES; zid++)
735 total += mem_cgroup_zone_nr_lru_pages(memcg,
736 nid, zid, lru_mask);
737
738 return total;
739 }
740
741 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
742 unsigned int lru_mask)
743 {
744 int nid;
745 u64 total = 0;
746
747 for_each_node_state(nid, N_HIGH_MEMORY)
748 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
749 return total;
750 }
751
752 static bool __memcg_event_check(struct mem_cgroup *memcg, int target)
753 {
754 unsigned long val, next;
755
756 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
757 next = __this_cpu_read(memcg->stat->targets[target]);
758 /* from time_after() in jiffies.h */
759 return ((long)next - (long)val < 0);
760 }
761
762 static void __mem_cgroup_target_update(struct mem_cgroup *memcg, int target)
763 {
764 unsigned long val, next;
765
766 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
767
768 switch (target) {
769 case MEM_CGROUP_TARGET_THRESH:
770 next = val + THRESHOLDS_EVENTS_TARGET;
771 break;
772 case MEM_CGROUP_TARGET_SOFTLIMIT:
773 next = val + SOFTLIMIT_EVENTS_TARGET;
774 break;
775 case MEM_CGROUP_TARGET_NUMAINFO:
776 next = val + NUMAINFO_EVENTS_TARGET;
777 break;
778 default:
779 return;
780 }
781
782 __this_cpu_write(memcg->stat->targets[target], next);
783 }
784
785 /*
786 * Check events in order.
787 *
788 */
789 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
790 {
791 preempt_disable();
792 /* threshold event is triggered in finer grain than soft limit */
793 if (unlikely(__memcg_event_check(memcg, MEM_CGROUP_TARGET_THRESH))) {
794 mem_cgroup_threshold(memcg);
795 __mem_cgroup_target_update(memcg, MEM_CGROUP_TARGET_THRESH);
796 if (unlikely(__memcg_event_check(memcg,
797 MEM_CGROUP_TARGET_SOFTLIMIT))) {
798 mem_cgroup_update_tree(memcg, page);
799 __mem_cgroup_target_update(memcg,
800 MEM_CGROUP_TARGET_SOFTLIMIT);
801 }
802 #if MAX_NUMNODES > 1
803 if (unlikely(__memcg_event_check(memcg,
804 MEM_CGROUP_TARGET_NUMAINFO))) {
805 atomic_inc(&memcg->numainfo_events);
806 __mem_cgroup_target_update(memcg,
807 MEM_CGROUP_TARGET_NUMAINFO);
808 }
809 #endif
810 }
811 preempt_enable();
812 }
813
814 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
815 {
816 return container_of(cgroup_subsys_state(cont,
817 mem_cgroup_subsys_id), struct mem_cgroup,
818 css);
819 }
820
821 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
822 {
823 /*
824 * mm_update_next_owner() may clear mm->owner to NULL
825 * if it races with swapoff, page migration, etc.
826 * So this can be called with p == NULL.
827 */
828 if (unlikely(!p))
829 return NULL;
830
831 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
832 struct mem_cgroup, css);
833 }
834
835 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
836 {
837 struct mem_cgroup *memcg = NULL;
838
839 if (!mm)
840 return NULL;
841 /*
842 * Because we have no locks, mm->owner's may be being moved to other
843 * cgroup. We use css_tryget() here even if this looks
844 * pessimistic (rather than adding locks here).
845 */
846 rcu_read_lock();
847 do {
848 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
849 if (unlikely(!memcg))
850 break;
851 } while (!css_tryget(&memcg->css));
852 rcu_read_unlock();
853 return memcg;
854 }
855
856 /* The caller has to guarantee "mem" exists before calling this */
857 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *memcg)
858 {
859 struct cgroup_subsys_state *css;
860 int found;
861
862 if (!memcg) /* ROOT cgroup has the smallest ID */
863 return root_mem_cgroup; /*css_put/get against root is ignored*/
864 if (!memcg->use_hierarchy) {
865 if (css_tryget(&memcg->css))
866 return memcg;
867 return NULL;
868 }
869 rcu_read_lock();
870 /*
871 * searching a memory cgroup which has the smallest ID under given
872 * ROOT cgroup. (ID >= 1)
873 */
874 css = css_get_next(&mem_cgroup_subsys, 1, &memcg->css, &found);
875 if (css && css_tryget(css))
876 memcg = container_of(css, struct mem_cgroup, css);
877 else
878 memcg = NULL;
879 rcu_read_unlock();
880 return memcg;
881 }
882
883 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
884 struct mem_cgroup *root,
885 bool cond)
886 {
887 int nextid = css_id(&iter->css) + 1;
888 int found;
889 int hierarchy_used;
890 struct cgroup_subsys_state *css;
891
892 hierarchy_used = iter->use_hierarchy;
893
894 css_put(&iter->css);
895 /* If no ROOT, walk all, ignore hierarchy */
896 if (!cond || (root && !hierarchy_used))
897 return NULL;
898
899 if (!root)
900 root = root_mem_cgroup;
901
902 do {
903 iter = NULL;
904 rcu_read_lock();
905
906 css = css_get_next(&mem_cgroup_subsys, nextid,
907 &root->css, &found);
908 if (css && css_tryget(css))
909 iter = container_of(css, struct mem_cgroup, css);
910 rcu_read_unlock();
911 /* If css is NULL, no more cgroups will be found */
912 nextid = found + 1;
913 } while (css && !iter);
914
915 return iter;
916 }
917 /*
918 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
919 * be careful that "break" loop is not allowed. We have reference count.
920 * Instead of that modify "cond" to be false and "continue" to exit the loop.
921 */
922 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
923 for (iter = mem_cgroup_start_loop(root);\
924 iter != NULL;\
925 iter = mem_cgroup_get_next(iter, root, cond))
926
927 #define for_each_mem_cgroup_tree(iter, root) \
928 for_each_mem_cgroup_tree_cond(iter, root, true)
929
930 #define for_each_mem_cgroup_all(iter) \
931 for_each_mem_cgroup_tree_cond(iter, NULL, true)
932
933
934 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
935 {
936 return (memcg == root_mem_cgroup);
937 }
938
939 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
940 {
941 struct mem_cgroup *memcg;
942
943 if (!mm)
944 return;
945
946 rcu_read_lock();
947 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
948 if (unlikely(!memcg))
949 goto out;
950
951 switch (idx) {
952 case PGMAJFAULT:
953 mem_cgroup_pgmajfault(memcg, 1);
954 break;
955 case PGFAULT:
956 mem_cgroup_pgfault(memcg, 1);
957 break;
958 default:
959 BUG();
960 }
961 out:
962 rcu_read_unlock();
963 }
964 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
965
966 /*
967 * Following LRU functions are allowed to be used without PCG_LOCK.
968 * Operations are called by routine of global LRU independently from memcg.
969 * What we have to take care of here is validness of pc->mem_cgroup.
970 *
971 * Changes to pc->mem_cgroup happens when
972 * 1. charge
973 * 2. moving account
974 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
975 * It is added to LRU before charge.
976 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
977 * When moving account, the page is not on LRU. It's isolated.
978 */
979
980 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
981 {
982 struct page_cgroup *pc;
983 struct mem_cgroup_per_zone *mz;
984
985 if (mem_cgroup_disabled())
986 return;
987 pc = lookup_page_cgroup(page);
988 /* can happen while we handle swapcache. */
989 if (!TestClearPageCgroupAcctLRU(pc))
990 return;
991 VM_BUG_ON(!pc->mem_cgroup);
992 /*
993 * We don't check PCG_USED bit. It's cleared when the "page" is finally
994 * removed from global LRU.
995 */
996 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
997 /* huge page split is done under lru_lock. so, we have no races. */
998 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
999 if (mem_cgroup_is_root(pc->mem_cgroup))
1000 return;
1001 VM_BUG_ON(list_empty(&pc->lru));
1002 list_del_init(&pc->lru);
1003 }
1004
1005 void mem_cgroup_del_lru(struct page *page)
1006 {
1007 mem_cgroup_del_lru_list(page, page_lru(page));
1008 }
1009
1010 /*
1011 * Writeback is about to end against a page which has been marked for immediate
1012 * reclaim. If it still appears to be reclaimable, move it to the tail of the
1013 * inactive list.
1014 */
1015 void mem_cgroup_rotate_reclaimable_page(struct page *page)
1016 {
1017 struct mem_cgroup_per_zone *mz;
1018 struct page_cgroup *pc;
1019 enum lru_list lru = page_lru(page);
1020
1021 if (mem_cgroup_disabled())
1022 return;
1023
1024 pc = lookup_page_cgroup(page);
1025 /* unused or root page is not rotated. */
1026 if (!PageCgroupUsed(pc))
1027 return;
1028 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1029 smp_rmb();
1030 if (mem_cgroup_is_root(pc->mem_cgroup))
1031 return;
1032 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1033 list_move_tail(&pc->lru, &mz->lists[lru]);
1034 }
1035
1036 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
1037 {
1038 struct mem_cgroup_per_zone *mz;
1039 struct page_cgroup *pc;
1040
1041 if (mem_cgroup_disabled())
1042 return;
1043
1044 pc = lookup_page_cgroup(page);
1045 /* unused or root page is not rotated. */
1046 if (!PageCgroupUsed(pc))
1047 return;
1048 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1049 smp_rmb();
1050 if (mem_cgroup_is_root(pc->mem_cgroup))
1051 return;
1052 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1053 list_move(&pc->lru, &mz->lists[lru]);
1054 }
1055
1056 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
1057 {
1058 struct page_cgroup *pc;
1059 struct mem_cgroup_per_zone *mz;
1060
1061 if (mem_cgroup_disabled())
1062 return;
1063 pc = lookup_page_cgroup(page);
1064 VM_BUG_ON(PageCgroupAcctLRU(pc));
1065 /*
1066 * putback: charge:
1067 * SetPageLRU SetPageCgroupUsed
1068 * smp_mb smp_mb
1069 * PageCgroupUsed && add to memcg LRU PageLRU && add to memcg LRU
1070 *
1071 * Ensure that one of the two sides adds the page to the memcg
1072 * LRU during a race.
1073 */
1074 smp_mb();
1075 if (!PageCgroupUsed(pc))
1076 return;
1077 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1078 smp_rmb();
1079 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1080 /* huge page split is done under lru_lock. so, we have no races. */
1081 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1082 SetPageCgroupAcctLRU(pc);
1083 if (mem_cgroup_is_root(pc->mem_cgroup))
1084 return;
1085 list_add(&pc->lru, &mz->lists[lru]);
1086 }
1087
1088 /*
1089 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1090 * while it's linked to lru because the page may be reused after it's fully
1091 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1092 * It's done under lock_page and expected that zone->lru_lock isnever held.
1093 */
1094 static void mem_cgroup_lru_del_before_commit(struct page *page)
1095 {
1096 unsigned long flags;
1097 struct zone *zone = page_zone(page);
1098 struct page_cgroup *pc = lookup_page_cgroup(page);
1099
1100 /*
1101 * Doing this check without taking ->lru_lock seems wrong but this
1102 * is safe. Because if page_cgroup's USED bit is unset, the page
1103 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1104 * set, the commit after this will fail, anyway.
1105 * This all charge/uncharge is done under some mutual execustion.
1106 * So, we don't need to taking care of changes in USED bit.
1107 */
1108 if (likely(!PageLRU(page)))
1109 return;
1110
1111 spin_lock_irqsave(&zone->lru_lock, flags);
1112 /*
1113 * Forget old LRU when this page_cgroup is *not* used. This Used bit
1114 * is guarded by lock_page() because the page is SwapCache.
1115 */
1116 if (!PageCgroupUsed(pc))
1117 mem_cgroup_del_lru_list(page, page_lru(page));
1118 spin_unlock_irqrestore(&zone->lru_lock, flags);
1119 }
1120
1121 static void mem_cgroup_lru_add_after_commit(struct page *page)
1122 {
1123 unsigned long flags;
1124 struct zone *zone = page_zone(page);
1125 struct page_cgroup *pc = lookup_page_cgroup(page);
1126 /*
1127 * putback: charge:
1128 * SetPageLRU SetPageCgroupUsed
1129 * smp_mb smp_mb
1130 * PageCgroupUsed && add to memcg LRU PageLRU && add to memcg LRU
1131 *
1132 * Ensure that one of the two sides adds the page to the memcg
1133 * LRU during a race.
1134 */
1135 smp_mb();
1136 /* taking care of that the page is added to LRU while we commit it */
1137 if (likely(!PageLRU(page)))
1138 return;
1139 spin_lock_irqsave(&zone->lru_lock, flags);
1140 /* link when the page is linked to LRU but page_cgroup isn't */
1141 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1142 mem_cgroup_add_lru_list(page, page_lru(page));
1143 spin_unlock_irqrestore(&zone->lru_lock, flags);
1144 }
1145
1146
1147 void mem_cgroup_move_lists(struct page *page,
1148 enum lru_list from, enum lru_list to)
1149 {
1150 if (mem_cgroup_disabled())
1151 return;
1152 mem_cgroup_del_lru_list(page, from);
1153 mem_cgroup_add_lru_list(page, to);
1154 }
1155
1156 /*
1157 * Checks whether given mem is same or in the root_mem_cgroup's
1158 * hierarchy subtree
1159 */
1160 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1161 struct mem_cgroup *memcg)
1162 {
1163 if (root_memcg != memcg) {
1164 return (root_memcg->use_hierarchy &&
1165 css_is_ancestor(&memcg->css, &root_memcg->css));
1166 }
1167
1168 return true;
1169 }
1170
1171 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1172 {
1173 int ret;
1174 struct mem_cgroup *curr = NULL;
1175 struct task_struct *p;
1176
1177 p = find_lock_task_mm(task);
1178 if (!p)
1179 return 0;
1180 curr = try_get_mem_cgroup_from_mm(p->mm);
1181 task_unlock(p);
1182 if (!curr)
1183 return 0;
1184 /*
1185 * We should check use_hierarchy of "memcg" not "curr". Because checking
1186 * use_hierarchy of "curr" here make this function true if hierarchy is
1187 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1188 * hierarchy(even if use_hierarchy is disabled in "memcg").
1189 */
1190 ret = mem_cgroup_same_or_subtree(memcg, curr);
1191 css_put(&curr->css);
1192 return ret;
1193 }
1194
1195 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1196 {
1197 unsigned long inactive_ratio;
1198 int nid = zone_to_nid(zone);
1199 int zid = zone_idx(zone);
1200 unsigned long inactive;
1201 unsigned long active;
1202 unsigned long gb;
1203
1204 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1205 BIT(LRU_INACTIVE_ANON));
1206 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1207 BIT(LRU_ACTIVE_ANON));
1208
1209 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1210 if (gb)
1211 inactive_ratio = int_sqrt(10 * gb);
1212 else
1213 inactive_ratio = 1;
1214
1215 return inactive * inactive_ratio < active;
1216 }
1217
1218 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1219 {
1220 unsigned long active;
1221 unsigned long inactive;
1222 int zid = zone_idx(zone);
1223 int nid = zone_to_nid(zone);
1224
1225 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1226 BIT(LRU_INACTIVE_FILE));
1227 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1228 BIT(LRU_ACTIVE_FILE));
1229
1230 return (active > inactive);
1231 }
1232
1233 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1234 struct zone *zone)
1235 {
1236 int nid = zone_to_nid(zone);
1237 int zid = zone_idx(zone);
1238 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1239
1240 return &mz->reclaim_stat;
1241 }
1242
1243 struct zone_reclaim_stat *
1244 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1245 {
1246 struct page_cgroup *pc;
1247 struct mem_cgroup_per_zone *mz;
1248
1249 if (mem_cgroup_disabled())
1250 return NULL;
1251
1252 pc = lookup_page_cgroup(page);
1253 if (!PageCgroupUsed(pc))
1254 return NULL;
1255 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1256 smp_rmb();
1257 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1258 return &mz->reclaim_stat;
1259 }
1260
1261 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1262 struct list_head *dst,
1263 unsigned long *scanned, int order,
1264 isolate_mode_t mode,
1265 struct zone *z,
1266 struct mem_cgroup *mem_cont,
1267 int active, int file)
1268 {
1269 unsigned long nr_taken = 0;
1270 struct page *page;
1271 unsigned long scan;
1272 LIST_HEAD(pc_list);
1273 struct list_head *src;
1274 struct page_cgroup *pc, *tmp;
1275 int nid = zone_to_nid(z);
1276 int zid = zone_idx(z);
1277 struct mem_cgroup_per_zone *mz;
1278 int lru = LRU_FILE * file + active;
1279 int ret;
1280
1281 BUG_ON(!mem_cont);
1282 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1283 src = &mz->lists[lru];
1284
1285 scan = 0;
1286 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1287 if (scan >= nr_to_scan)
1288 break;
1289
1290 if (unlikely(!PageCgroupUsed(pc)))
1291 continue;
1292
1293 page = lookup_cgroup_page(pc);
1294
1295 if (unlikely(!PageLRU(page)))
1296 continue;
1297
1298 scan++;
1299 ret = __isolate_lru_page(page, mode, file);
1300 switch (ret) {
1301 case 0:
1302 list_move(&page->lru, dst);
1303 mem_cgroup_del_lru(page);
1304 nr_taken += hpage_nr_pages(page);
1305 break;
1306 case -EBUSY:
1307 /* we don't affect global LRU but rotate in our LRU */
1308 mem_cgroup_rotate_lru_list(page, page_lru(page));
1309 break;
1310 default:
1311 break;
1312 }
1313 }
1314
1315 *scanned = scan;
1316
1317 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1318 0, 0, 0, mode);
1319
1320 return nr_taken;
1321 }
1322
1323 #define mem_cgroup_from_res_counter(counter, member) \
1324 container_of(counter, struct mem_cgroup, member)
1325
1326 /**
1327 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1328 * @mem: the memory cgroup
1329 *
1330 * Returns the maximum amount of memory @mem can be charged with, in
1331 * pages.
1332 */
1333 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1334 {
1335 unsigned long long margin;
1336
1337 margin = res_counter_margin(&memcg->res);
1338 if (do_swap_account)
1339 margin = min(margin, res_counter_margin(&memcg->memsw));
1340 return margin >> PAGE_SHIFT;
1341 }
1342
1343 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1344 {
1345 struct cgroup *cgrp = memcg->css.cgroup;
1346
1347 /* root ? */
1348 if (cgrp->parent == NULL)
1349 return vm_swappiness;
1350
1351 return memcg->swappiness;
1352 }
1353
1354 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1355 {
1356 int cpu;
1357
1358 get_online_cpus();
1359 spin_lock(&memcg->pcp_counter_lock);
1360 for_each_online_cpu(cpu)
1361 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1362 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1363 spin_unlock(&memcg->pcp_counter_lock);
1364 put_online_cpus();
1365
1366 synchronize_rcu();
1367 }
1368
1369 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1370 {
1371 int cpu;
1372
1373 if (!memcg)
1374 return;
1375 get_online_cpus();
1376 spin_lock(&memcg->pcp_counter_lock);
1377 for_each_online_cpu(cpu)
1378 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1379 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1380 spin_unlock(&memcg->pcp_counter_lock);
1381 put_online_cpus();
1382 }
1383 /*
1384 * 2 routines for checking "mem" is under move_account() or not.
1385 *
1386 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1387 * for avoiding race in accounting. If true,
1388 * pc->mem_cgroup may be overwritten.
1389 *
1390 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1391 * under hierarchy of moving cgroups. This is for
1392 * waiting at hith-memory prressure caused by "move".
1393 */
1394
1395 static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1396 {
1397 VM_BUG_ON(!rcu_read_lock_held());
1398 return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1399 }
1400
1401 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1402 {
1403 struct mem_cgroup *from;
1404 struct mem_cgroup *to;
1405 bool ret = false;
1406 /*
1407 * Unlike task_move routines, we access mc.to, mc.from not under
1408 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1409 */
1410 spin_lock(&mc.lock);
1411 from = mc.from;
1412 to = mc.to;
1413 if (!from)
1414 goto unlock;
1415
1416 ret = mem_cgroup_same_or_subtree(memcg, from)
1417 || mem_cgroup_same_or_subtree(memcg, to);
1418 unlock:
1419 spin_unlock(&mc.lock);
1420 return ret;
1421 }
1422
1423 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1424 {
1425 if (mc.moving_task && current != mc.moving_task) {
1426 if (mem_cgroup_under_move(memcg)) {
1427 DEFINE_WAIT(wait);
1428 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1429 /* moving charge context might have finished. */
1430 if (mc.moving_task)
1431 schedule();
1432 finish_wait(&mc.waitq, &wait);
1433 return true;
1434 }
1435 }
1436 return false;
1437 }
1438
1439 /**
1440 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1441 * @memcg: The memory cgroup that went over limit
1442 * @p: Task that is going to be killed
1443 *
1444 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1445 * enabled
1446 */
1447 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1448 {
1449 struct cgroup *task_cgrp;
1450 struct cgroup *mem_cgrp;
1451 /*
1452 * Need a buffer in BSS, can't rely on allocations. The code relies
1453 * on the assumption that OOM is serialized for memory controller.
1454 * If this assumption is broken, revisit this code.
1455 */
1456 static char memcg_name[PATH_MAX];
1457 int ret;
1458
1459 if (!memcg || !p)
1460 return;
1461
1462
1463 rcu_read_lock();
1464
1465 mem_cgrp = memcg->css.cgroup;
1466 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1467
1468 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1469 if (ret < 0) {
1470 /*
1471 * Unfortunately, we are unable to convert to a useful name
1472 * But we'll still print out the usage information
1473 */
1474 rcu_read_unlock();
1475 goto done;
1476 }
1477 rcu_read_unlock();
1478
1479 printk(KERN_INFO "Task in %s killed", memcg_name);
1480
1481 rcu_read_lock();
1482 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1483 if (ret < 0) {
1484 rcu_read_unlock();
1485 goto done;
1486 }
1487 rcu_read_unlock();
1488
1489 /*
1490 * Continues from above, so we don't need an KERN_ level
1491 */
1492 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1493 done:
1494
1495 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1496 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1497 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1498 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1499 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1500 "failcnt %llu\n",
1501 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1502 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1503 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1504 }
1505
1506 /*
1507 * This function returns the number of memcg under hierarchy tree. Returns
1508 * 1(self count) if no children.
1509 */
1510 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1511 {
1512 int num = 0;
1513 struct mem_cgroup *iter;
1514
1515 for_each_mem_cgroup_tree(iter, memcg)
1516 num++;
1517 return num;
1518 }
1519
1520 /*
1521 * Return the memory (and swap, if configured) limit for a memcg.
1522 */
1523 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1524 {
1525 u64 limit;
1526 u64 memsw;
1527
1528 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1529 limit += total_swap_pages << PAGE_SHIFT;
1530
1531 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1532 /*
1533 * If memsw is finite and limits the amount of swap space available
1534 * to this memcg, return that limit.
1535 */
1536 return min(limit, memsw);
1537 }
1538
1539 /*
1540 * Visit the first child (need not be the first child as per the ordering
1541 * of the cgroup list, since we track last_scanned_child) of @mem and use
1542 * that to reclaim free pages from.
1543 */
1544 static struct mem_cgroup *
1545 mem_cgroup_select_victim(struct mem_cgroup *root_memcg)
1546 {
1547 struct mem_cgroup *ret = NULL;
1548 struct cgroup_subsys_state *css;
1549 int nextid, found;
1550
1551 if (!root_memcg->use_hierarchy) {
1552 css_get(&root_memcg->css);
1553 ret = root_memcg;
1554 }
1555
1556 while (!ret) {
1557 rcu_read_lock();
1558 nextid = root_memcg->last_scanned_child + 1;
1559 css = css_get_next(&mem_cgroup_subsys, nextid, &root_memcg->css,
1560 &found);
1561 if (css && css_tryget(css))
1562 ret = container_of(css, struct mem_cgroup, css);
1563
1564 rcu_read_unlock();
1565 /* Updates scanning parameter */
1566 if (!css) {
1567 /* this means start scan from ID:1 */
1568 root_memcg->last_scanned_child = 0;
1569 } else
1570 root_memcg->last_scanned_child = found;
1571 }
1572
1573 return ret;
1574 }
1575
1576 /**
1577 * test_mem_cgroup_node_reclaimable
1578 * @mem: the target memcg
1579 * @nid: the node ID to be checked.
1580 * @noswap : specify true here if the user wants flle only information.
1581 *
1582 * This function returns whether the specified memcg contains any
1583 * reclaimable pages on a node. Returns true if there are any reclaimable
1584 * pages in the node.
1585 */
1586 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1587 int nid, bool noswap)
1588 {
1589 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1590 return true;
1591 if (noswap || !total_swap_pages)
1592 return false;
1593 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1594 return true;
1595 return false;
1596
1597 }
1598 #if MAX_NUMNODES > 1
1599
1600 /*
1601 * Always updating the nodemask is not very good - even if we have an empty
1602 * list or the wrong list here, we can start from some node and traverse all
1603 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1604 *
1605 */
1606 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1607 {
1608 int nid;
1609 /*
1610 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1611 * pagein/pageout changes since the last update.
1612 */
1613 if (!atomic_read(&memcg->numainfo_events))
1614 return;
1615 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1616 return;
1617
1618 /* make a nodemask where this memcg uses memory from */
1619 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1620
1621 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1622
1623 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1624 node_clear(nid, memcg->scan_nodes);
1625 }
1626
1627 atomic_set(&memcg->numainfo_events, 0);
1628 atomic_set(&memcg->numainfo_updating, 0);
1629 }
1630
1631 /*
1632 * Selecting a node where we start reclaim from. Because what we need is just
1633 * reducing usage counter, start from anywhere is O,K. Considering
1634 * memory reclaim from current node, there are pros. and cons.
1635 *
1636 * Freeing memory from current node means freeing memory from a node which
1637 * we'll use or we've used. So, it may make LRU bad. And if several threads
1638 * hit limits, it will see a contention on a node. But freeing from remote
1639 * node means more costs for memory reclaim because of memory latency.
1640 *
1641 * Now, we use round-robin. Better algorithm is welcomed.
1642 */
1643 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1644 {
1645 int node;
1646
1647 mem_cgroup_may_update_nodemask(memcg);
1648 node = memcg->last_scanned_node;
1649
1650 node = next_node(node, memcg->scan_nodes);
1651 if (node == MAX_NUMNODES)
1652 node = first_node(memcg->scan_nodes);
1653 /*
1654 * We call this when we hit limit, not when pages are added to LRU.
1655 * No LRU may hold pages because all pages are UNEVICTABLE or
1656 * memcg is too small and all pages are not on LRU. In that case,
1657 * we use curret node.
1658 */
1659 if (unlikely(node == MAX_NUMNODES))
1660 node = numa_node_id();
1661
1662 memcg->last_scanned_node = node;
1663 return node;
1664 }
1665
1666 /*
1667 * Check all nodes whether it contains reclaimable pages or not.
1668 * For quick scan, we make use of scan_nodes. This will allow us to skip
1669 * unused nodes. But scan_nodes is lazily updated and may not cotain
1670 * enough new information. We need to do double check.
1671 */
1672 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1673 {
1674 int nid;
1675
1676 /*
1677 * quick check...making use of scan_node.
1678 * We can skip unused nodes.
1679 */
1680 if (!nodes_empty(memcg->scan_nodes)) {
1681 for (nid = first_node(memcg->scan_nodes);
1682 nid < MAX_NUMNODES;
1683 nid = next_node(nid, memcg->scan_nodes)) {
1684
1685 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1686 return true;
1687 }
1688 }
1689 /*
1690 * Check rest of nodes.
1691 */
1692 for_each_node_state(nid, N_HIGH_MEMORY) {
1693 if (node_isset(nid, memcg->scan_nodes))
1694 continue;
1695 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1696 return true;
1697 }
1698 return false;
1699 }
1700
1701 #else
1702 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1703 {
1704 return 0;
1705 }
1706
1707 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1708 {
1709 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1710 }
1711 #endif
1712
1713 /*
1714 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1715 * we reclaimed from, so that we don't end up penalizing one child extensively
1716 * based on its position in the children list.
1717 *
1718 * root_memcg is the original ancestor that we've been reclaim from.
1719 *
1720 * We give up and return to the caller when we visit root_memcg twice.
1721 * (other groups can be removed while we're walking....)
1722 *
1723 * If shrink==true, for avoiding to free too much, this returns immedieately.
1724 */
1725 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_memcg,
1726 struct zone *zone,
1727 gfp_t gfp_mask,
1728 unsigned long reclaim_options,
1729 unsigned long *total_scanned)
1730 {
1731 struct mem_cgroup *victim;
1732 int ret, total = 0;
1733 int loop = 0;
1734 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1735 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1736 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1737 unsigned long excess;
1738 unsigned long nr_scanned;
1739
1740 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1741
1742 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1743 if (!check_soft && !shrink && root_memcg->memsw_is_minimum)
1744 noswap = true;
1745
1746 while (1) {
1747 victim = mem_cgroup_select_victim(root_memcg);
1748 if (victim == root_memcg) {
1749 loop++;
1750 /*
1751 * We are not draining per cpu cached charges during
1752 * soft limit reclaim because global reclaim doesn't
1753 * care about charges. It tries to free some memory and
1754 * charges will not give any.
1755 */
1756 if (!check_soft && loop >= 1)
1757 drain_all_stock_async(root_memcg);
1758 if (loop >= 2) {
1759 /*
1760 * If we have not been able to reclaim
1761 * anything, it might because there are
1762 * no reclaimable pages under this hierarchy
1763 */
1764 if (!check_soft || !total) {
1765 css_put(&victim->css);
1766 break;
1767 }
1768 /*
1769 * We want to do more targeted reclaim.
1770 * excess >> 2 is not to excessive so as to
1771 * reclaim too much, nor too less that we keep
1772 * coming back to reclaim from this cgroup
1773 */
1774 if (total >= (excess >> 2) ||
1775 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1776 css_put(&victim->css);
1777 break;
1778 }
1779 }
1780 }
1781 if (!mem_cgroup_reclaimable(victim, noswap)) {
1782 /* this cgroup's local usage == 0 */
1783 css_put(&victim->css);
1784 continue;
1785 }
1786 /* we use swappiness of local cgroup */
1787 if (check_soft) {
1788 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1789 noswap, zone, &nr_scanned);
1790 *total_scanned += nr_scanned;
1791 } else
1792 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1793 noswap);
1794 css_put(&victim->css);
1795 /*
1796 * At shrinking usage, we can't check we should stop here or
1797 * reclaim more. It's depends on callers. last_scanned_child
1798 * will work enough for keeping fairness under tree.
1799 */
1800 if (shrink)
1801 return ret;
1802 total += ret;
1803 if (check_soft) {
1804 if (!res_counter_soft_limit_excess(&root_memcg->res))
1805 return total;
1806 } else if (mem_cgroup_margin(root_memcg))
1807 return total;
1808 }
1809 return total;
1810 }
1811
1812 /*
1813 * Check OOM-Killer is already running under our hierarchy.
1814 * If someone is running, return false.
1815 * Has to be called with memcg_oom_lock
1816 */
1817 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1818 {
1819 struct mem_cgroup *iter, *failed = NULL;
1820 bool cond = true;
1821
1822 for_each_mem_cgroup_tree_cond(iter, memcg, cond) {
1823 if (iter->oom_lock) {
1824 /*
1825 * this subtree of our hierarchy is already locked
1826 * so we cannot give a lock.
1827 */
1828 failed = iter;
1829 cond = false;
1830 } else
1831 iter->oom_lock = true;
1832 }
1833
1834 if (!failed)
1835 return true;
1836
1837 /*
1838 * OK, we failed to lock the whole subtree so we have to clean up
1839 * what we set up to the failing subtree
1840 */
1841 cond = true;
1842 for_each_mem_cgroup_tree_cond(iter, memcg, cond) {
1843 if (iter == failed) {
1844 cond = false;
1845 continue;
1846 }
1847 iter->oom_lock = false;
1848 }
1849 return false;
1850 }
1851
1852 /*
1853 * Has to be called with memcg_oom_lock
1854 */
1855 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1856 {
1857 struct mem_cgroup *iter;
1858
1859 for_each_mem_cgroup_tree(iter, memcg)
1860 iter->oom_lock = false;
1861 return 0;
1862 }
1863
1864 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1865 {
1866 struct mem_cgroup *iter;
1867
1868 for_each_mem_cgroup_tree(iter, memcg)
1869 atomic_inc(&iter->under_oom);
1870 }
1871
1872 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1873 {
1874 struct mem_cgroup *iter;
1875
1876 /*
1877 * When a new child is created while the hierarchy is under oom,
1878 * mem_cgroup_oom_lock() may not be called. We have to use
1879 * atomic_add_unless() here.
1880 */
1881 for_each_mem_cgroup_tree(iter, memcg)
1882 atomic_add_unless(&iter->under_oom, -1, 0);
1883 }
1884
1885 static DEFINE_SPINLOCK(memcg_oom_lock);
1886 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1887
1888 struct oom_wait_info {
1889 struct mem_cgroup *mem;
1890 wait_queue_t wait;
1891 };
1892
1893 static int memcg_oom_wake_function(wait_queue_t *wait,
1894 unsigned mode, int sync, void *arg)
1895 {
1896 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
1897 *oom_wait_memcg;
1898 struct oom_wait_info *oom_wait_info;
1899
1900 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1901 oom_wait_memcg = oom_wait_info->mem;
1902
1903 /*
1904 * Both of oom_wait_info->mem and wake_mem are stable under us.
1905 * Then we can use css_is_ancestor without taking care of RCU.
1906 */
1907 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1908 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1909 return 0;
1910 return autoremove_wake_function(wait, mode, sync, arg);
1911 }
1912
1913 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1914 {
1915 /* for filtering, pass "memcg" as argument. */
1916 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1917 }
1918
1919 static void memcg_oom_recover(struct mem_cgroup *memcg)
1920 {
1921 if (memcg && atomic_read(&memcg->under_oom))
1922 memcg_wakeup_oom(memcg);
1923 }
1924
1925 /*
1926 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1927 */
1928 bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1929 {
1930 struct oom_wait_info owait;
1931 bool locked, need_to_kill;
1932
1933 owait.mem = memcg;
1934 owait.wait.flags = 0;
1935 owait.wait.func = memcg_oom_wake_function;
1936 owait.wait.private = current;
1937 INIT_LIST_HEAD(&owait.wait.task_list);
1938 need_to_kill = true;
1939 mem_cgroup_mark_under_oom(memcg);
1940
1941 /* At first, try to OOM lock hierarchy under memcg.*/
1942 spin_lock(&memcg_oom_lock);
1943 locked = mem_cgroup_oom_lock(memcg);
1944 /*
1945 * Even if signal_pending(), we can't quit charge() loop without
1946 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1947 * under OOM is always welcomed, use TASK_KILLABLE here.
1948 */
1949 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1950 if (!locked || memcg->oom_kill_disable)
1951 need_to_kill = false;
1952 if (locked)
1953 mem_cgroup_oom_notify(memcg);
1954 spin_unlock(&memcg_oom_lock);
1955
1956 if (need_to_kill) {
1957 finish_wait(&memcg_oom_waitq, &owait.wait);
1958 mem_cgroup_out_of_memory(memcg, mask);
1959 } else {
1960 schedule();
1961 finish_wait(&memcg_oom_waitq, &owait.wait);
1962 }
1963 spin_lock(&memcg_oom_lock);
1964 if (locked)
1965 mem_cgroup_oom_unlock(memcg);
1966 memcg_wakeup_oom(memcg);
1967 spin_unlock(&memcg_oom_lock);
1968
1969 mem_cgroup_unmark_under_oom(memcg);
1970
1971 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1972 return false;
1973 /* Give chance to dying process */
1974 schedule_timeout_uninterruptible(1);
1975 return true;
1976 }
1977
1978 /*
1979 * Currently used to update mapped file statistics, but the routine can be
1980 * generalized to update other statistics as well.
1981 *
1982 * Notes: Race condition
1983 *
1984 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1985 * it tends to be costly. But considering some conditions, we doesn't need
1986 * to do so _always_.
1987 *
1988 * Considering "charge", lock_page_cgroup() is not required because all
1989 * file-stat operations happen after a page is attached to radix-tree. There
1990 * are no race with "charge".
1991 *
1992 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1993 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1994 * if there are race with "uncharge". Statistics itself is properly handled
1995 * by flags.
1996 *
1997 * Considering "move", this is an only case we see a race. To make the race
1998 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1999 * possibility of race condition. If there is, we take a lock.
2000 */
2001
2002 void mem_cgroup_update_page_stat(struct page *page,
2003 enum mem_cgroup_page_stat_item idx, int val)
2004 {
2005 struct mem_cgroup *memcg;
2006 struct page_cgroup *pc = lookup_page_cgroup(page);
2007 bool need_unlock = false;
2008 unsigned long uninitialized_var(flags);
2009
2010 if (unlikely(!pc))
2011 return;
2012
2013 rcu_read_lock();
2014 memcg = pc->mem_cgroup;
2015 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2016 goto out;
2017 /* pc->mem_cgroup is unstable ? */
2018 if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
2019 /* take a lock against to access pc->mem_cgroup */
2020 move_lock_page_cgroup(pc, &flags);
2021 need_unlock = true;
2022 memcg = pc->mem_cgroup;
2023 if (!memcg || !PageCgroupUsed(pc))
2024 goto out;
2025 }
2026
2027 switch (idx) {
2028 case MEMCG_NR_FILE_MAPPED:
2029 if (val > 0)
2030 SetPageCgroupFileMapped(pc);
2031 else if (!page_mapped(page))
2032 ClearPageCgroupFileMapped(pc);
2033 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2034 break;
2035 default:
2036 BUG();
2037 }
2038
2039 this_cpu_add(memcg->stat->count[idx], val);
2040
2041 out:
2042 if (unlikely(need_unlock))
2043 move_unlock_page_cgroup(pc, &flags);
2044 rcu_read_unlock();
2045 return;
2046 }
2047 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
2048
2049 /*
2050 * size of first charge trial. "32" comes from vmscan.c's magic value.
2051 * TODO: maybe necessary to use big numbers in big irons.
2052 */
2053 #define CHARGE_BATCH 32U
2054 struct memcg_stock_pcp {
2055 struct mem_cgroup *cached; /* this never be root cgroup */
2056 unsigned int nr_pages;
2057 struct work_struct work;
2058 unsigned long flags;
2059 #define FLUSHING_CACHED_CHARGE (0)
2060 };
2061 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2062 static DEFINE_MUTEX(percpu_charge_mutex);
2063
2064 /*
2065 * Try to consume stocked charge on this cpu. If success, one page is consumed
2066 * from local stock and true is returned. If the stock is 0 or charges from a
2067 * cgroup which is not current target, returns false. This stock will be
2068 * refilled.
2069 */
2070 static bool consume_stock(struct mem_cgroup *memcg)
2071 {
2072 struct memcg_stock_pcp *stock;
2073 bool ret = true;
2074
2075 stock = &get_cpu_var(memcg_stock);
2076 if (memcg == stock->cached && stock->nr_pages)
2077 stock->nr_pages--;
2078 else /* need to call res_counter_charge */
2079 ret = false;
2080 put_cpu_var(memcg_stock);
2081 return ret;
2082 }
2083
2084 /*
2085 * Returns stocks cached in percpu to res_counter and reset cached information.
2086 */
2087 static void drain_stock(struct memcg_stock_pcp *stock)
2088 {
2089 struct mem_cgroup *old = stock->cached;
2090
2091 if (stock->nr_pages) {
2092 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2093
2094 res_counter_uncharge(&old->res, bytes);
2095 if (do_swap_account)
2096 res_counter_uncharge(&old->memsw, bytes);
2097 stock->nr_pages = 0;
2098 }
2099 stock->cached = NULL;
2100 }
2101
2102 /*
2103 * This must be called under preempt disabled or must be called by
2104 * a thread which is pinned to local cpu.
2105 */
2106 static void drain_local_stock(struct work_struct *dummy)
2107 {
2108 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2109 drain_stock(stock);
2110 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2111 }
2112
2113 /*
2114 * Cache charges(val) which is from res_counter, to local per_cpu area.
2115 * This will be consumed by consume_stock() function, later.
2116 */
2117 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2118 {
2119 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2120
2121 if (stock->cached != memcg) { /* reset if necessary */
2122 drain_stock(stock);
2123 stock->cached = memcg;
2124 }
2125 stock->nr_pages += nr_pages;
2126 put_cpu_var(memcg_stock);
2127 }
2128
2129 /*
2130 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2131 * of the hierarchy under it. sync flag says whether we should block
2132 * until the work is done.
2133 */
2134 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2135 {
2136 int cpu, curcpu;
2137
2138 /* Notify other cpus that system-wide "drain" is running */
2139 get_online_cpus();
2140 curcpu = get_cpu();
2141 for_each_online_cpu(cpu) {
2142 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2143 struct mem_cgroup *memcg;
2144
2145 memcg = stock->cached;
2146 if (!memcg || !stock->nr_pages)
2147 continue;
2148 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2149 continue;
2150 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2151 if (cpu == curcpu)
2152 drain_local_stock(&stock->work);
2153 else
2154 schedule_work_on(cpu, &stock->work);
2155 }
2156 }
2157 put_cpu();
2158
2159 if (!sync)
2160 goto out;
2161
2162 for_each_online_cpu(cpu) {
2163 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2164 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2165 flush_work(&stock->work);
2166 }
2167 out:
2168 put_online_cpus();
2169 }
2170
2171 /*
2172 * Tries to drain stocked charges in other cpus. This function is asynchronous
2173 * and just put a work per cpu for draining localy on each cpu. Caller can
2174 * expects some charges will be back to res_counter later but cannot wait for
2175 * it.
2176 */
2177 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2178 {
2179 /*
2180 * If someone calls draining, avoid adding more kworker runs.
2181 */
2182 if (!mutex_trylock(&percpu_charge_mutex))
2183 return;
2184 drain_all_stock(root_memcg, false);
2185 mutex_unlock(&percpu_charge_mutex);
2186 }
2187
2188 /* This is a synchronous drain interface. */
2189 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2190 {
2191 /* called when force_empty is called */
2192 mutex_lock(&percpu_charge_mutex);
2193 drain_all_stock(root_memcg, true);
2194 mutex_unlock(&percpu_charge_mutex);
2195 }
2196
2197 /*
2198 * This function drains percpu counter value from DEAD cpu and
2199 * move it to local cpu. Note that this function can be preempted.
2200 */
2201 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2202 {
2203 int i;
2204
2205 spin_lock(&memcg->pcp_counter_lock);
2206 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2207 long x = per_cpu(memcg->stat->count[i], cpu);
2208
2209 per_cpu(memcg->stat->count[i], cpu) = 0;
2210 memcg->nocpu_base.count[i] += x;
2211 }
2212 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2213 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2214
2215 per_cpu(memcg->stat->events[i], cpu) = 0;
2216 memcg->nocpu_base.events[i] += x;
2217 }
2218 /* need to clear ON_MOVE value, works as a kind of lock. */
2219 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2220 spin_unlock(&memcg->pcp_counter_lock);
2221 }
2222
2223 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2224 {
2225 int idx = MEM_CGROUP_ON_MOVE;
2226
2227 spin_lock(&memcg->pcp_counter_lock);
2228 per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
2229 spin_unlock(&memcg->pcp_counter_lock);
2230 }
2231
2232 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2233 unsigned long action,
2234 void *hcpu)
2235 {
2236 int cpu = (unsigned long)hcpu;
2237 struct memcg_stock_pcp *stock;
2238 struct mem_cgroup *iter;
2239
2240 if ((action == CPU_ONLINE)) {
2241 for_each_mem_cgroup_all(iter)
2242 synchronize_mem_cgroup_on_move(iter, cpu);
2243 return NOTIFY_OK;
2244 }
2245
2246 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2247 return NOTIFY_OK;
2248
2249 for_each_mem_cgroup_all(iter)
2250 mem_cgroup_drain_pcp_counter(iter, cpu);
2251
2252 stock = &per_cpu(memcg_stock, cpu);
2253 drain_stock(stock);
2254 return NOTIFY_OK;
2255 }
2256
2257
2258 /* See __mem_cgroup_try_charge() for details */
2259 enum {
2260 CHARGE_OK, /* success */
2261 CHARGE_RETRY, /* need to retry but retry is not bad */
2262 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2263 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2264 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2265 };
2266
2267 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2268 unsigned int nr_pages, bool oom_check)
2269 {
2270 unsigned long csize = nr_pages * PAGE_SIZE;
2271 struct mem_cgroup *mem_over_limit;
2272 struct res_counter *fail_res;
2273 unsigned long flags = 0;
2274 int ret;
2275
2276 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2277
2278 if (likely(!ret)) {
2279 if (!do_swap_account)
2280 return CHARGE_OK;
2281 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2282 if (likely(!ret))
2283 return CHARGE_OK;
2284
2285 res_counter_uncharge(&memcg->res, csize);
2286 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2287 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2288 } else
2289 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2290 /*
2291 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2292 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2293 *
2294 * Never reclaim on behalf of optional batching, retry with a
2295 * single page instead.
2296 */
2297 if (nr_pages == CHARGE_BATCH)
2298 return CHARGE_RETRY;
2299
2300 if (!(gfp_mask & __GFP_WAIT))
2301 return CHARGE_WOULDBLOCK;
2302
2303 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2304 gfp_mask, flags, NULL);
2305 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2306 return CHARGE_RETRY;
2307 /*
2308 * Even though the limit is exceeded at this point, reclaim
2309 * may have been able to free some pages. Retry the charge
2310 * before killing the task.
2311 *
2312 * Only for regular pages, though: huge pages are rather
2313 * unlikely to succeed so close to the limit, and we fall back
2314 * to regular pages anyway in case of failure.
2315 */
2316 if (nr_pages == 1 && ret)
2317 return CHARGE_RETRY;
2318
2319 /*
2320 * At task move, charge accounts can be doubly counted. So, it's
2321 * better to wait until the end of task_move if something is going on.
2322 */
2323 if (mem_cgroup_wait_acct_move(mem_over_limit))
2324 return CHARGE_RETRY;
2325
2326 /* If we don't need to call oom-killer at el, return immediately */
2327 if (!oom_check)
2328 return CHARGE_NOMEM;
2329 /* check OOM */
2330 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2331 return CHARGE_OOM_DIE;
2332
2333 return CHARGE_RETRY;
2334 }
2335
2336 /*
2337 * Unlike exported interface, "oom" parameter is added. if oom==true,
2338 * oom-killer can be invoked.
2339 */
2340 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2341 gfp_t gfp_mask,
2342 unsigned int nr_pages,
2343 struct mem_cgroup **ptr,
2344 bool oom)
2345 {
2346 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2347 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2348 struct mem_cgroup *memcg = NULL;
2349 int ret;
2350
2351 /*
2352 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2353 * in system level. So, allow to go ahead dying process in addition to
2354 * MEMDIE process.
2355 */
2356 if (unlikely(test_thread_flag(TIF_MEMDIE)
2357 || fatal_signal_pending(current)))
2358 goto bypass;
2359
2360 /*
2361 * We always charge the cgroup the mm_struct belongs to.
2362 * The mm_struct's mem_cgroup changes on task migration if the
2363 * thread group leader migrates. It's possible that mm is not
2364 * set, if so charge the init_mm (happens for pagecache usage).
2365 */
2366 if (!*ptr && !mm)
2367 goto bypass;
2368 again:
2369 if (*ptr) { /* css should be a valid one */
2370 memcg = *ptr;
2371 VM_BUG_ON(css_is_removed(&memcg->css));
2372 if (mem_cgroup_is_root(memcg))
2373 goto done;
2374 if (nr_pages == 1 && consume_stock(memcg))
2375 goto done;
2376 css_get(&memcg->css);
2377 } else {
2378 struct task_struct *p;
2379
2380 rcu_read_lock();
2381 p = rcu_dereference(mm->owner);
2382 /*
2383 * Because we don't have task_lock(), "p" can exit.
2384 * In that case, "memcg" can point to root or p can be NULL with
2385 * race with swapoff. Then, we have small risk of mis-accouning.
2386 * But such kind of mis-account by race always happens because
2387 * we don't have cgroup_mutex(). It's overkill and we allo that
2388 * small race, here.
2389 * (*) swapoff at el will charge against mm-struct not against
2390 * task-struct. So, mm->owner can be NULL.
2391 */
2392 memcg = mem_cgroup_from_task(p);
2393 if (!memcg || mem_cgroup_is_root(memcg)) {
2394 rcu_read_unlock();
2395 goto done;
2396 }
2397 if (nr_pages == 1 && consume_stock(memcg)) {
2398 /*
2399 * It seems dagerous to access memcg without css_get().
2400 * But considering how consume_stok works, it's not
2401 * necessary. If consume_stock success, some charges
2402 * from this memcg are cached on this cpu. So, we
2403 * don't need to call css_get()/css_tryget() before
2404 * calling consume_stock().
2405 */
2406 rcu_read_unlock();
2407 goto done;
2408 }
2409 /* after here, we may be blocked. we need to get refcnt */
2410 if (!css_tryget(&memcg->css)) {
2411 rcu_read_unlock();
2412 goto again;
2413 }
2414 rcu_read_unlock();
2415 }
2416
2417 do {
2418 bool oom_check;
2419
2420 /* If killed, bypass charge */
2421 if (fatal_signal_pending(current)) {
2422 css_put(&memcg->css);
2423 goto bypass;
2424 }
2425
2426 oom_check = false;
2427 if (oom && !nr_oom_retries) {
2428 oom_check = true;
2429 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2430 }
2431
2432 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2433 switch (ret) {
2434 case CHARGE_OK:
2435 break;
2436 case CHARGE_RETRY: /* not in OOM situation but retry */
2437 batch = nr_pages;
2438 css_put(&memcg->css);
2439 memcg = NULL;
2440 goto again;
2441 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2442 css_put(&memcg->css);
2443 goto nomem;
2444 case CHARGE_NOMEM: /* OOM routine works */
2445 if (!oom) {
2446 css_put(&memcg->css);
2447 goto nomem;
2448 }
2449 /* If oom, we never return -ENOMEM */
2450 nr_oom_retries--;
2451 break;
2452 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2453 css_put(&memcg->css);
2454 goto bypass;
2455 }
2456 } while (ret != CHARGE_OK);
2457
2458 if (batch > nr_pages)
2459 refill_stock(memcg, batch - nr_pages);
2460 css_put(&memcg->css);
2461 done:
2462 *ptr = memcg;
2463 return 0;
2464 nomem:
2465 *ptr = NULL;
2466 return -ENOMEM;
2467 bypass:
2468 *ptr = NULL;
2469 return 0;
2470 }
2471
2472 /*
2473 * Somemtimes we have to undo a charge we got by try_charge().
2474 * This function is for that and do uncharge, put css's refcnt.
2475 * gotten by try_charge().
2476 */
2477 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2478 unsigned int nr_pages)
2479 {
2480 if (!mem_cgroup_is_root(memcg)) {
2481 unsigned long bytes = nr_pages * PAGE_SIZE;
2482
2483 res_counter_uncharge(&memcg->res, bytes);
2484 if (do_swap_account)
2485 res_counter_uncharge(&memcg->memsw, bytes);
2486 }
2487 }
2488
2489 /*
2490 * A helper function to get mem_cgroup from ID. must be called under
2491 * rcu_read_lock(). The caller must check css_is_removed() or some if
2492 * it's concern. (dropping refcnt from swap can be called against removed
2493 * memcg.)
2494 */
2495 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2496 {
2497 struct cgroup_subsys_state *css;
2498
2499 /* ID 0 is unused ID */
2500 if (!id)
2501 return NULL;
2502 css = css_lookup(&mem_cgroup_subsys, id);
2503 if (!css)
2504 return NULL;
2505 return container_of(css, struct mem_cgroup, css);
2506 }
2507
2508 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2509 {
2510 struct mem_cgroup *memcg = NULL;
2511 struct page_cgroup *pc;
2512 unsigned short id;
2513 swp_entry_t ent;
2514
2515 VM_BUG_ON(!PageLocked(page));
2516
2517 pc = lookup_page_cgroup(page);
2518 lock_page_cgroup(pc);
2519 if (PageCgroupUsed(pc)) {
2520 memcg = pc->mem_cgroup;
2521 if (memcg && !css_tryget(&memcg->css))
2522 memcg = NULL;
2523 } else if (PageSwapCache(page)) {
2524 ent.val = page_private(page);
2525 id = lookup_swap_cgroup(ent);
2526 rcu_read_lock();
2527 memcg = mem_cgroup_lookup(id);
2528 if (memcg && !css_tryget(&memcg->css))
2529 memcg = NULL;
2530 rcu_read_unlock();
2531 }
2532 unlock_page_cgroup(pc);
2533 return memcg;
2534 }
2535
2536 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2537 struct page *page,
2538 unsigned int nr_pages,
2539 struct page_cgroup *pc,
2540 enum charge_type ctype)
2541 {
2542 lock_page_cgroup(pc);
2543 if (unlikely(PageCgroupUsed(pc))) {
2544 unlock_page_cgroup(pc);
2545 __mem_cgroup_cancel_charge(memcg, nr_pages);
2546 return;
2547 }
2548 /*
2549 * we don't need page_cgroup_lock about tail pages, becase they are not
2550 * accessed by any other context at this point.
2551 */
2552 pc->mem_cgroup = memcg;
2553 /*
2554 * We access a page_cgroup asynchronously without lock_page_cgroup().
2555 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2556 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2557 * before USED bit, we need memory barrier here.
2558 * See mem_cgroup_add_lru_list(), etc.
2559 */
2560 smp_wmb();
2561 switch (ctype) {
2562 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2563 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2564 SetPageCgroupCache(pc);
2565 SetPageCgroupUsed(pc);
2566 break;
2567 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2568 ClearPageCgroupCache(pc);
2569 SetPageCgroupUsed(pc);
2570 break;
2571 default:
2572 break;
2573 }
2574
2575 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2576 unlock_page_cgroup(pc);
2577 /*
2578 * "charge_statistics" updated event counter. Then, check it.
2579 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2580 * if they exceeds softlimit.
2581 */
2582 memcg_check_events(memcg, page);
2583 }
2584
2585 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2586
2587 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2588 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2589 /*
2590 * Because tail pages are not marked as "used", set it. We're under
2591 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2592 */
2593 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2594 {
2595 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2596 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2597 unsigned long flags;
2598
2599 if (mem_cgroup_disabled())
2600 return;
2601 /*
2602 * We have no races with charge/uncharge but will have races with
2603 * page state accounting.
2604 */
2605 move_lock_page_cgroup(head_pc, &flags);
2606
2607 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2608 smp_wmb(); /* see __commit_charge() */
2609 if (PageCgroupAcctLRU(head_pc)) {
2610 enum lru_list lru;
2611 struct mem_cgroup_per_zone *mz;
2612
2613 /*
2614 * LRU flags cannot be copied because we need to add tail
2615 *.page to LRU by generic call and our hook will be called.
2616 * We hold lru_lock, then, reduce counter directly.
2617 */
2618 lru = page_lru(head);
2619 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2620 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2621 }
2622 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2623 move_unlock_page_cgroup(head_pc, &flags);
2624 }
2625 #endif
2626
2627 /**
2628 * mem_cgroup_move_account - move account of the page
2629 * @page: the page
2630 * @nr_pages: number of regular pages (>1 for huge pages)
2631 * @pc: page_cgroup of the page.
2632 * @from: mem_cgroup which the page is moved from.
2633 * @to: mem_cgroup which the page is moved to. @from != @to.
2634 * @uncharge: whether we should call uncharge and css_put against @from.
2635 *
2636 * The caller must confirm following.
2637 * - page is not on LRU (isolate_page() is useful.)
2638 * - compound_lock is held when nr_pages > 1
2639 *
2640 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2641 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2642 * true, this function does "uncharge" from old cgroup, but it doesn't if
2643 * @uncharge is false, so a caller should do "uncharge".
2644 */
2645 static int mem_cgroup_move_account(struct page *page,
2646 unsigned int nr_pages,
2647 struct page_cgroup *pc,
2648 struct mem_cgroup *from,
2649 struct mem_cgroup *to,
2650 bool uncharge)
2651 {
2652 unsigned long flags;
2653 int ret;
2654
2655 VM_BUG_ON(from == to);
2656 VM_BUG_ON(PageLRU(page));
2657 /*
2658 * The page is isolated from LRU. So, collapse function
2659 * will not handle this page. But page splitting can happen.
2660 * Do this check under compound_page_lock(). The caller should
2661 * hold it.
2662 */
2663 ret = -EBUSY;
2664 if (nr_pages > 1 && !PageTransHuge(page))
2665 goto out;
2666
2667 lock_page_cgroup(pc);
2668
2669 ret = -EINVAL;
2670 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2671 goto unlock;
2672
2673 move_lock_page_cgroup(pc, &flags);
2674
2675 if (PageCgroupFileMapped(pc)) {
2676 /* Update mapped_file data for mem_cgroup */
2677 preempt_disable();
2678 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2679 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2680 preempt_enable();
2681 }
2682 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2683 if (uncharge)
2684 /* This is not "cancel", but cancel_charge does all we need. */
2685 __mem_cgroup_cancel_charge(from, nr_pages);
2686
2687 /* caller should have done css_get */
2688 pc->mem_cgroup = to;
2689 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2690 /*
2691 * We charges against "to" which may not have any tasks. Then, "to"
2692 * can be under rmdir(). But in current implementation, caller of
2693 * this function is just force_empty() and move charge, so it's
2694 * guaranteed that "to" is never removed. So, we don't check rmdir
2695 * status here.
2696 */
2697 move_unlock_page_cgroup(pc, &flags);
2698 ret = 0;
2699 unlock:
2700 unlock_page_cgroup(pc);
2701 /*
2702 * check events
2703 */
2704 memcg_check_events(to, page);
2705 memcg_check_events(from, page);
2706 out:
2707 return ret;
2708 }
2709
2710 /*
2711 * move charges to its parent.
2712 */
2713
2714 static int mem_cgroup_move_parent(struct page *page,
2715 struct page_cgroup *pc,
2716 struct mem_cgroup *child,
2717 gfp_t gfp_mask)
2718 {
2719 struct cgroup *cg = child->css.cgroup;
2720 struct cgroup *pcg = cg->parent;
2721 struct mem_cgroup *parent;
2722 unsigned int nr_pages;
2723 unsigned long uninitialized_var(flags);
2724 int ret;
2725
2726 /* Is ROOT ? */
2727 if (!pcg)
2728 return -EINVAL;
2729
2730 ret = -EBUSY;
2731 if (!get_page_unless_zero(page))
2732 goto out;
2733 if (isolate_lru_page(page))
2734 goto put;
2735
2736 nr_pages = hpage_nr_pages(page);
2737
2738 parent = mem_cgroup_from_cont(pcg);
2739 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2740 if (ret || !parent)
2741 goto put_back;
2742
2743 if (nr_pages > 1)
2744 flags = compound_lock_irqsave(page);
2745
2746 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2747 if (ret)
2748 __mem_cgroup_cancel_charge(parent, nr_pages);
2749
2750 if (nr_pages > 1)
2751 compound_unlock_irqrestore(page, flags);
2752 put_back:
2753 putback_lru_page(page);
2754 put:
2755 put_page(page);
2756 out:
2757 return ret;
2758 }
2759
2760 /*
2761 * Charge the memory controller for page usage.
2762 * Return
2763 * 0 if the charge was successful
2764 * < 0 if the cgroup is over its limit
2765 */
2766 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2767 gfp_t gfp_mask, enum charge_type ctype)
2768 {
2769 struct mem_cgroup *memcg = NULL;
2770 unsigned int nr_pages = 1;
2771 struct page_cgroup *pc;
2772 bool oom = true;
2773 int ret;
2774
2775 if (PageTransHuge(page)) {
2776 nr_pages <<= compound_order(page);
2777 VM_BUG_ON(!PageTransHuge(page));
2778 /*
2779 * Never OOM-kill a process for a huge page. The
2780 * fault handler will fall back to regular pages.
2781 */
2782 oom = false;
2783 }
2784
2785 pc = lookup_page_cgroup(page);
2786 BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2787
2788 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2789 if (ret || !memcg)
2790 return ret;
2791
2792 __mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
2793 return 0;
2794 }
2795
2796 int mem_cgroup_newpage_charge(struct page *page,
2797 struct mm_struct *mm, gfp_t gfp_mask)
2798 {
2799 if (mem_cgroup_disabled())
2800 return 0;
2801 /*
2802 * If already mapped, we don't have to account.
2803 * If page cache, page->mapping has address_space.
2804 * But page->mapping may have out-of-use anon_vma pointer,
2805 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2806 * is NULL.
2807 */
2808 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2809 return 0;
2810 if (unlikely(!mm))
2811 mm = &init_mm;
2812 return mem_cgroup_charge_common(page, mm, gfp_mask,
2813 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2814 }
2815
2816 static void
2817 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2818 enum charge_type ctype);
2819
2820 static void
2821 __mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
2822 enum charge_type ctype)
2823 {
2824 struct page_cgroup *pc = lookup_page_cgroup(page);
2825 /*
2826 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2827 * is already on LRU. It means the page may on some other page_cgroup's
2828 * LRU. Take care of it.
2829 */
2830 mem_cgroup_lru_del_before_commit(page);
2831 __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
2832 mem_cgroup_lru_add_after_commit(page);
2833 return;
2834 }
2835
2836 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2837 gfp_t gfp_mask)
2838 {
2839 struct mem_cgroup *memcg = NULL;
2840 int ret;
2841
2842 if (mem_cgroup_disabled())
2843 return 0;
2844 if (PageCompound(page))
2845 return 0;
2846
2847 if (unlikely(!mm))
2848 mm = &init_mm;
2849
2850 if (page_is_file_cache(page)) {
2851 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &memcg, true);
2852 if (ret || !memcg)
2853 return ret;
2854
2855 /*
2856 * FUSE reuses pages without going through the final
2857 * put that would remove them from the LRU list, make
2858 * sure that they get relinked properly.
2859 */
2860 __mem_cgroup_commit_charge_lrucare(page, memcg,
2861 MEM_CGROUP_CHARGE_TYPE_CACHE);
2862 return ret;
2863 }
2864 /* shmem */
2865 if (PageSwapCache(page)) {
2866 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2867 if (!ret)
2868 __mem_cgroup_commit_charge_swapin(page, memcg,
2869 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2870 } else
2871 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2872 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2873
2874 return ret;
2875 }
2876
2877 /*
2878 * While swap-in, try_charge -> commit or cancel, the page is locked.
2879 * And when try_charge() successfully returns, one refcnt to memcg without
2880 * struct page_cgroup is acquired. This refcnt will be consumed by
2881 * "commit()" or removed by "cancel()"
2882 */
2883 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2884 struct page *page,
2885 gfp_t mask, struct mem_cgroup **ptr)
2886 {
2887 struct mem_cgroup *memcg;
2888 int ret;
2889
2890 *ptr = NULL;
2891
2892 if (mem_cgroup_disabled())
2893 return 0;
2894
2895 if (!do_swap_account)
2896 goto charge_cur_mm;
2897 /*
2898 * A racing thread's fault, or swapoff, may have already updated
2899 * the pte, and even removed page from swap cache: in those cases
2900 * do_swap_page()'s pte_same() test will fail; but there's also a
2901 * KSM case which does need to charge the page.
2902 */
2903 if (!PageSwapCache(page))
2904 goto charge_cur_mm;
2905 memcg = try_get_mem_cgroup_from_page(page);
2906 if (!memcg)
2907 goto charge_cur_mm;
2908 *ptr = memcg;
2909 ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2910 css_put(&memcg->css);
2911 return ret;
2912 charge_cur_mm:
2913 if (unlikely(!mm))
2914 mm = &init_mm;
2915 return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2916 }
2917
2918 static void
2919 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2920 enum charge_type ctype)
2921 {
2922 if (mem_cgroup_disabled())
2923 return;
2924 if (!ptr)
2925 return;
2926 cgroup_exclude_rmdir(&ptr->css);
2927
2928 __mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2929 /*
2930 * Now swap is on-memory. This means this page may be
2931 * counted both as mem and swap....double count.
2932 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2933 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2934 * may call delete_from_swap_cache() before reach here.
2935 */
2936 if (do_swap_account && PageSwapCache(page)) {
2937 swp_entry_t ent = {.val = page_private(page)};
2938 unsigned short id;
2939 struct mem_cgroup *memcg;
2940
2941 id = swap_cgroup_record(ent, 0);
2942 rcu_read_lock();
2943 memcg = mem_cgroup_lookup(id);
2944 if (memcg) {
2945 /*
2946 * This recorded memcg can be obsolete one. So, avoid
2947 * calling css_tryget
2948 */
2949 if (!mem_cgroup_is_root(memcg))
2950 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2951 mem_cgroup_swap_statistics(memcg, false);
2952 mem_cgroup_put(memcg);
2953 }
2954 rcu_read_unlock();
2955 }
2956 /*
2957 * At swapin, we may charge account against cgroup which has no tasks.
2958 * So, rmdir()->pre_destroy() can be called while we do this charge.
2959 * In that case, we need to call pre_destroy() again. check it here.
2960 */
2961 cgroup_release_and_wakeup_rmdir(&ptr->css);
2962 }
2963
2964 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2965 {
2966 __mem_cgroup_commit_charge_swapin(page, ptr,
2967 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2968 }
2969
2970 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2971 {
2972 if (mem_cgroup_disabled())
2973 return;
2974 if (!memcg)
2975 return;
2976 __mem_cgroup_cancel_charge(memcg, 1);
2977 }
2978
2979 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2980 unsigned int nr_pages,
2981 const enum charge_type ctype)
2982 {
2983 struct memcg_batch_info *batch = NULL;
2984 bool uncharge_memsw = true;
2985
2986 /* If swapout, usage of swap doesn't decrease */
2987 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2988 uncharge_memsw = false;
2989
2990 batch = &current->memcg_batch;
2991 /*
2992 * In usual, we do css_get() when we remember memcg pointer.
2993 * But in this case, we keep res->usage until end of a series of
2994 * uncharges. Then, it's ok to ignore memcg's refcnt.
2995 */
2996 if (!batch->memcg)
2997 batch->memcg = memcg;
2998 /*
2999 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
3000 * In those cases, all pages freed continuously can be expected to be in
3001 * the same cgroup and we have chance to coalesce uncharges.
3002 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3003 * because we want to do uncharge as soon as possible.
3004 */
3005
3006 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
3007 goto direct_uncharge;
3008
3009 if (nr_pages > 1)
3010 goto direct_uncharge;
3011
3012 /*
3013 * In typical case, batch->memcg == mem. This means we can
3014 * merge a series of uncharges to an uncharge of res_counter.
3015 * If not, we uncharge res_counter ony by one.
3016 */
3017 if (batch->memcg != memcg)
3018 goto direct_uncharge;
3019 /* remember freed charge and uncharge it later */
3020 batch->nr_pages++;
3021 if (uncharge_memsw)
3022 batch->memsw_nr_pages++;
3023 return;
3024 direct_uncharge:
3025 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3026 if (uncharge_memsw)
3027 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3028 if (unlikely(batch->memcg != memcg))
3029 memcg_oom_recover(memcg);
3030 return;
3031 }
3032
3033 /*
3034 * uncharge if !page_mapped(page)
3035 */
3036 static struct mem_cgroup *
3037 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
3038 {
3039 struct mem_cgroup *memcg = NULL;
3040 unsigned int nr_pages = 1;
3041 struct page_cgroup *pc;
3042
3043 if (mem_cgroup_disabled())
3044 return NULL;
3045
3046 if (PageSwapCache(page))
3047 return NULL;
3048
3049 if (PageTransHuge(page)) {
3050 nr_pages <<= compound_order(page);
3051 VM_BUG_ON(!PageTransHuge(page));
3052 }
3053 /*
3054 * Check if our page_cgroup is valid
3055 */
3056 pc = lookup_page_cgroup(page);
3057 if (unlikely(!pc || !PageCgroupUsed(pc)))
3058 return NULL;
3059
3060 lock_page_cgroup(pc);
3061
3062 memcg = pc->mem_cgroup;
3063
3064 if (!PageCgroupUsed(pc))
3065 goto unlock_out;
3066
3067 switch (ctype) {
3068 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
3069 case MEM_CGROUP_CHARGE_TYPE_DROP:
3070 /* See mem_cgroup_prepare_migration() */
3071 if (page_mapped(page) || PageCgroupMigration(pc))
3072 goto unlock_out;
3073 break;
3074 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3075 if (!PageAnon(page)) { /* Shared memory */
3076 if (page->mapping && !page_is_file_cache(page))
3077 goto unlock_out;
3078 } else if (page_mapped(page)) /* Anon */
3079 goto unlock_out;
3080 break;
3081 default:
3082 break;
3083 }
3084
3085 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
3086
3087 ClearPageCgroupUsed(pc);
3088 /*
3089 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3090 * freed from LRU. This is safe because uncharged page is expected not
3091 * to be reused (freed soon). Exception is SwapCache, it's handled by
3092 * special functions.
3093 */
3094
3095 unlock_page_cgroup(pc);
3096 /*
3097 * even after unlock, we have memcg->res.usage here and this memcg
3098 * will never be freed.
3099 */
3100 memcg_check_events(memcg, page);
3101 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3102 mem_cgroup_swap_statistics(memcg, true);
3103 mem_cgroup_get(memcg);
3104 }
3105 if (!mem_cgroup_is_root(memcg))
3106 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3107
3108 return memcg;
3109
3110 unlock_out:
3111 unlock_page_cgroup(pc);
3112 return NULL;
3113 }
3114
3115 void mem_cgroup_uncharge_page(struct page *page)
3116 {
3117 /* early check. */
3118 if (page_mapped(page))
3119 return;
3120 if (page->mapping && !PageAnon(page))
3121 return;
3122 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3123 }
3124
3125 void mem_cgroup_uncharge_cache_page(struct page *page)
3126 {
3127 VM_BUG_ON(page_mapped(page));
3128 VM_BUG_ON(page->mapping);
3129 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3130 }
3131
3132 /*
3133 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3134 * In that cases, pages are freed continuously and we can expect pages
3135 * are in the same memcg. All these calls itself limits the number of
3136 * pages freed at once, then uncharge_start/end() is called properly.
3137 * This may be called prural(2) times in a context,
3138 */
3139
3140 void mem_cgroup_uncharge_start(void)
3141 {
3142 current->memcg_batch.do_batch++;
3143 /* We can do nest. */
3144 if (current->memcg_batch.do_batch == 1) {
3145 current->memcg_batch.memcg = NULL;
3146 current->memcg_batch.nr_pages = 0;
3147 current->memcg_batch.memsw_nr_pages = 0;
3148 }
3149 }
3150
3151 void mem_cgroup_uncharge_end(void)
3152 {
3153 struct memcg_batch_info *batch = &current->memcg_batch;
3154
3155 if (!batch->do_batch)
3156 return;
3157
3158 batch->do_batch--;
3159 if (batch->do_batch) /* If stacked, do nothing. */
3160 return;
3161
3162 if (!batch->memcg)
3163 return;
3164 /*
3165 * This "batch->memcg" is valid without any css_get/put etc...
3166 * bacause we hide charges behind us.
3167 */
3168 if (batch->nr_pages)
3169 res_counter_uncharge(&batch->memcg->res,
3170 batch->nr_pages * PAGE_SIZE);
3171 if (batch->memsw_nr_pages)
3172 res_counter_uncharge(&batch->memcg->memsw,
3173 batch->memsw_nr_pages * PAGE_SIZE);
3174 memcg_oom_recover(batch->memcg);
3175 /* forget this pointer (for sanity check) */
3176 batch->memcg = NULL;
3177 }
3178
3179 #ifdef CONFIG_SWAP
3180 /*
3181 * called after __delete_from_swap_cache() and drop "page" account.
3182 * memcg information is recorded to swap_cgroup of "ent"
3183 */
3184 void
3185 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3186 {
3187 struct mem_cgroup *memcg;
3188 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3189
3190 if (!swapout) /* this was a swap cache but the swap is unused ! */
3191 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3192
3193 memcg = __mem_cgroup_uncharge_common(page, ctype);
3194
3195 /*
3196 * record memcg information, if swapout && memcg != NULL,
3197 * mem_cgroup_get() was called in uncharge().
3198 */
3199 if (do_swap_account && swapout && memcg)
3200 swap_cgroup_record(ent, css_id(&memcg->css));
3201 }
3202 #endif
3203
3204 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3205 /*
3206 * called from swap_entry_free(). remove record in swap_cgroup and
3207 * uncharge "memsw" account.
3208 */
3209 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3210 {
3211 struct mem_cgroup *memcg;
3212 unsigned short id;
3213
3214 if (!do_swap_account)
3215 return;
3216
3217 id = swap_cgroup_record(ent, 0);
3218 rcu_read_lock();
3219 memcg = mem_cgroup_lookup(id);
3220 if (memcg) {
3221 /*
3222 * We uncharge this because swap is freed.
3223 * This memcg can be obsolete one. We avoid calling css_tryget
3224 */
3225 if (!mem_cgroup_is_root(memcg))
3226 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3227 mem_cgroup_swap_statistics(memcg, false);
3228 mem_cgroup_put(memcg);
3229 }
3230 rcu_read_unlock();
3231 }
3232
3233 /**
3234 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3235 * @entry: swap entry to be moved
3236 * @from: mem_cgroup which the entry is moved from
3237 * @to: mem_cgroup which the entry is moved to
3238 * @need_fixup: whether we should fixup res_counters and refcounts.
3239 *
3240 * It succeeds only when the swap_cgroup's record for this entry is the same
3241 * as the mem_cgroup's id of @from.
3242 *
3243 * Returns 0 on success, -EINVAL on failure.
3244 *
3245 * The caller must have charged to @to, IOW, called res_counter_charge() about
3246 * both res and memsw, and called css_get().
3247 */
3248 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3249 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3250 {
3251 unsigned short old_id, new_id;
3252
3253 old_id = css_id(&from->css);
3254 new_id = css_id(&to->css);
3255
3256 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3257 mem_cgroup_swap_statistics(from, false);
3258 mem_cgroup_swap_statistics(to, true);
3259 /*
3260 * This function is only called from task migration context now.
3261 * It postpones res_counter and refcount handling till the end
3262 * of task migration(mem_cgroup_clear_mc()) for performance
3263 * improvement. But we cannot postpone mem_cgroup_get(to)
3264 * because if the process that has been moved to @to does
3265 * swap-in, the refcount of @to might be decreased to 0.
3266 */
3267 mem_cgroup_get(to);
3268 if (need_fixup) {
3269 if (!mem_cgroup_is_root(from))
3270 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3271 mem_cgroup_put(from);
3272 /*
3273 * we charged both to->res and to->memsw, so we should
3274 * uncharge to->res.
3275 */
3276 if (!mem_cgroup_is_root(to))
3277 res_counter_uncharge(&to->res, PAGE_SIZE);
3278 }
3279 return 0;
3280 }
3281 return -EINVAL;
3282 }
3283 #else
3284 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3285 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3286 {
3287 return -EINVAL;
3288 }
3289 #endif
3290
3291 /*
3292 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3293 * page belongs to.
3294 */
3295 int mem_cgroup_prepare_migration(struct page *page,
3296 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3297 {
3298 struct mem_cgroup *memcg = NULL;
3299 struct page_cgroup *pc;
3300 enum charge_type ctype;
3301 int ret = 0;
3302
3303 *ptr = NULL;
3304
3305 VM_BUG_ON(PageTransHuge(page));
3306 if (mem_cgroup_disabled())
3307 return 0;
3308
3309 pc = lookup_page_cgroup(page);
3310 lock_page_cgroup(pc);
3311 if (PageCgroupUsed(pc)) {
3312 memcg = pc->mem_cgroup;
3313 css_get(&memcg->css);
3314 /*
3315 * At migrating an anonymous page, its mapcount goes down
3316 * to 0 and uncharge() will be called. But, even if it's fully
3317 * unmapped, migration may fail and this page has to be
3318 * charged again. We set MIGRATION flag here and delay uncharge
3319 * until end_migration() is called
3320 *
3321 * Corner Case Thinking
3322 * A)
3323 * When the old page was mapped as Anon and it's unmap-and-freed
3324 * while migration was ongoing.
3325 * If unmap finds the old page, uncharge() of it will be delayed
3326 * until end_migration(). If unmap finds a new page, it's
3327 * uncharged when it make mapcount to be 1->0. If unmap code
3328 * finds swap_migration_entry, the new page will not be mapped
3329 * and end_migration() will find it(mapcount==0).
3330 *
3331 * B)
3332 * When the old page was mapped but migraion fails, the kernel
3333 * remaps it. A charge for it is kept by MIGRATION flag even
3334 * if mapcount goes down to 0. We can do remap successfully
3335 * without charging it again.
3336 *
3337 * C)
3338 * The "old" page is under lock_page() until the end of
3339 * migration, so, the old page itself will not be swapped-out.
3340 * If the new page is swapped out before end_migraton, our
3341 * hook to usual swap-out path will catch the event.
3342 */
3343 if (PageAnon(page))
3344 SetPageCgroupMigration(pc);
3345 }
3346 unlock_page_cgroup(pc);
3347 /*
3348 * If the page is not charged at this point,
3349 * we return here.
3350 */
3351 if (!memcg)
3352 return 0;
3353
3354 *ptr = memcg;
3355 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3356 css_put(&memcg->css);/* drop extra refcnt */
3357 if (ret || *ptr == NULL) {
3358 if (PageAnon(page)) {
3359 lock_page_cgroup(pc);
3360 ClearPageCgroupMigration(pc);
3361 unlock_page_cgroup(pc);
3362 /*
3363 * The old page may be fully unmapped while we kept it.
3364 */
3365 mem_cgroup_uncharge_page(page);
3366 }
3367 return -ENOMEM;
3368 }
3369 /*
3370 * We charge new page before it's used/mapped. So, even if unlock_page()
3371 * is called before end_migration, we can catch all events on this new
3372 * page. In the case new page is migrated but not remapped, new page's
3373 * mapcount will be finally 0 and we call uncharge in end_migration().
3374 */
3375 pc = lookup_page_cgroup(newpage);
3376 if (PageAnon(page))
3377 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3378 else if (page_is_file_cache(page))
3379 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3380 else
3381 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3382 __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
3383 return ret;
3384 }
3385
3386 /* remove redundant charge if migration failed*/
3387 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3388 struct page *oldpage, struct page *newpage, bool migration_ok)
3389 {
3390 struct page *used, *unused;
3391 struct page_cgroup *pc;
3392
3393 if (!memcg)
3394 return;
3395 /* blocks rmdir() */
3396 cgroup_exclude_rmdir(&memcg->css);
3397 if (!migration_ok) {
3398 used = oldpage;
3399 unused = newpage;
3400 } else {
3401 used = newpage;
3402 unused = oldpage;
3403 }
3404 /*
3405 * We disallowed uncharge of pages under migration because mapcount
3406 * of the page goes down to zero, temporarly.
3407 * Clear the flag and check the page should be charged.
3408 */
3409 pc = lookup_page_cgroup(oldpage);
3410 lock_page_cgroup(pc);
3411 ClearPageCgroupMigration(pc);
3412 unlock_page_cgroup(pc);
3413
3414 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3415
3416 /*
3417 * If a page is a file cache, radix-tree replacement is very atomic
3418 * and we can skip this check. When it was an Anon page, its mapcount
3419 * goes down to 0. But because we added MIGRATION flage, it's not
3420 * uncharged yet. There are several case but page->mapcount check
3421 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3422 * check. (see prepare_charge() also)
3423 */
3424 if (PageAnon(used))
3425 mem_cgroup_uncharge_page(used);
3426 /*
3427 * At migration, we may charge account against cgroup which has no
3428 * tasks.
3429 * So, rmdir()->pre_destroy() can be called while we do this charge.
3430 * In that case, we need to call pre_destroy() again. check it here.
3431 */
3432 cgroup_release_and_wakeup_rmdir(&memcg->css);
3433 }
3434
3435 #ifdef CONFIG_DEBUG_VM
3436 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3437 {
3438 struct page_cgroup *pc;
3439
3440 pc = lookup_page_cgroup(page);
3441 if (likely(pc) && PageCgroupUsed(pc))
3442 return pc;
3443 return NULL;
3444 }
3445
3446 bool mem_cgroup_bad_page_check(struct page *page)
3447 {
3448 if (mem_cgroup_disabled())
3449 return false;
3450
3451 return lookup_page_cgroup_used(page) != NULL;
3452 }
3453
3454 void mem_cgroup_print_bad_page(struct page *page)
3455 {
3456 struct page_cgroup *pc;
3457
3458 pc = lookup_page_cgroup_used(page);
3459 if (pc) {
3460 int ret = -1;
3461 char *path;
3462
3463 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3464 pc, pc->flags, pc->mem_cgroup);
3465
3466 path = kmalloc(PATH_MAX, GFP_KERNEL);
3467 if (path) {
3468 rcu_read_lock();
3469 ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3470 path, PATH_MAX);
3471 rcu_read_unlock();
3472 }
3473
3474 printk(KERN_CONT "(%s)\n",
3475 (ret < 0) ? "cannot get the path" : path);
3476 kfree(path);
3477 }
3478 }
3479 #endif
3480
3481 static DEFINE_MUTEX(set_limit_mutex);
3482
3483 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3484 unsigned long long val)
3485 {
3486 int retry_count;
3487 u64 memswlimit, memlimit;
3488 int ret = 0;
3489 int children = mem_cgroup_count_children(memcg);
3490 u64 curusage, oldusage;
3491 int enlarge;
3492
3493 /*
3494 * For keeping hierarchical_reclaim simple, how long we should retry
3495 * is depends on callers. We set our retry-count to be function
3496 * of # of children which we should visit in this loop.
3497 */
3498 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3499
3500 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3501
3502 enlarge = 0;
3503 while (retry_count) {
3504 if (signal_pending(current)) {
3505 ret = -EINTR;
3506 break;
3507 }
3508 /*
3509 * Rather than hide all in some function, I do this in
3510 * open coded manner. You see what this really does.
3511 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3512 */
3513 mutex_lock(&set_limit_mutex);
3514 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3515 if (memswlimit < val) {
3516 ret = -EINVAL;
3517 mutex_unlock(&set_limit_mutex);
3518 break;
3519 }
3520
3521 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3522 if (memlimit < val)
3523 enlarge = 1;
3524
3525 ret = res_counter_set_limit(&memcg->res, val);
3526 if (!ret) {
3527 if (memswlimit == val)
3528 memcg->memsw_is_minimum = true;
3529 else
3530 memcg->memsw_is_minimum = false;
3531 }
3532 mutex_unlock(&set_limit_mutex);
3533
3534 if (!ret)
3535 break;
3536
3537 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3538 MEM_CGROUP_RECLAIM_SHRINK,
3539 NULL);
3540 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3541 /* Usage is reduced ? */
3542 if (curusage >= oldusage)
3543 retry_count--;
3544 else
3545 oldusage = curusage;
3546 }
3547 if (!ret && enlarge)
3548 memcg_oom_recover(memcg);
3549
3550 return ret;
3551 }
3552
3553 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3554 unsigned long long val)
3555 {
3556 int retry_count;
3557 u64 memlimit, memswlimit, oldusage, curusage;
3558 int children = mem_cgroup_count_children(memcg);
3559 int ret = -EBUSY;
3560 int enlarge = 0;
3561
3562 /* see mem_cgroup_resize_res_limit */
3563 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3564 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3565 while (retry_count) {
3566 if (signal_pending(current)) {
3567 ret = -EINTR;
3568 break;
3569 }
3570 /*
3571 * Rather than hide all in some function, I do this in
3572 * open coded manner. You see what this really does.
3573 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3574 */
3575 mutex_lock(&set_limit_mutex);
3576 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3577 if (memlimit > val) {
3578 ret = -EINVAL;
3579 mutex_unlock(&set_limit_mutex);
3580 break;
3581 }
3582 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3583 if (memswlimit < val)
3584 enlarge = 1;
3585 ret = res_counter_set_limit(&memcg->memsw, val);
3586 if (!ret) {
3587 if (memlimit == val)
3588 memcg->memsw_is_minimum = true;
3589 else
3590 memcg->memsw_is_minimum = false;
3591 }
3592 mutex_unlock(&set_limit_mutex);
3593
3594 if (!ret)
3595 break;
3596
3597 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3598 MEM_CGROUP_RECLAIM_NOSWAP |
3599 MEM_CGROUP_RECLAIM_SHRINK,
3600 NULL);
3601 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3602 /* Usage is reduced ? */
3603 if (curusage >= oldusage)
3604 retry_count--;
3605 else
3606 oldusage = curusage;
3607 }
3608 if (!ret && enlarge)
3609 memcg_oom_recover(memcg);
3610 return ret;
3611 }
3612
3613 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3614 gfp_t gfp_mask,
3615 unsigned long *total_scanned)
3616 {
3617 unsigned long nr_reclaimed = 0;
3618 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3619 unsigned long reclaimed;
3620 int loop = 0;
3621 struct mem_cgroup_tree_per_zone *mctz;
3622 unsigned long long excess;
3623 unsigned long nr_scanned;
3624
3625 if (order > 0)
3626 return 0;
3627
3628 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3629 /*
3630 * This loop can run a while, specially if mem_cgroup's continuously
3631 * keep exceeding their soft limit and putting the system under
3632 * pressure
3633 */
3634 do {
3635 if (next_mz)
3636 mz = next_mz;
3637 else
3638 mz = mem_cgroup_largest_soft_limit_node(mctz);
3639 if (!mz)
3640 break;
3641
3642 nr_scanned = 0;
3643 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3644 gfp_mask,
3645 MEM_CGROUP_RECLAIM_SOFT,
3646 &nr_scanned);
3647 nr_reclaimed += reclaimed;
3648 *total_scanned += nr_scanned;
3649 spin_lock(&mctz->lock);
3650
3651 /*
3652 * If we failed to reclaim anything from this memory cgroup
3653 * it is time to move on to the next cgroup
3654 */
3655 next_mz = NULL;
3656 if (!reclaimed) {
3657 do {
3658 /*
3659 * Loop until we find yet another one.
3660 *
3661 * By the time we get the soft_limit lock
3662 * again, someone might have aded the
3663 * group back on the RB tree. Iterate to
3664 * make sure we get a different mem.
3665 * mem_cgroup_largest_soft_limit_node returns
3666 * NULL if no other cgroup is present on
3667 * the tree
3668 */
3669 next_mz =
3670 __mem_cgroup_largest_soft_limit_node(mctz);
3671 if (next_mz == mz)
3672 css_put(&next_mz->mem->css);
3673 else /* next_mz == NULL or other memcg */
3674 break;
3675 } while (1);
3676 }
3677 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3678 excess = res_counter_soft_limit_excess(&mz->mem->res);
3679 /*
3680 * One school of thought says that we should not add
3681 * back the node to the tree if reclaim returns 0.
3682 * But our reclaim could return 0, simply because due
3683 * to priority we are exposing a smaller subset of
3684 * memory to reclaim from. Consider this as a longer
3685 * term TODO.
3686 */
3687 /* If excess == 0, no tree ops */
3688 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3689 spin_unlock(&mctz->lock);
3690 css_put(&mz->mem->css);
3691 loop++;
3692 /*
3693 * Could not reclaim anything and there are no more
3694 * mem cgroups to try or we seem to be looping without
3695 * reclaiming anything.
3696 */
3697 if (!nr_reclaimed &&
3698 (next_mz == NULL ||
3699 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3700 break;
3701 } while (!nr_reclaimed);
3702 if (next_mz)
3703 css_put(&next_mz->mem->css);
3704 return nr_reclaimed;
3705 }
3706
3707 /*
3708 * This routine traverse page_cgroup in given list and drop them all.
3709 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3710 */
3711 static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3712 int node, int zid, enum lru_list lru)
3713 {
3714 struct zone *zone;
3715 struct mem_cgroup_per_zone *mz;
3716 struct page_cgroup *pc, *busy;
3717 unsigned long flags, loop;
3718 struct list_head *list;
3719 int ret = 0;
3720
3721 zone = &NODE_DATA(node)->node_zones[zid];
3722 mz = mem_cgroup_zoneinfo(memcg, node, zid);
3723 list = &mz->lists[lru];
3724
3725 loop = MEM_CGROUP_ZSTAT(mz, lru);
3726 /* give some margin against EBUSY etc...*/
3727 loop += 256;
3728 busy = NULL;
3729 while (loop--) {
3730 struct page *page;
3731
3732 ret = 0;
3733 spin_lock_irqsave(&zone->lru_lock, flags);
3734 if (list_empty(list)) {
3735 spin_unlock_irqrestore(&zone->lru_lock, flags);
3736 break;
3737 }
3738 pc = list_entry(list->prev, struct page_cgroup, lru);
3739 if (busy == pc) {
3740 list_move(&pc->lru, list);
3741 busy = NULL;
3742 spin_unlock_irqrestore(&zone->lru_lock, flags);
3743 continue;
3744 }
3745 spin_unlock_irqrestore(&zone->lru_lock, flags);
3746
3747 page = lookup_cgroup_page(pc);
3748
3749 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3750 if (ret == -ENOMEM)
3751 break;
3752
3753 if (ret == -EBUSY || ret == -EINVAL) {
3754 /* found lock contention or "pc" is obsolete. */
3755 busy = pc;
3756 cond_resched();
3757 } else
3758 busy = NULL;
3759 }
3760
3761 if (!ret && !list_empty(list))
3762 return -EBUSY;
3763 return ret;
3764 }
3765
3766 /*
3767 * make mem_cgroup's charge to be 0 if there is no task.
3768 * This enables deleting this mem_cgroup.
3769 */
3770 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3771 {
3772 int ret;
3773 int node, zid, shrink;
3774 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3775 struct cgroup *cgrp = memcg->css.cgroup;
3776
3777 css_get(&memcg->css);
3778
3779 shrink = 0;
3780 /* should free all ? */
3781 if (free_all)
3782 goto try_to_free;
3783 move_account:
3784 do {
3785 ret = -EBUSY;
3786 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3787 goto out;
3788 ret = -EINTR;
3789 if (signal_pending(current))
3790 goto out;
3791 /* This is for making all *used* pages to be on LRU. */
3792 lru_add_drain_all();
3793 drain_all_stock_sync(memcg);
3794 ret = 0;
3795 mem_cgroup_start_move(memcg);
3796 for_each_node_state(node, N_HIGH_MEMORY) {
3797 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3798 enum lru_list l;
3799 for_each_lru(l) {
3800 ret = mem_cgroup_force_empty_list(memcg,
3801 node, zid, l);
3802 if (ret)
3803 break;
3804 }
3805 }
3806 if (ret)
3807 break;
3808 }
3809 mem_cgroup_end_move(memcg);
3810 memcg_oom_recover(memcg);
3811 /* it seems parent cgroup doesn't have enough mem */
3812 if (ret == -ENOMEM)
3813 goto try_to_free;
3814 cond_resched();
3815 /* "ret" should also be checked to ensure all lists are empty. */
3816 } while (memcg->res.usage > 0 || ret);
3817 out:
3818 css_put(&memcg->css);
3819 return ret;
3820
3821 try_to_free:
3822 /* returns EBUSY if there is a task or if we come here twice. */
3823 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3824 ret = -EBUSY;
3825 goto out;
3826 }
3827 /* we call try-to-free pages for make this cgroup empty */
3828 lru_add_drain_all();
3829 /* try to free all pages in this cgroup */
3830 shrink = 1;
3831 while (nr_retries && memcg->res.usage > 0) {
3832 int progress;
3833
3834 if (signal_pending(current)) {
3835 ret = -EINTR;
3836 goto out;
3837 }
3838 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3839 false);
3840 if (!progress) {
3841 nr_retries--;
3842 /* maybe some writeback is necessary */
3843 congestion_wait(BLK_RW_ASYNC, HZ/10);
3844 }
3845
3846 }
3847 lru_add_drain();
3848 /* try move_account...there may be some *locked* pages. */
3849 goto move_account;
3850 }
3851
3852 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3853 {
3854 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3855 }
3856
3857
3858 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3859 {
3860 return mem_cgroup_from_cont(cont)->use_hierarchy;
3861 }
3862
3863 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3864 u64 val)
3865 {
3866 int retval = 0;
3867 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3868 struct cgroup *parent = cont->parent;
3869 struct mem_cgroup *parent_memcg = NULL;
3870
3871 if (parent)
3872 parent_memcg = mem_cgroup_from_cont(parent);
3873
3874 cgroup_lock();
3875 /*
3876 * If parent's use_hierarchy is set, we can't make any modifications
3877 * in the child subtrees. If it is unset, then the change can
3878 * occur, provided the current cgroup has no children.
3879 *
3880 * For the root cgroup, parent_mem is NULL, we allow value to be
3881 * set if there are no children.
3882 */
3883 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3884 (val == 1 || val == 0)) {
3885 if (list_empty(&cont->children))
3886 memcg->use_hierarchy = val;
3887 else
3888 retval = -EBUSY;
3889 } else
3890 retval = -EINVAL;
3891 cgroup_unlock();
3892
3893 return retval;
3894 }
3895
3896
3897 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3898 enum mem_cgroup_stat_index idx)
3899 {
3900 struct mem_cgroup *iter;
3901 long val = 0;
3902
3903 /* Per-cpu values can be negative, use a signed accumulator */
3904 for_each_mem_cgroup_tree(iter, memcg)
3905 val += mem_cgroup_read_stat(iter, idx);
3906
3907 if (val < 0) /* race ? */
3908 val = 0;
3909 return val;
3910 }
3911
3912 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3913 {
3914 u64 val;
3915
3916 if (!mem_cgroup_is_root(memcg)) {
3917 if (!swap)
3918 return res_counter_read_u64(&memcg->res, RES_USAGE);
3919 else
3920 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3921 }
3922
3923 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3924 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3925
3926 if (swap)
3927 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3928
3929 return val << PAGE_SHIFT;
3930 }
3931
3932 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3933 {
3934 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3935 u64 val;
3936 int type, name;
3937
3938 type = MEMFILE_TYPE(cft->private);
3939 name = MEMFILE_ATTR(cft->private);
3940 switch (type) {
3941 case _MEM:
3942 if (name == RES_USAGE)
3943 val = mem_cgroup_usage(memcg, false);
3944 else
3945 val = res_counter_read_u64(&memcg->res, name);
3946 break;
3947 case _MEMSWAP:
3948 if (name == RES_USAGE)
3949 val = mem_cgroup_usage(memcg, true);
3950 else
3951 val = res_counter_read_u64(&memcg->memsw, name);
3952 break;
3953 default:
3954 BUG();
3955 break;
3956 }
3957 return val;
3958 }
3959 /*
3960 * The user of this function is...
3961 * RES_LIMIT.
3962 */
3963 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3964 const char *buffer)
3965 {
3966 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3967 int type, name;
3968 unsigned long long val;
3969 int ret;
3970
3971 type = MEMFILE_TYPE(cft->private);
3972 name = MEMFILE_ATTR(cft->private);
3973 switch (name) {
3974 case RES_LIMIT:
3975 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3976 ret = -EINVAL;
3977 break;
3978 }
3979 /* This function does all necessary parse...reuse it */
3980 ret = res_counter_memparse_write_strategy(buffer, &val);
3981 if (ret)
3982 break;
3983 if (type == _MEM)
3984 ret = mem_cgroup_resize_limit(memcg, val);
3985 else
3986 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3987 break;
3988 case RES_SOFT_LIMIT:
3989 ret = res_counter_memparse_write_strategy(buffer, &val);
3990 if (ret)
3991 break;
3992 /*
3993 * For memsw, soft limits are hard to implement in terms
3994 * of semantics, for now, we support soft limits for
3995 * control without swap
3996 */
3997 if (type == _MEM)
3998 ret = res_counter_set_soft_limit(&memcg->res, val);
3999 else
4000 ret = -EINVAL;
4001 break;
4002 default:
4003 ret = -EINVAL; /* should be BUG() ? */
4004 break;
4005 }
4006 return ret;
4007 }
4008
4009 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4010 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4011 {
4012 struct cgroup *cgroup;
4013 unsigned long long min_limit, min_memsw_limit, tmp;
4014
4015 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4016 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4017 cgroup = memcg->css.cgroup;
4018 if (!memcg->use_hierarchy)
4019 goto out;
4020
4021 while (cgroup->parent) {
4022 cgroup = cgroup->parent;
4023 memcg = mem_cgroup_from_cont(cgroup);
4024 if (!memcg->use_hierarchy)
4025 break;
4026 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4027 min_limit = min(min_limit, tmp);
4028 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4029 min_memsw_limit = min(min_memsw_limit, tmp);
4030 }
4031 out:
4032 *mem_limit = min_limit;
4033 *memsw_limit = min_memsw_limit;
4034 return;
4035 }
4036
4037 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4038 {
4039 struct mem_cgroup *memcg;
4040 int type, name;
4041
4042 memcg = mem_cgroup_from_cont(cont);
4043 type = MEMFILE_TYPE(event);
4044 name = MEMFILE_ATTR(event);
4045 switch (name) {
4046 case RES_MAX_USAGE:
4047 if (type == _MEM)
4048 res_counter_reset_max(&memcg->res);
4049 else
4050 res_counter_reset_max(&memcg->memsw);
4051 break;
4052 case RES_FAILCNT:
4053 if (type == _MEM)
4054 res_counter_reset_failcnt(&memcg->res);
4055 else
4056 res_counter_reset_failcnt(&memcg->memsw);
4057 break;
4058 }
4059
4060 return 0;
4061 }
4062
4063 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4064 struct cftype *cft)
4065 {
4066 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4067 }
4068
4069 #ifdef CONFIG_MMU
4070 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4071 struct cftype *cft, u64 val)
4072 {
4073 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4074
4075 if (val >= (1 << NR_MOVE_TYPE))
4076 return -EINVAL;
4077 /*
4078 * We check this value several times in both in can_attach() and
4079 * attach(), so we need cgroup lock to prevent this value from being
4080 * inconsistent.
4081 */
4082 cgroup_lock();
4083 memcg->move_charge_at_immigrate = val;
4084 cgroup_unlock();
4085
4086 return 0;
4087 }
4088 #else
4089 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4090 struct cftype *cft, u64 val)
4091 {
4092 return -ENOSYS;
4093 }
4094 #endif
4095
4096
4097 /* For read statistics */
4098 enum {
4099 MCS_CACHE,
4100 MCS_RSS,
4101 MCS_FILE_MAPPED,
4102 MCS_PGPGIN,
4103 MCS_PGPGOUT,
4104 MCS_SWAP,
4105 MCS_PGFAULT,
4106 MCS_PGMAJFAULT,
4107 MCS_INACTIVE_ANON,
4108 MCS_ACTIVE_ANON,
4109 MCS_INACTIVE_FILE,
4110 MCS_ACTIVE_FILE,
4111 MCS_UNEVICTABLE,
4112 NR_MCS_STAT,
4113 };
4114
4115 struct mcs_total_stat {
4116 s64 stat[NR_MCS_STAT];
4117 };
4118
4119 struct {
4120 char *local_name;
4121 char *total_name;
4122 } memcg_stat_strings[NR_MCS_STAT] = {
4123 {"cache", "total_cache"},
4124 {"rss", "total_rss"},
4125 {"mapped_file", "total_mapped_file"},
4126 {"pgpgin", "total_pgpgin"},
4127 {"pgpgout", "total_pgpgout"},
4128 {"swap", "total_swap"},
4129 {"pgfault", "total_pgfault"},
4130 {"pgmajfault", "total_pgmajfault"},
4131 {"inactive_anon", "total_inactive_anon"},
4132 {"active_anon", "total_active_anon"},
4133 {"inactive_file", "total_inactive_file"},
4134 {"active_file", "total_active_file"},
4135 {"unevictable", "total_unevictable"}
4136 };
4137
4138
4139 static void
4140 mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4141 {
4142 s64 val;
4143
4144 /* per cpu stat */
4145 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
4146 s->stat[MCS_CACHE] += val * PAGE_SIZE;
4147 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
4148 s->stat[MCS_RSS] += val * PAGE_SIZE;
4149 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4150 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4151 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
4152 s->stat[MCS_PGPGIN] += val;
4153 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
4154 s->stat[MCS_PGPGOUT] += val;
4155 if (do_swap_account) {
4156 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4157 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4158 }
4159 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4160 s->stat[MCS_PGFAULT] += val;
4161 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4162 s->stat[MCS_PGMAJFAULT] += val;
4163
4164 /* per zone stat */
4165 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
4166 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4167 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
4168 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4169 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
4170 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4171 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
4172 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4173 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4174 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4175 }
4176
4177 static void
4178 mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4179 {
4180 struct mem_cgroup *iter;
4181
4182 for_each_mem_cgroup_tree(iter, memcg)
4183 mem_cgroup_get_local_stat(iter, s);
4184 }
4185
4186 #ifdef CONFIG_NUMA
4187 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4188 {
4189 int nid;
4190 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4191 unsigned long node_nr;
4192 struct cgroup *cont = m->private;
4193 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4194
4195 total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4196 seq_printf(m, "total=%lu", total_nr);
4197 for_each_node_state(nid, N_HIGH_MEMORY) {
4198 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4199 seq_printf(m, " N%d=%lu", nid, node_nr);
4200 }
4201 seq_putc(m, '\n');
4202
4203 file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4204 seq_printf(m, "file=%lu", file_nr);
4205 for_each_node_state(nid, N_HIGH_MEMORY) {
4206 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4207 LRU_ALL_FILE);
4208 seq_printf(m, " N%d=%lu", nid, node_nr);
4209 }
4210 seq_putc(m, '\n');
4211
4212 anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4213 seq_printf(m, "anon=%lu", anon_nr);
4214 for_each_node_state(nid, N_HIGH_MEMORY) {
4215 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4216 LRU_ALL_ANON);
4217 seq_printf(m, " N%d=%lu", nid, node_nr);
4218 }
4219 seq_putc(m, '\n');
4220
4221 unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4222 seq_printf(m, "unevictable=%lu", unevictable_nr);
4223 for_each_node_state(nid, N_HIGH_MEMORY) {
4224 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4225 BIT(LRU_UNEVICTABLE));
4226 seq_printf(m, " N%d=%lu", nid, node_nr);
4227 }
4228 seq_putc(m, '\n');
4229 return 0;
4230 }
4231 #endif /* CONFIG_NUMA */
4232
4233 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4234 struct cgroup_map_cb *cb)
4235 {
4236 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4237 struct mcs_total_stat mystat;
4238 int i;
4239
4240 memset(&mystat, 0, sizeof(mystat));
4241 mem_cgroup_get_local_stat(mem_cont, &mystat);
4242
4243
4244 for (i = 0; i < NR_MCS_STAT; i++) {
4245 if (i == MCS_SWAP && !do_swap_account)
4246 continue;
4247 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4248 }
4249
4250 /* Hierarchical information */
4251 {
4252 unsigned long long limit, memsw_limit;
4253 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4254 cb->fill(cb, "hierarchical_memory_limit", limit);
4255 if (do_swap_account)
4256 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4257 }
4258
4259 memset(&mystat, 0, sizeof(mystat));
4260 mem_cgroup_get_total_stat(mem_cont, &mystat);
4261 for (i = 0; i < NR_MCS_STAT; i++) {
4262 if (i == MCS_SWAP && !do_swap_account)
4263 continue;
4264 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4265 }
4266
4267 #ifdef CONFIG_DEBUG_VM
4268 {
4269 int nid, zid;
4270 struct mem_cgroup_per_zone *mz;
4271 unsigned long recent_rotated[2] = {0, 0};
4272 unsigned long recent_scanned[2] = {0, 0};
4273
4274 for_each_online_node(nid)
4275 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4276 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4277
4278 recent_rotated[0] +=
4279 mz->reclaim_stat.recent_rotated[0];
4280 recent_rotated[1] +=
4281 mz->reclaim_stat.recent_rotated[1];
4282 recent_scanned[0] +=
4283 mz->reclaim_stat.recent_scanned[0];
4284 recent_scanned[1] +=
4285 mz->reclaim_stat.recent_scanned[1];
4286 }
4287 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4288 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4289 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4290 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4291 }
4292 #endif
4293
4294 return 0;
4295 }
4296
4297 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4298 {
4299 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4300
4301 return mem_cgroup_swappiness(memcg);
4302 }
4303
4304 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4305 u64 val)
4306 {
4307 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4308 struct mem_cgroup *parent;
4309
4310 if (val > 100)
4311 return -EINVAL;
4312
4313 if (cgrp->parent == NULL)
4314 return -EINVAL;
4315
4316 parent = mem_cgroup_from_cont(cgrp->parent);
4317
4318 cgroup_lock();
4319
4320 /* If under hierarchy, only empty-root can set this value */
4321 if ((parent->use_hierarchy) ||
4322 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4323 cgroup_unlock();
4324 return -EINVAL;
4325 }
4326
4327 memcg->swappiness = val;
4328
4329 cgroup_unlock();
4330
4331 return 0;
4332 }
4333
4334 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4335 {
4336 struct mem_cgroup_threshold_ary *t;
4337 u64 usage;
4338 int i;
4339
4340 rcu_read_lock();
4341 if (!swap)
4342 t = rcu_dereference(memcg->thresholds.primary);
4343 else
4344 t = rcu_dereference(memcg->memsw_thresholds.primary);
4345
4346 if (!t)
4347 goto unlock;
4348
4349 usage = mem_cgroup_usage(memcg, swap);
4350
4351 /*
4352 * current_threshold points to threshold just below usage.
4353 * If it's not true, a threshold was crossed after last
4354 * call of __mem_cgroup_threshold().
4355 */
4356 i = t->current_threshold;
4357
4358 /*
4359 * Iterate backward over array of thresholds starting from
4360 * current_threshold and check if a threshold is crossed.
4361 * If none of thresholds below usage is crossed, we read
4362 * only one element of the array here.
4363 */
4364 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4365 eventfd_signal(t->entries[i].eventfd, 1);
4366
4367 /* i = current_threshold + 1 */
4368 i++;
4369
4370 /*
4371 * Iterate forward over array of thresholds starting from
4372 * current_threshold+1 and check if a threshold is crossed.
4373 * If none of thresholds above usage is crossed, we read
4374 * only one element of the array here.
4375 */
4376 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4377 eventfd_signal(t->entries[i].eventfd, 1);
4378
4379 /* Update current_threshold */
4380 t->current_threshold = i - 1;
4381 unlock:
4382 rcu_read_unlock();
4383 }
4384
4385 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4386 {
4387 while (memcg) {
4388 __mem_cgroup_threshold(memcg, false);
4389 if (do_swap_account)
4390 __mem_cgroup_threshold(memcg, true);
4391
4392 memcg = parent_mem_cgroup(memcg);
4393 }
4394 }
4395
4396 static int compare_thresholds(const void *a, const void *b)
4397 {
4398 const struct mem_cgroup_threshold *_a = a;
4399 const struct mem_cgroup_threshold *_b = b;
4400
4401 return _a->threshold - _b->threshold;
4402 }
4403
4404 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4405 {
4406 struct mem_cgroup_eventfd_list *ev;
4407
4408 list_for_each_entry(ev, &memcg->oom_notify, list)
4409 eventfd_signal(ev->eventfd, 1);
4410 return 0;
4411 }
4412
4413 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4414 {
4415 struct mem_cgroup *iter;
4416
4417 for_each_mem_cgroup_tree(iter, memcg)
4418 mem_cgroup_oom_notify_cb(iter);
4419 }
4420
4421 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4422 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4423 {
4424 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4425 struct mem_cgroup_thresholds *thresholds;
4426 struct mem_cgroup_threshold_ary *new;
4427 int type = MEMFILE_TYPE(cft->private);
4428 u64 threshold, usage;
4429 int i, size, ret;
4430
4431 ret = res_counter_memparse_write_strategy(args, &threshold);
4432 if (ret)
4433 return ret;
4434
4435 mutex_lock(&memcg->thresholds_lock);
4436
4437 if (type == _MEM)
4438 thresholds = &memcg->thresholds;
4439 else if (type == _MEMSWAP)
4440 thresholds = &memcg->memsw_thresholds;
4441 else
4442 BUG();
4443
4444 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4445
4446 /* Check if a threshold crossed before adding a new one */
4447 if (thresholds->primary)
4448 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4449
4450 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4451
4452 /* Allocate memory for new array of thresholds */
4453 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4454 GFP_KERNEL);
4455 if (!new) {
4456 ret = -ENOMEM;
4457 goto unlock;
4458 }
4459 new->size = size;
4460
4461 /* Copy thresholds (if any) to new array */
4462 if (thresholds->primary) {
4463 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4464 sizeof(struct mem_cgroup_threshold));
4465 }
4466
4467 /* Add new threshold */
4468 new->entries[size - 1].eventfd = eventfd;
4469 new->entries[size - 1].threshold = threshold;
4470
4471 /* Sort thresholds. Registering of new threshold isn't time-critical */
4472 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4473 compare_thresholds, NULL);
4474
4475 /* Find current threshold */
4476 new->current_threshold = -1;
4477 for (i = 0; i < size; i++) {
4478 if (new->entries[i].threshold < usage) {
4479 /*
4480 * new->current_threshold will not be used until
4481 * rcu_assign_pointer(), so it's safe to increment
4482 * it here.
4483 */
4484 ++new->current_threshold;
4485 }
4486 }
4487
4488 /* Free old spare buffer and save old primary buffer as spare */
4489 kfree(thresholds->spare);
4490 thresholds->spare = thresholds->primary;
4491
4492 rcu_assign_pointer(thresholds->primary, new);
4493
4494 /* To be sure that nobody uses thresholds */
4495 synchronize_rcu();
4496
4497 unlock:
4498 mutex_unlock(&memcg->thresholds_lock);
4499
4500 return ret;
4501 }
4502
4503 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4504 struct cftype *cft, struct eventfd_ctx *eventfd)
4505 {
4506 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4507 struct mem_cgroup_thresholds *thresholds;
4508 struct mem_cgroup_threshold_ary *new;
4509 int type = MEMFILE_TYPE(cft->private);
4510 u64 usage;
4511 int i, j, size;
4512
4513 mutex_lock(&memcg->thresholds_lock);
4514 if (type == _MEM)
4515 thresholds = &memcg->thresholds;
4516 else if (type == _MEMSWAP)
4517 thresholds = &memcg->memsw_thresholds;
4518 else
4519 BUG();
4520
4521 /*
4522 * Something went wrong if we trying to unregister a threshold
4523 * if we don't have thresholds
4524 */
4525 BUG_ON(!thresholds);
4526
4527 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4528
4529 /* Check if a threshold crossed before removing */
4530 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4531
4532 /* Calculate new number of threshold */
4533 size = 0;
4534 for (i = 0; i < thresholds->primary->size; i++) {
4535 if (thresholds->primary->entries[i].eventfd != eventfd)
4536 size++;
4537 }
4538
4539 new = thresholds->spare;
4540
4541 /* Set thresholds array to NULL if we don't have thresholds */
4542 if (!size) {
4543 kfree(new);
4544 new = NULL;
4545 goto swap_buffers;
4546 }
4547
4548 new->size = size;
4549
4550 /* Copy thresholds and find current threshold */
4551 new->current_threshold = -1;
4552 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4553 if (thresholds->primary->entries[i].eventfd == eventfd)
4554 continue;
4555
4556 new->entries[j] = thresholds->primary->entries[i];
4557 if (new->entries[j].threshold < usage) {
4558 /*
4559 * new->current_threshold will not be used
4560 * until rcu_assign_pointer(), so it's safe to increment
4561 * it here.
4562 */
4563 ++new->current_threshold;
4564 }
4565 j++;
4566 }
4567
4568 swap_buffers:
4569 /* Swap primary and spare array */
4570 thresholds->spare = thresholds->primary;
4571 rcu_assign_pointer(thresholds->primary, new);
4572
4573 /* To be sure that nobody uses thresholds */
4574 synchronize_rcu();
4575
4576 mutex_unlock(&memcg->thresholds_lock);
4577 }
4578
4579 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4580 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4581 {
4582 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4583 struct mem_cgroup_eventfd_list *event;
4584 int type = MEMFILE_TYPE(cft->private);
4585
4586 BUG_ON(type != _OOM_TYPE);
4587 event = kmalloc(sizeof(*event), GFP_KERNEL);
4588 if (!event)
4589 return -ENOMEM;
4590
4591 spin_lock(&memcg_oom_lock);
4592
4593 event->eventfd = eventfd;
4594 list_add(&event->list, &memcg->oom_notify);
4595
4596 /* already in OOM ? */
4597 if (atomic_read(&memcg->under_oom))
4598 eventfd_signal(eventfd, 1);
4599 spin_unlock(&memcg_oom_lock);
4600
4601 return 0;
4602 }
4603
4604 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4605 struct cftype *cft, struct eventfd_ctx *eventfd)
4606 {
4607 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4608 struct mem_cgroup_eventfd_list *ev, *tmp;
4609 int type = MEMFILE_TYPE(cft->private);
4610
4611 BUG_ON(type != _OOM_TYPE);
4612
4613 spin_lock(&memcg_oom_lock);
4614
4615 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4616 if (ev->eventfd == eventfd) {
4617 list_del(&ev->list);
4618 kfree(ev);
4619 }
4620 }
4621
4622 spin_unlock(&memcg_oom_lock);
4623 }
4624
4625 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4626 struct cftype *cft, struct cgroup_map_cb *cb)
4627 {
4628 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4629
4630 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4631
4632 if (atomic_read(&memcg->under_oom))
4633 cb->fill(cb, "under_oom", 1);
4634 else
4635 cb->fill(cb, "under_oom", 0);
4636 return 0;
4637 }
4638
4639 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4640 struct cftype *cft, u64 val)
4641 {
4642 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4643 struct mem_cgroup *parent;
4644
4645 /* cannot set to root cgroup and only 0 and 1 are allowed */
4646 if (!cgrp->parent || !((val == 0) || (val == 1)))
4647 return -EINVAL;
4648
4649 parent = mem_cgroup_from_cont(cgrp->parent);
4650
4651 cgroup_lock();
4652 /* oom-kill-disable is a flag for subhierarchy. */
4653 if ((parent->use_hierarchy) ||
4654 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4655 cgroup_unlock();
4656 return -EINVAL;
4657 }
4658 memcg->oom_kill_disable = val;
4659 if (!val)
4660 memcg_oom_recover(memcg);
4661 cgroup_unlock();
4662 return 0;
4663 }
4664
4665 #ifdef CONFIG_NUMA
4666 static const struct file_operations mem_control_numa_stat_file_operations = {
4667 .read = seq_read,
4668 .llseek = seq_lseek,
4669 .release = single_release,
4670 };
4671
4672 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4673 {
4674 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4675
4676 file->f_op = &mem_control_numa_stat_file_operations;
4677 return single_open(file, mem_control_numa_stat_show, cont);
4678 }
4679 #endif /* CONFIG_NUMA */
4680
4681 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4682 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4683 {
4684 /*
4685 * Part of this would be better living in a separate allocation
4686 * function, leaving us with just the cgroup tree population work.
4687 * We, however, depend on state such as network's proto_list that
4688 * is only initialized after cgroup creation. I found the less
4689 * cumbersome way to deal with it to defer it all to populate time
4690 */
4691 return mem_cgroup_sockets_init(cont, ss);
4692 };
4693
4694 static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4695 struct cgroup *cont)
4696 {
4697 mem_cgroup_sockets_destroy(cont, ss);
4698 }
4699 #else
4700 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4701 {
4702 return 0;
4703 }
4704
4705 static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4706 struct cgroup *cont)
4707 {
4708 }
4709 #endif
4710
4711 static struct cftype mem_cgroup_files[] = {
4712 {
4713 .name = "usage_in_bytes",
4714 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4715 .read_u64 = mem_cgroup_read,
4716 .register_event = mem_cgroup_usage_register_event,
4717 .unregister_event = mem_cgroup_usage_unregister_event,
4718 },
4719 {
4720 .name = "max_usage_in_bytes",
4721 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4722 .trigger = mem_cgroup_reset,
4723 .read_u64 = mem_cgroup_read,
4724 },
4725 {
4726 .name = "limit_in_bytes",
4727 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4728 .write_string = mem_cgroup_write,
4729 .read_u64 = mem_cgroup_read,
4730 },
4731 {
4732 .name = "soft_limit_in_bytes",
4733 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4734 .write_string = mem_cgroup_write,
4735 .read_u64 = mem_cgroup_read,
4736 },
4737 {
4738 .name = "failcnt",
4739 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4740 .trigger = mem_cgroup_reset,
4741 .read_u64 = mem_cgroup_read,
4742 },
4743 {
4744 .name = "stat",
4745 .read_map = mem_control_stat_show,
4746 },
4747 {
4748 .name = "force_empty",
4749 .trigger = mem_cgroup_force_empty_write,
4750 },
4751 {
4752 .name = "use_hierarchy",
4753 .write_u64 = mem_cgroup_hierarchy_write,
4754 .read_u64 = mem_cgroup_hierarchy_read,
4755 },
4756 {
4757 .name = "swappiness",
4758 .read_u64 = mem_cgroup_swappiness_read,
4759 .write_u64 = mem_cgroup_swappiness_write,
4760 },
4761 {
4762 .name = "move_charge_at_immigrate",
4763 .read_u64 = mem_cgroup_move_charge_read,
4764 .write_u64 = mem_cgroup_move_charge_write,
4765 },
4766 {
4767 .name = "oom_control",
4768 .read_map = mem_cgroup_oom_control_read,
4769 .write_u64 = mem_cgroup_oom_control_write,
4770 .register_event = mem_cgroup_oom_register_event,
4771 .unregister_event = mem_cgroup_oom_unregister_event,
4772 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4773 },
4774 #ifdef CONFIG_NUMA
4775 {
4776 .name = "numa_stat",
4777 .open = mem_control_numa_stat_open,
4778 .mode = S_IRUGO,
4779 },
4780 #endif
4781 };
4782
4783 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4784 static struct cftype memsw_cgroup_files[] = {
4785 {
4786 .name = "memsw.usage_in_bytes",
4787 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4788 .read_u64 = mem_cgroup_read,
4789 .register_event = mem_cgroup_usage_register_event,
4790 .unregister_event = mem_cgroup_usage_unregister_event,
4791 },
4792 {
4793 .name = "memsw.max_usage_in_bytes",
4794 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4795 .trigger = mem_cgroup_reset,
4796 .read_u64 = mem_cgroup_read,
4797 },
4798 {
4799 .name = "memsw.limit_in_bytes",
4800 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4801 .write_string = mem_cgroup_write,
4802 .read_u64 = mem_cgroup_read,
4803 },
4804 {
4805 .name = "memsw.failcnt",
4806 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4807 .trigger = mem_cgroup_reset,
4808 .read_u64 = mem_cgroup_read,
4809 },
4810 };
4811
4812 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4813 {
4814 if (!do_swap_account)
4815 return 0;
4816 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4817 ARRAY_SIZE(memsw_cgroup_files));
4818 };
4819 #else
4820 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4821 {
4822 return 0;
4823 }
4824 #endif
4825
4826 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4827 {
4828 struct mem_cgroup_per_node *pn;
4829 struct mem_cgroup_per_zone *mz;
4830 enum lru_list l;
4831 int zone, tmp = node;
4832 /*
4833 * This routine is called against possible nodes.
4834 * But it's BUG to call kmalloc() against offline node.
4835 *
4836 * TODO: this routine can waste much memory for nodes which will
4837 * never be onlined. It's better to use memory hotplug callback
4838 * function.
4839 */
4840 if (!node_state(node, N_NORMAL_MEMORY))
4841 tmp = -1;
4842 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4843 if (!pn)
4844 return 1;
4845
4846 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4847 mz = &pn->zoneinfo[zone];
4848 for_each_lru(l)
4849 INIT_LIST_HEAD(&mz->lists[l]);
4850 mz->usage_in_excess = 0;
4851 mz->on_tree = false;
4852 mz->mem = memcg;
4853 }
4854 memcg->info.nodeinfo[node] = pn;
4855 return 0;
4856 }
4857
4858 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4859 {
4860 kfree(memcg->info.nodeinfo[node]);
4861 }
4862
4863 static struct mem_cgroup *mem_cgroup_alloc(void)
4864 {
4865 struct mem_cgroup *mem;
4866 int size = sizeof(struct mem_cgroup);
4867
4868 /* Can be very big if MAX_NUMNODES is very big */
4869 if (size < PAGE_SIZE)
4870 mem = kzalloc(size, GFP_KERNEL);
4871 else
4872 mem = vzalloc(size);
4873
4874 if (!mem)
4875 return NULL;
4876
4877 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4878 if (!mem->stat)
4879 goto out_free;
4880 spin_lock_init(&mem->pcp_counter_lock);
4881 return mem;
4882
4883 out_free:
4884 if (size < PAGE_SIZE)
4885 kfree(mem);
4886 else
4887 vfree(mem);
4888 return NULL;
4889 }
4890
4891 /*
4892 * At destroying mem_cgroup, references from swap_cgroup can remain.
4893 * (scanning all at force_empty is too costly...)
4894 *
4895 * Instead of clearing all references at force_empty, we remember
4896 * the number of reference from swap_cgroup and free mem_cgroup when
4897 * it goes down to 0.
4898 *
4899 * Removal of cgroup itself succeeds regardless of refs from swap.
4900 */
4901
4902 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4903 {
4904 int node;
4905
4906 mem_cgroup_remove_from_trees(memcg);
4907 free_css_id(&mem_cgroup_subsys, &memcg->css);
4908
4909 for_each_node_state(node, N_POSSIBLE)
4910 free_mem_cgroup_per_zone_info(memcg, node);
4911
4912 free_percpu(memcg->stat);
4913 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4914 kfree(memcg);
4915 else
4916 vfree(memcg);
4917 }
4918
4919 static void mem_cgroup_get(struct mem_cgroup *memcg)
4920 {
4921 atomic_inc(&memcg->refcnt);
4922 }
4923
4924 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4925 {
4926 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4927 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4928 __mem_cgroup_free(memcg);
4929 if (parent)
4930 mem_cgroup_put(parent);
4931 }
4932 }
4933
4934 static void mem_cgroup_put(struct mem_cgroup *memcg)
4935 {
4936 __mem_cgroup_put(memcg, 1);
4937 }
4938
4939 /*
4940 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4941 */
4942 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4943 {
4944 if (!memcg->res.parent)
4945 return NULL;
4946 return mem_cgroup_from_res_counter(memcg->res.parent, res);
4947 }
4948 EXPORT_SYMBOL(parent_mem_cgroup);
4949
4950 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4951 static void __init enable_swap_cgroup(void)
4952 {
4953 if (!mem_cgroup_disabled() && really_do_swap_account)
4954 do_swap_account = 1;
4955 }
4956 #else
4957 static void __init enable_swap_cgroup(void)
4958 {
4959 }
4960 #endif
4961
4962 static int mem_cgroup_soft_limit_tree_init(void)
4963 {
4964 struct mem_cgroup_tree_per_node *rtpn;
4965 struct mem_cgroup_tree_per_zone *rtpz;
4966 int tmp, node, zone;
4967
4968 for_each_node_state(node, N_POSSIBLE) {
4969 tmp = node;
4970 if (!node_state(node, N_NORMAL_MEMORY))
4971 tmp = -1;
4972 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4973 if (!rtpn)
4974 return 1;
4975
4976 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4977
4978 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4979 rtpz = &rtpn->rb_tree_per_zone[zone];
4980 rtpz->rb_root = RB_ROOT;
4981 spin_lock_init(&rtpz->lock);
4982 }
4983 }
4984 return 0;
4985 }
4986
4987 static struct cgroup_subsys_state * __ref
4988 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4989 {
4990 struct mem_cgroup *memcg, *parent;
4991 long error = -ENOMEM;
4992 int node;
4993
4994 memcg = mem_cgroup_alloc();
4995 if (!memcg)
4996 return ERR_PTR(error);
4997
4998 for_each_node_state(node, N_POSSIBLE)
4999 if (alloc_mem_cgroup_per_zone_info(memcg, node))
5000 goto free_out;
5001
5002 /* root ? */
5003 if (cont->parent == NULL) {
5004 int cpu;
5005 enable_swap_cgroup();
5006 parent = NULL;
5007 if (mem_cgroup_soft_limit_tree_init())
5008 goto free_out;
5009 root_mem_cgroup = memcg;
5010 for_each_possible_cpu(cpu) {
5011 struct memcg_stock_pcp *stock =
5012 &per_cpu(memcg_stock, cpu);
5013 INIT_WORK(&stock->work, drain_local_stock);
5014 }
5015 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5016 } else {
5017 parent = mem_cgroup_from_cont(cont->parent);
5018 memcg->use_hierarchy = parent->use_hierarchy;
5019 memcg->oom_kill_disable = parent->oom_kill_disable;
5020 }
5021
5022 if (parent && parent->use_hierarchy) {
5023 res_counter_init(&memcg->res, &parent->res);
5024 res_counter_init(&memcg->memsw, &parent->memsw);
5025 /*
5026 * We increment refcnt of the parent to ensure that we can
5027 * safely access it on res_counter_charge/uncharge.
5028 * This refcnt will be decremented when freeing this
5029 * mem_cgroup(see mem_cgroup_put).
5030 */
5031 mem_cgroup_get(parent);
5032 } else {
5033 res_counter_init(&memcg->res, NULL);
5034 res_counter_init(&memcg->memsw, NULL);
5035 }
5036 memcg->last_scanned_child = 0;
5037 memcg->last_scanned_node = MAX_NUMNODES;
5038 INIT_LIST_HEAD(&memcg->oom_notify);
5039
5040 if (parent)
5041 memcg->swappiness = mem_cgroup_swappiness(parent);
5042 atomic_set(&memcg->refcnt, 1);
5043 memcg->move_charge_at_immigrate = 0;
5044 mutex_init(&memcg->thresholds_lock);
5045 return &memcg->css;
5046 free_out:
5047 __mem_cgroup_free(memcg);
5048 return ERR_PTR(error);
5049 }
5050
5051 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
5052 struct cgroup *cont)
5053 {
5054 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5055
5056 return mem_cgroup_force_empty(memcg, false);
5057 }
5058
5059 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
5060 struct cgroup *cont)
5061 {
5062 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5063
5064 kmem_cgroup_destroy(ss, cont);
5065
5066 mem_cgroup_put(memcg);
5067 }
5068
5069 static int mem_cgroup_populate(struct cgroup_subsys *ss,
5070 struct cgroup *cont)
5071 {
5072 int ret;
5073
5074 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5075 ARRAY_SIZE(mem_cgroup_files));
5076
5077 if (!ret)
5078 ret = register_memsw_files(cont, ss);
5079
5080 if (!ret)
5081 ret = register_kmem_files(cont, ss);
5082
5083 return ret;
5084 }
5085
5086 #ifdef CONFIG_MMU
5087 /* Handlers for move charge at task migration. */
5088 #define PRECHARGE_COUNT_AT_ONCE 256
5089 static int mem_cgroup_do_precharge(unsigned long count)
5090 {
5091 int ret = 0;
5092 int batch_count = PRECHARGE_COUNT_AT_ONCE;
5093 struct mem_cgroup *memcg = mc.to;
5094
5095 if (mem_cgroup_is_root(memcg)) {
5096 mc.precharge += count;
5097 /* we don't need css_get for root */
5098 return ret;
5099 }
5100 /* try to charge at once */
5101 if (count > 1) {
5102 struct res_counter *dummy;
5103 /*
5104 * "memcg" cannot be under rmdir() because we've already checked
5105 * by cgroup_lock_live_cgroup() that it is not removed and we
5106 * are still under the same cgroup_mutex. So we can postpone
5107 * css_get().
5108 */
5109 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5110 goto one_by_one;
5111 if (do_swap_account && res_counter_charge(&memcg->memsw,
5112 PAGE_SIZE * count, &dummy)) {
5113 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5114 goto one_by_one;
5115 }
5116 mc.precharge += count;
5117 return ret;
5118 }
5119 one_by_one:
5120 /* fall back to one by one charge */
5121 while (count--) {
5122 if (signal_pending(current)) {
5123 ret = -EINTR;
5124 break;
5125 }
5126 if (!batch_count--) {
5127 batch_count = PRECHARGE_COUNT_AT_ONCE;
5128 cond_resched();
5129 }
5130 ret = __mem_cgroup_try_charge(NULL,
5131 GFP_KERNEL, 1, &memcg, false);
5132 if (ret || !memcg)
5133 /* mem_cgroup_clear_mc() will do uncharge later */
5134 return -ENOMEM;
5135 mc.precharge++;
5136 }
5137 return ret;
5138 }
5139
5140 /**
5141 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5142 * @vma: the vma the pte to be checked belongs
5143 * @addr: the address corresponding to the pte to be checked
5144 * @ptent: the pte to be checked
5145 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5146 *
5147 * Returns
5148 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5149 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5150 * move charge. if @target is not NULL, the page is stored in target->page
5151 * with extra refcnt got(Callers should handle it).
5152 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5153 * target for charge migration. if @target is not NULL, the entry is stored
5154 * in target->ent.
5155 *
5156 * Called with pte lock held.
5157 */
5158 union mc_target {
5159 struct page *page;
5160 swp_entry_t ent;
5161 };
5162
5163 enum mc_target_type {
5164 MC_TARGET_NONE, /* not used */
5165 MC_TARGET_PAGE,
5166 MC_TARGET_SWAP,
5167 };
5168
5169 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5170 unsigned long addr, pte_t ptent)
5171 {
5172 struct page *page = vm_normal_page(vma, addr, ptent);
5173
5174 if (!page || !page_mapped(page))
5175 return NULL;
5176 if (PageAnon(page)) {
5177 /* we don't move shared anon */
5178 if (!move_anon() || page_mapcount(page) > 2)
5179 return NULL;
5180 } else if (!move_file())
5181 /* we ignore mapcount for file pages */
5182 return NULL;
5183 if (!get_page_unless_zero(page))
5184 return NULL;
5185
5186 return page;
5187 }
5188
5189 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5190 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5191 {
5192 int usage_count;
5193 struct page *page = NULL;
5194 swp_entry_t ent = pte_to_swp_entry(ptent);
5195
5196 if (!move_anon() || non_swap_entry(ent))
5197 return NULL;
5198 usage_count = mem_cgroup_count_swap_user(ent, &page);
5199 if (usage_count > 1) { /* we don't move shared anon */
5200 if (page)
5201 put_page(page);
5202 return NULL;
5203 }
5204 if (do_swap_account)
5205 entry->val = ent.val;
5206
5207 return page;
5208 }
5209
5210 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5211 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5212 {
5213 struct page *page = NULL;
5214 struct inode *inode;
5215 struct address_space *mapping;
5216 pgoff_t pgoff;
5217
5218 if (!vma->vm_file) /* anonymous vma */
5219 return NULL;
5220 if (!move_file())
5221 return NULL;
5222
5223 inode = vma->vm_file->f_path.dentry->d_inode;
5224 mapping = vma->vm_file->f_mapping;
5225 if (pte_none(ptent))
5226 pgoff = linear_page_index(vma, addr);
5227 else /* pte_file(ptent) is true */
5228 pgoff = pte_to_pgoff(ptent);
5229
5230 /* page is moved even if it's not RSS of this task(page-faulted). */
5231 page = find_get_page(mapping, pgoff);
5232
5233 #ifdef CONFIG_SWAP
5234 /* shmem/tmpfs may report page out on swap: account for that too. */
5235 if (radix_tree_exceptional_entry(page)) {
5236 swp_entry_t swap = radix_to_swp_entry(page);
5237 if (do_swap_account)
5238 *entry = swap;
5239 page = find_get_page(&swapper_space, swap.val);
5240 }
5241 #endif
5242 return page;
5243 }
5244
5245 static int is_target_pte_for_mc(struct vm_area_struct *vma,
5246 unsigned long addr, pte_t ptent, union mc_target *target)
5247 {
5248 struct page *page = NULL;
5249 struct page_cgroup *pc;
5250 int ret = 0;
5251 swp_entry_t ent = { .val = 0 };
5252
5253 if (pte_present(ptent))
5254 page = mc_handle_present_pte(vma, addr, ptent);
5255 else if (is_swap_pte(ptent))
5256 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5257 else if (pte_none(ptent) || pte_file(ptent))
5258 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5259
5260 if (!page && !ent.val)
5261 return 0;
5262 if (page) {
5263 pc = lookup_page_cgroup(page);
5264 /*
5265 * Do only loose check w/o page_cgroup lock.
5266 * mem_cgroup_move_account() checks the pc is valid or not under
5267 * the lock.
5268 */
5269 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5270 ret = MC_TARGET_PAGE;
5271 if (target)
5272 target->page = page;
5273 }
5274 if (!ret || !target)
5275 put_page(page);
5276 }
5277 /* There is a swap entry and a page doesn't exist or isn't charged */
5278 if (ent.val && !ret &&
5279 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5280 ret = MC_TARGET_SWAP;
5281 if (target)
5282 target->ent = ent;
5283 }
5284 return ret;
5285 }
5286
5287 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5288 unsigned long addr, unsigned long end,
5289 struct mm_walk *walk)
5290 {
5291 struct vm_area_struct *vma = walk->private;
5292 pte_t *pte;
5293 spinlock_t *ptl;
5294
5295 split_huge_page_pmd(walk->mm, pmd);
5296
5297 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5298 for (; addr != end; pte++, addr += PAGE_SIZE)
5299 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5300 mc.precharge++; /* increment precharge temporarily */
5301 pte_unmap_unlock(pte - 1, ptl);
5302 cond_resched();
5303
5304 return 0;
5305 }
5306
5307 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5308 {
5309 unsigned long precharge;
5310 struct vm_area_struct *vma;
5311
5312 down_read(&mm->mmap_sem);
5313 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5314 struct mm_walk mem_cgroup_count_precharge_walk = {
5315 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5316 .mm = mm,
5317 .private = vma,
5318 };
5319 if (is_vm_hugetlb_page(vma))
5320 continue;
5321 walk_page_range(vma->vm_start, vma->vm_end,
5322 &mem_cgroup_count_precharge_walk);
5323 }
5324 up_read(&mm->mmap_sem);
5325
5326 precharge = mc.precharge;
5327 mc.precharge = 0;
5328
5329 return precharge;
5330 }
5331
5332 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5333 {
5334 unsigned long precharge = mem_cgroup_count_precharge(mm);
5335
5336 VM_BUG_ON(mc.moving_task);
5337 mc.moving_task = current;
5338 return mem_cgroup_do_precharge(precharge);
5339 }
5340
5341 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5342 static void __mem_cgroup_clear_mc(void)
5343 {
5344 struct mem_cgroup *from = mc.from;
5345 struct mem_cgroup *to = mc.to;
5346
5347 /* we must uncharge all the leftover precharges from mc.to */
5348 if (mc.precharge) {
5349 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5350 mc.precharge = 0;
5351 }
5352 /*
5353 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5354 * we must uncharge here.
5355 */
5356 if (mc.moved_charge) {
5357 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5358 mc.moved_charge = 0;
5359 }
5360 /* we must fixup refcnts and charges */
5361 if (mc.moved_swap) {
5362 /* uncharge swap account from the old cgroup */
5363 if (!mem_cgroup_is_root(mc.from))
5364 res_counter_uncharge(&mc.from->memsw,
5365 PAGE_SIZE * mc.moved_swap);
5366 __mem_cgroup_put(mc.from, mc.moved_swap);
5367
5368 if (!mem_cgroup_is_root(mc.to)) {
5369 /*
5370 * we charged both to->res and to->memsw, so we should
5371 * uncharge to->res.
5372 */
5373 res_counter_uncharge(&mc.to->res,
5374 PAGE_SIZE * mc.moved_swap);
5375 }
5376 /* we've already done mem_cgroup_get(mc.to) */
5377 mc.moved_swap = 0;
5378 }
5379 memcg_oom_recover(from);
5380 memcg_oom_recover(to);
5381 wake_up_all(&mc.waitq);
5382 }
5383
5384 static void mem_cgroup_clear_mc(void)
5385 {
5386 struct mem_cgroup *from = mc.from;
5387
5388 /*
5389 * we must clear moving_task before waking up waiters at the end of
5390 * task migration.
5391 */
5392 mc.moving_task = NULL;
5393 __mem_cgroup_clear_mc();
5394 spin_lock(&mc.lock);
5395 mc.from = NULL;
5396 mc.to = NULL;
5397 spin_unlock(&mc.lock);
5398 mem_cgroup_end_move(from);
5399 }
5400
5401 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5402 struct cgroup *cgroup,
5403 struct cgroup_taskset *tset)
5404 {
5405 struct task_struct *p = cgroup_taskset_first(tset);
5406 int ret = 0;
5407 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5408
5409 if (memcg->move_charge_at_immigrate) {
5410 struct mm_struct *mm;
5411 struct mem_cgroup *from = mem_cgroup_from_task(p);
5412
5413 VM_BUG_ON(from == memcg);
5414
5415 mm = get_task_mm(p);
5416 if (!mm)
5417 return 0;
5418 /* We move charges only when we move a owner of the mm */
5419 if (mm->owner == p) {
5420 VM_BUG_ON(mc.from);
5421 VM_BUG_ON(mc.to);
5422 VM_BUG_ON(mc.precharge);
5423 VM_BUG_ON(mc.moved_charge);
5424 VM_BUG_ON(mc.moved_swap);
5425 mem_cgroup_start_move(from);
5426 spin_lock(&mc.lock);
5427 mc.from = from;
5428 mc.to = memcg;
5429 spin_unlock(&mc.lock);
5430 /* We set mc.moving_task later */
5431
5432 ret = mem_cgroup_precharge_mc(mm);
5433 if (ret)
5434 mem_cgroup_clear_mc();
5435 }
5436 mmput(mm);
5437 }
5438 return ret;
5439 }
5440
5441 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5442 struct cgroup *cgroup,
5443 struct cgroup_taskset *tset)
5444 {
5445 mem_cgroup_clear_mc();
5446 }
5447
5448 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5449 unsigned long addr, unsigned long end,
5450 struct mm_walk *walk)
5451 {
5452 int ret = 0;
5453 struct vm_area_struct *vma = walk->private;
5454 pte_t *pte;
5455 spinlock_t *ptl;
5456
5457 split_huge_page_pmd(walk->mm, pmd);
5458 retry:
5459 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5460 for (; addr != end; addr += PAGE_SIZE) {
5461 pte_t ptent = *(pte++);
5462 union mc_target target;
5463 int type;
5464 struct page *page;
5465 struct page_cgroup *pc;
5466 swp_entry_t ent;
5467
5468 if (!mc.precharge)
5469 break;
5470
5471 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5472 switch (type) {
5473 case MC_TARGET_PAGE:
5474 page = target.page;
5475 if (isolate_lru_page(page))
5476 goto put;
5477 pc = lookup_page_cgroup(page);
5478 if (!mem_cgroup_move_account(page, 1, pc,
5479 mc.from, mc.to, false)) {
5480 mc.precharge--;
5481 /* we uncharge from mc.from later. */
5482 mc.moved_charge++;
5483 }
5484 putback_lru_page(page);
5485 put: /* is_target_pte_for_mc() gets the page */
5486 put_page(page);
5487 break;
5488 case MC_TARGET_SWAP:
5489 ent = target.ent;
5490 if (!mem_cgroup_move_swap_account(ent,
5491 mc.from, mc.to, false)) {
5492 mc.precharge--;
5493 /* we fixup refcnts and charges later. */
5494 mc.moved_swap++;
5495 }
5496 break;
5497 default:
5498 break;
5499 }
5500 }
5501 pte_unmap_unlock(pte - 1, ptl);
5502 cond_resched();
5503
5504 if (addr != end) {
5505 /*
5506 * We have consumed all precharges we got in can_attach().
5507 * We try charge one by one, but don't do any additional
5508 * charges to mc.to if we have failed in charge once in attach()
5509 * phase.
5510 */
5511 ret = mem_cgroup_do_precharge(1);
5512 if (!ret)
5513 goto retry;
5514 }
5515
5516 return ret;
5517 }
5518
5519 static void mem_cgroup_move_charge(struct mm_struct *mm)
5520 {
5521 struct vm_area_struct *vma;
5522
5523 lru_add_drain_all();
5524 retry:
5525 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5526 /*
5527 * Someone who are holding the mmap_sem might be waiting in
5528 * waitq. So we cancel all extra charges, wake up all waiters,
5529 * and retry. Because we cancel precharges, we might not be able
5530 * to move enough charges, but moving charge is a best-effort
5531 * feature anyway, so it wouldn't be a big problem.
5532 */
5533 __mem_cgroup_clear_mc();
5534 cond_resched();
5535 goto retry;
5536 }
5537 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5538 int ret;
5539 struct mm_walk mem_cgroup_move_charge_walk = {
5540 .pmd_entry = mem_cgroup_move_charge_pte_range,
5541 .mm = mm,
5542 .private = vma,
5543 };
5544 if (is_vm_hugetlb_page(vma))
5545 continue;
5546 ret = walk_page_range(vma->vm_start, vma->vm_end,
5547 &mem_cgroup_move_charge_walk);
5548 if (ret)
5549 /*
5550 * means we have consumed all precharges and failed in
5551 * doing additional charge. Just abandon here.
5552 */
5553 break;
5554 }
5555 up_read(&mm->mmap_sem);
5556 }
5557
5558 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5559 struct cgroup *cont,
5560 struct cgroup_taskset *tset)
5561 {
5562 struct task_struct *p = cgroup_taskset_first(tset);
5563 struct mm_struct *mm = get_task_mm(p);
5564
5565 if (mm) {
5566 if (mc.to)
5567 mem_cgroup_move_charge(mm);
5568 put_swap_token(mm);
5569 mmput(mm);
5570 }
5571 if (mc.to)
5572 mem_cgroup_clear_mc();
5573 }
5574 #else /* !CONFIG_MMU */
5575 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5576 struct cgroup *cgroup,
5577 struct cgroup_taskset *tset)
5578 {
5579 return 0;
5580 }
5581 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5582 struct cgroup *cgroup,
5583 struct cgroup_taskset *tset)
5584 {
5585 }
5586 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5587 struct cgroup *cont,
5588 struct cgroup_taskset *tset)
5589 {
5590 }
5591 #endif
5592
5593 struct cgroup_subsys mem_cgroup_subsys = {
5594 .name = "memory",
5595 .subsys_id = mem_cgroup_subsys_id,
5596 .create = mem_cgroup_create,
5597 .pre_destroy = mem_cgroup_pre_destroy,
5598 .destroy = mem_cgroup_destroy,
5599 .populate = mem_cgroup_populate,
5600 .can_attach = mem_cgroup_can_attach,
5601 .cancel_attach = mem_cgroup_cancel_attach,
5602 .attach = mem_cgroup_move_task,
5603 .early_init = 0,
5604 .use_id = 1,
5605 };
5606
5607 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5608 static int __init enable_swap_account(char *s)
5609 {
5610 /* consider enabled if no parameter or 1 is given */
5611 if (!strcmp(s, "1"))
5612 really_do_swap_account = 1;
5613 else if (!strcmp(s, "0"))
5614 really_do_swap_account = 0;
5615 return 1;
5616 }
5617 __setup("swapaccount=", enable_swap_account);
5618
5619 #endif
This page took 0.189809 seconds and 6 git commands to generate.