mm: memcg: push !mm handling out to page cache charge function
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include "internal.h"
60 #include <net/sock.h>
61 #include <net/ip.h>
62 #include <net/tcp_memcontrol.h>
63 #include "slab.h"
64
65 #include <asm/uaccess.h>
66
67 #include <trace/events/vmscan.h>
68
69 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70 EXPORT_SYMBOL(memory_cgrp_subsys);
71
72 #define MEM_CGROUP_RECLAIM_RETRIES 5
73 static struct mem_cgroup *root_mem_cgroup __read_mostly;
74
75 #ifdef CONFIG_MEMCG_SWAP
76 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77 int do_swap_account __read_mostly;
78
79 /* for remember boot option*/
80 #ifdef CONFIG_MEMCG_SWAP_ENABLED
81 static int really_do_swap_account __initdata = 1;
82 #else
83 static int really_do_swap_account __initdata = 0;
84 #endif
85
86 #else
87 #define do_swap_account 0
88 #endif
89
90
91 static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
94 "rss_huge",
95 "mapped_file",
96 "writeback",
97 "swap",
98 };
99
100 enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
105 MEM_CGROUP_EVENTS_NSTATS,
106 };
107
108 static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113 };
114
115 static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121 };
122
123 /*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129 enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
131 MEM_CGROUP_TARGET_SOFTLIMIT,
132 MEM_CGROUP_TARGET_NUMAINFO,
133 MEM_CGROUP_NTARGETS,
134 };
135 #define THRESHOLDS_EVENTS_TARGET 128
136 #define SOFTLIMIT_EVENTS_TARGET 1024
137 #define NUMAINFO_EVENTS_TARGET 1024
138
139 struct mem_cgroup_stat_cpu {
140 long count[MEM_CGROUP_STAT_NSTATS];
141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142 unsigned long nr_page_events;
143 unsigned long targets[MEM_CGROUP_NTARGETS];
144 };
145
146 struct mem_cgroup_reclaim_iter {
147 /*
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
150 */
151 struct mem_cgroup *last_visited;
152 int last_dead_count;
153
154 /* scan generation, increased every round-trip */
155 unsigned int generation;
156 };
157
158 /*
159 * per-zone information in memory controller.
160 */
161 struct mem_cgroup_per_zone {
162 struct lruvec lruvec;
163 unsigned long lru_size[NR_LRU_LISTS];
164
165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166
167 struct rb_node tree_node; /* RB tree node */
168 unsigned long long usage_in_excess;/* Set to the value by which */
169 /* the soft limit is exceeded*/
170 bool on_tree;
171 struct mem_cgroup *memcg; /* Back pointer, we cannot */
172 /* use container_of */
173 };
174
175 struct mem_cgroup_per_node {
176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177 };
178
179 /*
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
182 */
183
184 struct mem_cgroup_tree_per_zone {
185 struct rb_root rb_root;
186 spinlock_t lock;
187 };
188
189 struct mem_cgroup_tree_per_node {
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191 };
192
193 struct mem_cgroup_tree {
194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195 };
196
197 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198
199 struct mem_cgroup_threshold {
200 struct eventfd_ctx *eventfd;
201 u64 threshold;
202 };
203
204 /* For threshold */
205 struct mem_cgroup_threshold_ary {
206 /* An array index points to threshold just below or equal to usage. */
207 int current_threshold;
208 /* Size of entries[] */
209 unsigned int size;
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries[0];
212 };
213
214 struct mem_cgroup_thresholds {
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary *primary;
217 /*
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
221 */
222 struct mem_cgroup_threshold_ary *spare;
223 };
224
225 /* for OOM */
226 struct mem_cgroup_eventfd_list {
227 struct list_head list;
228 struct eventfd_ctx *eventfd;
229 };
230
231 /*
232 * cgroup_event represents events which userspace want to receive.
233 */
234 struct mem_cgroup_event {
235 /*
236 * memcg which the event belongs to.
237 */
238 struct mem_cgroup *memcg;
239 /*
240 * eventfd to signal userspace about the event.
241 */
242 struct eventfd_ctx *eventfd;
243 /*
244 * Each of these stored in a list by the cgroup.
245 */
246 struct list_head list;
247 /*
248 * register_event() callback will be used to add new userspace
249 * waiter for changes related to this event. Use eventfd_signal()
250 * on eventfd to send notification to userspace.
251 */
252 int (*register_event)(struct mem_cgroup *memcg,
253 struct eventfd_ctx *eventfd, const char *args);
254 /*
255 * unregister_event() callback will be called when userspace closes
256 * the eventfd or on cgroup removing. This callback must be set,
257 * if you want provide notification functionality.
258 */
259 void (*unregister_event)(struct mem_cgroup *memcg,
260 struct eventfd_ctx *eventfd);
261 /*
262 * All fields below needed to unregister event when
263 * userspace closes eventfd.
264 */
265 poll_table pt;
266 wait_queue_head_t *wqh;
267 wait_queue_t wait;
268 struct work_struct remove;
269 };
270
271 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
273
274 /*
275 * The memory controller data structure. The memory controller controls both
276 * page cache and RSS per cgroup. We would eventually like to provide
277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278 * to help the administrator determine what knobs to tune.
279 *
280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
281 * we hit the water mark. May be even add a low water mark, such that
282 * no reclaim occurs from a cgroup at it's low water mark, this is
283 * a feature that will be implemented much later in the future.
284 */
285 struct mem_cgroup {
286 struct cgroup_subsys_state css;
287 /*
288 * the counter to account for memory usage
289 */
290 struct res_counter res;
291
292 /* vmpressure notifications */
293 struct vmpressure vmpressure;
294
295 /*
296 * the counter to account for mem+swap usage.
297 */
298 struct res_counter memsw;
299
300 /*
301 * the counter to account for kernel memory usage.
302 */
303 struct res_counter kmem;
304 /*
305 * Should the accounting and control be hierarchical, per subtree?
306 */
307 bool use_hierarchy;
308 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
309
310 bool oom_lock;
311 atomic_t under_oom;
312 atomic_t oom_wakeups;
313
314 int swappiness;
315 /* OOM-Killer disable */
316 int oom_kill_disable;
317
318 /* set when res.limit == memsw.limit */
319 bool memsw_is_minimum;
320
321 /* protect arrays of thresholds */
322 struct mutex thresholds_lock;
323
324 /* thresholds for memory usage. RCU-protected */
325 struct mem_cgroup_thresholds thresholds;
326
327 /* thresholds for mem+swap usage. RCU-protected */
328 struct mem_cgroup_thresholds memsw_thresholds;
329
330 /* For oom notifier event fd */
331 struct list_head oom_notify;
332
333 /*
334 * Should we move charges of a task when a task is moved into this
335 * mem_cgroup ? And what type of charges should we move ?
336 */
337 unsigned long move_charge_at_immigrate;
338 /*
339 * set > 0 if pages under this cgroup are moving to other cgroup.
340 */
341 atomic_t moving_account;
342 /* taken only while moving_account > 0 */
343 spinlock_t move_lock;
344 /*
345 * percpu counter.
346 */
347 struct mem_cgroup_stat_cpu __percpu *stat;
348 /*
349 * used when a cpu is offlined or other synchronizations
350 * See mem_cgroup_read_stat().
351 */
352 struct mem_cgroup_stat_cpu nocpu_base;
353 spinlock_t pcp_counter_lock;
354
355 atomic_t dead_count;
356 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
357 struct cg_proto tcp_mem;
358 #endif
359 #if defined(CONFIG_MEMCG_KMEM)
360 /* analogous to slab_common's slab_caches list. per-memcg */
361 struct list_head memcg_slab_caches;
362 /* Not a spinlock, we can take a lot of time walking the list */
363 struct mutex slab_caches_mutex;
364 /* Index in the kmem_cache->memcg_params->memcg_caches array */
365 int kmemcg_id;
366 #endif
367
368 int last_scanned_node;
369 #if MAX_NUMNODES > 1
370 nodemask_t scan_nodes;
371 atomic_t numainfo_events;
372 atomic_t numainfo_updating;
373 #endif
374
375 /* List of events which userspace want to receive */
376 struct list_head event_list;
377 spinlock_t event_list_lock;
378
379 struct mem_cgroup_per_node *nodeinfo[0];
380 /* WARNING: nodeinfo must be the last member here */
381 };
382
383 /* internal only representation about the status of kmem accounting. */
384 enum {
385 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
386 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
387 };
388
389 #ifdef CONFIG_MEMCG_KMEM
390 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
391 {
392 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
393 }
394
395 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
396 {
397 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
398 }
399
400 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
401 {
402 /*
403 * Our caller must use css_get() first, because memcg_uncharge_kmem()
404 * will call css_put() if it sees the memcg is dead.
405 */
406 smp_wmb();
407 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
408 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
409 }
410
411 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
412 {
413 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
414 &memcg->kmem_account_flags);
415 }
416 #endif
417
418 /* Stuffs for move charges at task migration. */
419 /*
420 * Types of charges to be moved. "move_charge_at_immitgrate" and
421 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
422 */
423 enum move_type {
424 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
425 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
426 NR_MOVE_TYPE,
427 };
428
429 /* "mc" and its members are protected by cgroup_mutex */
430 static struct move_charge_struct {
431 spinlock_t lock; /* for from, to */
432 struct mem_cgroup *from;
433 struct mem_cgroup *to;
434 unsigned long immigrate_flags;
435 unsigned long precharge;
436 unsigned long moved_charge;
437 unsigned long moved_swap;
438 struct task_struct *moving_task; /* a task moving charges */
439 wait_queue_head_t waitq; /* a waitq for other context */
440 } mc = {
441 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
442 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
443 };
444
445 static bool move_anon(void)
446 {
447 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
448 }
449
450 static bool move_file(void)
451 {
452 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
453 }
454
455 /*
456 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
457 * limit reclaim to prevent infinite loops, if they ever occur.
458 */
459 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
460 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
461
462 enum charge_type {
463 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
464 MEM_CGROUP_CHARGE_TYPE_ANON,
465 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
466 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
467 NR_CHARGE_TYPE,
468 };
469
470 /* for encoding cft->private value on file */
471 enum res_type {
472 _MEM,
473 _MEMSWAP,
474 _OOM_TYPE,
475 _KMEM,
476 };
477
478 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
479 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
480 #define MEMFILE_ATTR(val) ((val) & 0xffff)
481 /* Used for OOM nofiier */
482 #define OOM_CONTROL (0)
483
484 /*
485 * Reclaim flags for mem_cgroup_hierarchical_reclaim
486 */
487 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
488 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
489 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
490 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
491
492 /*
493 * The memcg_create_mutex will be held whenever a new cgroup is created.
494 * As a consequence, any change that needs to protect against new child cgroups
495 * appearing has to hold it as well.
496 */
497 static DEFINE_MUTEX(memcg_create_mutex);
498
499 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
500 {
501 return s ? container_of(s, struct mem_cgroup, css) : NULL;
502 }
503
504 /* Some nice accessors for the vmpressure. */
505 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
506 {
507 if (!memcg)
508 memcg = root_mem_cgroup;
509 return &memcg->vmpressure;
510 }
511
512 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
513 {
514 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
515 }
516
517 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
518 {
519 return (memcg == root_mem_cgroup);
520 }
521
522 /*
523 * We restrict the id in the range of [1, 65535], so it can fit into
524 * an unsigned short.
525 */
526 #define MEM_CGROUP_ID_MAX USHRT_MAX
527
528 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
529 {
530 /*
531 * The ID of the root cgroup is 0, but memcg treat 0 as an
532 * invalid ID, so we return (cgroup_id + 1).
533 */
534 return memcg->css.cgroup->id + 1;
535 }
536
537 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
538 {
539 struct cgroup_subsys_state *css;
540
541 css = css_from_id(id - 1, &memory_cgrp_subsys);
542 return mem_cgroup_from_css(css);
543 }
544
545 /* Writing them here to avoid exposing memcg's inner layout */
546 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
547
548 void sock_update_memcg(struct sock *sk)
549 {
550 if (mem_cgroup_sockets_enabled) {
551 struct mem_cgroup *memcg;
552 struct cg_proto *cg_proto;
553
554 BUG_ON(!sk->sk_prot->proto_cgroup);
555
556 /* Socket cloning can throw us here with sk_cgrp already
557 * filled. It won't however, necessarily happen from
558 * process context. So the test for root memcg given
559 * the current task's memcg won't help us in this case.
560 *
561 * Respecting the original socket's memcg is a better
562 * decision in this case.
563 */
564 if (sk->sk_cgrp) {
565 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
566 css_get(&sk->sk_cgrp->memcg->css);
567 return;
568 }
569
570 rcu_read_lock();
571 memcg = mem_cgroup_from_task(current);
572 cg_proto = sk->sk_prot->proto_cgroup(memcg);
573 if (!mem_cgroup_is_root(memcg) &&
574 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
575 sk->sk_cgrp = cg_proto;
576 }
577 rcu_read_unlock();
578 }
579 }
580 EXPORT_SYMBOL(sock_update_memcg);
581
582 void sock_release_memcg(struct sock *sk)
583 {
584 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
585 struct mem_cgroup *memcg;
586 WARN_ON(!sk->sk_cgrp->memcg);
587 memcg = sk->sk_cgrp->memcg;
588 css_put(&sk->sk_cgrp->memcg->css);
589 }
590 }
591
592 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
593 {
594 if (!memcg || mem_cgroup_is_root(memcg))
595 return NULL;
596
597 return &memcg->tcp_mem;
598 }
599 EXPORT_SYMBOL(tcp_proto_cgroup);
600
601 static void disarm_sock_keys(struct mem_cgroup *memcg)
602 {
603 if (!memcg_proto_activated(&memcg->tcp_mem))
604 return;
605 static_key_slow_dec(&memcg_socket_limit_enabled);
606 }
607 #else
608 static void disarm_sock_keys(struct mem_cgroup *memcg)
609 {
610 }
611 #endif
612
613 #ifdef CONFIG_MEMCG_KMEM
614 /*
615 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
616 * The main reason for not using cgroup id for this:
617 * this works better in sparse environments, where we have a lot of memcgs,
618 * but only a few kmem-limited. Or also, if we have, for instance, 200
619 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
620 * 200 entry array for that.
621 *
622 * The current size of the caches array is stored in
623 * memcg_limited_groups_array_size. It will double each time we have to
624 * increase it.
625 */
626 static DEFINE_IDA(kmem_limited_groups);
627 int memcg_limited_groups_array_size;
628
629 /*
630 * MIN_SIZE is different than 1, because we would like to avoid going through
631 * the alloc/free process all the time. In a small machine, 4 kmem-limited
632 * cgroups is a reasonable guess. In the future, it could be a parameter or
633 * tunable, but that is strictly not necessary.
634 *
635 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
636 * this constant directly from cgroup, but it is understandable that this is
637 * better kept as an internal representation in cgroup.c. In any case, the
638 * cgrp_id space is not getting any smaller, and we don't have to necessarily
639 * increase ours as well if it increases.
640 */
641 #define MEMCG_CACHES_MIN_SIZE 4
642 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
643
644 /*
645 * A lot of the calls to the cache allocation functions are expected to be
646 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
647 * conditional to this static branch, we'll have to allow modules that does
648 * kmem_cache_alloc and the such to see this symbol as well
649 */
650 struct static_key memcg_kmem_enabled_key;
651 EXPORT_SYMBOL(memcg_kmem_enabled_key);
652
653 static void disarm_kmem_keys(struct mem_cgroup *memcg)
654 {
655 if (memcg_kmem_is_active(memcg)) {
656 static_key_slow_dec(&memcg_kmem_enabled_key);
657 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
658 }
659 /*
660 * This check can't live in kmem destruction function,
661 * since the charges will outlive the cgroup
662 */
663 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
664 }
665 #else
666 static void disarm_kmem_keys(struct mem_cgroup *memcg)
667 {
668 }
669 #endif /* CONFIG_MEMCG_KMEM */
670
671 static void disarm_static_keys(struct mem_cgroup *memcg)
672 {
673 disarm_sock_keys(memcg);
674 disarm_kmem_keys(memcg);
675 }
676
677 static void drain_all_stock_async(struct mem_cgroup *memcg);
678
679 static struct mem_cgroup_per_zone *
680 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
681 {
682 VM_BUG_ON((unsigned)nid >= nr_node_ids);
683 return &memcg->nodeinfo[nid]->zoneinfo[zid];
684 }
685
686 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
687 {
688 return &memcg->css;
689 }
690
691 static struct mem_cgroup_per_zone *
692 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
693 {
694 int nid = page_to_nid(page);
695 int zid = page_zonenum(page);
696
697 return mem_cgroup_zoneinfo(memcg, nid, zid);
698 }
699
700 static struct mem_cgroup_tree_per_zone *
701 soft_limit_tree_node_zone(int nid, int zid)
702 {
703 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
704 }
705
706 static struct mem_cgroup_tree_per_zone *
707 soft_limit_tree_from_page(struct page *page)
708 {
709 int nid = page_to_nid(page);
710 int zid = page_zonenum(page);
711
712 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
713 }
714
715 static void
716 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
717 struct mem_cgroup_per_zone *mz,
718 struct mem_cgroup_tree_per_zone *mctz,
719 unsigned long long new_usage_in_excess)
720 {
721 struct rb_node **p = &mctz->rb_root.rb_node;
722 struct rb_node *parent = NULL;
723 struct mem_cgroup_per_zone *mz_node;
724
725 if (mz->on_tree)
726 return;
727
728 mz->usage_in_excess = new_usage_in_excess;
729 if (!mz->usage_in_excess)
730 return;
731 while (*p) {
732 parent = *p;
733 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
734 tree_node);
735 if (mz->usage_in_excess < mz_node->usage_in_excess)
736 p = &(*p)->rb_left;
737 /*
738 * We can't avoid mem cgroups that are over their soft
739 * limit by the same amount
740 */
741 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
742 p = &(*p)->rb_right;
743 }
744 rb_link_node(&mz->tree_node, parent, p);
745 rb_insert_color(&mz->tree_node, &mctz->rb_root);
746 mz->on_tree = true;
747 }
748
749 static void
750 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
751 struct mem_cgroup_per_zone *mz,
752 struct mem_cgroup_tree_per_zone *mctz)
753 {
754 if (!mz->on_tree)
755 return;
756 rb_erase(&mz->tree_node, &mctz->rb_root);
757 mz->on_tree = false;
758 }
759
760 static void
761 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
762 struct mem_cgroup_per_zone *mz,
763 struct mem_cgroup_tree_per_zone *mctz)
764 {
765 spin_lock(&mctz->lock);
766 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
767 spin_unlock(&mctz->lock);
768 }
769
770
771 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
772 {
773 unsigned long long excess;
774 struct mem_cgroup_per_zone *mz;
775 struct mem_cgroup_tree_per_zone *mctz;
776 int nid = page_to_nid(page);
777 int zid = page_zonenum(page);
778 mctz = soft_limit_tree_from_page(page);
779
780 /*
781 * Necessary to update all ancestors when hierarchy is used.
782 * because their event counter is not touched.
783 */
784 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
785 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
786 excess = res_counter_soft_limit_excess(&memcg->res);
787 /*
788 * We have to update the tree if mz is on RB-tree or
789 * mem is over its softlimit.
790 */
791 if (excess || mz->on_tree) {
792 spin_lock(&mctz->lock);
793 /* if on-tree, remove it */
794 if (mz->on_tree)
795 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
796 /*
797 * Insert again. mz->usage_in_excess will be updated.
798 * If excess is 0, no tree ops.
799 */
800 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
801 spin_unlock(&mctz->lock);
802 }
803 }
804 }
805
806 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
807 {
808 int node, zone;
809 struct mem_cgroup_per_zone *mz;
810 struct mem_cgroup_tree_per_zone *mctz;
811
812 for_each_node(node) {
813 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
814 mz = mem_cgroup_zoneinfo(memcg, node, zone);
815 mctz = soft_limit_tree_node_zone(node, zone);
816 mem_cgroup_remove_exceeded(memcg, mz, mctz);
817 }
818 }
819 }
820
821 static struct mem_cgroup_per_zone *
822 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
823 {
824 struct rb_node *rightmost = NULL;
825 struct mem_cgroup_per_zone *mz;
826
827 retry:
828 mz = NULL;
829 rightmost = rb_last(&mctz->rb_root);
830 if (!rightmost)
831 goto done; /* Nothing to reclaim from */
832
833 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
834 /*
835 * Remove the node now but someone else can add it back,
836 * we will to add it back at the end of reclaim to its correct
837 * position in the tree.
838 */
839 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
840 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
841 !css_tryget(&mz->memcg->css))
842 goto retry;
843 done:
844 return mz;
845 }
846
847 static struct mem_cgroup_per_zone *
848 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
849 {
850 struct mem_cgroup_per_zone *mz;
851
852 spin_lock(&mctz->lock);
853 mz = __mem_cgroup_largest_soft_limit_node(mctz);
854 spin_unlock(&mctz->lock);
855 return mz;
856 }
857
858 /*
859 * Implementation Note: reading percpu statistics for memcg.
860 *
861 * Both of vmstat[] and percpu_counter has threshold and do periodic
862 * synchronization to implement "quick" read. There are trade-off between
863 * reading cost and precision of value. Then, we may have a chance to implement
864 * a periodic synchronizion of counter in memcg's counter.
865 *
866 * But this _read() function is used for user interface now. The user accounts
867 * memory usage by memory cgroup and he _always_ requires exact value because
868 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
869 * have to visit all online cpus and make sum. So, for now, unnecessary
870 * synchronization is not implemented. (just implemented for cpu hotplug)
871 *
872 * If there are kernel internal actions which can make use of some not-exact
873 * value, and reading all cpu value can be performance bottleneck in some
874 * common workload, threashold and synchonization as vmstat[] should be
875 * implemented.
876 */
877 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
878 enum mem_cgroup_stat_index idx)
879 {
880 long val = 0;
881 int cpu;
882
883 get_online_cpus();
884 for_each_online_cpu(cpu)
885 val += per_cpu(memcg->stat->count[idx], cpu);
886 #ifdef CONFIG_HOTPLUG_CPU
887 spin_lock(&memcg->pcp_counter_lock);
888 val += memcg->nocpu_base.count[idx];
889 spin_unlock(&memcg->pcp_counter_lock);
890 #endif
891 put_online_cpus();
892 return val;
893 }
894
895 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
896 bool charge)
897 {
898 int val = (charge) ? 1 : -1;
899 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
900 }
901
902 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
903 enum mem_cgroup_events_index idx)
904 {
905 unsigned long val = 0;
906 int cpu;
907
908 get_online_cpus();
909 for_each_online_cpu(cpu)
910 val += per_cpu(memcg->stat->events[idx], cpu);
911 #ifdef CONFIG_HOTPLUG_CPU
912 spin_lock(&memcg->pcp_counter_lock);
913 val += memcg->nocpu_base.events[idx];
914 spin_unlock(&memcg->pcp_counter_lock);
915 #endif
916 put_online_cpus();
917 return val;
918 }
919
920 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
921 struct page *page,
922 bool anon, int nr_pages)
923 {
924 /*
925 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
926 * counted as CACHE even if it's on ANON LRU.
927 */
928 if (anon)
929 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
930 nr_pages);
931 else
932 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
933 nr_pages);
934
935 if (PageTransHuge(page))
936 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
937 nr_pages);
938
939 /* pagein of a big page is an event. So, ignore page size */
940 if (nr_pages > 0)
941 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
942 else {
943 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
944 nr_pages = -nr_pages; /* for event */
945 }
946
947 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
948 }
949
950 unsigned long
951 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
952 {
953 struct mem_cgroup_per_zone *mz;
954
955 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
956 return mz->lru_size[lru];
957 }
958
959 static unsigned long
960 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
961 unsigned int lru_mask)
962 {
963 struct mem_cgroup_per_zone *mz;
964 enum lru_list lru;
965 unsigned long ret = 0;
966
967 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
968
969 for_each_lru(lru) {
970 if (BIT(lru) & lru_mask)
971 ret += mz->lru_size[lru];
972 }
973 return ret;
974 }
975
976 static unsigned long
977 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
978 int nid, unsigned int lru_mask)
979 {
980 u64 total = 0;
981 int zid;
982
983 for (zid = 0; zid < MAX_NR_ZONES; zid++)
984 total += mem_cgroup_zone_nr_lru_pages(memcg,
985 nid, zid, lru_mask);
986
987 return total;
988 }
989
990 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
991 unsigned int lru_mask)
992 {
993 int nid;
994 u64 total = 0;
995
996 for_each_node_state(nid, N_MEMORY)
997 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
998 return total;
999 }
1000
1001 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1002 enum mem_cgroup_events_target target)
1003 {
1004 unsigned long val, next;
1005
1006 val = __this_cpu_read(memcg->stat->nr_page_events);
1007 next = __this_cpu_read(memcg->stat->targets[target]);
1008 /* from time_after() in jiffies.h */
1009 if ((long)next - (long)val < 0) {
1010 switch (target) {
1011 case MEM_CGROUP_TARGET_THRESH:
1012 next = val + THRESHOLDS_EVENTS_TARGET;
1013 break;
1014 case MEM_CGROUP_TARGET_SOFTLIMIT:
1015 next = val + SOFTLIMIT_EVENTS_TARGET;
1016 break;
1017 case MEM_CGROUP_TARGET_NUMAINFO:
1018 next = val + NUMAINFO_EVENTS_TARGET;
1019 break;
1020 default:
1021 break;
1022 }
1023 __this_cpu_write(memcg->stat->targets[target], next);
1024 return true;
1025 }
1026 return false;
1027 }
1028
1029 /*
1030 * Check events in order.
1031 *
1032 */
1033 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1034 {
1035 preempt_disable();
1036 /* threshold event is triggered in finer grain than soft limit */
1037 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1038 MEM_CGROUP_TARGET_THRESH))) {
1039 bool do_softlimit;
1040 bool do_numainfo __maybe_unused;
1041
1042 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1043 MEM_CGROUP_TARGET_SOFTLIMIT);
1044 #if MAX_NUMNODES > 1
1045 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1046 MEM_CGROUP_TARGET_NUMAINFO);
1047 #endif
1048 preempt_enable();
1049
1050 mem_cgroup_threshold(memcg);
1051 if (unlikely(do_softlimit))
1052 mem_cgroup_update_tree(memcg, page);
1053 #if MAX_NUMNODES > 1
1054 if (unlikely(do_numainfo))
1055 atomic_inc(&memcg->numainfo_events);
1056 #endif
1057 } else
1058 preempt_enable();
1059 }
1060
1061 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1062 {
1063 /*
1064 * mm_update_next_owner() may clear mm->owner to NULL
1065 * if it races with swapoff, page migration, etc.
1066 * So this can be called with p == NULL.
1067 */
1068 if (unlikely(!p))
1069 return NULL;
1070
1071 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1072 }
1073
1074 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1075 {
1076 struct mem_cgroup *memcg = NULL;
1077
1078 if (!mm)
1079 return NULL;
1080 /*
1081 * Because we have no locks, mm->owner's may be being moved to other
1082 * cgroup. We use css_tryget() here even if this looks
1083 * pessimistic (rather than adding locks here).
1084 */
1085 rcu_read_lock();
1086 do {
1087 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1088 if (unlikely(!memcg))
1089 break;
1090 } while (!css_tryget(&memcg->css));
1091 rcu_read_unlock();
1092 return memcg;
1093 }
1094
1095 /*
1096 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1097 * ref. count) or NULL if the whole root's subtree has been visited.
1098 *
1099 * helper function to be used by mem_cgroup_iter
1100 */
1101 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1102 struct mem_cgroup *last_visited)
1103 {
1104 struct cgroup_subsys_state *prev_css, *next_css;
1105
1106 prev_css = last_visited ? &last_visited->css : NULL;
1107 skip_node:
1108 next_css = css_next_descendant_pre(prev_css, &root->css);
1109
1110 /*
1111 * Even if we found a group we have to make sure it is
1112 * alive. css && !memcg means that the groups should be
1113 * skipped and we should continue the tree walk.
1114 * last_visited css is safe to use because it is
1115 * protected by css_get and the tree walk is rcu safe.
1116 *
1117 * We do not take a reference on the root of the tree walk
1118 * because we might race with the root removal when it would
1119 * be the only node in the iterated hierarchy and mem_cgroup_iter
1120 * would end up in an endless loop because it expects that at
1121 * least one valid node will be returned. Root cannot disappear
1122 * because caller of the iterator should hold it already so
1123 * skipping css reference should be safe.
1124 */
1125 if (next_css) {
1126 if ((next_css == &root->css) ||
1127 ((next_css->flags & CSS_ONLINE) && css_tryget(next_css)))
1128 return mem_cgroup_from_css(next_css);
1129
1130 prev_css = next_css;
1131 goto skip_node;
1132 }
1133
1134 return NULL;
1135 }
1136
1137 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1138 {
1139 /*
1140 * When a group in the hierarchy below root is destroyed, the
1141 * hierarchy iterator can no longer be trusted since it might
1142 * have pointed to the destroyed group. Invalidate it.
1143 */
1144 atomic_inc(&root->dead_count);
1145 }
1146
1147 static struct mem_cgroup *
1148 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1149 struct mem_cgroup *root,
1150 int *sequence)
1151 {
1152 struct mem_cgroup *position = NULL;
1153 /*
1154 * A cgroup destruction happens in two stages: offlining and
1155 * release. They are separated by a RCU grace period.
1156 *
1157 * If the iterator is valid, we may still race with an
1158 * offlining. The RCU lock ensures the object won't be
1159 * released, tryget will fail if we lost the race.
1160 */
1161 *sequence = atomic_read(&root->dead_count);
1162 if (iter->last_dead_count == *sequence) {
1163 smp_rmb();
1164 position = iter->last_visited;
1165
1166 /*
1167 * We cannot take a reference to root because we might race
1168 * with root removal and returning NULL would end up in
1169 * an endless loop on the iterator user level when root
1170 * would be returned all the time.
1171 */
1172 if (position && position != root &&
1173 !css_tryget(&position->css))
1174 position = NULL;
1175 }
1176 return position;
1177 }
1178
1179 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1180 struct mem_cgroup *last_visited,
1181 struct mem_cgroup *new_position,
1182 struct mem_cgroup *root,
1183 int sequence)
1184 {
1185 /* root reference counting symmetric to mem_cgroup_iter_load */
1186 if (last_visited && last_visited != root)
1187 css_put(&last_visited->css);
1188 /*
1189 * We store the sequence count from the time @last_visited was
1190 * loaded successfully instead of rereading it here so that we
1191 * don't lose destruction events in between. We could have
1192 * raced with the destruction of @new_position after all.
1193 */
1194 iter->last_visited = new_position;
1195 smp_wmb();
1196 iter->last_dead_count = sequence;
1197 }
1198
1199 /**
1200 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1201 * @root: hierarchy root
1202 * @prev: previously returned memcg, NULL on first invocation
1203 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1204 *
1205 * Returns references to children of the hierarchy below @root, or
1206 * @root itself, or %NULL after a full round-trip.
1207 *
1208 * Caller must pass the return value in @prev on subsequent
1209 * invocations for reference counting, or use mem_cgroup_iter_break()
1210 * to cancel a hierarchy walk before the round-trip is complete.
1211 *
1212 * Reclaimers can specify a zone and a priority level in @reclaim to
1213 * divide up the memcgs in the hierarchy among all concurrent
1214 * reclaimers operating on the same zone and priority.
1215 */
1216 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1217 struct mem_cgroup *prev,
1218 struct mem_cgroup_reclaim_cookie *reclaim)
1219 {
1220 struct mem_cgroup *memcg = NULL;
1221 struct mem_cgroup *last_visited = NULL;
1222
1223 if (mem_cgroup_disabled())
1224 return NULL;
1225
1226 if (!root)
1227 root = root_mem_cgroup;
1228
1229 if (prev && !reclaim)
1230 last_visited = prev;
1231
1232 if (!root->use_hierarchy && root != root_mem_cgroup) {
1233 if (prev)
1234 goto out_css_put;
1235 return root;
1236 }
1237
1238 rcu_read_lock();
1239 while (!memcg) {
1240 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1241 int uninitialized_var(seq);
1242
1243 if (reclaim) {
1244 int nid = zone_to_nid(reclaim->zone);
1245 int zid = zone_idx(reclaim->zone);
1246 struct mem_cgroup_per_zone *mz;
1247
1248 mz = mem_cgroup_zoneinfo(root, nid, zid);
1249 iter = &mz->reclaim_iter[reclaim->priority];
1250 if (prev && reclaim->generation != iter->generation) {
1251 iter->last_visited = NULL;
1252 goto out_unlock;
1253 }
1254
1255 last_visited = mem_cgroup_iter_load(iter, root, &seq);
1256 }
1257
1258 memcg = __mem_cgroup_iter_next(root, last_visited);
1259
1260 if (reclaim) {
1261 mem_cgroup_iter_update(iter, last_visited, memcg, root,
1262 seq);
1263
1264 if (!memcg)
1265 iter->generation++;
1266 else if (!prev && memcg)
1267 reclaim->generation = iter->generation;
1268 }
1269
1270 if (prev && !memcg)
1271 goto out_unlock;
1272 }
1273 out_unlock:
1274 rcu_read_unlock();
1275 out_css_put:
1276 if (prev && prev != root)
1277 css_put(&prev->css);
1278
1279 return memcg;
1280 }
1281
1282 /**
1283 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1284 * @root: hierarchy root
1285 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1286 */
1287 void mem_cgroup_iter_break(struct mem_cgroup *root,
1288 struct mem_cgroup *prev)
1289 {
1290 if (!root)
1291 root = root_mem_cgroup;
1292 if (prev && prev != root)
1293 css_put(&prev->css);
1294 }
1295
1296 /*
1297 * Iteration constructs for visiting all cgroups (under a tree). If
1298 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1299 * be used for reference counting.
1300 */
1301 #define for_each_mem_cgroup_tree(iter, root) \
1302 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1303 iter != NULL; \
1304 iter = mem_cgroup_iter(root, iter, NULL))
1305
1306 #define for_each_mem_cgroup(iter) \
1307 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1308 iter != NULL; \
1309 iter = mem_cgroup_iter(NULL, iter, NULL))
1310
1311 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1312 {
1313 struct mem_cgroup *memcg;
1314
1315 rcu_read_lock();
1316 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1317 if (unlikely(!memcg))
1318 goto out;
1319
1320 switch (idx) {
1321 case PGFAULT:
1322 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1323 break;
1324 case PGMAJFAULT:
1325 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1326 break;
1327 default:
1328 BUG();
1329 }
1330 out:
1331 rcu_read_unlock();
1332 }
1333 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1334
1335 /**
1336 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1337 * @zone: zone of the wanted lruvec
1338 * @memcg: memcg of the wanted lruvec
1339 *
1340 * Returns the lru list vector holding pages for the given @zone and
1341 * @mem. This can be the global zone lruvec, if the memory controller
1342 * is disabled.
1343 */
1344 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1345 struct mem_cgroup *memcg)
1346 {
1347 struct mem_cgroup_per_zone *mz;
1348 struct lruvec *lruvec;
1349
1350 if (mem_cgroup_disabled()) {
1351 lruvec = &zone->lruvec;
1352 goto out;
1353 }
1354
1355 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1356 lruvec = &mz->lruvec;
1357 out:
1358 /*
1359 * Since a node can be onlined after the mem_cgroup was created,
1360 * we have to be prepared to initialize lruvec->zone here;
1361 * and if offlined then reonlined, we need to reinitialize it.
1362 */
1363 if (unlikely(lruvec->zone != zone))
1364 lruvec->zone = zone;
1365 return lruvec;
1366 }
1367
1368 /*
1369 * Following LRU functions are allowed to be used without PCG_LOCK.
1370 * Operations are called by routine of global LRU independently from memcg.
1371 * What we have to take care of here is validness of pc->mem_cgroup.
1372 *
1373 * Changes to pc->mem_cgroup happens when
1374 * 1. charge
1375 * 2. moving account
1376 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1377 * It is added to LRU before charge.
1378 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1379 * When moving account, the page is not on LRU. It's isolated.
1380 */
1381
1382 /**
1383 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1384 * @page: the page
1385 * @zone: zone of the page
1386 */
1387 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1388 {
1389 struct mem_cgroup_per_zone *mz;
1390 struct mem_cgroup *memcg;
1391 struct page_cgroup *pc;
1392 struct lruvec *lruvec;
1393
1394 if (mem_cgroup_disabled()) {
1395 lruvec = &zone->lruvec;
1396 goto out;
1397 }
1398
1399 pc = lookup_page_cgroup(page);
1400 memcg = pc->mem_cgroup;
1401
1402 /*
1403 * Surreptitiously switch any uncharged offlist page to root:
1404 * an uncharged page off lru does nothing to secure
1405 * its former mem_cgroup from sudden removal.
1406 *
1407 * Our caller holds lru_lock, and PageCgroupUsed is updated
1408 * under page_cgroup lock: between them, they make all uses
1409 * of pc->mem_cgroup safe.
1410 */
1411 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1412 pc->mem_cgroup = memcg = root_mem_cgroup;
1413
1414 mz = page_cgroup_zoneinfo(memcg, page);
1415 lruvec = &mz->lruvec;
1416 out:
1417 /*
1418 * Since a node can be onlined after the mem_cgroup was created,
1419 * we have to be prepared to initialize lruvec->zone here;
1420 * and if offlined then reonlined, we need to reinitialize it.
1421 */
1422 if (unlikely(lruvec->zone != zone))
1423 lruvec->zone = zone;
1424 return lruvec;
1425 }
1426
1427 /**
1428 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1429 * @lruvec: mem_cgroup per zone lru vector
1430 * @lru: index of lru list the page is sitting on
1431 * @nr_pages: positive when adding or negative when removing
1432 *
1433 * This function must be called when a page is added to or removed from an
1434 * lru list.
1435 */
1436 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1437 int nr_pages)
1438 {
1439 struct mem_cgroup_per_zone *mz;
1440 unsigned long *lru_size;
1441
1442 if (mem_cgroup_disabled())
1443 return;
1444
1445 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1446 lru_size = mz->lru_size + lru;
1447 *lru_size += nr_pages;
1448 VM_BUG_ON((long)(*lru_size) < 0);
1449 }
1450
1451 /*
1452 * Checks whether given mem is same or in the root_mem_cgroup's
1453 * hierarchy subtree
1454 */
1455 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1456 struct mem_cgroup *memcg)
1457 {
1458 if (root_memcg == memcg)
1459 return true;
1460 if (!root_memcg->use_hierarchy || !memcg)
1461 return false;
1462 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1463 }
1464
1465 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1466 struct mem_cgroup *memcg)
1467 {
1468 bool ret;
1469
1470 rcu_read_lock();
1471 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1472 rcu_read_unlock();
1473 return ret;
1474 }
1475
1476 bool task_in_mem_cgroup(struct task_struct *task,
1477 const struct mem_cgroup *memcg)
1478 {
1479 struct mem_cgroup *curr = NULL;
1480 struct task_struct *p;
1481 bool ret;
1482
1483 p = find_lock_task_mm(task);
1484 if (p) {
1485 curr = try_get_mem_cgroup_from_mm(p->mm);
1486 task_unlock(p);
1487 } else {
1488 /*
1489 * All threads may have already detached their mm's, but the oom
1490 * killer still needs to detect if they have already been oom
1491 * killed to prevent needlessly killing additional tasks.
1492 */
1493 rcu_read_lock();
1494 curr = mem_cgroup_from_task(task);
1495 if (curr)
1496 css_get(&curr->css);
1497 rcu_read_unlock();
1498 }
1499 if (!curr)
1500 return false;
1501 /*
1502 * We should check use_hierarchy of "memcg" not "curr". Because checking
1503 * use_hierarchy of "curr" here make this function true if hierarchy is
1504 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1505 * hierarchy(even if use_hierarchy is disabled in "memcg").
1506 */
1507 ret = mem_cgroup_same_or_subtree(memcg, curr);
1508 css_put(&curr->css);
1509 return ret;
1510 }
1511
1512 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1513 {
1514 unsigned long inactive_ratio;
1515 unsigned long inactive;
1516 unsigned long active;
1517 unsigned long gb;
1518
1519 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1520 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1521
1522 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1523 if (gb)
1524 inactive_ratio = int_sqrt(10 * gb);
1525 else
1526 inactive_ratio = 1;
1527
1528 return inactive * inactive_ratio < active;
1529 }
1530
1531 #define mem_cgroup_from_res_counter(counter, member) \
1532 container_of(counter, struct mem_cgroup, member)
1533
1534 /**
1535 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1536 * @memcg: the memory cgroup
1537 *
1538 * Returns the maximum amount of memory @mem can be charged with, in
1539 * pages.
1540 */
1541 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1542 {
1543 unsigned long long margin;
1544
1545 margin = res_counter_margin(&memcg->res);
1546 if (do_swap_account)
1547 margin = min(margin, res_counter_margin(&memcg->memsw));
1548 return margin >> PAGE_SHIFT;
1549 }
1550
1551 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1552 {
1553 /* root ? */
1554 if (!css_parent(&memcg->css))
1555 return vm_swappiness;
1556
1557 return memcg->swappiness;
1558 }
1559
1560 /*
1561 * memcg->moving_account is used for checking possibility that some thread is
1562 * calling move_account(). When a thread on CPU-A starts moving pages under
1563 * a memcg, other threads should check memcg->moving_account under
1564 * rcu_read_lock(), like this:
1565 *
1566 * CPU-A CPU-B
1567 * rcu_read_lock()
1568 * memcg->moving_account+1 if (memcg->mocing_account)
1569 * take heavy locks.
1570 * synchronize_rcu() update something.
1571 * rcu_read_unlock()
1572 * start move here.
1573 */
1574
1575 /* for quick checking without looking up memcg */
1576 atomic_t memcg_moving __read_mostly;
1577
1578 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1579 {
1580 atomic_inc(&memcg_moving);
1581 atomic_inc(&memcg->moving_account);
1582 synchronize_rcu();
1583 }
1584
1585 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1586 {
1587 /*
1588 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1589 * We check NULL in callee rather than caller.
1590 */
1591 if (memcg) {
1592 atomic_dec(&memcg_moving);
1593 atomic_dec(&memcg->moving_account);
1594 }
1595 }
1596
1597 /*
1598 * 2 routines for checking "mem" is under move_account() or not.
1599 *
1600 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1601 * is used for avoiding races in accounting. If true,
1602 * pc->mem_cgroup may be overwritten.
1603 *
1604 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1605 * under hierarchy of moving cgroups. This is for
1606 * waiting at hith-memory prressure caused by "move".
1607 */
1608
1609 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1610 {
1611 VM_BUG_ON(!rcu_read_lock_held());
1612 return atomic_read(&memcg->moving_account) > 0;
1613 }
1614
1615 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1616 {
1617 struct mem_cgroup *from;
1618 struct mem_cgroup *to;
1619 bool ret = false;
1620 /*
1621 * Unlike task_move routines, we access mc.to, mc.from not under
1622 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1623 */
1624 spin_lock(&mc.lock);
1625 from = mc.from;
1626 to = mc.to;
1627 if (!from)
1628 goto unlock;
1629
1630 ret = mem_cgroup_same_or_subtree(memcg, from)
1631 || mem_cgroup_same_or_subtree(memcg, to);
1632 unlock:
1633 spin_unlock(&mc.lock);
1634 return ret;
1635 }
1636
1637 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1638 {
1639 if (mc.moving_task && current != mc.moving_task) {
1640 if (mem_cgroup_under_move(memcg)) {
1641 DEFINE_WAIT(wait);
1642 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1643 /* moving charge context might have finished. */
1644 if (mc.moving_task)
1645 schedule();
1646 finish_wait(&mc.waitq, &wait);
1647 return true;
1648 }
1649 }
1650 return false;
1651 }
1652
1653 /*
1654 * Take this lock when
1655 * - a code tries to modify page's memcg while it's USED.
1656 * - a code tries to modify page state accounting in a memcg.
1657 * see mem_cgroup_stolen(), too.
1658 */
1659 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1660 unsigned long *flags)
1661 {
1662 spin_lock_irqsave(&memcg->move_lock, *flags);
1663 }
1664
1665 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1666 unsigned long *flags)
1667 {
1668 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1669 }
1670
1671 #define K(x) ((x) << (PAGE_SHIFT-10))
1672 /**
1673 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1674 * @memcg: The memory cgroup that went over limit
1675 * @p: Task that is going to be killed
1676 *
1677 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1678 * enabled
1679 */
1680 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1681 {
1682 /* oom_info_lock ensures that parallel ooms do not interleave */
1683 static DEFINE_MUTEX(oom_info_lock);
1684 struct mem_cgroup *iter;
1685 unsigned int i;
1686
1687 if (!p)
1688 return;
1689
1690 mutex_lock(&oom_info_lock);
1691 rcu_read_lock();
1692
1693 pr_info("Task in ");
1694 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1695 pr_info(" killed as a result of limit of ");
1696 pr_cont_cgroup_path(memcg->css.cgroup);
1697 pr_info("\n");
1698
1699 rcu_read_unlock();
1700
1701 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1702 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1703 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1704 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1705 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1706 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1707 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1708 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1709 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1710 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1711 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1712 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1713
1714 for_each_mem_cgroup_tree(iter, memcg) {
1715 pr_info("Memory cgroup stats for ");
1716 pr_cont_cgroup_path(iter->css.cgroup);
1717 pr_cont(":");
1718
1719 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1720 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1721 continue;
1722 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1723 K(mem_cgroup_read_stat(iter, i)));
1724 }
1725
1726 for (i = 0; i < NR_LRU_LISTS; i++)
1727 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1728 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1729
1730 pr_cont("\n");
1731 }
1732 mutex_unlock(&oom_info_lock);
1733 }
1734
1735 /*
1736 * This function returns the number of memcg under hierarchy tree. Returns
1737 * 1(self count) if no children.
1738 */
1739 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1740 {
1741 int num = 0;
1742 struct mem_cgroup *iter;
1743
1744 for_each_mem_cgroup_tree(iter, memcg)
1745 num++;
1746 return num;
1747 }
1748
1749 /*
1750 * Return the memory (and swap, if configured) limit for a memcg.
1751 */
1752 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1753 {
1754 u64 limit;
1755
1756 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1757
1758 /*
1759 * Do not consider swap space if we cannot swap due to swappiness
1760 */
1761 if (mem_cgroup_swappiness(memcg)) {
1762 u64 memsw;
1763
1764 limit += total_swap_pages << PAGE_SHIFT;
1765 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1766
1767 /*
1768 * If memsw is finite and limits the amount of swap space
1769 * available to this memcg, return that limit.
1770 */
1771 limit = min(limit, memsw);
1772 }
1773
1774 return limit;
1775 }
1776
1777 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1778 int order)
1779 {
1780 struct mem_cgroup *iter;
1781 unsigned long chosen_points = 0;
1782 unsigned long totalpages;
1783 unsigned int points = 0;
1784 struct task_struct *chosen = NULL;
1785
1786 /*
1787 * If current has a pending SIGKILL or is exiting, then automatically
1788 * select it. The goal is to allow it to allocate so that it may
1789 * quickly exit and free its memory.
1790 */
1791 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1792 set_thread_flag(TIF_MEMDIE);
1793 return;
1794 }
1795
1796 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1797 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1798 for_each_mem_cgroup_tree(iter, memcg) {
1799 struct css_task_iter it;
1800 struct task_struct *task;
1801
1802 css_task_iter_start(&iter->css, &it);
1803 while ((task = css_task_iter_next(&it))) {
1804 switch (oom_scan_process_thread(task, totalpages, NULL,
1805 false)) {
1806 case OOM_SCAN_SELECT:
1807 if (chosen)
1808 put_task_struct(chosen);
1809 chosen = task;
1810 chosen_points = ULONG_MAX;
1811 get_task_struct(chosen);
1812 /* fall through */
1813 case OOM_SCAN_CONTINUE:
1814 continue;
1815 case OOM_SCAN_ABORT:
1816 css_task_iter_end(&it);
1817 mem_cgroup_iter_break(memcg, iter);
1818 if (chosen)
1819 put_task_struct(chosen);
1820 return;
1821 case OOM_SCAN_OK:
1822 break;
1823 };
1824 points = oom_badness(task, memcg, NULL, totalpages);
1825 if (!points || points < chosen_points)
1826 continue;
1827 /* Prefer thread group leaders for display purposes */
1828 if (points == chosen_points &&
1829 thread_group_leader(chosen))
1830 continue;
1831
1832 if (chosen)
1833 put_task_struct(chosen);
1834 chosen = task;
1835 chosen_points = points;
1836 get_task_struct(chosen);
1837 }
1838 css_task_iter_end(&it);
1839 }
1840
1841 if (!chosen)
1842 return;
1843 points = chosen_points * 1000 / totalpages;
1844 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1845 NULL, "Memory cgroup out of memory");
1846 }
1847
1848 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1849 gfp_t gfp_mask,
1850 unsigned long flags)
1851 {
1852 unsigned long total = 0;
1853 bool noswap = false;
1854 int loop;
1855
1856 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1857 noswap = true;
1858 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1859 noswap = true;
1860
1861 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1862 if (loop)
1863 drain_all_stock_async(memcg);
1864 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1865 /*
1866 * Allow limit shrinkers, which are triggered directly
1867 * by userspace, to catch signals and stop reclaim
1868 * after minimal progress, regardless of the margin.
1869 */
1870 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1871 break;
1872 if (mem_cgroup_margin(memcg))
1873 break;
1874 /*
1875 * If nothing was reclaimed after two attempts, there
1876 * may be no reclaimable pages in this hierarchy.
1877 */
1878 if (loop && !total)
1879 break;
1880 }
1881 return total;
1882 }
1883
1884 /**
1885 * test_mem_cgroup_node_reclaimable
1886 * @memcg: the target memcg
1887 * @nid: the node ID to be checked.
1888 * @noswap : specify true here if the user wants flle only information.
1889 *
1890 * This function returns whether the specified memcg contains any
1891 * reclaimable pages on a node. Returns true if there are any reclaimable
1892 * pages in the node.
1893 */
1894 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1895 int nid, bool noswap)
1896 {
1897 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1898 return true;
1899 if (noswap || !total_swap_pages)
1900 return false;
1901 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1902 return true;
1903 return false;
1904
1905 }
1906 #if MAX_NUMNODES > 1
1907
1908 /*
1909 * Always updating the nodemask is not very good - even if we have an empty
1910 * list or the wrong list here, we can start from some node and traverse all
1911 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1912 *
1913 */
1914 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1915 {
1916 int nid;
1917 /*
1918 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1919 * pagein/pageout changes since the last update.
1920 */
1921 if (!atomic_read(&memcg->numainfo_events))
1922 return;
1923 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1924 return;
1925
1926 /* make a nodemask where this memcg uses memory from */
1927 memcg->scan_nodes = node_states[N_MEMORY];
1928
1929 for_each_node_mask(nid, node_states[N_MEMORY]) {
1930
1931 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1932 node_clear(nid, memcg->scan_nodes);
1933 }
1934
1935 atomic_set(&memcg->numainfo_events, 0);
1936 atomic_set(&memcg->numainfo_updating, 0);
1937 }
1938
1939 /*
1940 * Selecting a node where we start reclaim from. Because what we need is just
1941 * reducing usage counter, start from anywhere is O,K. Considering
1942 * memory reclaim from current node, there are pros. and cons.
1943 *
1944 * Freeing memory from current node means freeing memory from a node which
1945 * we'll use or we've used. So, it may make LRU bad. And if several threads
1946 * hit limits, it will see a contention on a node. But freeing from remote
1947 * node means more costs for memory reclaim because of memory latency.
1948 *
1949 * Now, we use round-robin. Better algorithm is welcomed.
1950 */
1951 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1952 {
1953 int node;
1954
1955 mem_cgroup_may_update_nodemask(memcg);
1956 node = memcg->last_scanned_node;
1957
1958 node = next_node(node, memcg->scan_nodes);
1959 if (node == MAX_NUMNODES)
1960 node = first_node(memcg->scan_nodes);
1961 /*
1962 * We call this when we hit limit, not when pages are added to LRU.
1963 * No LRU may hold pages because all pages are UNEVICTABLE or
1964 * memcg is too small and all pages are not on LRU. In that case,
1965 * we use curret node.
1966 */
1967 if (unlikely(node == MAX_NUMNODES))
1968 node = numa_node_id();
1969
1970 memcg->last_scanned_node = node;
1971 return node;
1972 }
1973
1974 /*
1975 * Check all nodes whether it contains reclaimable pages or not.
1976 * For quick scan, we make use of scan_nodes. This will allow us to skip
1977 * unused nodes. But scan_nodes is lazily updated and may not cotain
1978 * enough new information. We need to do double check.
1979 */
1980 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1981 {
1982 int nid;
1983
1984 /*
1985 * quick check...making use of scan_node.
1986 * We can skip unused nodes.
1987 */
1988 if (!nodes_empty(memcg->scan_nodes)) {
1989 for (nid = first_node(memcg->scan_nodes);
1990 nid < MAX_NUMNODES;
1991 nid = next_node(nid, memcg->scan_nodes)) {
1992
1993 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1994 return true;
1995 }
1996 }
1997 /*
1998 * Check rest of nodes.
1999 */
2000 for_each_node_state(nid, N_MEMORY) {
2001 if (node_isset(nid, memcg->scan_nodes))
2002 continue;
2003 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2004 return true;
2005 }
2006 return false;
2007 }
2008
2009 #else
2010 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2011 {
2012 return 0;
2013 }
2014
2015 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2016 {
2017 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2018 }
2019 #endif
2020
2021 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2022 struct zone *zone,
2023 gfp_t gfp_mask,
2024 unsigned long *total_scanned)
2025 {
2026 struct mem_cgroup *victim = NULL;
2027 int total = 0;
2028 int loop = 0;
2029 unsigned long excess;
2030 unsigned long nr_scanned;
2031 struct mem_cgroup_reclaim_cookie reclaim = {
2032 .zone = zone,
2033 .priority = 0,
2034 };
2035
2036 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2037
2038 while (1) {
2039 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2040 if (!victim) {
2041 loop++;
2042 if (loop >= 2) {
2043 /*
2044 * If we have not been able to reclaim
2045 * anything, it might because there are
2046 * no reclaimable pages under this hierarchy
2047 */
2048 if (!total)
2049 break;
2050 /*
2051 * We want to do more targeted reclaim.
2052 * excess >> 2 is not to excessive so as to
2053 * reclaim too much, nor too less that we keep
2054 * coming back to reclaim from this cgroup
2055 */
2056 if (total >= (excess >> 2) ||
2057 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2058 break;
2059 }
2060 continue;
2061 }
2062 if (!mem_cgroup_reclaimable(victim, false))
2063 continue;
2064 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2065 zone, &nr_scanned);
2066 *total_scanned += nr_scanned;
2067 if (!res_counter_soft_limit_excess(&root_memcg->res))
2068 break;
2069 }
2070 mem_cgroup_iter_break(root_memcg, victim);
2071 return total;
2072 }
2073
2074 #ifdef CONFIG_LOCKDEP
2075 static struct lockdep_map memcg_oom_lock_dep_map = {
2076 .name = "memcg_oom_lock",
2077 };
2078 #endif
2079
2080 static DEFINE_SPINLOCK(memcg_oom_lock);
2081
2082 /*
2083 * Check OOM-Killer is already running under our hierarchy.
2084 * If someone is running, return false.
2085 */
2086 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2087 {
2088 struct mem_cgroup *iter, *failed = NULL;
2089
2090 spin_lock(&memcg_oom_lock);
2091
2092 for_each_mem_cgroup_tree(iter, memcg) {
2093 if (iter->oom_lock) {
2094 /*
2095 * this subtree of our hierarchy is already locked
2096 * so we cannot give a lock.
2097 */
2098 failed = iter;
2099 mem_cgroup_iter_break(memcg, iter);
2100 break;
2101 } else
2102 iter->oom_lock = true;
2103 }
2104
2105 if (failed) {
2106 /*
2107 * OK, we failed to lock the whole subtree so we have
2108 * to clean up what we set up to the failing subtree
2109 */
2110 for_each_mem_cgroup_tree(iter, memcg) {
2111 if (iter == failed) {
2112 mem_cgroup_iter_break(memcg, iter);
2113 break;
2114 }
2115 iter->oom_lock = false;
2116 }
2117 } else
2118 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2119
2120 spin_unlock(&memcg_oom_lock);
2121
2122 return !failed;
2123 }
2124
2125 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2126 {
2127 struct mem_cgroup *iter;
2128
2129 spin_lock(&memcg_oom_lock);
2130 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2131 for_each_mem_cgroup_tree(iter, memcg)
2132 iter->oom_lock = false;
2133 spin_unlock(&memcg_oom_lock);
2134 }
2135
2136 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2137 {
2138 struct mem_cgroup *iter;
2139
2140 for_each_mem_cgroup_tree(iter, memcg)
2141 atomic_inc(&iter->under_oom);
2142 }
2143
2144 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2145 {
2146 struct mem_cgroup *iter;
2147
2148 /*
2149 * When a new child is created while the hierarchy is under oom,
2150 * mem_cgroup_oom_lock() may not be called. We have to use
2151 * atomic_add_unless() here.
2152 */
2153 for_each_mem_cgroup_tree(iter, memcg)
2154 atomic_add_unless(&iter->under_oom, -1, 0);
2155 }
2156
2157 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2158
2159 struct oom_wait_info {
2160 struct mem_cgroup *memcg;
2161 wait_queue_t wait;
2162 };
2163
2164 static int memcg_oom_wake_function(wait_queue_t *wait,
2165 unsigned mode, int sync, void *arg)
2166 {
2167 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2168 struct mem_cgroup *oom_wait_memcg;
2169 struct oom_wait_info *oom_wait_info;
2170
2171 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2172 oom_wait_memcg = oom_wait_info->memcg;
2173
2174 /*
2175 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2176 * Then we can use css_is_ancestor without taking care of RCU.
2177 */
2178 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2179 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2180 return 0;
2181 return autoremove_wake_function(wait, mode, sync, arg);
2182 }
2183
2184 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2185 {
2186 atomic_inc(&memcg->oom_wakeups);
2187 /* for filtering, pass "memcg" as argument. */
2188 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2189 }
2190
2191 static void memcg_oom_recover(struct mem_cgroup *memcg)
2192 {
2193 if (memcg && atomic_read(&memcg->under_oom))
2194 memcg_wakeup_oom(memcg);
2195 }
2196
2197 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2198 {
2199 if (!current->memcg_oom.may_oom)
2200 return;
2201 /*
2202 * We are in the middle of the charge context here, so we
2203 * don't want to block when potentially sitting on a callstack
2204 * that holds all kinds of filesystem and mm locks.
2205 *
2206 * Also, the caller may handle a failed allocation gracefully
2207 * (like optional page cache readahead) and so an OOM killer
2208 * invocation might not even be necessary.
2209 *
2210 * That's why we don't do anything here except remember the
2211 * OOM context and then deal with it at the end of the page
2212 * fault when the stack is unwound, the locks are released,
2213 * and when we know whether the fault was overall successful.
2214 */
2215 css_get(&memcg->css);
2216 current->memcg_oom.memcg = memcg;
2217 current->memcg_oom.gfp_mask = mask;
2218 current->memcg_oom.order = order;
2219 }
2220
2221 /**
2222 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2223 * @handle: actually kill/wait or just clean up the OOM state
2224 *
2225 * This has to be called at the end of a page fault if the memcg OOM
2226 * handler was enabled.
2227 *
2228 * Memcg supports userspace OOM handling where failed allocations must
2229 * sleep on a waitqueue until the userspace task resolves the
2230 * situation. Sleeping directly in the charge context with all kinds
2231 * of locks held is not a good idea, instead we remember an OOM state
2232 * in the task and mem_cgroup_oom_synchronize() has to be called at
2233 * the end of the page fault to complete the OOM handling.
2234 *
2235 * Returns %true if an ongoing memcg OOM situation was detected and
2236 * completed, %false otherwise.
2237 */
2238 bool mem_cgroup_oom_synchronize(bool handle)
2239 {
2240 struct mem_cgroup *memcg = current->memcg_oom.memcg;
2241 struct oom_wait_info owait;
2242 bool locked;
2243
2244 /* OOM is global, do not handle */
2245 if (!memcg)
2246 return false;
2247
2248 if (!handle)
2249 goto cleanup;
2250
2251 owait.memcg = memcg;
2252 owait.wait.flags = 0;
2253 owait.wait.func = memcg_oom_wake_function;
2254 owait.wait.private = current;
2255 INIT_LIST_HEAD(&owait.wait.task_list);
2256
2257 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2258 mem_cgroup_mark_under_oom(memcg);
2259
2260 locked = mem_cgroup_oom_trylock(memcg);
2261
2262 if (locked)
2263 mem_cgroup_oom_notify(memcg);
2264
2265 if (locked && !memcg->oom_kill_disable) {
2266 mem_cgroup_unmark_under_oom(memcg);
2267 finish_wait(&memcg_oom_waitq, &owait.wait);
2268 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2269 current->memcg_oom.order);
2270 } else {
2271 schedule();
2272 mem_cgroup_unmark_under_oom(memcg);
2273 finish_wait(&memcg_oom_waitq, &owait.wait);
2274 }
2275
2276 if (locked) {
2277 mem_cgroup_oom_unlock(memcg);
2278 /*
2279 * There is no guarantee that an OOM-lock contender
2280 * sees the wakeups triggered by the OOM kill
2281 * uncharges. Wake any sleepers explicitely.
2282 */
2283 memcg_oom_recover(memcg);
2284 }
2285 cleanup:
2286 current->memcg_oom.memcg = NULL;
2287 css_put(&memcg->css);
2288 return true;
2289 }
2290
2291 /*
2292 * Currently used to update mapped file statistics, but the routine can be
2293 * generalized to update other statistics as well.
2294 *
2295 * Notes: Race condition
2296 *
2297 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2298 * it tends to be costly. But considering some conditions, we doesn't need
2299 * to do so _always_.
2300 *
2301 * Considering "charge", lock_page_cgroup() is not required because all
2302 * file-stat operations happen after a page is attached to radix-tree. There
2303 * are no race with "charge".
2304 *
2305 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2306 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2307 * if there are race with "uncharge". Statistics itself is properly handled
2308 * by flags.
2309 *
2310 * Considering "move", this is an only case we see a race. To make the race
2311 * small, we check mm->moving_account and detect there are possibility of race
2312 * If there is, we take a lock.
2313 */
2314
2315 void __mem_cgroup_begin_update_page_stat(struct page *page,
2316 bool *locked, unsigned long *flags)
2317 {
2318 struct mem_cgroup *memcg;
2319 struct page_cgroup *pc;
2320
2321 pc = lookup_page_cgroup(page);
2322 again:
2323 memcg = pc->mem_cgroup;
2324 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2325 return;
2326 /*
2327 * If this memory cgroup is not under account moving, we don't
2328 * need to take move_lock_mem_cgroup(). Because we already hold
2329 * rcu_read_lock(), any calls to move_account will be delayed until
2330 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2331 */
2332 if (!mem_cgroup_stolen(memcg))
2333 return;
2334
2335 move_lock_mem_cgroup(memcg, flags);
2336 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2337 move_unlock_mem_cgroup(memcg, flags);
2338 goto again;
2339 }
2340 *locked = true;
2341 }
2342
2343 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2344 {
2345 struct page_cgroup *pc = lookup_page_cgroup(page);
2346
2347 /*
2348 * It's guaranteed that pc->mem_cgroup never changes while
2349 * lock is held because a routine modifies pc->mem_cgroup
2350 * should take move_lock_mem_cgroup().
2351 */
2352 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2353 }
2354
2355 void mem_cgroup_update_page_stat(struct page *page,
2356 enum mem_cgroup_stat_index idx, int val)
2357 {
2358 struct mem_cgroup *memcg;
2359 struct page_cgroup *pc = lookup_page_cgroup(page);
2360 unsigned long uninitialized_var(flags);
2361
2362 if (mem_cgroup_disabled())
2363 return;
2364
2365 VM_BUG_ON(!rcu_read_lock_held());
2366 memcg = pc->mem_cgroup;
2367 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2368 return;
2369
2370 this_cpu_add(memcg->stat->count[idx], val);
2371 }
2372
2373 /*
2374 * size of first charge trial. "32" comes from vmscan.c's magic value.
2375 * TODO: maybe necessary to use big numbers in big irons.
2376 */
2377 #define CHARGE_BATCH 32U
2378 struct memcg_stock_pcp {
2379 struct mem_cgroup *cached; /* this never be root cgroup */
2380 unsigned int nr_pages;
2381 struct work_struct work;
2382 unsigned long flags;
2383 #define FLUSHING_CACHED_CHARGE 0
2384 };
2385 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2386 static DEFINE_MUTEX(percpu_charge_mutex);
2387
2388 /**
2389 * consume_stock: Try to consume stocked charge on this cpu.
2390 * @memcg: memcg to consume from.
2391 * @nr_pages: how many pages to charge.
2392 *
2393 * The charges will only happen if @memcg matches the current cpu's memcg
2394 * stock, and at least @nr_pages are available in that stock. Failure to
2395 * service an allocation will refill the stock.
2396 *
2397 * returns true if successful, false otherwise.
2398 */
2399 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2400 {
2401 struct memcg_stock_pcp *stock;
2402 bool ret = true;
2403
2404 if (nr_pages > CHARGE_BATCH)
2405 return false;
2406
2407 stock = &get_cpu_var(memcg_stock);
2408 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2409 stock->nr_pages -= nr_pages;
2410 else /* need to call res_counter_charge */
2411 ret = false;
2412 put_cpu_var(memcg_stock);
2413 return ret;
2414 }
2415
2416 /*
2417 * Returns stocks cached in percpu to res_counter and reset cached information.
2418 */
2419 static void drain_stock(struct memcg_stock_pcp *stock)
2420 {
2421 struct mem_cgroup *old = stock->cached;
2422
2423 if (stock->nr_pages) {
2424 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2425
2426 res_counter_uncharge(&old->res, bytes);
2427 if (do_swap_account)
2428 res_counter_uncharge(&old->memsw, bytes);
2429 stock->nr_pages = 0;
2430 }
2431 stock->cached = NULL;
2432 }
2433
2434 /*
2435 * This must be called under preempt disabled or must be called by
2436 * a thread which is pinned to local cpu.
2437 */
2438 static void drain_local_stock(struct work_struct *dummy)
2439 {
2440 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2441 drain_stock(stock);
2442 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2443 }
2444
2445 static void __init memcg_stock_init(void)
2446 {
2447 int cpu;
2448
2449 for_each_possible_cpu(cpu) {
2450 struct memcg_stock_pcp *stock =
2451 &per_cpu(memcg_stock, cpu);
2452 INIT_WORK(&stock->work, drain_local_stock);
2453 }
2454 }
2455
2456 /*
2457 * Cache charges(val) which is from res_counter, to local per_cpu area.
2458 * This will be consumed by consume_stock() function, later.
2459 */
2460 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2461 {
2462 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2463
2464 if (stock->cached != memcg) { /* reset if necessary */
2465 drain_stock(stock);
2466 stock->cached = memcg;
2467 }
2468 stock->nr_pages += nr_pages;
2469 put_cpu_var(memcg_stock);
2470 }
2471
2472 /*
2473 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2474 * of the hierarchy under it. sync flag says whether we should block
2475 * until the work is done.
2476 */
2477 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2478 {
2479 int cpu, curcpu;
2480
2481 /* Notify other cpus that system-wide "drain" is running */
2482 get_online_cpus();
2483 curcpu = get_cpu();
2484 for_each_online_cpu(cpu) {
2485 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2486 struct mem_cgroup *memcg;
2487
2488 memcg = stock->cached;
2489 if (!memcg || !stock->nr_pages)
2490 continue;
2491 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2492 continue;
2493 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2494 if (cpu == curcpu)
2495 drain_local_stock(&stock->work);
2496 else
2497 schedule_work_on(cpu, &stock->work);
2498 }
2499 }
2500 put_cpu();
2501
2502 if (!sync)
2503 goto out;
2504
2505 for_each_online_cpu(cpu) {
2506 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2507 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2508 flush_work(&stock->work);
2509 }
2510 out:
2511 put_online_cpus();
2512 }
2513
2514 /*
2515 * Tries to drain stocked charges in other cpus. This function is asynchronous
2516 * and just put a work per cpu for draining localy on each cpu. Caller can
2517 * expects some charges will be back to res_counter later but cannot wait for
2518 * it.
2519 */
2520 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2521 {
2522 /*
2523 * If someone calls draining, avoid adding more kworker runs.
2524 */
2525 if (!mutex_trylock(&percpu_charge_mutex))
2526 return;
2527 drain_all_stock(root_memcg, false);
2528 mutex_unlock(&percpu_charge_mutex);
2529 }
2530
2531 /* This is a synchronous drain interface. */
2532 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2533 {
2534 /* called when force_empty is called */
2535 mutex_lock(&percpu_charge_mutex);
2536 drain_all_stock(root_memcg, true);
2537 mutex_unlock(&percpu_charge_mutex);
2538 }
2539
2540 /*
2541 * This function drains percpu counter value from DEAD cpu and
2542 * move it to local cpu. Note that this function can be preempted.
2543 */
2544 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2545 {
2546 int i;
2547
2548 spin_lock(&memcg->pcp_counter_lock);
2549 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2550 long x = per_cpu(memcg->stat->count[i], cpu);
2551
2552 per_cpu(memcg->stat->count[i], cpu) = 0;
2553 memcg->nocpu_base.count[i] += x;
2554 }
2555 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2556 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2557
2558 per_cpu(memcg->stat->events[i], cpu) = 0;
2559 memcg->nocpu_base.events[i] += x;
2560 }
2561 spin_unlock(&memcg->pcp_counter_lock);
2562 }
2563
2564 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2565 unsigned long action,
2566 void *hcpu)
2567 {
2568 int cpu = (unsigned long)hcpu;
2569 struct memcg_stock_pcp *stock;
2570 struct mem_cgroup *iter;
2571
2572 if (action == CPU_ONLINE)
2573 return NOTIFY_OK;
2574
2575 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2576 return NOTIFY_OK;
2577
2578 for_each_mem_cgroup(iter)
2579 mem_cgroup_drain_pcp_counter(iter, cpu);
2580
2581 stock = &per_cpu(memcg_stock, cpu);
2582 drain_stock(stock);
2583 return NOTIFY_OK;
2584 }
2585
2586
2587 /* See __mem_cgroup_try_charge() for details */
2588 enum {
2589 CHARGE_OK, /* success */
2590 CHARGE_RETRY, /* need to retry but retry is not bad */
2591 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2592 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2593 };
2594
2595 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2596 unsigned int nr_pages, unsigned int min_pages,
2597 bool invoke_oom)
2598 {
2599 unsigned long csize = nr_pages * PAGE_SIZE;
2600 struct mem_cgroup *mem_over_limit;
2601 struct res_counter *fail_res;
2602 unsigned long flags = 0;
2603 int ret;
2604
2605 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2606
2607 if (likely(!ret)) {
2608 if (!do_swap_account)
2609 return CHARGE_OK;
2610 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2611 if (likely(!ret))
2612 return CHARGE_OK;
2613
2614 res_counter_uncharge(&memcg->res, csize);
2615 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2616 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2617 } else
2618 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2619 /*
2620 * Never reclaim on behalf of optional batching, retry with a
2621 * single page instead.
2622 */
2623 if (nr_pages > min_pages)
2624 return CHARGE_RETRY;
2625
2626 if (!(gfp_mask & __GFP_WAIT))
2627 return CHARGE_WOULDBLOCK;
2628
2629 if (gfp_mask & __GFP_NORETRY)
2630 return CHARGE_NOMEM;
2631
2632 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2633 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2634 return CHARGE_RETRY;
2635 /*
2636 * Even though the limit is exceeded at this point, reclaim
2637 * may have been able to free some pages. Retry the charge
2638 * before killing the task.
2639 *
2640 * Only for regular pages, though: huge pages are rather
2641 * unlikely to succeed so close to the limit, and we fall back
2642 * to regular pages anyway in case of failure.
2643 */
2644 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2645 return CHARGE_RETRY;
2646
2647 /*
2648 * At task move, charge accounts can be doubly counted. So, it's
2649 * better to wait until the end of task_move if something is going on.
2650 */
2651 if (mem_cgroup_wait_acct_move(mem_over_limit))
2652 return CHARGE_RETRY;
2653
2654 if (invoke_oom)
2655 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2656
2657 return CHARGE_NOMEM;
2658 }
2659
2660 /*
2661 * __mem_cgroup_try_charge() does
2662 * 1. detect memcg to be charged against from passed *mm and *ptr,
2663 * 2. update res_counter
2664 * 3. call memory reclaim if necessary.
2665 *
2666 * In some special case, if the task is fatal, fatal_signal_pending() or
2667 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2668 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2669 * as possible without any hazards. 2: all pages should have a valid
2670 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2671 * pointer, that is treated as a charge to root_mem_cgroup.
2672 *
2673 * So __mem_cgroup_try_charge() will return
2674 * 0 ... on success, filling *ptr with a valid memcg pointer.
2675 * -ENOMEM ... charge failure because of resource limits.
2676 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2677 *
2678 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2679 * the oom-killer can be invoked.
2680 */
2681 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2682 gfp_t gfp_mask,
2683 unsigned int nr_pages,
2684 struct mem_cgroup **ptr,
2685 bool oom)
2686 {
2687 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2688 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2689 struct mem_cgroup *memcg = NULL;
2690 int ret;
2691
2692 /*
2693 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2694 * in system level. So, allow to go ahead dying process in addition to
2695 * MEMDIE process.
2696 */
2697 if (unlikely(test_thread_flag(TIF_MEMDIE)
2698 || fatal_signal_pending(current)))
2699 goto bypass;
2700
2701 if (unlikely(task_in_memcg_oom(current)))
2702 goto nomem;
2703
2704 if (gfp_mask & __GFP_NOFAIL)
2705 oom = false;
2706 again:
2707 if (*ptr) { /* css should be a valid one */
2708 memcg = *ptr;
2709 if (mem_cgroup_is_root(memcg))
2710 goto done;
2711 if (consume_stock(memcg, nr_pages))
2712 goto done;
2713 css_get(&memcg->css);
2714 } else {
2715 struct task_struct *p;
2716
2717 rcu_read_lock();
2718 p = rcu_dereference(mm->owner);
2719 /*
2720 * Because we don't have task_lock(), "p" can exit.
2721 * In that case, "memcg" can point to root or p can be NULL with
2722 * race with swapoff. Then, we have small risk of mis-accouning.
2723 * But such kind of mis-account by race always happens because
2724 * we don't have cgroup_mutex(). It's overkill and we allo that
2725 * small race, here.
2726 * (*) swapoff at el will charge against mm-struct not against
2727 * task-struct. So, mm->owner can be NULL.
2728 */
2729 memcg = mem_cgroup_from_task(p);
2730 if (!memcg)
2731 memcg = root_mem_cgroup;
2732 if (mem_cgroup_is_root(memcg)) {
2733 rcu_read_unlock();
2734 goto done;
2735 }
2736 if (consume_stock(memcg, nr_pages)) {
2737 /*
2738 * It seems dagerous to access memcg without css_get().
2739 * But considering how consume_stok works, it's not
2740 * necessary. If consume_stock success, some charges
2741 * from this memcg are cached on this cpu. So, we
2742 * don't need to call css_get()/css_tryget() before
2743 * calling consume_stock().
2744 */
2745 rcu_read_unlock();
2746 goto done;
2747 }
2748 /* after here, we may be blocked. we need to get refcnt */
2749 if (!css_tryget(&memcg->css)) {
2750 rcu_read_unlock();
2751 goto again;
2752 }
2753 rcu_read_unlock();
2754 }
2755
2756 do {
2757 bool invoke_oom = oom && !nr_oom_retries;
2758
2759 /* If killed, bypass charge */
2760 if (fatal_signal_pending(current)) {
2761 css_put(&memcg->css);
2762 goto bypass;
2763 }
2764
2765 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2766 nr_pages, invoke_oom);
2767 switch (ret) {
2768 case CHARGE_OK:
2769 break;
2770 case CHARGE_RETRY: /* not in OOM situation but retry */
2771 batch = nr_pages;
2772 css_put(&memcg->css);
2773 memcg = NULL;
2774 goto again;
2775 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2776 css_put(&memcg->css);
2777 goto nomem;
2778 case CHARGE_NOMEM: /* OOM routine works */
2779 if (!oom || invoke_oom) {
2780 css_put(&memcg->css);
2781 goto nomem;
2782 }
2783 nr_oom_retries--;
2784 break;
2785 }
2786 } while (ret != CHARGE_OK);
2787
2788 if (batch > nr_pages)
2789 refill_stock(memcg, batch - nr_pages);
2790 css_put(&memcg->css);
2791 done:
2792 *ptr = memcg;
2793 return 0;
2794 nomem:
2795 if (!(gfp_mask & __GFP_NOFAIL)) {
2796 *ptr = NULL;
2797 return -ENOMEM;
2798 }
2799 bypass:
2800 *ptr = root_mem_cgroup;
2801 return -EINTR;
2802 }
2803
2804 /*
2805 * Somemtimes we have to undo a charge we got by try_charge().
2806 * This function is for that and do uncharge, put css's refcnt.
2807 * gotten by try_charge().
2808 */
2809 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2810 unsigned int nr_pages)
2811 {
2812 if (!mem_cgroup_is_root(memcg)) {
2813 unsigned long bytes = nr_pages * PAGE_SIZE;
2814
2815 res_counter_uncharge(&memcg->res, bytes);
2816 if (do_swap_account)
2817 res_counter_uncharge(&memcg->memsw, bytes);
2818 }
2819 }
2820
2821 /*
2822 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2823 * This is useful when moving usage to parent cgroup.
2824 */
2825 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2826 unsigned int nr_pages)
2827 {
2828 unsigned long bytes = nr_pages * PAGE_SIZE;
2829
2830 if (mem_cgroup_is_root(memcg))
2831 return;
2832
2833 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2834 if (do_swap_account)
2835 res_counter_uncharge_until(&memcg->memsw,
2836 memcg->memsw.parent, bytes);
2837 }
2838
2839 /*
2840 * A helper function to get mem_cgroup from ID. must be called under
2841 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2842 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2843 * called against removed memcg.)
2844 */
2845 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2846 {
2847 /* ID 0 is unused ID */
2848 if (!id)
2849 return NULL;
2850 return mem_cgroup_from_id(id);
2851 }
2852
2853 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2854 {
2855 struct mem_cgroup *memcg = NULL;
2856 struct page_cgroup *pc;
2857 unsigned short id;
2858 swp_entry_t ent;
2859
2860 VM_BUG_ON_PAGE(!PageLocked(page), page);
2861
2862 pc = lookup_page_cgroup(page);
2863 lock_page_cgroup(pc);
2864 if (PageCgroupUsed(pc)) {
2865 memcg = pc->mem_cgroup;
2866 if (memcg && !css_tryget(&memcg->css))
2867 memcg = NULL;
2868 } else if (PageSwapCache(page)) {
2869 ent.val = page_private(page);
2870 id = lookup_swap_cgroup_id(ent);
2871 rcu_read_lock();
2872 memcg = mem_cgroup_lookup(id);
2873 if (memcg && !css_tryget(&memcg->css))
2874 memcg = NULL;
2875 rcu_read_unlock();
2876 }
2877 unlock_page_cgroup(pc);
2878 return memcg;
2879 }
2880
2881 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2882 struct page *page,
2883 unsigned int nr_pages,
2884 enum charge_type ctype,
2885 bool lrucare)
2886 {
2887 struct page_cgroup *pc = lookup_page_cgroup(page);
2888 struct zone *uninitialized_var(zone);
2889 struct lruvec *lruvec;
2890 bool was_on_lru = false;
2891 bool anon;
2892
2893 lock_page_cgroup(pc);
2894 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2895 /*
2896 * we don't need page_cgroup_lock about tail pages, becase they are not
2897 * accessed by any other context at this point.
2898 */
2899
2900 /*
2901 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2902 * may already be on some other mem_cgroup's LRU. Take care of it.
2903 */
2904 if (lrucare) {
2905 zone = page_zone(page);
2906 spin_lock_irq(&zone->lru_lock);
2907 if (PageLRU(page)) {
2908 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2909 ClearPageLRU(page);
2910 del_page_from_lru_list(page, lruvec, page_lru(page));
2911 was_on_lru = true;
2912 }
2913 }
2914
2915 pc->mem_cgroup = memcg;
2916 /*
2917 * We access a page_cgroup asynchronously without lock_page_cgroup().
2918 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2919 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2920 * before USED bit, we need memory barrier here.
2921 * See mem_cgroup_add_lru_list(), etc.
2922 */
2923 smp_wmb();
2924 SetPageCgroupUsed(pc);
2925
2926 if (lrucare) {
2927 if (was_on_lru) {
2928 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2929 VM_BUG_ON_PAGE(PageLRU(page), page);
2930 SetPageLRU(page);
2931 add_page_to_lru_list(page, lruvec, page_lru(page));
2932 }
2933 spin_unlock_irq(&zone->lru_lock);
2934 }
2935
2936 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2937 anon = true;
2938 else
2939 anon = false;
2940
2941 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2942 unlock_page_cgroup(pc);
2943
2944 /*
2945 * "charge_statistics" updated event counter. Then, check it.
2946 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2947 * if they exceeds softlimit.
2948 */
2949 memcg_check_events(memcg, page);
2950 }
2951
2952 static DEFINE_MUTEX(set_limit_mutex);
2953
2954 #ifdef CONFIG_MEMCG_KMEM
2955 static DEFINE_MUTEX(activate_kmem_mutex);
2956
2957 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2958 {
2959 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2960 memcg_kmem_is_active(memcg);
2961 }
2962
2963 /*
2964 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2965 * in the memcg_cache_params struct.
2966 */
2967 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2968 {
2969 struct kmem_cache *cachep;
2970
2971 VM_BUG_ON(p->is_root_cache);
2972 cachep = p->root_cache;
2973 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
2974 }
2975
2976 #ifdef CONFIG_SLABINFO
2977 static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
2978 {
2979 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
2980 struct memcg_cache_params *params;
2981
2982 if (!memcg_can_account_kmem(memcg))
2983 return -EIO;
2984
2985 print_slabinfo_header(m);
2986
2987 mutex_lock(&memcg->slab_caches_mutex);
2988 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2989 cache_show(memcg_params_to_cache(params), m);
2990 mutex_unlock(&memcg->slab_caches_mutex);
2991
2992 return 0;
2993 }
2994 #endif
2995
2996 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2997 {
2998 struct res_counter *fail_res;
2999 struct mem_cgroup *_memcg;
3000 int ret = 0;
3001
3002 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
3003 if (ret)
3004 return ret;
3005
3006 _memcg = memcg;
3007 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
3008 &_memcg, oom_gfp_allowed(gfp));
3009
3010 if (ret == -EINTR) {
3011 /*
3012 * __mem_cgroup_try_charge() chosed to bypass to root due to
3013 * OOM kill or fatal signal. Since our only options are to
3014 * either fail the allocation or charge it to this cgroup, do
3015 * it as a temporary condition. But we can't fail. From a
3016 * kmem/slab perspective, the cache has already been selected,
3017 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3018 * our minds.
3019 *
3020 * This condition will only trigger if the task entered
3021 * memcg_charge_kmem in a sane state, but was OOM-killed during
3022 * __mem_cgroup_try_charge() above. Tasks that were already
3023 * dying when the allocation triggers should have been already
3024 * directed to the root cgroup in memcontrol.h
3025 */
3026 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3027 if (do_swap_account)
3028 res_counter_charge_nofail(&memcg->memsw, size,
3029 &fail_res);
3030 ret = 0;
3031 } else if (ret)
3032 res_counter_uncharge(&memcg->kmem, size);
3033
3034 return ret;
3035 }
3036
3037 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3038 {
3039 res_counter_uncharge(&memcg->res, size);
3040 if (do_swap_account)
3041 res_counter_uncharge(&memcg->memsw, size);
3042
3043 /* Not down to 0 */
3044 if (res_counter_uncharge(&memcg->kmem, size))
3045 return;
3046
3047 /*
3048 * Releases a reference taken in kmem_cgroup_css_offline in case
3049 * this last uncharge is racing with the offlining code or it is
3050 * outliving the memcg existence.
3051 *
3052 * The memory barrier imposed by test&clear is paired with the
3053 * explicit one in memcg_kmem_mark_dead().
3054 */
3055 if (memcg_kmem_test_and_clear_dead(memcg))
3056 css_put(&memcg->css);
3057 }
3058
3059 /*
3060 * helper for acessing a memcg's index. It will be used as an index in the
3061 * child cache array in kmem_cache, and also to derive its name. This function
3062 * will return -1 when this is not a kmem-limited memcg.
3063 */
3064 int memcg_cache_id(struct mem_cgroup *memcg)
3065 {
3066 return memcg ? memcg->kmemcg_id : -1;
3067 }
3068
3069 static size_t memcg_caches_array_size(int num_groups)
3070 {
3071 ssize_t size;
3072 if (num_groups <= 0)
3073 return 0;
3074
3075 size = 2 * num_groups;
3076 if (size < MEMCG_CACHES_MIN_SIZE)
3077 size = MEMCG_CACHES_MIN_SIZE;
3078 else if (size > MEMCG_CACHES_MAX_SIZE)
3079 size = MEMCG_CACHES_MAX_SIZE;
3080
3081 return size;
3082 }
3083
3084 /*
3085 * We should update the current array size iff all caches updates succeed. This
3086 * can only be done from the slab side. The slab mutex needs to be held when
3087 * calling this.
3088 */
3089 void memcg_update_array_size(int num)
3090 {
3091 if (num > memcg_limited_groups_array_size)
3092 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3093 }
3094
3095 static void kmem_cache_destroy_work_func(struct work_struct *w);
3096
3097 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3098 {
3099 struct memcg_cache_params *cur_params = s->memcg_params;
3100
3101 VM_BUG_ON(!is_root_cache(s));
3102
3103 if (num_groups > memcg_limited_groups_array_size) {
3104 int i;
3105 struct memcg_cache_params *new_params;
3106 ssize_t size = memcg_caches_array_size(num_groups);
3107
3108 size *= sizeof(void *);
3109 size += offsetof(struct memcg_cache_params, memcg_caches);
3110
3111 new_params = kzalloc(size, GFP_KERNEL);
3112 if (!new_params)
3113 return -ENOMEM;
3114
3115 new_params->is_root_cache = true;
3116
3117 /*
3118 * There is the chance it will be bigger than
3119 * memcg_limited_groups_array_size, if we failed an allocation
3120 * in a cache, in which case all caches updated before it, will
3121 * have a bigger array.
3122 *
3123 * But if that is the case, the data after
3124 * memcg_limited_groups_array_size is certainly unused
3125 */
3126 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3127 if (!cur_params->memcg_caches[i])
3128 continue;
3129 new_params->memcg_caches[i] =
3130 cur_params->memcg_caches[i];
3131 }
3132
3133 /*
3134 * Ideally, we would wait until all caches succeed, and only
3135 * then free the old one. But this is not worth the extra
3136 * pointer per-cache we'd have to have for this.
3137 *
3138 * It is not a big deal if some caches are left with a size
3139 * bigger than the others. And all updates will reset this
3140 * anyway.
3141 */
3142 rcu_assign_pointer(s->memcg_params, new_params);
3143 if (cur_params)
3144 kfree_rcu(cur_params, rcu_head);
3145 }
3146 return 0;
3147 }
3148
3149 int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
3150 struct kmem_cache *root_cache)
3151 {
3152 size_t size;
3153
3154 if (!memcg_kmem_enabled())
3155 return 0;
3156
3157 if (!memcg) {
3158 size = offsetof(struct memcg_cache_params, memcg_caches);
3159 size += memcg_limited_groups_array_size * sizeof(void *);
3160 } else
3161 size = sizeof(struct memcg_cache_params);
3162
3163 s->memcg_params = kzalloc(size, GFP_KERNEL);
3164 if (!s->memcg_params)
3165 return -ENOMEM;
3166
3167 if (memcg) {
3168 s->memcg_params->memcg = memcg;
3169 s->memcg_params->root_cache = root_cache;
3170 INIT_WORK(&s->memcg_params->destroy,
3171 kmem_cache_destroy_work_func);
3172 } else
3173 s->memcg_params->is_root_cache = true;
3174
3175 return 0;
3176 }
3177
3178 void memcg_free_cache_params(struct kmem_cache *s)
3179 {
3180 kfree(s->memcg_params);
3181 }
3182
3183 void memcg_register_cache(struct kmem_cache *s)
3184 {
3185 struct kmem_cache *root;
3186 struct mem_cgroup *memcg;
3187 int id;
3188
3189 if (is_root_cache(s))
3190 return;
3191
3192 /*
3193 * Holding the slab_mutex assures nobody will touch the memcg_caches
3194 * array while we are modifying it.
3195 */
3196 lockdep_assert_held(&slab_mutex);
3197
3198 root = s->memcg_params->root_cache;
3199 memcg = s->memcg_params->memcg;
3200 id = memcg_cache_id(memcg);
3201
3202 css_get(&memcg->css);
3203
3204
3205 /*
3206 * Since readers won't lock (see cache_from_memcg_idx()), we need a
3207 * barrier here to ensure nobody will see the kmem_cache partially
3208 * initialized.
3209 */
3210 smp_wmb();
3211
3212 /*
3213 * Initialize the pointer to this cache in its parent's memcg_params
3214 * before adding it to the memcg_slab_caches list, otherwise we can
3215 * fail to convert memcg_params_to_cache() while traversing the list.
3216 */
3217 VM_BUG_ON(root->memcg_params->memcg_caches[id]);
3218 root->memcg_params->memcg_caches[id] = s;
3219
3220 mutex_lock(&memcg->slab_caches_mutex);
3221 list_add(&s->memcg_params->list, &memcg->memcg_slab_caches);
3222 mutex_unlock(&memcg->slab_caches_mutex);
3223 }
3224
3225 void memcg_unregister_cache(struct kmem_cache *s)
3226 {
3227 struct kmem_cache *root;
3228 struct mem_cgroup *memcg;
3229 int id;
3230
3231 if (is_root_cache(s))
3232 return;
3233
3234 /*
3235 * Holding the slab_mutex assures nobody will touch the memcg_caches
3236 * array while we are modifying it.
3237 */
3238 lockdep_assert_held(&slab_mutex);
3239
3240 root = s->memcg_params->root_cache;
3241 memcg = s->memcg_params->memcg;
3242 id = memcg_cache_id(memcg);
3243
3244 mutex_lock(&memcg->slab_caches_mutex);
3245 list_del(&s->memcg_params->list);
3246 mutex_unlock(&memcg->slab_caches_mutex);
3247
3248 /*
3249 * Clear the pointer to this cache in its parent's memcg_params only
3250 * after removing it from the memcg_slab_caches list, otherwise we can
3251 * fail to convert memcg_params_to_cache() while traversing the list.
3252 */
3253 VM_BUG_ON(!root->memcg_params->memcg_caches[id]);
3254 root->memcg_params->memcg_caches[id] = NULL;
3255
3256 css_put(&memcg->css);
3257 }
3258
3259 /*
3260 * During the creation a new cache, we need to disable our accounting mechanism
3261 * altogether. This is true even if we are not creating, but rather just
3262 * enqueing new caches to be created.
3263 *
3264 * This is because that process will trigger allocations; some visible, like
3265 * explicit kmallocs to auxiliary data structures, name strings and internal
3266 * cache structures; some well concealed, like INIT_WORK() that can allocate
3267 * objects during debug.
3268 *
3269 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3270 * to it. This may not be a bounded recursion: since the first cache creation
3271 * failed to complete (waiting on the allocation), we'll just try to create the
3272 * cache again, failing at the same point.
3273 *
3274 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3275 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3276 * inside the following two functions.
3277 */
3278 static inline void memcg_stop_kmem_account(void)
3279 {
3280 VM_BUG_ON(!current->mm);
3281 current->memcg_kmem_skip_account++;
3282 }
3283
3284 static inline void memcg_resume_kmem_account(void)
3285 {
3286 VM_BUG_ON(!current->mm);
3287 current->memcg_kmem_skip_account--;
3288 }
3289
3290 static void kmem_cache_destroy_work_func(struct work_struct *w)
3291 {
3292 struct kmem_cache *cachep;
3293 struct memcg_cache_params *p;
3294
3295 p = container_of(w, struct memcg_cache_params, destroy);
3296
3297 cachep = memcg_params_to_cache(p);
3298
3299 /*
3300 * If we get down to 0 after shrink, we could delete right away.
3301 * However, memcg_release_pages() already puts us back in the workqueue
3302 * in that case. If we proceed deleting, we'll get a dangling
3303 * reference, and removing the object from the workqueue in that case
3304 * is unnecessary complication. We are not a fast path.
3305 *
3306 * Note that this case is fundamentally different from racing with
3307 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3308 * kmem_cache_shrink, not only we would be reinserting a dead cache
3309 * into the queue, but doing so from inside the worker racing to
3310 * destroy it.
3311 *
3312 * So if we aren't down to zero, we'll just schedule a worker and try
3313 * again
3314 */
3315 if (atomic_read(&cachep->memcg_params->nr_pages) != 0)
3316 kmem_cache_shrink(cachep);
3317 else
3318 kmem_cache_destroy(cachep);
3319 }
3320
3321 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3322 {
3323 if (!cachep->memcg_params->dead)
3324 return;
3325
3326 /*
3327 * There are many ways in which we can get here.
3328 *
3329 * We can get to a memory-pressure situation while the delayed work is
3330 * still pending to run. The vmscan shrinkers can then release all
3331 * cache memory and get us to destruction. If this is the case, we'll
3332 * be executed twice, which is a bug (the second time will execute over
3333 * bogus data). In this case, cancelling the work should be fine.
3334 *
3335 * But we can also get here from the worker itself, if
3336 * kmem_cache_shrink is enough to shake all the remaining objects and
3337 * get the page count to 0. In this case, we'll deadlock if we try to
3338 * cancel the work (the worker runs with an internal lock held, which
3339 * is the same lock we would hold for cancel_work_sync().)
3340 *
3341 * Since we can't possibly know who got us here, just refrain from
3342 * running if there is already work pending
3343 */
3344 if (work_pending(&cachep->memcg_params->destroy))
3345 return;
3346 /*
3347 * We have to defer the actual destroying to a workqueue, because
3348 * we might currently be in a context that cannot sleep.
3349 */
3350 schedule_work(&cachep->memcg_params->destroy);
3351 }
3352
3353 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3354 struct kmem_cache *s)
3355 {
3356 struct kmem_cache *new = NULL;
3357 static char *tmp_path = NULL, *tmp_name = NULL;
3358 static DEFINE_MUTEX(mutex); /* protects tmp_name */
3359
3360 BUG_ON(!memcg_can_account_kmem(memcg));
3361
3362 mutex_lock(&mutex);
3363 /*
3364 * kmem_cache_create_memcg duplicates the given name and
3365 * cgroup_name for this name requires RCU context.
3366 * This static temporary buffer is used to prevent from
3367 * pointless shortliving allocation.
3368 */
3369 if (!tmp_path || !tmp_name) {
3370 if (!tmp_path)
3371 tmp_path = kmalloc(PATH_MAX, GFP_KERNEL);
3372 if (!tmp_name)
3373 tmp_name = kmalloc(NAME_MAX + 1, GFP_KERNEL);
3374 if (!tmp_path || !tmp_name)
3375 goto out;
3376 }
3377
3378 cgroup_name(memcg->css.cgroup, tmp_name, NAME_MAX + 1);
3379 snprintf(tmp_path, PATH_MAX, "%s(%d:%s)", s->name,
3380 memcg_cache_id(memcg), tmp_name);
3381
3382 new = kmem_cache_create_memcg(memcg, tmp_path, s->object_size, s->align,
3383 (s->flags & ~SLAB_PANIC), s->ctor, s);
3384 if (new)
3385 new->allocflags |= __GFP_KMEMCG;
3386 else
3387 new = s;
3388 out:
3389 mutex_unlock(&mutex);
3390 return new;
3391 }
3392
3393 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3394 {
3395 struct kmem_cache *c;
3396 int i;
3397
3398 if (!s->memcg_params)
3399 return;
3400 if (!s->memcg_params->is_root_cache)
3401 return;
3402
3403 /*
3404 * If the cache is being destroyed, we trust that there is no one else
3405 * requesting objects from it. Even if there are, the sanity checks in
3406 * kmem_cache_destroy should caught this ill-case.
3407 *
3408 * Still, we don't want anyone else freeing memcg_caches under our
3409 * noses, which can happen if a new memcg comes to life. As usual,
3410 * we'll take the activate_kmem_mutex to protect ourselves against
3411 * this.
3412 */
3413 mutex_lock(&activate_kmem_mutex);
3414 for_each_memcg_cache_index(i) {
3415 c = cache_from_memcg_idx(s, i);
3416 if (!c)
3417 continue;
3418
3419 /*
3420 * We will now manually delete the caches, so to avoid races
3421 * we need to cancel all pending destruction workers and
3422 * proceed with destruction ourselves.
3423 *
3424 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3425 * and that could spawn the workers again: it is likely that
3426 * the cache still have active pages until this very moment.
3427 * This would lead us back to mem_cgroup_destroy_cache.
3428 *
3429 * But that will not execute at all if the "dead" flag is not
3430 * set, so flip it down to guarantee we are in control.
3431 */
3432 c->memcg_params->dead = false;
3433 cancel_work_sync(&c->memcg_params->destroy);
3434 kmem_cache_destroy(c);
3435 }
3436 mutex_unlock(&activate_kmem_mutex);
3437 }
3438
3439 struct create_work {
3440 struct mem_cgroup *memcg;
3441 struct kmem_cache *cachep;
3442 struct work_struct work;
3443 };
3444
3445 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3446 {
3447 struct kmem_cache *cachep;
3448 struct memcg_cache_params *params;
3449
3450 if (!memcg_kmem_is_active(memcg))
3451 return;
3452
3453 mutex_lock(&memcg->slab_caches_mutex);
3454 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3455 cachep = memcg_params_to_cache(params);
3456 cachep->memcg_params->dead = true;
3457 schedule_work(&cachep->memcg_params->destroy);
3458 }
3459 mutex_unlock(&memcg->slab_caches_mutex);
3460 }
3461
3462 static void memcg_create_cache_work_func(struct work_struct *w)
3463 {
3464 struct create_work *cw;
3465
3466 cw = container_of(w, struct create_work, work);
3467 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3468 css_put(&cw->memcg->css);
3469 kfree(cw);
3470 }
3471
3472 /*
3473 * Enqueue the creation of a per-memcg kmem_cache.
3474 */
3475 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3476 struct kmem_cache *cachep)
3477 {
3478 struct create_work *cw;
3479
3480 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3481 if (cw == NULL) {
3482 css_put(&memcg->css);
3483 return;
3484 }
3485
3486 cw->memcg = memcg;
3487 cw->cachep = cachep;
3488
3489 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3490 schedule_work(&cw->work);
3491 }
3492
3493 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3494 struct kmem_cache *cachep)
3495 {
3496 /*
3497 * We need to stop accounting when we kmalloc, because if the
3498 * corresponding kmalloc cache is not yet created, the first allocation
3499 * in __memcg_create_cache_enqueue will recurse.
3500 *
3501 * However, it is better to enclose the whole function. Depending on
3502 * the debugging options enabled, INIT_WORK(), for instance, can
3503 * trigger an allocation. This too, will make us recurse. Because at
3504 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3505 * the safest choice is to do it like this, wrapping the whole function.
3506 */
3507 memcg_stop_kmem_account();
3508 __memcg_create_cache_enqueue(memcg, cachep);
3509 memcg_resume_kmem_account();
3510 }
3511 /*
3512 * Return the kmem_cache we're supposed to use for a slab allocation.
3513 * We try to use the current memcg's version of the cache.
3514 *
3515 * If the cache does not exist yet, if we are the first user of it,
3516 * we either create it immediately, if possible, or create it asynchronously
3517 * in a workqueue.
3518 * In the latter case, we will let the current allocation go through with
3519 * the original cache.
3520 *
3521 * Can't be called in interrupt context or from kernel threads.
3522 * This function needs to be called with rcu_read_lock() held.
3523 */
3524 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3525 gfp_t gfp)
3526 {
3527 struct mem_cgroup *memcg;
3528 struct kmem_cache *memcg_cachep;
3529
3530 VM_BUG_ON(!cachep->memcg_params);
3531 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3532
3533 if (!current->mm || current->memcg_kmem_skip_account)
3534 return cachep;
3535
3536 rcu_read_lock();
3537 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3538
3539 if (!memcg_can_account_kmem(memcg))
3540 goto out;
3541
3542 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3543 if (likely(memcg_cachep)) {
3544 cachep = memcg_cachep;
3545 goto out;
3546 }
3547
3548 /* The corresponding put will be done in the workqueue. */
3549 if (!css_tryget(&memcg->css))
3550 goto out;
3551 rcu_read_unlock();
3552
3553 /*
3554 * If we are in a safe context (can wait, and not in interrupt
3555 * context), we could be be predictable and return right away.
3556 * This would guarantee that the allocation being performed
3557 * already belongs in the new cache.
3558 *
3559 * However, there are some clashes that can arrive from locking.
3560 * For instance, because we acquire the slab_mutex while doing
3561 * kmem_cache_dup, this means no further allocation could happen
3562 * with the slab_mutex held.
3563 *
3564 * Also, because cache creation issue get_online_cpus(), this
3565 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3566 * that ends up reversed during cpu hotplug. (cpuset allocates
3567 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3568 * better to defer everything.
3569 */
3570 memcg_create_cache_enqueue(memcg, cachep);
3571 return cachep;
3572 out:
3573 rcu_read_unlock();
3574 return cachep;
3575 }
3576 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3577
3578 /*
3579 * We need to verify if the allocation against current->mm->owner's memcg is
3580 * possible for the given order. But the page is not allocated yet, so we'll
3581 * need a further commit step to do the final arrangements.
3582 *
3583 * It is possible for the task to switch cgroups in this mean time, so at
3584 * commit time, we can't rely on task conversion any longer. We'll then use
3585 * the handle argument to return to the caller which cgroup we should commit
3586 * against. We could also return the memcg directly and avoid the pointer
3587 * passing, but a boolean return value gives better semantics considering
3588 * the compiled-out case as well.
3589 *
3590 * Returning true means the allocation is possible.
3591 */
3592 bool
3593 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3594 {
3595 struct mem_cgroup *memcg;
3596 int ret;
3597
3598 *_memcg = NULL;
3599
3600 /*
3601 * Disabling accounting is only relevant for some specific memcg
3602 * internal allocations. Therefore we would initially not have such
3603 * check here, since direct calls to the page allocator that are marked
3604 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3605 * concerned with cache allocations, and by having this test at
3606 * memcg_kmem_get_cache, we are already able to relay the allocation to
3607 * the root cache and bypass the memcg cache altogether.
3608 *
3609 * There is one exception, though: the SLUB allocator does not create
3610 * large order caches, but rather service large kmallocs directly from
3611 * the page allocator. Therefore, the following sequence when backed by
3612 * the SLUB allocator:
3613 *
3614 * memcg_stop_kmem_account();
3615 * kmalloc(<large_number>)
3616 * memcg_resume_kmem_account();
3617 *
3618 * would effectively ignore the fact that we should skip accounting,
3619 * since it will drive us directly to this function without passing
3620 * through the cache selector memcg_kmem_get_cache. Such large
3621 * allocations are extremely rare but can happen, for instance, for the
3622 * cache arrays. We bring this test here.
3623 */
3624 if (!current->mm || current->memcg_kmem_skip_account)
3625 return true;
3626
3627 memcg = try_get_mem_cgroup_from_mm(current->mm);
3628
3629 /*
3630 * very rare case described in mem_cgroup_from_task. Unfortunately there
3631 * isn't much we can do without complicating this too much, and it would
3632 * be gfp-dependent anyway. Just let it go
3633 */
3634 if (unlikely(!memcg))
3635 return true;
3636
3637 if (!memcg_can_account_kmem(memcg)) {
3638 css_put(&memcg->css);
3639 return true;
3640 }
3641
3642 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3643 if (!ret)
3644 *_memcg = memcg;
3645
3646 css_put(&memcg->css);
3647 return (ret == 0);
3648 }
3649
3650 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3651 int order)
3652 {
3653 struct page_cgroup *pc;
3654
3655 VM_BUG_ON(mem_cgroup_is_root(memcg));
3656
3657 /* The page allocation failed. Revert */
3658 if (!page) {
3659 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3660 return;
3661 }
3662
3663 pc = lookup_page_cgroup(page);
3664 lock_page_cgroup(pc);
3665 pc->mem_cgroup = memcg;
3666 SetPageCgroupUsed(pc);
3667 unlock_page_cgroup(pc);
3668 }
3669
3670 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3671 {
3672 struct mem_cgroup *memcg = NULL;
3673 struct page_cgroup *pc;
3674
3675
3676 pc = lookup_page_cgroup(page);
3677 /*
3678 * Fast unlocked return. Theoretically might have changed, have to
3679 * check again after locking.
3680 */
3681 if (!PageCgroupUsed(pc))
3682 return;
3683
3684 lock_page_cgroup(pc);
3685 if (PageCgroupUsed(pc)) {
3686 memcg = pc->mem_cgroup;
3687 ClearPageCgroupUsed(pc);
3688 }
3689 unlock_page_cgroup(pc);
3690
3691 /*
3692 * We trust that only if there is a memcg associated with the page, it
3693 * is a valid allocation
3694 */
3695 if (!memcg)
3696 return;
3697
3698 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3699 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3700 }
3701 #else
3702 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3703 {
3704 }
3705 #endif /* CONFIG_MEMCG_KMEM */
3706
3707 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3708
3709 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3710 /*
3711 * Because tail pages are not marked as "used", set it. We're under
3712 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3713 * charge/uncharge will be never happen and move_account() is done under
3714 * compound_lock(), so we don't have to take care of races.
3715 */
3716 void mem_cgroup_split_huge_fixup(struct page *head)
3717 {
3718 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3719 struct page_cgroup *pc;
3720 struct mem_cgroup *memcg;
3721 int i;
3722
3723 if (mem_cgroup_disabled())
3724 return;
3725
3726 memcg = head_pc->mem_cgroup;
3727 for (i = 1; i < HPAGE_PMD_NR; i++) {
3728 pc = head_pc + i;
3729 pc->mem_cgroup = memcg;
3730 smp_wmb();/* see __commit_charge() */
3731 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3732 }
3733 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3734 HPAGE_PMD_NR);
3735 }
3736 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3737
3738 /**
3739 * mem_cgroup_move_account - move account of the page
3740 * @page: the page
3741 * @nr_pages: number of regular pages (>1 for huge pages)
3742 * @pc: page_cgroup of the page.
3743 * @from: mem_cgroup which the page is moved from.
3744 * @to: mem_cgroup which the page is moved to. @from != @to.
3745 *
3746 * The caller must confirm following.
3747 * - page is not on LRU (isolate_page() is useful.)
3748 * - compound_lock is held when nr_pages > 1
3749 *
3750 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3751 * from old cgroup.
3752 */
3753 static int mem_cgroup_move_account(struct page *page,
3754 unsigned int nr_pages,
3755 struct page_cgroup *pc,
3756 struct mem_cgroup *from,
3757 struct mem_cgroup *to)
3758 {
3759 unsigned long flags;
3760 int ret;
3761 bool anon = PageAnon(page);
3762
3763 VM_BUG_ON(from == to);
3764 VM_BUG_ON_PAGE(PageLRU(page), page);
3765 /*
3766 * The page is isolated from LRU. So, collapse function
3767 * will not handle this page. But page splitting can happen.
3768 * Do this check under compound_page_lock(). The caller should
3769 * hold it.
3770 */
3771 ret = -EBUSY;
3772 if (nr_pages > 1 && !PageTransHuge(page))
3773 goto out;
3774
3775 lock_page_cgroup(pc);
3776
3777 ret = -EINVAL;
3778 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3779 goto unlock;
3780
3781 move_lock_mem_cgroup(from, &flags);
3782
3783 if (!anon && page_mapped(page)) {
3784 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3785 nr_pages);
3786 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3787 nr_pages);
3788 }
3789
3790 if (PageWriteback(page)) {
3791 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3792 nr_pages);
3793 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3794 nr_pages);
3795 }
3796
3797 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3798
3799 /* caller should have done css_get */
3800 pc->mem_cgroup = to;
3801 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3802 move_unlock_mem_cgroup(from, &flags);
3803 ret = 0;
3804 unlock:
3805 unlock_page_cgroup(pc);
3806 /*
3807 * check events
3808 */
3809 memcg_check_events(to, page);
3810 memcg_check_events(from, page);
3811 out:
3812 return ret;
3813 }
3814
3815 /**
3816 * mem_cgroup_move_parent - moves page to the parent group
3817 * @page: the page to move
3818 * @pc: page_cgroup of the page
3819 * @child: page's cgroup
3820 *
3821 * move charges to its parent or the root cgroup if the group has no
3822 * parent (aka use_hierarchy==0).
3823 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3824 * mem_cgroup_move_account fails) the failure is always temporary and
3825 * it signals a race with a page removal/uncharge or migration. In the
3826 * first case the page is on the way out and it will vanish from the LRU
3827 * on the next attempt and the call should be retried later.
3828 * Isolation from the LRU fails only if page has been isolated from
3829 * the LRU since we looked at it and that usually means either global
3830 * reclaim or migration going on. The page will either get back to the
3831 * LRU or vanish.
3832 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3833 * (!PageCgroupUsed) or moved to a different group. The page will
3834 * disappear in the next attempt.
3835 */
3836 static int mem_cgroup_move_parent(struct page *page,
3837 struct page_cgroup *pc,
3838 struct mem_cgroup *child)
3839 {
3840 struct mem_cgroup *parent;
3841 unsigned int nr_pages;
3842 unsigned long uninitialized_var(flags);
3843 int ret;
3844
3845 VM_BUG_ON(mem_cgroup_is_root(child));
3846
3847 ret = -EBUSY;
3848 if (!get_page_unless_zero(page))
3849 goto out;
3850 if (isolate_lru_page(page))
3851 goto put;
3852
3853 nr_pages = hpage_nr_pages(page);
3854
3855 parent = parent_mem_cgroup(child);
3856 /*
3857 * If no parent, move charges to root cgroup.
3858 */
3859 if (!parent)
3860 parent = root_mem_cgroup;
3861
3862 if (nr_pages > 1) {
3863 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3864 flags = compound_lock_irqsave(page);
3865 }
3866
3867 ret = mem_cgroup_move_account(page, nr_pages,
3868 pc, child, parent);
3869 if (!ret)
3870 __mem_cgroup_cancel_local_charge(child, nr_pages);
3871
3872 if (nr_pages > 1)
3873 compound_unlock_irqrestore(page, flags);
3874 putback_lru_page(page);
3875 put:
3876 put_page(page);
3877 out:
3878 return ret;
3879 }
3880
3881 int mem_cgroup_newpage_charge(struct page *page,
3882 struct mm_struct *mm, gfp_t gfp_mask)
3883 {
3884 struct mem_cgroup *memcg = NULL;
3885 unsigned int nr_pages = 1;
3886 bool oom = true;
3887 int ret;
3888
3889 if (mem_cgroup_disabled())
3890 return 0;
3891
3892 VM_BUG_ON_PAGE(page_mapped(page), page);
3893 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
3894 VM_BUG_ON(!mm);
3895
3896 if (PageTransHuge(page)) {
3897 nr_pages <<= compound_order(page);
3898 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3899 /*
3900 * Never OOM-kill a process for a huge page. The
3901 * fault handler will fall back to regular pages.
3902 */
3903 oom = false;
3904 }
3905
3906 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3907 if (ret == -ENOMEM)
3908 return ret;
3909 __mem_cgroup_commit_charge(memcg, page, nr_pages,
3910 MEM_CGROUP_CHARGE_TYPE_ANON, false);
3911 return 0;
3912 }
3913
3914 /*
3915 * While swap-in, try_charge -> commit or cancel, the page is locked.
3916 * And when try_charge() successfully returns, one refcnt to memcg without
3917 * struct page_cgroup is acquired. This refcnt will be consumed by
3918 * "commit()" or removed by "cancel()"
3919 */
3920 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3921 struct page *page,
3922 gfp_t mask,
3923 struct mem_cgroup **memcgp)
3924 {
3925 struct mem_cgroup *memcg;
3926 struct page_cgroup *pc;
3927 int ret;
3928
3929 pc = lookup_page_cgroup(page);
3930 /*
3931 * Every swap fault against a single page tries to charge the
3932 * page, bail as early as possible. shmem_unuse() encounters
3933 * already charged pages, too. The USED bit is protected by
3934 * the page lock, which serializes swap cache removal, which
3935 * in turn serializes uncharging.
3936 */
3937 if (PageCgroupUsed(pc))
3938 return 0;
3939 if (!do_swap_account)
3940 goto charge_cur_mm;
3941 memcg = try_get_mem_cgroup_from_page(page);
3942 if (!memcg)
3943 goto charge_cur_mm;
3944 *memcgp = memcg;
3945 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3946 css_put(&memcg->css);
3947 if (ret == -EINTR)
3948 ret = 0;
3949 return ret;
3950 charge_cur_mm:
3951 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3952 if (ret == -EINTR)
3953 ret = 0;
3954 return ret;
3955 }
3956
3957 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3958 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3959 {
3960 *memcgp = NULL;
3961 if (mem_cgroup_disabled())
3962 return 0;
3963 /*
3964 * A racing thread's fault, or swapoff, may have already
3965 * updated the pte, and even removed page from swap cache: in
3966 * those cases unuse_pte()'s pte_same() test will fail; but
3967 * there's also a KSM case which does need to charge the page.
3968 */
3969 if (!PageSwapCache(page)) {
3970 int ret;
3971
3972 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
3973 if (ret == -EINTR)
3974 ret = 0;
3975 return ret;
3976 }
3977 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3978 }
3979
3980 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3981 {
3982 if (mem_cgroup_disabled())
3983 return;
3984 if (!memcg)
3985 return;
3986 __mem_cgroup_cancel_charge(memcg, 1);
3987 }
3988
3989 static void
3990 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
3991 enum charge_type ctype)
3992 {
3993 if (mem_cgroup_disabled())
3994 return;
3995 if (!memcg)
3996 return;
3997
3998 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3999 /*
4000 * Now swap is on-memory. This means this page may be
4001 * counted both as mem and swap....double count.
4002 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4003 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4004 * may call delete_from_swap_cache() before reach here.
4005 */
4006 if (do_swap_account && PageSwapCache(page)) {
4007 swp_entry_t ent = {.val = page_private(page)};
4008 mem_cgroup_uncharge_swap(ent);
4009 }
4010 }
4011
4012 void mem_cgroup_commit_charge_swapin(struct page *page,
4013 struct mem_cgroup *memcg)
4014 {
4015 __mem_cgroup_commit_charge_swapin(page, memcg,
4016 MEM_CGROUP_CHARGE_TYPE_ANON);
4017 }
4018
4019 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4020 gfp_t gfp_mask)
4021 {
4022 struct mem_cgroup *memcg = NULL;
4023 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4024 int ret;
4025
4026 if (mem_cgroup_disabled())
4027 return 0;
4028 if (PageCompound(page))
4029 return 0;
4030
4031 if (!PageSwapCache(page)) {
4032 /*
4033 * Page cache insertions can happen without an actual
4034 * task context, e.g. during disk probing on boot.
4035 */
4036 if (!mm)
4037 memcg = root_mem_cgroup;
4038 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &memcg, true);
4039 if (ret != -ENOMEM)
4040 __mem_cgroup_commit_charge(memcg, page, 1, type, false);
4041 } else { /* page is swapcache/shmem */
4042 ret = __mem_cgroup_try_charge_swapin(mm, page,
4043 gfp_mask, &memcg);
4044 if (!ret)
4045 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4046 }
4047 return ret;
4048 }
4049
4050 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4051 unsigned int nr_pages,
4052 const enum charge_type ctype)
4053 {
4054 struct memcg_batch_info *batch = NULL;
4055 bool uncharge_memsw = true;
4056
4057 /* If swapout, usage of swap doesn't decrease */
4058 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4059 uncharge_memsw = false;
4060
4061 batch = &current->memcg_batch;
4062 /*
4063 * In usual, we do css_get() when we remember memcg pointer.
4064 * But in this case, we keep res->usage until end of a series of
4065 * uncharges. Then, it's ok to ignore memcg's refcnt.
4066 */
4067 if (!batch->memcg)
4068 batch->memcg = memcg;
4069 /*
4070 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4071 * In those cases, all pages freed continuously can be expected to be in
4072 * the same cgroup and we have chance to coalesce uncharges.
4073 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4074 * because we want to do uncharge as soon as possible.
4075 */
4076
4077 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4078 goto direct_uncharge;
4079
4080 if (nr_pages > 1)
4081 goto direct_uncharge;
4082
4083 /*
4084 * In typical case, batch->memcg == mem. This means we can
4085 * merge a series of uncharges to an uncharge of res_counter.
4086 * If not, we uncharge res_counter ony by one.
4087 */
4088 if (batch->memcg != memcg)
4089 goto direct_uncharge;
4090 /* remember freed charge and uncharge it later */
4091 batch->nr_pages++;
4092 if (uncharge_memsw)
4093 batch->memsw_nr_pages++;
4094 return;
4095 direct_uncharge:
4096 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4097 if (uncharge_memsw)
4098 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4099 if (unlikely(batch->memcg != memcg))
4100 memcg_oom_recover(memcg);
4101 }
4102
4103 /*
4104 * uncharge if !page_mapped(page)
4105 */
4106 static struct mem_cgroup *
4107 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4108 bool end_migration)
4109 {
4110 struct mem_cgroup *memcg = NULL;
4111 unsigned int nr_pages = 1;
4112 struct page_cgroup *pc;
4113 bool anon;
4114
4115 if (mem_cgroup_disabled())
4116 return NULL;
4117
4118 if (PageTransHuge(page)) {
4119 nr_pages <<= compound_order(page);
4120 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
4121 }
4122 /*
4123 * Check if our page_cgroup is valid
4124 */
4125 pc = lookup_page_cgroup(page);
4126 if (unlikely(!PageCgroupUsed(pc)))
4127 return NULL;
4128
4129 lock_page_cgroup(pc);
4130
4131 memcg = pc->mem_cgroup;
4132
4133 if (!PageCgroupUsed(pc))
4134 goto unlock_out;
4135
4136 anon = PageAnon(page);
4137
4138 switch (ctype) {
4139 case MEM_CGROUP_CHARGE_TYPE_ANON:
4140 /*
4141 * Generally PageAnon tells if it's the anon statistics to be
4142 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4143 * used before page reached the stage of being marked PageAnon.
4144 */
4145 anon = true;
4146 /* fallthrough */
4147 case MEM_CGROUP_CHARGE_TYPE_DROP:
4148 /* See mem_cgroup_prepare_migration() */
4149 if (page_mapped(page))
4150 goto unlock_out;
4151 /*
4152 * Pages under migration may not be uncharged. But
4153 * end_migration() /must/ be the one uncharging the
4154 * unused post-migration page and so it has to call
4155 * here with the migration bit still set. See the
4156 * res_counter handling below.
4157 */
4158 if (!end_migration && PageCgroupMigration(pc))
4159 goto unlock_out;
4160 break;
4161 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4162 if (!PageAnon(page)) { /* Shared memory */
4163 if (page->mapping && !page_is_file_cache(page))
4164 goto unlock_out;
4165 } else if (page_mapped(page)) /* Anon */
4166 goto unlock_out;
4167 break;
4168 default:
4169 break;
4170 }
4171
4172 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4173
4174 ClearPageCgroupUsed(pc);
4175 /*
4176 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4177 * freed from LRU. This is safe because uncharged page is expected not
4178 * to be reused (freed soon). Exception is SwapCache, it's handled by
4179 * special functions.
4180 */
4181
4182 unlock_page_cgroup(pc);
4183 /*
4184 * even after unlock, we have memcg->res.usage here and this memcg
4185 * will never be freed, so it's safe to call css_get().
4186 */
4187 memcg_check_events(memcg, page);
4188 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4189 mem_cgroup_swap_statistics(memcg, true);
4190 css_get(&memcg->css);
4191 }
4192 /*
4193 * Migration does not charge the res_counter for the
4194 * replacement page, so leave it alone when phasing out the
4195 * page that is unused after the migration.
4196 */
4197 if (!end_migration && !mem_cgroup_is_root(memcg))
4198 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4199
4200 return memcg;
4201
4202 unlock_out:
4203 unlock_page_cgroup(pc);
4204 return NULL;
4205 }
4206
4207 void mem_cgroup_uncharge_page(struct page *page)
4208 {
4209 /* early check. */
4210 if (page_mapped(page))
4211 return;
4212 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
4213 /*
4214 * If the page is in swap cache, uncharge should be deferred
4215 * to the swap path, which also properly accounts swap usage
4216 * and handles memcg lifetime.
4217 *
4218 * Note that this check is not stable and reclaim may add the
4219 * page to swap cache at any time after this. However, if the
4220 * page is not in swap cache by the time page->mapcount hits
4221 * 0, there won't be any page table references to the swap
4222 * slot, and reclaim will free it and not actually write the
4223 * page to disk.
4224 */
4225 if (PageSwapCache(page))
4226 return;
4227 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4228 }
4229
4230 void mem_cgroup_uncharge_cache_page(struct page *page)
4231 {
4232 VM_BUG_ON_PAGE(page_mapped(page), page);
4233 VM_BUG_ON_PAGE(page->mapping, page);
4234 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4235 }
4236
4237 /*
4238 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4239 * In that cases, pages are freed continuously and we can expect pages
4240 * are in the same memcg. All these calls itself limits the number of
4241 * pages freed at once, then uncharge_start/end() is called properly.
4242 * This may be called prural(2) times in a context,
4243 */
4244
4245 void mem_cgroup_uncharge_start(void)
4246 {
4247 current->memcg_batch.do_batch++;
4248 /* We can do nest. */
4249 if (current->memcg_batch.do_batch == 1) {
4250 current->memcg_batch.memcg = NULL;
4251 current->memcg_batch.nr_pages = 0;
4252 current->memcg_batch.memsw_nr_pages = 0;
4253 }
4254 }
4255
4256 void mem_cgroup_uncharge_end(void)
4257 {
4258 struct memcg_batch_info *batch = &current->memcg_batch;
4259
4260 if (!batch->do_batch)
4261 return;
4262
4263 batch->do_batch--;
4264 if (batch->do_batch) /* If stacked, do nothing. */
4265 return;
4266
4267 if (!batch->memcg)
4268 return;
4269 /*
4270 * This "batch->memcg" is valid without any css_get/put etc...
4271 * bacause we hide charges behind us.
4272 */
4273 if (batch->nr_pages)
4274 res_counter_uncharge(&batch->memcg->res,
4275 batch->nr_pages * PAGE_SIZE);
4276 if (batch->memsw_nr_pages)
4277 res_counter_uncharge(&batch->memcg->memsw,
4278 batch->memsw_nr_pages * PAGE_SIZE);
4279 memcg_oom_recover(batch->memcg);
4280 /* forget this pointer (for sanity check) */
4281 batch->memcg = NULL;
4282 }
4283
4284 #ifdef CONFIG_SWAP
4285 /*
4286 * called after __delete_from_swap_cache() and drop "page" account.
4287 * memcg information is recorded to swap_cgroup of "ent"
4288 */
4289 void
4290 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4291 {
4292 struct mem_cgroup *memcg;
4293 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4294
4295 if (!swapout) /* this was a swap cache but the swap is unused ! */
4296 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4297
4298 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4299
4300 /*
4301 * record memcg information, if swapout && memcg != NULL,
4302 * css_get() was called in uncharge().
4303 */
4304 if (do_swap_account && swapout && memcg)
4305 swap_cgroup_record(ent, mem_cgroup_id(memcg));
4306 }
4307 #endif
4308
4309 #ifdef CONFIG_MEMCG_SWAP
4310 /*
4311 * called from swap_entry_free(). remove record in swap_cgroup and
4312 * uncharge "memsw" account.
4313 */
4314 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4315 {
4316 struct mem_cgroup *memcg;
4317 unsigned short id;
4318
4319 if (!do_swap_account)
4320 return;
4321
4322 id = swap_cgroup_record(ent, 0);
4323 rcu_read_lock();
4324 memcg = mem_cgroup_lookup(id);
4325 if (memcg) {
4326 /*
4327 * We uncharge this because swap is freed.
4328 * This memcg can be obsolete one. We avoid calling css_tryget
4329 */
4330 if (!mem_cgroup_is_root(memcg))
4331 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4332 mem_cgroup_swap_statistics(memcg, false);
4333 css_put(&memcg->css);
4334 }
4335 rcu_read_unlock();
4336 }
4337
4338 /**
4339 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4340 * @entry: swap entry to be moved
4341 * @from: mem_cgroup which the entry is moved from
4342 * @to: mem_cgroup which the entry is moved to
4343 *
4344 * It succeeds only when the swap_cgroup's record for this entry is the same
4345 * as the mem_cgroup's id of @from.
4346 *
4347 * Returns 0 on success, -EINVAL on failure.
4348 *
4349 * The caller must have charged to @to, IOW, called res_counter_charge() about
4350 * both res and memsw, and called css_get().
4351 */
4352 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4353 struct mem_cgroup *from, struct mem_cgroup *to)
4354 {
4355 unsigned short old_id, new_id;
4356
4357 old_id = mem_cgroup_id(from);
4358 new_id = mem_cgroup_id(to);
4359
4360 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4361 mem_cgroup_swap_statistics(from, false);
4362 mem_cgroup_swap_statistics(to, true);
4363 /*
4364 * This function is only called from task migration context now.
4365 * It postpones res_counter and refcount handling till the end
4366 * of task migration(mem_cgroup_clear_mc()) for performance
4367 * improvement. But we cannot postpone css_get(to) because if
4368 * the process that has been moved to @to does swap-in, the
4369 * refcount of @to might be decreased to 0.
4370 *
4371 * We are in attach() phase, so the cgroup is guaranteed to be
4372 * alive, so we can just call css_get().
4373 */
4374 css_get(&to->css);
4375 return 0;
4376 }
4377 return -EINVAL;
4378 }
4379 #else
4380 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4381 struct mem_cgroup *from, struct mem_cgroup *to)
4382 {
4383 return -EINVAL;
4384 }
4385 #endif
4386
4387 /*
4388 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4389 * page belongs to.
4390 */
4391 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4392 struct mem_cgroup **memcgp)
4393 {
4394 struct mem_cgroup *memcg = NULL;
4395 unsigned int nr_pages = 1;
4396 struct page_cgroup *pc;
4397 enum charge_type ctype;
4398
4399 *memcgp = NULL;
4400
4401 if (mem_cgroup_disabled())
4402 return;
4403
4404 if (PageTransHuge(page))
4405 nr_pages <<= compound_order(page);
4406
4407 pc = lookup_page_cgroup(page);
4408 lock_page_cgroup(pc);
4409 if (PageCgroupUsed(pc)) {
4410 memcg = pc->mem_cgroup;
4411 css_get(&memcg->css);
4412 /*
4413 * At migrating an anonymous page, its mapcount goes down
4414 * to 0 and uncharge() will be called. But, even if it's fully
4415 * unmapped, migration may fail and this page has to be
4416 * charged again. We set MIGRATION flag here and delay uncharge
4417 * until end_migration() is called
4418 *
4419 * Corner Case Thinking
4420 * A)
4421 * When the old page was mapped as Anon and it's unmap-and-freed
4422 * while migration was ongoing.
4423 * If unmap finds the old page, uncharge() of it will be delayed
4424 * until end_migration(). If unmap finds a new page, it's
4425 * uncharged when it make mapcount to be 1->0. If unmap code
4426 * finds swap_migration_entry, the new page will not be mapped
4427 * and end_migration() will find it(mapcount==0).
4428 *
4429 * B)
4430 * When the old page was mapped but migraion fails, the kernel
4431 * remaps it. A charge for it is kept by MIGRATION flag even
4432 * if mapcount goes down to 0. We can do remap successfully
4433 * without charging it again.
4434 *
4435 * C)
4436 * The "old" page is under lock_page() until the end of
4437 * migration, so, the old page itself will not be swapped-out.
4438 * If the new page is swapped out before end_migraton, our
4439 * hook to usual swap-out path will catch the event.
4440 */
4441 if (PageAnon(page))
4442 SetPageCgroupMigration(pc);
4443 }
4444 unlock_page_cgroup(pc);
4445 /*
4446 * If the page is not charged at this point,
4447 * we return here.
4448 */
4449 if (!memcg)
4450 return;
4451
4452 *memcgp = memcg;
4453 /*
4454 * We charge new page before it's used/mapped. So, even if unlock_page()
4455 * is called before end_migration, we can catch all events on this new
4456 * page. In the case new page is migrated but not remapped, new page's
4457 * mapcount will be finally 0 and we call uncharge in end_migration().
4458 */
4459 if (PageAnon(page))
4460 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4461 else
4462 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4463 /*
4464 * The page is committed to the memcg, but it's not actually
4465 * charged to the res_counter since we plan on replacing the
4466 * old one and only one page is going to be left afterwards.
4467 */
4468 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4469 }
4470
4471 /* remove redundant charge if migration failed*/
4472 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4473 struct page *oldpage, struct page *newpage, bool migration_ok)
4474 {
4475 struct page *used, *unused;
4476 struct page_cgroup *pc;
4477 bool anon;
4478
4479 if (!memcg)
4480 return;
4481
4482 if (!migration_ok) {
4483 used = oldpage;
4484 unused = newpage;
4485 } else {
4486 used = newpage;
4487 unused = oldpage;
4488 }
4489 anon = PageAnon(used);
4490 __mem_cgroup_uncharge_common(unused,
4491 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4492 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4493 true);
4494 css_put(&memcg->css);
4495 /*
4496 * We disallowed uncharge of pages under migration because mapcount
4497 * of the page goes down to zero, temporarly.
4498 * Clear the flag and check the page should be charged.
4499 */
4500 pc = lookup_page_cgroup(oldpage);
4501 lock_page_cgroup(pc);
4502 ClearPageCgroupMigration(pc);
4503 unlock_page_cgroup(pc);
4504
4505 /*
4506 * If a page is a file cache, radix-tree replacement is very atomic
4507 * and we can skip this check. When it was an Anon page, its mapcount
4508 * goes down to 0. But because we added MIGRATION flage, it's not
4509 * uncharged yet. There are several case but page->mapcount check
4510 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4511 * check. (see prepare_charge() also)
4512 */
4513 if (anon)
4514 mem_cgroup_uncharge_page(used);
4515 }
4516
4517 /*
4518 * At replace page cache, newpage is not under any memcg but it's on
4519 * LRU. So, this function doesn't touch res_counter but handles LRU
4520 * in correct way. Both pages are locked so we cannot race with uncharge.
4521 */
4522 void mem_cgroup_replace_page_cache(struct page *oldpage,
4523 struct page *newpage)
4524 {
4525 struct mem_cgroup *memcg = NULL;
4526 struct page_cgroup *pc;
4527 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4528
4529 if (mem_cgroup_disabled())
4530 return;
4531
4532 pc = lookup_page_cgroup(oldpage);
4533 /* fix accounting on old pages */
4534 lock_page_cgroup(pc);
4535 if (PageCgroupUsed(pc)) {
4536 memcg = pc->mem_cgroup;
4537 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4538 ClearPageCgroupUsed(pc);
4539 }
4540 unlock_page_cgroup(pc);
4541
4542 /*
4543 * When called from shmem_replace_page(), in some cases the
4544 * oldpage has already been charged, and in some cases not.
4545 */
4546 if (!memcg)
4547 return;
4548 /*
4549 * Even if newpage->mapping was NULL before starting replacement,
4550 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4551 * LRU while we overwrite pc->mem_cgroup.
4552 */
4553 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4554 }
4555
4556 #ifdef CONFIG_DEBUG_VM
4557 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4558 {
4559 struct page_cgroup *pc;
4560
4561 pc = lookup_page_cgroup(page);
4562 /*
4563 * Can be NULL while feeding pages into the page allocator for
4564 * the first time, i.e. during boot or memory hotplug;
4565 * or when mem_cgroup_disabled().
4566 */
4567 if (likely(pc) && PageCgroupUsed(pc))
4568 return pc;
4569 return NULL;
4570 }
4571
4572 bool mem_cgroup_bad_page_check(struct page *page)
4573 {
4574 if (mem_cgroup_disabled())
4575 return false;
4576
4577 return lookup_page_cgroup_used(page) != NULL;
4578 }
4579
4580 void mem_cgroup_print_bad_page(struct page *page)
4581 {
4582 struct page_cgroup *pc;
4583
4584 pc = lookup_page_cgroup_used(page);
4585 if (pc) {
4586 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4587 pc, pc->flags, pc->mem_cgroup);
4588 }
4589 }
4590 #endif
4591
4592 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4593 unsigned long long val)
4594 {
4595 int retry_count;
4596 u64 memswlimit, memlimit;
4597 int ret = 0;
4598 int children = mem_cgroup_count_children(memcg);
4599 u64 curusage, oldusage;
4600 int enlarge;
4601
4602 /*
4603 * For keeping hierarchical_reclaim simple, how long we should retry
4604 * is depends on callers. We set our retry-count to be function
4605 * of # of children which we should visit in this loop.
4606 */
4607 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4608
4609 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4610
4611 enlarge = 0;
4612 while (retry_count) {
4613 if (signal_pending(current)) {
4614 ret = -EINTR;
4615 break;
4616 }
4617 /*
4618 * Rather than hide all in some function, I do this in
4619 * open coded manner. You see what this really does.
4620 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4621 */
4622 mutex_lock(&set_limit_mutex);
4623 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4624 if (memswlimit < val) {
4625 ret = -EINVAL;
4626 mutex_unlock(&set_limit_mutex);
4627 break;
4628 }
4629
4630 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4631 if (memlimit < val)
4632 enlarge = 1;
4633
4634 ret = res_counter_set_limit(&memcg->res, val);
4635 if (!ret) {
4636 if (memswlimit == val)
4637 memcg->memsw_is_minimum = true;
4638 else
4639 memcg->memsw_is_minimum = false;
4640 }
4641 mutex_unlock(&set_limit_mutex);
4642
4643 if (!ret)
4644 break;
4645
4646 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4647 MEM_CGROUP_RECLAIM_SHRINK);
4648 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4649 /* Usage is reduced ? */
4650 if (curusage >= oldusage)
4651 retry_count--;
4652 else
4653 oldusage = curusage;
4654 }
4655 if (!ret && enlarge)
4656 memcg_oom_recover(memcg);
4657
4658 return ret;
4659 }
4660
4661 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4662 unsigned long long val)
4663 {
4664 int retry_count;
4665 u64 memlimit, memswlimit, oldusage, curusage;
4666 int children = mem_cgroup_count_children(memcg);
4667 int ret = -EBUSY;
4668 int enlarge = 0;
4669
4670 /* see mem_cgroup_resize_res_limit */
4671 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4672 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4673 while (retry_count) {
4674 if (signal_pending(current)) {
4675 ret = -EINTR;
4676 break;
4677 }
4678 /*
4679 * Rather than hide all in some function, I do this in
4680 * open coded manner. You see what this really does.
4681 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4682 */
4683 mutex_lock(&set_limit_mutex);
4684 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4685 if (memlimit > val) {
4686 ret = -EINVAL;
4687 mutex_unlock(&set_limit_mutex);
4688 break;
4689 }
4690 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4691 if (memswlimit < val)
4692 enlarge = 1;
4693 ret = res_counter_set_limit(&memcg->memsw, val);
4694 if (!ret) {
4695 if (memlimit == val)
4696 memcg->memsw_is_minimum = true;
4697 else
4698 memcg->memsw_is_minimum = false;
4699 }
4700 mutex_unlock(&set_limit_mutex);
4701
4702 if (!ret)
4703 break;
4704
4705 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4706 MEM_CGROUP_RECLAIM_NOSWAP |
4707 MEM_CGROUP_RECLAIM_SHRINK);
4708 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4709 /* Usage is reduced ? */
4710 if (curusage >= oldusage)
4711 retry_count--;
4712 else
4713 oldusage = curusage;
4714 }
4715 if (!ret && enlarge)
4716 memcg_oom_recover(memcg);
4717 return ret;
4718 }
4719
4720 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4721 gfp_t gfp_mask,
4722 unsigned long *total_scanned)
4723 {
4724 unsigned long nr_reclaimed = 0;
4725 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4726 unsigned long reclaimed;
4727 int loop = 0;
4728 struct mem_cgroup_tree_per_zone *mctz;
4729 unsigned long long excess;
4730 unsigned long nr_scanned;
4731
4732 if (order > 0)
4733 return 0;
4734
4735 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4736 /*
4737 * This loop can run a while, specially if mem_cgroup's continuously
4738 * keep exceeding their soft limit and putting the system under
4739 * pressure
4740 */
4741 do {
4742 if (next_mz)
4743 mz = next_mz;
4744 else
4745 mz = mem_cgroup_largest_soft_limit_node(mctz);
4746 if (!mz)
4747 break;
4748
4749 nr_scanned = 0;
4750 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4751 gfp_mask, &nr_scanned);
4752 nr_reclaimed += reclaimed;
4753 *total_scanned += nr_scanned;
4754 spin_lock(&mctz->lock);
4755
4756 /*
4757 * If we failed to reclaim anything from this memory cgroup
4758 * it is time to move on to the next cgroup
4759 */
4760 next_mz = NULL;
4761 if (!reclaimed) {
4762 do {
4763 /*
4764 * Loop until we find yet another one.
4765 *
4766 * By the time we get the soft_limit lock
4767 * again, someone might have aded the
4768 * group back on the RB tree. Iterate to
4769 * make sure we get a different mem.
4770 * mem_cgroup_largest_soft_limit_node returns
4771 * NULL if no other cgroup is present on
4772 * the tree
4773 */
4774 next_mz =
4775 __mem_cgroup_largest_soft_limit_node(mctz);
4776 if (next_mz == mz)
4777 css_put(&next_mz->memcg->css);
4778 else /* next_mz == NULL or other memcg */
4779 break;
4780 } while (1);
4781 }
4782 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4783 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4784 /*
4785 * One school of thought says that we should not add
4786 * back the node to the tree if reclaim returns 0.
4787 * But our reclaim could return 0, simply because due
4788 * to priority we are exposing a smaller subset of
4789 * memory to reclaim from. Consider this as a longer
4790 * term TODO.
4791 */
4792 /* If excess == 0, no tree ops */
4793 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4794 spin_unlock(&mctz->lock);
4795 css_put(&mz->memcg->css);
4796 loop++;
4797 /*
4798 * Could not reclaim anything and there are no more
4799 * mem cgroups to try or we seem to be looping without
4800 * reclaiming anything.
4801 */
4802 if (!nr_reclaimed &&
4803 (next_mz == NULL ||
4804 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4805 break;
4806 } while (!nr_reclaimed);
4807 if (next_mz)
4808 css_put(&next_mz->memcg->css);
4809 return nr_reclaimed;
4810 }
4811
4812 /**
4813 * mem_cgroup_force_empty_list - clears LRU of a group
4814 * @memcg: group to clear
4815 * @node: NUMA node
4816 * @zid: zone id
4817 * @lru: lru to to clear
4818 *
4819 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4820 * reclaim the pages page themselves - pages are moved to the parent (or root)
4821 * group.
4822 */
4823 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4824 int node, int zid, enum lru_list lru)
4825 {
4826 struct lruvec *lruvec;
4827 unsigned long flags;
4828 struct list_head *list;
4829 struct page *busy;
4830 struct zone *zone;
4831
4832 zone = &NODE_DATA(node)->node_zones[zid];
4833 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4834 list = &lruvec->lists[lru];
4835
4836 busy = NULL;
4837 do {
4838 struct page_cgroup *pc;
4839 struct page *page;
4840
4841 spin_lock_irqsave(&zone->lru_lock, flags);
4842 if (list_empty(list)) {
4843 spin_unlock_irqrestore(&zone->lru_lock, flags);
4844 break;
4845 }
4846 page = list_entry(list->prev, struct page, lru);
4847 if (busy == page) {
4848 list_move(&page->lru, list);
4849 busy = NULL;
4850 spin_unlock_irqrestore(&zone->lru_lock, flags);
4851 continue;
4852 }
4853 spin_unlock_irqrestore(&zone->lru_lock, flags);
4854
4855 pc = lookup_page_cgroup(page);
4856
4857 if (mem_cgroup_move_parent(page, pc, memcg)) {
4858 /* found lock contention or "pc" is obsolete. */
4859 busy = page;
4860 cond_resched();
4861 } else
4862 busy = NULL;
4863 } while (!list_empty(list));
4864 }
4865
4866 /*
4867 * make mem_cgroup's charge to be 0 if there is no task by moving
4868 * all the charges and pages to the parent.
4869 * This enables deleting this mem_cgroup.
4870 *
4871 * Caller is responsible for holding css reference on the memcg.
4872 */
4873 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4874 {
4875 int node, zid;
4876 u64 usage;
4877
4878 do {
4879 /* This is for making all *used* pages to be on LRU. */
4880 lru_add_drain_all();
4881 drain_all_stock_sync(memcg);
4882 mem_cgroup_start_move(memcg);
4883 for_each_node_state(node, N_MEMORY) {
4884 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4885 enum lru_list lru;
4886 for_each_lru(lru) {
4887 mem_cgroup_force_empty_list(memcg,
4888 node, zid, lru);
4889 }
4890 }
4891 }
4892 mem_cgroup_end_move(memcg);
4893 memcg_oom_recover(memcg);
4894 cond_resched();
4895
4896 /*
4897 * Kernel memory may not necessarily be trackable to a specific
4898 * process. So they are not migrated, and therefore we can't
4899 * expect their value to drop to 0 here.
4900 * Having res filled up with kmem only is enough.
4901 *
4902 * This is a safety check because mem_cgroup_force_empty_list
4903 * could have raced with mem_cgroup_replace_page_cache callers
4904 * so the lru seemed empty but the page could have been added
4905 * right after the check. RES_USAGE should be safe as we always
4906 * charge before adding to the LRU.
4907 */
4908 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4909 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4910 } while (usage > 0);
4911 }
4912
4913 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4914 {
4915 lockdep_assert_held(&memcg_create_mutex);
4916 /*
4917 * The lock does not prevent addition or deletion to the list
4918 * of children, but it prevents a new child from being
4919 * initialized based on this parent in css_online(), so it's
4920 * enough to decide whether hierarchically inherited
4921 * attributes can still be changed or not.
4922 */
4923 return memcg->use_hierarchy &&
4924 !list_empty(&memcg->css.cgroup->children);
4925 }
4926
4927 /*
4928 * Reclaims as many pages from the given memcg as possible and moves
4929 * the rest to the parent.
4930 *
4931 * Caller is responsible for holding css reference for memcg.
4932 */
4933 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4934 {
4935 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4936 struct cgroup *cgrp = memcg->css.cgroup;
4937
4938 /* returns EBUSY if there is a task or if we come here twice. */
4939 if (cgroup_has_tasks(cgrp) || !list_empty(&cgrp->children))
4940 return -EBUSY;
4941
4942 /* we call try-to-free pages for make this cgroup empty */
4943 lru_add_drain_all();
4944 /* try to free all pages in this cgroup */
4945 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4946 int progress;
4947
4948 if (signal_pending(current))
4949 return -EINTR;
4950
4951 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4952 false);
4953 if (!progress) {
4954 nr_retries--;
4955 /* maybe some writeback is necessary */
4956 congestion_wait(BLK_RW_ASYNC, HZ/10);
4957 }
4958
4959 }
4960 lru_add_drain();
4961 mem_cgroup_reparent_charges(memcg);
4962
4963 return 0;
4964 }
4965
4966 static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
4967 unsigned int event)
4968 {
4969 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4970
4971 if (mem_cgroup_is_root(memcg))
4972 return -EINVAL;
4973 return mem_cgroup_force_empty(memcg);
4974 }
4975
4976 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
4977 struct cftype *cft)
4978 {
4979 return mem_cgroup_from_css(css)->use_hierarchy;
4980 }
4981
4982 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
4983 struct cftype *cft, u64 val)
4984 {
4985 int retval = 0;
4986 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4987 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
4988
4989 mutex_lock(&memcg_create_mutex);
4990
4991 if (memcg->use_hierarchy == val)
4992 goto out;
4993
4994 /*
4995 * If parent's use_hierarchy is set, we can't make any modifications
4996 * in the child subtrees. If it is unset, then the change can
4997 * occur, provided the current cgroup has no children.
4998 *
4999 * For the root cgroup, parent_mem is NULL, we allow value to be
5000 * set if there are no children.
5001 */
5002 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5003 (val == 1 || val == 0)) {
5004 if (list_empty(&memcg->css.cgroup->children))
5005 memcg->use_hierarchy = val;
5006 else
5007 retval = -EBUSY;
5008 } else
5009 retval = -EINVAL;
5010
5011 out:
5012 mutex_unlock(&memcg_create_mutex);
5013
5014 return retval;
5015 }
5016
5017
5018 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5019 enum mem_cgroup_stat_index idx)
5020 {
5021 struct mem_cgroup *iter;
5022 long val = 0;
5023
5024 /* Per-cpu values can be negative, use a signed accumulator */
5025 for_each_mem_cgroup_tree(iter, memcg)
5026 val += mem_cgroup_read_stat(iter, idx);
5027
5028 if (val < 0) /* race ? */
5029 val = 0;
5030 return val;
5031 }
5032
5033 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5034 {
5035 u64 val;
5036
5037 if (!mem_cgroup_is_root(memcg)) {
5038 if (!swap)
5039 return res_counter_read_u64(&memcg->res, RES_USAGE);
5040 else
5041 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5042 }
5043
5044 /*
5045 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5046 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5047 */
5048 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5049 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5050
5051 if (swap)
5052 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5053
5054 return val << PAGE_SHIFT;
5055 }
5056
5057 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
5058 struct cftype *cft)
5059 {
5060 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5061 u64 val;
5062 int name;
5063 enum res_type type;
5064
5065 type = MEMFILE_TYPE(cft->private);
5066 name = MEMFILE_ATTR(cft->private);
5067
5068 switch (type) {
5069 case _MEM:
5070 if (name == RES_USAGE)
5071 val = mem_cgroup_usage(memcg, false);
5072 else
5073 val = res_counter_read_u64(&memcg->res, name);
5074 break;
5075 case _MEMSWAP:
5076 if (name == RES_USAGE)
5077 val = mem_cgroup_usage(memcg, true);
5078 else
5079 val = res_counter_read_u64(&memcg->memsw, name);
5080 break;
5081 case _KMEM:
5082 val = res_counter_read_u64(&memcg->kmem, name);
5083 break;
5084 default:
5085 BUG();
5086 }
5087
5088 return val;
5089 }
5090
5091 #ifdef CONFIG_MEMCG_KMEM
5092 /* should be called with activate_kmem_mutex held */
5093 static int __memcg_activate_kmem(struct mem_cgroup *memcg,
5094 unsigned long long limit)
5095 {
5096 int err = 0;
5097 int memcg_id;
5098
5099 if (memcg_kmem_is_active(memcg))
5100 return 0;
5101
5102 /*
5103 * We are going to allocate memory for data shared by all memory
5104 * cgroups so let's stop accounting here.
5105 */
5106 memcg_stop_kmem_account();
5107
5108 /*
5109 * For simplicity, we won't allow this to be disabled. It also can't
5110 * be changed if the cgroup has children already, or if tasks had
5111 * already joined.
5112 *
5113 * If tasks join before we set the limit, a person looking at
5114 * kmem.usage_in_bytes will have no way to determine when it took
5115 * place, which makes the value quite meaningless.
5116 *
5117 * After it first became limited, changes in the value of the limit are
5118 * of course permitted.
5119 */
5120 mutex_lock(&memcg_create_mutex);
5121 if (cgroup_has_tasks(memcg->css.cgroup) || memcg_has_children(memcg))
5122 err = -EBUSY;
5123 mutex_unlock(&memcg_create_mutex);
5124 if (err)
5125 goto out;
5126
5127 memcg_id = ida_simple_get(&kmem_limited_groups,
5128 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
5129 if (memcg_id < 0) {
5130 err = memcg_id;
5131 goto out;
5132 }
5133
5134 /*
5135 * Make sure we have enough space for this cgroup in each root cache's
5136 * memcg_params.
5137 */
5138 err = memcg_update_all_caches(memcg_id + 1);
5139 if (err)
5140 goto out_rmid;
5141
5142 memcg->kmemcg_id = memcg_id;
5143 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
5144 mutex_init(&memcg->slab_caches_mutex);
5145
5146 /*
5147 * We couldn't have accounted to this cgroup, because it hasn't got the
5148 * active bit set yet, so this should succeed.
5149 */
5150 err = res_counter_set_limit(&memcg->kmem, limit);
5151 VM_BUG_ON(err);
5152
5153 static_key_slow_inc(&memcg_kmem_enabled_key);
5154 /*
5155 * Setting the active bit after enabling static branching will
5156 * guarantee no one starts accounting before all call sites are
5157 * patched.
5158 */
5159 memcg_kmem_set_active(memcg);
5160 out:
5161 memcg_resume_kmem_account();
5162 return err;
5163
5164 out_rmid:
5165 ida_simple_remove(&kmem_limited_groups, memcg_id);
5166 goto out;
5167 }
5168
5169 static int memcg_activate_kmem(struct mem_cgroup *memcg,
5170 unsigned long long limit)
5171 {
5172 int ret;
5173
5174 mutex_lock(&activate_kmem_mutex);
5175 ret = __memcg_activate_kmem(memcg, limit);
5176 mutex_unlock(&activate_kmem_mutex);
5177 return ret;
5178 }
5179
5180 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
5181 unsigned long long val)
5182 {
5183 int ret;
5184
5185 if (!memcg_kmem_is_active(memcg))
5186 ret = memcg_activate_kmem(memcg, val);
5187 else
5188 ret = res_counter_set_limit(&memcg->kmem, val);
5189 return ret;
5190 }
5191
5192 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5193 {
5194 int ret = 0;
5195 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5196
5197 if (!parent)
5198 return 0;
5199
5200 mutex_lock(&activate_kmem_mutex);
5201 /*
5202 * If the parent cgroup is not kmem-active now, it cannot be activated
5203 * after this point, because it has at least one child already.
5204 */
5205 if (memcg_kmem_is_active(parent))
5206 ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
5207 mutex_unlock(&activate_kmem_mutex);
5208 return ret;
5209 }
5210 #else
5211 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
5212 unsigned long long val)
5213 {
5214 return -EINVAL;
5215 }
5216 #endif /* CONFIG_MEMCG_KMEM */
5217
5218 /*
5219 * The user of this function is...
5220 * RES_LIMIT.
5221 */
5222 static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5223 char *buffer)
5224 {
5225 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5226 enum res_type type;
5227 int name;
5228 unsigned long long val;
5229 int ret;
5230
5231 type = MEMFILE_TYPE(cft->private);
5232 name = MEMFILE_ATTR(cft->private);
5233
5234 switch (name) {
5235 case RES_LIMIT:
5236 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5237 ret = -EINVAL;
5238 break;
5239 }
5240 /* This function does all necessary parse...reuse it */
5241 ret = res_counter_memparse_write_strategy(buffer, &val);
5242 if (ret)
5243 break;
5244 if (type == _MEM)
5245 ret = mem_cgroup_resize_limit(memcg, val);
5246 else if (type == _MEMSWAP)
5247 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5248 else if (type == _KMEM)
5249 ret = memcg_update_kmem_limit(memcg, val);
5250 else
5251 return -EINVAL;
5252 break;
5253 case RES_SOFT_LIMIT:
5254 ret = res_counter_memparse_write_strategy(buffer, &val);
5255 if (ret)
5256 break;
5257 /*
5258 * For memsw, soft limits are hard to implement in terms
5259 * of semantics, for now, we support soft limits for
5260 * control without swap
5261 */
5262 if (type == _MEM)
5263 ret = res_counter_set_soft_limit(&memcg->res, val);
5264 else
5265 ret = -EINVAL;
5266 break;
5267 default:
5268 ret = -EINVAL; /* should be BUG() ? */
5269 break;
5270 }
5271 return ret;
5272 }
5273
5274 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5275 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5276 {
5277 unsigned long long min_limit, min_memsw_limit, tmp;
5278
5279 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5280 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5281 if (!memcg->use_hierarchy)
5282 goto out;
5283
5284 while (css_parent(&memcg->css)) {
5285 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5286 if (!memcg->use_hierarchy)
5287 break;
5288 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5289 min_limit = min(min_limit, tmp);
5290 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5291 min_memsw_limit = min(min_memsw_limit, tmp);
5292 }
5293 out:
5294 *mem_limit = min_limit;
5295 *memsw_limit = min_memsw_limit;
5296 }
5297
5298 static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5299 {
5300 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5301 int name;
5302 enum res_type type;
5303
5304 type = MEMFILE_TYPE(event);
5305 name = MEMFILE_ATTR(event);
5306
5307 switch (name) {
5308 case RES_MAX_USAGE:
5309 if (type == _MEM)
5310 res_counter_reset_max(&memcg->res);
5311 else if (type == _MEMSWAP)
5312 res_counter_reset_max(&memcg->memsw);
5313 else if (type == _KMEM)
5314 res_counter_reset_max(&memcg->kmem);
5315 else
5316 return -EINVAL;
5317 break;
5318 case RES_FAILCNT:
5319 if (type == _MEM)
5320 res_counter_reset_failcnt(&memcg->res);
5321 else if (type == _MEMSWAP)
5322 res_counter_reset_failcnt(&memcg->memsw);
5323 else if (type == _KMEM)
5324 res_counter_reset_failcnt(&memcg->kmem);
5325 else
5326 return -EINVAL;
5327 break;
5328 }
5329
5330 return 0;
5331 }
5332
5333 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5334 struct cftype *cft)
5335 {
5336 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5337 }
5338
5339 #ifdef CONFIG_MMU
5340 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5341 struct cftype *cft, u64 val)
5342 {
5343 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5344
5345 if (val >= (1 << NR_MOVE_TYPE))
5346 return -EINVAL;
5347
5348 /*
5349 * No kind of locking is needed in here, because ->can_attach() will
5350 * check this value once in the beginning of the process, and then carry
5351 * on with stale data. This means that changes to this value will only
5352 * affect task migrations starting after the change.
5353 */
5354 memcg->move_charge_at_immigrate = val;
5355 return 0;
5356 }
5357 #else
5358 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5359 struct cftype *cft, u64 val)
5360 {
5361 return -ENOSYS;
5362 }
5363 #endif
5364
5365 #ifdef CONFIG_NUMA
5366 static int memcg_numa_stat_show(struct seq_file *m, void *v)
5367 {
5368 struct numa_stat {
5369 const char *name;
5370 unsigned int lru_mask;
5371 };
5372
5373 static const struct numa_stat stats[] = {
5374 { "total", LRU_ALL },
5375 { "file", LRU_ALL_FILE },
5376 { "anon", LRU_ALL_ANON },
5377 { "unevictable", BIT(LRU_UNEVICTABLE) },
5378 };
5379 const struct numa_stat *stat;
5380 int nid;
5381 unsigned long nr;
5382 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5383
5384 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5385 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
5386 seq_printf(m, "%s=%lu", stat->name, nr);
5387 for_each_node_state(nid, N_MEMORY) {
5388 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5389 stat->lru_mask);
5390 seq_printf(m, " N%d=%lu", nid, nr);
5391 }
5392 seq_putc(m, '\n');
5393 }
5394
5395 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5396 struct mem_cgroup *iter;
5397
5398 nr = 0;
5399 for_each_mem_cgroup_tree(iter, memcg)
5400 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
5401 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
5402 for_each_node_state(nid, N_MEMORY) {
5403 nr = 0;
5404 for_each_mem_cgroup_tree(iter, memcg)
5405 nr += mem_cgroup_node_nr_lru_pages(
5406 iter, nid, stat->lru_mask);
5407 seq_printf(m, " N%d=%lu", nid, nr);
5408 }
5409 seq_putc(m, '\n');
5410 }
5411
5412 return 0;
5413 }
5414 #endif /* CONFIG_NUMA */
5415
5416 static inline void mem_cgroup_lru_names_not_uptodate(void)
5417 {
5418 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5419 }
5420
5421 static int memcg_stat_show(struct seq_file *m, void *v)
5422 {
5423 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5424 struct mem_cgroup *mi;
5425 unsigned int i;
5426
5427 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5428 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5429 continue;
5430 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5431 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5432 }
5433
5434 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5435 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5436 mem_cgroup_read_events(memcg, i));
5437
5438 for (i = 0; i < NR_LRU_LISTS; i++)
5439 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5440 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5441
5442 /* Hierarchical information */
5443 {
5444 unsigned long long limit, memsw_limit;
5445 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5446 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5447 if (do_swap_account)
5448 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5449 memsw_limit);
5450 }
5451
5452 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5453 long long val = 0;
5454
5455 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5456 continue;
5457 for_each_mem_cgroup_tree(mi, memcg)
5458 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5459 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5460 }
5461
5462 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5463 unsigned long long val = 0;
5464
5465 for_each_mem_cgroup_tree(mi, memcg)
5466 val += mem_cgroup_read_events(mi, i);
5467 seq_printf(m, "total_%s %llu\n",
5468 mem_cgroup_events_names[i], val);
5469 }
5470
5471 for (i = 0; i < NR_LRU_LISTS; i++) {
5472 unsigned long long val = 0;
5473
5474 for_each_mem_cgroup_tree(mi, memcg)
5475 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5476 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5477 }
5478
5479 #ifdef CONFIG_DEBUG_VM
5480 {
5481 int nid, zid;
5482 struct mem_cgroup_per_zone *mz;
5483 struct zone_reclaim_stat *rstat;
5484 unsigned long recent_rotated[2] = {0, 0};
5485 unsigned long recent_scanned[2] = {0, 0};
5486
5487 for_each_online_node(nid)
5488 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5489 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5490 rstat = &mz->lruvec.reclaim_stat;
5491
5492 recent_rotated[0] += rstat->recent_rotated[0];
5493 recent_rotated[1] += rstat->recent_rotated[1];
5494 recent_scanned[0] += rstat->recent_scanned[0];
5495 recent_scanned[1] += rstat->recent_scanned[1];
5496 }
5497 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5498 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5499 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5500 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5501 }
5502 #endif
5503
5504 return 0;
5505 }
5506
5507 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5508 struct cftype *cft)
5509 {
5510 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5511
5512 return mem_cgroup_swappiness(memcg);
5513 }
5514
5515 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5516 struct cftype *cft, u64 val)
5517 {
5518 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5519 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5520
5521 if (val > 100 || !parent)
5522 return -EINVAL;
5523
5524 mutex_lock(&memcg_create_mutex);
5525
5526 /* If under hierarchy, only empty-root can set this value */
5527 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5528 mutex_unlock(&memcg_create_mutex);
5529 return -EINVAL;
5530 }
5531
5532 memcg->swappiness = val;
5533
5534 mutex_unlock(&memcg_create_mutex);
5535
5536 return 0;
5537 }
5538
5539 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5540 {
5541 struct mem_cgroup_threshold_ary *t;
5542 u64 usage;
5543 int i;
5544
5545 rcu_read_lock();
5546 if (!swap)
5547 t = rcu_dereference(memcg->thresholds.primary);
5548 else
5549 t = rcu_dereference(memcg->memsw_thresholds.primary);
5550
5551 if (!t)
5552 goto unlock;
5553
5554 usage = mem_cgroup_usage(memcg, swap);
5555
5556 /*
5557 * current_threshold points to threshold just below or equal to usage.
5558 * If it's not true, a threshold was crossed after last
5559 * call of __mem_cgroup_threshold().
5560 */
5561 i = t->current_threshold;
5562
5563 /*
5564 * Iterate backward over array of thresholds starting from
5565 * current_threshold and check if a threshold is crossed.
5566 * If none of thresholds below usage is crossed, we read
5567 * only one element of the array here.
5568 */
5569 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5570 eventfd_signal(t->entries[i].eventfd, 1);
5571
5572 /* i = current_threshold + 1 */
5573 i++;
5574
5575 /*
5576 * Iterate forward over array of thresholds starting from
5577 * current_threshold+1 and check if a threshold is crossed.
5578 * If none of thresholds above usage is crossed, we read
5579 * only one element of the array here.
5580 */
5581 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5582 eventfd_signal(t->entries[i].eventfd, 1);
5583
5584 /* Update current_threshold */
5585 t->current_threshold = i - 1;
5586 unlock:
5587 rcu_read_unlock();
5588 }
5589
5590 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5591 {
5592 while (memcg) {
5593 __mem_cgroup_threshold(memcg, false);
5594 if (do_swap_account)
5595 __mem_cgroup_threshold(memcg, true);
5596
5597 memcg = parent_mem_cgroup(memcg);
5598 }
5599 }
5600
5601 static int compare_thresholds(const void *a, const void *b)
5602 {
5603 const struct mem_cgroup_threshold *_a = a;
5604 const struct mem_cgroup_threshold *_b = b;
5605
5606 if (_a->threshold > _b->threshold)
5607 return 1;
5608
5609 if (_a->threshold < _b->threshold)
5610 return -1;
5611
5612 return 0;
5613 }
5614
5615 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5616 {
5617 struct mem_cgroup_eventfd_list *ev;
5618
5619 list_for_each_entry(ev, &memcg->oom_notify, list)
5620 eventfd_signal(ev->eventfd, 1);
5621 return 0;
5622 }
5623
5624 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5625 {
5626 struct mem_cgroup *iter;
5627
5628 for_each_mem_cgroup_tree(iter, memcg)
5629 mem_cgroup_oom_notify_cb(iter);
5630 }
5631
5632 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
5633 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
5634 {
5635 struct mem_cgroup_thresholds *thresholds;
5636 struct mem_cgroup_threshold_ary *new;
5637 u64 threshold, usage;
5638 int i, size, ret;
5639
5640 ret = res_counter_memparse_write_strategy(args, &threshold);
5641 if (ret)
5642 return ret;
5643
5644 mutex_lock(&memcg->thresholds_lock);
5645
5646 if (type == _MEM)
5647 thresholds = &memcg->thresholds;
5648 else if (type == _MEMSWAP)
5649 thresholds = &memcg->memsw_thresholds;
5650 else
5651 BUG();
5652
5653 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5654
5655 /* Check if a threshold crossed before adding a new one */
5656 if (thresholds->primary)
5657 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5658
5659 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5660
5661 /* Allocate memory for new array of thresholds */
5662 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5663 GFP_KERNEL);
5664 if (!new) {
5665 ret = -ENOMEM;
5666 goto unlock;
5667 }
5668 new->size = size;
5669
5670 /* Copy thresholds (if any) to new array */
5671 if (thresholds->primary) {
5672 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5673 sizeof(struct mem_cgroup_threshold));
5674 }
5675
5676 /* Add new threshold */
5677 new->entries[size - 1].eventfd = eventfd;
5678 new->entries[size - 1].threshold = threshold;
5679
5680 /* Sort thresholds. Registering of new threshold isn't time-critical */
5681 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5682 compare_thresholds, NULL);
5683
5684 /* Find current threshold */
5685 new->current_threshold = -1;
5686 for (i = 0; i < size; i++) {
5687 if (new->entries[i].threshold <= usage) {
5688 /*
5689 * new->current_threshold will not be used until
5690 * rcu_assign_pointer(), so it's safe to increment
5691 * it here.
5692 */
5693 ++new->current_threshold;
5694 } else
5695 break;
5696 }
5697
5698 /* Free old spare buffer and save old primary buffer as spare */
5699 kfree(thresholds->spare);
5700 thresholds->spare = thresholds->primary;
5701
5702 rcu_assign_pointer(thresholds->primary, new);
5703
5704 /* To be sure that nobody uses thresholds */
5705 synchronize_rcu();
5706
5707 unlock:
5708 mutex_unlock(&memcg->thresholds_lock);
5709
5710 return ret;
5711 }
5712
5713 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
5714 struct eventfd_ctx *eventfd, const char *args)
5715 {
5716 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
5717 }
5718
5719 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
5720 struct eventfd_ctx *eventfd, const char *args)
5721 {
5722 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
5723 }
5724
5725 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5726 struct eventfd_ctx *eventfd, enum res_type type)
5727 {
5728 struct mem_cgroup_thresholds *thresholds;
5729 struct mem_cgroup_threshold_ary *new;
5730 u64 usage;
5731 int i, j, size;
5732
5733 mutex_lock(&memcg->thresholds_lock);
5734 if (type == _MEM)
5735 thresholds = &memcg->thresholds;
5736 else if (type == _MEMSWAP)
5737 thresholds = &memcg->memsw_thresholds;
5738 else
5739 BUG();
5740
5741 if (!thresholds->primary)
5742 goto unlock;
5743
5744 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5745
5746 /* Check if a threshold crossed before removing */
5747 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5748
5749 /* Calculate new number of threshold */
5750 size = 0;
5751 for (i = 0; i < thresholds->primary->size; i++) {
5752 if (thresholds->primary->entries[i].eventfd != eventfd)
5753 size++;
5754 }
5755
5756 new = thresholds->spare;
5757
5758 /* Set thresholds array to NULL if we don't have thresholds */
5759 if (!size) {
5760 kfree(new);
5761 new = NULL;
5762 goto swap_buffers;
5763 }
5764
5765 new->size = size;
5766
5767 /* Copy thresholds and find current threshold */
5768 new->current_threshold = -1;
5769 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5770 if (thresholds->primary->entries[i].eventfd == eventfd)
5771 continue;
5772
5773 new->entries[j] = thresholds->primary->entries[i];
5774 if (new->entries[j].threshold <= usage) {
5775 /*
5776 * new->current_threshold will not be used
5777 * until rcu_assign_pointer(), so it's safe to increment
5778 * it here.
5779 */
5780 ++new->current_threshold;
5781 }
5782 j++;
5783 }
5784
5785 swap_buffers:
5786 /* Swap primary and spare array */
5787 thresholds->spare = thresholds->primary;
5788 /* If all events are unregistered, free the spare array */
5789 if (!new) {
5790 kfree(thresholds->spare);
5791 thresholds->spare = NULL;
5792 }
5793
5794 rcu_assign_pointer(thresholds->primary, new);
5795
5796 /* To be sure that nobody uses thresholds */
5797 synchronize_rcu();
5798 unlock:
5799 mutex_unlock(&memcg->thresholds_lock);
5800 }
5801
5802 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5803 struct eventfd_ctx *eventfd)
5804 {
5805 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
5806 }
5807
5808 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5809 struct eventfd_ctx *eventfd)
5810 {
5811 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
5812 }
5813
5814 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
5815 struct eventfd_ctx *eventfd, const char *args)
5816 {
5817 struct mem_cgroup_eventfd_list *event;
5818
5819 event = kmalloc(sizeof(*event), GFP_KERNEL);
5820 if (!event)
5821 return -ENOMEM;
5822
5823 spin_lock(&memcg_oom_lock);
5824
5825 event->eventfd = eventfd;
5826 list_add(&event->list, &memcg->oom_notify);
5827
5828 /* already in OOM ? */
5829 if (atomic_read(&memcg->under_oom))
5830 eventfd_signal(eventfd, 1);
5831 spin_unlock(&memcg_oom_lock);
5832
5833 return 0;
5834 }
5835
5836 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
5837 struct eventfd_ctx *eventfd)
5838 {
5839 struct mem_cgroup_eventfd_list *ev, *tmp;
5840
5841 spin_lock(&memcg_oom_lock);
5842
5843 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5844 if (ev->eventfd == eventfd) {
5845 list_del(&ev->list);
5846 kfree(ev);
5847 }
5848 }
5849
5850 spin_unlock(&memcg_oom_lock);
5851 }
5852
5853 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
5854 {
5855 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5856
5857 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
5858 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
5859 return 0;
5860 }
5861
5862 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5863 struct cftype *cft, u64 val)
5864 {
5865 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5866 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5867
5868 /* cannot set to root cgroup and only 0 and 1 are allowed */
5869 if (!parent || !((val == 0) || (val == 1)))
5870 return -EINVAL;
5871
5872 mutex_lock(&memcg_create_mutex);
5873 /* oom-kill-disable is a flag for subhierarchy. */
5874 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5875 mutex_unlock(&memcg_create_mutex);
5876 return -EINVAL;
5877 }
5878 memcg->oom_kill_disable = val;
5879 if (!val)
5880 memcg_oom_recover(memcg);
5881 mutex_unlock(&memcg_create_mutex);
5882 return 0;
5883 }
5884
5885 #ifdef CONFIG_MEMCG_KMEM
5886 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5887 {
5888 int ret;
5889
5890 memcg->kmemcg_id = -1;
5891 ret = memcg_propagate_kmem(memcg);
5892 if (ret)
5893 return ret;
5894
5895 return mem_cgroup_sockets_init(memcg, ss);
5896 }
5897
5898 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5899 {
5900 mem_cgroup_sockets_destroy(memcg);
5901 }
5902
5903 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5904 {
5905 if (!memcg_kmem_is_active(memcg))
5906 return;
5907
5908 /*
5909 * kmem charges can outlive the cgroup. In the case of slab
5910 * pages, for instance, a page contain objects from various
5911 * processes. As we prevent from taking a reference for every
5912 * such allocation we have to be careful when doing uncharge
5913 * (see memcg_uncharge_kmem) and here during offlining.
5914 *
5915 * The idea is that that only the _last_ uncharge which sees
5916 * the dead memcg will drop the last reference. An additional
5917 * reference is taken here before the group is marked dead
5918 * which is then paired with css_put during uncharge resp. here.
5919 *
5920 * Although this might sound strange as this path is called from
5921 * css_offline() when the referencemight have dropped down to 0
5922 * and shouldn't be incremented anymore (css_tryget would fail)
5923 * we do not have other options because of the kmem allocations
5924 * lifetime.
5925 */
5926 css_get(&memcg->css);
5927
5928 memcg_kmem_mark_dead(memcg);
5929
5930 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5931 return;
5932
5933 if (memcg_kmem_test_and_clear_dead(memcg))
5934 css_put(&memcg->css);
5935 }
5936 #else
5937 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5938 {
5939 return 0;
5940 }
5941
5942 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5943 {
5944 }
5945
5946 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5947 {
5948 }
5949 #endif
5950
5951 /*
5952 * DO NOT USE IN NEW FILES.
5953 *
5954 * "cgroup.event_control" implementation.
5955 *
5956 * This is way over-engineered. It tries to support fully configurable
5957 * events for each user. Such level of flexibility is completely
5958 * unnecessary especially in the light of the planned unified hierarchy.
5959 *
5960 * Please deprecate this and replace with something simpler if at all
5961 * possible.
5962 */
5963
5964 /*
5965 * Unregister event and free resources.
5966 *
5967 * Gets called from workqueue.
5968 */
5969 static void memcg_event_remove(struct work_struct *work)
5970 {
5971 struct mem_cgroup_event *event =
5972 container_of(work, struct mem_cgroup_event, remove);
5973 struct mem_cgroup *memcg = event->memcg;
5974
5975 remove_wait_queue(event->wqh, &event->wait);
5976
5977 event->unregister_event(memcg, event->eventfd);
5978
5979 /* Notify userspace the event is going away. */
5980 eventfd_signal(event->eventfd, 1);
5981
5982 eventfd_ctx_put(event->eventfd);
5983 kfree(event);
5984 css_put(&memcg->css);
5985 }
5986
5987 /*
5988 * Gets called on POLLHUP on eventfd when user closes it.
5989 *
5990 * Called with wqh->lock held and interrupts disabled.
5991 */
5992 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
5993 int sync, void *key)
5994 {
5995 struct mem_cgroup_event *event =
5996 container_of(wait, struct mem_cgroup_event, wait);
5997 struct mem_cgroup *memcg = event->memcg;
5998 unsigned long flags = (unsigned long)key;
5999
6000 if (flags & POLLHUP) {
6001 /*
6002 * If the event has been detached at cgroup removal, we
6003 * can simply return knowing the other side will cleanup
6004 * for us.
6005 *
6006 * We can't race against event freeing since the other
6007 * side will require wqh->lock via remove_wait_queue(),
6008 * which we hold.
6009 */
6010 spin_lock(&memcg->event_list_lock);
6011 if (!list_empty(&event->list)) {
6012 list_del_init(&event->list);
6013 /*
6014 * We are in atomic context, but cgroup_event_remove()
6015 * may sleep, so we have to call it in workqueue.
6016 */
6017 schedule_work(&event->remove);
6018 }
6019 spin_unlock(&memcg->event_list_lock);
6020 }
6021
6022 return 0;
6023 }
6024
6025 static void memcg_event_ptable_queue_proc(struct file *file,
6026 wait_queue_head_t *wqh, poll_table *pt)
6027 {
6028 struct mem_cgroup_event *event =
6029 container_of(pt, struct mem_cgroup_event, pt);
6030
6031 event->wqh = wqh;
6032 add_wait_queue(wqh, &event->wait);
6033 }
6034
6035 /*
6036 * DO NOT USE IN NEW FILES.
6037 *
6038 * Parse input and register new cgroup event handler.
6039 *
6040 * Input must be in format '<event_fd> <control_fd> <args>'.
6041 * Interpretation of args is defined by control file implementation.
6042 */
6043 static int memcg_write_event_control(struct cgroup_subsys_state *css,
6044 struct cftype *cft, char *buffer)
6045 {
6046 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6047 struct mem_cgroup_event *event;
6048 struct cgroup_subsys_state *cfile_css;
6049 unsigned int efd, cfd;
6050 struct fd efile;
6051 struct fd cfile;
6052 const char *name;
6053 char *endp;
6054 int ret;
6055
6056 efd = simple_strtoul(buffer, &endp, 10);
6057 if (*endp != ' ')
6058 return -EINVAL;
6059 buffer = endp + 1;
6060
6061 cfd = simple_strtoul(buffer, &endp, 10);
6062 if ((*endp != ' ') && (*endp != '\0'))
6063 return -EINVAL;
6064 buffer = endp + 1;
6065
6066 event = kzalloc(sizeof(*event), GFP_KERNEL);
6067 if (!event)
6068 return -ENOMEM;
6069
6070 event->memcg = memcg;
6071 INIT_LIST_HEAD(&event->list);
6072 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
6073 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
6074 INIT_WORK(&event->remove, memcg_event_remove);
6075
6076 efile = fdget(efd);
6077 if (!efile.file) {
6078 ret = -EBADF;
6079 goto out_kfree;
6080 }
6081
6082 event->eventfd = eventfd_ctx_fileget(efile.file);
6083 if (IS_ERR(event->eventfd)) {
6084 ret = PTR_ERR(event->eventfd);
6085 goto out_put_efile;
6086 }
6087
6088 cfile = fdget(cfd);
6089 if (!cfile.file) {
6090 ret = -EBADF;
6091 goto out_put_eventfd;
6092 }
6093
6094 /* the process need read permission on control file */
6095 /* AV: shouldn't we check that it's been opened for read instead? */
6096 ret = inode_permission(file_inode(cfile.file), MAY_READ);
6097 if (ret < 0)
6098 goto out_put_cfile;
6099
6100 /*
6101 * Determine the event callbacks and set them in @event. This used
6102 * to be done via struct cftype but cgroup core no longer knows
6103 * about these events. The following is crude but the whole thing
6104 * is for compatibility anyway.
6105 *
6106 * DO NOT ADD NEW FILES.
6107 */
6108 name = cfile.file->f_dentry->d_name.name;
6109
6110 if (!strcmp(name, "memory.usage_in_bytes")) {
6111 event->register_event = mem_cgroup_usage_register_event;
6112 event->unregister_event = mem_cgroup_usage_unregister_event;
6113 } else if (!strcmp(name, "memory.oom_control")) {
6114 event->register_event = mem_cgroup_oom_register_event;
6115 event->unregister_event = mem_cgroup_oom_unregister_event;
6116 } else if (!strcmp(name, "memory.pressure_level")) {
6117 event->register_event = vmpressure_register_event;
6118 event->unregister_event = vmpressure_unregister_event;
6119 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
6120 event->register_event = memsw_cgroup_usage_register_event;
6121 event->unregister_event = memsw_cgroup_usage_unregister_event;
6122 } else {
6123 ret = -EINVAL;
6124 goto out_put_cfile;
6125 }
6126
6127 /*
6128 * Verify @cfile should belong to @css. Also, remaining events are
6129 * automatically removed on cgroup destruction but the removal is
6130 * asynchronous, so take an extra ref on @css.
6131 */
6132 cfile_css = css_tryget_from_dir(cfile.file->f_dentry->d_parent,
6133 &memory_cgrp_subsys);
6134 ret = -EINVAL;
6135 if (IS_ERR(cfile_css))
6136 goto out_put_cfile;
6137 if (cfile_css != css) {
6138 css_put(cfile_css);
6139 goto out_put_cfile;
6140 }
6141
6142 ret = event->register_event(memcg, event->eventfd, buffer);
6143 if (ret)
6144 goto out_put_css;
6145
6146 efile.file->f_op->poll(efile.file, &event->pt);
6147
6148 spin_lock(&memcg->event_list_lock);
6149 list_add(&event->list, &memcg->event_list);
6150 spin_unlock(&memcg->event_list_lock);
6151
6152 fdput(cfile);
6153 fdput(efile);
6154
6155 return 0;
6156
6157 out_put_css:
6158 css_put(css);
6159 out_put_cfile:
6160 fdput(cfile);
6161 out_put_eventfd:
6162 eventfd_ctx_put(event->eventfd);
6163 out_put_efile:
6164 fdput(efile);
6165 out_kfree:
6166 kfree(event);
6167
6168 return ret;
6169 }
6170
6171 static struct cftype mem_cgroup_files[] = {
6172 {
6173 .name = "usage_in_bytes",
6174 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
6175 .read_u64 = mem_cgroup_read_u64,
6176 },
6177 {
6178 .name = "max_usage_in_bytes",
6179 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6180 .trigger = mem_cgroup_reset,
6181 .read_u64 = mem_cgroup_read_u64,
6182 },
6183 {
6184 .name = "limit_in_bytes",
6185 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
6186 .write_string = mem_cgroup_write,
6187 .read_u64 = mem_cgroup_read_u64,
6188 },
6189 {
6190 .name = "soft_limit_in_bytes",
6191 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
6192 .write_string = mem_cgroup_write,
6193 .read_u64 = mem_cgroup_read_u64,
6194 },
6195 {
6196 .name = "failcnt",
6197 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6198 .trigger = mem_cgroup_reset,
6199 .read_u64 = mem_cgroup_read_u64,
6200 },
6201 {
6202 .name = "stat",
6203 .seq_show = memcg_stat_show,
6204 },
6205 {
6206 .name = "force_empty",
6207 .trigger = mem_cgroup_force_empty_write,
6208 },
6209 {
6210 .name = "use_hierarchy",
6211 .flags = CFTYPE_INSANE,
6212 .write_u64 = mem_cgroup_hierarchy_write,
6213 .read_u64 = mem_cgroup_hierarchy_read,
6214 },
6215 {
6216 .name = "cgroup.event_control", /* XXX: for compat */
6217 .write_string = memcg_write_event_control,
6218 .flags = CFTYPE_NO_PREFIX,
6219 .mode = S_IWUGO,
6220 },
6221 {
6222 .name = "swappiness",
6223 .read_u64 = mem_cgroup_swappiness_read,
6224 .write_u64 = mem_cgroup_swappiness_write,
6225 },
6226 {
6227 .name = "move_charge_at_immigrate",
6228 .read_u64 = mem_cgroup_move_charge_read,
6229 .write_u64 = mem_cgroup_move_charge_write,
6230 },
6231 {
6232 .name = "oom_control",
6233 .seq_show = mem_cgroup_oom_control_read,
6234 .write_u64 = mem_cgroup_oom_control_write,
6235 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6236 },
6237 {
6238 .name = "pressure_level",
6239 },
6240 #ifdef CONFIG_NUMA
6241 {
6242 .name = "numa_stat",
6243 .seq_show = memcg_numa_stat_show,
6244 },
6245 #endif
6246 #ifdef CONFIG_MEMCG_KMEM
6247 {
6248 .name = "kmem.limit_in_bytes",
6249 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6250 .write_string = mem_cgroup_write,
6251 .read_u64 = mem_cgroup_read_u64,
6252 },
6253 {
6254 .name = "kmem.usage_in_bytes",
6255 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6256 .read_u64 = mem_cgroup_read_u64,
6257 },
6258 {
6259 .name = "kmem.failcnt",
6260 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6261 .trigger = mem_cgroup_reset,
6262 .read_u64 = mem_cgroup_read_u64,
6263 },
6264 {
6265 .name = "kmem.max_usage_in_bytes",
6266 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6267 .trigger = mem_cgroup_reset,
6268 .read_u64 = mem_cgroup_read_u64,
6269 },
6270 #ifdef CONFIG_SLABINFO
6271 {
6272 .name = "kmem.slabinfo",
6273 .seq_show = mem_cgroup_slabinfo_read,
6274 },
6275 #endif
6276 #endif
6277 { }, /* terminate */
6278 };
6279
6280 #ifdef CONFIG_MEMCG_SWAP
6281 static struct cftype memsw_cgroup_files[] = {
6282 {
6283 .name = "memsw.usage_in_bytes",
6284 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6285 .read_u64 = mem_cgroup_read_u64,
6286 },
6287 {
6288 .name = "memsw.max_usage_in_bytes",
6289 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6290 .trigger = mem_cgroup_reset,
6291 .read_u64 = mem_cgroup_read_u64,
6292 },
6293 {
6294 .name = "memsw.limit_in_bytes",
6295 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6296 .write_string = mem_cgroup_write,
6297 .read_u64 = mem_cgroup_read_u64,
6298 },
6299 {
6300 .name = "memsw.failcnt",
6301 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6302 .trigger = mem_cgroup_reset,
6303 .read_u64 = mem_cgroup_read_u64,
6304 },
6305 { }, /* terminate */
6306 };
6307 #endif
6308 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6309 {
6310 struct mem_cgroup_per_node *pn;
6311 struct mem_cgroup_per_zone *mz;
6312 int zone, tmp = node;
6313 /*
6314 * This routine is called against possible nodes.
6315 * But it's BUG to call kmalloc() against offline node.
6316 *
6317 * TODO: this routine can waste much memory for nodes which will
6318 * never be onlined. It's better to use memory hotplug callback
6319 * function.
6320 */
6321 if (!node_state(node, N_NORMAL_MEMORY))
6322 tmp = -1;
6323 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6324 if (!pn)
6325 return 1;
6326
6327 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6328 mz = &pn->zoneinfo[zone];
6329 lruvec_init(&mz->lruvec);
6330 mz->usage_in_excess = 0;
6331 mz->on_tree = false;
6332 mz->memcg = memcg;
6333 }
6334 memcg->nodeinfo[node] = pn;
6335 return 0;
6336 }
6337
6338 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6339 {
6340 kfree(memcg->nodeinfo[node]);
6341 }
6342
6343 static struct mem_cgroup *mem_cgroup_alloc(void)
6344 {
6345 struct mem_cgroup *memcg;
6346 size_t size;
6347
6348 size = sizeof(struct mem_cgroup);
6349 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
6350
6351 memcg = kzalloc(size, GFP_KERNEL);
6352 if (!memcg)
6353 return NULL;
6354
6355 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6356 if (!memcg->stat)
6357 goto out_free;
6358 spin_lock_init(&memcg->pcp_counter_lock);
6359 return memcg;
6360
6361 out_free:
6362 kfree(memcg);
6363 return NULL;
6364 }
6365
6366 /*
6367 * At destroying mem_cgroup, references from swap_cgroup can remain.
6368 * (scanning all at force_empty is too costly...)
6369 *
6370 * Instead of clearing all references at force_empty, we remember
6371 * the number of reference from swap_cgroup and free mem_cgroup when
6372 * it goes down to 0.
6373 *
6374 * Removal of cgroup itself succeeds regardless of refs from swap.
6375 */
6376
6377 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6378 {
6379 int node;
6380
6381 mem_cgroup_remove_from_trees(memcg);
6382
6383 for_each_node(node)
6384 free_mem_cgroup_per_zone_info(memcg, node);
6385
6386 free_percpu(memcg->stat);
6387
6388 /*
6389 * We need to make sure that (at least for now), the jump label
6390 * destruction code runs outside of the cgroup lock. This is because
6391 * get_online_cpus(), which is called from the static_branch update,
6392 * can't be called inside the cgroup_lock. cpusets are the ones
6393 * enforcing this dependency, so if they ever change, we might as well.
6394 *
6395 * schedule_work() will guarantee this happens. Be careful if you need
6396 * to move this code around, and make sure it is outside
6397 * the cgroup_lock.
6398 */
6399 disarm_static_keys(memcg);
6400 kfree(memcg);
6401 }
6402
6403 /*
6404 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6405 */
6406 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6407 {
6408 if (!memcg->res.parent)
6409 return NULL;
6410 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6411 }
6412 EXPORT_SYMBOL(parent_mem_cgroup);
6413
6414 static void __init mem_cgroup_soft_limit_tree_init(void)
6415 {
6416 struct mem_cgroup_tree_per_node *rtpn;
6417 struct mem_cgroup_tree_per_zone *rtpz;
6418 int tmp, node, zone;
6419
6420 for_each_node(node) {
6421 tmp = node;
6422 if (!node_state(node, N_NORMAL_MEMORY))
6423 tmp = -1;
6424 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6425 BUG_ON(!rtpn);
6426
6427 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6428
6429 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6430 rtpz = &rtpn->rb_tree_per_zone[zone];
6431 rtpz->rb_root = RB_ROOT;
6432 spin_lock_init(&rtpz->lock);
6433 }
6434 }
6435 }
6436
6437 static struct cgroup_subsys_state * __ref
6438 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6439 {
6440 struct mem_cgroup *memcg;
6441 long error = -ENOMEM;
6442 int node;
6443
6444 memcg = mem_cgroup_alloc();
6445 if (!memcg)
6446 return ERR_PTR(error);
6447
6448 for_each_node(node)
6449 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6450 goto free_out;
6451
6452 /* root ? */
6453 if (parent_css == NULL) {
6454 root_mem_cgroup = memcg;
6455 res_counter_init(&memcg->res, NULL);
6456 res_counter_init(&memcg->memsw, NULL);
6457 res_counter_init(&memcg->kmem, NULL);
6458 }
6459
6460 memcg->last_scanned_node = MAX_NUMNODES;
6461 INIT_LIST_HEAD(&memcg->oom_notify);
6462 memcg->move_charge_at_immigrate = 0;
6463 mutex_init(&memcg->thresholds_lock);
6464 spin_lock_init(&memcg->move_lock);
6465 vmpressure_init(&memcg->vmpressure);
6466 INIT_LIST_HEAD(&memcg->event_list);
6467 spin_lock_init(&memcg->event_list_lock);
6468
6469 return &memcg->css;
6470
6471 free_out:
6472 __mem_cgroup_free(memcg);
6473 return ERR_PTR(error);
6474 }
6475
6476 static int
6477 mem_cgroup_css_online(struct cgroup_subsys_state *css)
6478 {
6479 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6480 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6481
6482 if (css->cgroup->id > MEM_CGROUP_ID_MAX)
6483 return -ENOSPC;
6484
6485 if (!parent)
6486 return 0;
6487
6488 mutex_lock(&memcg_create_mutex);
6489
6490 memcg->use_hierarchy = parent->use_hierarchy;
6491 memcg->oom_kill_disable = parent->oom_kill_disable;
6492 memcg->swappiness = mem_cgroup_swappiness(parent);
6493
6494 if (parent->use_hierarchy) {
6495 res_counter_init(&memcg->res, &parent->res);
6496 res_counter_init(&memcg->memsw, &parent->memsw);
6497 res_counter_init(&memcg->kmem, &parent->kmem);
6498
6499 /*
6500 * No need to take a reference to the parent because cgroup
6501 * core guarantees its existence.
6502 */
6503 } else {
6504 res_counter_init(&memcg->res, NULL);
6505 res_counter_init(&memcg->memsw, NULL);
6506 res_counter_init(&memcg->kmem, NULL);
6507 /*
6508 * Deeper hierachy with use_hierarchy == false doesn't make
6509 * much sense so let cgroup subsystem know about this
6510 * unfortunate state in our controller.
6511 */
6512 if (parent != root_mem_cgroup)
6513 memory_cgrp_subsys.broken_hierarchy = true;
6514 }
6515 mutex_unlock(&memcg_create_mutex);
6516
6517 return memcg_init_kmem(memcg, &memory_cgrp_subsys);
6518 }
6519
6520 /*
6521 * Announce all parents that a group from their hierarchy is gone.
6522 */
6523 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6524 {
6525 struct mem_cgroup *parent = memcg;
6526
6527 while ((parent = parent_mem_cgroup(parent)))
6528 mem_cgroup_iter_invalidate(parent);
6529
6530 /*
6531 * if the root memcg is not hierarchical we have to check it
6532 * explicitely.
6533 */
6534 if (!root_mem_cgroup->use_hierarchy)
6535 mem_cgroup_iter_invalidate(root_mem_cgroup);
6536 }
6537
6538 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6539 {
6540 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6541 struct mem_cgroup_event *event, *tmp;
6542 struct cgroup_subsys_state *iter;
6543
6544 /*
6545 * Unregister events and notify userspace.
6546 * Notify userspace about cgroup removing only after rmdir of cgroup
6547 * directory to avoid race between userspace and kernelspace.
6548 */
6549 spin_lock(&memcg->event_list_lock);
6550 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
6551 list_del_init(&event->list);
6552 schedule_work(&event->remove);
6553 }
6554 spin_unlock(&memcg->event_list_lock);
6555
6556 kmem_cgroup_css_offline(memcg);
6557
6558 mem_cgroup_invalidate_reclaim_iterators(memcg);
6559
6560 /*
6561 * This requires that offlining is serialized. Right now that is
6562 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
6563 */
6564 css_for_each_descendant_post(iter, css)
6565 mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));
6566
6567 mem_cgroup_destroy_all_caches(memcg);
6568 vmpressure_cleanup(&memcg->vmpressure);
6569 }
6570
6571 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6572 {
6573 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6574 /*
6575 * XXX: css_offline() would be where we should reparent all
6576 * memory to prepare the cgroup for destruction. However,
6577 * memcg does not do css_tryget() and res_counter charging
6578 * under the same RCU lock region, which means that charging
6579 * could race with offlining. Offlining only happens to
6580 * cgroups with no tasks in them but charges can show up
6581 * without any tasks from the swapin path when the target
6582 * memcg is looked up from the swapout record and not from the
6583 * current task as it usually is. A race like this can leak
6584 * charges and put pages with stale cgroup pointers into
6585 * circulation:
6586 *
6587 * #0 #1
6588 * lookup_swap_cgroup_id()
6589 * rcu_read_lock()
6590 * mem_cgroup_lookup()
6591 * css_tryget()
6592 * rcu_read_unlock()
6593 * disable css_tryget()
6594 * call_rcu()
6595 * offline_css()
6596 * reparent_charges()
6597 * res_counter_charge()
6598 * css_put()
6599 * css_free()
6600 * pc->mem_cgroup = dead memcg
6601 * add page to lru
6602 *
6603 * The bulk of the charges are still moved in offline_css() to
6604 * avoid pinning a lot of pages in case a long-term reference
6605 * like a swapout record is deferring the css_free() to long
6606 * after offlining. But this makes sure we catch any charges
6607 * made after offlining:
6608 */
6609 mem_cgroup_reparent_charges(memcg);
6610
6611 memcg_destroy_kmem(memcg);
6612 __mem_cgroup_free(memcg);
6613 }
6614
6615 #ifdef CONFIG_MMU
6616 /* Handlers for move charge at task migration. */
6617 #define PRECHARGE_COUNT_AT_ONCE 256
6618 static int mem_cgroup_do_precharge(unsigned long count)
6619 {
6620 int ret = 0;
6621 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6622 struct mem_cgroup *memcg = mc.to;
6623
6624 if (mem_cgroup_is_root(memcg)) {
6625 mc.precharge += count;
6626 /* we don't need css_get for root */
6627 return ret;
6628 }
6629 /* try to charge at once */
6630 if (count > 1) {
6631 struct res_counter *dummy;
6632 /*
6633 * "memcg" cannot be under rmdir() because we've already checked
6634 * by cgroup_lock_live_cgroup() that it is not removed and we
6635 * are still under the same cgroup_mutex. So we can postpone
6636 * css_get().
6637 */
6638 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6639 goto one_by_one;
6640 if (do_swap_account && res_counter_charge(&memcg->memsw,
6641 PAGE_SIZE * count, &dummy)) {
6642 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6643 goto one_by_one;
6644 }
6645 mc.precharge += count;
6646 return ret;
6647 }
6648 one_by_one:
6649 /* fall back to one by one charge */
6650 while (count--) {
6651 if (signal_pending(current)) {
6652 ret = -EINTR;
6653 break;
6654 }
6655 if (!batch_count--) {
6656 batch_count = PRECHARGE_COUNT_AT_ONCE;
6657 cond_resched();
6658 }
6659 ret = __mem_cgroup_try_charge(NULL,
6660 GFP_KERNEL, 1, &memcg, false);
6661 if (ret)
6662 /* mem_cgroup_clear_mc() will do uncharge later */
6663 return ret;
6664 mc.precharge++;
6665 }
6666 return ret;
6667 }
6668
6669 /**
6670 * get_mctgt_type - get target type of moving charge
6671 * @vma: the vma the pte to be checked belongs
6672 * @addr: the address corresponding to the pte to be checked
6673 * @ptent: the pte to be checked
6674 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6675 *
6676 * Returns
6677 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6678 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6679 * move charge. if @target is not NULL, the page is stored in target->page
6680 * with extra refcnt got(Callers should handle it).
6681 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6682 * target for charge migration. if @target is not NULL, the entry is stored
6683 * in target->ent.
6684 *
6685 * Called with pte lock held.
6686 */
6687 union mc_target {
6688 struct page *page;
6689 swp_entry_t ent;
6690 };
6691
6692 enum mc_target_type {
6693 MC_TARGET_NONE = 0,
6694 MC_TARGET_PAGE,
6695 MC_TARGET_SWAP,
6696 };
6697
6698 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6699 unsigned long addr, pte_t ptent)
6700 {
6701 struct page *page = vm_normal_page(vma, addr, ptent);
6702
6703 if (!page || !page_mapped(page))
6704 return NULL;
6705 if (PageAnon(page)) {
6706 /* we don't move shared anon */
6707 if (!move_anon())
6708 return NULL;
6709 } else if (!move_file())
6710 /* we ignore mapcount for file pages */
6711 return NULL;
6712 if (!get_page_unless_zero(page))
6713 return NULL;
6714
6715 return page;
6716 }
6717
6718 #ifdef CONFIG_SWAP
6719 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6720 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6721 {
6722 struct page *page = NULL;
6723 swp_entry_t ent = pte_to_swp_entry(ptent);
6724
6725 if (!move_anon() || non_swap_entry(ent))
6726 return NULL;
6727 /*
6728 * Because lookup_swap_cache() updates some statistics counter,
6729 * we call find_get_page() with swapper_space directly.
6730 */
6731 page = find_get_page(swap_address_space(ent), ent.val);
6732 if (do_swap_account)
6733 entry->val = ent.val;
6734
6735 return page;
6736 }
6737 #else
6738 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6739 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6740 {
6741 return NULL;
6742 }
6743 #endif
6744
6745 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6746 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6747 {
6748 struct page *page = NULL;
6749 struct address_space *mapping;
6750 pgoff_t pgoff;
6751
6752 if (!vma->vm_file) /* anonymous vma */
6753 return NULL;
6754 if (!move_file())
6755 return NULL;
6756
6757 mapping = vma->vm_file->f_mapping;
6758 if (pte_none(ptent))
6759 pgoff = linear_page_index(vma, addr);
6760 else /* pte_file(ptent) is true */
6761 pgoff = pte_to_pgoff(ptent);
6762
6763 /* page is moved even if it's not RSS of this task(page-faulted). */
6764 page = find_get_page(mapping, pgoff);
6765
6766 #ifdef CONFIG_SWAP
6767 /* shmem/tmpfs may report page out on swap: account for that too. */
6768 if (radix_tree_exceptional_entry(page)) {
6769 swp_entry_t swap = radix_to_swp_entry(page);
6770 if (do_swap_account)
6771 *entry = swap;
6772 page = find_get_page(swap_address_space(swap), swap.val);
6773 }
6774 #endif
6775 return page;
6776 }
6777
6778 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6779 unsigned long addr, pte_t ptent, union mc_target *target)
6780 {
6781 struct page *page = NULL;
6782 struct page_cgroup *pc;
6783 enum mc_target_type ret = MC_TARGET_NONE;
6784 swp_entry_t ent = { .val = 0 };
6785
6786 if (pte_present(ptent))
6787 page = mc_handle_present_pte(vma, addr, ptent);
6788 else if (is_swap_pte(ptent))
6789 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6790 else if (pte_none(ptent) || pte_file(ptent))
6791 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6792
6793 if (!page && !ent.val)
6794 return ret;
6795 if (page) {
6796 pc = lookup_page_cgroup(page);
6797 /*
6798 * Do only loose check w/o page_cgroup lock.
6799 * mem_cgroup_move_account() checks the pc is valid or not under
6800 * the lock.
6801 */
6802 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6803 ret = MC_TARGET_PAGE;
6804 if (target)
6805 target->page = page;
6806 }
6807 if (!ret || !target)
6808 put_page(page);
6809 }
6810 /* There is a swap entry and a page doesn't exist or isn't charged */
6811 if (ent.val && !ret &&
6812 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6813 ret = MC_TARGET_SWAP;
6814 if (target)
6815 target->ent = ent;
6816 }
6817 return ret;
6818 }
6819
6820 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6821 /*
6822 * We don't consider swapping or file mapped pages because THP does not
6823 * support them for now.
6824 * Caller should make sure that pmd_trans_huge(pmd) is true.
6825 */
6826 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6827 unsigned long addr, pmd_t pmd, union mc_target *target)
6828 {
6829 struct page *page = NULL;
6830 struct page_cgroup *pc;
6831 enum mc_target_type ret = MC_TARGET_NONE;
6832
6833 page = pmd_page(pmd);
6834 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6835 if (!move_anon())
6836 return ret;
6837 pc = lookup_page_cgroup(page);
6838 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6839 ret = MC_TARGET_PAGE;
6840 if (target) {
6841 get_page(page);
6842 target->page = page;
6843 }
6844 }
6845 return ret;
6846 }
6847 #else
6848 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6849 unsigned long addr, pmd_t pmd, union mc_target *target)
6850 {
6851 return MC_TARGET_NONE;
6852 }
6853 #endif
6854
6855 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6856 unsigned long addr, unsigned long end,
6857 struct mm_walk *walk)
6858 {
6859 struct vm_area_struct *vma = walk->private;
6860 pte_t *pte;
6861 spinlock_t *ptl;
6862
6863 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6864 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6865 mc.precharge += HPAGE_PMD_NR;
6866 spin_unlock(ptl);
6867 return 0;
6868 }
6869
6870 if (pmd_trans_unstable(pmd))
6871 return 0;
6872 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6873 for (; addr != end; pte++, addr += PAGE_SIZE)
6874 if (get_mctgt_type(vma, addr, *pte, NULL))
6875 mc.precharge++; /* increment precharge temporarily */
6876 pte_unmap_unlock(pte - 1, ptl);
6877 cond_resched();
6878
6879 return 0;
6880 }
6881
6882 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6883 {
6884 unsigned long precharge;
6885 struct vm_area_struct *vma;
6886
6887 down_read(&mm->mmap_sem);
6888 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6889 struct mm_walk mem_cgroup_count_precharge_walk = {
6890 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6891 .mm = mm,
6892 .private = vma,
6893 };
6894 if (is_vm_hugetlb_page(vma))
6895 continue;
6896 walk_page_range(vma->vm_start, vma->vm_end,
6897 &mem_cgroup_count_precharge_walk);
6898 }
6899 up_read(&mm->mmap_sem);
6900
6901 precharge = mc.precharge;
6902 mc.precharge = 0;
6903
6904 return precharge;
6905 }
6906
6907 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6908 {
6909 unsigned long precharge = mem_cgroup_count_precharge(mm);
6910
6911 VM_BUG_ON(mc.moving_task);
6912 mc.moving_task = current;
6913 return mem_cgroup_do_precharge(precharge);
6914 }
6915
6916 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6917 static void __mem_cgroup_clear_mc(void)
6918 {
6919 struct mem_cgroup *from = mc.from;
6920 struct mem_cgroup *to = mc.to;
6921 int i;
6922
6923 /* we must uncharge all the leftover precharges from mc.to */
6924 if (mc.precharge) {
6925 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6926 mc.precharge = 0;
6927 }
6928 /*
6929 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6930 * we must uncharge here.
6931 */
6932 if (mc.moved_charge) {
6933 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6934 mc.moved_charge = 0;
6935 }
6936 /* we must fixup refcnts and charges */
6937 if (mc.moved_swap) {
6938 /* uncharge swap account from the old cgroup */
6939 if (!mem_cgroup_is_root(mc.from))
6940 res_counter_uncharge(&mc.from->memsw,
6941 PAGE_SIZE * mc.moved_swap);
6942
6943 for (i = 0; i < mc.moved_swap; i++)
6944 css_put(&mc.from->css);
6945
6946 if (!mem_cgroup_is_root(mc.to)) {
6947 /*
6948 * we charged both to->res and to->memsw, so we should
6949 * uncharge to->res.
6950 */
6951 res_counter_uncharge(&mc.to->res,
6952 PAGE_SIZE * mc.moved_swap);
6953 }
6954 /* we've already done css_get(mc.to) */
6955 mc.moved_swap = 0;
6956 }
6957 memcg_oom_recover(from);
6958 memcg_oom_recover(to);
6959 wake_up_all(&mc.waitq);
6960 }
6961
6962 static void mem_cgroup_clear_mc(void)
6963 {
6964 struct mem_cgroup *from = mc.from;
6965
6966 /*
6967 * we must clear moving_task before waking up waiters at the end of
6968 * task migration.
6969 */
6970 mc.moving_task = NULL;
6971 __mem_cgroup_clear_mc();
6972 spin_lock(&mc.lock);
6973 mc.from = NULL;
6974 mc.to = NULL;
6975 spin_unlock(&mc.lock);
6976 mem_cgroup_end_move(from);
6977 }
6978
6979 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6980 struct cgroup_taskset *tset)
6981 {
6982 struct task_struct *p = cgroup_taskset_first(tset);
6983 int ret = 0;
6984 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6985 unsigned long move_charge_at_immigrate;
6986
6987 /*
6988 * We are now commited to this value whatever it is. Changes in this
6989 * tunable will only affect upcoming migrations, not the current one.
6990 * So we need to save it, and keep it going.
6991 */
6992 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6993 if (move_charge_at_immigrate) {
6994 struct mm_struct *mm;
6995 struct mem_cgroup *from = mem_cgroup_from_task(p);
6996
6997 VM_BUG_ON(from == memcg);
6998
6999 mm = get_task_mm(p);
7000 if (!mm)
7001 return 0;
7002 /* We move charges only when we move a owner of the mm */
7003 if (mm->owner == p) {
7004 VM_BUG_ON(mc.from);
7005 VM_BUG_ON(mc.to);
7006 VM_BUG_ON(mc.precharge);
7007 VM_BUG_ON(mc.moved_charge);
7008 VM_BUG_ON(mc.moved_swap);
7009 mem_cgroup_start_move(from);
7010 spin_lock(&mc.lock);
7011 mc.from = from;
7012 mc.to = memcg;
7013 mc.immigrate_flags = move_charge_at_immigrate;
7014 spin_unlock(&mc.lock);
7015 /* We set mc.moving_task later */
7016
7017 ret = mem_cgroup_precharge_mc(mm);
7018 if (ret)
7019 mem_cgroup_clear_mc();
7020 }
7021 mmput(mm);
7022 }
7023 return ret;
7024 }
7025
7026 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7027 struct cgroup_taskset *tset)
7028 {
7029 mem_cgroup_clear_mc();
7030 }
7031
7032 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
7033 unsigned long addr, unsigned long end,
7034 struct mm_walk *walk)
7035 {
7036 int ret = 0;
7037 struct vm_area_struct *vma = walk->private;
7038 pte_t *pte;
7039 spinlock_t *ptl;
7040 enum mc_target_type target_type;
7041 union mc_target target;
7042 struct page *page;
7043 struct page_cgroup *pc;
7044
7045 /*
7046 * We don't take compound_lock() here but no race with splitting thp
7047 * happens because:
7048 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
7049 * under splitting, which means there's no concurrent thp split,
7050 * - if another thread runs into split_huge_page() just after we
7051 * entered this if-block, the thread must wait for page table lock
7052 * to be unlocked in __split_huge_page_splitting(), where the main
7053 * part of thp split is not executed yet.
7054 */
7055 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
7056 if (mc.precharge < HPAGE_PMD_NR) {
7057 spin_unlock(ptl);
7058 return 0;
7059 }
7060 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
7061 if (target_type == MC_TARGET_PAGE) {
7062 page = target.page;
7063 if (!isolate_lru_page(page)) {
7064 pc = lookup_page_cgroup(page);
7065 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
7066 pc, mc.from, mc.to)) {
7067 mc.precharge -= HPAGE_PMD_NR;
7068 mc.moved_charge += HPAGE_PMD_NR;
7069 }
7070 putback_lru_page(page);
7071 }
7072 put_page(page);
7073 }
7074 spin_unlock(ptl);
7075 return 0;
7076 }
7077
7078 if (pmd_trans_unstable(pmd))
7079 return 0;
7080 retry:
7081 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
7082 for (; addr != end; addr += PAGE_SIZE) {
7083 pte_t ptent = *(pte++);
7084 swp_entry_t ent;
7085
7086 if (!mc.precharge)
7087 break;
7088
7089 switch (get_mctgt_type(vma, addr, ptent, &target)) {
7090 case MC_TARGET_PAGE:
7091 page = target.page;
7092 if (isolate_lru_page(page))
7093 goto put;
7094 pc = lookup_page_cgroup(page);
7095 if (!mem_cgroup_move_account(page, 1, pc,
7096 mc.from, mc.to)) {
7097 mc.precharge--;
7098 /* we uncharge from mc.from later. */
7099 mc.moved_charge++;
7100 }
7101 putback_lru_page(page);
7102 put: /* get_mctgt_type() gets the page */
7103 put_page(page);
7104 break;
7105 case MC_TARGET_SWAP:
7106 ent = target.ent;
7107 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
7108 mc.precharge--;
7109 /* we fixup refcnts and charges later. */
7110 mc.moved_swap++;
7111 }
7112 break;
7113 default:
7114 break;
7115 }
7116 }
7117 pte_unmap_unlock(pte - 1, ptl);
7118 cond_resched();
7119
7120 if (addr != end) {
7121 /*
7122 * We have consumed all precharges we got in can_attach().
7123 * We try charge one by one, but don't do any additional
7124 * charges to mc.to if we have failed in charge once in attach()
7125 * phase.
7126 */
7127 ret = mem_cgroup_do_precharge(1);
7128 if (!ret)
7129 goto retry;
7130 }
7131
7132 return ret;
7133 }
7134
7135 static void mem_cgroup_move_charge(struct mm_struct *mm)
7136 {
7137 struct vm_area_struct *vma;
7138
7139 lru_add_drain_all();
7140 retry:
7141 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
7142 /*
7143 * Someone who are holding the mmap_sem might be waiting in
7144 * waitq. So we cancel all extra charges, wake up all waiters,
7145 * and retry. Because we cancel precharges, we might not be able
7146 * to move enough charges, but moving charge is a best-effort
7147 * feature anyway, so it wouldn't be a big problem.
7148 */
7149 __mem_cgroup_clear_mc();
7150 cond_resched();
7151 goto retry;
7152 }
7153 for (vma = mm->mmap; vma; vma = vma->vm_next) {
7154 int ret;
7155 struct mm_walk mem_cgroup_move_charge_walk = {
7156 .pmd_entry = mem_cgroup_move_charge_pte_range,
7157 .mm = mm,
7158 .private = vma,
7159 };
7160 if (is_vm_hugetlb_page(vma))
7161 continue;
7162 ret = walk_page_range(vma->vm_start, vma->vm_end,
7163 &mem_cgroup_move_charge_walk);
7164 if (ret)
7165 /*
7166 * means we have consumed all precharges and failed in
7167 * doing additional charge. Just abandon here.
7168 */
7169 break;
7170 }
7171 up_read(&mm->mmap_sem);
7172 }
7173
7174 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7175 struct cgroup_taskset *tset)
7176 {
7177 struct task_struct *p = cgroup_taskset_first(tset);
7178 struct mm_struct *mm = get_task_mm(p);
7179
7180 if (mm) {
7181 if (mc.to)
7182 mem_cgroup_move_charge(mm);
7183 mmput(mm);
7184 }
7185 if (mc.to)
7186 mem_cgroup_clear_mc();
7187 }
7188 #else /* !CONFIG_MMU */
7189 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
7190 struct cgroup_taskset *tset)
7191 {
7192 return 0;
7193 }
7194 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7195 struct cgroup_taskset *tset)
7196 {
7197 }
7198 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7199 struct cgroup_taskset *tset)
7200 {
7201 }
7202 #endif
7203
7204 /*
7205 * Cgroup retains root cgroups across [un]mount cycles making it necessary
7206 * to verify sane_behavior flag on each mount attempt.
7207 */
7208 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
7209 {
7210 /*
7211 * use_hierarchy is forced with sane_behavior. cgroup core
7212 * guarantees that @root doesn't have any children, so turning it
7213 * on for the root memcg is enough.
7214 */
7215 if (cgroup_sane_behavior(root_css->cgroup))
7216 mem_cgroup_from_css(root_css)->use_hierarchy = true;
7217 }
7218
7219 struct cgroup_subsys memory_cgrp_subsys = {
7220 .css_alloc = mem_cgroup_css_alloc,
7221 .css_online = mem_cgroup_css_online,
7222 .css_offline = mem_cgroup_css_offline,
7223 .css_free = mem_cgroup_css_free,
7224 .can_attach = mem_cgroup_can_attach,
7225 .cancel_attach = mem_cgroup_cancel_attach,
7226 .attach = mem_cgroup_move_task,
7227 .bind = mem_cgroup_bind,
7228 .base_cftypes = mem_cgroup_files,
7229 .early_init = 0,
7230 };
7231
7232 #ifdef CONFIG_MEMCG_SWAP
7233 static int __init enable_swap_account(char *s)
7234 {
7235 if (!strcmp(s, "1"))
7236 really_do_swap_account = 1;
7237 else if (!strcmp(s, "0"))
7238 really_do_swap_account = 0;
7239 return 1;
7240 }
7241 __setup("swapaccount=", enable_swap_account);
7242
7243 static void __init memsw_file_init(void)
7244 {
7245 WARN_ON(cgroup_add_cftypes(&memory_cgrp_subsys, memsw_cgroup_files));
7246 }
7247
7248 static void __init enable_swap_cgroup(void)
7249 {
7250 if (!mem_cgroup_disabled() && really_do_swap_account) {
7251 do_swap_account = 1;
7252 memsw_file_init();
7253 }
7254 }
7255
7256 #else
7257 static void __init enable_swap_cgroup(void)
7258 {
7259 }
7260 #endif
7261
7262 /*
7263 * subsys_initcall() for memory controller.
7264 *
7265 * Some parts like hotcpu_notifier() have to be initialized from this context
7266 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7267 * everything that doesn't depend on a specific mem_cgroup structure should
7268 * be initialized from here.
7269 */
7270 static int __init mem_cgroup_init(void)
7271 {
7272 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7273 enable_swap_cgroup();
7274 mem_cgroup_soft_limit_tree_init();
7275 memcg_stock_init();
7276 return 0;
7277 }
7278 subsys_initcall(mem_cgroup_init);
This page took 0.167302 seconds and 6 git commands to generate.