mm: memcontrol: remove unnecessary PCG_USED pc->mem_cgroup valid flag
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include "internal.h"
60 #include <net/sock.h>
61 #include <net/ip.h>
62 #include <net/tcp_memcontrol.h>
63 #include "slab.h"
64
65 #include <asm/uaccess.h>
66
67 #include <trace/events/vmscan.h>
68
69 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70 EXPORT_SYMBOL(memory_cgrp_subsys);
71
72 #define MEM_CGROUP_RECLAIM_RETRIES 5
73 static struct mem_cgroup *root_mem_cgroup __read_mostly;
74
75 #ifdef CONFIG_MEMCG_SWAP
76 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77 int do_swap_account __read_mostly;
78
79 /* for remember boot option*/
80 #ifdef CONFIG_MEMCG_SWAP_ENABLED
81 static int really_do_swap_account __initdata = 1;
82 #else
83 static int really_do_swap_account __initdata;
84 #endif
85
86 #else
87 #define do_swap_account 0
88 #endif
89
90
91 static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
94 "rss_huge",
95 "mapped_file",
96 "writeback",
97 "swap",
98 };
99
100 enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
105 MEM_CGROUP_EVENTS_NSTATS,
106 };
107
108 static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113 };
114
115 static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121 };
122
123 /*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129 enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
131 MEM_CGROUP_TARGET_SOFTLIMIT,
132 MEM_CGROUP_TARGET_NUMAINFO,
133 MEM_CGROUP_NTARGETS,
134 };
135 #define THRESHOLDS_EVENTS_TARGET 128
136 #define SOFTLIMIT_EVENTS_TARGET 1024
137 #define NUMAINFO_EVENTS_TARGET 1024
138
139 struct mem_cgroup_stat_cpu {
140 long count[MEM_CGROUP_STAT_NSTATS];
141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142 unsigned long nr_page_events;
143 unsigned long targets[MEM_CGROUP_NTARGETS];
144 };
145
146 struct reclaim_iter {
147 struct mem_cgroup *position;
148 /* scan generation, increased every round-trip */
149 unsigned int generation;
150 };
151
152 /*
153 * per-zone information in memory controller.
154 */
155 struct mem_cgroup_per_zone {
156 struct lruvec lruvec;
157 unsigned long lru_size[NR_LRU_LISTS];
158
159 struct reclaim_iter iter[DEF_PRIORITY + 1];
160
161 struct rb_node tree_node; /* RB tree node */
162 unsigned long usage_in_excess;/* Set to the value by which */
163 /* the soft limit is exceeded*/
164 bool on_tree;
165 struct mem_cgroup *memcg; /* Back pointer, we cannot */
166 /* use container_of */
167 };
168
169 struct mem_cgroup_per_node {
170 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
171 };
172
173 /*
174 * Cgroups above their limits are maintained in a RB-Tree, independent of
175 * their hierarchy representation
176 */
177
178 struct mem_cgroup_tree_per_zone {
179 struct rb_root rb_root;
180 spinlock_t lock;
181 };
182
183 struct mem_cgroup_tree_per_node {
184 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
185 };
186
187 struct mem_cgroup_tree {
188 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
189 };
190
191 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
192
193 struct mem_cgroup_threshold {
194 struct eventfd_ctx *eventfd;
195 unsigned long threshold;
196 };
197
198 /* For threshold */
199 struct mem_cgroup_threshold_ary {
200 /* An array index points to threshold just below or equal to usage. */
201 int current_threshold;
202 /* Size of entries[] */
203 unsigned int size;
204 /* Array of thresholds */
205 struct mem_cgroup_threshold entries[0];
206 };
207
208 struct mem_cgroup_thresholds {
209 /* Primary thresholds array */
210 struct mem_cgroup_threshold_ary *primary;
211 /*
212 * Spare threshold array.
213 * This is needed to make mem_cgroup_unregister_event() "never fail".
214 * It must be able to store at least primary->size - 1 entries.
215 */
216 struct mem_cgroup_threshold_ary *spare;
217 };
218
219 /* for OOM */
220 struct mem_cgroup_eventfd_list {
221 struct list_head list;
222 struct eventfd_ctx *eventfd;
223 };
224
225 /*
226 * cgroup_event represents events which userspace want to receive.
227 */
228 struct mem_cgroup_event {
229 /*
230 * memcg which the event belongs to.
231 */
232 struct mem_cgroup *memcg;
233 /*
234 * eventfd to signal userspace about the event.
235 */
236 struct eventfd_ctx *eventfd;
237 /*
238 * Each of these stored in a list by the cgroup.
239 */
240 struct list_head list;
241 /*
242 * register_event() callback will be used to add new userspace
243 * waiter for changes related to this event. Use eventfd_signal()
244 * on eventfd to send notification to userspace.
245 */
246 int (*register_event)(struct mem_cgroup *memcg,
247 struct eventfd_ctx *eventfd, const char *args);
248 /*
249 * unregister_event() callback will be called when userspace closes
250 * the eventfd or on cgroup removing. This callback must be set,
251 * if you want provide notification functionality.
252 */
253 void (*unregister_event)(struct mem_cgroup *memcg,
254 struct eventfd_ctx *eventfd);
255 /*
256 * All fields below needed to unregister event when
257 * userspace closes eventfd.
258 */
259 poll_table pt;
260 wait_queue_head_t *wqh;
261 wait_queue_t wait;
262 struct work_struct remove;
263 };
264
265 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
266 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
267
268 /*
269 * The memory controller data structure. The memory controller controls both
270 * page cache and RSS per cgroup. We would eventually like to provide
271 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
272 * to help the administrator determine what knobs to tune.
273 *
274 * TODO: Add a water mark for the memory controller. Reclaim will begin when
275 * we hit the water mark. May be even add a low water mark, such that
276 * no reclaim occurs from a cgroup at it's low water mark, this is
277 * a feature that will be implemented much later in the future.
278 */
279 struct mem_cgroup {
280 struct cgroup_subsys_state css;
281
282 /* Accounted resources */
283 struct page_counter memory;
284 struct page_counter memsw;
285 struct page_counter kmem;
286
287 unsigned long soft_limit;
288
289 /* vmpressure notifications */
290 struct vmpressure vmpressure;
291
292 /* css_online() has been completed */
293 int initialized;
294
295 /*
296 * Should the accounting and control be hierarchical, per subtree?
297 */
298 bool use_hierarchy;
299 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
300
301 bool oom_lock;
302 atomic_t under_oom;
303 atomic_t oom_wakeups;
304
305 int swappiness;
306 /* OOM-Killer disable */
307 int oom_kill_disable;
308
309 /* protect arrays of thresholds */
310 struct mutex thresholds_lock;
311
312 /* thresholds for memory usage. RCU-protected */
313 struct mem_cgroup_thresholds thresholds;
314
315 /* thresholds for mem+swap usage. RCU-protected */
316 struct mem_cgroup_thresholds memsw_thresholds;
317
318 /* For oom notifier event fd */
319 struct list_head oom_notify;
320
321 /*
322 * Should we move charges of a task when a task is moved into this
323 * mem_cgroup ? And what type of charges should we move ?
324 */
325 unsigned long move_charge_at_immigrate;
326 /*
327 * set > 0 if pages under this cgroup are moving to other cgroup.
328 */
329 atomic_t moving_account;
330 /* taken only while moving_account > 0 */
331 spinlock_t move_lock;
332 /*
333 * percpu counter.
334 */
335 struct mem_cgroup_stat_cpu __percpu *stat;
336 /*
337 * used when a cpu is offlined or other synchronizations
338 * See mem_cgroup_read_stat().
339 */
340 struct mem_cgroup_stat_cpu nocpu_base;
341 spinlock_t pcp_counter_lock;
342
343 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
344 struct cg_proto tcp_mem;
345 #endif
346 #if defined(CONFIG_MEMCG_KMEM)
347 /* analogous to slab_common's slab_caches list, but per-memcg;
348 * protected by memcg_slab_mutex */
349 struct list_head memcg_slab_caches;
350 /* Index in the kmem_cache->memcg_params->memcg_caches array */
351 int kmemcg_id;
352 #endif
353
354 int last_scanned_node;
355 #if MAX_NUMNODES > 1
356 nodemask_t scan_nodes;
357 atomic_t numainfo_events;
358 atomic_t numainfo_updating;
359 #endif
360
361 /* List of events which userspace want to receive */
362 struct list_head event_list;
363 spinlock_t event_list_lock;
364
365 struct mem_cgroup_per_node *nodeinfo[0];
366 /* WARNING: nodeinfo must be the last member here */
367 };
368
369 /* internal only representation about the status of kmem accounting. */
370 enum {
371 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
372 };
373
374 #ifdef CONFIG_MEMCG_KMEM
375 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
376 {
377 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
378 }
379
380 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
381 {
382 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
383 }
384
385 #endif
386
387 /* Stuffs for move charges at task migration. */
388 /*
389 * Types of charges to be moved. "move_charge_at_immitgrate" and
390 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
391 */
392 enum move_type {
393 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
394 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
395 NR_MOVE_TYPE,
396 };
397
398 /* "mc" and its members are protected by cgroup_mutex */
399 static struct move_charge_struct {
400 spinlock_t lock; /* for from, to */
401 struct mem_cgroup *from;
402 struct mem_cgroup *to;
403 unsigned long immigrate_flags;
404 unsigned long precharge;
405 unsigned long moved_charge;
406 unsigned long moved_swap;
407 struct task_struct *moving_task; /* a task moving charges */
408 wait_queue_head_t waitq; /* a waitq for other context */
409 } mc = {
410 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
411 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
412 };
413
414 static bool move_anon(void)
415 {
416 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
417 }
418
419 static bool move_file(void)
420 {
421 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
422 }
423
424 /*
425 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
426 * limit reclaim to prevent infinite loops, if they ever occur.
427 */
428 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
429 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
430
431 enum charge_type {
432 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
433 MEM_CGROUP_CHARGE_TYPE_ANON,
434 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
435 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
436 NR_CHARGE_TYPE,
437 };
438
439 /* for encoding cft->private value on file */
440 enum res_type {
441 _MEM,
442 _MEMSWAP,
443 _OOM_TYPE,
444 _KMEM,
445 };
446
447 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
448 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
449 #define MEMFILE_ATTR(val) ((val) & 0xffff)
450 /* Used for OOM nofiier */
451 #define OOM_CONTROL (0)
452
453 /*
454 * The memcg_create_mutex will be held whenever a new cgroup is created.
455 * As a consequence, any change that needs to protect against new child cgroups
456 * appearing has to hold it as well.
457 */
458 static DEFINE_MUTEX(memcg_create_mutex);
459
460 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
461 {
462 return s ? container_of(s, struct mem_cgroup, css) : NULL;
463 }
464
465 /* Some nice accessors for the vmpressure. */
466 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
467 {
468 if (!memcg)
469 memcg = root_mem_cgroup;
470 return &memcg->vmpressure;
471 }
472
473 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
474 {
475 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
476 }
477
478 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
479 {
480 return (memcg == root_mem_cgroup);
481 }
482
483 /*
484 * We restrict the id in the range of [1, 65535], so it can fit into
485 * an unsigned short.
486 */
487 #define MEM_CGROUP_ID_MAX USHRT_MAX
488
489 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
490 {
491 return memcg->css.id;
492 }
493
494 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
495 {
496 struct cgroup_subsys_state *css;
497
498 css = css_from_id(id, &memory_cgrp_subsys);
499 return mem_cgroup_from_css(css);
500 }
501
502 /* Writing them here to avoid exposing memcg's inner layout */
503 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
504
505 void sock_update_memcg(struct sock *sk)
506 {
507 if (mem_cgroup_sockets_enabled) {
508 struct mem_cgroup *memcg;
509 struct cg_proto *cg_proto;
510
511 BUG_ON(!sk->sk_prot->proto_cgroup);
512
513 /* Socket cloning can throw us here with sk_cgrp already
514 * filled. It won't however, necessarily happen from
515 * process context. So the test for root memcg given
516 * the current task's memcg won't help us in this case.
517 *
518 * Respecting the original socket's memcg is a better
519 * decision in this case.
520 */
521 if (sk->sk_cgrp) {
522 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
523 css_get(&sk->sk_cgrp->memcg->css);
524 return;
525 }
526
527 rcu_read_lock();
528 memcg = mem_cgroup_from_task(current);
529 cg_proto = sk->sk_prot->proto_cgroup(memcg);
530 if (!mem_cgroup_is_root(memcg) &&
531 memcg_proto_active(cg_proto) &&
532 css_tryget_online(&memcg->css)) {
533 sk->sk_cgrp = cg_proto;
534 }
535 rcu_read_unlock();
536 }
537 }
538 EXPORT_SYMBOL(sock_update_memcg);
539
540 void sock_release_memcg(struct sock *sk)
541 {
542 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
543 struct mem_cgroup *memcg;
544 WARN_ON(!sk->sk_cgrp->memcg);
545 memcg = sk->sk_cgrp->memcg;
546 css_put(&sk->sk_cgrp->memcg->css);
547 }
548 }
549
550 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
551 {
552 if (!memcg || mem_cgroup_is_root(memcg))
553 return NULL;
554
555 return &memcg->tcp_mem;
556 }
557 EXPORT_SYMBOL(tcp_proto_cgroup);
558
559 static void disarm_sock_keys(struct mem_cgroup *memcg)
560 {
561 if (!memcg_proto_activated(&memcg->tcp_mem))
562 return;
563 static_key_slow_dec(&memcg_socket_limit_enabled);
564 }
565 #else
566 static void disarm_sock_keys(struct mem_cgroup *memcg)
567 {
568 }
569 #endif
570
571 #ifdef CONFIG_MEMCG_KMEM
572 /*
573 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
574 * The main reason for not using cgroup id for this:
575 * this works better in sparse environments, where we have a lot of memcgs,
576 * but only a few kmem-limited. Or also, if we have, for instance, 200
577 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
578 * 200 entry array for that.
579 *
580 * The current size of the caches array is stored in
581 * memcg_limited_groups_array_size. It will double each time we have to
582 * increase it.
583 */
584 static DEFINE_IDA(kmem_limited_groups);
585 int memcg_limited_groups_array_size;
586
587 /*
588 * MIN_SIZE is different than 1, because we would like to avoid going through
589 * the alloc/free process all the time. In a small machine, 4 kmem-limited
590 * cgroups is a reasonable guess. In the future, it could be a parameter or
591 * tunable, but that is strictly not necessary.
592 *
593 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
594 * this constant directly from cgroup, but it is understandable that this is
595 * better kept as an internal representation in cgroup.c. In any case, the
596 * cgrp_id space is not getting any smaller, and we don't have to necessarily
597 * increase ours as well if it increases.
598 */
599 #define MEMCG_CACHES_MIN_SIZE 4
600 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
601
602 /*
603 * A lot of the calls to the cache allocation functions are expected to be
604 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
605 * conditional to this static branch, we'll have to allow modules that does
606 * kmem_cache_alloc and the such to see this symbol as well
607 */
608 struct static_key memcg_kmem_enabled_key;
609 EXPORT_SYMBOL(memcg_kmem_enabled_key);
610
611 static void memcg_free_cache_id(int id);
612
613 static void disarm_kmem_keys(struct mem_cgroup *memcg)
614 {
615 if (memcg_kmem_is_active(memcg)) {
616 static_key_slow_dec(&memcg_kmem_enabled_key);
617 memcg_free_cache_id(memcg->kmemcg_id);
618 }
619 /*
620 * This check can't live in kmem destruction function,
621 * since the charges will outlive the cgroup
622 */
623 WARN_ON(page_counter_read(&memcg->kmem));
624 }
625 #else
626 static void disarm_kmem_keys(struct mem_cgroup *memcg)
627 {
628 }
629 #endif /* CONFIG_MEMCG_KMEM */
630
631 static void disarm_static_keys(struct mem_cgroup *memcg)
632 {
633 disarm_sock_keys(memcg);
634 disarm_kmem_keys(memcg);
635 }
636
637 static struct mem_cgroup_per_zone *
638 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
639 {
640 int nid = zone_to_nid(zone);
641 int zid = zone_idx(zone);
642
643 return &memcg->nodeinfo[nid]->zoneinfo[zid];
644 }
645
646 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
647 {
648 return &memcg->css;
649 }
650
651 static struct mem_cgroup_per_zone *
652 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
653 {
654 int nid = page_to_nid(page);
655 int zid = page_zonenum(page);
656
657 return &memcg->nodeinfo[nid]->zoneinfo[zid];
658 }
659
660 static struct mem_cgroup_tree_per_zone *
661 soft_limit_tree_node_zone(int nid, int zid)
662 {
663 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
664 }
665
666 static struct mem_cgroup_tree_per_zone *
667 soft_limit_tree_from_page(struct page *page)
668 {
669 int nid = page_to_nid(page);
670 int zid = page_zonenum(page);
671
672 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
673 }
674
675 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
676 struct mem_cgroup_tree_per_zone *mctz,
677 unsigned long new_usage_in_excess)
678 {
679 struct rb_node **p = &mctz->rb_root.rb_node;
680 struct rb_node *parent = NULL;
681 struct mem_cgroup_per_zone *mz_node;
682
683 if (mz->on_tree)
684 return;
685
686 mz->usage_in_excess = new_usage_in_excess;
687 if (!mz->usage_in_excess)
688 return;
689 while (*p) {
690 parent = *p;
691 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
692 tree_node);
693 if (mz->usage_in_excess < mz_node->usage_in_excess)
694 p = &(*p)->rb_left;
695 /*
696 * We can't avoid mem cgroups that are over their soft
697 * limit by the same amount
698 */
699 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
700 p = &(*p)->rb_right;
701 }
702 rb_link_node(&mz->tree_node, parent, p);
703 rb_insert_color(&mz->tree_node, &mctz->rb_root);
704 mz->on_tree = true;
705 }
706
707 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
708 struct mem_cgroup_tree_per_zone *mctz)
709 {
710 if (!mz->on_tree)
711 return;
712 rb_erase(&mz->tree_node, &mctz->rb_root);
713 mz->on_tree = false;
714 }
715
716 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
717 struct mem_cgroup_tree_per_zone *mctz)
718 {
719 unsigned long flags;
720
721 spin_lock_irqsave(&mctz->lock, flags);
722 __mem_cgroup_remove_exceeded(mz, mctz);
723 spin_unlock_irqrestore(&mctz->lock, flags);
724 }
725
726 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
727 {
728 unsigned long nr_pages = page_counter_read(&memcg->memory);
729 unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
730 unsigned long excess = 0;
731
732 if (nr_pages > soft_limit)
733 excess = nr_pages - soft_limit;
734
735 return excess;
736 }
737
738 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
739 {
740 unsigned long excess;
741 struct mem_cgroup_per_zone *mz;
742 struct mem_cgroup_tree_per_zone *mctz;
743
744 mctz = soft_limit_tree_from_page(page);
745 /*
746 * Necessary to update all ancestors when hierarchy is used.
747 * because their event counter is not touched.
748 */
749 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
750 mz = mem_cgroup_page_zoneinfo(memcg, page);
751 excess = soft_limit_excess(memcg);
752 /*
753 * We have to update the tree if mz is on RB-tree or
754 * mem is over its softlimit.
755 */
756 if (excess || mz->on_tree) {
757 unsigned long flags;
758
759 spin_lock_irqsave(&mctz->lock, flags);
760 /* if on-tree, remove it */
761 if (mz->on_tree)
762 __mem_cgroup_remove_exceeded(mz, mctz);
763 /*
764 * Insert again. mz->usage_in_excess will be updated.
765 * If excess is 0, no tree ops.
766 */
767 __mem_cgroup_insert_exceeded(mz, mctz, excess);
768 spin_unlock_irqrestore(&mctz->lock, flags);
769 }
770 }
771 }
772
773 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
774 {
775 struct mem_cgroup_tree_per_zone *mctz;
776 struct mem_cgroup_per_zone *mz;
777 int nid, zid;
778
779 for_each_node(nid) {
780 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
781 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
782 mctz = soft_limit_tree_node_zone(nid, zid);
783 mem_cgroup_remove_exceeded(mz, mctz);
784 }
785 }
786 }
787
788 static struct mem_cgroup_per_zone *
789 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
790 {
791 struct rb_node *rightmost = NULL;
792 struct mem_cgroup_per_zone *mz;
793
794 retry:
795 mz = NULL;
796 rightmost = rb_last(&mctz->rb_root);
797 if (!rightmost)
798 goto done; /* Nothing to reclaim from */
799
800 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
801 /*
802 * Remove the node now but someone else can add it back,
803 * we will to add it back at the end of reclaim to its correct
804 * position in the tree.
805 */
806 __mem_cgroup_remove_exceeded(mz, mctz);
807 if (!soft_limit_excess(mz->memcg) ||
808 !css_tryget_online(&mz->memcg->css))
809 goto retry;
810 done:
811 return mz;
812 }
813
814 static struct mem_cgroup_per_zone *
815 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
816 {
817 struct mem_cgroup_per_zone *mz;
818
819 spin_lock_irq(&mctz->lock);
820 mz = __mem_cgroup_largest_soft_limit_node(mctz);
821 spin_unlock_irq(&mctz->lock);
822 return mz;
823 }
824
825 /*
826 * Implementation Note: reading percpu statistics for memcg.
827 *
828 * Both of vmstat[] and percpu_counter has threshold and do periodic
829 * synchronization to implement "quick" read. There are trade-off between
830 * reading cost and precision of value. Then, we may have a chance to implement
831 * a periodic synchronizion of counter in memcg's counter.
832 *
833 * But this _read() function is used for user interface now. The user accounts
834 * memory usage by memory cgroup and he _always_ requires exact value because
835 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
836 * have to visit all online cpus and make sum. So, for now, unnecessary
837 * synchronization is not implemented. (just implemented for cpu hotplug)
838 *
839 * If there are kernel internal actions which can make use of some not-exact
840 * value, and reading all cpu value can be performance bottleneck in some
841 * common workload, threashold and synchonization as vmstat[] should be
842 * implemented.
843 */
844 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
845 enum mem_cgroup_stat_index idx)
846 {
847 long val = 0;
848 int cpu;
849
850 get_online_cpus();
851 for_each_online_cpu(cpu)
852 val += per_cpu(memcg->stat->count[idx], cpu);
853 #ifdef CONFIG_HOTPLUG_CPU
854 spin_lock(&memcg->pcp_counter_lock);
855 val += memcg->nocpu_base.count[idx];
856 spin_unlock(&memcg->pcp_counter_lock);
857 #endif
858 put_online_cpus();
859 return val;
860 }
861
862 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
863 enum mem_cgroup_events_index idx)
864 {
865 unsigned long val = 0;
866 int cpu;
867
868 get_online_cpus();
869 for_each_online_cpu(cpu)
870 val += per_cpu(memcg->stat->events[idx], cpu);
871 #ifdef CONFIG_HOTPLUG_CPU
872 spin_lock(&memcg->pcp_counter_lock);
873 val += memcg->nocpu_base.events[idx];
874 spin_unlock(&memcg->pcp_counter_lock);
875 #endif
876 put_online_cpus();
877 return val;
878 }
879
880 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
881 struct page *page,
882 int nr_pages)
883 {
884 /*
885 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
886 * counted as CACHE even if it's on ANON LRU.
887 */
888 if (PageAnon(page))
889 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
890 nr_pages);
891 else
892 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
893 nr_pages);
894
895 if (PageTransHuge(page))
896 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
897 nr_pages);
898
899 /* pagein of a big page is an event. So, ignore page size */
900 if (nr_pages > 0)
901 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
902 else {
903 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
904 nr_pages = -nr_pages; /* for event */
905 }
906
907 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
908 }
909
910 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
911 {
912 struct mem_cgroup_per_zone *mz;
913
914 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
915 return mz->lru_size[lru];
916 }
917
918 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
919 int nid,
920 unsigned int lru_mask)
921 {
922 unsigned long nr = 0;
923 int zid;
924
925 VM_BUG_ON((unsigned)nid >= nr_node_ids);
926
927 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
928 struct mem_cgroup_per_zone *mz;
929 enum lru_list lru;
930
931 for_each_lru(lru) {
932 if (!(BIT(lru) & lru_mask))
933 continue;
934 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
935 nr += mz->lru_size[lru];
936 }
937 }
938 return nr;
939 }
940
941 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
942 unsigned int lru_mask)
943 {
944 unsigned long nr = 0;
945 int nid;
946
947 for_each_node_state(nid, N_MEMORY)
948 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
949 return nr;
950 }
951
952 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
953 enum mem_cgroup_events_target target)
954 {
955 unsigned long val, next;
956
957 val = __this_cpu_read(memcg->stat->nr_page_events);
958 next = __this_cpu_read(memcg->stat->targets[target]);
959 /* from time_after() in jiffies.h */
960 if ((long)next - (long)val < 0) {
961 switch (target) {
962 case MEM_CGROUP_TARGET_THRESH:
963 next = val + THRESHOLDS_EVENTS_TARGET;
964 break;
965 case MEM_CGROUP_TARGET_SOFTLIMIT:
966 next = val + SOFTLIMIT_EVENTS_TARGET;
967 break;
968 case MEM_CGROUP_TARGET_NUMAINFO:
969 next = val + NUMAINFO_EVENTS_TARGET;
970 break;
971 default:
972 break;
973 }
974 __this_cpu_write(memcg->stat->targets[target], next);
975 return true;
976 }
977 return false;
978 }
979
980 /*
981 * Check events in order.
982 *
983 */
984 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
985 {
986 /* threshold event is triggered in finer grain than soft limit */
987 if (unlikely(mem_cgroup_event_ratelimit(memcg,
988 MEM_CGROUP_TARGET_THRESH))) {
989 bool do_softlimit;
990 bool do_numainfo __maybe_unused;
991
992 do_softlimit = mem_cgroup_event_ratelimit(memcg,
993 MEM_CGROUP_TARGET_SOFTLIMIT);
994 #if MAX_NUMNODES > 1
995 do_numainfo = mem_cgroup_event_ratelimit(memcg,
996 MEM_CGROUP_TARGET_NUMAINFO);
997 #endif
998 mem_cgroup_threshold(memcg);
999 if (unlikely(do_softlimit))
1000 mem_cgroup_update_tree(memcg, page);
1001 #if MAX_NUMNODES > 1
1002 if (unlikely(do_numainfo))
1003 atomic_inc(&memcg->numainfo_events);
1004 #endif
1005 }
1006 }
1007
1008 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1009 {
1010 /*
1011 * mm_update_next_owner() may clear mm->owner to NULL
1012 * if it races with swapoff, page migration, etc.
1013 * So this can be called with p == NULL.
1014 */
1015 if (unlikely(!p))
1016 return NULL;
1017
1018 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1019 }
1020
1021 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1022 {
1023 struct mem_cgroup *memcg = NULL;
1024
1025 rcu_read_lock();
1026 do {
1027 /*
1028 * Page cache insertions can happen withou an
1029 * actual mm context, e.g. during disk probing
1030 * on boot, loopback IO, acct() writes etc.
1031 */
1032 if (unlikely(!mm))
1033 memcg = root_mem_cgroup;
1034 else {
1035 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1036 if (unlikely(!memcg))
1037 memcg = root_mem_cgroup;
1038 }
1039 } while (!css_tryget_online(&memcg->css));
1040 rcu_read_unlock();
1041 return memcg;
1042 }
1043
1044 /**
1045 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1046 * @root: hierarchy root
1047 * @prev: previously returned memcg, NULL on first invocation
1048 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1049 *
1050 * Returns references to children of the hierarchy below @root, or
1051 * @root itself, or %NULL after a full round-trip.
1052 *
1053 * Caller must pass the return value in @prev on subsequent
1054 * invocations for reference counting, or use mem_cgroup_iter_break()
1055 * to cancel a hierarchy walk before the round-trip is complete.
1056 *
1057 * Reclaimers can specify a zone and a priority level in @reclaim to
1058 * divide up the memcgs in the hierarchy among all concurrent
1059 * reclaimers operating on the same zone and priority.
1060 */
1061 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1062 struct mem_cgroup *prev,
1063 struct mem_cgroup_reclaim_cookie *reclaim)
1064 {
1065 struct reclaim_iter *uninitialized_var(iter);
1066 struct cgroup_subsys_state *css = NULL;
1067 struct mem_cgroup *memcg = NULL;
1068 struct mem_cgroup *pos = NULL;
1069
1070 if (mem_cgroup_disabled())
1071 return NULL;
1072
1073 if (!root)
1074 root = root_mem_cgroup;
1075
1076 if (prev && !reclaim)
1077 pos = prev;
1078
1079 if (!root->use_hierarchy && root != root_mem_cgroup) {
1080 if (prev)
1081 goto out;
1082 return root;
1083 }
1084
1085 rcu_read_lock();
1086
1087 if (reclaim) {
1088 struct mem_cgroup_per_zone *mz;
1089
1090 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1091 iter = &mz->iter[reclaim->priority];
1092
1093 if (prev && reclaim->generation != iter->generation)
1094 goto out_unlock;
1095
1096 do {
1097 pos = ACCESS_ONCE(iter->position);
1098 /*
1099 * A racing update may change the position and
1100 * put the last reference, hence css_tryget(),
1101 * or retry to see the updated position.
1102 */
1103 } while (pos && !css_tryget(&pos->css));
1104 }
1105
1106 if (pos)
1107 css = &pos->css;
1108
1109 for (;;) {
1110 css = css_next_descendant_pre(css, &root->css);
1111 if (!css) {
1112 /*
1113 * Reclaimers share the hierarchy walk, and a
1114 * new one might jump in right at the end of
1115 * the hierarchy - make sure they see at least
1116 * one group and restart from the beginning.
1117 */
1118 if (!prev)
1119 continue;
1120 break;
1121 }
1122
1123 /*
1124 * Verify the css and acquire a reference. The root
1125 * is provided by the caller, so we know it's alive
1126 * and kicking, and don't take an extra reference.
1127 */
1128 memcg = mem_cgroup_from_css(css);
1129
1130 if (css == &root->css)
1131 break;
1132
1133 if (css_tryget(css)) {
1134 /*
1135 * Make sure the memcg is initialized:
1136 * mem_cgroup_css_online() orders the the
1137 * initialization against setting the flag.
1138 */
1139 if (smp_load_acquire(&memcg->initialized))
1140 break;
1141
1142 css_put(css);
1143 }
1144
1145 memcg = NULL;
1146 }
1147
1148 if (reclaim) {
1149 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1150 if (memcg)
1151 css_get(&memcg->css);
1152 if (pos)
1153 css_put(&pos->css);
1154 }
1155
1156 /*
1157 * pairs with css_tryget when dereferencing iter->position
1158 * above.
1159 */
1160 if (pos)
1161 css_put(&pos->css);
1162
1163 if (!memcg)
1164 iter->generation++;
1165 else if (!prev)
1166 reclaim->generation = iter->generation;
1167 }
1168
1169 out_unlock:
1170 rcu_read_unlock();
1171 out:
1172 if (prev && prev != root)
1173 css_put(&prev->css);
1174
1175 return memcg;
1176 }
1177
1178 /**
1179 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1180 * @root: hierarchy root
1181 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1182 */
1183 void mem_cgroup_iter_break(struct mem_cgroup *root,
1184 struct mem_cgroup *prev)
1185 {
1186 if (!root)
1187 root = root_mem_cgroup;
1188 if (prev && prev != root)
1189 css_put(&prev->css);
1190 }
1191
1192 /*
1193 * Iteration constructs for visiting all cgroups (under a tree). If
1194 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1195 * be used for reference counting.
1196 */
1197 #define for_each_mem_cgroup_tree(iter, root) \
1198 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1199 iter != NULL; \
1200 iter = mem_cgroup_iter(root, iter, NULL))
1201
1202 #define for_each_mem_cgroup(iter) \
1203 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1204 iter != NULL; \
1205 iter = mem_cgroup_iter(NULL, iter, NULL))
1206
1207 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1208 {
1209 struct mem_cgroup *memcg;
1210
1211 rcu_read_lock();
1212 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1213 if (unlikely(!memcg))
1214 goto out;
1215
1216 switch (idx) {
1217 case PGFAULT:
1218 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1219 break;
1220 case PGMAJFAULT:
1221 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1222 break;
1223 default:
1224 BUG();
1225 }
1226 out:
1227 rcu_read_unlock();
1228 }
1229 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1230
1231 /**
1232 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1233 * @zone: zone of the wanted lruvec
1234 * @memcg: memcg of the wanted lruvec
1235 *
1236 * Returns the lru list vector holding pages for the given @zone and
1237 * @mem. This can be the global zone lruvec, if the memory controller
1238 * is disabled.
1239 */
1240 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1241 struct mem_cgroup *memcg)
1242 {
1243 struct mem_cgroup_per_zone *mz;
1244 struct lruvec *lruvec;
1245
1246 if (mem_cgroup_disabled()) {
1247 lruvec = &zone->lruvec;
1248 goto out;
1249 }
1250
1251 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1252 lruvec = &mz->lruvec;
1253 out:
1254 /*
1255 * Since a node can be onlined after the mem_cgroup was created,
1256 * we have to be prepared to initialize lruvec->zone here;
1257 * and if offlined then reonlined, we need to reinitialize it.
1258 */
1259 if (unlikely(lruvec->zone != zone))
1260 lruvec->zone = zone;
1261 return lruvec;
1262 }
1263
1264 /**
1265 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1266 * @page: the page
1267 * @zone: zone of the page
1268 *
1269 * This function is only safe when following the LRU page isolation
1270 * and putback protocol: the LRU lock must be held, and the page must
1271 * either be PageLRU() or the caller must have isolated/allocated it.
1272 */
1273 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1274 {
1275 struct mem_cgroup_per_zone *mz;
1276 struct mem_cgroup *memcg;
1277 struct page_cgroup *pc;
1278 struct lruvec *lruvec;
1279
1280 if (mem_cgroup_disabled()) {
1281 lruvec = &zone->lruvec;
1282 goto out;
1283 }
1284
1285 pc = lookup_page_cgroup(page);
1286 memcg = pc->mem_cgroup;
1287 /*
1288 * Swapcache readahead pages are added to the LRU - and
1289 * possibly migrated - before they are charged.
1290 */
1291 if (!memcg)
1292 memcg = root_mem_cgroup;
1293
1294 mz = mem_cgroup_page_zoneinfo(memcg, page);
1295 lruvec = &mz->lruvec;
1296 out:
1297 /*
1298 * Since a node can be onlined after the mem_cgroup was created,
1299 * we have to be prepared to initialize lruvec->zone here;
1300 * and if offlined then reonlined, we need to reinitialize it.
1301 */
1302 if (unlikely(lruvec->zone != zone))
1303 lruvec->zone = zone;
1304 return lruvec;
1305 }
1306
1307 /**
1308 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1309 * @lruvec: mem_cgroup per zone lru vector
1310 * @lru: index of lru list the page is sitting on
1311 * @nr_pages: positive when adding or negative when removing
1312 *
1313 * This function must be called when a page is added to or removed from an
1314 * lru list.
1315 */
1316 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1317 int nr_pages)
1318 {
1319 struct mem_cgroup_per_zone *mz;
1320 unsigned long *lru_size;
1321
1322 if (mem_cgroup_disabled())
1323 return;
1324
1325 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1326 lru_size = mz->lru_size + lru;
1327 *lru_size += nr_pages;
1328 VM_BUG_ON((long)(*lru_size) < 0);
1329 }
1330
1331 /*
1332 * Checks whether given mem is same or in the root_mem_cgroup's
1333 * hierarchy subtree
1334 */
1335 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1336 struct mem_cgroup *memcg)
1337 {
1338 if (root_memcg == memcg)
1339 return true;
1340 if (!root_memcg->use_hierarchy || !memcg)
1341 return false;
1342 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1343 }
1344
1345 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1346 struct mem_cgroup *memcg)
1347 {
1348 bool ret;
1349
1350 rcu_read_lock();
1351 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1352 rcu_read_unlock();
1353 return ret;
1354 }
1355
1356 bool task_in_mem_cgroup(struct task_struct *task,
1357 const struct mem_cgroup *memcg)
1358 {
1359 struct mem_cgroup *curr = NULL;
1360 struct task_struct *p;
1361 bool ret;
1362
1363 p = find_lock_task_mm(task);
1364 if (p) {
1365 curr = get_mem_cgroup_from_mm(p->mm);
1366 task_unlock(p);
1367 } else {
1368 /*
1369 * All threads may have already detached their mm's, but the oom
1370 * killer still needs to detect if they have already been oom
1371 * killed to prevent needlessly killing additional tasks.
1372 */
1373 rcu_read_lock();
1374 curr = mem_cgroup_from_task(task);
1375 if (curr)
1376 css_get(&curr->css);
1377 rcu_read_unlock();
1378 }
1379 /*
1380 * We should check use_hierarchy of "memcg" not "curr". Because checking
1381 * use_hierarchy of "curr" here make this function true if hierarchy is
1382 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1383 * hierarchy(even if use_hierarchy is disabled in "memcg").
1384 */
1385 ret = mem_cgroup_same_or_subtree(memcg, curr);
1386 css_put(&curr->css);
1387 return ret;
1388 }
1389
1390 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1391 {
1392 unsigned long inactive_ratio;
1393 unsigned long inactive;
1394 unsigned long active;
1395 unsigned long gb;
1396
1397 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1398 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1399
1400 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1401 if (gb)
1402 inactive_ratio = int_sqrt(10 * gb);
1403 else
1404 inactive_ratio = 1;
1405
1406 return inactive * inactive_ratio < active;
1407 }
1408
1409 #define mem_cgroup_from_counter(counter, member) \
1410 container_of(counter, struct mem_cgroup, member)
1411
1412 /**
1413 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1414 * @memcg: the memory cgroup
1415 *
1416 * Returns the maximum amount of memory @mem can be charged with, in
1417 * pages.
1418 */
1419 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1420 {
1421 unsigned long margin = 0;
1422 unsigned long count;
1423 unsigned long limit;
1424
1425 count = page_counter_read(&memcg->memory);
1426 limit = ACCESS_ONCE(memcg->memory.limit);
1427 if (count < limit)
1428 margin = limit - count;
1429
1430 if (do_swap_account) {
1431 count = page_counter_read(&memcg->memsw);
1432 limit = ACCESS_ONCE(memcg->memsw.limit);
1433 if (count <= limit)
1434 margin = min(margin, limit - count);
1435 }
1436
1437 return margin;
1438 }
1439
1440 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1441 {
1442 /* root ? */
1443 if (mem_cgroup_disabled() || !memcg->css.parent)
1444 return vm_swappiness;
1445
1446 return memcg->swappiness;
1447 }
1448
1449 /*
1450 * memcg->moving_account is used for checking possibility that some thread is
1451 * calling move_account(). When a thread on CPU-A starts moving pages under
1452 * a memcg, other threads should check memcg->moving_account under
1453 * rcu_read_lock(), like this:
1454 *
1455 * CPU-A CPU-B
1456 * rcu_read_lock()
1457 * memcg->moving_account+1 if (memcg->mocing_account)
1458 * take heavy locks.
1459 * synchronize_rcu() update something.
1460 * rcu_read_unlock()
1461 * start move here.
1462 */
1463
1464 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1465 {
1466 atomic_inc(&memcg->moving_account);
1467 synchronize_rcu();
1468 }
1469
1470 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1471 {
1472 /*
1473 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1474 * We check NULL in callee rather than caller.
1475 */
1476 if (memcg)
1477 atomic_dec(&memcg->moving_account);
1478 }
1479
1480 /*
1481 * A routine for checking "mem" is under move_account() or not.
1482 *
1483 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1484 * moving cgroups. This is for waiting at high-memory pressure
1485 * caused by "move".
1486 */
1487 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1488 {
1489 struct mem_cgroup *from;
1490 struct mem_cgroup *to;
1491 bool ret = false;
1492 /*
1493 * Unlike task_move routines, we access mc.to, mc.from not under
1494 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1495 */
1496 spin_lock(&mc.lock);
1497 from = mc.from;
1498 to = mc.to;
1499 if (!from)
1500 goto unlock;
1501
1502 ret = mem_cgroup_same_or_subtree(memcg, from)
1503 || mem_cgroup_same_or_subtree(memcg, to);
1504 unlock:
1505 spin_unlock(&mc.lock);
1506 return ret;
1507 }
1508
1509 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1510 {
1511 if (mc.moving_task && current != mc.moving_task) {
1512 if (mem_cgroup_under_move(memcg)) {
1513 DEFINE_WAIT(wait);
1514 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1515 /* moving charge context might have finished. */
1516 if (mc.moving_task)
1517 schedule();
1518 finish_wait(&mc.waitq, &wait);
1519 return true;
1520 }
1521 }
1522 return false;
1523 }
1524
1525 /*
1526 * Take this lock when
1527 * - a code tries to modify page's memcg while it's USED.
1528 * - a code tries to modify page state accounting in a memcg.
1529 */
1530 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1531 unsigned long *flags)
1532 {
1533 spin_lock_irqsave(&memcg->move_lock, *flags);
1534 }
1535
1536 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1537 unsigned long *flags)
1538 {
1539 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1540 }
1541
1542 #define K(x) ((x) << (PAGE_SHIFT-10))
1543 /**
1544 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1545 * @memcg: The memory cgroup that went over limit
1546 * @p: Task that is going to be killed
1547 *
1548 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1549 * enabled
1550 */
1551 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1552 {
1553 /* oom_info_lock ensures that parallel ooms do not interleave */
1554 static DEFINE_MUTEX(oom_info_lock);
1555 struct mem_cgroup *iter;
1556 unsigned int i;
1557
1558 if (!p)
1559 return;
1560
1561 mutex_lock(&oom_info_lock);
1562 rcu_read_lock();
1563
1564 pr_info("Task in ");
1565 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1566 pr_info(" killed as a result of limit of ");
1567 pr_cont_cgroup_path(memcg->css.cgroup);
1568 pr_info("\n");
1569
1570 rcu_read_unlock();
1571
1572 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1573 K((u64)page_counter_read(&memcg->memory)),
1574 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1575 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1576 K((u64)page_counter_read(&memcg->memsw)),
1577 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1578 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1579 K((u64)page_counter_read(&memcg->kmem)),
1580 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1581
1582 for_each_mem_cgroup_tree(iter, memcg) {
1583 pr_info("Memory cgroup stats for ");
1584 pr_cont_cgroup_path(iter->css.cgroup);
1585 pr_cont(":");
1586
1587 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1588 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1589 continue;
1590 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1591 K(mem_cgroup_read_stat(iter, i)));
1592 }
1593
1594 for (i = 0; i < NR_LRU_LISTS; i++)
1595 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1596 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1597
1598 pr_cont("\n");
1599 }
1600 mutex_unlock(&oom_info_lock);
1601 }
1602
1603 /*
1604 * This function returns the number of memcg under hierarchy tree. Returns
1605 * 1(self count) if no children.
1606 */
1607 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1608 {
1609 int num = 0;
1610 struct mem_cgroup *iter;
1611
1612 for_each_mem_cgroup_tree(iter, memcg)
1613 num++;
1614 return num;
1615 }
1616
1617 /*
1618 * Return the memory (and swap, if configured) limit for a memcg.
1619 */
1620 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1621 {
1622 unsigned long limit;
1623
1624 limit = memcg->memory.limit;
1625 if (mem_cgroup_swappiness(memcg)) {
1626 unsigned long memsw_limit;
1627
1628 memsw_limit = memcg->memsw.limit;
1629 limit = min(limit + total_swap_pages, memsw_limit);
1630 }
1631 return limit;
1632 }
1633
1634 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1635 int order)
1636 {
1637 struct mem_cgroup *iter;
1638 unsigned long chosen_points = 0;
1639 unsigned long totalpages;
1640 unsigned int points = 0;
1641 struct task_struct *chosen = NULL;
1642
1643 /*
1644 * If current has a pending SIGKILL or is exiting, then automatically
1645 * select it. The goal is to allow it to allocate so that it may
1646 * quickly exit and free its memory.
1647 */
1648 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1649 set_thread_flag(TIF_MEMDIE);
1650 return;
1651 }
1652
1653 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1654 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1655 for_each_mem_cgroup_tree(iter, memcg) {
1656 struct css_task_iter it;
1657 struct task_struct *task;
1658
1659 css_task_iter_start(&iter->css, &it);
1660 while ((task = css_task_iter_next(&it))) {
1661 switch (oom_scan_process_thread(task, totalpages, NULL,
1662 false)) {
1663 case OOM_SCAN_SELECT:
1664 if (chosen)
1665 put_task_struct(chosen);
1666 chosen = task;
1667 chosen_points = ULONG_MAX;
1668 get_task_struct(chosen);
1669 /* fall through */
1670 case OOM_SCAN_CONTINUE:
1671 continue;
1672 case OOM_SCAN_ABORT:
1673 css_task_iter_end(&it);
1674 mem_cgroup_iter_break(memcg, iter);
1675 if (chosen)
1676 put_task_struct(chosen);
1677 return;
1678 case OOM_SCAN_OK:
1679 break;
1680 };
1681 points = oom_badness(task, memcg, NULL, totalpages);
1682 if (!points || points < chosen_points)
1683 continue;
1684 /* Prefer thread group leaders for display purposes */
1685 if (points == chosen_points &&
1686 thread_group_leader(chosen))
1687 continue;
1688
1689 if (chosen)
1690 put_task_struct(chosen);
1691 chosen = task;
1692 chosen_points = points;
1693 get_task_struct(chosen);
1694 }
1695 css_task_iter_end(&it);
1696 }
1697
1698 if (!chosen)
1699 return;
1700 points = chosen_points * 1000 / totalpages;
1701 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1702 NULL, "Memory cgroup out of memory");
1703 }
1704
1705 /**
1706 * test_mem_cgroup_node_reclaimable
1707 * @memcg: the target memcg
1708 * @nid: the node ID to be checked.
1709 * @noswap : specify true here if the user wants flle only information.
1710 *
1711 * This function returns whether the specified memcg contains any
1712 * reclaimable pages on a node. Returns true if there are any reclaimable
1713 * pages in the node.
1714 */
1715 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1716 int nid, bool noswap)
1717 {
1718 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1719 return true;
1720 if (noswap || !total_swap_pages)
1721 return false;
1722 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1723 return true;
1724 return false;
1725
1726 }
1727 #if MAX_NUMNODES > 1
1728
1729 /*
1730 * Always updating the nodemask is not very good - even if we have an empty
1731 * list or the wrong list here, we can start from some node and traverse all
1732 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1733 *
1734 */
1735 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1736 {
1737 int nid;
1738 /*
1739 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1740 * pagein/pageout changes since the last update.
1741 */
1742 if (!atomic_read(&memcg->numainfo_events))
1743 return;
1744 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1745 return;
1746
1747 /* make a nodemask where this memcg uses memory from */
1748 memcg->scan_nodes = node_states[N_MEMORY];
1749
1750 for_each_node_mask(nid, node_states[N_MEMORY]) {
1751
1752 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1753 node_clear(nid, memcg->scan_nodes);
1754 }
1755
1756 atomic_set(&memcg->numainfo_events, 0);
1757 atomic_set(&memcg->numainfo_updating, 0);
1758 }
1759
1760 /*
1761 * Selecting a node where we start reclaim from. Because what we need is just
1762 * reducing usage counter, start from anywhere is O,K. Considering
1763 * memory reclaim from current node, there are pros. and cons.
1764 *
1765 * Freeing memory from current node means freeing memory from a node which
1766 * we'll use or we've used. So, it may make LRU bad. And if several threads
1767 * hit limits, it will see a contention on a node. But freeing from remote
1768 * node means more costs for memory reclaim because of memory latency.
1769 *
1770 * Now, we use round-robin. Better algorithm is welcomed.
1771 */
1772 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1773 {
1774 int node;
1775
1776 mem_cgroup_may_update_nodemask(memcg);
1777 node = memcg->last_scanned_node;
1778
1779 node = next_node(node, memcg->scan_nodes);
1780 if (node == MAX_NUMNODES)
1781 node = first_node(memcg->scan_nodes);
1782 /*
1783 * We call this when we hit limit, not when pages are added to LRU.
1784 * No LRU may hold pages because all pages are UNEVICTABLE or
1785 * memcg is too small and all pages are not on LRU. In that case,
1786 * we use curret node.
1787 */
1788 if (unlikely(node == MAX_NUMNODES))
1789 node = numa_node_id();
1790
1791 memcg->last_scanned_node = node;
1792 return node;
1793 }
1794
1795 /*
1796 * Check all nodes whether it contains reclaimable pages or not.
1797 * For quick scan, we make use of scan_nodes. This will allow us to skip
1798 * unused nodes. But scan_nodes is lazily updated and may not cotain
1799 * enough new information. We need to do double check.
1800 */
1801 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1802 {
1803 int nid;
1804
1805 /*
1806 * quick check...making use of scan_node.
1807 * We can skip unused nodes.
1808 */
1809 if (!nodes_empty(memcg->scan_nodes)) {
1810 for (nid = first_node(memcg->scan_nodes);
1811 nid < MAX_NUMNODES;
1812 nid = next_node(nid, memcg->scan_nodes)) {
1813
1814 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1815 return true;
1816 }
1817 }
1818 /*
1819 * Check rest of nodes.
1820 */
1821 for_each_node_state(nid, N_MEMORY) {
1822 if (node_isset(nid, memcg->scan_nodes))
1823 continue;
1824 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1825 return true;
1826 }
1827 return false;
1828 }
1829
1830 #else
1831 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1832 {
1833 return 0;
1834 }
1835
1836 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1837 {
1838 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1839 }
1840 #endif
1841
1842 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1843 struct zone *zone,
1844 gfp_t gfp_mask,
1845 unsigned long *total_scanned)
1846 {
1847 struct mem_cgroup *victim = NULL;
1848 int total = 0;
1849 int loop = 0;
1850 unsigned long excess;
1851 unsigned long nr_scanned;
1852 struct mem_cgroup_reclaim_cookie reclaim = {
1853 .zone = zone,
1854 .priority = 0,
1855 };
1856
1857 excess = soft_limit_excess(root_memcg);
1858
1859 while (1) {
1860 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1861 if (!victim) {
1862 loop++;
1863 if (loop >= 2) {
1864 /*
1865 * If we have not been able to reclaim
1866 * anything, it might because there are
1867 * no reclaimable pages under this hierarchy
1868 */
1869 if (!total)
1870 break;
1871 /*
1872 * We want to do more targeted reclaim.
1873 * excess >> 2 is not to excessive so as to
1874 * reclaim too much, nor too less that we keep
1875 * coming back to reclaim from this cgroup
1876 */
1877 if (total >= (excess >> 2) ||
1878 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1879 break;
1880 }
1881 continue;
1882 }
1883 if (!mem_cgroup_reclaimable(victim, false))
1884 continue;
1885 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1886 zone, &nr_scanned);
1887 *total_scanned += nr_scanned;
1888 if (!soft_limit_excess(root_memcg))
1889 break;
1890 }
1891 mem_cgroup_iter_break(root_memcg, victim);
1892 return total;
1893 }
1894
1895 #ifdef CONFIG_LOCKDEP
1896 static struct lockdep_map memcg_oom_lock_dep_map = {
1897 .name = "memcg_oom_lock",
1898 };
1899 #endif
1900
1901 static DEFINE_SPINLOCK(memcg_oom_lock);
1902
1903 /*
1904 * Check OOM-Killer is already running under our hierarchy.
1905 * If someone is running, return false.
1906 */
1907 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1908 {
1909 struct mem_cgroup *iter, *failed = NULL;
1910
1911 spin_lock(&memcg_oom_lock);
1912
1913 for_each_mem_cgroup_tree(iter, memcg) {
1914 if (iter->oom_lock) {
1915 /*
1916 * this subtree of our hierarchy is already locked
1917 * so we cannot give a lock.
1918 */
1919 failed = iter;
1920 mem_cgroup_iter_break(memcg, iter);
1921 break;
1922 } else
1923 iter->oom_lock = true;
1924 }
1925
1926 if (failed) {
1927 /*
1928 * OK, we failed to lock the whole subtree so we have
1929 * to clean up what we set up to the failing subtree
1930 */
1931 for_each_mem_cgroup_tree(iter, memcg) {
1932 if (iter == failed) {
1933 mem_cgroup_iter_break(memcg, iter);
1934 break;
1935 }
1936 iter->oom_lock = false;
1937 }
1938 } else
1939 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1940
1941 spin_unlock(&memcg_oom_lock);
1942
1943 return !failed;
1944 }
1945
1946 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1947 {
1948 struct mem_cgroup *iter;
1949
1950 spin_lock(&memcg_oom_lock);
1951 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1952 for_each_mem_cgroup_tree(iter, memcg)
1953 iter->oom_lock = false;
1954 spin_unlock(&memcg_oom_lock);
1955 }
1956
1957 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1958 {
1959 struct mem_cgroup *iter;
1960
1961 for_each_mem_cgroup_tree(iter, memcg)
1962 atomic_inc(&iter->under_oom);
1963 }
1964
1965 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1966 {
1967 struct mem_cgroup *iter;
1968
1969 /*
1970 * When a new child is created while the hierarchy is under oom,
1971 * mem_cgroup_oom_lock() may not be called. We have to use
1972 * atomic_add_unless() here.
1973 */
1974 for_each_mem_cgroup_tree(iter, memcg)
1975 atomic_add_unless(&iter->under_oom, -1, 0);
1976 }
1977
1978 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1979
1980 struct oom_wait_info {
1981 struct mem_cgroup *memcg;
1982 wait_queue_t wait;
1983 };
1984
1985 static int memcg_oom_wake_function(wait_queue_t *wait,
1986 unsigned mode, int sync, void *arg)
1987 {
1988 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1989 struct mem_cgroup *oom_wait_memcg;
1990 struct oom_wait_info *oom_wait_info;
1991
1992 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1993 oom_wait_memcg = oom_wait_info->memcg;
1994
1995 /*
1996 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1997 * Then we can use css_is_ancestor without taking care of RCU.
1998 */
1999 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2000 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2001 return 0;
2002 return autoremove_wake_function(wait, mode, sync, arg);
2003 }
2004
2005 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2006 {
2007 atomic_inc(&memcg->oom_wakeups);
2008 /* for filtering, pass "memcg" as argument. */
2009 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2010 }
2011
2012 static void memcg_oom_recover(struct mem_cgroup *memcg)
2013 {
2014 if (memcg && atomic_read(&memcg->under_oom))
2015 memcg_wakeup_oom(memcg);
2016 }
2017
2018 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2019 {
2020 if (!current->memcg_oom.may_oom)
2021 return;
2022 /*
2023 * We are in the middle of the charge context here, so we
2024 * don't want to block when potentially sitting on a callstack
2025 * that holds all kinds of filesystem and mm locks.
2026 *
2027 * Also, the caller may handle a failed allocation gracefully
2028 * (like optional page cache readahead) and so an OOM killer
2029 * invocation might not even be necessary.
2030 *
2031 * That's why we don't do anything here except remember the
2032 * OOM context and then deal with it at the end of the page
2033 * fault when the stack is unwound, the locks are released,
2034 * and when we know whether the fault was overall successful.
2035 */
2036 css_get(&memcg->css);
2037 current->memcg_oom.memcg = memcg;
2038 current->memcg_oom.gfp_mask = mask;
2039 current->memcg_oom.order = order;
2040 }
2041
2042 /**
2043 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2044 * @handle: actually kill/wait or just clean up the OOM state
2045 *
2046 * This has to be called at the end of a page fault if the memcg OOM
2047 * handler was enabled.
2048 *
2049 * Memcg supports userspace OOM handling where failed allocations must
2050 * sleep on a waitqueue until the userspace task resolves the
2051 * situation. Sleeping directly in the charge context with all kinds
2052 * of locks held is not a good idea, instead we remember an OOM state
2053 * in the task and mem_cgroup_oom_synchronize() has to be called at
2054 * the end of the page fault to complete the OOM handling.
2055 *
2056 * Returns %true if an ongoing memcg OOM situation was detected and
2057 * completed, %false otherwise.
2058 */
2059 bool mem_cgroup_oom_synchronize(bool handle)
2060 {
2061 struct mem_cgroup *memcg = current->memcg_oom.memcg;
2062 struct oom_wait_info owait;
2063 bool locked;
2064
2065 /* OOM is global, do not handle */
2066 if (!memcg)
2067 return false;
2068
2069 if (!handle)
2070 goto cleanup;
2071
2072 owait.memcg = memcg;
2073 owait.wait.flags = 0;
2074 owait.wait.func = memcg_oom_wake_function;
2075 owait.wait.private = current;
2076 INIT_LIST_HEAD(&owait.wait.task_list);
2077
2078 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2079 mem_cgroup_mark_under_oom(memcg);
2080
2081 locked = mem_cgroup_oom_trylock(memcg);
2082
2083 if (locked)
2084 mem_cgroup_oom_notify(memcg);
2085
2086 if (locked && !memcg->oom_kill_disable) {
2087 mem_cgroup_unmark_under_oom(memcg);
2088 finish_wait(&memcg_oom_waitq, &owait.wait);
2089 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2090 current->memcg_oom.order);
2091 } else {
2092 schedule();
2093 mem_cgroup_unmark_under_oom(memcg);
2094 finish_wait(&memcg_oom_waitq, &owait.wait);
2095 }
2096
2097 if (locked) {
2098 mem_cgroup_oom_unlock(memcg);
2099 /*
2100 * There is no guarantee that an OOM-lock contender
2101 * sees the wakeups triggered by the OOM kill
2102 * uncharges. Wake any sleepers explicitely.
2103 */
2104 memcg_oom_recover(memcg);
2105 }
2106 cleanup:
2107 current->memcg_oom.memcg = NULL;
2108 css_put(&memcg->css);
2109 return true;
2110 }
2111
2112 /**
2113 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
2114 * @page: page that is going to change accounted state
2115 * @locked: &memcg->move_lock slowpath was taken
2116 * @flags: IRQ-state flags for &memcg->move_lock
2117 *
2118 * This function must mark the beginning of an accounted page state
2119 * change to prevent double accounting when the page is concurrently
2120 * being moved to another memcg:
2121 *
2122 * memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
2123 * if (TestClearPageState(page))
2124 * mem_cgroup_update_page_stat(memcg, state, -1);
2125 * mem_cgroup_end_page_stat(memcg, locked, flags);
2126 *
2127 * The RCU lock is held throughout the transaction. The fast path can
2128 * get away without acquiring the memcg->move_lock (@locked is false)
2129 * because page moving starts with an RCU grace period.
2130 *
2131 * The RCU lock also protects the memcg from being freed when the page
2132 * state that is going to change is the only thing preventing the page
2133 * from being uncharged. E.g. end-writeback clearing PageWriteback(),
2134 * which allows migration to go ahead and uncharge the page before the
2135 * account transaction might be complete.
2136 */
2137 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page,
2138 bool *locked,
2139 unsigned long *flags)
2140 {
2141 struct mem_cgroup *memcg;
2142 struct page_cgroup *pc;
2143
2144 rcu_read_lock();
2145
2146 if (mem_cgroup_disabled())
2147 return NULL;
2148
2149 pc = lookup_page_cgroup(page);
2150 again:
2151 memcg = pc->mem_cgroup;
2152 if (unlikely(!memcg))
2153 return NULL;
2154
2155 *locked = false;
2156 if (atomic_read(&memcg->moving_account) <= 0)
2157 return memcg;
2158
2159 move_lock_mem_cgroup(memcg, flags);
2160 if (memcg != pc->mem_cgroup) {
2161 move_unlock_mem_cgroup(memcg, flags);
2162 goto again;
2163 }
2164 *locked = true;
2165
2166 return memcg;
2167 }
2168
2169 /**
2170 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2171 * @memcg: the memcg that was accounted against
2172 * @locked: value received from mem_cgroup_begin_page_stat()
2173 * @flags: value received from mem_cgroup_begin_page_stat()
2174 */
2175 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool locked,
2176 unsigned long flags)
2177 {
2178 if (memcg && locked)
2179 move_unlock_mem_cgroup(memcg, &flags);
2180
2181 rcu_read_unlock();
2182 }
2183
2184 /**
2185 * mem_cgroup_update_page_stat - update page state statistics
2186 * @memcg: memcg to account against
2187 * @idx: page state item to account
2188 * @val: number of pages (positive or negative)
2189 *
2190 * See mem_cgroup_begin_page_stat() for locking requirements.
2191 */
2192 void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
2193 enum mem_cgroup_stat_index idx, int val)
2194 {
2195 VM_BUG_ON(!rcu_read_lock_held());
2196
2197 if (memcg)
2198 this_cpu_add(memcg->stat->count[idx], val);
2199 }
2200
2201 /*
2202 * size of first charge trial. "32" comes from vmscan.c's magic value.
2203 * TODO: maybe necessary to use big numbers in big irons.
2204 */
2205 #define CHARGE_BATCH 32U
2206 struct memcg_stock_pcp {
2207 struct mem_cgroup *cached; /* this never be root cgroup */
2208 unsigned int nr_pages;
2209 struct work_struct work;
2210 unsigned long flags;
2211 #define FLUSHING_CACHED_CHARGE 0
2212 };
2213 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2214 static DEFINE_MUTEX(percpu_charge_mutex);
2215
2216 /**
2217 * consume_stock: Try to consume stocked charge on this cpu.
2218 * @memcg: memcg to consume from.
2219 * @nr_pages: how many pages to charge.
2220 *
2221 * The charges will only happen if @memcg matches the current cpu's memcg
2222 * stock, and at least @nr_pages are available in that stock. Failure to
2223 * service an allocation will refill the stock.
2224 *
2225 * returns true if successful, false otherwise.
2226 */
2227 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2228 {
2229 struct memcg_stock_pcp *stock;
2230 bool ret = false;
2231
2232 if (nr_pages > CHARGE_BATCH)
2233 return ret;
2234
2235 stock = &get_cpu_var(memcg_stock);
2236 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2237 stock->nr_pages -= nr_pages;
2238 ret = true;
2239 }
2240 put_cpu_var(memcg_stock);
2241 return ret;
2242 }
2243
2244 /*
2245 * Returns stocks cached in percpu and reset cached information.
2246 */
2247 static void drain_stock(struct memcg_stock_pcp *stock)
2248 {
2249 struct mem_cgroup *old = stock->cached;
2250
2251 if (stock->nr_pages) {
2252 page_counter_uncharge(&old->memory, stock->nr_pages);
2253 if (do_swap_account)
2254 page_counter_uncharge(&old->memsw, stock->nr_pages);
2255 css_put_many(&old->css, stock->nr_pages);
2256 stock->nr_pages = 0;
2257 }
2258 stock->cached = NULL;
2259 }
2260
2261 /*
2262 * This must be called under preempt disabled or must be called by
2263 * a thread which is pinned to local cpu.
2264 */
2265 static void drain_local_stock(struct work_struct *dummy)
2266 {
2267 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2268 drain_stock(stock);
2269 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2270 }
2271
2272 static void __init memcg_stock_init(void)
2273 {
2274 int cpu;
2275
2276 for_each_possible_cpu(cpu) {
2277 struct memcg_stock_pcp *stock =
2278 &per_cpu(memcg_stock, cpu);
2279 INIT_WORK(&stock->work, drain_local_stock);
2280 }
2281 }
2282
2283 /*
2284 * Cache charges(val) to local per_cpu area.
2285 * This will be consumed by consume_stock() function, later.
2286 */
2287 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2288 {
2289 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2290
2291 if (stock->cached != memcg) { /* reset if necessary */
2292 drain_stock(stock);
2293 stock->cached = memcg;
2294 }
2295 stock->nr_pages += nr_pages;
2296 put_cpu_var(memcg_stock);
2297 }
2298
2299 /*
2300 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2301 * of the hierarchy under it.
2302 */
2303 static void drain_all_stock(struct mem_cgroup *root_memcg)
2304 {
2305 int cpu, curcpu;
2306
2307 /* If someone's already draining, avoid adding running more workers. */
2308 if (!mutex_trylock(&percpu_charge_mutex))
2309 return;
2310 /* Notify other cpus that system-wide "drain" is running */
2311 get_online_cpus();
2312 curcpu = get_cpu();
2313 for_each_online_cpu(cpu) {
2314 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2315 struct mem_cgroup *memcg;
2316
2317 memcg = stock->cached;
2318 if (!memcg || !stock->nr_pages)
2319 continue;
2320 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2321 continue;
2322 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2323 if (cpu == curcpu)
2324 drain_local_stock(&stock->work);
2325 else
2326 schedule_work_on(cpu, &stock->work);
2327 }
2328 }
2329 put_cpu();
2330 put_online_cpus();
2331 mutex_unlock(&percpu_charge_mutex);
2332 }
2333
2334 /*
2335 * This function drains percpu counter value from DEAD cpu and
2336 * move it to local cpu. Note that this function can be preempted.
2337 */
2338 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2339 {
2340 int i;
2341
2342 spin_lock(&memcg->pcp_counter_lock);
2343 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2344 long x = per_cpu(memcg->stat->count[i], cpu);
2345
2346 per_cpu(memcg->stat->count[i], cpu) = 0;
2347 memcg->nocpu_base.count[i] += x;
2348 }
2349 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2350 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2351
2352 per_cpu(memcg->stat->events[i], cpu) = 0;
2353 memcg->nocpu_base.events[i] += x;
2354 }
2355 spin_unlock(&memcg->pcp_counter_lock);
2356 }
2357
2358 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2359 unsigned long action,
2360 void *hcpu)
2361 {
2362 int cpu = (unsigned long)hcpu;
2363 struct memcg_stock_pcp *stock;
2364 struct mem_cgroup *iter;
2365
2366 if (action == CPU_ONLINE)
2367 return NOTIFY_OK;
2368
2369 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2370 return NOTIFY_OK;
2371
2372 for_each_mem_cgroup(iter)
2373 mem_cgroup_drain_pcp_counter(iter, cpu);
2374
2375 stock = &per_cpu(memcg_stock, cpu);
2376 drain_stock(stock);
2377 return NOTIFY_OK;
2378 }
2379
2380 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2381 unsigned int nr_pages)
2382 {
2383 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2384 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2385 struct mem_cgroup *mem_over_limit;
2386 struct page_counter *counter;
2387 unsigned long nr_reclaimed;
2388 bool may_swap = true;
2389 bool drained = false;
2390 int ret = 0;
2391
2392 if (mem_cgroup_is_root(memcg))
2393 goto done;
2394 retry:
2395 if (consume_stock(memcg, nr_pages))
2396 goto done;
2397
2398 if (!do_swap_account ||
2399 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2400 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2401 goto done_restock;
2402 if (do_swap_account)
2403 page_counter_uncharge(&memcg->memsw, batch);
2404 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2405 } else {
2406 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2407 may_swap = false;
2408 }
2409
2410 if (batch > nr_pages) {
2411 batch = nr_pages;
2412 goto retry;
2413 }
2414
2415 /*
2416 * Unlike in global OOM situations, memcg is not in a physical
2417 * memory shortage. Allow dying and OOM-killed tasks to
2418 * bypass the last charges so that they can exit quickly and
2419 * free their memory.
2420 */
2421 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2422 fatal_signal_pending(current) ||
2423 current->flags & PF_EXITING))
2424 goto bypass;
2425
2426 if (unlikely(task_in_memcg_oom(current)))
2427 goto nomem;
2428
2429 if (!(gfp_mask & __GFP_WAIT))
2430 goto nomem;
2431
2432 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2433 gfp_mask, may_swap);
2434
2435 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2436 goto retry;
2437
2438 if (!drained) {
2439 drain_all_stock(mem_over_limit);
2440 drained = true;
2441 goto retry;
2442 }
2443
2444 if (gfp_mask & __GFP_NORETRY)
2445 goto nomem;
2446 /*
2447 * Even though the limit is exceeded at this point, reclaim
2448 * may have been able to free some pages. Retry the charge
2449 * before killing the task.
2450 *
2451 * Only for regular pages, though: huge pages are rather
2452 * unlikely to succeed so close to the limit, and we fall back
2453 * to regular pages anyway in case of failure.
2454 */
2455 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2456 goto retry;
2457 /*
2458 * At task move, charge accounts can be doubly counted. So, it's
2459 * better to wait until the end of task_move if something is going on.
2460 */
2461 if (mem_cgroup_wait_acct_move(mem_over_limit))
2462 goto retry;
2463
2464 if (nr_retries--)
2465 goto retry;
2466
2467 if (gfp_mask & __GFP_NOFAIL)
2468 goto bypass;
2469
2470 if (fatal_signal_pending(current))
2471 goto bypass;
2472
2473 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2474 nomem:
2475 if (!(gfp_mask & __GFP_NOFAIL))
2476 return -ENOMEM;
2477 bypass:
2478 return -EINTR;
2479
2480 done_restock:
2481 css_get_many(&memcg->css, batch);
2482 if (batch > nr_pages)
2483 refill_stock(memcg, batch - nr_pages);
2484 done:
2485 return ret;
2486 }
2487
2488 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2489 {
2490 if (mem_cgroup_is_root(memcg))
2491 return;
2492
2493 page_counter_uncharge(&memcg->memory, nr_pages);
2494 if (do_swap_account)
2495 page_counter_uncharge(&memcg->memsw, nr_pages);
2496
2497 css_put_many(&memcg->css, nr_pages);
2498 }
2499
2500 /*
2501 * A helper function to get mem_cgroup from ID. must be called under
2502 * rcu_read_lock(). The caller is responsible for calling
2503 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2504 * refcnt from swap can be called against removed memcg.)
2505 */
2506 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2507 {
2508 /* ID 0 is unused ID */
2509 if (!id)
2510 return NULL;
2511 return mem_cgroup_from_id(id);
2512 }
2513
2514 /*
2515 * try_get_mem_cgroup_from_page - look up page's memcg association
2516 * @page: the page
2517 *
2518 * Look up, get a css reference, and return the memcg that owns @page.
2519 *
2520 * The page must be locked to prevent racing with swap-in and page
2521 * cache charges. If coming from an unlocked page table, the caller
2522 * must ensure the page is on the LRU or this can race with charging.
2523 */
2524 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2525 {
2526 struct mem_cgroup *memcg;
2527 struct page_cgroup *pc;
2528 unsigned short id;
2529 swp_entry_t ent;
2530
2531 VM_BUG_ON_PAGE(!PageLocked(page), page);
2532
2533 pc = lookup_page_cgroup(page);
2534 memcg = pc->mem_cgroup;
2535
2536 if (memcg) {
2537 if (!css_tryget_online(&memcg->css))
2538 memcg = NULL;
2539 } else if (PageSwapCache(page)) {
2540 ent.val = page_private(page);
2541 id = lookup_swap_cgroup_id(ent);
2542 rcu_read_lock();
2543 memcg = mem_cgroup_lookup(id);
2544 if (memcg && !css_tryget_online(&memcg->css))
2545 memcg = NULL;
2546 rcu_read_unlock();
2547 }
2548 return memcg;
2549 }
2550
2551 static void lock_page_lru(struct page *page, int *isolated)
2552 {
2553 struct zone *zone = page_zone(page);
2554
2555 spin_lock_irq(&zone->lru_lock);
2556 if (PageLRU(page)) {
2557 struct lruvec *lruvec;
2558
2559 lruvec = mem_cgroup_page_lruvec(page, zone);
2560 ClearPageLRU(page);
2561 del_page_from_lru_list(page, lruvec, page_lru(page));
2562 *isolated = 1;
2563 } else
2564 *isolated = 0;
2565 }
2566
2567 static void unlock_page_lru(struct page *page, int isolated)
2568 {
2569 struct zone *zone = page_zone(page);
2570
2571 if (isolated) {
2572 struct lruvec *lruvec;
2573
2574 lruvec = mem_cgroup_page_lruvec(page, zone);
2575 VM_BUG_ON_PAGE(PageLRU(page), page);
2576 SetPageLRU(page);
2577 add_page_to_lru_list(page, lruvec, page_lru(page));
2578 }
2579 spin_unlock_irq(&zone->lru_lock);
2580 }
2581
2582 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2583 bool lrucare)
2584 {
2585 struct page_cgroup *pc = lookup_page_cgroup(page);
2586 int isolated;
2587
2588 VM_BUG_ON_PAGE(pc->mem_cgroup, page);
2589 /*
2590 * we don't need page_cgroup_lock about tail pages, becase they are not
2591 * accessed by any other context at this point.
2592 */
2593
2594 /*
2595 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2596 * may already be on some other mem_cgroup's LRU. Take care of it.
2597 */
2598 if (lrucare)
2599 lock_page_lru(page, &isolated);
2600
2601 /*
2602 * Nobody should be changing or seriously looking at
2603 * pc->mem_cgroup at this point:
2604 *
2605 * - the page is uncharged
2606 *
2607 * - the page is off-LRU
2608 *
2609 * - an anonymous fault has exclusive page access, except for
2610 * a locked page table
2611 *
2612 * - a page cache insertion, a swapin fault, or a migration
2613 * have the page locked
2614 */
2615 pc->mem_cgroup = memcg;
2616
2617 if (lrucare)
2618 unlock_page_lru(page, isolated);
2619 }
2620
2621 #ifdef CONFIG_MEMCG_KMEM
2622 /*
2623 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2624 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2625 */
2626 static DEFINE_MUTEX(memcg_slab_mutex);
2627
2628 /*
2629 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2630 * in the memcg_cache_params struct.
2631 */
2632 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2633 {
2634 struct kmem_cache *cachep;
2635
2636 VM_BUG_ON(p->is_root_cache);
2637 cachep = p->root_cache;
2638 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
2639 }
2640
2641 #ifdef CONFIG_SLABINFO
2642 static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
2643 {
2644 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
2645 struct memcg_cache_params *params;
2646
2647 if (!memcg_kmem_is_active(memcg))
2648 return -EIO;
2649
2650 print_slabinfo_header(m);
2651
2652 mutex_lock(&memcg_slab_mutex);
2653 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2654 cache_show(memcg_params_to_cache(params), m);
2655 mutex_unlock(&memcg_slab_mutex);
2656
2657 return 0;
2658 }
2659 #endif
2660
2661 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2662 unsigned long nr_pages)
2663 {
2664 struct page_counter *counter;
2665 int ret = 0;
2666
2667 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2668 if (ret < 0)
2669 return ret;
2670
2671 ret = try_charge(memcg, gfp, nr_pages);
2672 if (ret == -EINTR) {
2673 /*
2674 * try_charge() chose to bypass to root due to OOM kill or
2675 * fatal signal. Since our only options are to either fail
2676 * the allocation or charge it to this cgroup, do it as a
2677 * temporary condition. But we can't fail. From a kmem/slab
2678 * perspective, the cache has already been selected, by
2679 * mem_cgroup_kmem_get_cache(), so it is too late to change
2680 * our minds.
2681 *
2682 * This condition will only trigger if the task entered
2683 * memcg_charge_kmem in a sane state, but was OOM-killed
2684 * during try_charge() above. Tasks that were already dying
2685 * when the allocation triggers should have been already
2686 * directed to the root cgroup in memcontrol.h
2687 */
2688 page_counter_charge(&memcg->memory, nr_pages);
2689 if (do_swap_account)
2690 page_counter_charge(&memcg->memsw, nr_pages);
2691 css_get_many(&memcg->css, nr_pages);
2692 ret = 0;
2693 } else if (ret)
2694 page_counter_uncharge(&memcg->kmem, nr_pages);
2695
2696 return ret;
2697 }
2698
2699 static void memcg_uncharge_kmem(struct mem_cgroup *memcg,
2700 unsigned long nr_pages)
2701 {
2702 page_counter_uncharge(&memcg->memory, nr_pages);
2703 if (do_swap_account)
2704 page_counter_uncharge(&memcg->memsw, nr_pages);
2705
2706 page_counter_uncharge(&memcg->kmem, nr_pages);
2707
2708 css_put_many(&memcg->css, nr_pages);
2709 }
2710
2711 /*
2712 * helper for acessing a memcg's index. It will be used as an index in the
2713 * child cache array in kmem_cache, and also to derive its name. This function
2714 * will return -1 when this is not a kmem-limited memcg.
2715 */
2716 int memcg_cache_id(struct mem_cgroup *memcg)
2717 {
2718 return memcg ? memcg->kmemcg_id : -1;
2719 }
2720
2721 static int memcg_alloc_cache_id(void)
2722 {
2723 int id, size;
2724 int err;
2725
2726 id = ida_simple_get(&kmem_limited_groups,
2727 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2728 if (id < 0)
2729 return id;
2730
2731 if (id < memcg_limited_groups_array_size)
2732 return id;
2733
2734 /*
2735 * There's no space for the new id in memcg_caches arrays,
2736 * so we have to grow them.
2737 */
2738
2739 size = 2 * (id + 1);
2740 if (size < MEMCG_CACHES_MIN_SIZE)
2741 size = MEMCG_CACHES_MIN_SIZE;
2742 else if (size > MEMCG_CACHES_MAX_SIZE)
2743 size = MEMCG_CACHES_MAX_SIZE;
2744
2745 mutex_lock(&memcg_slab_mutex);
2746 err = memcg_update_all_caches(size);
2747 mutex_unlock(&memcg_slab_mutex);
2748
2749 if (err) {
2750 ida_simple_remove(&kmem_limited_groups, id);
2751 return err;
2752 }
2753 return id;
2754 }
2755
2756 static void memcg_free_cache_id(int id)
2757 {
2758 ida_simple_remove(&kmem_limited_groups, id);
2759 }
2760
2761 /*
2762 * We should update the current array size iff all caches updates succeed. This
2763 * can only be done from the slab side. The slab mutex needs to be held when
2764 * calling this.
2765 */
2766 void memcg_update_array_size(int num)
2767 {
2768 memcg_limited_groups_array_size = num;
2769 }
2770
2771 static void memcg_register_cache(struct mem_cgroup *memcg,
2772 struct kmem_cache *root_cache)
2773 {
2774 static char memcg_name_buf[NAME_MAX + 1]; /* protected by
2775 memcg_slab_mutex */
2776 struct kmem_cache *cachep;
2777 int id;
2778
2779 lockdep_assert_held(&memcg_slab_mutex);
2780
2781 id = memcg_cache_id(memcg);
2782
2783 /*
2784 * Since per-memcg caches are created asynchronously on first
2785 * allocation (see memcg_kmem_get_cache()), several threads can try to
2786 * create the same cache, but only one of them may succeed.
2787 */
2788 if (cache_from_memcg_idx(root_cache, id))
2789 return;
2790
2791 cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
2792 cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2793 /*
2794 * If we could not create a memcg cache, do not complain, because
2795 * that's not critical at all as we can always proceed with the root
2796 * cache.
2797 */
2798 if (!cachep)
2799 return;
2800
2801 css_get(&memcg->css);
2802 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
2803
2804 /*
2805 * Since readers won't lock (see cache_from_memcg_idx()), we need a
2806 * barrier here to ensure nobody will see the kmem_cache partially
2807 * initialized.
2808 */
2809 smp_wmb();
2810
2811 BUG_ON(root_cache->memcg_params->memcg_caches[id]);
2812 root_cache->memcg_params->memcg_caches[id] = cachep;
2813 }
2814
2815 static void memcg_unregister_cache(struct kmem_cache *cachep)
2816 {
2817 struct kmem_cache *root_cache;
2818 struct mem_cgroup *memcg;
2819 int id;
2820
2821 lockdep_assert_held(&memcg_slab_mutex);
2822
2823 BUG_ON(is_root_cache(cachep));
2824
2825 root_cache = cachep->memcg_params->root_cache;
2826 memcg = cachep->memcg_params->memcg;
2827 id = memcg_cache_id(memcg);
2828
2829 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
2830 root_cache->memcg_params->memcg_caches[id] = NULL;
2831
2832 list_del(&cachep->memcg_params->list);
2833
2834 kmem_cache_destroy(cachep);
2835
2836 /* drop the reference taken in memcg_register_cache */
2837 css_put(&memcg->css);
2838 }
2839
2840 /*
2841 * During the creation a new cache, we need to disable our accounting mechanism
2842 * altogether. This is true even if we are not creating, but rather just
2843 * enqueing new caches to be created.
2844 *
2845 * This is because that process will trigger allocations; some visible, like
2846 * explicit kmallocs to auxiliary data structures, name strings and internal
2847 * cache structures; some well concealed, like INIT_WORK() that can allocate
2848 * objects during debug.
2849 *
2850 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
2851 * to it. This may not be a bounded recursion: since the first cache creation
2852 * failed to complete (waiting on the allocation), we'll just try to create the
2853 * cache again, failing at the same point.
2854 *
2855 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
2856 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
2857 * inside the following two functions.
2858 */
2859 static inline void memcg_stop_kmem_account(void)
2860 {
2861 VM_BUG_ON(!current->mm);
2862 current->memcg_kmem_skip_account++;
2863 }
2864
2865 static inline void memcg_resume_kmem_account(void)
2866 {
2867 VM_BUG_ON(!current->mm);
2868 current->memcg_kmem_skip_account--;
2869 }
2870
2871 int __memcg_cleanup_cache_params(struct kmem_cache *s)
2872 {
2873 struct kmem_cache *c;
2874 int i, failed = 0;
2875
2876 mutex_lock(&memcg_slab_mutex);
2877 for_each_memcg_cache_index(i) {
2878 c = cache_from_memcg_idx(s, i);
2879 if (!c)
2880 continue;
2881
2882 memcg_unregister_cache(c);
2883
2884 if (cache_from_memcg_idx(s, i))
2885 failed++;
2886 }
2887 mutex_unlock(&memcg_slab_mutex);
2888 return failed;
2889 }
2890
2891 static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
2892 {
2893 struct kmem_cache *cachep;
2894 struct memcg_cache_params *params, *tmp;
2895
2896 if (!memcg_kmem_is_active(memcg))
2897 return;
2898
2899 mutex_lock(&memcg_slab_mutex);
2900 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
2901 cachep = memcg_params_to_cache(params);
2902 kmem_cache_shrink(cachep);
2903 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
2904 memcg_unregister_cache(cachep);
2905 }
2906 mutex_unlock(&memcg_slab_mutex);
2907 }
2908
2909 struct memcg_register_cache_work {
2910 struct mem_cgroup *memcg;
2911 struct kmem_cache *cachep;
2912 struct work_struct work;
2913 };
2914
2915 static void memcg_register_cache_func(struct work_struct *w)
2916 {
2917 struct memcg_register_cache_work *cw =
2918 container_of(w, struct memcg_register_cache_work, work);
2919 struct mem_cgroup *memcg = cw->memcg;
2920 struct kmem_cache *cachep = cw->cachep;
2921
2922 mutex_lock(&memcg_slab_mutex);
2923 memcg_register_cache(memcg, cachep);
2924 mutex_unlock(&memcg_slab_mutex);
2925
2926 css_put(&memcg->css);
2927 kfree(cw);
2928 }
2929
2930 /*
2931 * Enqueue the creation of a per-memcg kmem_cache.
2932 */
2933 static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
2934 struct kmem_cache *cachep)
2935 {
2936 struct memcg_register_cache_work *cw;
2937
2938 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2939 if (cw == NULL) {
2940 css_put(&memcg->css);
2941 return;
2942 }
2943
2944 cw->memcg = memcg;
2945 cw->cachep = cachep;
2946
2947 INIT_WORK(&cw->work, memcg_register_cache_func);
2948 schedule_work(&cw->work);
2949 }
2950
2951 static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
2952 struct kmem_cache *cachep)
2953 {
2954 /*
2955 * We need to stop accounting when we kmalloc, because if the
2956 * corresponding kmalloc cache is not yet created, the first allocation
2957 * in __memcg_schedule_register_cache will recurse.
2958 *
2959 * However, it is better to enclose the whole function. Depending on
2960 * the debugging options enabled, INIT_WORK(), for instance, can
2961 * trigger an allocation. This too, will make us recurse. Because at
2962 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2963 * the safest choice is to do it like this, wrapping the whole function.
2964 */
2965 memcg_stop_kmem_account();
2966 __memcg_schedule_register_cache(memcg, cachep);
2967 memcg_resume_kmem_account();
2968 }
2969
2970 int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
2971 {
2972 unsigned int nr_pages = 1 << order;
2973 int res;
2974
2975 res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp, nr_pages);
2976 if (!res)
2977 atomic_add(nr_pages, &cachep->memcg_params->nr_pages);
2978 return res;
2979 }
2980
2981 void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
2982 {
2983 unsigned int nr_pages = 1 << order;
2984
2985 memcg_uncharge_kmem(cachep->memcg_params->memcg, nr_pages);
2986 atomic_sub(nr_pages, &cachep->memcg_params->nr_pages);
2987 }
2988
2989 /*
2990 * Return the kmem_cache we're supposed to use for a slab allocation.
2991 * We try to use the current memcg's version of the cache.
2992 *
2993 * If the cache does not exist yet, if we are the first user of it,
2994 * we either create it immediately, if possible, or create it asynchronously
2995 * in a workqueue.
2996 * In the latter case, we will let the current allocation go through with
2997 * the original cache.
2998 *
2999 * Can't be called in interrupt context or from kernel threads.
3000 * This function needs to be called with rcu_read_lock() held.
3001 */
3002 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3003 gfp_t gfp)
3004 {
3005 struct mem_cgroup *memcg;
3006 struct kmem_cache *memcg_cachep;
3007
3008 VM_BUG_ON(!cachep->memcg_params);
3009 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3010
3011 if (!current->mm || current->memcg_kmem_skip_account)
3012 return cachep;
3013
3014 rcu_read_lock();
3015 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3016
3017 if (!memcg_kmem_is_active(memcg))
3018 goto out;
3019
3020 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3021 if (likely(memcg_cachep)) {
3022 cachep = memcg_cachep;
3023 goto out;
3024 }
3025
3026 /* The corresponding put will be done in the workqueue. */
3027 if (!css_tryget_online(&memcg->css))
3028 goto out;
3029 rcu_read_unlock();
3030
3031 /*
3032 * If we are in a safe context (can wait, and not in interrupt
3033 * context), we could be be predictable and return right away.
3034 * This would guarantee that the allocation being performed
3035 * already belongs in the new cache.
3036 *
3037 * However, there are some clashes that can arrive from locking.
3038 * For instance, because we acquire the slab_mutex while doing
3039 * memcg_create_kmem_cache, this means no further allocation
3040 * could happen with the slab_mutex held. So it's better to
3041 * defer everything.
3042 */
3043 memcg_schedule_register_cache(memcg, cachep);
3044 return cachep;
3045 out:
3046 rcu_read_unlock();
3047 return cachep;
3048 }
3049
3050 /*
3051 * We need to verify if the allocation against current->mm->owner's memcg is
3052 * possible for the given order. But the page is not allocated yet, so we'll
3053 * need a further commit step to do the final arrangements.
3054 *
3055 * It is possible for the task to switch cgroups in this mean time, so at
3056 * commit time, we can't rely on task conversion any longer. We'll then use
3057 * the handle argument to return to the caller which cgroup we should commit
3058 * against. We could also return the memcg directly and avoid the pointer
3059 * passing, but a boolean return value gives better semantics considering
3060 * the compiled-out case as well.
3061 *
3062 * Returning true means the allocation is possible.
3063 */
3064 bool
3065 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3066 {
3067 struct mem_cgroup *memcg;
3068 int ret;
3069
3070 *_memcg = NULL;
3071
3072 /*
3073 * Disabling accounting is only relevant for some specific memcg
3074 * internal allocations. Therefore we would initially not have such
3075 * check here, since direct calls to the page allocator that are
3076 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
3077 * outside memcg core. We are mostly concerned with cache allocations,
3078 * and by having this test at memcg_kmem_get_cache, we are already able
3079 * to relay the allocation to the root cache and bypass the memcg cache
3080 * altogether.
3081 *
3082 * There is one exception, though: the SLUB allocator does not create
3083 * large order caches, but rather service large kmallocs directly from
3084 * the page allocator. Therefore, the following sequence when backed by
3085 * the SLUB allocator:
3086 *
3087 * memcg_stop_kmem_account();
3088 * kmalloc(<large_number>)
3089 * memcg_resume_kmem_account();
3090 *
3091 * would effectively ignore the fact that we should skip accounting,
3092 * since it will drive us directly to this function without passing
3093 * through the cache selector memcg_kmem_get_cache. Such large
3094 * allocations are extremely rare but can happen, for instance, for the
3095 * cache arrays. We bring this test here.
3096 */
3097 if (!current->mm || current->memcg_kmem_skip_account)
3098 return true;
3099
3100 memcg = get_mem_cgroup_from_mm(current->mm);
3101
3102 if (!memcg_kmem_is_active(memcg)) {
3103 css_put(&memcg->css);
3104 return true;
3105 }
3106
3107 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
3108 if (!ret)
3109 *_memcg = memcg;
3110
3111 css_put(&memcg->css);
3112 return (ret == 0);
3113 }
3114
3115 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3116 int order)
3117 {
3118 struct page_cgroup *pc;
3119
3120 VM_BUG_ON(mem_cgroup_is_root(memcg));
3121
3122 /* The page allocation failed. Revert */
3123 if (!page) {
3124 memcg_uncharge_kmem(memcg, 1 << order);
3125 return;
3126 }
3127 pc = lookup_page_cgroup(page);
3128 pc->mem_cgroup = memcg;
3129 }
3130
3131 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3132 {
3133 struct page_cgroup *pc = lookup_page_cgroup(page);
3134 struct mem_cgroup *memcg = pc->mem_cgroup;
3135
3136 if (!memcg)
3137 return;
3138
3139 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3140
3141 memcg_uncharge_kmem(memcg, 1 << order);
3142 pc->mem_cgroup = NULL;
3143 }
3144 #else
3145 static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
3146 {
3147 }
3148 #endif /* CONFIG_MEMCG_KMEM */
3149
3150 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3151
3152 /*
3153 * Because tail pages are not marked as "used", set it. We're under
3154 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3155 * charge/uncharge will be never happen and move_account() is done under
3156 * compound_lock(), so we don't have to take care of races.
3157 */
3158 void mem_cgroup_split_huge_fixup(struct page *head)
3159 {
3160 struct page_cgroup *pc = lookup_page_cgroup(head);
3161 int i;
3162
3163 if (mem_cgroup_disabled())
3164 return;
3165
3166 for (i = 1; i < HPAGE_PMD_NR; i++)
3167 pc[i].mem_cgroup = pc[0].mem_cgroup;
3168
3169 __this_cpu_sub(pc[0].mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3170 HPAGE_PMD_NR);
3171 }
3172 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3173
3174 /**
3175 * mem_cgroup_move_account - move account of the page
3176 * @page: the page
3177 * @nr_pages: number of regular pages (>1 for huge pages)
3178 * @pc: page_cgroup of the page.
3179 * @from: mem_cgroup which the page is moved from.
3180 * @to: mem_cgroup which the page is moved to. @from != @to.
3181 *
3182 * The caller must confirm following.
3183 * - page is not on LRU (isolate_page() is useful.)
3184 * - compound_lock is held when nr_pages > 1
3185 *
3186 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3187 * from old cgroup.
3188 */
3189 static int mem_cgroup_move_account(struct page *page,
3190 unsigned int nr_pages,
3191 struct page_cgroup *pc,
3192 struct mem_cgroup *from,
3193 struct mem_cgroup *to)
3194 {
3195 unsigned long flags;
3196 int ret;
3197
3198 VM_BUG_ON(from == to);
3199 VM_BUG_ON_PAGE(PageLRU(page), page);
3200 /*
3201 * The page is isolated from LRU. So, collapse function
3202 * will not handle this page. But page splitting can happen.
3203 * Do this check under compound_page_lock(). The caller should
3204 * hold it.
3205 */
3206 ret = -EBUSY;
3207 if (nr_pages > 1 && !PageTransHuge(page))
3208 goto out;
3209
3210 /*
3211 * Prevent mem_cgroup_migrate() from looking at pc->mem_cgroup
3212 * of its source page while we change it: page migration takes
3213 * both pages off the LRU, but page cache replacement doesn't.
3214 */
3215 if (!trylock_page(page))
3216 goto out;
3217
3218 ret = -EINVAL;
3219 if (pc->mem_cgroup != from)
3220 goto out_unlock;
3221
3222 move_lock_mem_cgroup(from, &flags);
3223
3224 if (!PageAnon(page) && page_mapped(page)) {
3225 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3226 nr_pages);
3227 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3228 nr_pages);
3229 }
3230
3231 if (PageWriteback(page)) {
3232 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3233 nr_pages);
3234 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3235 nr_pages);
3236 }
3237
3238 /*
3239 * It is safe to change pc->mem_cgroup here because the page
3240 * is referenced, charged, and isolated - we can't race with
3241 * uncharging, charging, migration, or LRU putback.
3242 */
3243
3244 /* caller should have done css_get */
3245 pc->mem_cgroup = to;
3246 move_unlock_mem_cgroup(from, &flags);
3247 ret = 0;
3248
3249 local_irq_disable();
3250 mem_cgroup_charge_statistics(to, page, nr_pages);
3251 memcg_check_events(to, page);
3252 mem_cgroup_charge_statistics(from, page, -nr_pages);
3253 memcg_check_events(from, page);
3254 local_irq_enable();
3255 out_unlock:
3256 unlock_page(page);
3257 out:
3258 return ret;
3259 }
3260
3261 #ifdef CONFIG_MEMCG_SWAP
3262 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
3263 bool charge)
3264 {
3265 int val = (charge) ? 1 : -1;
3266 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
3267 }
3268
3269 /**
3270 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3271 * @entry: swap entry to be moved
3272 * @from: mem_cgroup which the entry is moved from
3273 * @to: mem_cgroup which the entry is moved to
3274 *
3275 * It succeeds only when the swap_cgroup's record for this entry is the same
3276 * as the mem_cgroup's id of @from.
3277 *
3278 * Returns 0 on success, -EINVAL on failure.
3279 *
3280 * The caller must have charged to @to, IOW, called page_counter_charge() about
3281 * both res and memsw, and called css_get().
3282 */
3283 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3284 struct mem_cgroup *from, struct mem_cgroup *to)
3285 {
3286 unsigned short old_id, new_id;
3287
3288 old_id = mem_cgroup_id(from);
3289 new_id = mem_cgroup_id(to);
3290
3291 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3292 mem_cgroup_swap_statistics(from, false);
3293 mem_cgroup_swap_statistics(to, true);
3294 /*
3295 * This function is only called from task migration context now.
3296 * It postpones page_counter and refcount handling till the end
3297 * of task migration(mem_cgroup_clear_mc()) for performance
3298 * improvement. But we cannot postpone css_get(to) because if
3299 * the process that has been moved to @to does swap-in, the
3300 * refcount of @to might be decreased to 0.
3301 *
3302 * We are in attach() phase, so the cgroup is guaranteed to be
3303 * alive, so we can just call css_get().
3304 */
3305 css_get(&to->css);
3306 return 0;
3307 }
3308 return -EINVAL;
3309 }
3310 #else
3311 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3312 struct mem_cgroup *from, struct mem_cgroup *to)
3313 {
3314 return -EINVAL;
3315 }
3316 #endif
3317
3318 #ifdef CONFIG_DEBUG_VM
3319 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3320 {
3321 struct page_cgroup *pc;
3322
3323 pc = lookup_page_cgroup(page);
3324 /*
3325 * Can be NULL while feeding pages into the page allocator for
3326 * the first time, i.e. during boot or memory hotplug;
3327 * or when mem_cgroup_disabled().
3328 */
3329 if (likely(pc) && pc->mem_cgroup)
3330 return pc;
3331 return NULL;
3332 }
3333
3334 bool mem_cgroup_bad_page_check(struct page *page)
3335 {
3336 if (mem_cgroup_disabled())
3337 return false;
3338
3339 return lookup_page_cgroup_used(page) != NULL;
3340 }
3341
3342 void mem_cgroup_print_bad_page(struct page *page)
3343 {
3344 struct page_cgroup *pc;
3345
3346 pc = lookup_page_cgroup_used(page);
3347 if (pc)
3348 pr_alert("pc:%p pc->mem_cgroup:%p\n", pc, pc->mem_cgroup);
3349 }
3350 #endif
3351
3352 static DEFINE_MUTEX(memcg_limit_mutex);
3353
3354 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3355 unsigned long limit)
3356 {
3357 unsigned long curusage;
3358 unsigned long oldusage;
3359 bool enlarge = false;
3360 int retry_count;
3361 int ret;
3362
3363 /*
3364 * For keeping hierarchical_reclaim simple, how long we should retry
3365 * is depends on callers. We set our retry-count to be function
3366 * of # of children which we should visit in this loop.
3367 */
3368 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3369 mem_cgroup_count_children(memcg);
3370
3371 oldusage = page_counter_read(&memcg->memory);
3372
3373 do {
3374 if (signal_pending(current)) {
3375 ret = -EINTR;
3376 break;
3377 }
3378
3379 mutex_lock(&memcg_limit_mutex);
3380 if (limit > memcg->memsw.limit) {
3381 mutex_unlock(&memcg_limit_mutex);
3382 ret = -EINVAL;
3383 break;
3384 }
3385 if (limit > memcg->memory.limit)
3386 enlarge = true;
3387 ret = page_counter_limit(&memcg->memory, limit);
3388 mutex_unlock(&memcg_limit_mutex);
3389
3390 if (!ret)
3391 break;
3392
3393 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
3394
3395 curusage = page_counter_read(&memcg->memory);
3396 /* Usage is reduced ? */
3397 if (curusage >= oldusage)
3398 retry_count--;
3399 else
3400 oldusage = curusage;
3401 } while (retry_count);
3402
3403 if (!ret && enlarge)
3404 memcg_oom_recover(memcg);
3405
3406 return ret;
3407 }
3408
3409 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3410 unsigned long limit)
3411 {
3412 unsigned long curusage;
3413 unsigned long oldusage;
3414 bool enlarge = false;
3415 int retry_count;
3416 int ret;
3417
3418 /* see mem_cgroup_resize_res_limit */
3419 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3420 mem_cgroup_count_children(memcg);
3421
3422 oldusage = page_counter_read(&memcg->memsw);
3423
3424 do {
3425 if (signal_pending(current)) {
3426 ret = -EINTR;
3427 break;
3428 }
3429
3430 mutex_lock(&memcg_limit_mutex);
3431 if (limit < memcg->memory.limit) {
3432 mutex_unlock(&memcg_limit_mutex);
3433 ret = -EINVAL;
3434 break;
3435 }
3436 if (limit > memcg->memsw.limit)
3437 enlarge = true;
3438 ret = page_counter_limit(&memcg->memsw, limit);
3439 mutex_unlock(&memcg_limit_mutex);
3440
3441 if (!ret)
3442 break;
3443
3444 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
3445
3446 curusage = page_counter_read(&memcg->memsw);
3447 /* Usage is reduced ? */
3448 if (curusage >= oldusage)
3449 retry_count--;
3450 else
3451 oldusage = curusage;
3452 } while (retry_count);
3453
3454 if (!ret && enlarge)
3455 memcg_oom_recover(memcg);
3456
3457 return ret;
3458 }
3459
3460 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3461 gfp_t gfp_mask,
3462 unsigned long *total_scanned)
3463 {
3464 unsigned long nr_reclaimed = 0;
3465 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3466 unsigned long reclaimed;
3467 int loop = 0;
3468 struct mem_cgroup_tree_per_zone *mctz;
3469 unsigned long excess;
3470 unsigned long nr_scanned;
3471
3472 if (order > 0)
3473 return 0;
3474
3475 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3476 /*
3477 * This loop can run a while, specially if mem_cgroup's continuously
3478 * keep exceeding their soft limit and putting the system under
3479 * pressure
3480 */
3481 do {
3482 if (next_mz)
3483 mz = next_mz;
3484 else
3485 mz = mem_cgroup_largest_soft_limit_node(mctz);
3486 if (!mz)
3487 break;
3488
3489 nr_scanned = 0;
3490 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3491 gfp_mask, &nr_scanned);
3492 nr_reclaimed += reclaimed;
3493 *total_scanned += nr_scanned;
3494 spin_lock_irq(&mctz->lock);
3495 __mem_cgroup_remove_exceeded(mz, mctz);
3496
3497 /*
3498 * If we failed to reclaim anything from this memory cgroup
3499 * it is time to move on to the next cgroup
3500 */
3501 next_mz = NULL;
3502 if (!reclaimed)
3503 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3504
3505 excess = soft_limit_excess(mz->memcg);
3506 /*
3507 * One school of thought says that we should not add
3508 * back the node to the tree if reclaim returns 0.
3509 * But our reclaim could return 0, simply because due
3510 * to priority we are exposing a smaller subset of
3511 * memory to reclaim from. Consider this as a longer
3512 * term TODO.
3513 */
3514 /* If excess == 0, no tree ops */
3515 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3516 spin_unlock_irq(&mctz->lock);
3517 css_put(&mz->memcg->css);
3518 loop++;
3519 /*
3520 * Could not reclaim anything and there are no more
3521 * mem cgroups to try or we seem to be looping without
3522 * reclaiming anything.
3523 */
3524 if (!nr_reclaimed &&
3525 (next_mz == NULL ||
3526 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3527 break;
3528 } while (!nr_reclaimed);
3529 if (next_mz)
3530 css_put(&next_mz->memcg->css);
3531 return nr_reclaimed;
3532 }
3533
3534 /*
3535 * Test whether @memcg has children, dead or alive. Note that this
3536 * function doesn't care whether @memcg has use_hierarchy enabled and
3537 * returns %true if there are child csses according to the cgroup
3538 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3539 */
3540 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3541 {
3542 bool ret;
3543
3544 /*
3545 * The lock does not prevent addition or deletion of children, but
3546 * it prevents a new child from being initialized based on this
3547 * parent in css_online(), so it's enough to decide whether
3548 * hierarchically inherited attributes can still be changed or not.
3549 */
3550 lockdep_assert_held(&memcg_create_mutex);
3551
3552 rcu_read_lock();
3553 ret = css_next_child(NULL, &memcg->css);
3554 rcu_read_unlock();
3555 return ret;
3556 }
3557
3558 /*
3559 * Reclaims as many pages from the given memcg as possible and moves
3560 * the rest to the parent.
3561 *
3562 * Caller is responsible for holding css reference for memcg.
3563 */
3564 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3565 {
3566 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3567
3568 /* we call try-to-free pages for make this cgroup empty */
3569 lru_add_drain_all();
3570 /* try to free all pages in this cgroup */
3571 while (nr_retries && page_counter_read(&memcg->memory)) {
3572 int progress;
3573
3574 if (signal_pending(current))
3575 return -EINTR;
3576
3577 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3578 GFP_KERNEL, true);
3579 if (!progress) {
3580 nr_retries--;
3581 /* maybe some writeback is necessary */
3582 congestion_wait(BLK_RW_ASYNC, HZ/10);
3583 }
3584
3585 }
3586
3587 return 0;
3588 }
3589
3590 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3591 char *buf, size_t nbytes,
3592 loff_t off)
3593 {
3594 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3595
3596 if (mem_cgroup_is_root(memcg))
3597 return -EINVAL;
3598 return mem_cgroup_force_empty(memcg) ?: nbytes;
3599 }
3600
3601 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3602 struct cftype *cft)
3603 {
3604 return mem_cgroup_from_css(css)->use_hierarchy;
3605 }
3606
3607 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3608 struct cftype *cft, u64 val)
3609 {
3610 int retval = 0;
3611 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3612 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3613
3614 mutex_lock(&memcg_create_mutex);
3615
3616 if (memcg->use_hierarchy == val)
3617 goto out;
3618
3619 /*
3620 * If parent's use_hierarchy is set, we can't make any modifications
3621 * in the child subtrees. If it is unset, then the change can
3622 * occur, provided the current cgroup has no children.
3623 *
3624 * For the root cgroup, parent_mem is NULL, we allow value to be
3625 * set if there are no children.
3626 */
3627 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3628 (val == 1 || val == 0)) {
3629 if (!memcg_has_children(memcg))
3630 memcg->use_hierarchy = val;
3631 else
3632 retval = -EBUSY;
3633 } else
3634 retval = -EINVAL;
3635
3636 out:
3637 mutex_unlock(&memcg_create_mutex);
3638
3639 return retval;
3640 }
3641
3642 static unsigned long tree_stat(struct mem_cgroup *memcg,
3643 enum mem_cgroup_stat_index idx)
3644 {
3645 struct mem_cgroup *iter;
3646 long val = 0;
3647
3648 /* Per-cpu values can be negative, use a signed accumulator */
3649 for_each_mem_cgroup_tree(iter, memcg)
3650 val += mem_cgroup_read_stat(iter, idx);
3651
3652 if (val < 0) /* race ? */
3653 val = 0;
3654 return val;
3655 }
3656
3657 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3658 {
3659 u64 val;
3660
3661 if (mem_cgroup_is_root(memcg)) {
3662 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3663 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3664 if (swap)
3665 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3666 } else {
3667 if (!swap)
3668 val = page_counter_read(&memcg->memory);
3669 else
3670 val = page_counter_read(&memcg->memsw);
3671 }
3672 return val << PAGE_SHIFT;
3673 }
3674
3675 enum {
3676 RES_USAGE,
3677 RES_LIMIT,
3678 RES_MAX_USAGE,
3679 RES_FAILCNT,
3680 RES_SOFT_LIMIT,
3681 };
3682
3683 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3684 struct cftype *cft)
3685 {
3686 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3687 struct page_counter *counter;
3688
3689 switch (MEMFILE_TYPE(cft->private)) {
3690 case _MEM:
3691 counter = &memcg->memory;
3692 break;
3693 case _MEMSWAP:
3694 counter = &memcg->memsw;
3695 break;
3696 case _KMEM:
3697 counter = &memcg->kmem;
3698 break;
3699 default:
3700 BUG();
3701 }
3702
3703 switch (MEMFILE_ATTR(cft->private)) {
3704 case RES_USAGE:
3705 if (counter == &memcg->memory)
3706 return mem_cgroup_usage(memcg, false);
3707 if (counter == &memcg->memsw)
3708 return mem_cgroup_usage(memcg, true);
3709 return (u64)page_counter_read(counter) * PAGE_SIZE;
3710 case RES_LIMIT:
3711 return (u64)counter->limit * PAGE_SIZE;
3712 case RES_MAX_USAGE:
3713 return (u64)counter->watermark * PAGE_SIZE;
3714 case RES_FAILCNT:
3715 return counter->failcnt;
3716 case RES_SOFT_LIMIT:
3717 return (u64)memcg->soft_limit * PAGE_SIZE;
3718 default:
3719 BUG();
3720 }
3721 }
3722
3723 #ifdef CONFIG_MEMCG_KMEM
3724 static int memcg_activate_kmem(struct mem_cgroup *memcg,
3725 unsigned long nr_pages)
3726 {
3727 int err = 0;
3728 int memcg_id;
3729
3730 if (memcg_kmem_is_active(memcg))
3731 return 0;
3732
3733 /*
3734 * We are going to allocate memory for data shared by all memory
3735 * cgroups so let's stop accounting here.
3736 */
3737 memcg_stop_kmem_account();
3738
3739 /*
3740 * For simplicity, we won't allow this to be disabled. It also can't
3741 * be changed if the cgroup has children already, or if tasks had
3742 * already joined.
3743 *
3744 * If tasks join before we set the limit, a person looking at
3745 * kmem.usage_in_bytes will have no way to determine when it took
3746 * place, which makes the value quite meaningless.
3747 *
3748 * After it first became limited, changes in the value of the limit are
3749 * of course permitted.
3750 */
3751 mutex_lock(&memcg_create_mutex);
3752 if (cgroup_has_tasks(memcg->css.cgroup) ||
3753 (memcg->use_hierarchy && memcg_has_children(memcg)))
3754 err = -EBUSY;
3755 mutex_unlock(&memcg_create_mutex);
3756 if (err)
3757 goto out;
3758
3759 memcg_id = memcg_alloc_cache_id();
3760 if (memcg_id < 0) {
3761 err = memcg_id;
3762 goto out;
3763 }
3764
3765 memcg->kmemcg_id = memcg_id;
3766 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3767
3768 /*
3769 * We couldn't have accounted to this cgroup, because it hasn't got the
3770 * active bit set yet, so this should succeed.
3771 */
3772 err = page_counter_limit(&memcg->kmem, nr_pages);
3773 VM_BUG_ON(err);
3774
3775 static_key_slow_inc(&memcg_kmem_enabled_key);
3776 /*
3777 * Setting the active bit after enabling static branching will
3778 * guarantee no one starts accounting before all call sites are
3779 * patched.
3780 */
3781 memcg_kmem_set_active(memcg);
3782 out:
3783 memcg_resume_kmem_account();
3784 return err;
3785 }
3786
3787 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3788 unsigned long limit)
3789 {
3790 int ret;
3791
3792 mutex_lock(&memcg_limit_mutex);
3793 if (!memcg_kmem_is_active(memcg))
3794 ret = memcg_activate_kmem(memcg, limit);
3795 else
3796 ret = page_counter_limit(&memcg->kmem, limit);
3797 mutex_unlock(&memcg_limit_mutex);
3798 return ret;
3799 }
3800
3801 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3802 {
3803 int ret = 0;
3804 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3805
3806 if (!parent)
3807 return 0;
3808
3809 mutex_lock(&memcg_limit_mutex);
3810 /*
3811 * If the parent cgroup is not kmem-active now, it cannot be activated
3812 * after this point, because it has at least one child already.
3813 */
3814 if (memcg_kmem_is_active(parent))
3815 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3816 mutex_unlock(&memcg_limit_mutex);
3817 return ret;
3818 }
3819 #else
3820 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3821 unsigned long limit)
3822 {
3823 return -EINVAL;
3824 }
3825 #endif /* CONFIG_MEMCG_KMEM */
3826
3827 /*
3828 * The user of this function is...
3829 * RES_LIMIT.
3830 */
3831 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3832 char *buf, size_t nbytes, loff_t off)
3833 {
3834 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3835 unsigned long nr_pages;
3836 int ret;
3837
3838 buf = strstrip(buf);
3839 ret = page_counter_memparse(buf, &nr_pages);
3840 if (ret)
3841 return ret;
3842
3843 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3844 case RES_LIMIT:
3845 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3846 ret = -EINVAL;
3847 break;
3848 }
3849 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3850 case _MEM:
3851 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3852 break;
3853 case _MEMSWAP:
3854 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3855 break;
3856 case _KMEM:
3857 ret = memcg_update_kmem_limit(memcg, nr_pages);
3858 break;
3859 }
3860 break;
3861 case RES_SOFT_LIMIT:
3862 memcg->soft_limit = nr_pages;
3863 ret = 0;
3864 break;
3865 }
3866 return ret ?: nbytes;
3867 }
3868
3869 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3870 size_t nbytes, loff_t off)
3871 {
3872 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3873 struct page_counter *counter;
3874
3875 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3876 case _MEM:
3877 counter = &memcg->memory;
3878 break;
3879 case _MEMSWAP:
3880 counter = &memcg->memsw;
3881 break;
3882 case _KMEM:
3883 counter = &memcg->kmem;
3884 break;
3885 default:
3886 BUG();
3887 }
3888
3889 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3890 case RES_MAX_USAGE:
3891 page_counter_reset_watermark(counter);
3892 break;
3893 case RES_FAILCNT:
3894 counter->failcnt = 0;
3895 break;
3896 default:
3897 BUG();
3898 }
3899
3900 return nbytes;
3901 }
3902
3903 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3904 struct cftype *cft)
3905 {
3906 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3907 }
3908
3909 #ifdef CONFIG_MMU
3910 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3911 struct cftype *cft, u64 val)
3912 {
3913 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3914
3915 if (val >= (1 << NR_MOVE_TYPE))
3916 return -EINVAL;
3917
3918 /*
3919 * No kind of locking is needed in here, because ->can_attach() will
3920 * check this value once in the beginning of the process, and then carry
3921 * on with stale data. This means that changes to this value will only
3922 * affect task migrations starting after the change.
3923 */
3924 memcg->move_charge_at_immigrate = val;
3925 return 0;
3926 }
3927 #else
3928 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3929 struct cftype *cft, u64 val)
3930 {
3931 return -ENOSYS;
3932 }
3933 #endif
3934
3935 #ifdef CONFIG_NUMA
3936 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3937 {
3938 struct numa_stat {
3939 const char *name;
3940 unsigned int lru_mask;
3941 };
3942
3943 static const struct numa_stat stats[] = {
3944 { "total", LRU_ALL },
3945 { "file", LRU_ALL_FILE },
3946 { "anon", LRU_ALL_ANON },
3947 { "unevictable", BIT(LRU_UNEVICTABLE) },
3948 };
3949 const struct numa_stat *stat;
3950 int nid;
3951 unsigned long nr;
3952 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3953
3954 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3955 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3956 seq_printf(m, "%s=%lu", stat->name, nr);
3957 for_each_node_state(nid, N_MEMORY) {
3958 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3959 stat->lru_mask);
3960 seq_printf(m, " N%d=%lu", nid, nr);
3961 }
3962 seq_putc(m, '\n');
3963 }
3964
3965 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3966 struct mem_cgroup *iter;
3967
3968 nr = 0;
3969 for_each_mem_cgroup_tree(iter, memcg)
3970 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3971 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3972 for_each_node_state(nid, N_MEMORY) {
3973 nr = 0;
3974 for_each_mem_cgroup_tree(iter, memcg)
3975 nr += mem_cgroup_node_nr_lru_pages(
3976 iter, nid, stat->lru_mask);
3977 seq_printf(m, " N%d=%lu", nid, nr);
3978 }
3979 seq_putc(m, '\n');
3980 }
3981
3982 return 0;
3983 }
3984 #endif /* CONFIG_NUMA */
3985
3986 static inline void mem_cgroup_lru_names_not_uptodate(void)
3987 {
3988 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3989 }
3990
3991 static int memcg_stat_show(struct seq_file *m, void *v)
3992 {
3993 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3994 unsigned long memory, memsw;
3995 struct mem_cgroup *mi;
3996 unsigned int i;
3997
3998 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3999 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4000 continue;
4001 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4002 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4003 }
4004
4005 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4006 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4007 mem_cgroup_read_events(memcg, i));
4008
4009 for (i = 0; i < NR_LRU_LISTS; i++)
4010 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4011 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4012
4013 /* Hierarchical information */
4014 memory = memsw = PAGE_COUNTER_MAX;
4015 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4016 memory = min(memory, mi->memory.limit);
4017 memsw = min(memsw, mi->memsw.limit);
4018 }
4019 seq_printf(m, "hierarchical_memory_limit %llu\n",
4020 (u64)memory * PAGE_SIZE);
4021 if (do_swap_account)
4022 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4023 (u64)memsw * PAGE_SIZE);
4024
4025 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4026 long long val = 0;
4027
4028 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4029 continue;
4030 for_each_mem_cgroup_tree(mi, memcg)
4031 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4032 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4033 }
4034
4035 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4036 unsigned long long val = 0;
4037
4038 for_each_mem_cgroup_tree(mi, memcg)
4039 val += mem_cgroup_read_events(mi, i);
4040 seq_printf(m, "total_%s %llu\n",
4041 mem_cgroup_events_names[i], val);
4042 }
4043
4044 for (i = 0; i < NR_LRU_LISTS; i++) {
4045 unsigned long long val = 0;
4046
4047 for_each_mem_cgroup_tree(mi, memcg)
4048 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4049 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4050 }
4051
4052 #ifdef CONFIG_DEBUG_VM
4053 {
4054 int nid, zid;
4055 struct mem_cgroup_per_zone *mz;
4056 struct zone_reclaim_stat *rstat;
4057 unsigned long recent_rotated[2] = {0, 0};
4058 unsigned long recent_scanned[2] = {0, 0};
4059
4060 for_each_online_node(nid)
4061 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4062 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
4063 rstat = &mz->lruvec.reclaim_stat;
4064
4065 recent_rotated[0] += rstat->recent_rotated[0];
4066 recent_rotated[1] += rstat->recent_rotated[1];
4067 recent_scanned[0] += rstat->recent_scanned[0];
4068 recent_scanned[1] += rstat->recent_scanned[1];
4069 }
4070 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4071 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4072 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4073 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
4074 }
4075 #endif
4076
4077 return 0;
4078 }
4079
4080 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4081 struct cftype *cft)
4082 {
4083 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4084
4085 return mem_cgroup_swappiness(memcg);
4086 }
4087
4088 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4089 struct cftype *cft, u64 val)
4090 {
4091 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4092
4093 if (val > 100)
4094 return -EINVAL;
4095
4096 if (css->parent)
4097 memcg->swappiness = val;
4098 else
4099 vm_swappiness = val;
4100
4101 return 0;
4102 }
4103
4104 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4105 {
4106 struct mem_cgroup_threshold_ary *t;
4107 unsigned long usage;
4108 int i;
4109
4110 rcu_read_lock();
4111 if (!swap)
4112 t = rcu_dereference(memcg->thresholds.primary);
4113 else
4114 t = rcu_dereference(memcg->memsw_thresholds.primary);
4115
4116 if (!t)
4117 goto unlock;
4118
4119 usage = mem_cgroup_usage(memcg, swap);
4120
4121 /*
4122 * current_threshold points to threshold just below or equal to usage.
4123 * If it's not true, a threshold was crossed after last
4124 * call of __mem_cgroup_threshold().
4125 */
4126 i = t->current_threshold;
4127
4128 /*
4129 * Iterate backward over array of thresholds starting from
4130 * current_threshold and check if a threshold is crossed.
4131 * If none of thresholds below usage is crossed, we read
4132 * only one element of the array here.
4133 */
4134 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4135 eventfd_signal(t->entries[i].eventfd, 1);
4136
4137 /* i = current_threshold + 1 */
4138 i++;
4139
4140 /*
4141 * Iterate forward over array of thresholds starting from
4142 * current_threshold+1 and check if a threshold is crossed.
4143 * If none of thresholds above usage is crossed, we read
4144 * only one element of the array here.
4145 */
4146 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4147 eventfd_signal(t->entries[i].eventfd, 1);
4148
4149 /* Update current_threshold */
4150 t->current_threshold = i - 1;
4151 unlock:
4152 rcu_read_unlock();
4153 }
4154
4155 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4156 {
4157 while (memcg) {
4158 __mem_cgroup_threshold(memcg, false);
4159 if (do_swap_account)
4160 __mem_cgroup_threshold(memcg, true);
4161
4162 memcg = parent_mem_cgroup(memcg);
4163 }
4164 }
4165
4166 static int compare_thresholds(const void *a, const void *b)
4167 {
4168 const struct mem_cgroup_threshold *_a = a;
4169 const struct mem_cgroup_threshold *_b = b;
4170
4171 if (_a->threshold > _b->threshold)
4172 return 1;
4173
4174 if (_a->threshold < _b->threshold)
4175 return -1;
4176
4177 return 0;
4178 }
4179
4180 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4181 {
4182 struct mem_cgroup_eventfd_list *ev;
4183
4184 spin_lock(&memcg_oom_lock);
4185
4186 list_for_each_entry(ev, &memcg->oom_notify, list)
4187 eventfd_signal(ev->eventfd, 1);
4188
4189 spin_unlock(&memcg_oom_lock);
4190 return 0;
4191 }
4192
4193 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4194 {
4195 struct mem_cgroup *iter;
4196
4197 for_each_mem_cgroup_tree(iter, memcg)
4198 mem_cgroup_oom_notify_cb(iter);
4199 }
4200
4201 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4202 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4203 {
4204 struct mem_cgroup_thresholds *thresholds;
4205 struct mem_cgroup_threshold_ary *new;
4206 unsigned long threshold;
4207 unsigned long usage;
4208 int i, size, ret;
4209
4210 ret = page_counter_memparse(args, &threshold);
4211 if (ret)
4212 return ret;
4213
4214 mutex_lock(&memcg->thresholds_lock);
4215
4216 if (type == _MEM) {
4217 thresholds = &memcg->thresholds;
4218 usage = mem_cgroup_usage(memcg, false);
4219 } else if (type == _MEMSWAP) {
4220 thresholds = &memcg->memsw_thresholds;
4221 usage = mem_cgroup_usage(memcg, true);
4222 } else
4223 BUG();
4224
4225 /* Check if a threshold crossed before adding a new one */
4226 if (thresholds->primary)
4227 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4228
4229 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4230
4231 /* Allocate memory for new array of thresholds */
4232 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4233 GFP_KERNEL);
4234 if (!new) {
4235 ret = -ENOMEM;
4236 goto unlock;
4237 }
4238 new->size = size;
4239
4240 /* Copy thresholds (if any) to new array */
4241 if (thresholds->primary) {
4242 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4243 sizeof(struct mem_cgroup_threshold));
4244 }
4245
4246 /* Add new threshold */
4247 new->entries[size - 1].eventfd = eventfd;
4248 new->entries[size - 1].threshold = threshold;
4249
4250 /* Sort thresholds. Registering of new threshold isn't time-critical */
4251 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4252 compare_thresholds, NULL);
4253
4254 /* Find current threshold */
4255 new->current_threshold = -1;
4256 for (i = 0; i < size; i++) {
4257 if (new->entries[i].threshold <= usage) {
4258 /*
4259 * new->current_threshold will not be used until
4260 * rcu_assign_pointer(), so it's safe to increment
4261 * it here.
4262 */
4263 ++new->current_threshold;
4264 } else
4265 break;
4266 }
4267
4268 /* Free old spare buffer and save old primary buffer as spare */
4269 kfree(thresholds->spare);
4270 thresholds->spare = thresholds->primary;
4271
4272 rcu_assign_pointer(thresholds->primary, new);
4273
4274 /* To be sure that nobody uses thresholds */
4275 synchronize_rcu();
4276
4277 unlock:
4278 mutex_unlock(&memcg->thresholds_lock);
4279
4280 return ret;
4281 }
4282
4283 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4284 struct eventfd_ctx *eventfd, const char *args)
4285 {
4286 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4287 }
4288
4289 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4290 struct eventfd_ctx *eventfd, const char *args)
4291 {
4292 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4293 }
4294
4295 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4296 struct eventfd_ctx *eventfd, enum res_type type)
4297 {
4298 struct mem_cgroup_thresholds *thresholds;
4299 struct mem_cgroup_threshold_ary *new;
4300 unsigned long usage;
4301 int i, j, size;
4302
4303 mutex_lock(&memcg->thresholds_lock);
4304
4305 if (type == _MEM) {
4306 thresholds = &memcg->thresholds;
4307 usage = mem_cgroup_usage(memcg, false);
4308 } else if (type == _MEMSWAP) {
4309 thresholds = &memcg->memsw_thresholds;
4310 usage = mem_cgroup_usage(memcg, true);
4311 } else
4312 BUG();
4313
4314 if (!thresholds->primary)
4315 goto unlock;
4316
4317 /* Check if a threshold crossed before removing */
4318 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4319
4320 /* Calculate new number of threshold */
4321 size = 0;
4322 for (i = 0; i < thresholds->primary->size; i++) {
4323 if (thresholds->primary->entries[i].eventfd != eventfd)
4324 size++;
4325 }
4326
4327 new = thresholds->spare;
4328
4329 /* Set thresholds array to NULL if we don't have thresholds */
4330 if (!size) {
4331 kfree(new);
4332 new = NULL;
4333 goto swap_buffers;
4334 }
4335
4336 new->size = size;
4337
4338 /* Copy thresholds and find current threshold */
4339 new->current_threshold = -1;
4340 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4341 if (thresholds->primary->entries[i].eventfd == eventfd)
4342 continue;
4343
4344 new->entries[j] = thresholds->primary->entries[i];
4345 if (new->entries[j].threshold <= usage) {
4346 /*
4347 * new->current_threshold will not be used
4348 * until rcu_assign_pointer(), so it's safe to increment
4349 * it here.
4350 */
4351 ++new->current_threshold;
4352 }
4353 j++;
4354 }
4355
4356 swap_buffers:
4357 /* Swap primary and spare array */
4358 thresholds->spare = thresholds->primary;
4359 /* If all events are unregistered, free the spare array */
4360 if (!new) {
4361 kfree(thresholds->spare);
4362 thresholds->spare = NULL;
4363 }
4364
4365 rcu_assign_pointer(thresholds->primary, new);
4366
4367 /* To be sure that nobody uses thresholds */
4368 synchronize_rcu();
4369 unlock:
4370 mutex_unlock(&memcg->thresholds_lock);
4371 }
4372
4373 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4374 struct eventfd_ctx *eventfd)
4375 {
4376 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4377 }
4378
4379 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4380 struct eventfd_ctx *eventfd)
4381 {
4382 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4383 }
4384
4385 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4386 struct eventfd_ctx *eventfd, const char *args)
4387 {
4388 struct mem_cgroup_eventfd_list *event;
4389
4390 event = kmalloc(sizeof(*event), GFP_KERNEL);
4391 if (!event)
4392 return -ENOMEM;
4393
4394 spin_lock(&memcg_oom_lock);
4395
4396 event->eventfd = eventfd;
4397 list_add(&event->list, &memcg->oom_notify);
4398
4399 /* already in OOM ? */
4400 if (atomic_read(&memcg->under_oom))
4401 eventfd_signal(eventfd, 1);
4402 spin_unlock(&memcg_oom_lock);
4403
4404 return 0;
4405 }
4406
4407 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4408 struct eventfd_ctx *eventfd)
4409 {
4410 struct mem_cgroup_eventfd_list *ev, *tmp;
4411
4412 spin_lock(&memcg_oom_lock);
4413
4414 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4415 if (ev->eventfd == eventfd) {
4416 list_del(&ev->list);
4417 kfree(ev);
4418 }
4419 }
4420
4421 spin_unlock(&memcg_oom_lock);
4422 }
4423
4424 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4425 {
4426 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4427
4428 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4429 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
4430 return 0;
4431 }
4432
4433 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4434 struct cftype *cft, u64 val)
4435 {
4436 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4437
4438 /* cannot set to root cgroup and only 0 and 1 are allowed */
4439 if (!css->parent || !((val == 0) || (val == 1)))
4440 return -EINVAL;
4441
4442 memcg->oom_kill_disable = val;
4443 if (!val)
4444 memcg_oom_recover(memcg);
4445
4446 return 0;
4447 }
4448
4449 #ifdef CONFIG_MEMCG_KMEM
4450 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4451 {
4452 int ret;
4453
4454 memcg->kmemcg_id = -1;
4455 ret = memcg_propagate_kmem(memcg);
4456 if (ret)
4457 return ret;
4458
4459 return mem_cgroup_sockets_init(memcg, ss);
4460 }
4461
4462 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4463 {
4464 mem_cgroup_sockets_destroy(memcg);
4465 }
4466 #else
4467 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4468 {
4469 return 0;
4470 }
4471
4472 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4473 {
4474 }
4475 #endif
4476
4477 /*
4478 * DO NOT USE IN NEW FILES.
4479 *
4480 * "cgroup.event_control" implementation.
4481 *
4482 * This is way over-engineered. It tries to support fully configurable
4483 * events for each user. Such level of flexibility is completely
4484 * unnecessary especially in the light of the planned unified hierarchy.
4485 *
4486 * Please deprecate this and replace with something simpler if at all
4487 * possible.
4488 */
4489
4490 /*
4491 * Unregister event and free resources.
4492 *
4493 * Gets called from workqueue.
4494 */
4495 static void memcg_event_remove(struct work_struct *work)
4496 {
4497 struct mem_cgroup_event *event =
4498 container_of(work, struct mem_cgroup_event, remove);
4499 struct mem_cgroup *memcg = event->memcg;
4500
4501 remove_wait_queue(event->wqh, &event->wait);
4502
4503 event->unregister_event(memcg, event->eventfd);
4504
4505 /* Notify userspace the event is going away. */
4506 eventfd_signal(event->eventfd, 1);
4507
4508 eventfd_ctx_put(event->eventfd);
4509 kfree(event);
4510 css_put(&memcg->css);
4511 }
4512
4513 /*
4514 * Gets called on POLLHUP on eventfd when user closes it.
4515 *
4516 * Called with wqh->lock held and interrupts disabled.
4517 */
4518 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4519 int sync, void *key)
4520 {
4521 struct mem_cgroup_event *event =
4522 container_of(wait, struct mem_cgroup_event, wait);
4523 struct mem_cgroup *memcg = event->memcg;
4524 unsigned long flags = (unsigned long)key;
4525
4526 if (flags & POLLHUP) {
4527 /*
4528 * If the event has been detached at cgroup removal, we
4529 * can simply return knowing the other side will cleanup
4530 * for us.
4531 *
4532 * We can't race against event freeing since the other
4533 * side will require wqh->lock via remove_wait_queue(),
4534 * which we hold.
4535 */
4536 spin_lock(&memcg->event_list_lock);
4537 if (!list_empty(&event->list)) {
4538 list_del_init(&event->list);
4539 /*
4540 * We are in atomic context, but cgroup_event_remove()
4541 * may sleep, so we have to call it in workqueue.
4542 */
4543 schedule_work(&event->remove);
4544 }
4545 spin_unlock(&memcg->event_list_lock);
4546 }
4547
4548 return 0;
4549 }
4550
4551 static void memcg_event_ptable_queue_proc(struct file *file,
4552 wait_queue_head_t *wqh, poll_table *pt)
4553 {
4554 struct mem_cgroup_event *event =
4555 container_of(pt, struct mem_cgroup_event, pt);
4556
4557 event->wqh = wqh;
4558 add_wait_queue(wqh, &event->wait);
4559 }
4560
4561 /*
4562 * DO NOT USE IN NEW FILES.
4563 *
4564 * Parse input and register new cgroup event handler.
4565 *
4566 * Input must be in format '<event_fd> <control_fd> <args>'.
4567 * Interpretation of args is defined by control file implementation.
4568 */
4569 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4570 char *buf, size_t nbytes, loff_t off)
4571 {
4572 struct cgroup_subsys_state *css = of_css(of);
4573 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4574 struct mem_cgroup_event *event;
4575 struct cgroup_subsys_state *cfile_css;
4576 unsigned int efd, cfd;
4577 struct fd efile;
4578 struct fd cfile;
4579 const char *name;
4580 char *endp;
4581 int ret;
4582
4583 buf = strstrip(buf);
4584
4585 efd = simple_strtoul(buf, &endp, 10);
4586 if (*endp != ' ')
4587 return -EINVAL;
4588 buf = endp + 1;
4589
4590 cfd = simple_strtoul(buf, &endp, 10);
4591 if ((*endp != ' ') && (*endp != '\0'))
4592 return -EINVAL;
4593 buf = endp + 1;
4594
4595 event = kzalloc(sizeof(*event), GFP_KERNEL);
4596 if (!event)
4597 return -ENOMEM;
4598
4599 event->memcg = memcg;
4600 INIT_LIST_HEAD(&event->list);
4601 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4602 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4603 INIT_WORK(&event->remove, memcg_event_remove);
4604
4605 efile = fdget(efd);
4606 if (!efile.file) {
4607 ret = -EBADF;
4608 goto out_kfree;
4609 }
4610
4611 event->eventfd = eventfd_ctx_fileget(efile.file);
4612 if (IS_ERR(event->eventfd)) {
4613 ret = PTR_ERR(event->eventfd);
4614 goto out_put_efile;
4615 }
4616
4617 cfile = fdget(cfd);
4618 if (!cfile.file) {
4619 ret = -EBADF;
4620 goto out_put_eventfd;
4621 }
4622
4623 /* the process need read permission on control file */
4624 /* AV: shouldn't we check that it's been opened for read instead? */
4625 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4626 if (ret < 0)
4627 goto out_put_cfile;
4628
4629 /*
4630 * Determine the event callbacks and set them in @event. This used
4631 * to be done via struct cftype but cgroup core no longer knows
4632 * about these events. The following is crude but the whole thing
4633 * is for compatibility anyway.
4634 *
4635 * DO NOT ADD NEW FILES.
4636 */
4637 name = cfile.file->f_dentry->d_name.name;
4638
4639 if (!strcmp(name, "memory.usage_in_bytes")) {
4640 event->register_event = mem_cgroup_usage_register_event;
4641 event->unregister_event = mem_cgroup_usage_unregister_event;
4642 } else if (!strcmp(name, "memory.oom_control")) {
4643 event->register_event = mem_cgroup_oom_register_event;
4644 event->unregister_event = mem_cgroup_oom_unregister_event;
4645 } else if (!strcmp(name, "memory.pressure_level")) {
4646 event->register_event = vmpressure_register_event;
4647 event->unregister_event = vmpressure_unregister_event;
4648 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4649 event->register_event = memsw_cgroup_usage_register_event;
4650 event->unregister_event = memsw_cgroup_usage_unregister_event;
4651 } else {
4652 ret = -EINVAL;
4653 goto out_put_cfile;
4654 }
4655
4656 /*
4657 * Verify @cfile should belong to @css. Also, remaining events are
4658 * automatically removed on cgroup destruction but the removal is
4659 * asynchronous, so take an extra ref on @css.
4660 */
4661 cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
4662 &memory_cgrp_subsys);
4663 ret = -EINVAL;
4664 if (IS_ERR(cfile_css))
4665 goto out_put_cfile;
4666 if (cfile_css != css) {
4667 css_put(cfile_css);
4668 goto out_put_cfile;
4669 }
4670
4671 ret = event->register_event(memcg, event->eventfd, buf);
4672 if (ret)
4673 goto out_put_css;
4674
4675 efile.file->f_op->poll(efile.file, &event->pt);
4676
4677 spin_lock(&memcg->event_list_lock);
4678 list_add(&event->list, &memcg->event_list);
4679 spin_unlock(&memcg->event_list_lock);
4680
4681 fdput(cfile);
4682 fdput(efile);
4683
4684 return nbytes;
4685
4686 out_put_css:
4687 css_put(css);
4688 out_put_cfile:
4689 fdput(cfile);
4690 out_put_eventfd:
4691 eventfd_ctx_put(event->eventfd);
4692 out_put_efile:
4693 fdput(efile);
4694 out_kfree:
4695 kfree(event);
4696
4697 return ret;
4698 }
4699
4700 static struct cftype mem_cgroup_files[] = {
4701 {
4702 .name = "usage_in_bytes",
4703 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4704 .read_u64 = mem_cgroup_read_u64,
4705 },
4706 {
4707 .name = "max_usage_in_bytes",
4708 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4709 .write = mem_cgroup_reset,
4710 .read_u64 = mem_cgroup_read_u64,
4711 },
4712 {
4713 .name = "limit_in_bytes",
4714 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4715 .write = mem_cgroup_write,
4716 .read_u64 = mem_cgroup_read_u64,
4717 },
4718 {
4719 .name = "soft_limit_in_bytes",
4720 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4721 .write = mem_cgroup_write,
4722 .read_u64 = mem_cgroup_read_u64,
4723 },
4724 {
4725 .name = "failcnt",
4726 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4727 .write = mem_cgroup_reset,
4728 .read_u64 = mem_cgroup_read_u64,
4729 },
4730 {
4731 .name = "stat",
4732 .seq_show = memcg_stat_show,
4733 },
4734 {
4735 .name = "force_empty",
4736 .write = mem_cgroup_force_empty_write,
4737 },
4738 {
4739 .name = "use_hierarchy",
4740 .write_u64 = mem_cgroup_hierarchy_write,
4741 .read_u64 = mem_cgroup_hierarchy_read,
4742 },
4743 {
4744 .name = "cgroup.event_control", /* XXX: for compat */
4745 .write = memcg_write_event_control,
4746 .flags = CFTYPE_NO_PREFIX,
4747 .mode = S_IWUGO,
4748 },
4749 {
4750 .name = "swappiness",
4751 .read_u64 = mem_cgroup_swappiness_read,
4752 .write_u64 = mem_cgroup_swappiness_write,
4753 },
4754 {
4755 .name = "move_charge_at_immigrate",
4756 .read_u64 = mem_cgroup_move_charge_read,
4757 .write_u64 = mem_cgroup_move_charge_write,
4758 },
4759 {
4760 .name = "oom_control",
4761 .seq_show = mem_cgroup_oom_control_read,
4762 .write_u64 = mem_cgroup_oom_control_write,
4763 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4764 },
4765 {
4766 .name = "pressure_level",
4767 },
4768 #ifdef CONFIG_NUMA
4769 {
4770 .name = "numa_stat",
4771 .seq_show = memcg_numa_stat_show,
4772 },
4773 #endif
4774 #ifdef CONFIG_MEMCG_KMEM
4775 {
4776 .name = "kmem.limit_in_bytes",
4777 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4778 .write = mem_cgroup_write,
4779 .read_u64 = mem_cgroup_read_u64,
4780 },
4781 {
4782 .name = "kmem.usage_in_bytes",
4783 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4784 .read_u64 = mem_cgroup_read_u64,
4785 },
4786 {
4787 .name = "kmem.failcnt",
4788 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4789 .write = mem_cgroup_reset,
4790 .read_u64 = mem_cgroup_read_u64,
4791 },
4792 {
4793 .name = "kmem.max_usage_in_bytes",
4794 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4795 .write = mem_cgroup_reset,
4796 .read_u64 = mem_cgroup_read_u64,
4797 },
4798 #ifdef CONFIG_SLABINFO
4799 {
4800 .name = "kmem.slabinfo",
4801 .seq_show = mem_cgroup_slabinfo_read,
4802 },
4803 #endif
4804 #endif
4805 { }, /* terminate */
4806 };
4807
4808 #ifdef CONFIG_MEMCG_SWAP
4809 static struct cftype memsw_cgroup_files[] = {
4810 {
4811 .name = "memsw.usage_in_bytes",
4812 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4813 .read_u64 = mem_cgroup_read_u64,
4814 },
4815 {
4816 .name = "memsw.max_usage_in_bytes",
4817 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4818 .write = mem_cgroup_reset,
4819 .read_u64 = mem_cgroup_read_u64,
4820 },
4821 {
4822 .name = "memsw.limit_in_bytes",
4823 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4824 .write = mem_cgroup_write,
4825 .read_u64 = mem_cgroup_read_u64,
4826 },
4827 {
4828 .name = "memsw.failcnt",
4829 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4830 .write = mem_cgroup_reset,
4831 .read_u64 = mem_cgroup_read_u64,
4832 },
4833 { }, /* terminate */
4834 };
4835 #endif
4836 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4837 {
4838 struct mem_cgroup_per_node *pn;
4839 struct mem_cgroup_per_zone *mz;
4840 int zone, tmp = node;
4841 /*
4842 * This routine is called against possible nodes.
4843 * But it's BUG to call kmalloc() against offline node.
4844 *
4845 * TODO: this routine can waste much memory for nodes which will
4846 * never be onlined. It's better to use memory hotplug callback
4847 * function.
4848 */
4849 if (!node_state(node, N_NORMAL_MEMORY))
4850 tmp = -1;
4851 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4852 if (!pn)
4853 return 1;
4854
4855 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4856 mz = &pn->zoneinfo[zone];
4857 lruvec_init(&mz->lruvec);
4858 mz->usage_in_excess = 0;
4859 mz->on_tree = false;
4860 mz->memcg = memcg;
4861 }
4862 memcg->nodeinfo[node] = pn;
4863 return 0;
4864 }
4865
4866 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4867 {
4868 kfree(memcg->nodeinfo[node]);
4869 }
4870
4871 static struct mem_cgroup *mem_cgroup_alloc(void)
4872 {
4873 struct mem_cgroup *memcg;
4874 size_t size;
4875
4876 size = sizeof(struct mem_cgroup);
4877 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4878
4879 memcg = kzalloc(size, GFP_KERNEL);
4880 if (!memcg)
4881 return NULL;
4882
4883 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4884 if (!memcg->stat)
4885 goto out_free;
4886 spin_lock_init(&memcg->pcp_counter_lock);
4887 return memcg;
4888
4889 out_free:
4890 kfree(memcg);
4891 return NULL;
4892 }
4893
4894 /*
4895 * At destroying mem_cgroup, references from swap_cgroup can remain.
4896 * (scanning all at force_empty is too costly...)
4897 *
4898 * Instead of clearing all references at force_empty, we remember
4899 * the number of reference from swap_cgroup and free mem_cgroup when
4900 * it goes down to 0.
4901 *
4902 * Removal of cgroup itself succeeds regardless of refs from swap.
4903 */
4904
4905 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4906 {
4907 int node;
4908
4909 mem_cgroup_remove_from_trees(memcg);
4910
4911 for_each_node(node)
4912 free_mem_cgroup_per_zone_info(memcg, node);
4913
4914 free_percpu(memcg->stat);
4915
4916 /*
4917 * We need to make sure that (at least for now), the jump label
4918 * destruction code runs outside of the cgroup lock. This is because
4919 * get_online_cpus(), which is called from the static_branch update,
4920 * can't be called inside the cgroup_lock. cpusets are the ones
4921 * enforcing this dependency, so if they ever change, we might as well.
4922 *
4923 * schedule_work() will guarantee this happens. Be careful if you need
4924 * to move this code around, and make sure it is outside
4925 * the cgroup_lock.
4926 */
4927 disarm_static_keys(memcg);
4928 kfree(memcg);
4929 }
4930
4931 /*
4932 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4933 */
4934 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4935 {
4936 if (!memcg->memory.parent)
4937 return NULL;
4938 return mem_cgroup_from_counter(memcg->memory.parent, memory);
4939 }
4940 EXPORT_SYMBOL(parent_mem_cgroup);
4941
4942 static void __init mem_cgroup_soft_limit_tree_init(void)
4943 {
4944 struct mem_cgroup_tree_per_node *rtpn;
4945 struct mem_cgroup_tree_per_zone *rtpz;
4946 int tmp, node, zone;
4947
4948 for_each_node(node) {
4949 tmp = node;
4950 if (!node_state(node, N_NORMAL_MEMORY))
4951 tmp = -1;
4952 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4953 BUG_ON(!rtpn);
4954
4955 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4956
4957 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4958 rtpz = &rtpn->rb_tree_per_zone[zone];
4959 rtpz->rb_root = RB_ROOT;
4960 spin_lock_init(&rtpz->lock);
4961 }
4962 }
4963 }
4964
4965 static struct cgroup_subsys_state * __ref
4966 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4967 {
4968 struct mem_cgroup *memcg;
4969 long error = -ENOMEM;
4970 int node;
4971
4972 memcg = mem_cgroup_alloc();
4973 if (!memcg)
4974 return ERR_PTR(error);
4975
4976 for_each_node(node)
4977 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4978 goto free_out;
4979
4980 /* root ? */
4981 if (parent_css == NULL) {
4982 root_mem_cgroup = memcg;
4983 page_counter_init(&memcg->memory, NULL);
4984 page_counter_init(&memcg->memsw, NULL);
4985 page_counter_init(&memcg->kmem, NULL);
4986 }
4987
4988 memcg->last_scanned_node = MAX_NUMNODES;
4989 INIT_LIST_HEAD(&memcg->oom_notify);
4990 memcg->move_charge_at_immigrate = 0;
4991 mutex_init(&memcg->thresholds_lock);
4992 spin_lock_init(&memcg->move_lock);
4993 vmpressure_init(&memcg->vmpressure);
4994 INIT_LIST_HEAD(&memcg->event_list);
4995 spin_lock_init(&memcg->event_list_lock);
4996
4997 return &memcg->css;
4998
4999 free_out:
5000 __mem_cgroup_free(memcg);
5001 return ERR_PTR(error);
5002 }
5003
5004 static int
5005 mem_cgroup_css_online(struct cgroup_subsys_state *css)
5006 {
5007 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5008 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
5009 int ret;
5010
5011 if (css->id > MEM_CGROUP_ID_MAX)
5012 return -ENOSPC;
5013
5014 if (!parent)
5015 return 0;
5016
5017 mutex_lock(&memcg_create_mutex);
5018
5019 memcg->use_hierarchy = parent->use_hierarchy;
5020 memcg->oom_kill_disable = parent->oom_kill_disable;
5021 memcg->swappiness = mem_cgroup_swappiness(parent);
5022
5023 if (parent->use_hierarchy) {
5024 page_counter_init(&memcg->memory, &parent->memory);
5025 page_counter_init(&memcg->memsw, &parent->memsw);
5026 page_counter_init(&memcg->kmem, &parent->kmem);
5027
5028 /*
5029 * No need to take a reference to the parent because cgroup
5030 * core guarantees its existence.
5031 */
5032 } else {
5033 page_counter_init(&memcg->memory, NULL);
5034 page_counter_init(&memcg->memsw, NULL);
5035 page_counter_init(&memcg->kmem, NULL);
5036 /*
5037 * Deeper hierachy with use_hierarchy == false doesn't make
5038 * much sense so let cgroup subsystem know about this
5039 * unfortunate state in our controller.
5040 */
5041 if (parent != root_mem_cgroup)
5042 memory_cgrp_subsys.broken_hierarchy = true;
5043 }
5044 mutex_unlock(&memcg_create_mutex);
5045
5046 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
5047 if (ret)
5048 return ret;
5049
5050 /*
5051 * Make sure the memcg is initialized: mem_cgroup_iter()
5052 * orders reading memcg->initialized against its callers
5053 * reading the memcg members.
5054 */
5055 smp_store_release(&memcg->initialized, 1);
5056
5057 return 0;
5058 }
5059
5060 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5061 {
5062 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5063 struct mem_cgroup_event *event, *tmp;
5064
5065 /*
5066 * Unregister events and notify userspace.
5067 * Notify userspace about cgroup removing only after rmdir of cgroup
5068 * directory to avoid race between userspace and kernelspace.
5069 */
5070 spin_lock(&memcg->event_list_lock);
5071 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5072 list_del_init(&event->list);
5073 schedule_work(&event->remove);
5074 }
5075 spin_unlock(&memcg->event_list_lock);
5076
5077 memcg_unregister_all_caches(memcg);
5078 vmpressure_cleanup(&memcg->vmpressure);
5079 }
5080
5081 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5082 {
5083 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5084
5085 memcg_destroy_kmem(memcg);
5086 __mem_cgroup_free(memcg);
5087 }
5088
5089 /**
5090 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5091 * @css: the target css
5092 *
5093 * Reset the states of the mem_cgroup associated with @css. This is
5094 * invoked when the userland requests disabling on the default hierarchy
5095 * but the memcg is pinned through dependency. The memcg should stop
5096 * applying policies and should revert to the vanilla state as it may be
5097 * made visible again.
5098 *
5099 * The current implementation only resets the essential configurations.
5100 * This needs to be expanded to cover all the visible parts.
5101 */
5102 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5103 {
5104 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5105
5106 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
5107 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
5108 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
5109 memcg->soft_limit = 0;
5110 }
5111
5112 #ifdef CONFIG_MMU
5113 /* Handlers for move charge at task migration. */
5114 static int mem_cgroup_do_precharge(unsigned long count)
5115 {
5116 int ret;
5117
5118 /* Try a single bulk charge without reclaim first */
5119 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
5120 if (!ret) {
5121 mc.precharge += count;
5122 return ret;
5123 }
5124 if (ret == -EINTR) {
5125 cancel_charge(root_mem_cgroup, count);
5126 return ret;
5127 }
5128
5129 /* Try charges one by one with reclaim */
5130 while (count--) {
5131 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
5132 /*
5133 * In case of failure, any residual charges against
5134 * mc.to will be dropped by mem_cgroup_clear_mc()
5135 * later on. However, cancel any charges that are
5136 * bypassed to root right away or they'll be lost.
5137 */
5138 if (ret == -EINTR)
5139 cancel_charge(root_mem_cgroup, 1);
5140 if (ret)
5141 return ret;
5142 mc.precharge++;
5143 cond_resched();
5144 }
5145 return 0;
5146 }
5147
5148 /**
5149 * get_mctgt_type - get target type of moving charge
5150 * @vma: the vma the pte to be checked belongs
5151 * @addr: the address corresponding to the pte to be checked
5152 * @ptent: the pte to be checked
5153 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5154 *
5155 * Returns
5156 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5157 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5158 * move charge. if @target is not NULL, the page is stored in target->page
5159 * with extra refcnt got(Callers should handle it).
5160 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5161 * target for charge migration. if @target is not NULL, the entry is stored
5162 * in target->ent.
5163 *
5164 * Called with pte lock held.
5165 */
5166 union mc_target {
5167 struct page *page;
5168 swp_entry_t ent;
5169 };
5170
5171 enum mc_target_type {
5172 MC_TARGET_NONE = 0,
5173 MC_TARGET_PAGE,
5174 MC_TARGET_SWAP,
5175 };
5176
5177 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5178 unsigned long addr, pte_t ptent)
5179 {
5180 struct page *page = vm_normal_page(vma, addr, ptent);
5181
5182 if (!page || !page_mapped(page))
5183 return NULL;
5184 if (PageAnon(page)) {
5185 /* we don't move shared anon */
5186 if (!move_anon())
5187 return NULL;
5188 } else if (!move_file())
5189 /* we ignore mapcount for file pages */
5190 return NULL;
5191 if (!get_page_unless_zero(page))
5192 return NULL;
5193
5194 return page;
5195 }
5196
5197 #ifdef CONFIG_SWAP
5198 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5199 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5200 {
5201 struct page *page = NULL;
5202 swp_entry_t ent = pte_to_swp_entry(ptent);
5203
5204 if (!move_anon() || non_swap_entry(ent))
5205 return NULL;
5206 /*
5207 * Because lookup_swap_cache() updates some statistics counter,
5208 * we call find_get_page() with swapper_space directly.
5209 */
5210 page = find_get_page(swap_address_space(ent), ent.val);
5211 if (do_swap_account)
5212 entry->val = ent.val;
5213
5214 return page;
5215 }
5216 #else
5217 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5218 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5219 {
5220 return NULL;
5221 }
5222 #endif
5223
5224 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5225 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5226 {
5227 struct page *page = NULL;
5228 struct address_space *mapping;
5229 pgoff_t pgoff;
5230
5231 if (!vma->vm_file) /* anonymous vma */
5232 return NULL;
5233 if (!move_file())
5234 return NULL;
5235
5236 mapping = vma->vm_file->f_mapping;
5237 if (pte_none(ptent))
5238 pgoff = linear_page_index(vma, addr);
5239 else /* pte_file(ptent) is true */
5240 pgoff = pte_to_pgoff(ptent);
5241
5242 /* page is moved even if it's not RSS of this task(page-faulted). */
5243 #ifdef CONFIG_SWAP
5244 /* shmem/tmpfs may report page out on swap: account for that too. */
5245 if (shmem_mapping(mapping)) {
5246 page = find_get_entry(mapping, pgoff);
5247 if (radix_tree_exceptional_entry(page)) {
5248 swp_entry_t swp = radix_to_swp_entry(page);
5249 if (do_swap_account)
5250 *entry = swp;
5251 page = find_get_page(swap_address_space(swp), swp.val);
5252 }
5253 } else
5254 page = find_get_page(mapping, pgoff);
5255 #else
5256 page = find_get_page(mapping, pgoff);
5257 #endif
5258 return page;
5259 }
5260
5261 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5262 unsigned long addr, pte_t ptent, union mc_target *target)
5263 {
5264 struct page *page = NULL;
5265 struct page_cgroup *pc;
5266 enum mc_target_type ret = MC_TARGET_NONE;
5267 swp_entry_t ent = { .val = 0 };
5268
5269 if (pte_present(ptent))
5270 page = mc_handle_present_pte(vma, addr, ptent);
5271 else if (is_swap_pte(ptent))
5272 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5273 else if (pte_none(ptent) || pte_file(ptent))
5274 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5275
5276 if (!page && !ent.val)
5277 return ret;
5278 if (page) {
5279 pc = lookup_page_cgroup(page);
5280 /*
5281 * Do only loose check w/o serialization.
5282 * mem_cgroup_move_account() checks the pc is valid or
5283 * not under LRU exclusion.
5284 */
5285 if (pc->mem_cgroup == mc.from) {
5286 ret = MC_TARGET_PAGE;
5287 if (target)
5288 target->page = page;
5289 }
5290 if (!ret || !target)
5291 put_page(page);
5292 }
5293 /* There is a swap entry and a page doesn't exist or isn't charged */
5294 if (ent.val && !ret &&
5295 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5296 ret = MC_TARGET_SWAP;
5297 if (target)
5298 target->ent = ent;
5299 }
5300 return ret;
5301 }
5302
5303 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5304 /*
5305 * We don't consider swapping or file mapped pages because THP does not
5306 * support them for now.
5307 * Caller should make sure that pmd_trans_huge(pmd) is true.
5308 */
5309 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5310 unsigned long addr, pmd_t pmd, union mc_target *target)
5311 {
5312 struct page *page = NULL;
5313 struct page_cgroup *pc;
5314 enum mc_target_type ret = MC_TARGET_NONE;
5315
5316 page = pmd_page(pmd);
5317 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5318 if (!move_anon())
5319 return ret;
5320 pc = lookup_page_cgroup(page);
5321 if (pc->mem_cgroup == mc.from) {
5322 ret = MC_TARGET_PAGE;
5323 if (target) {
5324 get_page(page);
5325 target->page = page;
5326 }
5327 }
5328 return ret;
5329 }
5330 #else
5331 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5332 unsigned long addr, pmd_t pmd, union mc_target *target)
5333 {
5334 return MC_TARGET_NONE;
5335 }
5336 #endif
5337
5338 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5339 unsigned long addr, unsigned long end,
5340 struct mm_walk *walk)
5341 {
5342 struct vm_area_struct *vma = walk->private;
5343 pte_t *pte;
5344 spinlock_t *ptl;
5345
5346 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5347 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5348 mc.precharge += HPAGE_PMD_NR;
5349 spin_unlock(ptl);
5350 return 0;
5351 }
5352
5353 if (pmd_trans_unstable(pmd))
5354 return 0;
5355 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5356 for (; addr != end; pte++, addr += PAGE_SIZE)
5357 if (get_mctgt_type(vma, addr, *pte, NULL))
5358 mc.precharge++; /* increment precharge temporarily */
5359 pte_unmap_unlock(pte - 1, ptl);
5360 cond_resched();
5361
5362 return 0;
5363 }
5364
5365 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5366 {
5367 unsigned long precharge;
5368 struct vm_area_struct *vma;
5369
5370 down_read(&mm->mmap_sem);
5371 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5372 struct mm_walk mem_cgroup_count_precharge_walk = {
5373 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5374 .mm = mm,
5375 .private = vma,
5376 };
5377 if (is_vm_hugetlb_page(vma))
5378 continue;
5379 walk_page_range(vma->vm_start, vma->vm_end,
5380 &mem_cgroup_count_precharge_walk);
5381 }
5382 up_read(&mm->mmap_sem);
5383
5384 precharge = mc.precharge;
5385 mc.precharge = 0;
5386
5387 return precharge;
5388 }
5389
5390 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5391 {
5392 unsigned long precharge = mem_cgroup_count_precharge(mm);
5393
5394 VM_BUG_ON(mc.moving_task);
5395 mc.moving_task = current;
5396 return mem_cgroup_do_precharge(precharge);
5397 }
5398
5399 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5400 static void __mem_cgroup_clear_mc(void)
5401 {
5402 struct mem_cgroup *from = mc.from;
5403 struct mem_cgroup *to = mc.to;
5404
5405 /* we must uncharge all the leftover precharges from mc.to */
5406 if (mc.precharge) {
5407 cancel_charge(mc.to, mc.precharge);
5408 mc.precharge = 0;
5409 }
5410 /*
5411 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5412 * we must uncharge here.
5413 */
5414 if (mc.moved_charge) {
5415 cancel_charge(mc.from, mc.moved_charge);
5416 mc.moved_charge = 0;
5417 }
5418 /* we must fixup refcnts and charges */
5419 if (mc.moved_swap) {
5420 /* uncharge swap account from the old cgroup */
5421 if (!mem_cgroup_is_root(mc.from))
5422 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5423
5424 /*
5425 * we charged both to->memory and to->memsw, so we
5426 * should uncharge to->memory.
5427 */
5428 if (!mem_cgroup_is_root(mc.to))
5429 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5430
5431 css_put_many(&mc.from->css, mc.moved_swap);
5432
5433 /* we've already done css_get(mc.to) */
5434 mc.moved_swap = 0;
5435 }
5436 memcg_oom_recover(from);
5437 memcg_oom_recover(to);
5438 wake_up_all(&mc.waitq);
5439 }
5440
5441 static void mem_cgroup_clear_mc(void)
5442 {
5443 struct mem_cgroup *from = mc.from;
5444
5445 /*
5446 * we must clear moving_task before waking up waiters at the end of
5447 * task migration.
5448 */
5449 mc.moving_task = NULL;
5450 __mem_cgroup_clear_mc();
5451 spin_lock(&mc.lock);
5452 mc.from = NULL;
5453 mc.to = NULL;
5454 spin_unlock(&mc.lock);
5455 mem_cgroup_end_move(from);
5456 }
5457
5458 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5459 struct cgroup_taskset *tset)
5460 {
5461 struct task_struct *p = cgroup_taskset_first(tset);
5462 int ret = 0;
5463 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5464 unsigned long move_charge_at_immigrate;
5465
5466 /*
5467 * We are now commited to this value whatever it is. Changes in this
5468 * tunable will only affect upcoming migrations, not the current one.
5469 * So we need to save it, and keep it going.
5470 */
5471 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
5472 if (move_charge_at_immigrate) {
5473 struct mm_struct *mm;
5474 struct mem_cgroup *from = mem_cgroup_from_task(p);
5475
5476 VM_BUG_ON(from == memcg);
5477
5478 mm = get_task_mm(p);
5479 if (!mm)
5480 return 0;
5481 /* We move charges only when we move a owner of the mm */
5482 if (mm->owner == p) {
5483 VM_BUG_ON(mc.from);
5484 VM_BUG_ON(mc.to);
5485 VM_BUG_ON(mc.precharge);
5486 VM_BUG_ON(mc.moved_charge);
5487 VM_BUG_ON(mc.moved_swap);
5488 mem_cgroup_start_move(from);
5489 spin_lock(&mc.lock);
5490 mc.from = from;
5491 mc.to = memcg;
5492 mc.immigrate_flags = move_charge_at_immigrate;
5493 spin_unlock(&mc.lock);
5494 /* We set mc.moving_task later */
5495
5496 ret = mem_cgroup_precharge_mc(mm);
5497 if (ret)
5498 mem_cgroup_clear_mc();
5499 }
5500 mmput(mm);
5501 }
5502 return ret;
5503 }
5504
5505 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5506 struct cgroup_taskset *tset)
5507 {
5508 mem_cgroup_clear_mc();
5509 }
5510
5511 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5512 unsigned long addr, unsigned long end,
5513 struct mm_walk *walk)
5514 {
5515 int ret = 0;
5516 struct vm_area_struct *vma = walk->private;
5517 pte_t *pte;
5518 spinlock_t *ptl;
5519 enum mc_target_type target_type;
5520 union mc_target target;
5521 struct page *page;
5522 struct page_cgroup *pc;
5523
5524 /*
5525 * We don't take compound_lock() here but no race with splitting thp
5526 * happens because:
5527 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5528 * under splitting, which means there's no concurrent thp split,
5529 * - if another thread runs into split_huge_page() just after we
5530 * entered this if-block, the thread must wait for page table lock
5531 * to be unlocked in __split_huge_page_splitting(), where the main
5532 * part of thp split is not executed yet.
5533 */
5534 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5535 if (mc.precharge < HPAGE_PMD_NR) {
5536 spin_unlock(ptl);
5537 return 0;
5538 }
5539 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5540 if (target_type == MC_TARGET_PAGE) {
5541 page = target.page;
5542 if (!isolate_lru_page(page)) {
5543 pc = lookup_page_cgroup(page);
5544 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5545 pc, mc.from, mc.to)) {
5546 mc.precharge -= HPAGE_PMD_NR;
5547 mc.moved_charge += HPAGE_PMD_NR;
5548 }
5549 putback_lru_page(page);
5550 }
5551 put_page(page);
5552 }
5553 spin_unlock(ptl);
5554 return 0;
5555 }
5556
5557 if (pmd_trans_unstable(pmd))
5558 return 0;
5559 retry:
5560 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5561 for (; addr != end; addr += PAGE_SIZE) {
5562 pte_t ptent = *(pte++);
5563 swp_entry_t ent;
5564
5565 if (!mc.precharge)
5566 break;
5567
5568 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5569 case MC_TARGET_PAGE:
5570 page = target.page;
5571 if (isolate_lru_page(page))
5572 goto put;
5573 pc = lookup_page_cgroup(page);
5574 if (!mem_cgroup_move_account(page, 1, pc,
5575 mc.from, mc.to)) {
5576 mc.precharge--;
5577 /* we uncharge from mc.from later. */
5578 mc.moved_charge++;
5579 }
5580 putback_lru_page(page);
5581 put: /* get_mctgt_type() gets the page */
5582 put_page(page);
5583 break;
5584 case MC_TARGET_SWAP:
5585 ent = target.ent;
5586 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5587 mc.precharge--;
5588 /* we fixup refcnts and charges later. */
5589 mc.moved_swap++;
5590 }
5591 break;
5592 default:
5593 break;
5594 }
5595 }
5596 pte_unmap_unlock(pte - 1, ptl);
5597 cond_resched();
5598
5599 if (addr != end) {
5600 /*
5601 * We have consumed all precharges we got in can_attach().
5602 * We try charge one by one, but don't do any additional
5603 * charges to mc.to if we have failed in charge once in attach()
5604 * phase.
5605 */
5606 ret = mem_cgroup_do_precharge(1);
5607 if (!ret)
5608 goto retry;
5609 }
5610
5611 return ret;
5612 }
5613
5614 static void mem_cgroup_move_charge(struct mm_struct *mm)
5615 {
5616 struct vm_area_struct *vma;
5617
5618 lru_add_drain_all();
5619 retry:
5620 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5621 /*
5622 * Someone who are holding the mmap_sem might be waiting in
5623 * waitq. So we cancel all extra charges, wake up all waiters,
5624 * and retry. Because we cancel precharges, we might not be able
5625 * to move enough charges, but moving charge is a best-effort
5626 * feature anyway, so it wouldn't be a big problem.
5627 */
5628 __mem_cgroup_clear_mc();
5629 cond_resched();
5630 goto retry;
5631 }
5632 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5633 int ret;
5634 struct mm_walk mem_cgroup_move_charge_walk = {
5635 .pmd_entry = mem_cgroup_move_charge_pte_range,
5636 .mm = mm,
5637 .private = vma,
5638 };
5639 if (is_vm_hugetlb_page(vma))
5640 continue;
5641 ret = walk_page_range(vma->vm_start, vma->vm_end,
5642 &mem_cgroup_move_charge_walk);
5643 if (ret)
5644 /*
5645 * means we have consumed all precharges and failed in
5646 * doing additional charge. Just abandon here.
5647 */
5648 break;
5649 }
5650 up_read(&mm->mmap_sem);
5651 }
5652
5653 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5654 struct cgroup_taskset *tset)
5655 {
5656 struct task_struct *p = cgroup_taskset_first(tset);
5657 struct mm_struct *mm = get_task_mm(p);
5658
5659 if (mm) {
5660 if (mc.to)
5661 mem_cgroup_move_charge(mm);
5662 mmput(mm);
5663 }
5664 if (mc.to)
5665 mem_cgroup_clear_mc();
5666 }
5667 #else /* !CONFIG_MMU */
5668 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5669 struct cgroup_taskset *tset)
5670 {
5671 return 0;
5672 }
5673 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5674 struct cgroup_taskset *tset)
5675 {
5676 }
5677 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5678 struct cgroup_taskset *tset)
5679 {
5680 }
5681 #endif
5682
5683 /*
5684 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5685 * to verify whether we're attached to the default hierarchy on each mount
5686 * attempt.
5687 */
5688 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5689 {
5690 /*
5691 * use_hierarchy is forced on the default hierarchy. cgroup core
5692 * guarantees that @root doesn't have any children, so turning it
5693 * on for the root memcg is enough.
5694 */
5695 if (cgroup_on_dfl(root_css->cgroup))
5696 mem_cgroup_from_css(root_css)->use_hierarchy = true;
5697 }
5698
5699 struct cgroup_subsys memory_cgrp_subsys = {
5700 .css_alloc = mem_cgroup_css_alloc,
5701 .css_online = mem_cgroup_css_online,
5702 .css_offline = mem_cgroup_css_offline,
5703 .css_free = mem_cgroup_css_free,
5704 .css_reset = mem_cgroup_css_reset,
5705 .can_attach = mem_cgroup_can_attach,
5706 .cancel_attach = mem_cgroup_cancel_attach,
5707 .attach = mem_cgroup_move_task,
5708 .bind = mem_cgroup_bind,
5709 .legacy_cftypes = mem_cgroup_files,
5710 .early_init = 0,
5711 };
5712
5713 #ifdef CONFIG_MEMCG_SWAP
5714 static int __init enable_swap_account(char *s)
5715 {
5716 if (!strcmp(s, "1"))
5717 really_do_swap_account = 1;
5718 else if (!strcmp(s, "0"))
5719 really_do_swap_account = 0;
5720 return 1;
5721 }
5722 __setup("swapaccount=", enable_swap_account);
5723
5724 static void __init memsw_file_init(void)
5725 {
5726 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5727 memsw_cgroup_files));
5728 }
5729
5730 static void __init enable_swap_cgroup(void)
5731 {
5732 if (!mem_cgroup_disabled() && really_do_swap_account) {
5733 do_swap_account = 1;
5734 memsw_file_init();
5735 }
5736 }
5737
5738 #else
5739 static void __init enable_swap_cgroup(void)
5740 {
5741 }
5742 #endif
5743
5744 #ifdef CONFIG_MEMCG_SWAP
5745 /**
5746 * mem_cgroup_swapout - transfer a memsw charge to swap
5747 * @page: page whose memsw charge to transfer
5748 * @entry: swap entry to move the charge to
5749 *
5750 * Transfer the memsw charge of @page to @entry.
5751 */
5752 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5753 {
5754 struct mem_cgroup *memcg;
5755 struct page_cgroup *pc;
5756 unsigned short oldid;
5757
5758 VM_BUG_ON_PAGE(PageLRU(page), page);
5759 VM_BUG_ON_PAGE(page_count(page), page);
5760
5761 if (!do_swap_account)
5762 return;
5763
5764 pc = lookup_page_cgroup(page);
5765 memcg = pc->mem_cgroup;
5766
5767 /* Readahead page, never charged */
5768 if (!memcg)
5769 return;
5770
5771 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5772 VM_BUG_ON_PAGE(oldid, page);
5773 mem_cgroup_swap_statistics(memcg, true);
5774
5775 pc->mem_cgroup = NULL;
5776
5777 if (!mem_cgroup_is_root(memcg))
5778 page_counter_uncharge(&memcg->memory, 1);
5779
5780 /* XXX: caller holds IRQ-safe mapping->tree_lock */
5781 VM_BUG_ON(!irqs_disabled());
5782
5783 mem_cgroup_charge_statistics(memcg, page, -1);
5784 memcg_check_events(memcg, page);
5785 }
5786
5787 /**
5788 * mem_cgroup_uncharge_swap - uncharge a swap entry
5789 * @entry: swap entry to uncharge
5790 *
5791 * Drop the memsw charge associated with @entry.
5792 */
5793 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5794 {
5795 struct mem_cgroup *memcg;
5796 unsigned short id;
5797
5798 if (!do_swap_account)
5799 return;
5800
5801 id = swap_cgroup_record(entry, 0);
5802 rcu_read_lock();
5803 memcg = mem_cgroup_lookup(id);
5804 if (memcg) {
5805 if (!mem_cgroup_is_root(memcg))
5806 page_counter_uncharge(&memcg->memsw, 1);
5807 mem_cgroup_swap_statistics(memcg, false);
5808 css_put(&memcg->css);
5809 }
5810 rcu_read_unlock();
5811 }
5812 #endif
5813
5814 /**
5815 * mem_cgroup_try_charge - try charging a page
5816 * @page: page to charge
5817 * @mm: mm context of the victim
5818 * @gfp_mask: reclaim mode
5819 * @memcgp: charged memcg return
5820 *
5821 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5822 * pages according to @gfp_mask if necessary.
5823 *
5824 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5825 * Otherwise, an error code is returned.
5826 *
5827 * After page->mapping has been set up, the caller must finalize the
5828 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5829 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5830 */
5831 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5832 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5833 {
5834 struct mem_cgroup *memcg = NULL;
5835 unsigned int nr_pages = 1;
5836 int ret = 0;
5837
5838 if (mem_cgroup_disabled())
5839 goto out;
5840
5841 if (PageSwapCache(page)) {
5842 struct page_cgroup *pc = lookup_page_cgroup(page);
5843 /*
5844 * Every swap fault against a single page tries to charge the
5845 * page, bail as early as possible. shmem_unuse() encounters
5846 * already charged pages, too. The USED bit is protected by
5847 * the page lock, which serializes swap cache removal, which
5848 * in turn serializes uncharging.
5849 */
5850 if (pc->mem_cgroup)
5851 goto out;
5852 }
5853
5854 if (PageTransHuge(page)) {
5855 nr_pages <<= compound_order(page);
5856 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5857 }
5858
5859 if (do_swap_account && PageSwapCache(page))
5860 memcg = try_get_mem_cgroup_from_page(page);
5861 if (!memcg)
5862 memcg = get_mem_cgroup_from_mm(mm);
5863
5864 ret = try_charge(memcg, gfp_mask, nr_pages);
5865
5866 css_put(&memcg->css);
5867
5868 if (ret == -EINTR) {
5869 memcg = root_mem_cgroup;
5870 ret = 0;
5871 }
5872 out:
5873 *memcgp = memcg;
5874 return ret;
5875 }
5876
5877 /**
5878 * mem_cgroup_commit_charge - commit a page charge
5879 * @page: page to charge
5880 * @memcg: memcg to charge the page to
5881 * @lrucare: page might be on LRU already
5882 *
5883 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5884 * after page->mapping has been set up. This must happen atomically
5885 * as part of the page instantiation, i.e. under the page table lock
5886 * for anonymous pages, under the page lock for page and swap cache.
5887 *
5888 * In addition, the page must not be on the LRU during the commit, to
5889 * prevent racing with task migration. If it might be, use @lrucare.
5890 *
5891 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5892 */
5893 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5894 bool lrucare)
5895 {
5896 unsigned int nr_pages = 1;
5897
5898 VM_BUG_ON_PAGE(!page->mapping, page);
5899 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5900
5901 if (mem_cgroup_disabled())
5902 return;
5903 /*
5904 * Swap faults will attempt to charge the same page multiple
5905 * times. But reuse_swap_page() might have removed the page
5906 * from swapcache already, so we can't check PageSwapCache().
5907 */
5908 if (!memcg)
5909 return;
5910
5911 commit_charge(page, memcg, lrucare);
5912
5913 if (PageTransHuge(page)) {
5914 nr_pages <<= compound_order(page);
5915 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5916 }
5917
5918 local_irq_disable();
5919 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5920 memcg_check_events(memcg, page);
5921 local_irq_enable();
5922
5923 if (do_swap_account && PageSwapCache(page)) {
5924 swp_entry_t entry = { .val = page_private(page) };
5925 /*
5926 * The swap entry might not get freed for a long time,
5927 * let's not wait for it. The page already received a
5928 * memory+swap charge, drop the swap entry duplicate.
5929 */
5930 mem_cgroup_uncharge_swap(entry);
5931 }
5932 }
5933
5934 /**
5935 * mem_cgroup_cancel_charge - cancel a page charge
5936 * @page: page to charge
5937 * @memcg: memcg to charge the page to
5938 *
5939 * Cancel a charge transaction started by mem_cgroup_try_charge().
5940 */
5941 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5942 {
5943 unsigned int nr_pages = 1;
5944
5945 if (mem_cgroup_disabled())
5946 return;
5947 /*
5948 * Swap faults will attempt to charge the same page multiple
5949 * times. But reuse_swap_page() might have removed the page
5950 * from swapcache already, so we can't check PageSwapCache().
5951 */
5952 if (!memcg)
5953 return;
5954
5955 if (PageTransHuge(page)) {
5956 nr_pages <<= compound_order(page);
5957 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5958 }
5959
5960 cancel_charge(memcg, nr_pages);
5961 }
5962
5963 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5964 unsigned long nr_anon, unsigned long nr_file,
5965 unsigned long nr_huge, struct page *dummy_page)
5966 {
5967 unsigned long nr_pages = nr_anon + nr_file;
5968 unsigned long flags;
5969
5970 if (!mem_cgroup_is_root(memcg)) {
5971 page_counter_uncharge(&memcg->memory, nr_pages);
5972 if (do_swap_account)
5973 page_counter_uncharge(&memcg->memsw, nr_pages);
5974 memcg_oom_recover(memcg);
5975 }
5976
5977 local_irq_save(flags);
5978 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5979 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5980 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5981 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5982 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5983 memcg_check_events(memcg, dummy_page);
5984 local_irq_restore(flags);
5985
5986 if (!mem_cgroup_is_root(memcg))
5987 css_put_many(&memcg->css, nr_pages);
5988 }
5989
5990 static void uncharge_list(struct list_head *page_list)
5991 {
5992 struct mem_cgroup *memcg = NULL;
5993 unsigned long nr_anon = 0;
5994 unsigned long nr_file = 0;
5995 unsigned long nr_huge = 0;
5996 unsigned long pgpgout = 0;
5997 struct list_head *next;
5998 struct page *page;
5999
6000 next = page_list->next;
6001 do {
6002 unsigned int nr_pages = 1;
6003 struct page_cgroup *pc;
6004
6005 page = list_entry(next, struct page, lru);
6006 next = page->lru.next;
6007
6008 VM_BUG_ON_PAGE(PageLRU(page), page);
6009 VM_BUG_ON_PAGE(page_count(page), page);
6010
6011 pc = lookup_page_cgroup(page);
6012 if (!pc->mem_cgroup)
6013 continue;
6014
6015 /*
6016 * Nobody should be changing or seriously looking at
6017 * pc->mem_cgroup at this point, we have fully
6018 * exclusive access to the page.
6019 */
6020
6021 if (memcg != pc->mem_cgroup) {
6022 if (memcg) {
6023 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
6024 nr_huge, page);
6025 pgpgout = nr_anon = nr_file = nr_huge = 0;
6026 }
6027 memcg = pc->mem_cgroup;
6028 }
6029
6030 if (PageTransHuge(page)) {
6031 nr_pages <<= compound_order(page);
6032 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6033 nr_huge += nr_pages;
6034 }
6035
6036 if (PageAnon(page))
6037 nr_anon += nr_pages;
6038 else
6039 nr_file += nr_pages;
6040
6041 pc->mem_cgroup = NULL;
6042
6043 pgpgout++;
6044 } while (next != page_list);
6045
6046 if (memcg)
6047 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
6048 nr_huge, page);
6049 }
6050
6051 /**
6052 * mem_cgroup_uncharge - uncharge a page
6053 * @page: page to uncharge
6054 *
6055 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6056 * mem_cgroup_commit_charge().
6057 */
6058 void mem_cgroup_uncharge(struct page *page)
6059 {
6060 struct page_cgroup *pc;
6061
6062 if (mem_cgroup_disabled())
6063 return;
6064
6065 /* Don't touch page->lru of any random page, pre-check: */
6066 pc = lookup_page_cgroup(page);
6067 if (!pc->mem_cgroup)
6068 return;
6069
6070 INIT_LIST_HEAD(&page->lru);
6071 uncharge_list(&page->lru);
6072 }
6073
6074 /**
6075 * mem_cgroup_uncharge_list - uncharge a list of page
6076 * @page_list: list of pages to uncharge
6077 *
6078 * Uncharge a list of pages previously charged with
6079 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6080 */
6081 void mem_cgroup_uncharge_list(struct list_head *page_list)
6082 {
6083 if (mem_cgroup_disabled())
6084 return;
6085
6086 if (!list_empty(page_list))
6087 uncharge_list(page_list);
6088 }
6089
6090 /**
6091 * mem_cgroup_migrate - migrate a charge to another page
6092 * @oldpage: currently charged page
6093 * @newpage: page to transfer the charge to
6094 * @lrucare: both pages might be on the LRU already
6095 *
6096 * Migrate the charge from @oldpage to @newpage.
6097 *
6098 * Both pages must be locked, @newpage->mapping must be set up.
6099 */
6100 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
6101 bool lrucare)
6102 {
6103 struct mem_cgroup *memcg;
6104 struct page_cgroup *pc;
6105 int isolated;
6106
6107 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6108 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6109 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
6110 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
6111 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6112 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6113 newpage);
6114
6115 if (mem_cgroup_disabled())
6116 return;
6117
6118 /* Page cache replacement: new page already charged? */
6119 pc = lookup_page_cgroup(newpage);
6120 if (pc->mem_cgroup)
6121 return;
6122
6123 /*
6124 * Swapcache readahead pages can get migrated before being
6125 * charged, and migration from compaction can happen to an
6126 * uncharged page when the PFN walker finds a page that
6127 * reclaim just put back on the LRU but has not released yet.
6128 */
6129 pc = lookup_page_cgroup(oldpage);
6130 memcg = pc->mem_cgroup;
6131 if (!memcg)
6132 return;
6133
6134 if (lrucare)
6135 lock_page_lru(oldpage, &isolated);
6136
6137 pc->mem_cgroup = NULL;
6138
6139 if (lrucare)
6140 unlock_page_lru(oldpage, isolated);
6141
6142 commit_charge(newpage, memcg, lrucare);
6143 }
6144
6145 /*
6146 * subsys_initcall() for memory controller.
6147 *
6148 * Some parts like hotcpu_notifier() have to be initialized from this context
6149 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6150 * everything that doesn't depend on a specific mem_cgroup structure should
6151 * be initialized from here.
6152 */
6153 static int __init mem_cgroup_init(void)
6154 {
6155 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6156 enable_swap_cgroup();
6157 mem_cgroup_soft_limit_tree_init();
6158 memcg_stock_init();
6159 return 0;
6160 }
6161 subsys_initcall(mem_cgroup_init);
This page took 0.143727 seconds and 6 git commands to generate.