Merge tag 'nfs-for-3.8-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 #include <net/sock.h>
54 #include <net/ip.h>
55 #include <net/tcp_memcontrol.h>
56
57 #include <asm/uaccess.h>
58
59 #include <trace/events/vmscan.h>
60
61 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
62 EXPORT_SYMBOL(mem_cgroup_subsys);
63
64 #define MEM_CGROUP_RECLAIM_RETRIES 5
65 static struct mem_cgroup *root_mem_cgroup __read_mostly;
66
67 #ifdef CONFIG_MEMCG_SWAP
68 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
69 int do_swap_account __read_mostly;
70
71 /* for remember boot option*/
72 #ifdef CONFIG_MEMCG_SWAP_ENABLED
73 static int really_do_swap_account __initdata = 1;
74 #else
75 static int really_do_swap_account __initdata = 0;
76 #endif
77
78 #else
79 #define do_swap_account 0
80 #endif
81
82
83 /*
84 * Statistics for memory cgroup.
85 */
86 enum mem_cgroup_stat_index {
87 /*
88 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
89 */
90 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
91 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
92 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
93 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
94 MEM_CGROUP_STAT_NSTATS,
95 };
96
97 static const char * const mem_cgroup_stat_names[] = {
98 "cache",
99 "rss",
100 "mapped_file",
101 "swap",
102 };
103
104 enum mem_cgroup_events_index {
105 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
106 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
107 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
108 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
109 MEM_CGROUP_EVENTS_NSTATS,
110 };
111
112 static const char * const mem_cgroup_events_names[] = {
113 "pgpgin",
114 "pgpgout",
115 "pgfault",
116 "pgmajfault",
117 };
118
119 /*
120 * Per memcg event counter is incremented at every pagein/pageout. With THP,
121 * it will be incremated by the number of pages. This counter is used for
122 * for trigger some periodic events. This is straightforward and better
123 * than using jiffies etc. to handle periodic memcg event.
124 */
125 enum mem_cgroup_events_target {
126 MEM_CGROUP_TARGET_THRESH,
127 MEM_CGROUP_TARGET_SOFTLIMIT,
128 MEM_CGROUP_TARGET_NUMAINFO,
129 MEM_CGROUP_NTARGETS,
130 };
131 #define THRESHOLDS_EVENTS_TARGET 128
132 #define SOFTLIMIT_EVENTS_TARGET 1024
133 #define NUMAINFO_EVENTS_TARGET 1024
134
135 struct mem_cgroup_stat_cpu {
136 long count[MEM_CGROUP_STAT_NSTATS];
137 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
138 unsigned long nr_page_events;
139 unsigned long targets[MEM_CGROUP_NTARGETS];
140 };
141
142 struct mem_cgroup_reclaim_iter {
143 /* css_id of the last scanned hierarchy member */
144 int position;
145 /* scan generation, increased every round-trip */
146 unsigned int generation;
147 };
148
149 /*
150 * per-zone information in memory controller.
151 */
152 struct mem_cgroup_per_zone {
153 struct lruvec lruvec;
154 unsigned long lru_size[NR_LRU_LISTS];
155
156 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
157
158 struct rb_node tree_node; /* RB tree node */
159 unsigned long long usage_in_excess;/* Set to the value by which */
160 /* the soft limit is exceeded*/
161 bool on_tree;
162 struct mem_cgroup *memcg; /* Back pointer, we cannot */
163 /* use container_of */
164 };
165
166 struct mem_cgroup_per_node {
167 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
168 };
169
170 struct mem_cgroup_lru_info {
171 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
172 };
173
174 /*
175 * Cgroups above their limits are maintained in a RB-Tree, independent of
176 * their hierarchy representation
177 */
178
179 struct mem_cgroup_tree_per_zone {
180 struct rb_root rb_root;
181 spinlock_t lock;
182 };
183
184 struct mem_cgroup_tree_per_node {
185 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
186 };
187
188 struct mem_cgroup_tree {
189 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
190 };
191
192 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
193
194 struct mem_cgroup_threshold {
195 struct eventfd_ctx *eventfd;
196 u64 threshold;
197 };
198
199 /* For threshold */
200 struct mem_cgroup_threshold_ary {
201 /* An array index points to threshold just below or equal to usage. */
202 int current_threshold;
203 /* Size of entries[] */
204 unsigned int size;
205 /* Array of thresholds */
206 struct mem_cgroup_threshold entries[0];
207 };
208
209 struct mem_cgroup_thresholds {
210 /* Primary thresholds array */
211 struct mem_cgroup_threshold_ary *primary;
212 /*
213 * Spare threshold array.
214 * This is needed to make mem_cgroup_unregister_event() "never fail".
215 * It must be able to store at least primary->size - 1 entries.
216 */
217 struct mem_cgroup_threshold_ary *spare;
218 };
219
220 /* for OOM */
221 struct mem_cgroup_eventfd_list {
222 struct list_head list;
223 struct eventfd_ctx *eventfd;
224 };
225
226 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
227 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
228
229 /*
230 * The memory controller data structure. The memory controller controls both
231 * page cache and RSS per cgroup. We would eventually like to provide
232 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
233 * to help the administrator determine what knobs to tune.
234 *
235 * TODO: Add a water mark for the memory controller. Reclaim will begin when
236 * we hit the water mark. May be even add a low water mark, such that
237 * no reclaim occurs from a cgroup at it's low water mark, this is
238 * a feature that will be implemented much later in the future.
239 */
240 struct mem_cgroup {
241 struct cgroup_subsys_state css;
242 /*
243 * the counter to account for memory usage
244 */
245 struct res_counter res;
246
247 union {
248 /*
249 * the counter to account for mem+swap usage.
250 */
251 struct res_counter memsw;
252
253 /*
254 * rcu_freeing is used only when freeing struct mem_cgroup,
255 * so put it into a union to avoid wasting more memory.
256 * It must be disjoint from the css field. It could be
257 * in a union with the res field, but res plays a much
258 * larger part in mem_cgroup life than memsw, and might
259 * be of interest, even at time of free, when debugging.
260 * So share rcu_head with the less interesting memsw.
261 */
262 struct rcu_head rcu_freeing;
263 /*
264 * We also need some space for a worker in deferred freeing.
265 * By the time we call it, rcu_freeing is no longer in use.
266 */
267 struct work_struct work_freeing;
268 };
269
270 /*
271 * Per cgroup active and inactive list, similar to the
272 * per zone LRU lists.
273 */
274 struct mem_cgroup_lru_info info;
275 int last_scanned_node;
276 #if MAX_NUMNODES > 1
277 nodemask_t scan_nodes;
278 atomic_t numainfo_events;
279 atomic_t numainfo_updating;
280 #endif
281 /*
282 * Should the accounting and control be hierarchical, per subtree?
283 */
284 bool use_hierarchy;
285
286 bool oom_lock;
287 atomic_t under_oom;
288
289 atomic_t refcnt;
290
291 int swappiness;
292 /* OOM-Killer disable */
293 int oom_kill_disable;
294
295 /* set when res.limit == memsw.limit */
296 bool memsw_is_minimum;
297
298 /* protect arrays of thresholds */
299 struct mutex thresholds_lock;
300
301 /* thresholds for memory usage. RCU-protected */
302 struct mem_cgroup_thresholds thresholds;
303
304 /* thresholds for mem+swap usage. RCU-protected */
305 struct mem_cgroup_thresholds memsw_thresholds;
306
307 /* For oom notifier event fd */
308 struct list_head oom_notify;
309
310 /*
311 * Should we move charges of a task when a task is moved into this
312 * mem_cgroup ? And what type of charges should we move ?
313 */
314 unsigned long move_charge_at_immigrate;
315 /*
316 * set > 0 if pages under this cgroup are moving to other cgroup.
317 */
318 atomic_t moving_account;
319 /* taken only while moving_account > 0 */
320 spinlock_t move_lock;
321 /*
322 * percpu counter.
323 */
324 struct mem_cgroup_stat_cpu __percpu *stat;
325 /*
326 * used when a cpu is offlined or other synchronizations
327 * See mem_cgroup_read_stat().
328 */
329 struct mem_cgroup_stat_cpu nocpu_base;
330 spinlock_t pcp_counter_lock;
331
332 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
333 struct tcp_memcontrol tcp_mem;
334 #endif
335 };
336
337 /* Stuffs for move charges at task migration. */
338 /*
339 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
340 * left-shifted bitmap of these types.
341 */
342 enum move_type {
343 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
344 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
345 NR_MOVE_TYPE,
346 };
347
348 /* "mc" and its members are protected by cgroup_mutex */
349 static struct move_charge_struct {
350 spinlock_t lock; /* for from, to */
351 struct mem_cgroup *from;
352 struct mem_cgroup *to;
353 unsigned long precharge;
354 unsigned long moved_charge;
355 unsigned long moved_swap;
356 struct task_struct *moving_task; /* a task moving charges */
357 wait_queue_head_t waitq; /* a waitq for other context */
358 } mc = {
359 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
360 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
361 };
362
363 static bool move_anon(void)
364 {
365 return test_bit(MOVE_CHARGE_TYPE_ANON,
366 &mc.to->move_charge_at_immigrate);
367 }
368
369 static bool move_file(void)
370 {
371 return test_bit(MOVE_CHARGE_TYPE_FILE,
372 &mc.to->move_charge_at_immigrate);
373 }
374
375 /*
376 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
377 * limit reclaim to prevent infinite loops, if they ever occur.
378 */
379 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
380 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
381
382 enum charge_type {
383 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
384 MEM_CGROUP_CHARGE_TYPE_ANON,
385 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
386 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
387 NR_CHARGE_TYPE,
388 };
389
390 /* for encoding cft->private value on file */
391 #define _MEM (0)
392 #define _MEMSWAP (1)
393 #define _OOM_TYPE (2)
394 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
395 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
396 #define MEMFILE_ATTR(val) ((val) & 0xffff)
397 /* Used for OOM nofiier */
398 #define OOM_CONTROL (0)
399
400 /*
401 * Reclaim flags for mem_cgroup_hierarchical_reclaim
402 */
403 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
404 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
405 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
406 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
407
408 static void mem_cgroup_get(struct mem_cgroup *memcg);
409 static void mem_cgroup_put(struct mem_cgroup *memcg);
410
411 static inline
412 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
413 {
414 return container_of(s, struct mem_cgroup, css);
415 }
416
417 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
418 {
419 return (memcg == root_mem_cgroup);
420 }
421
422 /* Writing them here to avoid exposing memcg's inner layout */
423 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
424
425 void sock_update_memcg(struct sock *sk)
426 {
427 if (mem_cgroup_sockets_enabled) {
428 struct mem_cgroup *memcg;
429 struct cg_proto *cg_proto;
430
431 BUG_ON(!sk->sk_prot->proto_cgroup);
432
433 /* Socket cloning can throw us here with sk_cgrp already
434 * filled. It won't however, necessarily happen from
435 * process context. So the test for root memcg given
436 * the current task's memcg won't help us in this case.
437 *
438 * Respecting the original socket's memcg is a better
439 * decision in this case.
440 */
441 if (sk->sk_cgrp) {
442 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
443 mem_cgroup_get(sk->sk_cgrp->memcg);
444 return;
445 }
446
447 rcu_read_lock();
448 memcg = mem_cgroup_from_task(current);
449 cg_proto = sk->sk_prot->proto_cgroup(memcg);
450 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
451 mem_cgroup_get(memcg);
452 sk->sk_cgrp = cg_proto;
453 }
454 rcu_read_unlock();
455 }
456 }
457 EXPORT_SYMBOL(sock_update_memcg);
458
459 void sock_release_memcg(struct sock *sk)
460 {
461 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
462 struct mem_cgroup *memcg;
463 WARN_ON(!sk->sk_cgrp->memcg);
464 memcg = sk->sk_cgrp->memcg;
465 mem_cgroup_put(memcg);
466 }
467 }
468
469 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
470 {
471 if (!memcg || mem_cgroup_is_root(memcg))
472 return NULL;
473
474 return &memcg->tcp_mem.cg_proto;
475 }
476 EXPORT_SYMBOL(tcp_proto_cgroup);
477
478 static void disarm_sock_keys(struct mem_cgroup *memcg)
479 {
480 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
481 return;
482 static_key_slow_dec(&memcg_socket_limit_enabled);
483 }
484 #else
485 static void disarm_sock_keys(struct mem_cgroup *memcg)
486 {
487 }
488 #endif
489
490 static void drain_all_stock_async(struct mem_cgroup *memcg);
491
492 static struct mem_cgroup_per_zone *
493 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
494 {
495 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
496 }
497
498 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
499 {
500 return &memcg->css;
501 }
502
503 static struct mem_cgroup_per_zone *
504 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
505 {
506 int nid = page_to_nid(page);
507 int zid = page_zonenum(page);
508
509 return mem_cgroup_zoneinfo(memcg, nid, zid);
510 }
511
512 static struct mem_cgroup_tree_per_zone *
513 soft_limit_tree_node_zone(int nid, int zid)
514 {
515 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
516 }
517
518 static struct mem_cgroup_tree_per_zone *
519 soft_limit_tree_from_page(struct page *page)
520 {
521 int nid = page_to_nid(page);
522 int zid = page_zonenum(page);
523
524 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
525 }
526
527 static void
528 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
529 struct mem_cgroup_per_zone *mz,
530 struct mem_cgroup_tree_per_zone *mctz,
531 unsigned long long new_usage_in_excess)
532 {
533 struct rb_node **p = &mctz->rb_root.rb_node;
534 struct rb_node *parent = NULL;
535 struct mem_cgroup_per_zone *mz_node;
536
537 if (mz->on_tree)
538 return;
539
540 mz->usage_in_excess = new_usage_in_excess;
541 if (!mz->usage_in_excess)
542 return;
543 while (*p) {
544 parent = *p;
545 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
546 tree_node);
547 if (mz->usage_in_excess < mz_node->usage_in_excess)
548 p = &(*p)->rb_left;
549 /*
550 * We can't avoid mem cgroups that are over their soft
551 * limit by the same amount
552 */
553 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
554 p = &(*p)->rb_right;
555 }
556 rb_link_node(&mz->tree_node, parent, p);
557 rb_insert_color(&mz->tree_node, &mctz->rb_root);
558 mz->on_tree = true;
559 }
560
561 static void
562 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
563 struct mem_cgroup_per_zone *mz,
564 struct mem_cgroup_tree_per_zone *mctz)
565 {
566 if (!mz->on_tree)
567 return;
568 rb_erase(&mz->tree_node, &mctz->rb_root);
569 mz->on_tree = false;
570 }
571
572 static void
573 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
574 struct mem_cgroup_per_zone *mz,
575 struct mem_cgroup_tree_per_zone *mctz)
576 {
577 spin_lock(&mctz->lock);
578 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
579 spin_unlock(&mctz->lock);
580 }
581
582
583 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
584 {
585 unsigned long long excess;
586 struct mem_cgroup_per_zone *mz;
587 struct mem_cgroup_tree_per_zone *mctz;
588 int nid = page_to_nid(page);
589 int zid = page_zonenum(page);
590 mctz = soft_limit_tree_from_page(page);
591
592 /*
593 * Necessary to update all ancestors when hierarchy is used.
594 * because their event counter is not touched.
595 */
596 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
597 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
598 excess = res_counter_soft_limit_excess(&memcg->res);
599 /*
600 * We have to update the tree if mz is on RB-tree or
601 * mem is over its softlimit.
602 */
603 if (excess || mz->on_tree) {
604 spin_lock(&mctz->lock);
605 /* if on-tree, remove it */
606 if (mz->on_tree)
607 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
608 /*
609 * Insert again. mz->usage_in_excess will be updated.
610 * If excess is 0, no tree ops.
611 */
612 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
613 spin_unlock(&mctz->lock);
614 }
615 }
616 }
617
618 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
619 {
620 int node, zone;
621 struct mem_cgroup_per_zone *mz;
622 struct mem_cgroup_tree_per_zone *mctz;
623
624 for_each_node(node) {
625 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
626 mz = mem_cgroup_zoneinfo(memcg, node, zone);
627 mctz = soft_limit_tree_node_zone(node, zone);
628 mem_cgroup_remove_exceeded(memcg, mz, mctz);
629 }
630 }
631 }
632
633 static struct mem_cgroup_per_zone *
634 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
635 {
636 struct rb_node *rightmost = NULL;
637 struct mem_cgroup_per_zone *mz;
638
639 retry:
640 mz = NULL;
641 rightmost = rb_last(&mctz->rb_root);
642 if (!rightmost)
643 goto done; /* Nothing to reclaim from */
644
645 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
646 /*
647 * Remove the node now but someone else can add it back,
648 * we will to add it back at the end of reclaim to its correct
649 * position in the tree.
650 */
651 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
652 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
653 !css_tryget(&mz->memcg->css))
654 goto retry;
655 done:
656 return mz;
657 }
658
659 static struct mem_cgroup_per_zone *
660 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
661 {
662 struct mem_cgroup_per_zone *mz;
663
664 spin_lock(&mctz->lock);
665 mz = __mem_cgroup_largest_soft_limit_node(mctz);
666 spin_unlock(&mctz->lock);
667 return mz;
668 }
669
670 /*
671 * Implementation Note: reading percpu statistics for memcg.
672 *
673 * Both of vmstat[] and percpu_counter has threshold and do periodic
674 * synchronization to implement "quick" read. There are trade-off between
675 * reading cost and precision of value. Then, we may have a chance to implement
676 * a periodic synchronizion of counter in memcg's counter.
677 *
678 * But this _read() function is used for user interface now. The user accounts
679 * memory usage by memory cgroup and he _always_ requires exact value because
680 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
681 * have to visit all online cpus and make sum. So, for now, unnecessary
682 * synchronization is not implemented. (just implemented for cpu hotplug)
683 *
684 * If there are kernel internal actions which can make use of some not-exact
685 * value, and reading all cpu value can be performance bottleneck in some
686 * common workload, threashold and synchonization as vmstat[] should be
687 * implemented.
688 */
689 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
690 enum mem_cgroup_stat_index idx)
691 {
692 long val = 0;
693 int cpu;
694
695 get_online_cpus();
696 for_each_online_cpu(cpu)
697 val += per_cpu(memcg->stat->count[idx], cpu);
698 #ifdef CONFIG_HOTPLUG_CPU
699 spin_lock(&memcg->pcp_counter_lock);
700 val += memcg->nocpu_base.count[idx];
701 spin_unlock(&memcg->pcp_counter_lock);
702 #endif
703 put_online_cpus();
704 return val;
705 }
706
707 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
708 bool charge)
709 {
710 int val = (charge) ? 1 : -1;
711 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
712 }
713
714 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
715 enum mem_cgroup_events_index idx)
716 {
717 unsigned long val = 0;
718 int cpu;
719
720 for_each_online_cpu(cpu)
721 val += per_cpu(memcg->stat->events[idx], cpu);
722 #ifdef CONFIG_HOTPLUG_CPU
723 spin_lock(&memcg->pcp_counter_lock);
724 val += memcg->nocpu_base.events[idx];
725 spin_unlock(&memcg->pcp_counter_lock);
726 #endif
727 return val;
728 }
729
730 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
731 bool anon, int nr_pages)
732 {
733 preempt_disable();
734
735 /*
736 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
737 * counted as CACHE even if it's on ANON LRU.
738 */
739 if (anon)
740 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
741 nr_pages);
742 else
743 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
744 nr_pages);
745
746 /* pagein of a big page is an event. So, ignore page size */
747 if (nr_pages > 0)
748 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
749 else {
750 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
751 nr_pages = -nr_pages; /* for event */
752 }
753
754 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
755
756 preempt_enable();
757 }
758
759 unsigned long
760 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
761 {
762 struct mem_cgroup_per_zone *mz;
763
764 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
765 return mz->lru_size[lru];
766 }
767
768 static unsigned long
769 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
770 unsigned int lru_mask)
771 {
772 struct mem_cgroup_per_zone *mz;
773 enum lru_list lru;
774 unsigned long ret = 0;
775
776 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
777
778 for_each_lru(lru) {
779 if (BIT(lru) & lru_mask)
780 ret += mz->lru_size[lru];
781 }
782 return ret;
783 }
784
785 static unsigned long
786 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
787 int nid, unsigned int lru_mask)
788 {
789 u64 total = 0;
790 int zid;
791
792 for (zid = 0; zid < MAX_NR_ZONES; zid++)
793 total += mem_cgroup_zone_nr_lru_pages(memcg,
794 nid, zid, lru_mask);
795
796 return total;
797 }
798
799 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
800 unsigned int lru_mask)
801 {
802 int nid;
803 u64 total = 0;
804
805 for_each_node_state(nid, N_MEMORY)
806 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
807 return total;
808 }
809
810 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
811 enum mem_cgroup_events_target target)
812 {
813 unsigned long val, next;
814
815 val = __this_cpu_read(memcg->stat->nr_page_events);
816 next = __this_cpu_read(memcg->stat->targets[target]);
817 /* from time_after() in jiffies.h */
818 if ((long)next - (long)val < 0) {
819 switch (target) {
820 case MEM_CGROUP_TARGET_THRESH:
821 next = val + THRESHOLDS_EVENTS_TARGET;
822 break;
823 case MEM_CGROUP_TARGET_SOFTLIMIT:
824 next = val + SOFTLIMIT_EVENTS_TARGET;
825 break;
826 case MEM_CGROUP_TARGET_NUMAINFO:
827 next = val + NUMAINFO_EVENTS_TARGET;
828 break;
829 default:
830 break;
831 }
832 __this_cpu_write(memcg->stat->targets[target], next);
833 return true;
834 }
835 return false;
836 }
837
838 /*
839 * Check events in order.
840 *
841 */
842 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
843 {
844 preempt_disable();
845 /* threshold event is triggered in finer grain than soft limit */
846 if (unlikely(mem_cgroup_event_ratelimit(memcg,
847 MEM_CGROUP_TARGET_THRESH))) {
848 bool do_softlimit;
849 bool do_numainfo __maybe_unused;
850
851 do_softlimit = mem_cgroup_event_ratelimit(memcg,
852 MEM_CGROUP_TARGET_SOFTLIMIT);
853 #if MAX_NUMNODES > 1
854 do_numainfo = mem_cgroup_event_ratelimit(memcg,
855 MEM_CGROUP_TARGET_NUMAINFO);
856 #endif
857 preempt_enable();
858
859 mem_cgroup_threshold(memcg);
860 if (unlikely(do_softlimit))
861 mem_cgroup_update_tree(memcg, page);
862 #if MAX_NUMNODES > 1
863 if (unlikely(do_numainfo))
864 atomic_inc(&memcg->numainfo_events);
865 #endif
866 } else
867 preempt_enable();
868 }
869
870 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
871 {
872 return mem_cgroup_from_css(
873 cgroup_subsys_state(cont, mem_cgroup_subsys_id));
874 }
875
876 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
877 {
878 /*
879 * mm_update_next_owner() may clear mm->owner to NULL
880 * if it races with swapoff, page migration, etc.
881 * So this can be called with p == NULL.
882 */
883 if (unlikely(!p))
884 return NULL;
885
886 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
887 }
888
889 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
890 {
891 struct mem_cgroup *memcg = NULL;
892
893 if (!mm)
894 return NULL;
895 /*
896 * Because we have no locks, mm->owner's may be being moved to other
897 * cgroup. We use css_tryget() here even if this looks
898 * pessimistic (rather than adding locks here).
899 */
900 rcu_read_lock();
901 do {
902 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
903 if (unlikely(!memcg))
904 break;
905 } while (!css_tryget(&memcg->css));
906 rcu_read_unlock();
907 return memcg;
908 }
909
910 /**
911 * mem_cgroup_iter - iterate over memory cgroup hierarchy
912 * @root: hierarchy root
913 * @prev: previously returned memcg, NULL on first invocation
914 * @reclaim: cookie for shared reclaim walks, NULL for full walks
915 *
916 * Returns references to children of the hierarchy below @root, or
917 * @root itself, or %NULL after a full round-trip.
918 *
919 * Caller must pass the return value in @prev on subsequent
920 * invocations for reference counting, or use mem_cgroup_iter_break()
921 * to cancel a hierarchy walk before the round-trip is complete.
922 *
923 * Reclaimers can specify a zone and a priority level in @reclaim to
924 * divide up the memcgs in the hierarchy among all concurrent
925 * reclaimers operating on the same zone and priority.
926 */
927 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
928 struct mem_cgroup *prev,
929 struct mem_cgroup_reclaim_cookie *reclaim)
930 {
931 struct mem_cgroup *memcg = NULL;
932 int id = 0;
933
934 if (mem_cgroup_disabled())
935 return NULL;
936
937 if (!root)
938 root = root_mem_cgroup;
939
940 if (prev && !reclaim)
941 id = css_id(&prev->css);
942
943 if (prev && prev != root)
944 css_put(&prev->css);
945
946 if (!root->use_hierarchy && root != root_mem_cgroup) {
947 if (prev)
948 return NULL;
949 return root;
950 }
951
952 while (!memcg) {
953 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
954 struct cgroup_subsys_state *css;
955
956 if (reclaim) {
957 int nid = zone_to_nid(reclaim->zone);
958 int zid = zone_idx(reclaim->zone);
959 struct mem_cgroup_per_zone *mz;
960
961 mz = mem_cgroup_zoneinfo(root, nid, zid);
962 iter = &mz->reclaim_iter[reclaim->priority];
963 if (prev && reclaim->generation != iter->generation)
964 return NULL;
965 id = iter->position;
966 }
967
968 rcu_read_lock();
969 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
970 if (css) {
971 if (css == &root->css || css_tryget(css))
972 memcg = mem_cgroup_from_css(css);
973 } else
974 id = 0;
975 rcu_read_unlock();
976
977 if (reclaim) {
978 iter->position = id;
979 if (!css)
980 iter->generation++;
981 else if (!prev && memcg)
982 reclaim->generation = iter->generation;
983 }
984
985 if (prev && !css)
986 return NULL;
987 }
988 return memcg;
989 }
990
991 /**
992 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
993 * @root: hierarchy root
994 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
995 */
996 void mem_cgroup_iter_break(struct mem_cgroup *root,
997 struct mem_cgroup *prev)
998 {
999 if (!root)
1000 root = root_mem_cgroup;
1001 if (prev && prev != root)
1002 css_put(&prev->css);
1003 }
1004
1005 /*
1006 * Iteration constructs for visiting all cgroups (under a tree). If
1007 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1008 * be used for reference counting.
1009 */
1010 #define for_each_mem_cgroup_tree(iter, root) \
1011 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1012 iter != NULL; \
1013 iter = mem_cgroup_iter(root, iter, NULL))
1014
1015 #define for_each_mem_cgroup(iter) \
1016 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1017 iter != NULL; \
1018 iter = mem_cgroup_iter(NULL, iter, NULL))
1019
1020 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1021 {
1022 struct mem_cgroup *memcg;
1023
1024 rcu_read_lock();
1025 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1026 if (unlikely(!memcg))
1027 goto out;
1028
1029 switch (idx) {
1030 case PGFAULT:
1031 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1032 break;
1033 case PGMAJFAULT:
1034 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1035 break;
1036 default:
1037 BUG();
1038 }
1039 out:
1040 rcu_read_unlock();
1041 }
1042 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1043
1044 /**
1045 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1046 * @zone: zone of the wanted lruvec
1047 * @memcg: memcg of the wanted lruvec
1048 *
1049 * Returns the lru list vector holding pages for the given @zone and
1050 * @mem. This can be the global zone lruvec, if the memory controller
1051 * is disabled.
1052 */
1053 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1054 struct mem_cgroup *memcg)
1055 {
1056 struct mem_cgroup_per_zone *mz;
1057 struct lruvec *lruvec;
1058
1059 if (mem_cgroup_disabled()) {
1060 lruvec = &zone->lruvec;
1061 goto out;
1062 }
1063
1064 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1065 lruvec = &mz->lruvec;
1066 out:
1067 /*
1068 * Since a node can be onlined after the mem_cgroup was created,
1069 * we have to be prepared to initialize lruvec->zone here;
1070 * and if offlined then reonlined, we need to reinitialize it.
1071 */
1072 if (unlikely(lruvec->zone != zone))
1073 lruvec->zone = zone;
1074 return lruvec;
1075 }
1076
1077 /*
1078 * Following LRU functions are allowed to be used without PCG_LOCK.
1079 * Operations are called by routine of global LRU independently from memcg.
1080 * What we have to take care of here is validness of pc->mem_cgroup.
1081 *
1082 * Changes to pc->mem_cgroup happens when
1083 * 1. charge
1084 * 2. moving account
1085 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1086 * It is added to LRU before charge.
1087 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1088 * When moving account, the page is not on LRU. It's isolated.
1089 */
1090
1091 /**
1092 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1093 * @page: the page
1094 * @zone: zone of the page
1095 */
1096 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1097 {
1098 struct mem_cgroup_per_zone *mz;
1099 struct mem_cgroup *memcg;
1100 struct page_cgroup *pc;
1101 struct lruvec *lruvec;
1102
1103 if (mem_cgroup_disabled()) {
1104 lruvec = &zone->lruvec;
1105 goto out;
1106 }
1107
1108 pc = lookup_page_cgroup(page);
1109 memcg = pc->mem_cgroup;
1110
1111 /*
1112 * Surreptitiously switch any uncharged offlist page to root:
1113 * an uncharged page off lru does nothing to secure
1114 * its former mem_cgroup from sudden removal.
1115 *
1116 * Our caller holds lru_lock, and PageCgroupUsed is updated
1117 * under page_cgroup lock: between them, they make all uses
1118 * of pc->mem_cgroup safe.
1119 */
1120 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1121 pc->mem_cgroup = memcg = root_mem_cgroup;
1122
1123 mz = page_cgroup_zoneinfo(memcg, page);
1124 lruvec = &mz->lruvec;
1125 out:
1126 /*
1127 * Since a node can be onlined after the mem_cgroup was created,
1128 * we have to be prepared to initialize lruvec->zone here;
1129 * and if offlined then reonlined, we need to reinitialize it.
1130 */
1131 if (unlikely(lruvec->zone != zone))
1132 lruvec->zone = zone;
1133 return lruvec;
1134 }
1135
1136 /**
1137 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1138 * @lruvec: mem_cgroup per zone lru vector
1139 * @lru: index of lru list the page is sitting on
1140 * @nr_pages: positive when adding or negative when removing
1141 *
1142 * This function must be called when a page is added to or removed from an
1143 * lru list.
1144 */
1145 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1146 int nr_pages)
1147 {
1148 struct mem_cgroup_per_zone *mz;
1149 unsigned long *lru_size;
1150
1151 if (mem_cgroup_disabled())
1152 return;
1153
1154 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1155 lru_size = mz->lru_size + lru;
1156 *lru_size += nr_pages;
1157 VM_BUG_ON((long)(*lru_size) < 0);
1158 }
1159
1160 /*
1161 * Checks whether given mem is same or in the root_mem_cgroup's
1162 * hierarchy subtree
1163 */
1164 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1165 struct mem_cgroup *memcg)
1166 {
1167 if (root_memcg == memcg)
1168 return true;
1169 if (!root_memcg->use_hierarchy || !memcg)
1170 return false;
1171 return css_is_ancestor(&memcg->css, &root_memcg->css);
1172 }
1173
1174 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1175 struct mem_cgroup *memcg)
1176 {
1177 bool ret;
1178
1179 rcu_read_lock();
1180 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1181 rcu_read_unlock();
1182 return ret;
1183 }
1184
1185 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1186 {
1187 int ret;
1188 struct mem_cgroup *curr = NULL;
1189 struct task_struct *p;
1190
1191 p = find_lock_task_mm(task);
1192 if (p) {
1193 curr = try_get_mem_cgroup_from_mm(p->mm);
1194 task_unlock(p);
1195 } else {
1196 /*
1197 * All threads may have already detached their mm's, but the oom
1198 * killer still needs to detect if they have already been oom
1199 * killed to prevent needlessly killing additional tasks.
1200 */
1201 task_lock(task);
1202 curr = mem_cgroup_from_task(task);
1203 if (curr)
1204 css_get(&curr->css);
1205 task_unlock(task);
1206 }
1207 if (!curr)
1208 return 0;
1209 /*
1210 * We should check use_hierarchy of "memcg" not "curr". Because checking
1211 * use_hierarchy of "curr" here make this function true if hierarchy is
1212 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1213 * hierarchy(even if use_hierarchy is disabled in "memcg").
1214 */
1215 ret = mem_cgroup_same_or_subtree(memcg, curr);
1216 css_put(&curr->css);
1217 return ret;
1218 }
1219
1220 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1221 {
1222 unsigned long inactive_ratio;
1223 unsigned long inactive;
1224 unsigned long active;
1225 unsigned long gb;
1226
1227 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1228 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1229
1230 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1231 if (gb)
1232 inactive_ratio = int_sqrt(10 * gb);
1233 else
1234 inactive_ratio = 1;
1235
1236 return inactive * inactive_ratio < active;
1237 }
1238
1239 int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1240 {
1241 unsigned long active;
1242 unsigned long inactive;
1243
1244 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1245 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1246
1247 return (active > inactive);
1248 }
1249
1250 #define mem_cgroup_from_res_counter(counter, member) \
1251 container_of(counter, struct mem_cgroup, member)
1252
1253 /**
1254 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1255 * @memcg: the memory cgroup
1256 *
1257 * Returns the maximum amount of memory @mem can be charged with, in
1258 * pages.
1259 */
1260 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1261 {
1262 unsigned long long margin;
1263
1264 margin = res_counter_margin(&memcg->res);
1265 if (do_swap_account)
1266 margin = min(margin, res_counter_margin(&memcg->memsw));
1267 return margin >> PAGE_SHIFT;
1268 }
1269
1270 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1271 {
1272 struct cgroup *cgrp = memcg->css.cgroup;
1273
1274 /* root ? */
1275 if (cgrp->parent == NULL)
1276 return vm_swappiness;
1277
1278 return memcg->swappiness;
1279 }
1280
1281 /*
1282 * memcg->moving_account is used for checking possibility that some thread is
1283 * calling move_account(). When a thread on CPU-A starts moving pages under
1284 * a memcg, other threads should check memcg->moving_account under
1285 * rcu_read_lock(), like this:
1286 *
1287 * CPU-A CPU-B
1288 * rcu_read_lock()
1289 * memcg->moving_account+1 if (memcg->mocing_account)
1290 * take heavy locks.
1291 * synchronize_rcu() update something.
1292 * rcu_read_unlock()
1293 * start move here.
1294 */
1295
1296 /* for quick checking without looking up memcg */
1297 atomic_t memcg_moving __read_mostly;
1298
1299 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1300 {
1301 atomic_inc(&memcg_moving);
1302 atomic_inc(&memcg->moving_account);
1303 synchronize_rcu();
1304 }
1305
1306 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1307 {
1308 /*
1309 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1310 * We check NULL in callee rather than caller.
1311 */
1312 if (memcg) {
1313 atomic_dec(&memcg_moving);
1314 atomic_dec(&memcg->moving_account);
1315 }
1316 }
1317
1318 /*
1319 * 2 routines for checking "mem" is under move_account() or not.
1320 *
1321 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1322 * is used for avoiding races in accounting. If true,
1323 * pc->mem_cgroup may be overwritten.
1324 *
1325 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1326 * under hierarchy of moving cgroups. This is for
1327 * waiting at hith-memory prressure caused by "move".
1328 */
1329
1330 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1331 {
1332 VM_BUG_ON(!rcu_read_lock_held());
1333 return atomic_read(&memcg->moving_account) > 0;
1334 }
1335
1336 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1337 {
1338 struct mem_cgroup *from;
1339 struct mem_cgroup *to;
1340 bool ret = false;
1341 /*
1342 * Unlike task_move routines, we access mc.to, mc.from not under
1343 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1344 */
1345 spin_lock(&mc.lock);
1346 from = mc.from;
1347 to = mc.to;
1348 if (!from)
1349 goto unlock;
1350
1351 ret = mem_cgroup_same_or_subtree(memcg, from)
1352 || mem_cgroup_same_or_subtree(memcg, to);
1353 unlock:
1354 spin_unlock(&mc.lock);
1355 return ret;
1356 }
1357
1358 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1359 {
1360 if (mc.moving_task && current != mc.moving_task) {
1361 if (mem_cgroup_under_move(memcg)) {
1362 DEFINE_WAIT(wait);
1363 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1364 /* moving charge context might have finished. */
1365 if (mc.moving_task)
1366 schedule();
1367 finish_wait(&mc.waitq, &wait);
1368 return true;
1369 }
1370 }
1371 return false;
1372 }
1373
1374 /*
1375 * Take this lock when
1376 * - a code tries to modify page's memcg while it's USED.
1377 * - a code tries to modify page state accounting in a memcg.
1378 * see mem_cgroup_stolen(), too.
1379 */
1380 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1381 unsigned long *flags)
1382 {
1383 spin_lock_irqsave(&memcg->move_lock, *flags);
1384 }
1385
1386 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1387 unsigned long *flags)
1388 {
1389 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1390 }
1391
1392 /**
1393 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1394 * @memcg: The memory cgroup that went over limit
1395 * @p: Task that is going to be killed
1396 *
1397 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1398 * enabled
1399 */
1400 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1401 {
1402 struct cgroup *task_cgrp;
1403 struct cgroup *mem_cgrp;
1404 /*
1405 * Need a buffer in BSS, can't rely on allocations. The code relies
1406 * on the assumption that OOM is serialized for memory controller.
1407 * If this assumption is broken, revisit this code.
1408 */
1409 static char memcg_name[PATH_MAX];
1410 int ret;
1411
1412 if (!memcg || !p)
1413 return;
1414
1415 rcu_read_lock();
1416
1417 mem_cgrp = memcg->css.cgroup;
1418 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1419
1420 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1421 if (ret < 0) {
1422 /*
1423 * Unfortunately, we are unable to convert to a useful name
1424 * But we'll still print out the usage information
1425 */
1426 rcu_read_unlock();
1427 goto done;
1428 }
1429 rcu_read_unlock();
1430
1431 printk(KERN_INFO "Task in %s killed", memcg_name);
1432
1433 rcu_read_lock();
1434 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1435 if (ret < 0) {
1436 rcu_read_unlock();
1437 goto done;
1438 }
1439 rcu_read_unlock();
1440
1441 /*
1442 * Continues from above, so we don't need an KERN_ level
1443 */
1444 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1445 done:
1446
1447 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1448 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1449 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1450 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1451 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1452 "failcnt %llu\n",
1453 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1454 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1455 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1456 }
1457
1458 /*
1459 * This function returns the number of memcg under hierarchy tree. Returns
1460 * 1(self count) if no children.
1461 */
1462 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1463 {
1464 int num = 0;
1465 struct mem_cgroup *iter;
1466
1467 for_each_mem_cgroup_tree(iter, memcg)
1468 num++;
1469 return num;
1470 }
1471
1472 /*
1473 * Return the memory (and swap, if configured) limit for a memcg.
1474 */
1475 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1476 {
1477 u64 limit;
1478
1479 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1480
1481 /*
1482 * Do not consider swap space if we cannot swap due to swappiness
1483 */
1484 if (mem_cgroup_swappiness(memcg)) {
1485 u64 memsw;
1486
1487 limit += total_swap_pages << PAGE_SHIFT;
1488 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1489
1490 /*
1491 * If memsw is finite and limits the amount of swap space
1492 * available to this memcg, return that limit.
1493 */
1494 limit = min(limit, memsw);
1495 }
1496
1497 return limit;
1498 }
1499
1500 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1501 int order)
1502 {
1503 struct mem_cgroup *iter;
1504 unsigned long chosen_points = 0;
1505 unsigned long totalpages;
1506 unsigned int points = 0;
1507 struct task_struct *chosen = NULL;
1508
1509 /*
1510 * If current has a pending SIGKILL, then automatically select it. The
1511 * goal is to allow it to allocate so that it may quickly exit and free
1512 * its memory.
1513 */
1514 if (fatal_signal_pending(current)) {
1515 set_thread_flag(TIF_MEMDIE);
1516 return;
1517 }
1518
1519 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1520 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1521 for_each_mem_cgroup_tree(iter, memcg) {
1522 struct cgroup *cgroup = iter->css.cgroup;
1523 struct cgroup_iter it;
1524 struct task_struct *task;
1525
1526 cgroup_iter_start(cgroup, &it);
1527 while ((task = cgroup_iter_next(cgroup, &it))) {
1528 switch (oom_scan_process_thread(task, totalpages, NULL,
1529 false)) {
1530 case OOM_SCAN_SELECT:
1531 if (chosen)
1532 put_task_struct(chosen);
1533 chosen = task;
1534 chosen_points = ULONG_MAX;
1535 get_task_struct(chosen);
1536 /* fall through */
1537 case OOM_SCAN_CONTINUE:
1538 continue;
1539 case OOM_SCAN_ABORT:
1540 cgroup_iter_end(cgroup, &it);
1541 mem_cgroup_iter_break(memcg, iter);
1542 if (chosen)
1543 put_task_struct(chosen);
1544 return;
1545 case OOM_SCAN_OK:
1546 break;
1547 };
1548 points = oom_badness(task, memcg, NULL, totalpages);
1549 if (points > chosen_points) {
1550 if (chosen)
1551 put_task_struct(chosen);
1552 chosen = task;
1553 chosen_points = points;
1554 get_task_struct(chosen);
1555 }
1556 }
1557 cgroup_iter_end(cgroup, &it);
1558 }
1559
1560 if (!chosen)
1561 return;
1562 points = chosen_points * 1000 / totalpages;
1563 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1564 NULL, "Memory cgroup out of memory");
1565 }
1566
1567 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1568 gfp_t gfp_mask,
1569 unsigned long flags)
1570 {
1571 unsigned long total = 0;
1572 bool noswap = false;
1573 int loop;
1574
1575 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1576 noswap = true;
1577 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1578 noswap = true;
1579
1580 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1581 if (loop)
1582 drain_all_stock_async(memcg);
1583 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1584 /*
1585 * Allow limit shrinkers, which are triggered directly
1586 * by userspace, to catch signals and stop reclaim
1587 * after minimal progress, regardless of the margin.
1588 */
1589 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1590 break;
1591 if (mem_cgroup_margin(memcg))
1592 break;
1593 /*
1594 * If nothing was reclaimed after two attempts, there
1595 * may be no reclaimable pages in this hierarchy.
1596 */
1597 if (loop && !total)
1598 break;
1599 }
1600 return total;
1601 }
1602
1603 /**
1604 * test_mem_cgroup_node_reclaimable
1605 * @memcg: the target memcg
1606 * @nid: the node ID to be checked.
1607 * @noswap : specify true here if the user wants flle only information.
1608 *
1609 * This function returns whether the specified memcg contains any
1610 * reclaimable pages on a node. Returns true if there are any reclaimable
1611 * pages in the node.
1612 */
1613 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1614 int nid, bool noswap)
1615 {
1616 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1617 return true;
1618 if (noswap || !total_swap_pages)
1619 return false;
1620 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1621 return true;
1622 return false;
1623
1624 }
1625 #if MAX_NUMNODES > 1
1626
1627 /*
1628 * Always updating the nodemask is not very good - even if we have an empty
1629 * list or the wrong list here, we can start from some node and traverse all
1630 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1631 *
1632 */
1633 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1634 {
1635 int nid;
1636 /*
1637 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1638 * pagein/pageout changes since the last update.
1639 */
1640 if (!atomic_read(&memcg->numainfo_events))
1641 return;
1642 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1643 return;
1644
1645 /* make a nodemask where this memcg uses memory from */
1646 memcg->scan_nodes = node_states[N_MEMORY];
1647
1648 for_each_node_mask(nid, node_states[N_MEMORY]) {
1649
1650 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1651 node_clear(nid, memcg->scan_nodes);
1652 }
1653
1654 atomic_set(&memcg->numainfo_events, 0);
1655 atomic_set(&memcg->numainfo_updating, 0);
1656 }
1657
1658 /*
1659 * Selecting a node where we start reclaim from. Because what we need is just
1660 * reducing usage counter, start from anywhere is O,K. Considering
1661 * memory reclaim from current node, there are pros. and cons.
1662 *
1663 * Freeing memory from current node means freeing memory from a node which
1664 * we'll use or we've used. So, it may make LRU bad. And if several threads
1665 * hit limits, it will see a contention on a node. But freeing from remote
1666 * node means more costs for memory reclaim because of memory latency.
1667 *
1668 * Now, we use round-robin. Better algorithm is welcomed.
1669 */
1670 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1671 {
1672 int node;
1673
1674 mem_cgroup_may_update_nodemask(memcg);
1675 node = memcg->last_scanned_node;
1676
1677 node = next_node(node, memcg->scan_nodes);
1678 if (node == MAX_NUMNODES)
1679 node = first_node(memcg->scan_nodes);
1680 /*
1681 * We call this when we hit limit, not when pages are added to LRU.
1682 * No LRU may hold pages because all pages are UNEVICTABLE or
1683 * memcg is too small and all pages are not on LRU. In that case,
1684 * we use curret node.
1685 */
1686 if (unlikely(node == MAX_NUMNODES))
1687 node = numa_node_id();
1688
1689 memcg->last_scanned_node = node;
1690 return node;
1691 }
1692
1693 /*
1694 * Check all nodes whether it contains reclaimable pages or not.
1695 * For quick scan, we make use of scan_nodes. This will allow us to skip
1696 * unused nodes. But scan_nodes is lazily updated and may not cotain
1697 * enough new information. We need to do double check.
1698 */
1699 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1700 {
1701 int nid;
1702
1703 /*
1704 * quick check...making use of scan_node.
1705 * We can skip unused nodes.
1706 */
1707 if (!nodes_empty(memcg->scan_nodes)) {
1708 for (nid = first_node(memcg->scan_nodes);
1709 nid < MAX_NUMNODES;
1710 nid = next_node(nid, memcg->scan_nodes)) {
1711
1712 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1713 return true;
1714 }
1715 }
1716 /*
1717 * Check rest of nodes.
1718 */
1719 for_each_node_state(nid, N_MEMORY) {
1720 if (node_isset(nid, memcg->scan_nodes))
1721 continue;
1722 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1723 return true;
1724 }
1725 return false;
1726 }
1727
1728 #else
1729 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1730 {
1731 return 0;
1732 }
1733
1734 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1735 {
1736 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1737 }
1738 #endif
1739
1740 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1741 struct zone *zone,
1742 gfp_t gfp_mask,
1743 unsigned long *total_scanned)
1744 {
1745 struct mem_cgroup *victim = NULL;
1746 int total = 0;
1747 int loop = 0;
1748 unsigned long excess;
1749 unsigned long nr_scanned;
1750 struct mem_cgroup_reclaim_cookie reclaim = {
1751 .zone = zone,
1752 .priority = 0,
1753 };
1754
1755 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1756
1757 while (1) {
1758 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1759 if (!victim) {
1760 loop++;
1761 if (loop >= 2) {
1762 /*
1763 * If we have not been able to reclaim
1764 * anything, it might because there are
1765 * no reclaimable pages under this hierarchy
1766 */
1767 if (!total)
1768 break;
1769 /*
1770 * We want to do more targeted reclaim.
1771 * excess >> 2 is not to excessive so as to
1772 * reclaim too much, nor too less that we keep
1773 * coming back to reclaim from this cgroup
1774 */
1775 if (total >= (excess >> 2) ||
1776 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1777 break;
1778 }
1779 continue;
1780 }
1781 if (!mem_cgroup_reclaimable(victim, false))
1782 continue;
1783 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1784 zone, &nr_scanned);
1785 *total_scanned += nr_scanned;
1786 if (!res_counter_soft_limit_excess(&root_memcg->res))
1787 break;
1788 }
1789 mem_cgroup_iter_break(root_memcg, victim);
1790 return total;
1791 }
1792
1793 /*
1794 * Check OOM-Killer is already running under our hierarchy.
1795 * If someone is running, return false.
1796 * Has to be called with memcg_oom_lock
1797 */
1798 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1799 {
1800 struct mem_cgroup *iter, *failed = NULL;
1801
1802 for_each_mem_cgroup_tree(iter, memcg) {
1803 if (iter->oom_lock) {
1804 /*
1805 * this subtree of our hierarchy is already locked
1806 * so we cannot give a lock.
1807 */
1808 failed = iter;
1809 mem_cgroup_iter_break(memcg, iter);
1810 break;
1811 } else
1812 iter->oom_lock = true;
1813 }
1814
1815 if (!failed)
1816 return true;
1817
1818 /*
1819 * OK, we failed to lock the whole subtree so we have to clean up
1820 * what we set up to the failing subtree
1821 */
1822 for_each_mem_cgroup_tree(iter, memcg) {
1823 if (iter == failed) {
1824 mem_cgroup_iter_break(memcg, iter);
1825 break;
1826 }
1827 iter->oom_lock = false;
1828 }
1829 return false;
1830 }
1831
1832 /*
1833 * Has to be called with memcg_oom_lock
1834 */
1835 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1836 {
1837 struct mem_cgroup *iter;
1838
1839 for_each_mem_cgroup_tree(iter, memcg)
1840 iter->oom_lock = false;
1841 return 0;
1842 }
1843
1844 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1845 {
1846 struct mem_cgroup *iter;
1847
1848 for_each_mem_cgroup_tree(iter, memcg)
1849 atomic_inc(&iter->under_oom);
1850 }
1851
1852 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1853 {
1854 struct mem_cgroup *iter;
1855
1856 /*
1857 * When a new child is created while the hierarchy is under oom,
1858 * mem_cgroup_oom_lock() may not be called. We have to use
1859 * atomic_add_unless() here.
1860 */
1861 for_each_mem_cgroup_tree(iter, memcg)
1862 atomic_add_unless(&iter->under_oom, -1, 0);
1863 }
1864
1865 static DEFINE_SPINLOCK(memcg_oom_lock);
1866 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1867
1868 struct oom_wait_info {
1869 struct mem_cgroup *memcg;
1870 wait_queue_t wait;
1871 };
1872
1873 static int memcg_oom_wake_function(wait_queue_t *wait,
1874 unsigned mode, int sync, void *arg)
1875 {
1876 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1877 struct mem_cgroup *oom_wait_memcg;
1878 struct oom_wait_info *oom_wait_info;
1879
1880 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1881 oom_wait_memcg = oom_wait_info->memcg;
1882
1883 /*
1884 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1885 * Then we can use css_is_ancestor without taking care of RCU.
1886 */
1887 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1888 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1889 return 0;
1890 return autoremove_wake_function(wait, mode, sync, arg);
1891 }
1892
1893 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1894 {
1895 /* for filtering, pass "memcg" as argument. */
1896 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1897 }
1898
1899 static void memcg_oom_recover(struct mem_cgroup *memcg)
1900 {
1901 if (memcg && atomic_read(&memcg->under_oom))
1902 memcg_wakeup_oom(memcg);
1903 }
1904
1905 /*
1906 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1907 */
1908 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1909 int order)
1910 {
1911 struct oom_wait_info owait;
1912 bool locked, need_to_kill;
1913
1914 owait.memcg = memcg;
1915 owait.wait.flags = 0;
1916 owait.wait.func = memcg_oom_wake_function;
1917 owait.wait.private = current;
1918 INIT_LIST_HEAD(&owait.wait.task_list);
1919 need_to_kill = true;
1920 mem_cgroup_mark_under_oom(memcg);
1921
1922 /* At first, try to OOM lock hierarchy under memcg.*/
1923 spin_lock(&memcg_oom_lock);
1924 locked = mem_cgroup_oom_lock(memcg);
1925 /*
1926 * Even if signal_pending(), we can't quit charge() loop without
1927 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1928 * under OOM is always welcomed, use TASK_KILLABLE here.
1929 */
1930 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1931 if (!locked || memcg->oom_kill_disable)
1932 need_to_kill = false;
1933 if (locked)
1934 mem_cgroup_oom_notify(memcg);
1935 spin_unlock(&memcg_oom_lock);
1936
1937 if (need_to_kill) {
1938 finish_wait(&memcg_oom_waitq, &owait.wait);
1939 mem_cgroup_out_of_memory(memcg, mask, order);
1940 } else {
1941 schedule();
1942 finish_wait(&memcg_oom_waitq, &owait.wait);
1943 }
1944 spin_lock(&memcg_oom_lock);
1945 if (locked)
1946 mem_cgroup_oom_unlock(memcg);
1947 memcg_wakeup_oom(memcg);
1948 spin_unlock(&memcg_oom_lock);
1949
1950 mem_cgroup_unmark_under_oom(memcg);
1951
1952 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1953 return false;
1954 /* Give chance to dying process */
1955 schedule_timeout_uninterruptible(1);
1956 return true;
1957 }
1958
1959 /*
1960 * Currently used to update mapped file statistics, but the routine can be
1961 * generalized to update other statistics as well.
1962 *
1963 * Notes: Race condition
1964 *
1965 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1966 * it tends to be costly. But considering some conditions, we doesn't need
1967 * to do so _always_.
1968 *
1969 * Considering "charge", lock_page_cgroup() is not required because all
1970 * file-stat operations happen after a page is attached to radix-tree. There
1971 * are no race with "charge".
1972 *
1973 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1974 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1975 * if there are race with "uncharge". Statistics itself is properly handled
1976 * by flags.
1977 *
1978 * Considering "move", this is an only case we see a race. To make the race
1979 * small, we check mm->moving_account and detect there are possibility of race
1980 * If there is, we take a lock.
1981 */
1982
1983 void __mem_cgroup_begin_update_page_stat(struct page *page,
1984 bool *locked, unsigned long *flags)
1985 {
1986 struct mem_cgroup *memcg;
1987 struct page_cgroup *pc;
1988
1989 pc = lookup_page_cgroup(page);
1990 again:
1991 memcg = pc->mem_cgroup;
1992 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1993 return;
1994 /*
1995 * If this memory cgroup is not under account moving, we don't
1996 * need to take move_lock_mem_cgroup(). Because we already hold
1997 * rcu_read_lock(), any calls to move_account will be delayed until
1998 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1999 */
2000 if (!mem_cgroup_stolen(memcg))
2001 return;
2002
2003 move_lock_mem_cgroup(memcg, flags);
2004 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2005 move_unlock_mem_cgroup(memcg, flags);
2006 goto again;
2007 }
2008 *locked = true;
2009 }
2010
2011 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2012 {
2013 struct page_cgroup *pc = lookup_page_cgroup(page);
2014
2015 /*
2016 * It's guaranteed that pc->mem_cgroup never changes while
2017 * lock is held because a routine modifies pc->mem_cgroup
2018 * should take move_lock_mem_cgroup().
2019 */
2020 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2021 }
2022
2023 void mem_cgroup_update_page_stat(struct page *page,
2024 enum mem_cgroup_page_stat_item idx, int val)
2025 {
2026 struct mem_cgroup *memcg;
2027 struct page_cgroup *pc = lookup_page_cgroup(page);
2028 unsigned long uninitialized_var(flags);
2029
2030 if (mem_cgroup_disabled())
2031 return;
2032
2033 memcg = pc->mem_cgroup;
2034 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2035 return;
2036
2037 switch (idx) {
2038 case MEMCG_NR_FILE_MAPPED:
2039 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2040 break;
2041 default:
2042 BUG();
2043 }
2044
2045 this_cpu_add(memcg->stat->count[idx], val);
2046 }
2047
2048 /*
2049 * size of first charge trial. "32" comes from vmscan.c's magic value.
2050 * TODO: maybe necessary to use big numbers in big irons.
2051 */
2052 #define CHARGE_BATCH 32U
2053 struct memcg_stock_pcp {
2054 struct mem_cgroup *cached; /* this never be root cgroup */
2055 unsigned int nr_pages;
2056 struct work_struct work;
2057 unsigned long flags;
2058 #define FLUSHING_CACHED_CHARGE 0
2059 };
2060 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2061 static DEFINE_MUTEX(percpu_charge_mutex);
2062
2063 /*
2064 * Try to consume stocked charge on this cpu. If success, one page is consumed
2065 * from local stock and true is returned. If the stock is 0 or charges from a
2066 * cgroup which is not current target, returns false. This stock will be
2067 * refilled.
2068 */
2069 static bool consume_stock(struct mem_cgroup *memcg)
2070 {
2071 struct memcg_stock_pcp *stock;
2072 bool ret = true;
2073
2074 stock = &get_cpu_var(memcg_stock);
2075 if (memcg == stock->cached && stock->nr_pages)
2076 stock->nr_pages--;
2077 else /* need to call res_counter_charge */
2078 ret = false;
2079 put_cpu_var(memcg_stock);
2080 return ret;
2081 }
2082
2083 /*
2084 * Returns stocks cached in percpu to res_counter and reset cached information.
2085 */
2086 static void drain_stock(struct memcg_stock_pcp *stock)
2087 {
2088 struct mem_cgroup *old = stock->cached;
2089
2090 if (stock->nr_pages) {
2091 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2092
2093 res_counter_uncharge(&old->res, bytes);
2094 if (do_swap_account)
2095 res_counter_uncharge(&old->memsw, bytes);
2096 stock->nr_pages = 0;
2097 }
2098 stock->cached = NULL;
2099 }
2100
2101 /*
2102 * This must be called under preempt disabled or must be called by
2103 * a thread which is pinned to local cpu.
2104 */
2105 static void drain_local_stock(struct work_struct *dummy)
2106 {
2107 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2108 drain_stock(stock);
2109 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2110 }
2111
2112 /*
2113 * Cache charges(val) which is from res_counter, to local per_cpu area.
2114 * This will be consumed by consume_stock() function, later.
2115 */
2116 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2117 {
2118 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2119
2120 if (stock->cached != memcg) { /* reset if necessary */
2121 drain_stock(stock);
2122 stock->cached = memcg;
2123 }
2124 stock->nr_pages += nr_pages;
2125 put_cpu_var(memcg_stock);
2126 }
2127
2128 /*
2129 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2130 * of the hierarchy under it. sync flag says whether we should block
2131 * until the work is done.
2132 */
2133 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2134 {
2135 int cpu, curcpu;
2136
2137 /* Notify other cpus that system-wide "drain" is running */
2138 get_online_cpus();
2139 curcpu = get_cpu();
2140 for_each_online_cpu(cpu) {
2141 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2142 struct mem_cgroup *memcg;
2143
2144 memcg = stock->cached;
2145 if (!memcg || !stock->nr_pages)
2146 continue;
2147 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2148 continue;
2149 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2150 if (cpu == curcpu)
2151 drain_local_stock(&stock->work);
2152 else
2153 schedule_work_on(cpu, &stock->work);
2154 }
2155 }
2156 put_cpu();
2157
2158 if (!sync)
2159 goto out;
2160
2161 for_each_online_cpu(cpu) {
2162 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2163 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2164 flush_work(&stock->work);
2165 }
2166 out:
2167 put_online_cpus();
2168 }
2169
2170 /*
2171 * Tries to drain stocked charges in other cpus. This function is asynchronous
2172 * and just put a work per cpu for draining localy on each cpu. Caller can
2173 * expects some charges will be back to res_counter later but cannot wait for
2174 * it.
2175 */
2176 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2177 {
2178 /*
2179 * If someone calls draining, avoid adding more kworker runs.
2180 */
2181 if (!mutex_trylock(&percpu_charge_mutex))
2182 return;
2183 drain_all_stock(root_memcg, false);
2184 mutex_unlock(&percpu_charge_mutex);
2185 }
2186
2187 /* This is a synchronous drain interface. */
2188 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2189 {
2190 /* called when force_empty is called */
2191 mutex_lock(&percpu_charge_mutex);
2192 drain_all_stock(root_memcg, true);
2193 mutex_unlock(&percpu_charge_mutex);
2194 }
2195
2196 /*
2197 * This function drains percpu counter value from DEAD cpu and
2198 * move it to local cpu. Note that this function can be preempted.
2199 */
2200 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2201 {
2202 int i;
2203
2204 spin_lock(&memcg->pcp_counter_lock);
2205 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2206 long x = per_cpu(memcg->stat->count[i], cpu);
2207
2208 per_cpu(memcg->stat->count[i], cpu) = 0;
2209 memcg->nocpu_base.count[i] += x;
2210 }
2211 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2212 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2213
2214 per_cpu(memcg->stat->events[i], cpu) = 0;
2215 memcg->nocpu_base.events[i] += x;
2216 }
2217 spin_unlock(&memcg->pcp_counter_lock);
2218 }
2219
2220 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2221 unsigned long action,
2222 void *hcpu)
2223 {
2224 int cpu = (unsigned long)hcpu;
2225 struct memcg_stock_pcp *stock;
2226 struct mem_cgroup *iter;
2227
2228 if (action == CPU_ONLINE)
2229 return NOTIFY_OK;
2230
2231 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2232 return NOTIFY_OK;
2233
2234 for_each_mem_cgroup(iter)
2235 mem_cgroup_drain_pcp_counter(iter, cpu);
2236
2237 stock = &per_cpu(memcg_stock, cpu);
2238 drain_stock(stock);
2239 return NOTIFY_OK;
2240 }
2241
2242
2243 /* See __mem_cgroup_try_charge() for details */
2244 enum {
2245 CHARGE_OK, /* success */
2246 CHARGE_RETRY, /* need to retry but retry is not bad */
2247 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2248 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2249 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2250 };
2251
2252 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2253 unsigned int nr_pages, bool oom_check)
2254 {
2255 unsigned long csize = nr_pages * PAGE_SIZE;
2256 struct mem_cgroup *mem_over_limit;
2257 struct res_counter *fail_res;
2258 unsigned long flags = 0;
2259 int ret;
2260
2261 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2262
2263 if (likely(!ret)) {
2264 if (!do_swap_account)
2265 return CHARGE_OK;
2266 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2267 if (likely(!ret))
2268 return CHARGE_OK;
2269
2270 res_counter_uncharge(&memcg->res, csize);
2271 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2272 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2273 } else
2274 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2275 /*
2276 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2277 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2278 *
2279 * Never reclaim on behalf of optional batching, retry with a
2280 * single page instead.
2281 */
2282 if (nr_pages == CHARGE_BATCH)
2283 return CHARGE_RETRY;
2284
2285 if (!(gfp_mask & __GFP_WAIT))
2286 return CHARGE_WOULDBLOCK;
2287
2288 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2289 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2290 return CHARGE_RETRY;
2291 /*
2292 * Even though the limit is exceeded at this point, reclaim
2293 * may have been able to free some pages. Retry the charge
2294 * before killing the task.
2295 *
2296 * Only for regular pages, though: huge pages are rather
2297 * unlikely to succeed so close to the limit, and we fall back
2298 * to regular pages anyway in case of failure.
2299 */
2300 if (nr_pages == 1 && ret)
2301 return CHARGE_RETRY;
2302
2303 /*
2304 * At task move, charge accounts can be doubly counted. So, it's
2305 * better to wait until the end of task_move if something is going on.
2306 */
2307 if (mem_cgroup_wait_acct_move(mem_over_limit))
2308 return CHARGE_RETRY;
2309
2310 /* If we don't need to call oom-killer at el, return immediately */
2311 if (!oom_check)
2312 return CHARGE_NOMEM;
2313 /* check OOM */
2314 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2315 return CHARGE_OOM_DIE;
2316
2317 return CHARGE_RETRY;
2318 }
2319
2320 /*
2321 * __mem_cgroup_try_charge() does
2322 * 1. detect memcg to be charged against from passed *mm and *ptr,
2323 * 2. update res_counter
2324 * 3. call memory reclaim if necessary.
2325 *
2326 * In some special case, if the task is fatal, fatal_signal_pending() or
2327 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2328 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2329 * as possible without any hazards. 2: all pages should have a valid
2330 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2331 * pointer, that is treated as a charge to root_mem_cgroup.
2332 *
2333 * So __mem_cgroup_try_charge() will return
2334 * 0 ... on success, filling *ptr with a valid memcg pointer.
2335 * -ENOMEM ... charge failure because of resource limits.
2336 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2337 *
2338 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2339 * the oom-killer can be invoked.
2340 */
2341 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2342 gfp_t gfp_mask,
2343 unsigned int nr_pages,
2344 struct mem_cgroup **ptr,
2345 bool oom)
2346 {
2347 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2348 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2349 struct mem_cgroup *memcg = NULL;
2350 int ret;
2351
2352 /*
2353 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2354 * in system level. So, allow to go ahead dying process in addition to
2355 * MEMDIE process.
2356 */
2357 if (unlikely(test_thread_flag(TIF_MEMDIE)
2358 || fatal_signal_pending(current)))
2359 goto bypass;
2360
2361 /*
2362 * We always charge the cgroup the mm_struct belongs to.
2363 * The mm_struct's mem_cgroup changes on task migration if the
2364 * thread group leader migrates. It's possible that mm is not
2365 * set, if so charge the root memcg (happens for pagecache usage).
2366 */
2367 if (!*ptr && !mm)
2368 *ptr = root_mem_cgroup;
2369 again:
2370 if (*ptr) { /* css should be a valid one */
2371 memcg = *ptr;
2372 if (mem_cgroup_is_root(memcg))
2373 goto done;
2374 if (nr_pages == 1 && consume_stock(memcg))
2375 goto done;
2376 css_get(&memcg->css);
2377 } else {
2378 struct task_struct *p;
2379
2380 rcu_read_lock();
2381 p = rcu_dereference(mm->owner);
2382 /*
2383 * Because we don't have task_lock(), "p" can exit.
2384 * In that case, "memcg" can point to root or p can be NULL with
2385 * race with swapoff. Then, we have small risk of mis-accouning.
2386 * But such kind of mis-account by race always happens because
2387 * we don't have cgroup_mutex(). It's overkill and we allo that
2388 * small race, here.
2389 * (*) swapoff at el will charge against mm-struct not against
2390 * task-struct. So, mm->owner can be NULL.
2391 */
2392 memcg = mem_cgroup_from_task(p);
2393 if (!memcg)
2394 memcg = root_mem_cgroup;
2395 if (mem_cgroup_is_root(memcg)) {
2396 rcu_read_unlock();
2397 goto done;
2398 }
2399 if (nr_pages == 1 && consume_stock(memcg)) {
2400 /*
2401 * It seems dagerous to access memcg without css_get().
2402 * But considering how consume_stok works, it's not
2403 * necessary. If consume_stock success, some charges
2404 * from this memcg are cached on this cpu. So, we
2405 * don't need to call css_get()/css_tryget() before
2406 * calling consume_stock().
2407 */
2408 rcu_read_unlock();
2409 goto done;
2410 }
2411 /* after here, we may be blocked. we need to get refcnt */
2412 if (!css_tryget(&memcg->css)) {
2413 rcu_read_unlock();
2414 goto again;
2415 }
2416 rcu_read_unlock();
2417 }
2418
2419 do {
2420 bool oom_check;
2421
2422 /* If killed, bypass charge */
2423 if (fatal_signal_pending(current)) {
2424 css_put(&memcg->css);
2425 goto bypass;
2426 }
2427
2428 oom_check = false;
2429 if (oom && !nr_oom_retries) {
2430 oom_check = true;
2431 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2432 }
2433
2434 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2435 switch (ret) {
2436 case CHARGE_OK:
2437 break;
2438 case CHARGE_RETRY: /* not in OOM situation but retry */
2439 batch = nr_pages;
2440 css_put(&memcg->css);
2441 memcg = NULL;
2442 goto again;
2443 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2444 css_put(&memcg->css);
2445 goto nomem;
2446 case CHARGE_NOMEM: /* OOM routine works */
2447 if (!oom) {
2448 css_put(&memcg->css);
2449 goto nomem;
2450 }
2451 /* If oom, we never return -ENOMEM */
2452 nr_oom_retries--;
2453 break;
2454 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2455 css_put(&memcg->css);
2456 goto bypass;
2457 }
2458 } while (ret != CHARGE_OK);
2459
2460 if (batch > nr_pages)
2461 refill_stock(memcg, batch - nr_pages);
2462 css_put(&memcg->css);
2463 done:
2464 *ptr = memcg;
2465 return 0;
2466 nomem:
2467 *ptr = NULL;
2468 return -ENOMEM;
2469 bypass:
2470 *ptr = root_mem_cgroup;
2471 return -EINTR;
2472 }
2473
2474 /*
2475 * Somemtimes we have to undo a charge we got by try_charge().
2476 * This function is for that and do uncharge, put css's refcnt.
2477 * gotten by try_charge().
2478 */
2479 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2480 unsigned int nr_pages)
2481 {
2482 if (!mem_cgroup_is_root(memcg)) {
2483 unsigned long bytes = nr_pages * PAGE_SIZE;
2484
2485 res_counter_uncharge(&memcg->res, bytes);
2486 if (do_swap_account)
2487 res_counter_uncharge(&memcg->memsw, bytes);
2488 }
2489 }
2490
2491 /*
2492 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2493 * This is useful when moving usage to parent cgroup.
2494 */
2495 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2496 unsigned int nr_pages)
2497 {
2498 unsigned long bytes = nr_pages * PAGE_SIZE;
2499
2500 if (mem_cgroup_is_root(memcg))
2501 return;
2502
2503 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2504 if (do_swap_account)
2505 res_counter_uncharge_until(&memcg->memsw,
2506 memcg->memsw.parent, bytes);
2507 }
2508
2509 /*
2510 * A helper function to get mem_cgroup from ID. must be called under
2511 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2512 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2513 * called against removed memcg.)
2514 */
2515 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2516 {
2517 struct cgroup_subsys_state *css;
2518
2519 /* ID 0 is unused ID */
2520 if (!id)
2521 return NULL;
2522 css = css_lookup(&mem_cgroup_subsys, id);
2523 if (!css)
2524 return NULL;
2525 return mem_cgroup_from_css(css);
2526 }
2527
2528 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2529 {
2530 struct mem_cgroup *memcg = NULL;
2531 struct page_cgroup *pc;
2532 unsigned short id;
2533 swp_entry_t ent;
2534
2535 VM_BUG_ON(!PageLocked(page));
2536
2537 pc = lookup_page_cgroup(page);
2538 lock_page_cgroup(pc);
2539 if (PageCgroupUsed(pc)) {
2540 memcg = pc->mem_cgroup;
2541 if (memcg && !css_tryget(&memcg->css))
2542 memcg = NULL;
2543 } else if (PageSwapCache(page)) {
2544 ent.val = page_private(page);
2545 id = lookup_swap_cgroup_id(ent);
2546 rcu_read_lock();
2547 memcg = mem_cgroup_lookup(id);
2548 if (memcg && !css_tryget(&memcg->css))
2549 memcg = NULL;
2550 rcu_read_unlock();
2551 }
2552 unlock_page_cgroup(pc);
2553 return memcg;
2554 }
2555
2556 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2557 struct page *page,
2558 unsigned int nr_pages,
2559 enum charge_type ctype,
2560 bool lrucare)
2561 {
2562 struct page_cgroup *pc = lookup_page_cgroup(page);
2563 struct zone *uninitialized_var(zone);
2564 struct lruvec *lruvec;
2565 bool was_on_lru = false;
2566 bool anon;
2567
2568 lock_page_cgroup(pc);
2569 VM_BUG_ON(PageCgroupUsed(pc));
2570 /*
2571 * we don't need page_cgroup_lock about tail pages, becase they are not
2572 * accessed by any other context at this point.
2573 */
2574
2575 /*
2576 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2577 * may already be on some other mem_cgroup's LRU. Take care of it.
2578 */
2579 if (lrucare) {
2580 zone = page_zone(page);
2581 spin_lock_irq(&zone->lru_lock);
2582 if (PageLRU(page)) {
2583 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2584 ClearPageLRU(page);
2585 del_page_from_lru_list(page, lruvec, page_lru(page));
2586 was_on_lru = true;
2587 }
2588 }
2589
2590 pc->mem_cgroup = memcg;
2591 /*
2592 * We access a page_cgroup asynchronously without lock_page_cgroup().
2593 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2594 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2595 * before USED bit, we need memory barrier here.
2596 * See mem_cgroup_add_lru_list(), etc.
2597 */
2598 smp_wmb();
2599 SetPageCgroupUsed(pc);
2600
2601 if (lrucare) {
2602 if (was_on_lru) {
2603 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2604 VM_BUG_ON(PageLRU(page));
2605 SetPageLRU(page);
2606 add_page_to_lru_list(page, lruvec, page_lru(page));
2607 }
2608 spin_unlock_irq(&zone->lru_lock);
2609 }
2610
2611 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2612 anon = true;
2613 else
2614 anon = false;
2615
2616 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2617 unlock_page_cgroup(pc);
2618
2619 /*
2620 * "charge_statistics" updated event counter. Then, check it.
2621 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2622 * if they exceeds softlimit.
2623 */
2624 memcg_check_events(memcg, page);
2625 }
2626
2627 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2628
2629 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2630 /*
2631 * Because tail pages are not marked as "used", set it. We're under
2632 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2633 * charge/uncharge will be never happen and move_account() is done under
2634 * compound_lock(), so we don't have to take care of races.
2635 */
2636 void mem_cgroup_split_huge_fixup(struct page *head)
2637 {
2638 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2639 struct page_cgroup *pc;
2640 int i;
2641
2642 if (mem_cgroup_disabled())
2643 return;
2644 for (i = 1; i < HPAGE_PMD_NR; i++) {
2645 pc = head_pc + i;
2646 pc->mem_cgroup = head_pc->mem_cgroup;
2647 smp_wmb();/* see __commit_charge() */
2648 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2649 }
2650 }
2651 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2652
2653 /**
2654 * mem_cgroup_move_account - move account of the page
2655 * @page: the page
2656 * @nr_pages: number of regular pages (>1 for huge pages)
2657 * @pc: page_cgroup of the page.
2658 * @from: mem_cgroup which the page is moved from.
2659 * @to: mem_cgroup which the page is moved to. @from != @to.
2660 *
2661 * The caller must confirm following.
2662 * - page is not on LRU (isolate_page() is useful.)
2663 * - compound_lock is held when nr_pages > 1
2664 *
2665 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2666 * from old cgroup.
2667 */
2668 static int mem_cgroup_move_account(struct page *page,
2669 unsigned int nr_pages,
2670 struct page_cgroup *pc,
2671 struct mem_cgroup *from,
2672 struct mem_cgroup *to)
2673 {
2674 unsigned long flags;
2675 int ret;
2676 bool anon = PageAnon(page);
2677
2678 VM_BUG_ON(from == to);
2679 VM_BUG_ON(PageLRU(page));
2680 /*
2681 * The page is isolated from LRU. So, collapse function
2682 * will not handle this page. But page splitting can happen.
2683 * Do this check under compound_page_lock(). The caller should
2684 * hold it.
2685 */
2686 ret = -EBUSY;
2687 if (nr_pages > 1 && !PageTransHuge(page))
2688 goto out;
2689
2690 lock_page_cgroup(pc);
2691
2692 ret = -EINVAL;
2693 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2694 goto unlock;
2695
2696 move_lock_mem_cgroup(from, &flags);
2697
2698 if (!anon && page_mapped(page)) {
2699 /* Update mapped_file data for mem_cgroup */
2700 preempt_disable();
2701 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2702 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2703 preempt_enable();
2704 }
2705 mem_cgroup_charge_statistics(from, anon, -nr_pages);
2706
2707 /* caller should have done css_get */
2708 pc->mem_cgroup = to;
2709 mem_cgroup_charge_statistics(to, anon, nr_pages);
2710 move_unlock_mem_cgroup(from, &flags);
2711 ret = 0;
2712 unlock:
2713 unlock_page_cgroup(pc);
2714 /*
2715 * check events
2716 */
2717 memcg_check_events(to, page);
2718 memcg_check_events(from, page);
2719 out:
2720 return ret;
2721 }
2722
2723 /**
2724 * mem_cgroup_move_parent - moves page to the parent group
2725 * @page: the page to move
2726 * @pc: page_cgroup of the page
2727 * @child: page's cgroup
2728 *
2729 * move charges to its parent or the root cgroup if the group has no
2730 * parent (aka use_hierarchy==0).
2731 * Although this might fail (get_page_unless_zero, isolate_lru_page or
2732 * mem_cgroup_move_account fails) the failure is always temporary and
2733 * it signals a race with a page removal/uncharge or migration. In the
2734 * first case the page is on the way out and it will vanish from the LRU
2735 * on the next attempt and the call should be retried later.
2736 * Isolation from the LRU fails only if page has been isolated from
2737 * the LRU since we looked at it and that usually means either global
2738 * reclaim or migration going on. The page will either get back to the
2739 * LRU or vanish.
2740 * Finaly mem_cgroup_move_account fails only if the page got uncharged
2741 * (!PageCgroupUsed) or moved to a different group. The page will
2742 * disappear in the next attempt.
2743 */
2744 static int mem_cgroup_move_parent(struct page *page,
2745 struct page_cgroup *pc,
2746 struct mem_cgroup *child)
2747 {
2748 struct mem_cgroup *parent;
2749 unsigned int nr_pages;
2750 unsigned long uninitialized_var(flags);
2751 int ret;
2752
2753 VM_BUG_ON(mem_cgroup_is_root(child));
2754
2755 ret = -EBUSY;
2756 if (!get_page_unless_zero(page))
2757 goto out;
2758 if (isolate_lru_page(page))
2759 goto put;
2760
2761 nr_pages = hpage_nr_pages(page);
2762
2763 parent = parent_mem_cgroup(child);
2764 /*
2765 * If no parent, move charges to root cgroup.
2766 */
2767 if (!parent)
2768 parent = root_mem_cgroup;
2769
2770 if (nr_pages > 1) {
2771 VM_BUG_ON(!PageTransHuge(page));
2772 flags = compound_lock_irqsave(page);
2773 }
2774
2775 ret = mem_cgroup_move_account(page, nr_pages,
2776 pc, child, parent);
2777 if (!ret)
2778 __mem_cgroup_cancel_local_charge(child, nr_pages);
2779
2780 if (nr_pages > 1)
2781 compound_unlock_irqrestore(page, flags);
2782 putback_lru_page(page);
2783 put:
2784 put_page(page);
2785 out:
2786 return ret;
2787 }
2788
2789 /*
2790 * Charge the memory controller for page usage.
2791 * Return
2792 * 0 if the charge was successful
2793 * < 0 if the cgroup is over its limit
2794 */
2795 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2796 gfp_t gfp_mask, enum charge_type ctype)
2797 {
2798 struct mem_cgroup *memcg = NULL;
2799 unsigned int nr_pages = 1;
2800 bool oom = true;
2801 int ret;
2802
2803 if (PageTransHuge(page)) {
2804 nr_pages <<= compound_order(page);
2805 VM_BUG_ON(!PageTransHuge(page));
2806 /*
2807 * Never OOM-kill a process for a huge page. The
2808 * fault handler will fall back to regular pages.
2809 */
2810 oom = false;
2811 }
2812
2813 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2814 if (ret == -ENOMEM)
2815 return ret;
2816 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2817 return 0;
2818 }
2819
2820 int mem_cgroup_newpage_charge(struct page *page,
2821 struct mm_struct *mm, gfp_t gfp_mask)
2822 {
2823 if (mem_cgroup_disabled())
2824 return 0;
2825 VM_BUG_ON(page_mapped(page));
2826 VM_BUG_ON(page->mapping && !PageAnon(page));
2827 VM_BUG_ON(!mm);
2828 return mem_cgroup_charge_common(page, mm, gfp_mask,
2829 MEM_CGROUP_CHARGE_TYPE_ANON);
2830 }
2831
2832 /*
2833 * While swap-in, try_charge -> commit or cancel, the page is locked.
2834 * And when try_charge() successfully returns, one refcnt to memcg without
2835 * struct page_cgroup is acquired. This refcnt will be consumed by
2836 * "commit()" or removed by "cancel()"
2837 */
2838 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2839 struct page *page,
2840 gfp_t mask,
2841 struct mem_cgroup **memcgp)
2842 {
2843 struct mem_cgroup *memcg;
2844 struct page_cgroup *pc;
2845 int ret;
2846
2847 pc = lookup_page_cgroup(page);
2848 /*
2849 * Every swap fault against a single page tries to charge the
2850 * page, bail as early as possible. shmem_unuse() encounters
2851 * already charged pages, too. The USED bit is protected by
2852 * the page lock, which serializes swap cache removal, which
2853 * in turn serializes uncharging.
2854 */
2855 if (PageCgroupUsed(pc))
2856 return 0;
2857 if (!do_swap_account)
2858 goto charge_cur_mm;
2859 memcg = try_get_mem_cgroup_from_page(page);
2860 if (!memcg)
2861 goto charge_cur_mm;
2862 *memcgp = memcg;
2863 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2864 css_put(&memcg->css);
2865 if (ret == -EINTR)
2866 ret = 0;
2867 return ret;
2868 charge_cur_mm:
2869 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2870 if (ret == -EINTR)
2871 ret = 0;
2872 return ret;
2873 }
2874
2875 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
2876 gfp_t gfp_mask, struct mem_cgroup **memcgp)
2877 {
2878 *memcgp = NULL;
2879 if (mem_cgroup_disabled())
2880 return 0;
2881 /*
2882 * A racing thread's fault, or swapoff, may have already
2883 * updated the pte, and even removed page from swap cache: in
2884 * those cases unuse_pte()'s pte_same() test will fail; but
2885 * there's also a KSM case which does need to charge the page.
2886 */
2887 if (!PageSwapCache(page)) {
2888 int ret;
2889
2890 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
2891 if (ret == -EINTR)
2892 ret = 0;
2893 return ret;
2894 }
2895 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
2896 }
2897
2898 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2899 {
2900 if (mem_cgroup_disabled())
2901 return;
2902 if (!memcg)
2903 return;
2904 __mem_cgroup_cancel_charge(memcg, 1);
2905 }
2906
2907 static void
2908 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2909 enum charge_type ctype)
2910 {
2911 if (mem_cgroup_disabled())
2912 return;
2913 if (!memcg)
2914 return;
2915
2916 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2917 /*
2918 * Now swap is on-memory. This means this page may be
2919 * counted both as mem and swap....double count.
2920 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2921 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2922 * may call delete_from_swap_cache() before reach here.
2923 */
2924 if (do_swap_account && PageSwapCache(page)) {
2925 swp_entry_t ent = {.val = page_private(page)};
2926 mem_cgroup_uncharge_swap(ent);
2927 }
2928 }
2929
2930 void mem_cgroup_commit_charge_swapin(struct page *page,
2931 struct mem_cgroup *memcg)
2932 {
2933 __mem_cgroup_commit_charge_swapin(page, memcg,
2934 MEM_CGROUP_CHARGE_TYPE_ANON);
2935 }
2936
2937 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2938 gfp_t gfp_mask)
2939 {
2940 struct mem_cgroup *memcg = NULL;
2941 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2942 int ret;
2943
2944 if (mem_cgroup_disabled())
2945 return 0;
2946 if (PageCompound(page))
2947 return 0;
2948
2949 if (!PageSwapCache(page))
2950 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2951 else { /* page is swapcache/shmem */
2952 ret = __mem_cgroup_try_charge_swapin(mm, page,
2953 gfp_mask, &memcg);
2954 if (!ret)
2955 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2956 }
2957 return ret;
2958 }
2959
2960 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2961 unsigned int nr_pages,
2962 const enum charge_type ctype)
2963 {
2964 struct memcg_batch_info *batch = NULL;
2965 bool uncharge_memsw = true;
2966
2967 /* If swapout, usage of swap doesn't decrease */
2968 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2969 uncharge_memsw = false;
2970
2971 batch = &current->memcg_batch;
2972 /*
2973 * In usual, we do css_get() when we remember memcg pointer.
2974 * But in this case, we keep res->usage until end of a series of
2975 * uncharges. Then, it's ok to ignore memcg's refcnt.
2976 */
2977 if (!batch->memcg)
2978 batch->memcg = memcg;
2979 /*
2980 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2981 * In those cases, all pages freed continuously can be expected to be in
2982 * the same cgroup and we have chance to coalesce uncharges.
2983 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2984 * because we want to do uncharge as soon as possible.
2985 */
2986
2987 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2988 goto direct_uncharge;
2989
2990 if (nr_pages > 1)
2991 goto direct_uncharge;
2992
2993 /*
2994 * In typical case, batch->memcg == mem. This means we can
2995 * merge a series of uncharges to an uncharge of res_counter.
2996 * If not, we uncharge res_counter ony by one.
2997 */
2998 if (batch->memcg != memcg)
2999 goto direct_uncharge;
3000 /* remember freed charge and uncharge it later */
3001 batch->nr_pages++;
3002 if (uncharge_memsw)
3003 batch->memsw_nr_pages++;
3004 return;
3005 direct_uncharge:
3006 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3007 if (uncharge_memsw)
3008 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3009 if (unlikely(batch->memcg != memcg))
3010 memcg_oom_recover(memcg);
3011 }
3012
3013 /*
3014 * uncharge if !page_mapped(page)
3015 */
3016 static struct mem_cgroup *
3017 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
3018 bool end_migration)
3019 {
3020 struct mem_cgroup *memcg = NULL;
3021 unsigned int nr_pages = 1;
3022 struct page_cgroup *pc;
3023 bool anon;
3024
3025 if (mem_cgroup_disabled())
3026 return NULL;
3027
3028 VM_BUG_ON(PageSwapCache(page));
3029
3030 if (PageTransHuge(page)) {
3031 nr_pages <<= compound_order(page);
3032 VM_BUG_ON(!PageTransHuge(page));
3033 }
3034 /*
3035 * Check if our page_cgroup is valid
3036 */
3037 pc = lookup_page_cgroup(page);
3038 if (unlikely(!PageCgroupUsed(pc)))
3039 return NULL;
3040
3041 lock_page_cgroup(pc);
3042
3043 memcg = pc->mem_cgroup;
3044
3045 if (!PageCgroupUsed(pc))
3046 goto unlock_out;
3047
3048 anon = PageAnon(page);
3049
3050 switch (ctype) {
3051 case MEM_CGROUP_CHARGE_TYPE_ANON:
3052 /*
3053 * Generally PageAnon tells if it's the anon statistics to be
3054 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3055 * used before page reached the stage of being marked PageAnon.
3056 */
3057 anon = true;
3058 /* fallthrough */
3059 case MEM_CGROUP_CHARGE_TYPE_DROP:
3060 /* See mem_cgroup_prepare_migration() */
3061 if (page_mapped(page))
3062 goto unlock_out;
3063 /*
3064 * Pages under migration may not be uncharged. But
3065 * end_migration() /must/ be the one uncharging the
3066 * unused post-migration page and so it has to call
3067 * here with the migration bit still set. See the
3068 * res_counter handling below.
3069 */
3070 if (!end_migration && PageCgroupMigration(pc))
3071 goto unlock_out;
3072 break;
3073 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3074 if (!PageAnon(page)) { /* Shared memory */
3075 if (page->mapping && !page_is_file_cache(page))
3076 goto unlock_out;
3077 } else if (page_mapped(page)) /* Anon */
3078 goto unlock_out;
3079 break;
3080 default:
3081 break;
3082 }
3083
3084 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
3085
3086 ClearPageCgroupUsed(pc);
3087 /*
3088 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3089 * freed from LRU. This is safe because uncharged page is expected not
3090 * to be reused (freed soon). Exception is SwapCache, it's handled by
3091 * special functions.
3092 */
3093
3094 unlock_page_cgroup(pc);
3095 /*
3096 * even after unlock, we have memcg->res.usage here and this memcg
3097 * will never be freed.
3098 */
3099 memcg_check_events(memcg, page);
3100 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3101 mem_cgroup_swap_statistics(memcg, true);
3102 mem_cgroup_get(memcg);
3103 }
3104 /*
3105 * Migration does not charge the res_counter for the
3106 * replacement page, so leave it alone when phasing out the
3107 * page that is unused after the migration.
3108 */
3109 if (!end_migration && !mem_cgroup_is_root(memcg))
3110 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3111
3112 return memcg;
3113
3114 unlock_out:
3115 unlock_page_cgroup(pc);
3116 return NULL;
3117 }
3118
3119 void mem_cgroup_uncharge_page(struct page *page)
3120 {
3121 /* early check. */
3122 if (page_mapped(page))
3123 return;
3124 VM_BUG_ON(page->mapping && !PageAnon(page));
3125 if (PageSwapCache(page))
3126 return;
3127 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
3128 }
3129
3130 void mem_cgroup_uncharge_cache_page(struct page *page)
3131 {
3132 VM_BUG_ON(page_mapped(page));
3133 VM_BUG_ON(page->mapping);
3134 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
3135 }
3136
3137 /*
3138 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3139 * In that cases, pages are freed continuously and we can expect pages
3140 * are in the same memcg. All these calls itself limits the number of
3141 * pages freed at once, then uncharge_start/end() is called properly.
3142 * This may be called prural(2) times in a context,
3143 */
3144
3145 void mem_cgroup_uncharge_start(void)
3146 {
3147 current->memcg_batch.do_batch++;
3148 /* We can do nest. */
3149 if (current->memcg_batch.do_batch == 1) {
3150 current->memcg_batch.memcg = NULL;
3151 current->memcg_batch.nr_pages = 0;
3152 current->memcg_batch.memsw_nr_pages = 0;
3153 }
3154 }
3155
3156 void mem_cgroup_uncharge_end(void)
3157 {
3158 struct memcg_batch_info *batch = &current->memcg_batch;
3159
3160 if (!batch->do_batch)
3161 return;
3162
3163 batch->do_batch--;
3164 if (batch->do_batch) /* If stacked, do nothing. */
3165 return;
3166
3167 if (!batch->memcg)
3168 return;
3169 /*
3170 * This "batch->memcg" is valid without any css_get/put etc...
3171 * bacause we hide charges behind us.
3172 */
3173 if (batch->nr_pages)
3174 res_counter_uncharge(&batch->memcg->res,
3175 batch->nr_pages * PAGE_SIZE);
3176 if (batch->memsw_nr_pages)
3177 res_counter_uncharge(&batch->memcg->memsw,
3178 batch->memsw_nr_pages * PAGE_SIZE);
3179 memcg_oom_recover(batch->memcg);
3180 /* forget this pointer (for sanity check) */
3181 batch->memcg = NULL;
3182 }
3183
3184 #ifdef CONFIG_SWAP
3185 /*
3186 * called after __delete_from_swap_cache() and drop "page" account.
3187 * memcg information is recorded to swap_cgroup of "ent"
3188 */
3189 void
3190 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3191 {
3192 struct mem_cgroup *memcg;
3193 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3194
3195 if (!swapout) /* this was a swap cache but the swap is unused ! */
3196 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3197
3198 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
3199
3200 /*
3201 * record memcg information, if swapout && memcg != NULL,
3202 * mem_cgroup_get() was called in uncharge().
3203 */
3204 if (do_swap_account && swapout && memcg)
3205 swap_cgroup_record(ent, css_id(&memcg->css));
3206 }
3207 #endif
3208
3209 #ifdef CONFIG_MEMCG_SWAP
3210 /*
3211 * called from swap_entry_free(). remove record in swap_cgroup and
3212 * uncharge "memsw" account.
3213 */
3214 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3215 {
3216 struct mem_cgroup *memcg;
3217 unsigned short id;
3218
3219 if (!do_swap_account)
3220 return;
3221
3222 id = swap_cgroup_record(ent, 0);
3223 rcu_read_lock();
3224 memcg = mem_cgroup_lookup(id);
3225 if (memcg) {
3226 /*
3227 * We uncharge this because swap is freed.
3228 * This memcg can be obsolete one. We avoid calling css_tryget
3229 */
3230 if (!mem_cgroup_is_root(memcg))
3231 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3232 mem_cgroup_swap_statistics(memcg, false);
3233 mem_cgroup_put(memcg);
3234 }
3235 rcu_read_unlock();
3236 }
3237
3238 /**
3239 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3240 * @entry: swap entry to be moved
3241 * @from: mem_cgroup which the entry is moved from
3242 * @to: mem_cgroup which the entry is moved to
3243 *
3244 * It succeeds only when the swap_cgroup's record for this entry is the same
3245 * as the mem_cgroup's id of @from.
3246 *
3247 * Returns 0 on success, -EINVAL on failure.
3248 *
3249 * The caller must have charged to @to, IOW, called res_counter_charge() about
3250 * both res and memsw, and called css_get().
3251 */
3252 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3253 struct mem_cgroup *from, struct mem_cgroup *to)
3254 {
3255 unsigned short old_id, new_id;
3256
3257 old_id = css_id(&from->css);
3258 new_id = css_id(&to->css);
3259
3260 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3261 mem_cgroup_swap_statistics(from, false);
3262 mem_cgroup_swap_statistics(to, true);
3263 /*
3264 * This function is only called from task migration context now.
3265 * It postpones res_counter and refcount handling till the end
3266 * of task migration(mem_cgroup_clear_mc()) for performance
3267 * improvement. But we cannot postpone mem_cgroup_get(to)
3268 * because if the process that has been moved to @to does
3269 * swap-in, the refcount of @to might be decreased to 0.
3270 */
3271 mem_cgroup_get(to);
3272 return 0;
3273 }
3274 return -EINVAL;
3275 }
3276 #else
3277 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3278 struct mem_cgroup *from, struct mem_cgroup *to)
3279 {
3280 return -EINVAL;
3281 }
3282 #endif
3283
3284 /*
3285 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3286 * page belongs to.
3287 */
3288 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
3289 struct mem_cgroup **memcgp)
3290 {
3291 struct mem_cgroup *memcg = NULL;
3292 unsigned int nr_pages = 1;
3293 struct page_cgroup *pc;
3294 enum charge_type ctype;
3295
3296 *memcgp = NULL;
3297
3298 if (mem_cgroup_disabled())
3299 return;
3300
3301 if (PageTransHuge(page))
3302 nr_pages <<= compound_order(page);
3303
3304 pc = lookup_page_cgroup(page);
3305 lock_page_cgroup(pc);
3306 if (PageCgroupUsed(pc)) {
3307 memcg = pc->mem_cgroup;
3308 css_get(&memcg->css);
3309 /*
3310 * At migrating an anonymous page, its mapcount goes down
3311 * to 0 and uncharge() will be called. But, even if it's fully
3312 * unmapped, migration may fail and this page has to be
3313 * charged again. We set MIGRATION flag here and delay uncharge
3314 * until end_migration() is called
3315 *
3316 * Corner Case Thinking
3317 * A)
3318 * When the old page was mapped as Anon and it's unmap-and-freed
3319 * while migration was ongoing.
3320 * If unmap finds the old page, uncharge() of it will be delayed
3321 * until end_migration(). If unmap finds a new page, it's
3322 * uncharged when it make mapcount to be 1->0. If unmap code
3323 * finds swap_migration_entry, the new page will not be mapped
3324 * and end_migration() will find it(mapcount==0).
3325 *
3326 * B)
3327 * When the old page was mapped but migraion fails, the kernel
3328 * remaps it. A charge for it is kept by MIGRATION flag even
3329 * if mapcount goes down to 0. We can do remap successfully
3330 * without charging it again.
3331 *
3332 * C)
3333 * The "old" page is under lock_page() until the end of
3334 * migration, so, the old page itself will not be swapped-out.
3335 * If the new page is swapped out before end_migraton, our
3336 * hook to usual swap-out path will catch the event.
3337 */
3338 if (PageAnon(page))
3339 SetPageCgroupMigration(pc);
3340 }
3341 unlock_page_cgroup(pc);
3342 /*
3343 * If the page is not charged at this point,
3344 * we return here.
3345 */
3346 if (!memcg)
3347 return;
3348
3349 *memcgp = memcg;
3350 /*
3351 * We charge new page before it's used/mapped. So, even if unlock_page()
3352 * is called before end_migration, we can catch all events on this new
3353 * page. In the case new page is migrated but not remapped, new page's
3354 * mapcount will be finally 0 and we call uncharge in end_migration().
3355 */
3356 if (PageAnon(page))
3357 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
3358 else
3359 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3360 /*
3361 * The page is committed to the memcg, but it's not actually
3362 * charged to the res_counter since we plan on replacing the
3363 * old one and only one page is going to be left afterwards.
3364 */
3365 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
3366 }
3367
3368 /* remove redundant charge if migration failed*/
3369 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3370 struct page *oldpage, struct page *newpage, bool migration_ok)
3371 {
3372 struct page *used, *unused;
3373 struct page_cgroup *pc;
3374 bool anon;
3375
3376 if (!memcg)
3377 return;
3378
3379 if (!migration_ok) {
3380 used = oldpage;
3381 unused = newpage;
3382 } else {
3383 used = newpage;
3384 unused = oldpage;
3385 }
3386 anon = PageAnon(used);
3387 __mem_cgroup_uncharge_common(unused,
3388 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
3389 : MEM_CGROUP_CHARGE_TYPE_CACHE,
3390 true);
3391 css_put(&memcg->css);
3392 /*
3393 * We disallowed uncharge of pages under migration because mapcount
3394 * of the page goes down to zero, temporarly.
3395 * Clear the flag and check the page should be charged.
3396 */
3397 pc = lookup_page_cgroup(oldpage);
3398 lock_page_cgroup(pc);
3399 ClearPageCgroupMigration(pc);
3400 unlock_page_cgroup(pc);
3401
3402 /*
3403 * If a page is a file cache, radix-tree replacement is very atomic
3404 * and we can skip this check. When it was an Anon page, its mapcount
3405 * goes down to 0. But because we added MIGRATION flage, it's not
3406 * uncharged yet. There are several case but page->mapcount check
3407 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3408 * check. (see prepare_charge() also)
3409 */
3410 if (anon)
3411 mem_cgroup_uncharge_page(used);
3412 }
3413
3414 /*
3415 * At replace page cache, newpage is not under any memcg but it's on
3416 * LRU. So, this function doesn't touch res_counter but handles LRU
3417 * in correct way. Both pages are locked so we cannot race with uncharge.
3418 */
3419 void mem_cgroup_replace_page_cache(struct page *oldpage,
3420 struct page *newpage)
3421 {
3422 struct mem_cgroup *memcg = NULL;
3423 struct page_cgroup *pc;
3424 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3425
3426 if (mem_cgroup_disabled())
3427 return;
3428
3429 pc = lookup_page_cgroup(oldpage);
3430 /* fix accounting on old pages */
3431 lock_page_cgroup(pc);
3432 if (PageCgroupUsed(pc)) {
3433 memcg = pc->mem_cgroup;
3434 mem_cgroup_charge_statistics(memcg, false, -1);
3435 ClearPageCgroupUsed(pc);
3436 }
3437 unlock_page_cgroup(pc);
3438
3439 /*
3440 * When called from shmem_replace_page(), in some cases the
3441 * oldpage has already been charged, and in some cases not.
3442 */
3443 if (!memcg)
3444 return;
3445 /*
3446 * Even if newpage->mapping was NULL before starting replacement,
3447 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3448 * LRU while we overwrite pc->mem_cgroup.
3449 */
3450 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3451 }
3452
3453 #ifdef CONFIG_DEBUG_VM
3454 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3455 {
3456 struct page_cgroup *pc;
3457
3458 pc = lookup_page_cgroup(page);
3459 /*
3460 * Can be NULL while feeding pages into the page allocator for
3461 * the first time, i.e. during boot or memory hotplug;
3462 * or when mem_cgroup_disabled().
3463 */
3464 if (likely(pc) && PageCgroupUsed(pc))
3465 return pc;
3466 return NULL;
3467 }
3468
3469 bool mem_cgroup_bad_page_check(struct page *page)
3470 {
3471 if (mem_cgroup_disabled())
3472 return false;
3473
3474 return lookup_page_cgroup_used(page) != NULL;
3475 }
3476
3477 void mem_cgroup_print_bad_page(struct page *page)
3478 {
3479 struct page_cgroup *pc;
3480
3481 pc = lookup_page_cgroup_used(page);
3482 if (pc) {
3483 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3484 pc, pc->flags, pc->mem_cgroup);
3485 }
3486 }
3487 #endif
3488
3489 static DEFINE_MUTEX(set_limit_mutex);
3490
3491 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3492 unsigned long long val)
3493 {
3494 int retry_count;
3495 u64 memswlimit, memlimit;
3496 int ret = 0;
3497 int children = mem_cgroup_count_children(memcg);
3498 u64 curusage, oldusage;
3499 int enlarge;
3500
3501 /*
3502 * For keeping hierarchical_reclaim simple, how long we should retry
3503 * is depends on callers. We set our retry-count to be function
3504 * of # of children which we should visit in this loop.
3505 */
3506 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3507
3508 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3509
3510 enlarge = 0;
3511 while (retry_count) {
3512 if (signal_pending(current)) {
3513 ret = -EINTR;
3514 break;
3515 }
3516 /*
3517 * Rather than hide all in some function, I do this in
3518 * open coded manner. You see what this really does.
3519 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3520 */
3521 mutex_lock(&set_limit_mutex);
3522 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3523 if (memswlimit < val) {
3524 ret = -EINVAL;
3525 mutex_unlock(&set_limit_mutex);
3526 break;
3527 }
3528
3529 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3530 if (memlimit < val)
3531 enlarge = 1;
3532
3533 ret = res_counter_set_limit(&memcg->res, val);
3534 if (!ret) {
3535 if (memswlimit == val)
3536 memcg->memsw_is_minimum = true;
3537 else
3538 memcg->memsw_is_minimum = false;
3539 }
3540 mutex_unlock(&set_limit_mutex);
3541
3542 if (!ret)
3543 break;
3544
3545 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3546 MEM_CGROUP_RECLAIM_SHRINK);
3547 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3548 /* Usage is reduced ? */
3549 if (curusage >= oldusage)
3550 retry_count--;
3551 else
3552 oldusage = curusage;
3553 }
3554 if (!ret && enlarge)
3555 memcg_oom_recover(memcg);
3556
3557 return ret;
3558 }
3559
3560 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3561 unsigned long long val)
3562 {
3563 int retry_count;
3564 u64 memlimit, memswlimit, oldusage, curusage;
3565 int children = mem_cgroup_count_children(memcg);
3566 int ret = -EBUSY;
3567 int enlarge = 0;
3568
3569 /* see mem_cgroup_resize_res_limit */
3570 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3571 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3572 while (retry_count) {
3573 if (signal_pending(current)) {
3574 ret = -EINTR;
3575 break;
3576 }
3577 /*
3578 * Rather than hide all in some function, I do this in
3579 * open coded manner. You see what this really does.
3580 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3581 */
3582 mutex_lock(&set_limit_mutex);
3583 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3584 if (memlimit > val) {
3585 ret = -EINVAL;
3586 mutex_unlock(&set_limit_mutex);
3587 break;
3588 }
3589 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3590 if (memswlimit < val)
3591 enlarge = 1;
3592 ret = res_counter_set_limit(&memcg->memsw, val);
3593 if (!ret) {
3594 if (memlimit == val)
3595 memcg->memsw_is_minimum = true;
3596 else
3597 memcg->memsw_is_minimum = false;
3598 }
3599 mutex_unlock(&set_limit_mutex);
3600
3601 if (!ret)
3602 break;
3603
3604 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3605 MEM_CGROUP_RECLAIM_NOSWAP |
3606 MEM_CGROUP_RECLAIM_SHRINK);
3607 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3608 /* Usage is reduced ? */
3609 if (curusage >= oldusage)
3610 retry_count--;
3611 else
3612 oldusage = curusage;
3613 }
3614 if (!ret && enlarge)
3615 memcg_oom_recover(memcg);
3616 return ret;
3617 }
3618
3619 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3620 gfp_t gfp_mask,
3621 unsigned long *total_scanned)
3622 {
3623 unsigned long nr_reclaimed = 0;
3624 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3625 unsigned long reclaimed;
3626 int loop = 0;
3627 struct mem_cgroup_tree_per_zone *mctz;
3628 unsigned long long excess;
3629 unsigned long nr_scanned;
3630
3631 if (order > 0)
3632 return 0;
3633
3634 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3635 /*
3636 * This loop can run a while, specially if mem_cgroup's continuously
3637 * keep exceeding their soft limit and putting the system under
3638 * pressure
3639 */
3640 do {
3641 if (next_mz)
3642 mz = next_mz;
3643 else
3644 mz = mem_cgroup_largest_soft_limit_node(mctz);
3645 if (!mz)
3646 break;
3647
3648 nr_scanned = 0;
3649 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3650 gfp_mask, &nr_scanned);
3651 nr_reclaimed += reclaimed;
3652 *total_scanned += nr_scanned;
3653 spin_lock(&mctz->lock);
3654
3655 /*
3656 * If we failed to reclaim anything from this memory cgroup
3657 * it is time to move on to the next cgroup
3658 */
3659 next_mz = NULL;
3660 if (!reclaimed) {
3661 do {
3662 /*
3663 * Loop until we find yet another one.
3664 *
3665 * By the time we get the soft_limit lock
3666 * again, someone might have aded the
3667 * group back on the RB tree. Iterate to
3668 * make sure we get a different mem.
3669 * mem_cgroup_largest_soft_limit_node returns
3670 * NULL if no other cgroup is present on
3671 * the tree
3672 */
3673 next_mz =
3674 __mem_cgroup_largest_soft_limit_node(mctz);
3675 if (next_mz == mz)
3676 css_put(&next_mz->memcg->css);
3677 else /* next_mz == NULL or other memcg */
3678 break;
3679 } while (1);
3680 }
3681 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3682 excess = res_counter_soft_limit_excess(&mz->memcg->res);
3683 /*
3684 * One school of thought says that we should not add
3685 * back the node to the tree if reclaim returns 0.
3686 * But our reclaim could return 0, simply because due
3687 * to priority we are exposing a smaller subset of
3688 * memory to reclaim from. Consider this as a longer
3689 * term TODO.
3690 */
3691 /* If excess == 0, no tree ops */
3692 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3693 spin_unlock(&mctz->lock);
3694 css_put(&mz->memcg->css);
3695 loop++;
3696 /*
3697 * Could not reclaim anything and there are no more
3698 * mem cgroups to try or we seem to be looping without
3699 * reclaiming anything.
3700 */
3701 if (!nr_reclaimed &&
3702 (next_mz == NULL ||
3703 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3704 break;
3705 } while (!nr_reclaimed);
3706 if (next_mz)
3707 css_put(&next_mz->memcg->css);
3708 return nr_reclaimed;
3709 }
3710
3711 /**
3712 * mem_cgroup_force_empty_list - clears LRU of a group
3713 * @memcg: group to clear
3714 * @node: NUMA node
3715 * @zid: zone id
3716 * @lru: lru to to clear
3717 *
3718 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
3719 * reclaim the pages page themselves - pages are moved to the parent (or root)
3720 * group.
3721 */
3722 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3723 int node, int zid, enum lru_list lru)
3724 {
3725 struct lruvec *lruvec;
3726 unsigned long flags;
3727 struct list_head *list;
3728 struct page *busy;
3729 struct zone *zone;
3730
3731 zone = &NODE_DATA(node)->node_zones[zid];
3732 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
3733 list = &lruvec->lists[lru];
3734
3735 busy = NULL;
3736 do {
3737 struct page_cgroup *pc;
3738 struct page *page;
3739
3740 spin_lock_irqsave(&zone->lru_lock, flags);
3741 if (list_empty(list)) {
3742 spin_unlock_irqrestore(&zone->lru_lock, flags);
3743 break;
3744 }
3745 page = list_entry(list->prev, struct page, lru);
3746 if (busy == page) {
3747 list_move(&page->lru, list);
3748 busy = NULL;
3749 spin_unlock_irqrestore(&zone->lru_lock, flags);
3750 continue;
3751 }
3752 spin_unlock_irqrestore(&zone->lru_lock, flags);
3753
3754 pc = lookup_page_cgroup(page);
3755
3756 if (mem_cgroup_move_parent(page, pc, memcg)) {
3757 /* found lock contention or "pc" is obsolete. */
3758 busy = page;
3759 cond_resched();
3760 } else
3761 busy = NULL;
3762 } while (!list_empty(list));
3763 }
3764
3765 /*
3766 * make mem_cgroup's charge to be 0 if there is no task by moving
3767 * all the charges and pages to the parent.
3768 * This enables deleting this mem_cgroup.
3769 *
3770 * Caller is responsible for holding css reference on the memcg.
3771 */
3772 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
3773 {
3774 int node, zid;
3775
3776 do {
3777 /* This is for making all *used* pages to be on LRU. */
3778 lru_add_drain_all();
3779 drain_all_stock_sync(memcg);
3780 mem_cgroup_start_move(memcg);
3781 for_each_node_state(node, N_MEMORY) {
3782 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3783 enum lru_list lru;
3784 for_each_lru(lru) {
3785 mem_cgroup_force_empty_list(memcg,
3786 node, zid, lru);
3787 }
3788 }
3789 }
3790 mem_cgroup_end_move(memcg);
3791 memcg_oom_recover(memcg);
3792 cond_resched();
3793
3794 /*
3795 * This is a safety check because mem_cgroup_force_empty_list
3796 * could have raced with mem_cgroup_replace_page_cache callers
3797 * so the lru seemed empty but the page could have been added
3798 * right after the check. RES_USAGE should be safe as we always
3799 * charge before adding to the LRU.
3800 */
3801 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0);
3802 }
3803
3804 /*
3805 * Reclaims as many pages from the given memcg as possible and moves
3806 * the rest to the parent.
3807 *
3808 * Caller is responsible for holding css reference for memcg.
3809 */
3810 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3811 {
3812 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3813 struct cgroup *cgrp = memcg->css.cgroup;
3814
3815 /* returns EBUSY if there is a task or if we come here twice. */
3816 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3817 return -EBUSY;
3818
3819 /* we call try-to-free pages for make this cgroup empty */
3820 lru_add_drain_all();
3821 /* try to free all pages in this cgroup */
3822 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3823 int progress;
3824
3825 if (signal_pending(current))
3826 return -EINTR;
3827
3828 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3829 false);
3830 if (!progress) {
3831 nr_retries--;
3832 /* maybe some writeback is necessary */
3833 congestion_wait(BLK_RW_ASYNC, HZ/10);
3834 }
3835
3836 }
3837 lru_add_drain();
3838 mem_cgroup_reparent_charges(memcg);
3839
3840 return 0;
3841 }
3842
3843 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3844 {
3845 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3846 int ret;
3847
3848 if (mem_cgroup_is_root(memcg))
3849 return -EINVAL;
3850 css_get(&memcg->css);
3851 ret = mem_cgroup_force_empty(memcg);
3852 css_put(&memcg->css);
3853
3854 return ret;
3855 }
3856
3857
3858 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3859 {
3860 return mem_cgroup_from_cont(cont)->use_hierarchy;
3861 }
3862
3863 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3864 u64 val)
3865 {
3866 int retval = 0;
3867 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3868 struct cgroup *parent = cont->parent;
3869 struct mem_cgroup *parent_memcg = NULL;
3870
3871 if (parent)
3872 parent_memcg = mem_cgroup_from_cont(parent);
3873
3874 cgroup_lock();
3875
3876 if (memcg->use_hierarchy == val)
3877 goto out;
3878
3879 /*
3880 * If parent's use_hierarchy is set, we can't make any modifications
3881 * in the child subtrees. If it is unset, then the change can
3882 * occur, provided the current cgroup has no children.
3883 *
3884 * For the root cgroup, parent_mem is NULL, we allow value to be
3885 * set if there are no children.
3886 */
3887 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3888 (val == 1 || val == 0)) {
3889 if (list_empty(&cont->children))
3890 memcg->use_hierarchy = val;
3891 else
3892 retval = -EBUSY;
3893 } else
3894 retval = -EINVAL;
3895
3896 out:
3897 cgroup_unlock();
3898
3899 return retval;
3900 }
3901
3902
3903 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3904 enum mem_cgroup_stat_index idx)
3905 {
3906 struct mem_cgroup *iter;
3907 long val = 0;
3908
3909 /* Per-cpu values can be negative, use a signed accumulator */
3910 for_each_mem_cgroup_tree(iter, memcg)
3911 val += mem_cgroup_read_stat(iter, idx);
3912
3913 if (val < 0) /* race ? */
3914 val = 0;
3915 return val;
3916 }
3917
3918 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3919 {
3920 u64 val;
3921
3922 if (!mem_cgroup_is_root(memcg)) {
3923 if (!swap)
3924 return res_counter_read_u64(&memcg->res, RES_USAGE);
3925 else
3926 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3927 }
3928
3929 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3930 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3931
3932 if (swap)
3933 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
3934
3935 return val << PAGE_SHIFT;
3936 }
3937
3938 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3939 struct file *file, char __user *buf,
3940 size_t nbytes, loff_t *ppos)
3941 {
3942 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3943 char str[64];
3944 u64 val;
3945 int type, name, len;
3946
3947 type = MEMFILE_TYPE(cft->private);
3948 name = MEMFILE_ATTR(cft->private);
3949
3950 if (!do_swap_account && type == _MEMSWAP)
3951 return -EOPNOTSUPP;
3952
3953 switch (type) {
3954 case _MEM:
3955 if (name == RES_USAGE)
3956 val = mem_cgroup_usage(memcg, false);
3957 else
3958 val = res_counter_read_u64(&memcg->res, name);
3959 break;
3960 case _MEMSWAP:
3961 if (name == RES_USAGE)
3962 val = mem_cgroup_usage(memcg, true);
3963 else
3964 val = res_counter_read_u64(&memcg->memsw, name);
3965 break;
3966 default:
3967 BUG();
3968 }
3969
3970 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3971 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
3972 }
3973 /*
3974 * The user of this function is...
3975 * RES_LIMIT.
3976 */
3977 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3978 const char *buffer)
3979 {
3980 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3981 int type, name;
3982 unsigned long long val;
3983 int ret;
3984
3985 type = MEMFILE_TYPE(cft->private);
3986 name = MEMFILE_ATTR(cft->private);
3987
3988 if (!do_swap_account && type == _MEMSWAP)
3989 return -EOPNOTSUPP;
3990
3991 switch (name) {
3992 case RES_LIMIT:
3993 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3994 ret = -EINVAL;
3995 break;
3996 }
3997 /* This function does all necessary parse...reuse it */
3998 ret = res_counter_memparse_write_strategy(buffer, &val);
3999 if (ret)
4000 break;
4001 if (type == _MEM)
4002 ret = mem_cgroup_resize_limit(memcg, val);
4003 else
4004 ret = mem_cgroup_resize_memsw_limit(memcg, val);
4005 break;
4006 case RES_SOFT_LIMIT:
4007 ret = res_counter_memparse_write_strategy(buffer, &val);
4008 if (ret)
4009 break;
4010 /*
4011 * For memsw, soft limits are hard to implement in terms
4012 * of semantics, for now, we support soft limits for
4013 * control without swap
4014 */
4015 if (type == _MEM)
4016 ret = res_counter_set_soft_limit(&memcg->res, val);
4017 else
4018 ret = -EINVAL;
4019 break;
4020 default:
4021 ret = -EINVAL; /* should be BUG() ? */
4022 break;
4023 }
4024 return ret;
4025 }
4026
4027 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4028 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4029 {
4030 struct cgroup *cgroup;
4031 unsigned long long min_limit, min_memsw_limit, tmp;
4032
4033 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4034 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4035 cgroup = memcg->css.cgroup;
4036 if (!memcg->use_hierarchy)
4037 goto out;
4038
4039 while (cgroup->parent) {
4040 cgroup = cgroup->parent;
4041 memcg = mem_cgroup_from_cont(cgroup);
4042 if (!memcg->use_hierarchy)
4043 break;
4044 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4045 min_limit = min(min_limit, tmp);
4046 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4047 min_memsw_limit = min(min_memsw_limit, tmp);
4048 }
4049 out:
4050 *mem_limit = min_limit;
4051 *memsw_limit = min_memsw_limit;
4052 }
4053
4054 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4055 {
4056 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4057 int type, name;
4058
4059 type = MEMFILE_TYPE(event);
4060 name = MEMFILE_ATTR(event);
4061
4062 if (!do_swap_account && type == _MEMSWAP)
4063 return -EOPNOTSUPP;
4064
4065 switch (name) {
4066 case RES_MAX_USAGE:
4067 if (type == _MEM)
4068 res_counter_reset_max(&memcg->res);
4069 else
4070 res_counter_reset_max(&memcg->memsw);
4071 break;
4072 case RES_FAILCNT:
4073 if (type == _MEM)
4074 res_counter_reset_failcnt(&memcg->res);
4075 else
4076 res_counter_reset_failcnt(&memcg->memsw);
4077 break;
4078 }
4079
4080 return 0;
4081 }
4082
4083 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4084 struct cftype *cft)
4085 {
4086 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4087 }
4088
4089 #ifdef CONFIG_MMU
4090 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4091 struct cftype *cft, u64 val)
4092 {
4093 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4094
4095 if (val >= (1 << NR_MOVE_TYPE))
4096 return -EINVAL;
4097 /*
4098 * We check this value several times in both in can_attach() and
4099 * attach(), so we need cgroup lock to prevent this value from being
4100 * inconsistent.
4101 */
4102 cgroup_lock();
4103 memcg->move_charge_at_immigrate = val;
4104 cgroup_unlock();
4105
4106 return 0;
4107 }
4108 #else
4109 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4110 struct cftype *cft, u64 val)
4111 {
4112 return -ENOSYS;
4113 }
4114 #endif
4115
4116 #ifdef CONFIG_NUMA
4117 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4118 struct seq_file *m)
4119 {
4120 int nid;
4121 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4122 unsigned long node_nr;
4123 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4124
4125 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4126 seq_printf(m, "total=%lu", total_nr);
4127 for_each_node_state(nid, N_MEMORY) {
4128 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4129 seq_printf(m, " N%d=%lu", nid, node_nr);
4130 }
4131 seq_putc(m, '\n');
4132
4133 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4134 seq_printf(m, "file=%lu", file_nr);
4135 for_each_node_state(nid, N_MEMORY) {
4136 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4137 LRU_ALL_FILE);
4138 seq_printf(m, " N%d=%lu", nid, node_nr);
4139 }
4140 seq_putc(m, '\n');
4141
4142 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4143 seq_printf(m, "anon=%lu", anon_nr);
4144 for_each_node_state(nid, N_MEMORY) {
4145 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4146 LRU_ALL_ANON);
4147 seq_printf(m, " N%d=%lu", nid, node_nr);
4148 }
4149 seq_putc(m, '\n');
4150
4151 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4152 seq_printf(m, "unevictable=%lu", unevictable_nr);
4153 for_each_node_state(nid, N_MEMORY) {
4154 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4155 BIT(LRU_UNEVICTABLE));
4156 seq_printf(m, " N%d=%lu", nid, node_nr);
4157 }
4158 seq_putc(m, '\n');
4159 return 0;
4160 }
4161 #endif /* CONFIG_NUMA */
4162
4163 static const char * const mem_cgroup_lru_names[] = {
4164 "inactive_anon",
4165 "active_anon",
4166 "inactive_file",
4167 "active_file",
4168 "unevictable",
4169 };
4170
4171 static inline void mem_cgroup_lru_names_not_uptodate(void)
4172 {
4173 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4174 }
4175
4176 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
4177 struct seq_file *m)
4178 {
4179 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4180 struct mem_cgroup *mi;
4181 unsigned int i;
4182
4183 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4184 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4185 continue;
4186 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4187 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4188 }
4189
4190 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4191 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4192 mem_cgroup_read_events(memcg, i));
4193
4194 for (i = 0; i < NR_LRU_LISTS; i++)
4195 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4196 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4197
4198 /* Hierarchical information */
4199 {
4200 unsigned long long limit, memsw_limit;
4201 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4202 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4203 if (do_swap_account)
4204 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4205 memsw_limit);
4206 }
4207
4208 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4209 long long val = 0;
4210
4211 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4212 continue;
4213 for_each_mem_cgroup_tree(mi, memcg)
4214 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4215 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4216 }
4217
4218 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4219 unsigned long long val = 0;
4220
4221 for_each_mem_cgroup_tree(mi, memcg)
4222 val += mem_cgroup_read_events(mi, i);
4223 seq_printf(m, "total_%s %llu\n",
4224 mem_cgroup_events_names[i], val);
4225 }
4226
4227 for (i = 0; i < NR_LRU_LISTS; i++) {
4228 unsigned long long val = 0;
4229
4230 for_each_mem_cgroup_tree(mi, memcg)
4231 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4232 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4233 }
4234
4235 #ifdef CONFIG_DEBUG_VM
4236 {
4237 int nid, zid;
4238 struct mem_cgroup_per_zone *mz;
4239 struct zone_reclaim_stat *rstat;
4240 unsigned long recent_rotated[2] = {0, 0};
4241 unsigned long recent_scanned[2] = {0, 0};
4242
4243 for_each_online_node(nid)
4244 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4245 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4246 rstat = &mz->lruvec.reclaim_stat;
4247
4248 recent_rotated[0] += rstat->recent_rotated[0];
4249 recent_rotated[1] += rstat->recent_rotated[1];
4250 recent_scanned[0] += rstat->recent_scanned[0];
4251 recent_scanned[1] += rstat->recent_scanned[1];
4252 }
4253 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4254 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4255 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4256 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
4257 }
4258 #endif
4259
4260 return 0;
4261 }
4262
4263 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4264 {
4265 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4266
4267 return mem_cgroup_swappiness(memcg);
4268 }
4269
4270 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4271 u64 val)
4272 {
4273 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4274 struct mem_cgroup *parent;
4275
4276 if (val > 100)
4277 return -EINVAL;
4278
4279 if (cgrp->parent == NULL)
4280 return -EINVAL;
4281
4282 parent = mem_cgroup_from_cont(cgrp->parent);
4283
4284 cgroup_lock();
4285
4286 /* If under hierarchy, only empty-root can set this value */
4287 if ((parent->use_hierarchy) ||
4288 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4289 cgroup_unlock();
4290 return -EINVAL;
4291 }
4292
4293 memcg->swappiness = val;
4294
4295 cgroup_unlock();
4296
4297 return 0;
4298 }
4299
4300 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4301 {
4302 struct mem_cgroup_threshold_ary *t;
4303 u64 usage;
4304 int i;
4305
4306 rcu_read_lock();
4307 if (!swap)
4308 t = rcu_dereference(memcg->thresholds.primary);
4309 else
4310 t = rcu_dereference(memcg->memsw_thresholds.primary);
4311
4312 if (!t)
4313 goto unlock;
4314
4315 usage = mem_cgroup_usage(memcg, swap);
4316
4317 /*
4318 * current_threshold points to threshold just below or equal to usage.
4319 * If it's not true, a threshold was crossed after last
4320 * call of __mem_cgroup_threshold().
4321 */
4322 i = t->current_threshold;
4323
4324 /*
4325 * Iterate backward over array of thresholds starting from
4326 * current_threshold and check if a threshold is crossed.
4327 * If none of thresholds below usage is crossed, we read
4328 * only one element of the array here.
4329 */
4330 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4331 eventfd_signal(t->entries[i].eventfd, 1);
4332
4333 /* i = current_threshold + 1 */
4334 i++;
4335
4336 /*
4337 * Iterate forward over array of thresholds starting from
4338 * current_threshold+1 and check if a threshold is crossed.
4339 * If none of thresholds above usage is crossed, we read
4340 * only one element of the array here.
4341 */
4342 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4343 eventfd_signal(t->entries[i].eventfd, 1);
4344
4345 /* Update current_threshold */
4346 t->current_threshold = i - 1;
4347 unlock:
4348 rcu_read_unlock();
4349 }
4350
4351 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4352 {
4353 while (memcg) {
4354 __mem_cgroup_threshold(memcg, false);
4355 if (do_swap_account)
4356 __mem_cgroup_threshold(memcg, true);
4357
4358 memcg = parent_mem_cgroup(memcg);
4359 }
4360 }
4361
4362 static int compare_thresholds(const void *a, const void *b)
4363 {
4364 const struct mem_cgroup_threshold *_a = a;
4365 const struct mem_cgroup_threshold *_b = b;
4366
4367 return _a->threshold - _b->threshold;
4368 }
4369
4370 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4371 {
4372 struct mem_cgroup_eventfd_list *ev;
4373
4374 list_for_each_entry(ev, &memcg->oom_notify, list)
4375 eventfd_signal(ev->eventfd, 1);
4376 return 0;
4377 }
4378
4379 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4380 {
4381 struct mem_cgroup *iter;
4382
4383 for_each_mem_cgroup_tree(iter, memcg)
4384 mem_cgroup_oom_notify_cb(iter);
4385 }
4386
4387 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4388 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4389 {
4390 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4391 struct mem_cgroup_thresholds *thresholds;
4392 struct mem_cgroup_threshold_ary *new;
4393 int type = MEMFILE_TYPE(cft->private);
4394 u64 threshold, usage;
4395 int i, size, ret;
4396
4397 ret = res_counter_memparse_write_strategy(args, &threshold);
4398 if (ret)
4399 return ret;
4400
4401 mutex_lock(&memcg->thresholds_lock);
4402
4403 if (type == _MEM)
4404 thresholds = &memcg->thresholds;
4405 else if (type == _MEMSWAP)
4406 thresholds = &memcg->memsw_thresholds;
4407 else
4408 BUG();
4409
4410 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4411
4412 /* Check if a threshold crossed before adding a new one */
4413 if (thresholds->primary)
4414 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4415
4416 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4417
4418 /* Allocate memory for new array of thresholds */
4419 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4420 GFP_KERNEL);
4421 if (!new) {
4422 ret = -ENOMEM;
4423 goto unlock;
4424 }
4425 new->size = size;
4426
4427 /* Copy thresholds (if any) to new array */
4428 if (thresholds->primary) {
4429 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4430 sizeof(struct mem_cgroup_threshold));
4431 }
4432
4433 /* Add new threshold */
4434 new->entries[size - 1].eventfd = eventfd;
4435 new->entries[size - 1].threshold = threshold;
4436
4437 /* Sort thresholds. Registering of new threshold isn't time-critical */
4438 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4439 compare_thresholds, NULL);
4440
4441 /* Find current threshold */
4442 new->current_threshold = -1;
4443 for (i = 0; i < size; i++) {
4444 if (new->entries[i].threshold <= usage) {
4445 /*
4446 * new->current_threshold will not be used until
4447 * rcu_assign_pointer(), so it's safe to increment
4448 * it here.
4449 */
4450 ++new->current_threshold;
4451 } else
4452 break;
4453 }
4454
4455 /* Free old spare buffer and save old primary buffer as spare */
4456 kfree(thresholds->spare);
4457 thresholds->spare = thresholds->primary;
4458
4459 rcu_assign_pointer(thresholds->primary, new);
4460
4461 /* To be sure that nobody uses thresholds */
4462 synchronize_rcu();
4463
4464 unlock:
4465 mutex_unlock(&memcg->thresholds_lock);
4466
4467 return ret;
4468 }
4469
4470 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4471 struct cftype *cft, struct eventfd_ctx *eventfd)
4472 {
4473 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4474 struct mem_cgroup_thresholds *thresholds;
4475 struct mem_cgroup_threshold_ary *new;
4476 int type = MEMFILE_TYPE(cft->private);
4477 u64 usage;
4478 int i, j, size;
4479
4480 mutex_lock(&memcg->thresholds_lock);
4481 if (type == _MEM)
4482 thresholds = &memcg->thresholds;
4483 else if (type == _MEMSWAP)
4484 thresholds = &memcg->memsw_thresholds;
4485 else
4486 BUG();
4487
4488 if (!thresholds->primary)
4489 goto unlock;
4490
4491 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4492
4493 /* Check if a threshold crossed before removing */
4494 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4495
4496 /* Calculate new number of threshold */
4497 size = 0;
4498 for (i = 0; i < thresholds->primary->size; i++) {
4499 if (thresholds->primary->entries[i].eventfd != eventfd)
4500 size++;
4501 }
4502
4503 new = thresholds->spare;
4504
4505 /* Set thresholds array to NULL if we don't have thresholds */
4506 if (!size) {
4507 kfree(new);
4508 new = NULL;
4509 goto swap_buffers;
4510 }
4511
4512 new->size = size;
4513
4514 /* Copy thresholds and find current threshold */
4515 new->current_threshold = -1;
4516 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4517 if (thresholds->primary->entries[i].eventfd == eventfd)
4518 continue;
4519
4520 new->entries[j] = thresholds->primary->entries[i];
4521 if (new->entries[j].threshold <= usage) {
4522 /*
4523 * new->current_threshold will not be used
4524 * until rcu_assign_pointer(), so it's safe to increment
4525 * it here.
4526 */
4527 ++new->current_threshold;
4528 }
4529 j++;
4530 }
4531
4532 swap_buffers:
4533 /* Swap primary and spare array */
4534 thresholds->spare = thresholds->primary;
4535 /* If all events are unregistered, free the spare array */
4536 if (!new) {
4537 kfree(thresholds->spare);
4538 thresholds->spare = NULL;
4539 }
4540
4541 rcu_assign_pointer(thresholds->primary, new);
4542
4543 /* To be sure that nobody uses thresholds */
4544 synchronize_rcu();
4545 unlock:
4546 mutex_unlock(&memcg->thresholds_lock);
4547 }
4548
4549 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4550 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4551 {
4552 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4553 struct mem_cgroup_eventfd_list *event;
4554 int type = MEMFILE_TYPE(cft->private);
4555
4556 BUG_ON(type != _OOM_TYPE);
4557 event = kmalloc(sizeof(*event), GFP_KERNEL);
4558 if (!event)
4559 return -ENOMEM;
4560
4561 spin_lock(&memcg_oom_lock);
4562
4563 event->eventfd = eventfd;
4564 list_add(&event->list, &memcg->oom_notify);
4565
4566 /* already in OOM ? */
4567 if (atomic_read(&memcg->under_oom))
4568 eventfd_signal(eventfd, 1);
4569 spin_unlock(&memcg_oom_lock);
4570
4571 return 0;
4572 }
4573
4574 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4575 struct cftype *cft, struct eventfd_ctx *eventfd)
4576 {
4577 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4578 struct mem_cgroup_eventfd_list *ev, *tmp;
4579 int type = MEMFILE_TYPE(cft->private);
4580
4581 BUG_ON(type != _OOM_TYPE);
4582
4583 spin_lock(&memcg_oom_lock);
4584
4585 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4586 if (ev->eventfd == eventfd) {
4587 list_del(&ev->list);
4588 kfree(ev);
4589 }
4590 }
4591
4592 spin_unlock(&memcg_oom_lock);
4593 }
4594
4595 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4596 struct cftype *cft, struct cgroup_map_cb *cb)
4597 {
4598 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4599
4600 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4601
4602 if (atomic_read(&memcg->under_oom))
4603 cb->fill(cb, "under_oom", 1);
4604 else
4605 cb->fill(cb, "under_oom", 0);
4606 return 0;
4607 }
4608
4609 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4610 struct cftype *cft, u64 val)
4611 {
4612 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4613 struct mem_cgroup *parent;
4614
4615 /* cannot set to root cgroup and only 0 and 1 are allowed */
4616 if (!cgrp->parent || !((val == 0) || (val == 1)))
4617 return -EINVAL;
4618
4619 parent = mem_cgroup_from_cont(cgrp->parent);
4620
4621 cgroup_lock();
4622 /* oom-kill-disable is a flag for subhierarchy. */
4623 if ((parent->use_hierarchy) ||
4624 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4625 cgroup_unlock();
4626 return -EINVAL;
4627 }
4628 memcg->oom_kill_disable = val;
4629 if (!val)
4630 memcg_oom_recover(memcg);
4631 cgroup_unlock();
4632 return 0;
4633 }
4634
4635 #ifdef CONFIG_MEMCG_KMEM
4636 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4637 {
4638 return mem_cgroup_sockets_init(memcg, ss);
4639 };
4640
4641 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4642 {
4643 mem_cgroup_sockets_destroy(memcg);
4644 }
4645 #else
4646 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4647 {
4648 return 0;
4649 }
4650
4651 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4652 {
4653 }
4654 #endif
4655
4656 static struct cftype mem_cgroup_files[] = {
4657 {
4658 .name = "usage_in_bytes",
4659 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4660 .read = mem_cgroup_read,
4661 .register_event = mem_cgroup_usage_register_event,
4662 .unregister_event = mem_cgroup_usage_unregister_event,
4663 },
4664 {
4665 .name = "max_usage_in_bytes",
4666 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4667 .trigger = mem_cgroup_reset,
4668 .read = mem_cgroup_read,
4669 },
4670 {
4671 .name = "limit_in_bytes",
4672 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4673 .write_string = mem_cgroup_write,
4674 .read = mem_cgroup_read,
4675 },
4676 {
4677 .name = "soft_limit_in_bytes",
4678 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4679 .write_string = mem_cgroup_write,
4680 .read = mem_cgroup_read,
4681 },
4682 {
4683 .name = "failcnt",
4684 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4685 .trigger = mem_cgroup_reset,
4686 .read = mem_cgroup_read,
4687 },
4688 {
4689 .name = "stat",
4690 .read_seq_string = memcg_stat_show,
4691 },
4692 {
4693 .name = "force_empty",
4694 .trigger = mem_cgroup_force_empty_write,
4695 },
4696 {
4697 .name = "use_hierarchy",
4698 .write_u64 = mem_cgroup_hierarchy_write,
4699 .read_u64 = mem_cgroup_hierarchy_read,
4700 },
4701 {
4702 .name = "swappiness",
4703 .read_u64 = mem_cgroup_swappiness_read,
4704 .write_u64 = mem_cgroup_swappiness_write,
4705 },
4706 {
4707 .name = "move_charge_at_immigrate",
4708 .read_u64 = mem_cgroup_move_charge_read,
4709 .write_u64 = mem_cgroup_move_charge_write,
4710 },
4711 {
4712 .name = "oom_control",
4713 .read_map = mem_cgroup_oom_control_read,
4714 .write_u64 = mem_cgroup_oom_control_write,
4715 .register_event = mem_cgroup_oom_register_event,
4716 .unregister_event = mem_cgroup_oom_unregister_event,
4717 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4718 },
4719 #ifdef CONFIG_NUMA
4720 {
4721 .name = "numa_stat",
4722 .read_seq_string = memcg_numa_stat_show,
4723 },
4724 #endif
4725 #ifdef CONFIG_MEMCG_SWAP
4726 {
4727 .name = "memsw.usage_in_bytes",
4728 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4729 .read = mem_cgroup_read,
4730 .register_event = mem_cgroup_usage_register_event,
4731 .unregister_event = mem_cgroup_usage_unregister_event,
4732 },
4733 {
4734 .name = "memsw.max_usage_in_bytes",
4735 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4736 .trigger = mem_cgroup_reset,
4737 .read = mem_cgroup_read,
4738 },
4739 {
4740 .name = "memsw.limit_in_bytes",
4741 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4742 .write_string = mem_cgroup_write,
4743 .read = mem_cgroup_read,
4744 },
4745 {
4746 .name = "memsw.failcnt",
4747 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4748 .trigger = mem_cgroup_reset,
4749 .read = mem_cgroup_read,
4750 },
4751 #endif
4752 { }, /* terminate */
4753 };
4754
4755 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4756 {
4757 struct mem_cgroup_per_node *pn;
4758 struct mem_cgroup_per_zone *mz;
4759 int zone, tmp = node;
4760 /*
4761 * This routine is called against possible nodes.
4762 * But it's BUG to call kmalloc() against offline node.
4763 *
4764 * TODO: this routine can waste much memory for nodes which will
4765 * never be onlined. It's better to use memory hotplug callback
4766 * function.
4767 */
4768 if (!node_state(node, N_NORMAL_MEMORY))
4769 tmp = -1;
4770 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4771 if (!pn)
4772 return 1;
4773
4774 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4775 mz = &pn->zoneinfo[zone];
4776 lruvec_init(&mz->lruvec);
4777 mz->usage_in_excess = 0;
4778 mz->on_tree = false;
4779 mz->memcg = memcg;
4780 }
4781 memcg->info.nodeinfo[node] = pn;
4782 return 0;
4783 }
4784
4785 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4786 {
4787 kfree(memcg->info.nodeinfo[node]);
4788 }
4789
4790 static struct mem_cgroup *mem_cgroup_alloc(void)
4791 {
4792 struct mem_cgroup *memcg;
4793 int size = sizeof(struct mem_cgroup);
4794
4795 /* Can be very big if MAX_NUMNODES is very big */
4796 if (size < PAGE_SIZE)
4797 memcg = kzalloc(size, GFP_KERNEL);
4798 else
4799 memcg = vzalloc(size);
4800
4801 if (!memcg)
4802 return NULL;
4803
4804 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4805 if (!memcg->stat)
4806 goto out_free;
4807 spin_lock_init(&memcg->pcp_counter_lock);
4808 return memcg;
4809
4810 out_free:
4811 if (size < PAGE_SIZE)
4812 kfree(memcg);
4813 else
4814 vfree(memcg);
4815 return NULL;
4816 }
4817
4818 /*
4819 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
4820 * but in process context. The work_freeing structure is overlaid
4821 * on the rcu_freeing structure, which itself is overlaid on memsw.
4822 */
4823 static void free_work(struct work_struct *work)
4824 {
4825 struct mem_cgroup *memcg;
4826 int size = sizeof(struct mem_cgroup);
4827
4828 memcg = container_of(work, struct mem_cgroup, work_freeing);
4829 /*
4830 * We need to make sure that (at least for now), the jump label
4831 * destruction code runs outside of the cgroup lock. This is because
4832 * get_online_cpus(), which is called from the static_branch update,
4833 * can't be called inside the cgroup_lock. cpusets are the ones
4834 * enforcing this dependency, so if they ever change, we might as well.
4835 *
4836 * schedule_work() will guarantee this happens. Be careful if you need
4837 * to move this code around, and make sure it is outside
4838 * the cgroup_lock.
4839 */
4840 disarm_sock_keys(memcg);
4841 if (size < PAGE_SIZE)
4842 kfree(memcg);
4843 else
4844 vfree(memcg);
4845 }
4846
4847 static void free_rcu(struct rcu_head *rcu_head)
4848 {
4849 struct mem_cgroup *memcg;
4850
4851 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4852 INIT_WORK(&memcg->work_freeing, free_work);
4853 schedule_work(&memcg->work_freeing);
4854 }
4855
4856 /*
4857 * At destroying mem_cgroup, references from swap_cgroup can remain.
4858 * (scanning all at force_empty is too costly...)
4859 *
4860 * Instead of clearing all references at force_empty, we remember
4861 * the number of reference from swap_cgroup and free mem_cgroup when
4862 * it goes down to 0.
4863 *
4864 * Removal of cgroup itself succeeds regardless of refs from swap.
4865 */
4866
4867 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4868 {
4869 int node;
4870
4871 mem_cgroup_remove_from_trees(memcg);
4872 free_css_id(&mem_cgroup_subsys, &memcg->css);
4873
4874 for_each_node(node)
4875 free_mem_cgroup_per_zone_info(memcg, node);
4876
4877 free_percpu(memcg->stat);
4878 call_rcu(&memcg->rcu_freeing, free_rcu);
4879 }
4880
4881 static void mem_cgroup_get(struct mem_cgroup *memcg)
4882 {
4883 atomic_inc(&memcg->refcnt);
4884 }
4885
4886 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4887 {
4888 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4889 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4890 __mem_cgroup_free(memcg);
4891 if (parent)
4892 mem_cgroup_put(parent);
4893 }
4894 }
4895
4896 static void mem_cgroup_put(struct mem_cgroup *memcg)
4897 {
4898 __mem_cgroup_put(memcg, 1);
4899 }
4900
4901 /*
4902 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4903 */
4904 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4905 {
4906 if (!memcg->res.parent)
4907 return NULL;
4908 return mem_cgroup_from_res_counter(memcg->res.parent, res);
4909 }
4910 EXPORT_SYMBOL(parent_mem_cgroup);
4911
4912 #ifdef CONFIG_MEMCG_SWAP
4913 static void __init enable_swap_cgroup(void)
4914 {
4915 if (!mem_cgroup_disabled() && really_do_swap_account)
4916 do_swap_account = 1;
4917 }
4918 #else
4919 static void __init enable_swap_cgroup(void)
4920 {
4921 }
4922 #endif
4923
4924 static int mem_cgroup_soft_limit_tree_init(void)
4925 {
4926 struct mem_cgroup_tree_per_node *rtpn;
4927 struct mem_cgroup_tree_per_zone *rtpz;
4928 int tmp, node, zone;
4929
4930 for_each_node(node) {
4931 tmp = node;
4932 if (!node_state(node, N_NORMAL_MEMORY))
4933 tmp = -1;
4934 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4935 if (!rtpn)
4936 goto err_cleanup;
4937
4938 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4939
4940 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4941 rtpz = &rtpn->rb_tree_per_zone[zone];
4942 rtpz->rb_root = RB_ROOT;
4943 spin_lock_init(&rtpz->lock);
4944 }
4945 }
4946 return 0;
4947
4948 err_cleanup:
4949 for_each_node(node) {
4950 if (!soft_limit_tree.rb_tree_per_node[node])
4951 break;
4952 kfree(soft_limit_tree.rb_tree_per_node[node]);
4953 soft_limit_tree.rb_tree_per_node[node] = NULL;
4954 }
4955 return 1;
4956
4957 }
4958
4959 static struct cgroup_subsys_state * __ref
4960 mem_cgroup_css_alloc(struct cgroup *cont)
4961 {
4962 struct mem_cgroup *memcg, *parent;
4963 long error = -ENOMEM;
4964 int node;
4965
4966 memcg = mem_cgroup_alloc();
4967 if (!memcg)
4968 return ERR_PTR(error);
4969
4970 for_each_node(node)
4971 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4972 goto free_out;
4973
4974 /* root ? */
4975 if (cont->parent == NULL) {
4976 int cpu;
4977 enable_swap_cgroup();
4978 parent = NULL;
4979 if (mem_cgroup_soft_limit_tree_init())
4980 goto free_out;
4981 root_mem_cgroup = memcg;
4982 for_each_possible_cpu(cpu) {
4983 struct memcg_stock_pcp *stock =
4984 &per_cpu(memcg_stock, cpu);
4985 INIT_WORK(&stock->work, drain_local_stock);
4986 }
4987 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4988 } else {
4989 parent = mem_cgroup_from_cont(cont->parent);
4990 memcg->use_hierarchy = parent->use_hierarchy;
4991 memcg->oom_kill_disable = parent->oom_kill_disable;
4992 }
4993
4994 if (parent && parent->use_hierarchy) {
4995 res_counter_init(&memcg->res, &parent->res);
4996 res_counter_init(&memcg->memsw, &parent->memsw);
4997 /*
4998 * We increment refcnt of the parent to ensure that we can
4999 * safely access it on res_counter_charge/uncharge.
5000 * This refcnt will be decremented when freeing this
5001 * mem_cgroup(see mem_cgroup_put).
5002 */
5003 mem_cgroup_get(parent);
5004 } else {
5005 res_counter_init(&memcg->res, NULL);
5006 res_counter_init(&memcg->memsw, NULL);
5007 /*
5008 * Deeper hierachy with use_hierarchy == false doesn't make
5009 * much sense so let cgroup subsystem know about this
5010 * unfortunate state in our controller.
5011 */
5012 if (parent && parent != root_mem_cgroup)
5013 mem_cgroup_subsys.broken_hierarchy = true;
5014 }
5015 memcg->last_scanned_node = MAX_NUMNODES;
5016 INIT_LIST_HEAD(&memcg->oom_notify);
5017
5018 if (parent)
5019 memcg->swappiness = mem_cgroup_swappiness(parent);
5020 atomic_set(&memcg->refcnt, 1);
5021 memcg->move_charge_at_immigrate = 0;
5022 mutex_init(&memcg->thresholds_lock);
5023 spin_lock_init(&memcg->move_lock);
5024
5025 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
5026 if (error) {
5027 /*
5028 * We call put now because our (and parent's) refcnts
5029 * are already in place. mem_cgroup_put() will internally
5030 * call __mem_cgroup_free, so return directly
5031 */
5032 mem_cgroup_put(memcg);
5033 return ERR_PTR(error);
5034 }
5035 return &memcg->css;
5036 free_out:
5037 __mem_cgroup_free(memcg);
5038 return ERR_PTR(error);
5039 }
5040
5041 static void mem_cgroup_css_offline(struct cgroup *cont)
5042 {
5043 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5044
5045 mem_cgroup_reparent_charges(memcg);
5046 }
5047
5048 static void mem_cgroup_css_free(struct cgroup *cont)
5049 {
5050 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5051
5052 kmem_cgroup_destroy(memcg);
5053
5054 mem_cgroup_put(memcg);
5055 }
5056
5057 #ifdef CONFIG_MMU
5058 /* Handlers for move charge at task migration. */
5059 #define PRECHARGE_COUNT_AT_ONCE 256
5060 static int mem_cgroup_do_precharge(unsigned long count)
5061 {
5062 int ret = 0;
5063 int batch_count = PRECHARGE_COUNT_AT_ONCE;
5064 struct mem_cgroup *memcg = mc.to;
5065
5066 if (mem_cgroup_is_root(memcg)) {
5067 mc.precharge += count;
5068 /* we don't need css_get for root */
5069 return ret;
5070 }
5071 /* try to charge at once */
5072 if (count > 1) {
5073 struct res_counter *dummy;
5074 /*
5075 * "memcg" cannot be under rmdir() because we've already checked
5076 * by cgroup_lock_live_cgroup() that it is not removed and we
5077 * are still under the same cgroup_mutex. So we can postpone
5078 * css_get().
5079 */
5080 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5081 goto one_by_one;
5082 if (do_swap_account && res_counter_charge(&memcg->memsw,
5083 PAGE_SIZE * count, &dummy)) {
5084 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5085 goto one_by_one;
5086 }
5087 mc.precharge += count;
5088 return ret;
5089 }
5090 one_by_one:
5091 /* fall back to one by one charge */
5092 while (count--) {
5093 if (signal_pending(current)) {
5094 ret = -EINTR;
5095 break;
5096 }
5097 if (!batch_count--) {
5098 batch_count = PRECHARGE_COUNT_AT_ONCE;
5099 cond_resched();
5100 }
5101 ret = __mem_cgroup_try_charge(NULL,
5102 GFP_KERNEL, 1, &memcg, false);
5103 if (ret)
5104 /* mem_cgroup_clear_mc() will do uncharge later */
5105 return ret;
5106 mc.precharge++;
5107 }
5108 return ret;
5109 }
5110
5111 /**
5112 * get_mctgt_type - get target type of moving charge
5113 * @vma: the vma the pte to be checked belongs
5114 * @addr: the address corresponding to the pte to be checked
5115 * @ptent: the pte to be checked
5116 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5117 *
5118 * Returns
5119 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5120 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5121 * move charge. if @target is not NULL, the page is stored in target->page
5122 * with extra refcnt got(Callers should handle it).
5123 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5124 * target for charge migration. if @target is not NULL, the entry is stored
5125 * in target->ent.
5126 *
5127 * Called with pte lock held.
5128 */
5129 union mc_target {
5130 struct page *page;
5131 swp_entry_t ent;
5132 };
5133
5134 enum mc_target_type {
5135 MC_TARGET_NONE = 0,
5136 MC_TARGET_PAGE,
5137 MC_TARGET_SWAP,
5138 };
5139
5140 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5141 unsigned long addr, pte_t ptent)
5142 {
5143 struct page *page = vm_normal_page(vma, addr, ptent);
5144
5145 if (!page || !page_mapped(page))
5146 return NULL;
5147 if (PageAnon(page)) {
5148 /* we don't move shared anon */
5149 if (!move_anon())
5150 return NULL;
5151 } else if (!move_file())
5152 /* we ignore mapcount for file pages */
5153 return NULL;
5154 if (!get_page_unless_zero(page))
5155 return NULL;
5156
5157 return page;
5158 }
5159
5160 #ifdef CONFIG_SWAP
5161 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5162 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5163 {
5164 struct page *page = NULL;
5165 swp_entry_t ent = pte_to_swp_entry(ptent);
5166
5167 if (!move_anon() || non_swap_entry(ent))
5168 return NULL;
5169 /*
5170 * Because lookup_swap_cache() updates some statistics counter,
5171 * we call find_get_page() with swapper_space directly.
5172 */
5173 page = find_get_page(&swapper_space, ent.val);
5174 if (do_swap_account)
5175 entry->val = ent.val;
5176
5177 return page;
5178 }
5179 #else
5180 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5181 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5182 {
5183 return NULL;
5184 }
5185 #endif
5186
5187 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5188 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5189 {
5190 struct page *page = NULL;
5191 struct address_space *mapping;
5192 pgoff_t pgoff;
5193
5194 if (!vma->vm_file) /* anonymous vma */
5195 return NULL;
5196 if (!move_file())
5197 return NULL;
5198
5199 mapping = vma->vm_file->f_mapping;
5200 if (pte_none(ptent))
5201 pgoff = linear_page_index(vma, addr);
5202 else /* pte_file(ptent) is true */
5203 pgoff = pte_to_pgoff(ptent);
5204
5205 /* page is moved even if it's not RSS of this task(page-faulted). */
5206 page = find_get_page(mapping, pgoff);
5207
5208 #ifdef CONFIG_SWAP
5209 /* shmem/tmpfs may report page out on swap: account for that too. */
5210 if (radix_tree_exceptional_entry(page)) {
5211 swp_entry_t swap = radix_to_swp_entry(page);
5212 if (do_swap_account)
5213 *entry = swap;
5214 page = find_get_page(&swapper_space, swap.val);
5215 }
5216 #endif
5217 return page;
5218 }
5219
5220 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5221 unsigned long addr, pte_t ptent, union mc_target *target)
5222 {
5223 struct page *page = NULL;
5224 struct page_cgroup *pc;
5225 enum mc_target_type ret = MC_TARGET_NONE;
5226 swp_entry_t ent = { .val = 0 };
5227
5228 if (pte_present(ptent))
5229 page = mc_handle_present_pte(vma, addr, ptent);
5230 else if (is_swap_pte(ptent))
5231 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5232 else if (pte_none(ptent) || pte_file(ptent))
5233 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5234
5235 if (!page && !ent.val)
5236 return ret;
5237 if (page) {
5238 pc = lookup_page_cgroup(page);
5239 /*
5240 * Do only loose check w/o page_cgroup lock.
5241 * mem_cgroup_move_account() checks the pc is valid or not under
5242 * the lock.
5243 */
5244 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5245 ret = MC_TARGET_PAGE;
5246 if (target)
5247 target->page = page;
5248 }
5249 if (!ret || !target)
5250 put_page(page);
5251 }
5252 /* There is a swap entry and a page doesn't exist or isn't charged */
5253 if (ent.val && !ret &&
5254 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5255 ret = MC_TARGET_SWAP;
5256 if (target)
5257 target->ent = ent;
5258 }
5259 return ret;
5260 }
5261
5262 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5263 /*
5264 * We don't consider swapping or file mapped pages because THP does not
5265 * support them for now.
5266 * Caller should make sure that pmd_trans_huge(pmd) is true.
5267 */
5268 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5269 unsigned long addr, pmd_t pmd, union mc_target *target)
5270 {
5271 struct page *page = NULL;
5272 struct page_cgroup *pc;
5273 enum mc_target_type ret = MC_TARGET_NONE;
5274
5275 page = pmd_page(pmd);
5276 VM_BUG_ON(!page || !PageHead(page));
5277 if (!move_anon())
5278 return ret;
5279 pc = lookup_page_cgroup(page);
5280 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5281 ret = MC_TARGET_PAGE;
5282 if (target) {
5283 get_page(page);
5284 target->page = page;
5285 }
5286 }
5287 return ret;
5288 }
5289 #else
5290 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5291 unsigned long addr, pmd_t pmd, union mc_target *target)
5292 {
5293 return MC_TARGET_NONE;
5294 }
5295 #endif
5296
5297 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5298 unsigned long addr, unsigned long end,
5299 struct mm_walk *walk)
5300 {
5301 struct vm_area_struct *vma = walk->private;
5302 pte_t *pte;
5303 spinlock_t *ptl;
5304
5305 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5306 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5307 mc.precharge += HPAGE_PMD_NR;
5308 spin_unlock(&vma->vm_mm->page_table_lock);
5309 return 0;
5310 }
5311
5312 if (pmd_trans_unstable(pmd))
5313 return 0;
5314 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5315 for (; addr != end; pte++, addr += PAGE_SIZE)
5316 if (get_mctgt_type(vma, addr, *pte, NULL))
5317 mc.precharge++; /* increment precharge temporarily */
5318 pte_unmap_unlock(pte - 1, ptl);
5319 cond_resched();
5320
5321 return 0;
5322 }
5323
5324 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5325 {
5326 unsigned long precharge;
5327 struct vm_area_struct *vma;
5328
5329 down_read(&mm->mmap_sem);
5330 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5331 struct mm_walk mem_cgroup_count_precharge_walk = {
5332 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5333 .mm = mm,
5334 .private = vma,
5335 };
5336 if (is_vm_hugetlb_page(vma))
5337 continue;
5338 walk_page_range(vma->vm_start, vma->vm_end,
5339 &mem_cgroup_count_precharge_walk);
5340 }
5341 up_read(&mm->mmap_sem);
5342
5343 precharge = mc.precharge;
5344 mc.precharge = 0;
5345
5346 return precharge;
5347 }
5348
5349 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5350 {
5351 unsigned long precharge = mem_cgroup_count_precharge(mm);
5352
5353 VM_BUG_ON(mc.moving_task);
5354 mc.moving_task = current;
5355 return mem_cgroup_do_precharge(precharge);
5356 }
5357
5358 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5359 static void __mem_cgroup_clear_mc(void)
5360 {
5361 struct mem_cgroup *from = mc.from;
5362 struct mem_cgroup *to = mc.to;
5363
5364 /* we must uncharge all the leftover precharges from mc.to */
5365 if (mc.precharge) {
5366 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5367 mc.precharge = 0;
5368 }
5369 /*
5370 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5371 * we must uncharge here.
5372 */
5373 if (mc.moved_charge) {
5374 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5375 mc.moved_charge = 0;
5376 }
5377 /* we must fixup refcnts and charges */
5378 if (mc.moved_swap) {
5379 /* uncharge swap account from the old cgroup */
5380 if (!mem_cgroup_is_root(mc.from))
5381 res_counter_uncharge(&mc.from->memsw,
5382 PAGE_SIZE * mc.moved_swap);
5383 __mem_cgroup_put(mc.from, mc.moved_swap);
5384
5385 if (!mem_cgroup_is_root(mc.to)) {
5386 /*
5387 * we charged both to->res and to->memsw, so we should
5388 * uncharge to->res.
5389 */
5390 res_counter_uncharge(&mc.to->res,
5391 PAGE_SIZE * mc.moved_swap);
5392 }
5393 /* we've already done mem_cgroup_get(mc.to) */
5394 mc.moved_swap = 0;
5395 }
5396 memcg_oom_recover(from);
5397 memcg_oom_recover(to);
5398 wake_up_all(&mc.waitq);
5399 }
5400
5401 static void mem_cgroup_clear_mc(void)
5402 {
5403 struct mem_cgroup *from = mc.from;
5404
5405 /*
5406 * we must clear moving_task before waking up waiters at the end of
5407 * task migration.
5408 */
5409 mc.moving_task = NULL;
5410 __mem_cgroup_clear_mc();
5411 spin_lock(&mc.lock);
5412 mc.from = NULL;
5413 mc.to = NULL;
5414 spin_unlock(&mc.lock);
5415 mem_cgroup_end_move(from);
5416 }
5417
5418 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5419 struct cgroup_taskset *tset)
5420 {
5421 struct task_struct *p = cgroup_taskset_first(tset);
5422 int ret = 0;
5423 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5424
5425 if (memcg->move_charge_at_immigrate) {
5426 struct mm_struct *mm;
5427 struct mem_cgroup *from = mem_cgroup_from_task(p);
5428
5429 VM_BUG_ON(from == memcg);
5430
5431 mm = get_task_mm(p);
5432 if (!mm)
5433 return 0;
5434 /* We move charges only when we move a owner of the mm */
5435 if (mm->owner == p) {
5436 VM_BUG_ON(mc.from);
5437 VM_BUG_ON(mc.to);
5438 VM_BUG_ON(mc.precharge);
5439 VM_BUG_ON(mc.moved_charge);
5440 VM_BUG_ON(mc.moved_swap);
5441 mem_cgroup_start_move(from);
5442 spin_lock(&mc.lock);
5443 mc.from = from;
5444 mc.to = memcg;
5445 spin_unlock(&mc.lock);
5446 /* We set mc.moving_task later */
5447
5448 ret = mem_cgroup_precharge_mc(mm);
5449 if (ret)
5450 mem_cgroup_clear_mc();
5451 }
5452 mmput(mm);
5453 }
5454 return ret;
5455 }
5456
5457 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5458 struct cgroup_taskset *tset)
5459 {
5460 mem_cgroup_clear_mc();
5461 }
5462
5463 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5464 unsigned long addr, unsigned long end,
5465 struct mm_walk *walk)
5466 {
5467 int ret = 0;
5468 struct vm_area_struct *vma = walk->private;
5469 pte_t *pte;
5470 spinlock_t *ptl;
5471 enum mc_target_type target_type;
5472 union mc_target target;
5473 struct page *page;
5474 struct page_cgroup *pc;
5475
5476 /*
5477 * We don't take compound_lock() here but no race with splitting thp
5478 * happens because:
5479 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5480 * under splitting, which means there's no concurrent thp split,
5481 * - if another thread runs into split_huge_page() just after we
5482 * entered this if-block, the thread must wait for page table lock
5483 * to be unlocked in __split_huge_page_splitting(), where the main
5484 * part of thp split is not executed yet.
5485 */
5486 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5487 if (mc.precharge < HPAGE_PMD_NR) {
5488 spin_unlock(&vma->vm_mm->page_table_lock);
5489 return 0;
5490 }
5491 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5492 if (target_type == MC_TARGET_PAGE) {
5493 page = target.page;
5494 if (!isolate_lru_page(page)) {
5495 pc = lookup_page_cgroup(page);
5496 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5497 pc, mc.from, mc.to)) {
5498 mc.precharge -= HPAGE_PMD_NR;
5499 mc.moved_charge += HPAGE_PMD_NR;
5500 }
5501 putback_lru_page(page);
5502 }
5503 put_page(page);
5504 }
5505 spin_unlock(&vma->vm_mm->page_table_lock);
5506 return 0;
5507 }
5508
5509 if (pmd_trans_unstable(pmd))
5510 return 0;
5511 retry:
5512 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5513 for (; addr != end; addr += PAGE_SIZE) {
5514 pte_t ptent = *(pte++);
5515 swp_entry_t ent;
5516
5517 if (!mc.precharge)
5518 break;
5519
5520 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5521 case MC_TARGET_PAGE:
5522 page = target.page;
5523 if (isolate_lru_page(page))
5524 goto put;
5525 pc = lookup_page_cgroup(page);
5526 if (!mem_cgroup_move_account(page, 1, pc,
5527 mc.from, mc.to)) {
5528 mc.precharge--;
5529 /* we uncharge from mc.from later. */
5530 mc.moved_charge++;
5531 }
5532 putback_lru_page(page);
5533 put: /* get_mctgt_type() gets the page */
5534 put_page(page);
5535 break;
5536 case MC_TARGET_SWAP:
5537 ent = target.ent;
5538 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5539 mc.precharge--;
5540 /* we fixup refcnts and charges later. */
5541 mc.moved_swap++;
5542 }
5543 break;
5544 default:
5545 break;
5546 }
5547 }
5548 pte_unmap_unlock(pte - 1, ptl);
5549 cond_resched();
5550
5551 if (addr != end) {
5552 /*
5553 * We have consumed all precharges we got in can_attach().
5554 * We try charge one by one, but don't do any additional
5555 * charges to mc.to if we have failed in charge once in attach()
5556 * phase.
5557 */
5558 ret = mem_cgroup_do_precharge(1);
5559 if (!ret)
5560 goto retry;
5561 }
5562
5563 return ret;
5564 }
5565
5566 static void mem_cgroup_move_charge(struct mm_struct *mm)
5567 {
5568 struct vm_area_struct *vma;
5569
5570 lru_add_drain_all();
5571 retry:
5572 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5573 /*
5574 * Someone who are holding the mmap_sem might be waiting in
5575 * waitq. So we cancel all extra charges, wake up all waiters,
5576 * and retry. Because we cancel precharges, we might not be able
5577 * to move enough charges, but moving charge is a best-effort
5578 * feature anyway, so it wouldn't be a big problem.
5579 */
5580 __mem_cgroup_clear_mc();
5581 cond_resched();
5582 goto retry;
5583 }
5584 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5585 int ret;
5586 struct mm_walk mem_cgroup_move_charge_walk = {
5587 .pmd_entry = mem_cgroup_move_charge_pte_range,
5588 .mm = mm,
5589 .private = vma,
5590 };
5591 if (is_vm_hugetlb_page(vma))
5592 continue;
5593 ret = walk_page_range(vma->vm_start, vma->vm_end,
5594 &mem_cgroup_move_charge_walk);
5595 if (ret)
5596 /*
5597 * means we have consumed all precharges and failed in
5598 * doing additional charge. Just abandon here.
5599 */
5600 break;
5601 }
5602 up_read(&mm->mmap_sem);
5603 }
5604
5605 static void mem_cgroup_move_task(struct cgroup *cont,
5606 struct cgroup_taskset *tset)
5607 {
5608 struct task_struct *p = cgroup_taskset_first(tset);
5609 struct mm_struct *mm = get_task_mm(p);
5610
5611 if (mm) {
5612 if (mc.to)
5613 mem_cgroup_move_charge(mm);
5614 mmput(mm);
5615 }
5616 if (mc.to)
5617 mem_cgroup_clear_mc();
5618 }
5619 #else /* !CONFIG_MMU */
5620 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5621 struct cgroup_taskset *tset)
5622 {
5623 return 0;
5624 }
5625 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5626 struct cgroup_taskset *tset)
5627 {
5628 }
5629 static void mem_cgroup_move_task(struct cgroup *cont,
5630 struct cgroup_taskset *tset)
5631 {
5632 }
5633 #endif
5634
5635 struct cgroup_subsys mem_cgroup_subsys = {
5636 .name = "memory",
5637 .subsys_id = mem_cgroup_subsys_id,
5638 .css_alloc = mem_cgroup_css_alloc,
5639 .css_offline = mem_cgroup_css_offline,
5640 .css_free = mem_cgroup_css_free,
5641 .can_attach = mem_cgroup_can_attach,
5642 .cancel_attach = mem_cgroup_cancel_attach,
5643 .attach = mem_cgroup_move_task,
5644 .base_cftypes = mem_cgroup_files,
5645 .early_init = 0,
5646 .use_id = 1,
5647 };
5648
5649 #ifdef CONFIG_MEMCG_SWAP
5650 static int __init enable_swap_account(char *s)
5651 {
5652 /* consider enabled if no parameter or 1 is given */
5653 if (!strcmp(s, "1"))
5654 really_do_swap_account = 1;
5655 else if (!strcmp(s, "0"))
5656 really_do_swap_account = 0;
5657 return 1;
5658 }
5659 __setup("swapaccount=", enable_swap_account);
5660
5661 #endif
This page took 0.151241 seconds and 6 git commands to generate.