Merge tag 'spi-for-linus' of git://git.secretlab.ca/git/linux-2.6
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 #include <net/sock.h>
54 #include <net/tcp_memcontrol.h>
55
56 #include <asm/uaccess.h>
57
58 #include <trace/events/vmscan.h>
59
60 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61 #define MEM_CGROUP_RECLAIM_RETRIES 5
62 struct mem_cgroup *root_mem_cgroup __read_mostly;
63
64 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66 int do_swap_account __read_mostly;
67
68 /* for remember boot option*/
69 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70 static int really_do_swap_account __initdata = 1;
71 #else
72 static int really_do_swap_account __initdata = 0;
73 #endif
74
75 #else
76 #define do_swap_account (0)
77 #endif
78
79
80 /*
81 * Statistics for memory cgroup.
82 */
83 enum mem_cgroup_stat_index {
84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
93 MEM_CGROUP_STAT_NSTATS,
94 };
95
96 enum mem_cgroup_events_index {
97 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
98 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
99 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
100 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
101 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
102 MEM_CGROUP_EVENTS_NSTATS,
103 };
104 /*
105 * Per memcg event counter is incremented at every pagein/pageout. With THP,
106 * it will be incremated by the number of pages. This counter is used for
107 * for trigger some periodic events. This is straightforward and better
108 * than using jiffies etc. to handle periodic memcg event.
109 */
110 enum mem_cgroup_events_target {
111 MEM_CGROUP_TARGET_THRESH,
112 MEM_CGROUP_TARGET_SOFTLIMIT,
113 MEM_CGROUP_TARGET_NUMAINFO,
114 MEM_CGROUP_NTARGETS,
115 };
116 #define THRESHOLDS_EVENTS_TARGET (128)
117 #define SOFTLIMIT_EVENTS_TARGET (1024)
118 #define NUMAINFO_EVENTS_TARGET (1024)
119
120 struct mem_cgroup_stat_cpu {
121 long count[MEM_CGROUP_STAT_NSTATS];
122 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
123 unsigned long targets[MEM_CGROUP_NTARGETS];
124 };
125
126 /*
127 * per-zone information in memory controller.
128 */
129 struct mem_cgroup_per_zone {
130 /*
131 * spin_lock to protect the per cgroup LRU
132 */
133 struct list_head lists[NR_LRU_LISTS];
134 unsigned long count[NR_LRU_LISTS];
135
136 struct zone_reclaim_stat reclaim_stat;
137 struct rb_node tree_node; /* RB tree node */
138 unsigned long long usage_in_excess;/* Set to the value by which */
139 /* the soft limit is exceeded*/
140 bool on_tree;
141 struct mem_cgroup *mem; /* Back pointer, we cannot */
142 /* use container_of */
143 };
144 /* Macro for accessing counter */
145 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
146
147 struct mem_cgroup_per_node {
148 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
149 };
150
151 struct mem_cgroup_lru_info {
152 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
153 };
154
155 /*
156 * Cgroups above their limits are maintained in a RB-Tree, independent of
157 * their hierarchy representation
158 */
159
160 struct mem_cgroup_tree_per_zone {
161 struct rb_root rb_root;
162 spinlock_t lock;
163 };
164
165 struct mem_cgroup_tree_per_node {
166 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
167 };
168
169 struct mem_cgroup_tree {
170 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
171 };
172
173 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
174
175 struct mem_cgroup_threshold {
176 struct eventfd_ctx *eventfd;
177 u64 threshold;
178 };
179
180 /* For threshold */
181 struct mem_cgroup_threshold_ary {
182 /* An array index points to threshold just below usage. */
183 int current_threshold;
184 /* Size of entries[] */
185 unsigned int size;
186 /* Array of thresholds */
187 struct mem_cgroup_threshold entries[0];
188 };
189
190 struct mem_cgroup_thresholds {
191 /* Primary thresholds array */
192 struct mem_cgroup_threshold_ary *primary;
193 /*
194 * Spare threshold array.
195 * This is needed to make mem_cgroup_unregister_event() "never fail".
196 * It must be able to store at least primary->size - 1 entries.
197 */
198 struct mem_cgroup_threshold_ary *spare;
199 };
200
201 /* for OOM */
202 struct mem_cgroup_eventfd_list {
203 struct list_head list;
204 struct eventfd_ctx *eventfd;
205 };
206
207 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
208 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
209
210 /*
211 * The memory controller data structure. The memory controller controls both
212 * page cache and RSS per cgroup. We would eventually like to provide
213 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
214 * to help the administrator determine what knobs to tune.
215 *
216 * TODO: Add a water mark for the memory controller. Reclaim will begin when
217 * we hit the water mark. May be even add a low water mark, such that
218 * no reclaim occurs from a cgroup at it's low water mark, this is
219 * a feature that will be implemented much later in the future.
220 */
221 struct mem_cgroup {
222 struct cgroup_subsys_state css;
223 /*
224 * the counter to account for memory usage
225 */
226 struct res_counter res;
227 /*
228 * the counter to account for mem+swap usage.
229 */
230 struct res_counter memsw;
231 /*
232 * Per cgroup active and inactive list, similar to the
233 * per zone LRU lists.
234 */
235 struct mem_cgroup_lru_info info;
236 /*
237 * While reclaiming in a hierarchy, we cache the last child we
238 * reclaimed from.
239 */
240 int last_scanned_child;
241 int last_scanned_node;
242 #if MAX_NUMNODES > 1
243 nodemask_t scan_nodes;
244 atomic_t numainfo_events;
245 atomic_t numainfo_updating;
246 #endif
247 /*
248 * Should the accounting and control be hierarchical, per subtree?
249 */
250 bool use_hierarchy;
251
252 bool oom_lock;
253 atomic_t under_oom;
254
255 atomic_t refcnt;
256
257 int swappiness;
258 /* OOM-Killer disable */
259 int oom_kill_disable;
260
261 /* set when res.limit == memsw.limit */
262 bool memsw_is_minimum;
263
264 /* protect arrays of thresholds */
265 struct mutex thresholds_lock;
266
267 /* thresholds for memory usage. RCU-protected */
268 struct mem_cgroup_thresholds thresholds;
269
270 /* thresholds for mem+swap usage. RCU-protected */
271 struct mem_cgroup_thresholds memsw_thresholds;
272
273 /* For oom notifier event fd */
274 struct list_head oom_notify;
275
276 /*
277 * Should we move charges of a task when a task is moved into this
278 * mem_cgroup ? And what type of charges should we move ?
279 */
280 unsigned long move_charge_at_immigrate;
281 /*
282 * percpu counter.
283 */
284 struct mem_cgroup_stat_cpu *stat;
285 /*
286 * used when a cpu is offlined or other synchronizations
287 * See mem_cgroup_read_stat().
288 */
289 struct mem_cgroup_stat_cpu nocpu_base;
290 spinlock_t pcp_counter_lock;
291
292 #ifdef CONFIG_INET
293 struct tcp_memcontrol tcp_mem;
294 #endif
295 };
296
297 /* Stuffs for move charges at task migration. */
298 /*
299 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
300 * left-shifted bitmap of these types.
301 */
302 enum move_type {
303 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
304 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
305 NR_MOVE_TYPE,
306 };
307
308 /* "mc" and its members are protected by cgroup_mutex */
309 static struct move_charge_struct {
310 spinlock_t lock; /* for from, to */
311 struct mem_cgroup *from;
312 struct mem_cgroup *to;
313 unsigned long precharge;
314 unsigned long moved_charge;
315 unsigned long moved_swap;
316 struct task_struct *moving_task; /* a task moving charges */
317 wait_queue_head_t waitq; /* a waitq for other context */
318 } mc = {
319 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
320 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
321 };
322
323 static bool move_anon(void)
324 {
325 return test_bit(MOVE_CHARGE_TYPE_ANON,
326 &mc.to->move_charge_at_immigrate);
327 }
328
329 static bool move_file(void)
330 {
331 return test_bit(MOVE_CHARGE_TYPE_FILE,
332 &mc.to->move_charge_at_immigrate);
333 }
334
335 /*
336 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
337 * limit reclaim to prevent infinite loops, if they ever occur.
338 */
339 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
340 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
341
342 enum charge_type {
343 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
344 MEM_CGROUP_CHARGE_TYPE_MAPPED,
345 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
346 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
347 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
348 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
349 NR_CHARGE_TYPE,
350 };
351
352 /* for encoding cft->private value on file */
353 #define _MEM (0)
354 #define _MEMSWAP (1)
355 #define _OOM_TYPE (2)
356 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
357 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
358 #define MEMFILE_ATTR(val) ((val) & 0xffff)
359 /* Used for OOM nofiier */
360 #define OOM_CONTROL (0)
361
362 /*
363 * Reclaim flags for mem_cgroup_hierarchical_reclaim
364 */
365 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
366 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
367 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
368 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
369 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
370 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
371
372 static void mem_cgroup_get(struct mem_cgroup *memcg);
373 static void mem_cgroup_put(struct mem_cgroup *memcg);
374
375 /* Writing them here to avoid exposing memcg's inner layout */
376 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
377 #ifdef CONFIG_INET
378 #include <net/sock.h>
379 #include <net/ip.h>
380
381 static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
382 void sock_update_memcg(struct sock *sk)
383 {
384 /* A socket spends its whole life in the same cgroup */
385 if (sk->sk_cgrp) {
386 WARN_ON(1);
387 return;
388 }
389 if (static_branch(&memcg_socket_limit_enabled)) {
390 struct mem_cgroup *memcg;
391
392 BUG_ON(!sk->sk_prot->proto_cgroup);
393
394 rcu_read_lock();
395 memcg = mem_cgroup_from_task(current);
396 if (!mem_cgroup_is_root(memcg)) {
397 mem_cgroup_get(memcg);
398 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
399 }
400 rcu_read_unlock();
401 }
402 }
403 EXPORT_SYMBOL(sock_update_memcg);
404
405 void sock_release_memcg(struct sock *sk)
406 {
407 if (static_branch(&memcg_socket_limit_enabled) && sk->sk_cgrp) {
408 struct mem_cgroup *memcg;
409 WARN_ON(!sk->sk_cgrp->memcg);
410 memcg = sk->sk_cgrp->memcg;
411 mem_cgroup_put(memcg);
412 }
413 }
414
415 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
416 {
417 if (!memcg || mem_cgroup_is_root(memcg))
418 return NULL;
419
420 return &memcg->tcp_mem.cg_proto;
421 }
422 EXPORT_SYMBOL(tcp_proto_cgroup);
423 #endif /* CONFIG_INET */
424 #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
425
426 static void drain_all_stock_async(struct mem_cgroup *memcg);
427
428 static struct mem_cgroup_per_zone *
429 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
430 {
431 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
432 }
433
434 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
435 {
436 return &memcg->css;
437 }
438
439 static struct mem_cgroup_per_zone *
440 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
441 {
442 int nid = page_to_nid(page);
443 int zid = page_zonenum(page);
444
445 return mem_cgroup_zoneinfo(memcg, nid, zid);
446 }
447
448 static struct mem_cgroup_tree_per_zone *
449 soft_limit_tree_node_zone(int nid, int zid)
450 {
451 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
452 }
453
454 static struct mem_cgroup_tree_per_zone *
455 soft_limit_tree_from_page(struct page *page)
456 {
457 int nid = page_to_nid(page);
458 int zid = page_zonenum(page);
459
460 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
461 }
462
463 static void
464 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
465 struct mem_cgroup_per_zone *mz,
466 struct mem_cgroup_tree_per_zone *mctz,
467 unsigned long long new_usage_in_excess)
468 {
469 struct rb_node **p = &mctz->rb_root.rb_node;
470 struct rb_node *parent = NULL;
471 struct mem_cgroup_per_zone *mz_node;
472
473 if (mz->on_tree)
474 return;
475
476 mz->usage_in_excess = new_usage_in_excess;
477 if (!mz->usage_in_excess)
478 return;
479 while (*p) {
480 parent = *p;
481 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
482 tree_node);
483 if (mz->usage_in_excess < mz_node->usage_in_excess)
484 p = &(*p)->rb_left;
485 /*
486 * We can't avoid mem cgroups that are over their soft
487 * limit by the same amount
488 */
489 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
490 p = &(*p)->rb_right;
491 }
492 rb_link_node(&mz->tree_node, parent, p);
493 rb_insert_color(&mz->tree_node, &mctz->rb_root);
494 mz->on_tree = true;
495 }
496
497 static void
498 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
499 struct mem_cgroup_per_zone *mz,
500 struct mem_cgroup_tree_per_zone *mctz)
501 {
502 if (!mz->on_tree)
503 return;
504 rb_erase(&mz->tree_node, &mctz->rb_root);
505 mz->on_tree = false;
506 }
507
508 static void
509 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
510 struct mem_cgroup_per_zone *mz,
511 struct mem_cgroup_tree_per_zone *mctz)
512 {
513 spin_lock(&mctz->lock);
514 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
515 spin_unlock(&mctz->lock);
516 }
517
518
519 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
520 {
521 unsigned long long excess;
522 struct mem_cgroup_per_zone *mz;
523 struct mem_cgroup_tree_per_zone *mctz;
524 int nid = page_to_nid(page);
525 int zid = page_zonenum(page);
526 mctz = soft_limit_tree_from_page(page);
527
528 /*
529 * Necessary to update all ancestors when hierarchy is used.
530 * because their event counter is not touched.
531 */
532 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
533 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
534 excess = res_counter_soft_limit_excess(&memcg->res);
535 /*
536 * We have to update the tree if mz is on RB-tree or
537 * mem is over its softlimit.
538 */
539 if (excess || mz->on_tree) {
540 spin_lock(&mctz->lock);
541 /* if on-tree, remove it */
542 if (mz->on_tree)
543 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
544 /*
545 * Insert again. mz->usage_in_excess will be updated.
546 * If excess is 0, no tree ops.
547 */
548 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
549 spin_unlock(&mctz->lock);
550 }
551 }
552 }
553
554 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
555 {
556 int node, zone;
557 struct mem_cgroup_per_zone *mz;
558 struct mem_cgroup_tree_per_zone *mctz;
559
560 for_each_node_state(node, N_POSSIBLE) {
561 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
562 mz = mem_cgroup_zoneinfo(memcg, node, zone);
563 mctz = soft_limit_tree_node_zone(node, zone);
564 mem_cgroup_remove_exceeded(memcg, mz, mctz);
565 }
566 }
567 }
568
569 static struct mem_cgroup_per_zone *
570 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
571 {
572 struct rb_node *rightmost = NULL;
573 struct mem_cgroup_per_zone *mz;
574
575 retry:
576 mz = NULL;
577 rightmost = rb_last(&mctz->rb_root);
578 if (!rightmost)
579 goto done; /* Nothing to reclaim from */
580
581 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
582 /*
583 * Remove the node now but someone else can add it back,
584 * we will to add it back at the end of reclaim to its correct
585 * position in the tree.
586 */
587 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
588 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
589 !css_tryget(&mz->mem->css))
590 goto retry;
591 done:
592 return mz;
593 }
594
595 static struct mem_cgroup_per_zone *
596 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
597 {
598 struct mem_cgroup_per_zone *mz;
599
600 spin_lock(&mctz->lock);
601 mz = __mem_cgroup_largest_soft_limit_node(mctz);
602 spin_unlock(&mctz->lock);
603 return mz;
604 }
605
606 /*
607 * Implementation Note: reading percpu statistics for memcg.
608 *
609 * Both of vmstat[] and percpu_counter has threshold and do periodic
610 * synchronization to implement "quick" read. There are trade-off between
611 * reading cost and precision of value. Then, we may have a chance to implement
612 * a periodic synchronizion of counter in memcg's counter.
613 *
614 * But this _read() function is used for user interface now. The user accounts
615 * memory usage by memory cgroup and he _always_ requires exact value because
616 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
617 * have to visit all online cpus and make sum. So, for now, unnecessary
618 * synchronization is not implemented. (just implemented for cpu hotplug)
619 *
620 * If there are kernel internal actions which can make use of some not-exact
621 * value, and reading all cpu value can be performance bottleneck in some
622 * common workload, threashold and synchonization as vmstat[] should be
623 * implemented.
624 */
625 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
626 enum mem_cgroup_stat_index idx)
627 {
628 long val = 0;
629 int cpu;
630
631 get_online_cpus();
632 for_each_online_cpu(cpu)
633 val += per_cpu(memcg->stat->count[idx], cpu);
634 #ifdef CONFIG_HOTPLUG_CPU
635 spin_lock(&memcg->pcp_counter_lock);
636 val += memcg->nocpu_base.count[idx];
637 spin_unlock(&memcg->pcp_counter_lock);
638 #endif
639 put_online_cpus();
640 return val;
641 }
642
643 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
644 bool charge)
645 {
646 int val = (charge) ? 1 : -1;
647 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
648 }
649
650 void mem_cgroup_pgfault(struct mem_cgroup *memcg, int val)
651 {
652 this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
653 }
654
655 void mem_cgroup_pgmajfault(struct mem_cgroup *memcg, int val)
656 {
657 this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
658 }
659
660 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
661 enum mem_cgroup_events_index idx)
662 {
663 unsigned long val = 0;
664 int cpu;
665
666 for_each_online_cpu(cpu)
667 val += per_cpu(memcg->stat->events[idx], cpu);
668 #ifdef CONFIG_HOTPLUG_CPU
669 spin_lock(&memcg->pcp_counter_lock);
670 val += memcg->nocpu_base.events[idx];
671 spin_unlock(&memcg->pcp_counter_lock);
672 #endif
673 return val;
674 }
675
676 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
677 bool file, int nr_pages)
678 {
679 preempt_disable();
680
681 if (file)
682 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
683 nr_pages);
684 else
685 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
686 nr_pages);
687
688 /* pagein of a big page is an event. So, ignore page size */
689 if (nr_pages > 0)
690 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
691 else {
692 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
693 nr_pages = -nr_pages; /* for event */
694 }
695
696 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
697
698 preempt_enable();
699 }
700
701 unsigned long
702 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
703 unsigned int lru_mask)
704 {
705 struct mem_cgroup_per_zone *mz;
706 enum lru_list l;
707 unsigned long ret = 0;
708
709 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
710
711 for_each_lru(l) {
712 if (BIT(l) & lru_mask)
713 ret += MEM_CGROUP_ZSTAT(mz, l);
714 }
715 return ret;
716 }
717
718 static unsigned long
719 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
720 int nid, unsigned int lru_mask)
721 {
722 u64 total = 0;
723 int zid;
724
725 for (zid = 0; zid < MAX_NR_ZONES; zid++)
726 total += mem_cgroup_zone_nr_lru_pages(memcg,
727 nid, zid, lru_mask);
728
729 return total;
730 }
731
732 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
733 unsigned int lru_mask)
734 {
735 int nid;
736 u64 total = 0;
737
738 for_each_node_state(nid, N_HIGH_MEMORY)
739 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
740 return total;
741 }
742
743 static bool __memcg_event_check(struct mem_cgroup *memcg, int target)
744 {
745 unsigned long val, next;
746
747 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
748 next = __this_cpu_read(memcg->stat->targets[target]);
749 /* from time_after() in jiffies.h */
750 return ((long)next - (long)val < 0);
751 }
752
753 static void __mem_cgroup_target_update(struct mem_cgroup *memcg, int target)
754 {
755 unsigned long val, next;
756
757 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
758
759 switch (target) {
760 case MEM_CGROUP_TARGET_THRESH:
761 next = val + THRESHOLDS_EVENTS_TARGET;
762 break;
763 case MEM_CGROUP_TARGET_SOFTLIMIT:
764 next = val + SOFTLIMIT_EVENTS_TARGET;
765 break;
766 case MEM_CGROUP_TARGET_NUMAINFO:
767 next = val + NUMAINFO_EVENTS_TARGET;
768 break;
769 default:
770 return;
771 }
772
773 __this_cpu_write(memcg->stat->targets[target], next);
774 }
775
776 /*
777 * Check events in order.
778 *
779 */
780 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
781 {
782 preempt_disable();
783 /* threshold event is triggered in finer grain than soft limit */
784 if (unlikely(__memcg_event_check(memcg, MEM_CGROUP_TARGET_THRESH))) {
785 mem_cgroup_threshold(memcg);
786 __mem_cgroup_target_update(memcg, MEM_CGROUP_TARGET_THRESH);
787 if (unlikely(__memcg_event_check(memcg,
788 MEM_CGROUP_TARGET_SOFTLIMIT))) {
789 mem_cgroup_update_tree(memcg, page);
790 __mem_cgroup_target_update(memcg,
791 MEM_CGROUP_TARGET_SOFTLIMIT);
792 }
793 #if MAX_NUMNODES > 1
794 if (unlikely(__memcg_event_check(memcg,
795 MEM_CGROUP_TARGET_NUMAINFO))) {
796 atomic_inc(&memcg->numainfo_events);
797 __mem_cgroup_target_update(memcg,
798 MEM_CGROUP_TARGET_NUMAINFO);
799 }
800 #endif
801 }
802 preempt_enable();
803 }
804
805 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
806 {
807 return container_of(cgroup_subsys_state(cont,
808 mem_cgroup_subsys_id), struct mem_cgroup,
809 css);
810 }
811
812 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
813 {
814 /*
815 * mm_update_next_owner() may clear mm->owner to NULL
816 * if it races with swapoff, page migration, etc.
817 * So this can be called with p == NULL.
818 */
819 if (unlikely(!p))
820 return NULL;
821
822 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
823 struct mem_cgroup, css);
824 }
825
826 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
827 {
828 struct mem_cgroup *memcg = NULL;
829
830 if (!mm)
831 return NULL;
832 /*
833 * Because we have no locks, mm->owner's may be being moved to other
834 * cgroup. We use css_tryget() here even if this looks
835 * pessimistic (rather than adding locks here).
836 */
837 rcu_read_lock();
838 do {
839 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
840 if (unlikely(!memcg))
841 break;
842 } while (!css_tryget(&memcg->css));
843 rcu_read_unlock();
844 return memcg;
845 }
846
847 /* The caller has to guarantee "mem" exists before calling this */
848 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *memcg)
849 {
850 struct cgroup_subsys_state *css;
851 int found;
852
853 if (!memcg) /* ROOT cgroup has the smallest ID */
854 return root_mem_cgroup; /*css_put/get against root is ignored*/
855 if (!memcg->use_hierarchy) {
856 if (css_tryget(&memcg->css))
857 return memcg;
858 return NULL;
859 }
860 rcu_read_lock();
861 /*
862 * searching a memory cgroup which has the smallest ID under given
863 * ROOT cgroup. (ID >= 1)
864 */
865 css = css_get_next(&mem_cgroup_subsys, 1, &memcg->css, &found);
866 if (css && css_tryget(css))
867 memcg = container_of(css, struct mem_cgroup, css);
868 else
869 memcg = NULL;
870 rcu_read_unlock();
871 return memcg;
872 }
873
874 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
875 struct mem_cgroup *root,
876 bool cond)
877 {
878 int nextid = css_id(&iter->css) + 1;
879 int found;
880 int hierarchy_used;
881 struct cgroup_subsys_state *css;
882
883 hierarchy_used = iter->use_hierarchy;
884
885 css_put(&iter->css);
886 /* If no ROOT, walk all, ignore hierarchy */
887 if (!cond || (root && !hierarchy_used))
888 return NULL;
889
890 if (!root)
891 root = root_mem_cgroup;
892
893 do {
894 iter = NULL;
895 rcu_read_lock();
896
897 css = css_get_next(&mem_cgroup_subsys, nextid,
898 &root->css, &found);
899 if (css && css_tryget(css))
900 iter = container_of(css, struct mem_cgroup, css);
901 rcu_read_unlock();
902 /* If css is NULL, no more cgroups will be found */
903 nextid = found + 1;
904 } while (css && !iter);
905
906 return iter;
907 }
908 /*
909 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
910 * be careful that "break" loop is not allowed. We have reference count.
911 * Instead of that modify "cond" to be false and "continue" to exit the loop.
912 */
913 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
914 for (iter = mem_cgroup_start_loop(root);\
915 iter != NULL;\
916 iter = mem_cgroup_get_next(iter, root, cond))
917
918 #define for_each_mem_cgroup_tree(iter, root) \
919 for_each_mem_cgroup_tree_cond(iter, root, true)
920
921 #define for_each_mem_cgroup_all(iter) \
922 for_each_mem_cgroup_tree_cond(iter, NULL, true)
923
924
925 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
926 {
927 return (memcg == root_mem_cgroup);
928 }
929
930 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
931 {
932 struct mem_cgroup *memcg;
933
934 if (!mm)
935 return;
936
937 rcu_read_lock();
938 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
939 if (unlikely(!memcg))
940 goto out;
941
942 switch (idx) {
943 case PGMAJFAULT:
944 mem_cgroup_pgmajfault(memcg, 1);
945 break;
946 case PGFAULT:
947 mem_cgroup_pgfault(memcg, 1);
948 break;
949 default:
950 BUG();
951 }
952 out:
953 rcu_read_unlock();
954 }
955 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
956
957 /*
958 * Following LRU functions are allowed to be used without PCG_LOCK.
959 * Operations are called by routine of global LRU independently from memcg.
960 * What we have to take care of here is validness of pc->mem_cgroup.
961 *
962 * Changes to pc->mem_cgroup happens when
963 * 1. charge
964 * 2. moving account
965 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
966 * It is added to LRU before charge.
967 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
968 * When moving account, the page is not on LRU. It's isolated.
969 */
970
971 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
972 {
973 struct page_cgroup *pc;
974 struct mem_cgroup_per_zone *mz;
975
976 if (mem_cgroup_disabled())
977 return;
978 pc = lookup_page_cgroup(page);
979 /* can happen while we handle swapcache. */
980 if (!TestClearPageCgroupAcctLRU(pc))
981 return;
982 VM_BUG_ON(!pc->mem_cgroup);
983 /*
984 * We don't check PCG_USED bit. It's cleared when the "page" is finally
985 * removed from global LRU.
986 */
987 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
988 /* huge page split is done under lru_lock. so, we have no races. */
989 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
990 if (mem_cgroup_is_root(pc->mem_cgroup))
991 return;
992 VM_BUG_ON(list_empty(&pc->lru));
993 list_del_init(&pc->lru);
994 }
995
996 void mem_cgroup_del_lru(struct page *page)
997 {
998 mem_cgroup_del_lru_list(page, page_lru(page));
999 }
1000
1001 /*
1002 * Writeback is about to end against a page which has been marked for immediate
1003 * reclaim. If it still appears to be reclaimable, move it to the tail of the
1004 * inactive list.
1005 */
1006 void mem_cgroup_rotate_reclaimable_page(struct page *page)
1007 {
1008 struct mem_cgroup_per_zone *mz;
1009 struct page_cgroup *pc;
1010 enum lru_list lru = page_lru(page);
1011
1012 if (mem_cgroup_disabled())
1013 return;
1014
1015 pc = lookup_page_cgroup(page);
1016 /* unused or root page is not rotated. */
1017 if (!PageCgroupUsed(pc))
1018 return;
1019 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1020 smp_rmb();
1021 if (mem_cgroup_is_root(pc->mem_cgroup))
1022 return;
1023 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1024 list_move_tail(&pc->lru, &mz->lists[lru]);
1025 }
1026
1027 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
1028 {
1029 struct mem_cgroup_per_zone *mz;
1030 struct page_cgroup *pc;
1031
1032 if (mem_cgroup_disabled())
1033 return;
1034
1035 pc = lookup_page_cgroup(page);
1036 /* unused or root page is not rotated. */
1037 if (!PageCgroupUsed(pc))
1038 return;
1039 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1040 smp_rmb();
1041 if (mem_cgroup_is_root(pc->mem_cgroup))
1042 return;
1043 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1044 list_move(&pc->lru, &mz->lists[lru]);
1045 }
1046
1047 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
1048 {
1049 struct page_cgroup *pc;
1050 struct mem_cgroup_per_zone *mz;
1051
1052 if (mem_cgroup_disabled())
1053 return;
1054 pc = lookup_page_cgroup(page);
1055 VM_BUG_ON(PageCgroupAcctLRU(pc));
1056 /*
1057 * putback: charge:
1058 * SetPageLRU SetPageCgroupUsed
1059 * smp_mb smp_mb
1060 * PageCgroupUsed && add to memcg LRU PageLRU && add to memcg LRU
1061 *
1062 * Ensure that one of the two sides adds the page to the memcg
1063 * LRU during a race.
1064 */
1065 smp_mb();
1066 if (!PageCgroupUsed(pc))
1067 return;
1068 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1069 smp_rmb();
1070 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1071 /* huge page split is done under lru_lock. so, we have no races. */
1072 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1073 SetPageCgroupAcctLRU(pc);
1074 if (mem_cgroup_is_root(pc->mem_cgroup))
1075 return;
1076 list_add(&pc->lru, &mz->lists[lru]);
1077 }
1078
1079 /*
1080 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1081 * while it's linked to lru because the page may be reused after it's fully
1082 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1083 * It's done under lock_page and expected that zone->lru_lock isnever held.
1084 */
1085 static void mem_cgroup_lru_del_before_commit(struct page *page)
1086 {
1087 unsigned long flags;
1088 struct zone *zone = page_zone(page);
1089 struct page_cgroup *pc = lookup_page_cgroup(page);
1090
1091 /*
1092 * Doing this check without taking ->lru_lock seems wrong but this
1093 * is safe. Because if page_cgroup's USED bit is unset, the page
1094 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1095 * set, the commit after this will fail, anyway.
1096 * This all charge/uncharge is done under some mutual execustion.
1097 * So, we don't need to taking care of changes in USED bit.
1098 */
1099 if (likely(!PageLRU(page)))
1100 return;
1101
1102 spin_lock_irqsave(&zone->lru_lock, flags);
1103 /*
1104 * Forget old LRU when this page_cgroup is *not* used. This Used bit
1105 * is guarded by lock_page() because the page is SwapCache.
1106 */
1107 if (!PageCgroupUsed(pc))
1108 mem_cgroup_del_lru_list(page, page_lru(page));
1109 spin_unlock_irqrestore(&zone->lru_lock, flags);
1110 }
1111
1112 static void mem_cgroup_lru_add_after_commit(struct page *page)
1113 {
1114 unsigned long flags;
1115 struct zone *zone = page_zone(page);
1116 struct page_cgroup *pc = lookup_page_cgroup(page);
1117 /*
1118 * putback: charge:
1119 * SetPageLRU SetPageCgroupUsed
1120 * smp_mb smp_mb
1121 * PageCgroupUsed && add to memcg LRU PageLRU && add to memcg LRU
1122 *
1123 * Ensure that one of the two sides adds the page to the memcg
1124 * LRU during a race.
1125 */
1126 smp_mb();
1127 /* taking care of that the page is added to LRU while we commit it */
1128 if (likely(!PageLRU(page)))
1129 return;
1130 spin_lock_irqsave(&zone->lru_lock, flags);
1131 /* link when the page is linked to LRU but page_cgroup isn't */
1132 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1133 mem_cgroup_add_lru_list(page, page_lru(page));
1134 spin_unlock_irqrestore(&zone->lru_lock, flags);
1135 }
1136
1137
1138 void mem_cgroup_move_lists(struct page *page,
1139 enum lru_list from, enum lru_list to)
1140 {
1141 if (mem_cgroup_disabled())
1142 return;
1143 mem_cgroup_del_lru_list(page, from);
1144 mem_cgroup_add_lru_list(page, to);
1145 }
1146
1147 /*
1148 * Checks whether given mem is same or in the root_mem_cgroup's
1149 * hierarchy subtree
1150 */
1151 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1152 struct mem_cgroup *memcg)
1153 {
1154 if (root_memcg != memcg) {
1155 return (root_memcg->use_hierarchy &&
1156 css_is_ancestor(&memcg->css, &root_memcg->css));
1157 }
1158
1159 return true;
1160 }
1161
1162 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1163 {
1164 int ret;
1165 struct mem_cgroup *curr = NULL;
1166 struct task_struct *p;
1167
1168 p = find_lock_task_mm(task);
1169 if (!p)
1170 return 0;
1171 curr = try_get_mem_cgroup_from_mm(p->mm);
1172 task_unlock(p);
1173 if (!curr)
1174 return 0;
1175 /*
1176 * We should check use_hierarchy of "memcg" not "curr". Because checking
1177 * use_hierarchy of "curr" here make this function true if hierarchy is
1178 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1179 * hierarchy(even if use_hierarchy is disabled in "memcg").
1180 */
1181 ret = mem_cgroup_same_or_subtree(memcg, curr);
1182 css_put(&curr->css);
1183 return ret;
1184 }
1185
1186 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1187 {
1188 unsigned long inactive_ratio;
1189 int nid = zone_to_nid(zone);
1190 int zid = zone_idx(zone);
1191 unsigned long inactive;
1192 unsigned long active;
1193 unsigned long gb;
1194
1195 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1196 BIT(LRU_INACTIVE_ANON));
1197 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1198 BIT(LRU_ACTIVE_ANON));
1199
1200 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1201 if (gb)
1202 inactive_ratio = int_sqrt(10 * gb);
1203 else
1204 inactive_ratio = 1;
1205
1206 return inactive * inactive_ratio < active;
1207 }
1208
1209 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1210 {
1211 unsigned long active;
1212 unsigned long inactive;
1213 int zid = zone_idx(zone);
1214 int nid = zone_to_nid(zone);
1215
1216 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1217 BIT(LRU_INACTIVE_FILE));
1218 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1219 BIT(LRU_ACTIVE_FILE));
1220
1221 return (active > inactive);
1222 }
1223
1224 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1225 struct zone *zone)
1226 {
1227 int nid = zone_to_nid(zone);
1228 int zid = zone_idx(zone);
1229 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1230
1231 return &mz->reclaim_stat;
1232 }
1233
1234 struct zone_reclaim_stat *
1235 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1236 {
1237 struct page_cgroup *pc;
1238 struct mem_cgroup_per_zone *mz;
1239
1240 if (mem_cgroup_disabled())
1241 return NULL;
1242
1243 pc = lookup_page_cgroup(page);
1244 if (!PageCgroupUsed(pc))
1245 return NULL;
1246 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1247 smp_rmb();
1248 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1249 return &mz->reclaim_stat;
1250 }
1251
1252 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1253 struct list_head *dst,
1254 unsigned long *scanned, int order,
1255 isolate_mode_t mode,
1256 struct zone *z,
1257 struct mem_cgroup *mem_cont,
1258 int active, int file)
1259 {
1260 unsigned long nr_taken = 0;
1261 struct page *page;
1262 unsigned long scan;
1263 LIST_HEAD(pc_list);
1264 struct list_head *src;
1265 struct page_cgroup *pc, *tmp;
1266 int nid = zone_to_nid(z);
1267 int zid = zone_idx(z);
1268 struct mem_cgroup_per_zone *mz;
1269 int lru = LRU_FILE * file + active;
1270 int ret;
1271
1272 BUG_ON(!mem_cont);
1273 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1274 src = &mz->lists[lru];
1275
1276 scan = 0;
1277 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1278 if (scan >= nr_to_scan)
1279 break;
1280
1281 if (unlikely(!PageCgroupUsed(pc)))
1282 continue;
1283
1284 page = lookup_cgroup_page(pc);
1285
1286 if (unlikely(!PageLRU(page)))
1287 continue;
1288
1289 scan++;
1290 ret = __isolate_lru_page(page, mode, file);
1291 switch (ret) {
1292 case 0:
1293 list_move(&page->lru, dst);
1294 mem_cgroup_del_lru(page);
1295 nr_taken += hpage_nr_pages(page);
1296 break;
1297 case -EBUSY:
1298 /* we don't affect global LRU but rotate in our LRU */
1299 mem_cgroup_rotate_lru_list(page, page_lru(page));
1300 break;
1301 default:
1302 break;
1303 }
1304 }
1305
1306 *scanned = scan;
1307
1308 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1309 0, 0, 0, mode);
1310
1311 return nr_taken;
1312 }
1313
1314 #define mem_cgroup_from_res_counter(counter, member) \
1315 container_of(counter, struct mem_cgroup, member)
1316
1317 /**
1318 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1319 * @mem: the memory cgroup
1320 *
1321 * Returns the maximum amount of memory @mem can be charged with, in
1322 * pages.
1323 */
1324 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1325 {
1326 unsigned long long margin;
1327
1328 margin = res_counter_margin(&memcg->res);
1329 if (do_swap_account)
1330 margin = min(margin, res_counter_margin(&memcg->memsw));
1331 return margin >> PAGE_SHIFT;
1332 }
1333
1334 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1335 {
1336 struct cgroup *cgrp = memcg->css.cgroup;
1337
1338 /* root ? */
1339 if (cgrp->parent == NULL)
1340 return vm_swappiness;
1341
1342 return memcg->swappiness;
1343 }
1344
1345 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1346 {
1347 int cpu;
1348
1349 get_online_cpus();
1350 spin_lock(&memcg->pcp_counter_lock);
1351 for_each_online_cpu(cpu)
1352 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1353 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1354 spin_unlock(&memcg->pcp_counter_lock);
1355 put_online_cpus();
1356
1357 synchronize_rcu();
1358 }
1359
1360 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1361 {
1362 int cpu;
1363
1364 if (!memcg)
1365 return;
1366 get_online_cpus();
1367 spin_lock(&memcg->pcp_counter_lock);
1368 for_each_online_cpu(cpu)
1369 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1370 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1371 spin_unlock(&memcg->pcp_counter_lock);
1372 put_online_cpus();
1373 }
1374 /*
1375 * 2 routines for checking "mem" is under move_account() or not.
1376 *
1377 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1378 * for avoiding race in accounting. If true,
1379 * pc->mem_cgroup may be overwritten.
1380 *
1381 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1382 * under hierarchy of moving cgroups. This is for
1383 * waiting at hith-memory prressure caused by "move".
1384 */
1385
1386 static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1387 {
1388 VM_BUG_ON(!rcu_read_lock_held());
1389 return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1390 }
1391
1392 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1393 {
1394 struct mem_cgroup *from;
1395 struct mem_cgroup *to;
1396 bool ret = false;
1397 /*
1398 * Unlike task_move routines, we access mc.to, mc.from not under
1399 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1400 */
1401 spin_lock(&mc.lock);
1402 from = mc.from;
1403 to = mc.to;
1404 if (!from)
1405 goto unlock;
1406
1407 ret = mem_cgroup_same_or_subtree(memcg, from)
1408 || mem_cgroup_same_or_subtree(memcg, to);
1409 unlock:
1410 spin_unlock(&mc.lock);
1411 return ret;
1412 }
1413
1414 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1415 {
1416 if (mc.moving_task && current != mc.moving_task) {
1417 if (mem_cgroup_under_move(memcg)) {
1418 DEFINE_WAIT(wait);
1419 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1420 /* moving charge context might have finished. */
1421 if (mc.moving_task)
1422 schedule();
1423 finish_wait(&mc.waitq, &wait);
1424 return true;
1425 }
1426 }
1427 return false;
1428 }
1429
1430 /**
1431 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1432 * @memcg: The memory cgroup that went over limit
1433 * @p: Task that is going to be killed
1434 *
1435 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1436 * enabled
1437 */
1438 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1439 {
1440 struct cgroup *task_cgrp;
1441 struct cgroup *mem_cgrp;
1442 /*
1443 * Need a buffer in BSS, can't rely on allocations. The code relies
1444 * on the assumption that OOM is serialized for memory controller.
1445 * If this assumption is broken, revisit this code.
1446 */
1447 static char memcg_name[PATH_MAX];
1448 int ret;
1449
1450 if (!memcg || !p)
1451 return;
1452
1453
1454 rcu_read_lock();
1455
1456 mem_cgrp = memcg->css.cgroup;
1457 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1458
1459 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1460 if (ret < 0) {
1461 /*
1462 * Unfortunately, we are unable to convert to a useful name
1463 * But we'll still print out the usage information
1464 */
1465 rcu_read_unlock();
1466 goto done;
1467 }
1468 rcu_read_unlock();
1469
1470 printk(KERN_INFO "Task in %s killed", memcg_name);
1471
1472 rcu_read_lock();
1473 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1474 if (ret < 0) {
1475 rcu_read_unlock();
1476 goto done;
1477 }
1478 rcu_read_unlock();
1479
1480 /*
1481 * Continues from above, so we don't need an KERN_ level
1482 */
1483 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1484 done:
1485
1486 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1487 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1488 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1489 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1490 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1491 "failcnt %llu\n",
1492 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1493 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1494 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1495 }
1496
1497 /*
1498 * This function returns the number of memcg under hierarchy tree. Returns
1499 * 1(self count) if no children.
1500 */
1501 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1502 {
1503 int num = 0;
1504 struct mem_cgroup *iter;
1505
1506 for_each_mem_cgroup_tree(iter, memcg)
1507 num++;
1508 return num;
1509 }
1510
1511 /*
1512 * Return the memory (and swap, if configured) limit for a memcg.
1513 */
1514 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1515 {
1516 u64 limit;
1517 u64 memsw;
1518
1519 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1520 limit += total_swap_pages << PAGE_SHIFT;
1521
1522 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1523 /*
1524 * If memsw is finite and limits the amount of swap space available
1525 * to this memcg, return that limit.
1526 */
1527 return min(limit, memsw);
1528 }
1529
1530 /*
1531 * Visit the first child (need not be the first child as per the ordering
1532 * of the cgroup list, since we track last_scanned_child) of @mem and use
1533 * that to reclaim free pages from.
1534 */
1535 static struct mem_cgroup *
1536 mem_cgroup_select_victim(struct mem_cgroup *root_memcg)
1537 {
1538 struct mem_cgroup *ret = NULL;
1539 struct cgroup_subsys_state *css;
1540 int nextid, found;
1541
1542 if (!root_memcg->use_hierarchy) {
1543 css_get(&root_memcg->css);
1544 ret = root_memcg;
1545 }
1546
1547 while (!ret) {
1548 rcu_read_lock();
1549 nextid = root_memcg->last_scanned_child + 1;
1550 css = css_get_next(&mem_cgroup_subsys, nextid, &root_memcg->css,
1551 &found);
1552 if (css && css_tryget(css))
1553 ret = container_of(css, struct mem_cgroup, css);
1554
1555 rcu_read_unlock();
1556 /* Updates scanning parameter */
1557 if (!css) {
1558 /* this means start scan from ID:1 */
1559 root_memcg->last_scanned_child = 0;
1560 } else
1561 root_memcg->last_scanned_child = found;
1562 }
1563
1564 return ret;
1565 }
1566
1567 /**
1568 * test_mem_cgroup_node_reclaimable
1569 * @mem: the target memcg
1570 * @nid: the node ID to be checked.
1571 * @noswap : specify true here if the user wants flle only information.
1572 *
1573 * This function returns whether the specified memcg contains any
1574 * reclaimable pages on a node. Returns true if there are any reclaimable
1575 * pages in the node.
1576 */
1577 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1578 int nid, bool noswap)
1579 {
1580 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1581 return true;
1582 if (noswap || !total_swap_pages)
1583 return false;
1584 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1585 return true;
1586 return false;
1587
1588 }
1589 #if MAX_NUMNODES > 1
1590
1591 /*
1592 * Always updating the nodemask is not very good - even if we have an empty
1593 * list or the wrong list here, we can start from some node and traverse all
1594 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1595 *
1596 */
1597 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1598 {
1599 int nid;
1600 /*
1601 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1602 * pagein/pageout changes since the last update.
1603 */
1604 if (!atomic_read(&memcg->numainfo_events))
1605 return;
1606 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1607 return;
1608
1609 /* make a nodemask where this memcg uses memory from */
1610 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1611
1612 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1613
1614 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1615 node_clear(nid, memcg->scan_nodes);
1616 }
1617
1618 atomic_set(&memcg->numainfo_events, 0);
1619 atomic_set(&memcg->numainfo_updating, 0);
1620 }
1621
1622 /*
1623 * Selecting a node where we start reclaim from. Because what we need is just
1624 * reducing usage counter, start from anywhere is O,K. Considering
1625 * memory reclaim from current node, there are pros. and cons.
1626 *
1627 * Freeing memory from current node means freeing memory from a node which
1628 * we'll use or we've used. So, it may make LRU bad. And if several threads
1629 * hit limits, it will see a contention on a node. But freeing from remote
1630 * node means more costs for memory reclaim because of memory latency.
1631 *
1632 * Now, we use round-robin. Better algorithm is welcomed.
1633 */
1634 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1635 {
1636 int node;
1637
1638 mem_cgroup_may_update_nodemask(memcg);
1639 node = memcg->last_scanned_node;
1640
1641 node = next_node(node, memcg->scan_nodes);
1642 if (node == MAX_NUMNODES)
1643 node = first_node(memcg->scan_nodes);
1644 /*
1645 * We call this when we hit limit, not when pages are added to LRU.
1646 * No LRU may hold pages because all pages are UNEVICTABLE or
1647 * memcg is too small and all pages are not on LRU. In that case,
1648 * we use curret node.
1649 */
1650 if (unlikely(node == MAX_NUMNODES))
1651 node = numa_node_id();
1652
1653 memcg->last_scanned_node = node;
1654 return node;
1655 }
1656
1657 /*
1658 * Check all nodes whether it contains reclaimable pages or not.
1659 * For quick scan, we make use of scan_nodes. This will allow us to skip
1660 * unused nodes. But scan_nodes is lazily updated and may not cotain
1661 * enough new information. We need to do double check.
1662 */
1663 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1664 {
1665 int nid;
1666
1667 /*
1668 * quick check...making use of scan_node.
1669 * We can skip unused nodes.
1670 */
1671 if (!nodes_empty(memcg->scan_nodes)) {
1672 for (nid = first_node(memcg->scan_nodes);
1673 nid < MAX_NUMNODES;
1674 nid = next_node(nid, memcg->scan_nodes)) {
1675
1676 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1677 return true;
1678 }
1679 }
1680 /*
1681 * Check rest of nodes.
1682 */
1683 for_each_node_state(nid, N_HIGH_MEMORY) {
1684 if (node_isset(nid, memcg->scan_nodes))
1685 continue;
1686 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1687 return true;
1688 }
1689 return false;
1690 }
1691
1692 #else
1693 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1694 {
1695 return 0;
1696 }
1697
1698 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1699 {
1700 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1701 }
1702 #endif
1703
1704 /*
1705 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1706 * we reclaimed from, so that we don't end up penalizing one child extensively
1707 * based on its position in the children list.
1708 *
1709 * root_memcg is the original ancestor that we've been reclaim from.
1710 *
1711 * We give up and return to the caller when we visit root_memcg twice.
1712 * (other groups can be removed while we're walking....)
1713 *
1714 * If shrink==true, for avoiding to free too much, this returns immedieately.
1715 */
1716 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_memcg,
1717 struct zone *zone,
1718 gfp_t gfp_mask,
1719 unsigned long reclaim_options,
1720 unsigned long *total_scanned)
1721 {
1722 struct mem_cgroup *victim;
1723 int ret, total = 0;
1724 int loop = 0;
1725 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1726 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1727 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1728 unsigned long excess;
1729 unsigned long nr_scanned;
1730
1731 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1732
1733 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1734 if (!check_soft && !shrink && root_memcg->memsw_is_minimum)
1735 noswap = true;
1736
1737 while (1) {
1738 victim = mem_cgroup_select_victim(root_memcg);
1739 if (victim == root_memcg) {
1740 loop++;
1741 /*
1742 * We are not draining per cpu cached charges during
1743 * soft limit reclaim because global reclaim doesn't
1744 * care about charges. It tries to free some memory and
1745 * charges will not give any.
1746 */
1747 if (!check_soft && loop >= 1)
1748 drain_all_stock_async(root_memcg);
1749 if (loop >= 2) {
1750 /*
1751 * If we have not been able to reclaim
1752 * anything, it might because there are
1753 * no reclaimable pages under this hierarchy
1754 */
1755 if (!check_soft || !total) {
1756 css_put(&victim->css);
1757 break;
1758 }
1759 /*
1760 * We want to do more targeted reclaim.
1761 * excess >> 2 is not to excessive so as to
1762 * reclaim too much, nor too less that we keep
1763 * coming back to reclaim from this cgroup
1764 */
1765 if (total >= (excess >> 2) ||
1766 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1767 css_put(&victim->css);
1768 break;
1769 }
1770 }
1771 }
1772 if (!mem_cgroup_reclaimable(victim, noswap)) {
1773 /* this cgroup's local usage == 0 */
1774 css_put(&victim->css);
1775 continue;
1776 }
1777 /* we use swappiness of local cgroup */
1778 if (check_soft) {
1779 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1780 noswap, zone, &nr_scanned);
1781 *total_scanned += nr_scanned;
1782 } else
1783 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1784 noswap);
1785 css_put(&victim->css);
1786 /*
1787 * At shrinking usage, we can't check we should stop here or
1788 * reclaim more. It's depends on callers. last_scanned_child
1789 * will work enough for keeping fairness under tree.
1790 */
1791 if (shrink)
1792 return ret;
1793 total += ret;
1794 if (check_soft) {
1795 if (!res_counter_soft_limit_excess(&root_memcg->res))
1796 return total;
1797 } else if (mem_cgroup_margin(root_memcg))
1798 return total;
1799 }
1800 return total;
1801 }
1802
1803 /*
1804 * Check OOM-Killer is already running under our hierarchy.
1805 * If someone is running, return false.
1806 * Has to be called with memcg_oom_lock
1807 */
1808 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1809 {
1810 struct mem_cgroup *iter, *failed = NULL;
1811 bool cond = true;
1812
1813 for_each_mem_cgroup_tree_cond(iter, memcg, cond) {
1814 if (iter->oom_lock) {
1815 /*
1816 * this subtree of our hierarchy is already locked
1817 * so we cannot give a lock.
1818 */
1819 failed = iter;
1820 cond = false;
1821 } else
1822 iter->oom_lock = true;
1823 }
1824
1825 if (!failed)
1826 return true;
1827
1828 /*
1829 * OK, we failed to lock the whole subtree so we have to clean up
1830 * what we set up to the failing subtree
1831 */
1832 cond = true;
1833 for_each_mem_cgroup_tree_cond(iter, memcg, cond) {
1834 if (iter == failed) {
1835 cond = false;
1836 continue;
1837 }
1838 iter->oom_lock = false;
1839 }
1840 return false;
1841 }
1842
1843 /*
1844 * Has to be called with memcg_oom_lock
1845 */
1846 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1847 {
1848 struct mem_cgroup *iter;
1849
1850 for_each_mem_cgroup_tree(iter, memcg)
1851 iter->oom_lock = false;
1852 return 0;
1853 }
1854
1855 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1856 {
1857 struct mem_cgroup *iter;
1858
1859 for_each_mem_cgroup_tree(iter, memcg)
1860 atomic_inc(&iter->under_oom);
1861 }
1862
1863 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1864 {
1865 struct mem_cgroup *iter;
1866
1867 /*
1868 * When a new child is created while the hierarchy is under oom,
1869 * mem_cgroup_oom_lock() may not be called. We have to use
1870 * atomic_add_unless() here.
1871 */
1872 for_each_mem_cgroup_tree(iter, memcg)
1873 atomic_add_unless(&iter->under_oom, -1, 0);
1874 }
1875
1876 static DEFINE_SPINLOCK(memcg_oom_lock);
1877 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1878
1879 struct oom_wait_info {
1880 struct mem_cgroup *mem;
1881 wait_queue_t wait;
1882 };
1883
1884 static int memcg_oom_wake_function(wait_queue_t *wait,
1885 unsigned mode, int sync, void *arg)
1886 {
1887 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
1888 *oom_wait_memcg;
1889 struct oom_wait_info *oom_wait_info;
1890
1891 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1892 oom_wait_memcg = oom_wait_info->mem;
1893
1894 /*
1895 * Both of oom_wait_info->mem and wake_mem are stable under us.
1896 * Then we can use css_is_ancestor without taking care of RCU.
1897 */
1898 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1899 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1900 return 0;
1901 return autoremove_wake_function(wait, mode, sync, arg);
1902 }
1903
1904 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1905 {
1906 /* for filtering, pass "memcg" as argument. */
1907 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1908 }
1909
1910 static void memcg_oom_recover(struct mem_cgroup *memcg)
1911 {
1912 if (memcg && atomic_read(&memcg->under_oom))
1913 memcg_wakeup_oom(memcg);
1914 }
1915
1916 /*
1917 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1918 */
1919 bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1920 {
1921 struct oom_wait_info owait;
1922 bool locked, need_to_kill;
1923
1924 owait.mem = memcg;
1925 owait.wait.flags = 0;
1926 owait.wait.func = memcg_oom_wake_function;
1927 owait.wait.private = current;
1928 INIT_LIST_HEAD(&owait.wait.task_list);
1929 need_to_kill = true;
1930 mem_cgroup_mark_under_oom(memcg);
1931
1932 /* At first, try to OOM lock hierarchy under memcg.*/
1933 spin_lock(&memcg_oom_lock);
1934 locked = mem_cgroup_oom_lock(memcg);
1935 /*
1936 * Even if signal_pending(), we can't quit charge() loop without
1937 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1938 * under OOM is always welcomed, use TASK_KILLABLE here.
1939 */
1940 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1941 if (!locked || memcg->oom_kill_disable)
1942 need_to_kill = false;
1943 if (locked)
1944 mem_cgroup_oom_notify(memcg);
1945 spin_unlock(&memcg_oom_lock);
1946
1947 if (need_to_kill) {
1948 finish_wait(&memcg_oom_waitq, &owait.wait);
1949 mem_cgroup_out_of_memory(memcg, mask);
1950 } else {
1951 schedule();
1952 finish_wait(&memcg_oom_waitq, &owait.wait);
1953 }
1954 spin_lock(&memcg_oom_lock);
1955 if (locked)
1956 mem_cgroup_oom_unlock(memcg);
1957 memcg_wakeup_oom(memcg);
1958 spin_unlock(&memcg_oom_lock);
1959
1960 mem_cgroup_unmark_under_oom(memcg);
1961
1962 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1963 return false;
1964 /* Give chance to dying process */
1965 schedule_timeout_uninterruptible(1);
1966 return true;
1967 }
1968
1969 /*
1970 * Currently used to update mapped file statistics, but the routine can be
1971 * generalized to update other statistics as well.
1972 *
1973 * Notes: Race condition
1974 *
1975 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1976 * it tends to be costly. But considering some conditions, we doesn't need
1977 * to do so _always_.
1978 *
1979 * Considering "charge", lock_page_cgroup() is not required because all
1980 * file-stat operations happen after a page is attached to radix-tree. There
1981 * are no race with "charge".
1982 *
1983 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1984 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1985 * if there are race with "uncharge". Statistics itself is properly handled
1986 * by flags.
1987 *
1988 * Considering "move", this is an only case we see a race. To make the race
1989 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1990 * possibility of race condition. If there is, we take a lock.
1991 */
1992
1993 void mem_cgroup_update_page_stat(struct page *page,
1994 enum mem_cgroup_page_stat_item idx, int val)
1995 {
1996 struct mem_cgroup *memcg;
1997 struct page_cgroup *pc = lookup_page_cgroup(page);
1998 bool need_unlock = false;
1999 unsigned long uninitialized_var(flags);
2000
2001 if (unlikely(!pc))
2002 return;
2003
2004 rcu_read_lock();
2005 memcg = pc->mem_cgroup;
2006 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2007 goto out;
2008 /* pc->mem_cgroup is unstable ? */
2009 if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
2010 /* take a lock against to access pc->mem_cgroup */
2011 move_lock_page_cgroup(pc, &flags);
2012 need_unlock = true;
2013 memcg = pc->mem_cgroup;
2014 if (!memcg || !PageCgroupUsed(pc))
2015 goto out;
2016 }
2017
2018 switch (idx) {
2019 case MEMCG_NR_FILE_MAPPED:
2020 if (val > 0)
2021 SetPageCgroupFileMapped(pc);
2022 else if (!page_mapped(page))
2023 ClearPageCgroupFileMapped(pc);
2024 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2025 break;
2026 default:
2027 BUG();
2028 }
2029
2030 this_cpu_add(memcg->stat->count[idx], val);
2031
2032 out:
2033 if (unlikely(need_unlock))
2034 move_unlock_page_cgroup(pc, &flags);
2035 rcu_read_unlock();
2036 return;
2037 }
2038 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
2039
2040 /*
2041 * size of first charge trial. "32" comes from vmscan.c's magic value.
2042 * TODO: maybe necessary to use big numbers in big irons.
2043 */
2044 #define CHARGE_BATCH 32U
2045 struct memcg_stock_pcp {
2046 struct mem_cgroup *cached; /* this never be root cgroup */
2047 unsigned int nr_pages;
2048 struct work_struct work;
2049 unsigned long flags;
2050 #define FLUSHING_CACHED_CHARGE (0)
2051 };
2052 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2053 static DEFINE_MUTEX(percpu_charge_mutex);
2054
2055 /*
2056 * Try to consume stocked charge on this cpu. If success, one page is consumed
2057 * from local stock and true is returned. If the stock is 0 or charges from a
2058 * cgroup which is not current target, returns false. This stock will be
2059 * refilled.
2060 */
2061 static bool consume_stock(struct mem_cgroup *memcg)
2062 {
2063 struct memcg_stock_pcp *stock;
2064 bool ret = true;
2065
2066 stock = &get_cpu_var(memcg_stock);
2067 if (memcg == stock->cached && stock->nr_pages)
2068 stock->nr_pages--;
2069 else /* need to call res_counter_charge */
2070 ret = false;
2071 put_cpu_var(memcg_stock);
2072 return ret;
2073 }
2074
2075 /*
2076 * Returns stocks cached in percpu to res_counter and reset cached information.
2077 */
2078 static void drain_stock(struct memcg_stock_pcp *stock)
2079 {
2080 struct mem_cgroup *old = stock->cached;
2081
2082 if (stock->nr_pages) {
2083 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2084
2085 res_counter_uncharge(&old->res, bytes);
2086 if (do_swap_account)
2087 res_counter_uncharge(&old->memsw, bytes);
2088 stock->nr_pages = 0;
2089 }
2090 stock->cached = NULL;
2091 }
2092
2093 /*
2094 * This must be called under preempt disabled or must be called by
2095 * a thread which is pinned to local cpu.
2096 */
2097 static void drain_local_stock(struct work_struct *dummy)
2098 {
2099 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2100 drain_stock(stock);
2101 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2102 }
2103
2104 /*
2105 * Cache charges(val) which is from res_counter, to local per_cpu area.
2106 * This will be consumed by consume_stock() function, later.
2107 */
2108 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2109 {
2110 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2111
2112 if (stock->cached != memcg) { /* reset if necessary */
2113 drain_stock(stock);
2114 stock->cached = memcg;
2115 }
2116 stock->nr_pages += nr_pages;
2117 put_cpu_var(memcg_stock);
2118 }
2119
2120 /*
2121 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2122 * of the hierarchy under it. sync flag says whether we should block
2123 * until the work is done.
2124 */
2125 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2126 {
2127 int cpu, curcpu;
2128
2129 /* Notify other cpus that system-wide "drain" is running */
2130 get_online_cpus();
2131 curcpu = get_cpu();
2132 for_each_online_cpu(cpu) {
2133 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2134 struct mem_cgroup *memcg;
2135
2136 memcg = stock->cached;
2137 if (!memcg || !stock->nr_pages)
2138 continue;
2139 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2140 continue;
2141 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2142 if (cpu == curcpu)
2143 drain_local_stock(&stock->work);
2144 else
2145 schedule_work_on(cpu, &stock->work);
2146 }
2147 }
2148 put_cpu();
2149
2150 if (!sync)
2151 goto out;
2152
2153 for_each_online_cpu(cpu) {
2154 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2155 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2156 flush_work(&stock->work);
2157 }
2158 out:
2159 put_online_cpus();
2160 }
2161
2162 /*
2163 * Tries to drain stocked charges in other cpus. This function is asynchronous
2164 * and just put a work per cpu for draining localy on each cpu. Caller can
2165 * expects some charges will be back to res_counter later but cannot wait for
2166 * it.
2167 */
2168 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2169 {
2170 /*
2171 * If someone calls draining, avoid adding more kworker runs.
2172 */
2173 if (!mutex_trylock(&percpu_charge_mutex))
2174 return;
2175 drain_all_stock(root_memcg, false);
2176 mutex_unlock(&percpu_charge_mutex);
2177 }
2178
2179 /* This is a synchronous drain interface. */
2180 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2181 {
2182 /* called when force_empty is called */
2183 mutex_lock(&percpu_charge_mutex);
2184 drain_all_stock(root_memcg, true);
2185 mutex_unlock(&percpu_charge_mutex);
2186 }
2187
2188 /*
2189 * This function drains percpu counter value from DEAD cpu and
2190 * move it to local cpu. Note that this function can be preempted.
2191 */
2192 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2193 {
2194 int i;
2195
2196 spin_lock(&memcg->pcp_counter_lock);
2197 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2198 long x = per_cpu(memcg->stat->count[i], cpu);
2199
2200 per_cpu(memcg->stat->count[i], cpu) = 0;
2201 memcg->nocpu_base.count[i] += x;
2202 }
2203 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2204 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2205
2206 per_cpu(memcg->stat->events[i], cpu) = 0;
2207 memcg->nocpu_base.events[i] += x;
2208 }
2209 /* need to clear ON_MOVE value, works as a kind of lock. */
2210 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2211 spin_unlock(&memcg->pcp_counter_lock);
2212 }
2213
2214 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2215 {
2216 int idx = MEM_CGROUP_ON_MOVE;
2217
2218 spin_lock(&memcg->pcp_counter_lock);
2219 per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
2220 spin_unlock(&memcg->pcp_counter_lock);
2221 }
2222
2223 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2224 unsigned long action,
2225 void *hcpu)
2226 {
2227 int cpu = (unsigned long)hcpu;
2228 struct memcg_stock_pcp *stock;
2229 struct mem_cgroup *iter;
2230
2231 if ((action == CPU_ONLINE)) {
2232 for_each_mem_cgroup_all(iter)
2233 synchronize_mem_cgroup_on_move(iter, cpu);
2234 return NOTIFY_OK;
2235 }
2236
2237 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2238 return NOTIFY_OK;
2239
2240 for_each_mem_cgroup_all(iter)
2241 mem_cgroup_drain_pcp_counter(iter, cpu);
2242
2243 stock = &per_cpu(memcg_stock, cpu);
2244 drain_stock(stock);
2245 return NOTIFY_OK;
2246 }
2247
2248
2249 /* See __mem_cgroup_try_charge() for details */
2250 enum {
2251 CHARGE_OK, /* success */
2252 CHARGE_RETRY, /* need to retry but retry is not bad */
2253 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2254 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2255 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2256 };
2257
2258 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2259 unsigned int nr_pages, bool oom_check)
2260 {
2261 unsigned long csize = nr_pages * PAGE_SIZE;
2262 struct mem_cgroup *mem_over_limit;
2263 struct res_counter *fail_res;
2264 unsigned long flags = 0;
2265 int ret;
2266
2267 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2268
2269 if (likely(!ret)) {
2270 if (!do_swap_account)
2271 return CHARGE_OK;
2272 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2273 if (likely(!ret))
2274 return CHARGE_OK;
2275
2276 res_counter_uncharge(&memcg->res, csize);
2277 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2278 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2279 } else
2280 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2281 /*
2282 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2283 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2284 *
2285 * Never reclaim on behalf of optional batching, retry with a
2286 * single page instead.
2287 */
2288 if (nr_pages == CHARGE_BATCH)
2289 return CHARGE_RETRY;
2290
2291 if (!(gfp_mask & __GFP_WAIT))
2292 return CHARGE_WOULDBLOCK;
2293
2294 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2295 gfp_mask, flags, NULL);
2296 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2297 return CHARGE_RETRY;
2298 /*
2299 * Even though the limit is exceeded at this point, reclaim
2300 * may have been able to free some pages. Retry the charge
2301 * before killing the task.
2302 *
2303 * Only for regular pages, though: huge pages are rather
2304 * unlikely to succeed so close to the limit, and we fall back
2305 * to regular pages anyway in case of failure.
2306 */
2307 if (nr_pages == 1 && ret)
2308 return CHARGE_RETRY;
2309
2310 /*
2311 * At task move, charge accounts can be doubly counted. So, it's
2312 * better to wait until the end of task_move if something is going on.
2313 */
2314 if (mem_cgroup_wait_acct_move(mem_over_limit))
2315 return CHARGE_RETRY;
2316
2317 /* If we don't need to call oom-killer at el, return immediately */
2318 if (!oom_check)
2319 return CHARGE_NOMEM;
2320 /* check OOM */
2321 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2322 return CHARGE_OOM_DIE;
2323
2324 return CHARGE_RETRY;
2325 }
2326
2327 /*
2328 * Unlike exported interface, "oom" parameter is added. if oom==true,
2329 * oom-killer can be invoked.
2330 */
2331 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2332 gfp_t gfp_mask,
2333 unsigned int nr_pages,
2334 struct mem_cgroup **ptr,
2335 bool oom)
2336 {
2337 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2338 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2339 struct mem_cgroup *memcg = NULL;
2340 int ret;
2341
2342 /*
2343 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2344 * in system level. So, allow to go ahead dying process in addition to
2345 * MEMDIE process.
2346 */
2347 if (unlikely(test_thread_flag(TIF_MEMDIE)
2348 || fatal_signal_pending(current)))
2349 goto bypass;
2350
2351 /*
2352 * We always charge the cgroup the mm_struct belongs to.
2353 * The mm_struct's mem_cgroup changes on task migration if the
2354 * thread group leader migrates. It's possible that mm is not
2355 * set, if so charge the init_mm (happens for pagecache usage).
2356 */
2357 if (!*ptr && !mm)
2358 goto bypass;
2359 again:
2360 if (*ptr) { /* css should be a valid one */
2361 memcg = *ptr;
2362 VM_BUG_ON(css_is_removed(&memcg->css));
2363 if (mem_cgroup_is_root(memcg))
2364 goto done;
2365 if (nr_pages == 1 && consume_stock(memcg))
2366 goto done;
2367 css_get(&memcg->css);
2368 } else {
2369 struct task_struct *p;
2370
2371 rcu_read_lock();
2372 p = rcu_dereference(mm->owner);
2373 /*
2374 * Because we don't have task_lock(), "p" can exit.
2375 * In that case, "memcg" can point to root or p can be NULL with
2376 * race with swapoff. Then, we have small risk of mis-accouning.
2377 * But such kind of mis-account by race always happens because
2378 * we don't have cgroup_mutex(). It's overkill and we allo that
2379 * small race, here.
2380 * (*) swapoff at el will charge against mm-struct not against
2381 * task-struct. So, mm->owner can be NULL.
2382 */
2383 memcg = mem_cgroup_from_task(p);
2384 if (!memcg || mem_cgroup_is_root(memcg)) {
2385 rcu_read_unlock();
2386 goto done;
2387 }
2388 if (nr_pages == 1 && consume_stock(memcg)) {
2389 /*
2390 * It seems dagerous to access memcg without css_get().
2391 * But considering how consume_stok works, it's not
2392 * necessary. If consume_stock success, some charges
2393 * from this memcg are cached on this cpu. So, we
2394 * don't need to call css_get()/css_tryget() before
2395 * calling consume_stock().
2396 */
2397 rcu_read_unlock();
2398 goto done;
2399 }
2400 /* after here, we may be blocked. we need to get refcnt */
2401 if (!css_tryget(&memcg->css)) {
2402 rcu_read_unlock();
2403 goto again;
2404 }
2405 rcu_read_unlock();
2406 }
2407
2408 do {
2409 bool oom_check;
2410
2411 /* If killed, bypass charge */
2412 if (fatal_signal_pending(current)) {
2413 css_put(&memcg->css);
2414 goto bypass;
2415 }
2416
2417 oom_check = false;
2418 if (oom && !nr_oom_retries) {
2419 oom_check = true;
2420 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2421 }
2422
2423 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2424 switch (ret) {
2425 case CHARGE_OK:
2426 break;
2427 case CHARGE_RETRY: /* not in OOM situation but retry */
2428 batch = nr_pages;
2429 css_put(&memcg->css);
2430 memcg = NULL;
2431 goto again;
2432 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2433 css_put(&memcg->css);
2434 goto nomem;
2435 case CHARGE_NOMEM: /* OOM routine works */
2436 if (!oom) {
2437 css_put(&memcg->css);
2438 goto nomem;
2439 }
2440 /* If oom, we never return -ENOMEM */
2441 nr_oom_retries--;
2442 break;
2443 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2444 css_put(&memcg->css);
2445 goto bypass;
2446 }
2447 } while (ret != CHARGE_OK);
2448
2449 if (batch > nr_pages)
2450 refill_stock(memcg, batch - nr_pages);
2451 css_put(&memcg->css);
2452 done:
2453 *ptr = memcg;
2454 return 0;
2455 nomem:
2456 *ptr = NULL;
2457 return -ENOMEM;
2458 bypass:
2459 *ptr = NULL;
2460 return 0;
2461 }
2462
2463 /*
2464 * Somemtimes we have to undo a charge we got by try_charge().
2465 * This function is for that and do uncharge, put css's refcnt.
2466 * gotten by try_charge().
2467 */
2468 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2469 unsigned int nr_pages)
2470 {
2471 if (!mem_cgroup_is_root(memcg)) {
2472 unsigned long bytes = nr_pages * PAGE_SIZE;
2473
2474 res_counter_uncharge(&memcg->res, bytes);
2475 if (do_swap_account)
2476 res_counter_uncharge(&memcg->memsw, bytes);
2477 }
2478 }
2479
2480 /*
2481 * A helper function to get mem_cgroup from ID. must be called under
2482 * rcu_read_lock(). The caller must check css_is_removed() or some if
2483 * it's concern. (dropping refcnt from swap can be called against removed
2484 * memcg.)
2485 */
2486 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2487 {
2488 struct cgroup_subsys_state *css;
2489
2490 /* ID 0 is unused ID */
2491 if (!id)
2492 return NULL;
2493 css = css_lookup(&mem_cgroup_subsys, id);
2494 if (!css)
2495 return NULL;
2496 return container_of(css, struct mem_cgroup, css);
2497 }
2498
2499 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2500 {
2501 struct mem_cgroup *memcg = NULL;
2502 struct page_cgroup *pc;
2503 unsigned short id;
2504 swp_entry_t ent;
2505
2506 VM_BUG_ON(!PageLocked(page));
2507
2508 pc = lookup_page_cgroup(page);
2509 lock_page_cgroup(pc);
2510 if (PageCgroupUsed(pc)) {
2511 memcg = pc->mem_cgroup;
2512 if (memcg && !css_tryget(&memcg->css))
2513 memcg = NULL;
2514 } else if (PageSwapCache(page)) {
2515 ent.val = page_private(page);
2516 id = lookup_swap_cgroup(ent);
2517 rcu_read_lock();
2518 memcg = mem_cgroup_lookup(id);
2519 if (memcg && !css_tryget(&memcg->css))
2520 memcg = NULL;
2521 rcu_read_unlock();
2522 }
2523 unlock_page_cgroup(pc);
2524 return memcg;
2525 }
2526
2527 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2528 struct page *page,
2529 unsigned int nr_pages,
2530 struct page_cgroup *pc,
2531 enum charge_type ctype)
2532 {
2533 lock_page_cgroup(pc);
2534 if (unlikely(PageCgroupUsed(pc))) {
2535 unlock_page_cgroup(pc);
2536 __mem_cgroup_cancel_charge(memcg, nr_pages);
2537 return;
2538 }
2539 /*
2540 * we don't need page_cgroup_lock about tail pages, becase they are not
2541 * accessed by any other context at this point.
2542 */
2543 pc->mem_cgroup = memcg;
2544 /*
2545 * We access a page_cgroup asynchronously without lock_page_cgroup().
2546 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2547 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2548 * before USED bit, we need memory barrier here.
2549 * See mem_cgroup_add_lru_list(), etc.
2550 */
2551 smp_wmb();
2552 switch (ctype) {
2553 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2554 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2555 SetPageCgroupCache(pc);
2556 SetPageCgroupUsed(pc);
2557 break;
2558 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2559 ClearPageCgroupCache(pc);
2560 SetPageCgroupUsed(pc);
2561 break;
2562 default:
2563 break;
2564 }
2565
2566 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2567 unlock_page_cgroup(pc);
2568 /*
2569 * "charge_statistics" updated event counter. Then, check it.
2570 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2571 * if they exceeds softlimit.
2572 */
2573 memcg_check_events(memcg, page);
2574 }
2575
2576 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2577
2578 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2579 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2580 /*
2581 * Because tail pages are not marked as "used", set it. We're under
2582 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2583 */
2584 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2585 {
2586 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2587 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2588 unsigned long flags;
2589
2590 if (mem_cgroup_disabled())
2591 return;
2592 /*
2593 * We have no races with charge/uncharge but will have races with
2594 * page state accounting.
2595 */
2596 move_lock_page_cgroup(head_pc, &flags);
2597
2598 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2599 smp_wmb(); /* see __commit_charge() */
2600 if (PageCgroupAcctLRU(head_pc)) {
2601 enum lru_list lru;
2602 struct mem_cgroup_per_zone *mz;
2603
2604 /*
2605 * LRU flags cannot be copied because we need to add tail
2606 *.page to LRU by generic call and our hook will be called.
2607 * We hold lru_lock, then, reduce counter directly.
2608 */
2609 lru = page_lru(head);
2610 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2611 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2612 }
2613 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2614 move_unlock_page_cgroup(head_pc, &flags);
2615 }
2616 #endif
2617
2618 /**
2619 * mem_cgroup_move_account - move account of the page
2620 * @page: the page
2621 * @nr_pages: number of regular pages (>1 for huge pages)
2622 * @pc: page_cgroup of the page.
2623 * @from: mem_cgroup which the page is moved from.
2624 * @to: mem_cgroup which the page is moved to. @from != @to.
2625 * @uncharge: whether we should call uncharge and css_put against @from.
2626 *
2627 * The caller must confirm following.
2628 * - page is not on LRU (isolate_page() is useful.)
2629 * - compound_lock is held when nr_pages > 1
2630 *
2631 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2632 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2633 * true, this function does "uncharge" from old cgroup, but it doesn't if
2634 * @uncharge is false, so a caller should do "uncharge".
2635 */
2636 static int mem_cgroup_move_account(struct page *page,
2637 unsigned int nr_pages,
2638 struct page_cgroup *pc,
2639 struct mem_cgroup *from,
2640 struct mem_cgroup *to,
2641 bool uncharge)
2642 {
2643 unsigned long flags;
2644 int ret;
2645
2646 VM_BUG_ON(from == to);
2647 VM_BUG_ON(PageLRU(page));
2648 /*
2649 * The page is isolated from LRU. So, collapse function
2650 * will not handle this page. But page splitting can happen.
2651 * Do this check under compound_page_lock(). The caller should
2652 * hold it.
2653 */
2654 ret = -EBUSY;
2655 if (nr_pages > 1 && !PageTransHuge(page))
2656 goto out;
2657
2658 lock_page_cgroup(pc);
2659
2660 ret = -EINVAL;
2661 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2662 goto unlock;
2663
2664 move_lock_page_cgroup(pc, &flags);
2665
2666 if (PageCgroupFileMapped(pc)) {
2667 /* Update mapped_file data for mem_cgroup */
2668 preempt_disable();
2669 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2670 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2671 preempt_enable();
2672 }
2673 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2674 if (uncharge)
2675 /* This is not "cancel", but cancel_charge does all we need. */
2676 __mem_cgroup_cancel_charge(from, nr_pages);
2677
2678 /* caller should have done css_get */
2679 pc->mem_cgroup = to;
2680 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2681 /*
2682 * We charges against "to" which may not have any tasks. Then, "to"
2683 * can be under rmdir(). But in current implementation, caller of
2684 * this function is just force_empty() and move charge, so it's
2685 * guaranteed that "to" is never removed. So, we don't check rmdir
2686 * status here.
2687 */
2688 move_unlock_page_cgroup(pc, &flags);
2689 ret = 0;
2690 unlock:
2691 unlock_page_cgroup(pc);
2692 /*
2693 * check events
2694 */
2695 memcg_check_events(to, page);
2696 memcg_check_events(from, page);
2697 out:
2698 return ret;
2699 }
2700
2701 /*
2702 * move charges to its parent.
2703 */
2704
2705 static int mem_cgroup_move_parent(struct page *page,
2706 struct page_cgroup *pc,
2707 struct mem_cgroup *child,
2708 gfp_t gfp_mask)
2709 {
2710 struct cgroup *cg = child->css.cgroup;
2711 struct cgroup *pcg = cg->parent;
2712 struct mem_cgroup *parent;
2713 unsigned int nr_pages;
2714 unsigned long uninitialized_var(flags);
2715 int ret;
2716
2717 /* Is ROOT ? */
2718 if (!pcg)
2719 return -EINVAL;
2720
2721 ret = -EBUSY;
2722 if (!get_page_unless_zero(page))
2723 goto out;
2724 if (isolate_lru_page(page))
2725 goto put;
2726
2727 nr_pages = hpage_nr_pages(page);
2728
2729 parent = mem_cgroup_from_cont(pcg);
2730 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2731 if (ret || !parent)
2732 goto put_back;
2733
2734 if (nr_pages > 1)
2735 flags = compound_lock_irqsave(page);
2736
2737 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2738 if (ret)
2739 __mem_cgroup_cancel_charge(parent, nr_pages);
2740
2741 if (nr_pages > 1)
2742 compound_unlock_irqrestore(page, flags);
2743 put_back:
2744 putback_lru_page(page);
2745 put:
2746 put_page(page);
2747 out:
2748 return ret;
2749 }
2750
2751 /*
2752 * Charge the memory controller for page usage.
2753 * Return
2754 * 0 if the charge was successful
2755 * < 0 if the cgroup is over its limit
2756 */
2757 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2758 gfp_t gfp_mask, enum charge_type ctype)
2759 {
2760 struct mem_cgroup *memcg = NULL;
2761 unsigned int nr_pages = 1;
2762 struct page_cgroup *pc;
2763 bool oom = true;
2764 int ret;
2765
2766 if (PageTransHuge(page)) {
2767 nr_pages <<= compound_order(page);
2768 VM_BUG_ON(!PageTransHuge(page));
2769 /*
2770 * Never OOM-kill a process for a huge page. The
2771 * fault handler will fall back to regular pages.
2772 */
2773 oom = false;
2774 }
2775
2776 pc = lookup_page_cgroup(page);
2777 BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2778
2779 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2780 if (ret || !memcg)
2781 return ret;
2782
2783 __mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
2784 return 0;
2785 }
2786
2787 int mem_cgroup_newpage_charge(struct page *page,
2788 struct mm_struct *mm, gfp_t gfp_mask)
2789 {
2790 if (mem_cgroup_disabled())
2791 return 0;
2792 /*
2793 * If already mapped, we don't have to account.
2794 * If page cache, page->mapping has address_space.
2795 * But page->mapping may have out-of-use anon_vma pointer,
2796 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2797 * is NULL.
2798 */
2799 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2800 return 0;
2801 if (unlikely(!mm))
2802 mm = &init_mm;
2803 return mem_cgroup_charge_common(page, mm, gfp_mask,
2804 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2805 }
2806
2807 static void
2808 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2809 enum charge_type ctype);
2810
2811 static void
2812 __mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
2813 enum charge_type ctype)
2814 {
2815 struct page_cgroup *pc = lookup_page_cgroup(page);
2816 /*
2817 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2818 * is already on LRU. It means the page may on some other page_cgroup's
2819 * LRU. Take care of it.
2820 */
2821 mem_cgroup_lru_del_before_commit(page);
2822 __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
2823 mem_cgroup_lru_add_after_commit(page);
2824 return;
2825 }
2826
2827 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2828 gfp_t gfp_mask)
2829 {
2830 struct mem_cgroup *memcg = NULL;
2831 int ret;
2832
2833 if (mem_cgroup_disabled())
2834 return 0;
2835 if (PageCompound(page))
2836 return 0;
2837
2838 if (unlikely(!mm))
2839 mm = &init_mm;
2840
2841 if (page_is_file_cache(page)) {
2842 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &memcg, true);
2843 if (ret || !memcg)
2844 return ret;
2845
2846 /*
2847 * FUSE reuses pages without going through the final
2848 * put that would remove them from the LRU list, make
2849 * sure that they get relinked properly.
2850 */
2851 __mem_cgroup_commit_charge_lrucare(page, memcg,
2852 MEM_CGROUP_CHARGE_TYPE_CACHE);
2853 return ret;
2854 }
2855 /* shmem */
2856 if (PageSwapCache(page)) {
2857 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2858 if (!ret)
2859 __mem_cgroup_commit_charge_swapin(page, memcg,
2860 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2861 } else
2862 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2863 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2864
2865 return ret;
2866 }
2867
2868 /*
2869 * While swap-in, try_charge -> commit or cancel, the page is locked.
2870 * And when try_charge() successfully returns, one refcnt to memcg without
2871 * struct page_cgroup is acquired. This refcnt will be consumed by
2872 * "commit()" or removed by "cancel()"
2873 */
2874 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2875 struct page *page,
2876 gfp_t mask, struct mem_cgroup **ptr)
2877 {
2878 struct mem_cgroup *memcg;
2879 int ret;
2880
2881 *ptr = NULL;
2882
2883 if (mem_cgroup_disabled())
2884 return 0;
2885
2886 if (!do_swap_account)
2887 goto charge_cur_mm;
2888 /*
2889 * A racing thread's fault, or swapoff, may have already updated
2890 * the pte, and even removed page from swap cache: in those cases
2891 * do_swap_page()'s pte_same() test will fail; but there's also a
2892 * KSM case which does need to charge the page.
2893 */
2894 if (!PageSwapCache(page))
2895 goto charge_cur_mm;
2896 memcg = try_get_mem_cgroup_from_page(page);
2897 if (!memcg)
2898 goto charge_cur_mm;
2899 *ptr = memcg;
2900 ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2901 css_put(&memcg->css);
2902 return ret;
2903 charge_cur_mm:
2904 if (unlikely(!mm))
2905 mm = &init_mm;
2906 return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2907 }
2908
2909 static void
2910 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2911 enum charge_type ctype)
2912 {
2913 if (mem_cgroup_disabled())
2914 return;
2915 if (!ptr)
2916 return;
2917 cgroup_exclude_rmdir(&ptr->css);
2918
2919 __mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2920 /*
2921 * Now swap is on-memory. This means this page may be
2922 * counted both as mem and swap....double count.
2923 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2924 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2925 * may call delete_from_swap_cache() before reach here.
2926 */
2927 if (do_swap_account && PageSwapCache(page)) {
2928 swp_entry_t ent = {.val = page_private(page)};
2929 unsigned short id;
2930 struct mem_cgroup *memcg;
2931
2932 id = swap_cgroup_record(ent, 0);
2933 rcu_read_lock();
2934 memcg = mem_cgroup_lookup(id);
2935 if (memcg) {
2936 /*
2937 * This recorded memcg can be obsolete one. So, avoid
2938 * calling css_tryget
2939 */
2940 if (!mem_cgroup_is_root(memcg))
2941 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2942 mem_cgroup_swap_statistics(memcg, false);
2943 mem_cgroup_put(memcg);
2944 }
2945 rcu_read_unlock();
2946 }
2947 /*
2948 * At swapin, we may charge account against cgroup which has no tasks.
2949 * So, rmdir()->pre_destroy() can be called while we do this charge.
2950 * In that case, we need to call pre_destroy() again. check it here.
2951 */
2952 cgroup_release_and_wakeup_rmdir(&ptr->css);
2953 }
2954
2955 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2956 {
2957 __mem_cgroup_commit_charge_swapin(page, ptr,
2958 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2959 }
2960
2961 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2962 {
2963 if (mem_cgroup_disabled())
2964 return;
2965 if (!memcg)
2966 return;
2967 __mem_cgroup_cancel_charge(memcg, 1);
2968 }
2969
2970 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2971 unsigned int nr_pages,
2972 const enum charge_type ctype)
2973 {
2974 struct memcg_batch_info *batch = NULL;
2975 bool uncharge_memsw = true;
2976
2977 /* If swapout, usage of swap doesn't decrease */
2978 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2979 uncharge_memsw = false;
2980
2981 batch = &current->memcg_batch;
2982 /*
2983 * In usual, we do css_get() when we remember memcg pointer.
2984 * But in this case, we keep res->usage until end of a series of
2985 * uncharges. Then, it's ok to ignore memcg's refcnt.
2986 */
2987 if (!batch->memcg)
2988 batch->memcg = memcg;
2989 /*
2990 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2991 * In those cases, all pages freed continuously can be expected to be in
2992 * the same cgroup and we have chance to coalesce uncharges.
2993 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2994 * because we want to do uncharge as soon as possible.
2995 */
2996
2997 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2998 goto direct_uncharge;
2999
3000 if (nr_pages > 1)
3001 goto direct_uncharge;
3002
3003 /*
3004 * In typical case, batch->memcg == mem. This means we can
3005 * merge a series of uncharges to an uncharge of res_counter.
3006 * If not, we uncharge res_counter ony by one.
3007 */
3008 if (batch->memcg != memcg)
3009 goto direct_uncharge;
3010 /* remember freed charge and uncharge it later */
3011 batch->nr_pages++;
3012 if (uncharge_memsw)
3013 batch->memsw_nr_pages++;
3014 return;
3015 direct_uncharge:
3016 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3017 if (uncharge_memsw)
3018 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3019 if (unlikely(batch->memcg != memcg))
3020 memcg_oom_recover(memcg);
3021 return;
3022 }
3023
3024 /*
3025 * uncharge if !page_mapped(page)
3026 */
3027 static struct mem_cgroup *
3028 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
3029 {
3030 struct mem_cgroup *memcg = NULL;
3031 unsigned int nr_pages = 1;
3032 struct page_cgroup *pc;
3033
3034 if (mem_cgroup_disabled())
3035 return NULL;
3036
3037 if (PageSwapCache(page))
3038 return NULL;
3039
3040 if (PageTransHuge(page)) {
3041 nr_pages <<= compound_order(page);
3042 VM_BUG_ON(!PageTransHuge(page));
3043 }
3044 /*
3045 * Check if our page_cgroup is valid
3046 */
3047 pc = lookup_page_cgroup(page);
3048 if (unlikely(!pc || !PageCgroupUsed(pc)))
3049 return NULL;
3050
3051 lock_page_cgroup(pc);
3052
3053 memcg = pc->mem_cgroup;
3054
3055 if (!PageCgroupUsed(pc))
3056 goto unlock_out;
3057
3058 switch (ctype) {
3059 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
3060 case MEM_CGROUP_CHARGE_TYPE_DROP:
3061 /* See mem_cgroup_prepare_migration() */
3062 if (page_mapped(page) || PageCgroupMigration(pc))
3063 goto unlock_out;
3064 break;
3065 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3066 if (!PageAnon(page)) { /* Shared memory */
3067 if (page->mapping && !page_is_file_cache(page))
3068 goto unlock_out;
3069 } else if (page_mapped(page)) /* Anon */
3070 goto unlock_out;
3071 break;
3072 default:
3073 break;
3074 }
3075
3076 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
3077
3078 ClearPageCgroupUsed(pc);
3079 /*
3080 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3081 * freed from LRU. This is safe because uncharged page is expected not
3082 * to be reused (freed soon). Exception is SwapCache, it's handled by
3083 * special functions.
3084 */
3085
3086 unlock_page_cgroup(pc);
3087 /*
3088 * even after unlock, we have memcg->res.usage here and this memcg
3089 * will never be freed.
3090 */
3091 memcg_check_events(memcg, page);
3092 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3093 mem_cgroup_swap_statistics(memcg, true);
3094 mem_cgroup_get(memcg);
3095 }
3096 if (!mem_cgroup_is_root(memcg))
3097 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3098
3099 return memcg;
3100
3101 unlock_out:
3102 unlock_page_cgroup(pc);
3103 return NULL;
3104 }
3105
3106 void mem_cgroup_uncharge_page(struct page *page)
3107 {
3108 /* early check. */
3109 if (page_mapped(page))
3110 return;
3111 if (page->mapping && !PageAnon(page))
3112 return;
3113 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3114 }
3115
3116 void mem_cgroup_uncharge_cache_page(struct page *page)
3117 {
3118 VM_BUG_ON(page_mapped(page));
3119 VM_BUG_ON(page->mapping);
3120 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3121 }
3122
3123 /*
3124 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3125 * In that cases, pages are freed continuously and we can expect pages
3126 * are in the same memcg. All these calls itself limits the number of
3127 * pages freed at once, then uncharge_start/end() is called properly.
3128 * This may be called prural(2) times in a context,
3129 */
3130
3131 void mem_cgroup_uncharge_start(void)
3132 {
3133 current->memcg_batch.do_batch++;
3134 /* We can do nest. */
3135 if (current->memcg_batch.do_batch == 1) {
3136 current->memcg_batch.memcg = NULL;
3137 current->memcg_batch.nr_pages = 0;
3138 current->memcg_batch.memsw_nr_pages = 0;
3139 }
3140 }
3141
3142 void mem_cgroup_uncharge_end(void)
3143 {
3144 struct memcg_batch_info *batch = &current->memcg_batch;
3145
3146 if (!batch->do_batch)
3147 return;
3148
3149 batch->do_batch--;
3150 if (batch->do_batch) /* If stacked, do nothing. */
3151 return;
3152
3153 if (!batch->memcg)
3154 return;
3155 /*
3156 * This "batch->memcg" is valid without any css_get/put etc...
3157 * bacause we hide charges behind us.
3158 */
3159 if (batch->nr_pages)
3160 res_counter_uncharge(&batch->memcg->res,
3161 batch->nr_pages * PAGE_SIZE);
3162 if (batch->memsw_nr_pages)
3163 res_counter_uncharge(&batch->memcg->memsw,
3164 batch->memsw_nr_pages * PAGE_SIZE);
3165 memcg_oom_recover(batch->memcg);
3166 /* forget this pointer (for sanity check) */
3167 batch->memcg = NULL;
3168 }
3169
3170 #ifdef CONFIG_SWAP
3171 /*
3172 * called after __delete_from_swap_cache() and drop "page" account.
3173 * memcg information is recorded to swap_cgroup of "ent"
3174 */
3175 void
3176 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3177 {
3178 struct mem_cgroup *memcg;
3179 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3180
3181 if (!swapout) /* this was a swap cache but the swap is unused ! */
3182 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3183
3184 memcg = __mem_cgroup_uncharge_common(page, ctype);
3185
3186 /*
3187 * record memcg information, if swapout && memcg != NULL,
3188 * mem_cgroup_get() was called in uncharge().
3189 */
3190 if (do_swap_account && swapout && memcg)
3191 swap_cgroup_record(ent, css_id(&memcg->css));
3192 }
3193 #endif
3194
3195 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3196 /*
3197 * called from swap_entry_free(). remove record in swap_cgroup and
3198 * uncharge "memsw" account.
3199 */
3200 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3201 {
3202 struct mem_cgroup *memcg;
3203 unsigned short id;
3204
3205 if (!do_swap_account)
3206 return;
3207
3208 id = swap_cgroup_record(ent, 0);
3209 rcu_read_lock();
3210 memcg = mem_cgroup_lookup(id);
3211 if (memcg) {
3212 /*
3213 * We uncharge this because swap is freed.
3214 * This memcg can be obsolete one. We avoid calling css_tryget
3215 */
3216 if (!mem_cgroup_is_root(memcg))
3217 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3218 mem_cgroup_swap_statistics(memcg, false);
3219 mem_cgroup_put(memcg);
3220 }
3221 rcu_read_unlock();
3222 }
3223
3224 /**
3225 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3226 * @entry: swap entry to be moved
3227 * @from: mem_cgroup which the entry is moved from
3228 * @to: mem_cgroup which the entry is moved to
3229 * @need_fixup: whether we should fixup res_counters and refcounts.
3230 *
3231 * It succeeds only when the swap_cgroup's record for this entry is the same
3232 * as the mem_cgroup's id of @from.
3233 *
3234 * Returns 0 on success, -EINVAL on failure.
3235 *
3236 * The caller must have charged to @to, IOW, called res_counter_charge() about
3237 * both res and memsw, and called css_get().
3238 */
3239 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3240 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3241 {
3242 unsigned short old_id, new_id;
3243
3244 old_id = css_id(&from->css);
3245 new_id = css_id(&to->css);
3246
3247 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3248 mem_cgroup_swap_statistics(from, false);
3249 mem_cgroup_swap_statistics(to, true);
3250 /*
3251 * This function is only called from task migration context now.
3252 * It postpones res_counter and refcount handling till the end
3253 * of task migration(mem_cgroup_clear_mc()) for performance
3254 * improvement. But we cannot postpone mem_cgroup_get(to)
3255 * because if the process that has been moved to @to does
3256 * swap-in, the refcount of @to might be decreased to 0.
3257 */
3258 mem_cgroup_get(to);
3259 if (need_fixup) {
3260 if (!mem_cgroup_is_root(from))
3261 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3262 mem_cgroup_put(from);
3263 /*
3264 * we charged both to->res and to->memsw, so we should
3265 * uncharge to->res.
3266 */
3267 if (!mem_cgroup_is_root(to))
3268 res_counter_uncharge(&to->res, PAGE_SIZE);
3269 }
3270 return 0;
3271 }
3272 return -EINVAL;
3273 }
3274 #else
3275 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3276 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3277 {
3278 return -EINVAL;
3279 }
3280 #endif
3281
3282 /*
3283 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3284 * page belongs to.
3285 */
3286 int mem_cgroup_prepare_migration(struct page *page,
3287 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3288 {
3289 struct mem_cgroup *memcg = NULL;
3290 struct page_cgroup *pc;
3291 enum charge_type ctype;
3292 int ret = 0;
3293
3294 *ptr = NULL;
3295
3296 VM_BUG_ON(PageTransHuge(page));
3297 if (mem_cgroup_disabled())
3298 return 0;
3299
3300 pc = lookup_page_cgroup(page);
3301 lock_page_cgroup(pc);
3302 if (PageCgroupUsed(pc)) {
3303 memcg = pc->mem_cgroup;
3304 css_get(&memcg->css);
3305 /*
3306 * At migrating an anonymous page, its mapcount goes down
3307 * to 0 and uncharge() will be called. But, even if it's fully
3308 * unmapped, migration may fail and this page has to be
3309 * charged again. We set MIGRATION flag here and delay uncharge
3310 * until end_migration() is called
3311 *
3312 * Corner Case Thinking
3313 * A)
3314 * When the old page was mapped as Anon and it's unmap-and-freed
3315 * while migration was ongoing.
3316 * If unmap finds the old page, uncharge() of it will be delayed
3317 * until end_migration(). If unmap finds a new page, it's
3318 * uncharged when it make mapcount to be 1->0. If unmap code
3319 * finds swap_migration_entry, the new page will not be mapped
3320 * and end_migration() will find it(mapcount==0).
3321 *
3322 * B)
3323 * When the old page was mapped but migraion fails, the kernel
3324 * remaps it. A charge for it is kept by MIGRATION flag even
3325 * if mapcount goes down to 0. We can do remap successfully
3326 * without charging it again.
3327 *
3328 * C)
3329 * The "old" page is under lock_page() until the end of
3330 * migration, so, the old page itself will not be swapped-out.
3331 * If the new page is swapped out before end_migraton, our
3332 * hook to usual swap-out path will catch the event.
3333 */
3334 if (PageAnon(page))
3335 SetPageCgroupMigration(pc);
3336 }
3337 unlock_page_cgroup(pc);
3338 /*
3339 * If the page is not charged at this point,
3340 * we return here.
3341 */
3342 if (!memcg)
3343 return 0;
3344
3345 *ptr = memcg;
3346 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3347 css_put(&memcg->css);/* drop extra refcnt */
3348 if (ret || *ptr == NULL) {
3349 if (PageAnon(page)) {
3350 lock_page_cgroup(pc);
3351 ClearPageCgroupMigration(pc);
3352 unlock_page_cgroup(pc);
3353 /*
3354 * The old page may be fully unmapped while we kept it.
3355 */
3356 mem_cgroup_uncharge_page(page);
3357 }
3358 return -ENOMEM;
3359 }
3360 /*
3361 * We charge new page before it's used/mapped. So, even if unlock_page()
3362 * is called before end_migration, we can catch all events on this new
3363 * page. In the case new page is migrated but not remapped, new page's
3364 * mapcount will be finally 0 and we call uncharge in end_migration().
3365 */
3366 pc = lookup_page_cgroup(newpage);
3367 if (PageAnon(page))
3368 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3369 else if (page_is_file_cache(page))
3370 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3371 else
3372 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3373 __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
3374 return ret;
3375 }
3376
3377 /* remove redundant charge if migration failed*/
3378 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3379 struct page *oldpage, struct page *newpage, bool migration_ok)
3380 {
3381 struct page *used, *unused;
3382 struct page_cgroup *pc;
3383
3384 if (!memcg)
3385 return;
3386 /* blocks rmdir() */
3387 cgroup_exclude_rmdir(&memcg->css);
3388 if (!migration_ok) {
3389 used = oldpage;
3390 unused = newpage;
3391 } else {
3392 used = newpage;
3393 unused = oldpage;
3394 }
3395 /*
3396 * We disallowed uncharge of pages under migration because mapcount
3397 * of the page goes down to zero, temporarly.
3398 * Clear the flag and check the page should be charged.
3399 */
3400 pc = lookup_page_cgroup(oldpage);
3401 lock_page_cgroup(pc);
3402 ClearPageCgroupMigration(pc);
3403 unlock_page_cgroup(pc);
3404
3405 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3406
3407 /*
3408 * If a page is a file cache, radix-tree replacement is very atomic
3409 * and we can skip this check. When it was an Anon page, its mapcount
3410 * goes down to 0. But because we added MIGRATION flage, it's not
3411 * uncharged yet. There are several case but page->mapcount check
3412 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3413 * check. (see prepare_charge() also)
3414 */
3415 if (PageAnon(used))
3416 mem_cgroup_uncharge_page(used);
3417 /*
3418 * At migration, we may charge account against cgroup which has no
3419 * tasks.
3420 * So, rmdir()->pre_destroy() can be called while we do this charge.
3421 * In that case, we need to call pre_destroy() again. check it here.
3422 */
3423 cgroup_release_and_wakeup_rmdir(&memcg->css);
3424 }
3425
3426 #ifdef CONFIG_DEBUG_VM
3427 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3428 {
3429 struct page_cgroup *pc;
3430
3431 pc = lookup_page_cgroup(page);
3432 if (likely(pc) && PageCgroupUsed(pc))
3433 return pc;
3434 return NULL;
3435 }
3436
3437 bool mem_cgroup_bad_page_check(struct page *page)
3438 {
3439 if (mem_cgroup_disabled())
3440 return false;
3441
3442 return lookup_page_cgroup_used(page) != NULL;
3443 }
3444
3445 void mem_cgroup_print_bad_page(struct page *page)
3446 {
3447 struct page_cgroup *pc;
3448
3449 pc = lookup_page_cgroup_used(page);
3450 if (pc) {
3451 int ret = -1;
3452 char *path;
3453
3454 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3455 pc, pc->flags, pc->mem_cgroup);
3456
3457 path = kmalloc(PATH_MAX, GFP_KERNEL);
3458 if (path) {
3459 rcu_read_lock();
3460 ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3461 path, PATH_MAX);
3462 rcu_read_unlock();
3463 }
3464
3465 printk(KERN_CONT "(%s)\n",
3466 (ret < 0) ? "cannot get the path" : path);
3467 kfree(path);
3468 }
3469 }
3470 #endif
3471
3472 static DEFINE_MUTEX(set_limit_mutex);
3473
3474 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3475 unsigned long long val)
3476 {
3477 int retry_count;
3478 u64 memswlimit, memlimit;
3479 int ret = 0;
3480 int children = mem_cgroup_count_children(memcg);
3481 u64 curusage, oldusage;
3482 int enlarge;
3483
3484 /*
3485 * For keeping hierarchical_reclaim simple, how long we should retry
3486 * is depends on callers. We set our retry-count to be function
3487 * of # of children which we should visit in this loop.
3488 */
3489 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3490
3491 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3492
3493 enlarge = 0;
3494 while (retry_count) {
3495 if (signal_pending(current)) {
3496 ret = -EINTR;
3497 break;
3498 }
3499 /*
3500 * Rather than hide all in some function, I do this in
3501 * open coded manner. You see what this really does.
3502 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3503 */
3504 mutex_lock(&set_limit_mutex);
3505 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3506 if (memswlimit < val) {
3507 ret = -EINVAL;
3508 mutex_unlock(&set_limit_mutex);
3509 break;
3510 }
3511
3512 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3513 if (memlimit < val)
3514 enlarge = 1;
3515
3516 ret = res_counter_set_limit(&memcg->res, val);
3517 if (!ret) {
3518 if (memswlimit == val)
3519 memcg->memsw_is_minimum = true;
3520 else
3521 memcg->memsw_is_minimum = false;
3522 }
3523 mutex_unlock(&set_limit_mutex);
3524
3525 if (!ret)
3526 break;
3527
3528 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3529 MEM_CGROUP_RECLAIM_SHRINK,
3530 NULL);
3531 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3532 /* Usage is reduced ? */
3533 if (curusage >= oldusage)
3534 retry_count--;
3535 else
3536 oldusage = curusage;
3537 }
3538 if (!ret && enlarge)
3539 memcg_oom_recover(memcg);
3540
3541 return ret;
3542 }
3543
3544 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3545 unsigned long long val)
3546 {
3547 int retry_count;
3548 u64 memlimit, memswlimit, oldusage, curusage;
3549 int children = mem_cgroup_count_children(memcg);
3550 int ret = -EBUSY;
3551 int enlarge = 0;
3552
3553 /* see mem_cgroup_resize_res_limit */
3554 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3555 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3556 while (retry_count) {
3557 if (signal_pending(current)) {
3558 ret = -EINTR;
3559 break;
3560 }
3561 /*
3562 * Rather than hide all in some function, I do this in
3563 * open coded manner. You see what this really does.
3564 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3565 */
3566 mutex_lock(&set_limit_mutex);
3567 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3568 if (memlimit > val) {
3569 ret = -EINVAL;
3570 mutex_unlock(&set_limit_mutex);
3571 break;
3572 }
3573 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3574 if (memswlimit < val)
3575 enlarge = 1;
3576 ret = res_counter_set_limit(&memcg->memsw, val);
3577 if (!ret) {
3578 if (memlimit == val)
3579 memcg->memsw_is_minimum = true;
3580 else
3581 memcg->memsw_is_minimum = false;
3582 }
3583 mutex_unlock(&set_limit_mutex);
3584
3585 if (!ret)
3586 break;
3587
3588 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3589 MEM_CGROUP_RECLAIM_NOSWAP |
3590 MEM_CGROUP_RECLAIM_SHRINK,
3591 NULL);
3592 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3593 /* Usage is reduced ? */
3594 if (curusage >= oldusage)
3595 retry_count--;
3596 else
3597 oldusage = curusage;
3598 }
3599 if (!ret && enlarge)
3600 memcg_oom_recover(memcg);
3601 return ret;
3602 }
3603
3604 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3605 gfp_t gfp_mask,
3606 unsigned long *total_scanned)
3607 {
3608 unsigned long nr_reclaimed = 0;
3609 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3610 unsigned long reclaimed;
3611 int loop = 0;
3612 struct mem_cgroup_tree_per_zone *mctz;
3613 unsigned long long excess;
3614 unsigned long nr_scanned;
3615
3616 if (order > 0)
3617 return 0;
3618
3619 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3620 /*
3621 * This loop can run a while, specially if mem_cgroup's continuously
3622 * keep exceeding their soft limit and putting the system under
3623 * pressure
3624 */
3625 do {
3626 if (next_mz)
3627 mz = next_mz;
3628 else
3629 mz = mem_cgroup_largest_soft_limit_node(mctz);
3630 if (!mz)
3631 break;
3632
3633 nr_scanned = 0;
3634 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3635 gfp_mask,
3636 MEM_CGROUP_RECLAIM_SOFT,
3637 &nr_scanned);
3638 nr_reclaimed += reclaimed;
3639 *total_scanned += nr_scanned;
3640 spin_lock(&mctz->lock);
3641
3642 /*
3643 * If we failed to reclaim anything from this memory cgroup
3644 * it is time to move on to the next cgroup
3645 */
3646 next_mz = NULL;
3647 if (!reclaimed) {
3648 do {
3649 /*
3650 * Loop until we find yet another one.
3651 *
3652 * By the time we get the soft_limit lock
3653 * again, someone might have aded the
3654 * group back on the RB tree. Iterate to
3655 * make sure we get a different mem.
3656 * mem_cgroup_largest_soft_limit_node returns
3657 * NULL if no other cgroup is present on
3658 * the tree
3659 */
3660 next_mz =
3661 __mem_cgroup_largest_soft_limit_node(mctz);
3662 if (next_mz == mz)
3663 css_put(&next_mz->mem->css);
3664 else /* next_mz == NULL or other memcg */
3665 break;
3666 } while (1);
3667 }
3668 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3669 excess = res_counter_soft_limit_excess(&mz->mem->res);
3670 /*
3671 * One school of thought says that we should not add
3672 * back the node to the tree if reclaim returns 0.
3673 * But our reclaim could return 0, simply because due
3674 * to priority we are exposing a smaller subset of
3675 * memory to reclaim from. Consider this as a longer
3676 * term TODO.
3677 */
3678 /* If excess == 0, no tree ops */
3679 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3680 spin_unlock(&mctz->lock);
3681 css_put(&mz->mem->css);
3682 loop++;
3683 /*
3684 * Could not reclaim anything and there are no more
3685 * mem cgroups to try or we seem to be looping without
3686 * reclaiming anything.
3687 */
3688 if (!nr_reclaimed &&
3689 (next_mz == NULL ||
3690 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3691 break;
3692 } while (!nr_reclaimed);
3693 if (next_mz)
3694 css_put(&next_mz->mem->css);
3695 return nr_reclaimed;
3696 }
3697
3698 /*
3699 * This routine traverse page_cgroup in given list and drop them all.
3700 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3701 */
3702 static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3703 int node, int zid, enum lru_list lru)
3704 {
3705 struct zone *zone;
3706 struct mem_cgroup_per_zone *mz;
3707 struct page_cgroup *pc, *busy;
3708 unsigned long flags, loop;
3709 struct list_head *list;
3710 int ret = 0;
3711
3712 zone = &NODE_DATA(node)->node_zones[zid];
3713 mz = mem_cgroup_zoneinfo(memcg, node, zid);
3714 list = &mz->lists[lru];
3715
3716 loop = MEM_CGROUP_ZSTAT(mz, lru);
3717 /* give some margin against EBUSY etc...*/
3718 loop += 256;
3719 busy = NULL;
3720 while (loop--) {
3721 struct page *page;
3722
3723 ret = 0;
3724 spin_lock_irqsave(&zone->lru_lock, flags);
3725 if (list_empty(list)) {
3726 spin_unlock_irqrestore(&zone->lru_lock, flags);
3727 break;
3728 }
3729 pc = list_entry(list->prev, struct page_cgroup, lru);
3730 if (busy == pc) {
3731 list_move(&pc->lru, list);
3732 busy = NULL;
3733 spin_unlock_irqrestore(&zone->lru_lock, flags);
3734 continue;
3735 }
3736 spin_unlock_irqrestore(&zone->lru_lock, flags);
3737
3738 page = lookup_cgroup_page(pc);
3739
3740 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3741 if (ret == -ENOMEM)
3742 break;
3743
3744 if (ret == -EBUSY || ret == -EINVAL) {
3745 /* found lock contention or "pc" is obsolete. */
3746 busy = pc;
3747 cond_resched();
3748 } else
3749 busy = NULL;
3750 }
3751
3752 if (!ret && !list_empty(list))
3753 return -EBUSY;
3754 return ret;
3755 }
3756
3757 /*
3758 * make mem_cgroup's charge to be 0 if there is no task.
3759 * This enables deleting this mem_cgroup.
3760 */
3761 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3762 {
3763 int ret;
3764 int node, zid, shrink;
3765 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3766 struct cgroup *cgrp = memcg->css.cgroup;
3767
3768 css_get(&memcg->css);
3769
3770 shrink = 0;
3771 /* should free all ? */
3772 if (free_all)
3773 goto try_to_free;
3774 move_account:
3775 do {
3776 ret = -EBUSY;
3777 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3778 goto out;
3779 ret = -EINTR;
3780 if (signal_pending(current))
3781 goto out;
3782 /* This is for making all *used* pages to be on LRU. */
3783 lru_add_drain_all();
3784 drain_all_stock_sync(memcg);
3785 ret = 0;
3786 mem_cgroup_start_move(memcg);
3787 for_each_node_state(node, N_HIGH_MEMORY) {
3788 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3789 enum lru_list l;
3790 for_each_lru(l) {
3791 ret = mem_cgroup_force_empty_list(memcg,
3792 node, zid, l);
3793 if (ret)
3794 break;
3795 }
3796 }
3797 if (ret)
3798 break;
3799 }
3800 mem_cgroup_end_move(memcg);
3801 memcg_oom_recover(memcg);
3802 /* it seems parent cgroup doesn't have enough mem */
3803 if (ret == -ENOMEM)
3804 goto try_to_free;
3805 cond_resched();
3806 /* "ret" should also be checked to ensure all lists are empty. */
3807 } while (memcg->res.usage > 0 || ret);
3808 out:
3809 css_put(&memcg->css);
3810 return ret;
3811
3812 try_to_free:
3813 /* returns EBUSY if there is a task or if we come here twice. */
3814 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3815 ret = -EBUSY;
3816 goto out;
3817 }
3818 /* we call try-to-free pages for make this cgroup empty */
3819 lru_add_drain_all();
3820 /* try to free all pages in this cgroup */
3821 shrink = 1;
3822 while (nr_retries && memcg->res.usage > 0) {
3823 int progress;
3824
3825 if (signal_pending(current)) {
3826 ret = -EINTR;
3827 goto out;
3828 }
3829 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3830 false);
3831 if (!progress) {
3832 nr_retries--;
3833 /* maybe some writeback is necessary */
3834 congestion_wait(BLK_RW_ASYNC, HZ/10);
3835 }
3836
3837 }
3838 lru_add_drain();
3839 /* try move_account...there may be some *locked* pages. */
3840 goto move_account;
3841 }
3842
3843 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3844 {
3845 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3846 }
3847
3848
3849 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3850 {
3851 return mem_cgroup_from_cont(cont)->use_hierarchy;
3852 }
3853
3854 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3855 u64 val)
3856 {
3857 int retval = 0;
3858 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3859 struct cgroup *parent = cont->parent;
3860 struct mem_cgroup *parent_memcg = NULL;
3861
3862 if (parent)
3863 parent_memcg = mem_cgroup_from_cont(parent);
3864
3865 cgroup_lock();
3866 /*
3867 * If parent's use_hierarchy is set, we can't make any modifications
3868 * in the child subtrees. If it is unset, then the change can
3869 * occur, provided the current cgroup has no children.
3870 *
3871 * For the root cgroup, parent_mem is NULL, we allow value to be
3872 * set if there are no children.
3873 */
3874 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3875 (val == 1 || val == 0)) {
3876 if (list_empty(&cont->children))
3877 memcg->use_hierarchy = val;
3878 else
3879 retval = -EBUSY;
3880 } else
3881 retval = -EINVAL;
3882 cgroup_unlock();
3883
3884 return retval;
3885 }
3886
3887
3888 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3889 enum mem_cgroup_stat_index idx)
3890 {
3891 struct mem_cgroup *iter;
3892 long val = 0;
3893
3894 /* Per-cpu values can be negative, use a signed accumulator */
3895 for_each_mem_cgroup_tree(iter, memcg)
3896 val += mem_cgroup_read_stat(iter, idx);
3897
3898 if (val < 0) /* race ? */
3899 val = 0;
3900 return val;
3901 }
3902
3903 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3904 {
3905 u64 val;
3906
3907 if (!mem_cgroup_is_root(memcg)) {
3908 if (!swap)
3909 return res_counter_read_u64(&memcg->res, RES_USAGE);
3910 else
3911 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3912 }
3913
3914 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3915 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3916
3917 if (swap)
3918 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3919
3920 return val << PAGE_SHIFT;
3921 }
3922
3923 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3924 {
3925 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3926 u64 val;
3927 int type, name;
3928
3929 type = MEMFILE_TYPE(cft->private);
3930 name = MEMFILE_ATTR(cft->private);
3931 switch (type) {
3932 case _MEM:
3933 if (name == RES_USAGE)
3934 val = mem_cgroup_usage(memcg, false);
3935 else
3936 val = res_counter_read_u64(&memcg->res, name);
3937 break;
3938 case _MEMSWAP:
3939 if (name == RES_USAGE)
3940 val = mem_cgroup_usage(memcg, true);
3941 else
3942 val = res_counter_read_u64(&memcg->memsw, name);
3943 break;
3944 default:
3945 BUG();
3946 break;
3947 }
3948 return val;
3949 }
3950 /*
3951 * The user of this function is...
3952 * RES_LIMIT.
3953 */
3954 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3955 const char *buffer)
3956 {
3957 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3958 int type, name;
3959 unsigned long long val;
3960 int ret;
3961
3962 type = MEMFILE_TYPE(cft->private);
3963 name = MEMFILE_ATTR(cft->private);
3964 switch (name) {
3965 case RES_LIMIT:
3966 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3967 ret = -EINVAL;
3968 break;
3969 }
3970 /* This function does all necessary parse...reuse it */
3971 ret = res_counter_memparse_write_strategy(buffer, &val);
3972 if (ret)
3973 break;
3974 if (type == _MEM)
3975 ret = mem_cgroup_resize_limit(memcg, val);
3976 else
3977 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3978 break;
3979 case RES_SOFT_LIMIT:
3980 ret = res_counter_memparse_write_strategy(buffer, &val);
3981 if (ret)
3982 break;
3983 /*
3984 * For memsw, soft limits are hard to implement in terms
3985 * of semantics, for now, we support soft limits for
3986 * control without swap
3987 */
3988 if (type == _MEM)
3989 ret = res_counter_set_soft_limit(&memcg->res, val);
3990 else
3991 ret = -EINVAL;
3992 break;
3993 default:
3994 ret = -EINVAL; /* should be BUG() ? */
3995 break;
3996 }
3997 return ret;
3998 }
3999
4000 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4001 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4002 {
4003 struct cgroup *cgroup;
4004 unsigned long long min_limit, min_memsw_limit, tmp;
4005
4006 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4007 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4008 cgroup = memcg->css.cgroup;
4009 if (!memcg->use_hierarchy)
4010 goto out;
4011
4012 while (cgroup->parent) {
4013 cgroup = cgroup->parent;
4014 memcg = mem_cgroup_from_cont(cgroup);
4015 if (!memcg->use_hierarchy)
4016 break;
4017 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4018 min_limit = min(min_limit, tmp);
4019 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4020 min_memsw_limit = min(min_memsw_limit, tmp);
4021 }
4022 out:
4023 *mem_limit = min_limit;
4024 *memsw_limit = min_memsw_limit;
4025 return;
4026 }
4027
4028 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4029 {
4030 struct mem_cgroup *memcg;
4031 int type, name;
4032
4033 memcg = mem_cgroup_from_cont(cont);
4034 type = MEMFILE_TYPE(event);
4035 name = MEMFILE_ATTR(event);
4036 switch (name) {
4037 case RES_MAX_USAGE:
4038 if (type == _MEM)
4039 res_counter_reset_max(&memcg->res);
4040 else
4041 res_counter_reset_max(&memcg->memsw);
4042 break;
4043 case RES_FAILCNT:
4044 if (type == _MEM)
4045 res_counter_reset_failcnt(&memcg->res);
4046 else
4047 res_counter_reset_failcnt(&memcg->memsw);
4048 break;
4049 }
4050
4051 return 0;
4052 }
4053
4054 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4055 struct cftype *cft)
4056 {
4057 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4058 }
4059
4060 #ifdef CONFIG_MMU
4061 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4062 struct cftype *cft, u64 val)
4063 {
4064 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4065
4066 if (val >= (1 << NR_MOVE_TYPE))
4067 return -EINVAL;
4068 /*
4069 * We check this value several times in both in can_attach() and
4070 * attach(), so we need cgroup lock to prevent this value from being
4071 * inconsistent.
4072 */
4073 cgroup_lock();
4074 memcg->move_charge_at_immigrate = val;
4075 cgroup_unlock();
4076
4077 return 0;
4078 }
4079 #else
4080 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4081 struct cftype *cft, u64 val)
4082 {
4083 return -ENOSYS;
4084 }
4085 #endif
4086
4087
4088 /* For read statistics */
4089 enum {
4090 MCS_CACHE,
4091 MCS_RSS,
4092 MCS_FILE_MAPPED,
4093 MCS_PGPGIN,
4094 MCS_PGPGOUT,
4095 MCS_SWAP,
4096 MCS_PGFAULT,
4097 MCS_PGMAJFAULT,
4098 MCS_INACTIVE_ANON,
4099 MCS_ACTIVE_ANON,
4100 MCS_INACTIVE_FILE,
4101 MCS_ACTIVE_FILE,
4102 MCS_UNEVICTABLE,
4103 NR_MCS_STAT,
4104 };
4105
4106 struct mcs_total_stat {
4107 s64 stat[NR_MCS_STAT];
4108 };
4109
4110 struct {
4111 char *local_name;
4112 char *total_name;
4113 } memcg_stat_strings[NR_MCS_STAT] = {
4114 {"cache", "total_cache"},
4115 {"rss", "total_rss"},
4116 {"mapped_file", "total_mapped_file"},
4117 {"pgpgin", "total_pgpgin"},
4118 {"pgpgout", "total_pgpgout"},
4119 {"swap", "total_swap"},
4120 {"pgfault", "total_pgfault"},
4121 {"pgmajfault", "total_pgmajfault"},
4122 {"inactive_anon", "total_inactive_anon"},
4123 {"active_anon", "total_active_anon"},
4124 {"inactive_file", "total_inactive_file"},
4125 {"active_file", "total_active_file"},
4126 {"unevictable", "total_unevictable"}
4127 };
4128
4129
4130 static void
4131 mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4132 {
4133 s64 val;
4134
4135 /* per cpu stat */
4136 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
4137 s->stat[MCS_CACHE] += val * PAGE_SIZE;
4138 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
4139 s->stat[MCS_RSS] += val * PAGE_SIZE;
4140 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4141 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4142 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
4143 s->stat[MCS_PGPGIN] += val;
4144 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
4145 s->stat[MCS_PGPGOUT] += val;
4146 if (do_swap_account) {
4147 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4148 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4149 }
4150 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4151 s->stat[MCS_PGFAULT] += val;
4152 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4153 s->stat[MCS_PGMAJFAULT] += val;
4154
4155 /* per zone stat */
4156 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
4157 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4158 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
4159 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4160 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
4161 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4162 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
4163 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4164 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4165 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4166 }
4167
4168 static void
4169 mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4170 {
4171 struct mem_cgroup *iter;
4172
4173 for_each_mem_cgroup_tree(iter, memcg)
4174 mem_cgroup_get_local_stat(iter, s);
4175 }
4176
4177 #ifdef CONFIG_NUMA
4178 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4179 {
4180 int nid;
4181 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4182 unsigned long node_nr;
4183 struct cgroup *cont = m->private;
4184 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4185
4186 total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4187 seq_printf(m, "total=%lu", total_nr);
4188 for_each_node_state(nid, N_HIGH_MEMORY) {
4189 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4190 seq_printf(m, " N%d=%lu", nid, node_nr);
4191 }
4192 seq_putc(m, '\n');
4193
4194 file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4195 seq_printf(m, "file=%lu", file_nr);
4196 for_each_node_state(nid, N_HIGH_MEMORY) {
4197 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4198 LRU_ALL_FILE);
4199 seq_printf(m, " N%d=%lu", nid, node_nr);
4200 }
4201 seq_putc(m, '\n');
4202
4203 anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4204 seq_printf(m, "anon=%lu", anon_nr);
4205 for_each_node_state(nid, N_HIGH_MEMORY) {
4206 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4207 LRU_ALL_ANON);
4208 seq_printf(m, " N%d=%lu", nid, node_nr);
4209 }
4210 seq_putc(m, '\n');
4211
4212 unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4213 seq_printf(m, "unevictable=%lu", unevictable_nr);
4214 for_each_node_state(nid, N_HIGH_MEMORY) {
4215 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4216 BIT(LRU_UNEVICTABLE));
4217 seq_printf(m, " N%d=%lu", nid, node_nr);
4218 }
4219 seq_putc(m, '\n');
4220 return 0;
4221 }
4222 #endif /* CONFIG_NUMA */
4223
4224 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4225 struct cgroup_map_cb *cb)
4226 {
4227 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4228 struct mcs_total_stat mystat;
4229 int i;
4230
4231 memset(&mystat, 0, sizeof(mystat));
4232 mem_cgroup_get_local_stat(mem_cont, &mystat);
4233
4234
4235 for (i = 0; i < NR_MCS_STAT; i++) {
4236 if (i == MCS_SWAP && !do_swap_account)
4237 continue;
4238 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4239 }
4240
4241 /* Hierarchical information */
4242 {
4243 unsigned long long limit, memsw_limit;
4244 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4245 cb->fill(cb, "hierarchical_memory_limit", limit);
4246 if (do_swap_account)
4247 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4248 }
4249
4250 memset(&mystat, 0, sizeof(mystat));
4251 mem_cgroup_get_total_stat(mem_cont, &mystat);
4252 for (i = 0; i < NR_MCS_STAT; i++) {
4253 if (i == MCS_SWAP && !do_swap_account)
4254 continue;
4255 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4256 }
4257
4258 #ifdef CONFIG_DEBUG_VM
4259 {
4260 int nid, zid;
4261 struct mem_cgroup_per_zone *mz;
4262 unsigned long recent_rotated[2] = {0, 0};
4263 unsigned long recent_scanned[2] = {0, 0};
4264
4265 for_each_online_node(nid)
4266 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4267 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4268
4269 recent_rotated[0] +=
4270 mz->reclaim_stat.recent_rotated[0];
4271 recent_rotated[1] +=
4272 mz->reclaim_stat.recent_rotated[1];
4273 recent_scanned[0] +=
4274 mz->reclaim_stat.recent_scanned[0];
4275 recent_scanned[1] +=
4276 mz->reclaim_stat.recent_scanned[1];
4277 }
4278 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4279 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4280 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4281 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4282 }
4283 #endif
4284
4285 return 0;
4286 }
4287
4288 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4289 {
4290 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4291
4292 return mem_cgroup_swappiness(memcg);
4293 }
4294
4295 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4296 u64 val)
4297 {
4298 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4299 struct mem_cgroup *parent;
4300
4301 if (val > 100)
4302 return -EINVAL;
4303
4304 if (cgrp->parent == NULL)
4305 return -EINVAL;
4306
4307 parent = mem_cgroup_from_cont(cgrp->parent);
4308
4309 cgroup_lock();
4310
4311 /* If under hierarchy, only empty-root can set this value */
4312 if ((parent->use_hierarchy) ||
4313 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4314 cgroup_unlock();
4315 return -EINVAL;
4316 }
4317
4318 memcg->swappiness = val;
4319
4320 cgroup_unlock();
4321
4322 return 0;
4323 }
4324
4325 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4326 {
4327 struct mem_cgroup_threshold_ary *t;
4328 u64 usage;
4329 int i;
4330
4331 rcu_read_lock();
4332 if (!swap)
4333 t = rcu_dereference(memcg->thresholds.primary);
4334 else
4335 t = rcu_dereference(memcg->memsw_thresholds.primary);
4336
4337 if (!t)
4338 goto unlock;
4339
4340 usage = mem_cgroup_usage(memcg, swap);
4341
4342 /*
4343 * current_threshold points to threshold just below usage.
4344 * If it's not true, a threshold was crossed after last
4345 * call of __mem_cgroup_threshold().
4346 */
4347 i = t->current_threshold;
4348
4349 /*
4350 * Iterate backward over array of thresholds starting from
4351 * current_threshold and check if a threshold is crossed.
4352 * If none of thresholds below usage is crossed, we read
4353 * only one element of the array here.
4354 */
4355 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4356 eventfd_signal(t->entries[i].eventfd, 1);
4357
4358 /* i = current_threshold + 1 */
4359 i++;
4360
4361 /*
4362 * Iterate forward over array of thresholds starting from
4363 * current_threshold+1 and check if a threshold is crossed.
4364 * If none of thresholds above usage is crossed, we read
4365 * only one element of the array here.
4366 */
4367 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4368 eventfd_signal(t->entries[i].eventfd, 1);
4369
4370 /* Update current_threshold */
4371 t->current_threshold = i - 1;
4372 unlock:
4373 rcu_read_unlock();
4374 }
4375
4376 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4377 {
4378 while (memcg) {
4379 __mem_cgroup_threshold(memcg, false);
4380 if (do_swap_account)
4381 __mem_cgroup_threshold(memcg, true);
4382
4383 memcg = parent_mem_cgroup(memcg);
4384 }
4385 }
4386
4387 static int compare_thresholds(const void *a, const void *b)
4388 {
4389 const struct mem_cgroup_threshold *_a = a;
4390 const struct mem_cgroup_threshold *_b = b;
4391
4392 return _a->threshold - _b->threshold;
4393 }
4394
4395 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4396 {
4397 struct mem_cgroup_eventfd_list *ev;
4398
4399 list_for_each_entry(ev, &memcg->oom_notify, list)
4400 eventfd_signal(ev->eventfd, 1);
4401 return 0;
4402 }
4403
4404 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4405 {
4406 struct mem_cgroup *iter;
4407
4408 for_each_mem_cgroup_tree(iter, memcg)
4409 mem_cgroup_oom_notify_cb(iter);
4410 }
4411
4412 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4413 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4414 {
4415 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4416 struct mem_cgroup_thresholds *thresholds;
4417 struct mem_cgroup_threshold_ary *new;
4418 int type = MEMFILE_TYPE(cft->private);
4419 u64 threshold, usage;
4420 int i, size, ret;
4421
4422 ret = res_counter_memparse_write_strategy(args, &threshold);
4423 if (ret)
4424 return ret;
4425
4426 mutex_lock(&memcg->thresholds_lock);
4427
4428 if (type == _MEM)
4429 thresholds = &memcg->thresholds;
4430 else if (type == _MEMSWAP)
4431 thresholds = &memcg->memsw_thresholds;
4432 else
4433 BUG();
4434
4435 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4436
4437 /* Check if a threshold crossed before adding a new one */
4438 if (thresholds->primary)
4439 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4440
4441 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4442
4443 /* Allocate memory for new array of thresholds */
4444 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4445 GFP_KERNEL);
4446 if (!new) {
4447 ret = -ENOMEM;
4448 goto unlock;
4449 }
4450 new->size = size;
4451
4452 /* Copy thresholds (if any) to new array */
4453 if (thresholds->primary) {
4454 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4455 sizeof(struct mem_cgroup_threshold));
4456 }
4457
4458 /* Add new threshold */
4459 new->entries[size - 1].eventfd = eventfd;
4460 new->entries[size - 1].threshold = threshold;
4461
4462 /* Sort thresholds. Registering of new threshold isn't time-critical */
4463 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4464 compare_thresholds, NULL);
4465
4466 /* Find current threshold */
4467 new->current_threshold = -1;
4468 for (i = 0; i < size; i++) {
4469 if (new->entries[i].threshold < usage) {
4470 /*
4471 * new->current_threshold will not be used until
4472 * rcu_assign_pointer(), so it's safe to increment
4473 * it here.
4474 */
4475 ++new->current_threshold;
4476 }
4477 }
4478
4479 /* Free old spare buffer and save old primary buffer as spare */
4480 kfree(thresholds->spare);
4481 thresholds->spare = thresholds->primary;
4482
4483 rcu_assign_pointer(thresholds->primary, new);
4484
4485 /* To be sure that nobody uses thresholds */
4486 synchronize_rcu();
4487
4488 unlock:
4489 mutex_unlock(&memcg->thresholds_lock);
4490
4491 return ret;
4492 }
4493
4494 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4495 struct cftype *cft, struct eventfd_ctx *eventfd)
4496 {
4497 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4498 struct mem_cgroup_thresholds *thresholds;
4499 struct mem_cgroup_threshold_ary *new;
4500 int type = MEMFILE_TYPE(cft->private);
4501 u64 usage;
4502 int i, j, size;
4503
4504 mutex_lock(&memcg->thresholds_lock);
4505 if (type == _MEM)
4506 thresholds = &memcg->thresholds;
4507 else if (type == _MEMSWAP)
4508 thresholds = &memcg->memsw_thresholds;
4509 else
4510 BUG();
4511
4512 /*
4513 * Something went wrong if we trying to unregister a threshold
4514 * if we don't have thresholds
4515 */
4516 BUG_ON(!thresholds);
4517
4518 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4519
4520 /* Check if a threshold crossed before removing */
4521 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4522
4523 /* Calculate new number of threshold */
4524 size = 0;
4525 for (i = 0; i < thresholds->primary->size; i++) {
4526 if (thresholds->primary->entries[i].eventfd != eventfd)
4527 size++;
4528 }
4529
4530 new = thresholds->spare;
4531
4532 /* Set thresholds array to NULL if we don't have thresholds */
4533 if (!size) {
4534 kfree(new);
4535 new = NULL;
4536 goto swap_buffers;
4537 }
4538
4539 new->size = size;
4540
4541 /* Copy thresholds and find current threshold */
4542 new->current_threshold = -1;
4543 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4544 if (thresholds->primary->entries[i].eventfd == eventfd)
4545 continue;
4546
4547 new->entries[j] = thresholds->primary->entries[i];
4548 if (new->entries[j].threshold < usage) {
4549 /*
4550 * new->current_threshold will not be used
4551 * until rcu_assign_pointer(), so it's safe to increment
4552 * it here.
4553 */
4554 ++new->current_threshold;
4555 }
4556 j++;
4557 }
4558
4559 swap_buffers:
4560 /* Swap primary and spare array */
4561 thresholds->spare = thresholds->primary;
4562 rcu_assign_pointer(thresholds->primary, new);
4563
4564 /* To be sure that nobody uses thresholds */
4565 synchronize_rcu();
4566
4567 mutex_unlock(&memcg->thresholds_lock);
4568 }
4569
4570 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4571 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4572 {
4573 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4574 struct mem_cgroup_eventfd_list *event;
4575 int type = MEMFILE_TYPE(cft->private);
4576
4577 BUG_ON(type != _OOM_TYPE);
4578 event = kmalloc(sizeof(*event), GFP_KERNEL);
4579 if (!event)
4580 return -ENOMEM;
4581
4582 spin_lock(&memcg_oom_lock);
4583
4584 event->eventfd = eventfd;
4585 list_add(&event->list, &memcg->oom_notify);
4586
4587 /* already in OOM ? */
4588 if (atomic_read(&memcg->under_oom))
4589 eventfd_signal(eventfd, 1);
4590 spin_unlock(&memcg_oom_lock);
4591
4592 return 0;
4593 }
4594
4595 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4596 struct cftype *cft, struct eventfd_ctx *eventfd)
4597 {
4598 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4599 struct mem_cgroup_eventfd_list *ev, *tmp;
4600 int type = MEMFILE_TYPE(cft->private);
4601
4602 BUG_ON(type != _OOM_TYPE);
4603
4604 spin_lock(&memcg_oom_lock);
4605
4606 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4607 if (ev->eventfd == eventfd) {
4608 list_del(&ev->list);
4609 kfree(ev);
4610 }
4611 }
4612
4613 spin_unlock(&memcg_oom_lock);
4614 }
4615
4616 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4617 struct cftype *cft, struct cgroup_map_cb *cb)
4618 {
4619 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4620
4621 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4622
4623 if (atomic_read(&memcg->under_oom))
4624 cb->fill(cb, "under_oom", 1);
4625 else
4626 cb->fill(cb, "under_oom", 0);
4627 return 0;
4628 }
4629
4630 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4631 struct cftype *cft, u64 val)
4632 {
4633 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4634 struct mem_cgroup *parent;
4635
4636 /* cannot set to root cgroup and only 0 and 1 are allowed */
4637 if (!cgrp->parent || !((val == 0) || (val == 1)))
4638 return -EINVAL;
4639
4640 parent = mem_cgroup_from_cont(cgrp->parent);
4641
4642 cgroup_lock();
4643 /* oom-kill-disable is a flag for subhierarchy. */
4644 if ((parent->use_hierarchy) ||
4645 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4646 cgroup_unlock();
4647 return -EINVAL;
4648 }
4649 memcg->oom_kill_disable = val;
4650 if (!val)
4651 memcg_oom_recover(memcg);
4652 cgroup_unlock();
4653 return 0;
4654 }
4655
4656 #ifdef CONFIG_NUMA
4657 static const struct file_operations mem_control_numa_stat_file_operations = {
4658 .read = seq_read,
4659 .llseek = seq_lseek,
4660 .release = single_release,
4661 };
4662
4663 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4664 {
4665 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4666
4667 file->f_op = &mem_control_numa_stat_file_operations;
4668 return single_open(file, mem_control_numa_stat_show, cont);
4669 }
4670 #endif /* CONFIG_NUMA */
4671
4672 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4673 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4674 {
4675 /*
4676 * Part of this would be better living in a separate allocation
4677 * function, leaving us with just the cgroup tree population work.
4678 * We, however, depend on state such as network's proto_list that
4679 * is only initialized after cgroup creation. I found the less
4680 * cumbersome way to deal with it to defer it all to populate time
4681 */
4682 return mem_cgroup_sockets_init(cont, ss);
4683 };
4684
4685 static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4686 struct cgroup *cont)
4687 {
4688 mem_cgroup_sockets_destroy(cont, ss);
4689 }
4690 #else
4691 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4692 {
4693 return 0;
4694 }
4695
4696 static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4697 struct cgroup *cont)
4698 {
4699 }
4700 #endif
4701
4702 static struct cftype mem_cgroup_files[] = {
4703 {
4704 .name = "usage_in_bytes",
4705 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4706 .read_u64 = mem_cgroup_read,
4707 .register_event = mem_cgroup_usage_register_event,
4708 .unregister_event = mem_cgroup_usage_unregister_event,
4709 },
4710 {
4711 .name = "max_usage_in_bytes",
4712 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4713 .trigger = mem_cgroup_reset,
4714 .read_u64 = mem_cgroup_read,
4715 },
4716 {
4717 .name = "limit_in_bytes",
4718 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4719 .write_string = mem_cgroup_write,
4720 .read_u64 = mem_cgroup_read,
4721 },
4722 {
4723 .name = "soft_limit_in_bytes",
4724 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4725 .write_string = mem_cgroup_write,
4726 .read_u64 = mem_cgroup_read,
4727 },
4728 {
4729 .name = "failcnt",
4730 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4731 .trigger = mem_cgroup_reset,
4732 .read_u64 = mem_cgroup_read,
4733 },
4734 {
4735 .name = "stat",
4736 .read_map = mem_control_stat_show,
4737 },
4738 {
4739 .name = "force_empty",
4740 .trigger = mem_cgroup_force_empty_write,
4741 },
4742 {
4743 .name = "use_hierarchy",
4744 .write_u64 = mem_cgroup_hierarchy_write,
4745 .read_u64 = mem_cgroup_hierarchy_read,
4746 },
4747 {
4748 .name = "swappiness",
4749 .read_u64 = mem_cgroup_swappiness_read,
4750 .write_u64 = mem_cgroup_swappiness_write,
4751 },
4752 {
4753 .name = "move_charge_at_immigrate",
4754 .read_u64 = mem_cgroup_move_charge_read,
4755 .write_u64 = mem_cgroup_move_charge_write,
4756 },
4757 {
4758 .name = "oom_control",
4759 .read_map = mem_cgroup_oom_control_read,
4760 .write_u64 = mem_cgroup_oom_control_write,
4761 .register_event = mem_cgroup_oom_register_event,
4762 .unregister_event = mem_cgroup_oom_unregister_event,
4763 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4764 },
4765 #ifdef CONFIG_NUMA
4766 {
4767 .name = "numa_stat",
4768 .open = mem_control_numa_stat_open,
4769 .mode = S_IRUGO,
4770 },
4771 #endif
4772 };
4773
4774 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4775 static struct cftype memsw_cgroup_files[] = {
4776 {
4777 .name = "memsw.usage_in_bytes",
4778 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4779 .read_u64 = mem_cgroup_read,
4780 .register_event = mem_cgroup_usage_register_event,
4781 .unregister_event = mem_cgroup_usage_unregister_event,
4782 },
4783 {
4784 .name = "memsw.max_usage_in_bytes",
4785 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4786 .trigger = mem_cgroup_reset,
4787 .read_u64 = mem_cgroup_read,
4788 },
4789 {
4790 .name = "memsw.limit_in_bytes",
4791 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4792 .write_string = mem_cgroup_write,
4793 .read_u64 = mem_cgroup_read,
4794 },
4795 {
4796 .name = "memsw.failcnt",
4797 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4798 .trigger = mem_cgroup_reset,
4799 .read_u64 = mem_cgroup_read,
4800 },
4801 };
4802
4803 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4804 {
4805 if (!do_swap_account)
4806 return 0;
4807 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4808 ARRAY_SIZE(memsw_cgroup_files));
4809 };
4810 #else
4811 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4812 {
4813 return 0;
4814 }
4815 #endif
4816
4817 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4818 {
4819 struct mem_cgroup_per_node *pn;
4820 struct mem_cgroup_per_zone *mz;
4821 enum lru_list l;
4822 int zone, tmp = node;
4823 /*
4824 * This routine is called against possible nodes.
4825 * But it's BUG to call kmalloc() against offline node.
4826 *
4827 * TODO: this routine can waste much memory for nodes which will
4828 * never be onlined. It's better to use memory hotplug callback
4829 * function.
4830 */
4831 if (!node_state(node, N_NORMAL_MEMORY))
4832 tmp = -1;
4833 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4834 if (!pn)
4835 return 1;
4836
4837 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4838 mz = &pn->zoneinfo[zone];
4839 for_each_lru(l)
4840 INIT_LIST_HEAD(&mz->lists[l]);
4841 mz->usage_in_excess = 0;
4842 mz->on_tree = false;
4843 mz->mem = memcg;
4844 }
4845 memcg->info.nodeinfo[node] = pn;
4846 return 0;
4847 }
4848
4849 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4850 {
4851 kfree(memcg->info.nodeinfo[node]);
4852 }
4853
4854 static struct mem_cgroup *mem_cgroup_alloc(void)
4855 {
4856 struct mem_cgroup *mem;
4857 int size = sizeof(struct mem_cgroup);
4858
4859 /* Can be very big if MAX_NUMNODES is very big */
4860 if (size < PAGE_SIZE)
4861 mem = kzalloc(size, GFP_KERNEL);
4862 else
4863 mem = vzalloc(size);
4864
4865 if (!mem)
4866 return NULL;
4867
4868 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4869 if (!mem->stat)
4870 goto out_free;
4871 spin_lock_init(&mem->pcp_counter_lock);
4872 return mem;
4873
4874 out_free:
4875 if (size < PAGE_SIZE)
4876 kfree(mem);
4877 else
4878 vfree(mem);
4879 return NULL;
4880 }
4881
4882 /*
4883 * At destroying mem_cgroup, references from swap_cgroup can remain.
4884 * (scanning all at force_empty is too costly...)
4885 *
4886 * Instead of clearing all references at force_empty, we remember
4887 * the number of reference from swap_cgroup and free mem_cgroup when
4888 * it goes down to 0.
4889 *
4890 * Removal of cgroup itself succeeds regardless of refs from swap.
4891 */
4892
4893 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4894 {
4895 int node;
4896
4897 mem_cgroup_remove_from_trees(memcg);
4898 free_css_id(&mem_cgroup_subsys, &memcg->css);
4899
4900 for_each_node_state(node, N_POSSIBLE)
4901 free_mem_cgroup_per_zone_info(memcg, node);
4902
4903 free_percpu(memcg->stat);
4904 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4905 kfree(memcg);
4906 else
4907 vfree(memcg);
4908 }
4909
4910 static void mem_cgroup_get(struct mem_cgroup *memcg)
4911 {
4912 atomic_inc(&memcg->refcnt);
4913 }
4914
4915 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4916 {
4917 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4918 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4919 __mem_cgroup_free(memcg);
4920 if (parent)
4921 mem_cgroup_put(parent);
4922 }
4923 }
4924
4925 static void mem_cgroup_put(struct mem_cgroup *memcg)
4926 {
4927 __mem_cgroup_put(memcg, 1);
4928 }
4929
4930 /*
4931 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4932 */
4933 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4934 {
4935 if (!memcg->res.parent)
4936 return NULL;
4937 return mem_cgroup_from_res_counter(memcg->res.parent, res);
4938 }
4939 EXPORT_SYMBOL(parent_mem_cgroup);
4940
4941 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4942 static void __init enable_swap_cgroup(void)
4943 {
4944 if (!mem_cgroup_disabled() && really_do_swap_account)
4945 do_swap_account = 1;
4946 }
4947 #else
4948 static void __init enable_swap_cgroup(void)
4949 {
4950 }
4951 #endif
4952
4953 static int mem_cgroup_soft_limit_tree_init(void)
4954 {
4955 struct mem_cgroup_tree_per_node *rtpn;
4956 struct mem_cgroup_tree_per_zone *rtpz;
4957 int tmp, node, zone;
4958
4959 for_each_node_state(node, N_POSSIBLE) {
4960 tmp = node;
4961 if (!node_state(node, N_NORMAL_MEMORY))
4962 tmp = -1;
4963 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4964 if (!rtpn)
4965 return 1;
4966
4967 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4968
4969 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4970 rtpz = &rtpn->rb_tree_per_zone[zone];
4971 rtpz->rb_root = RB_ROOT;
4972 spin_lock_init(&rtpz->lock);
4973 }
4974 }
4975 return 0;
4976 }
4977
4978 static struct cgroup_subsys_state * __ref
4979 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4980 {
4981 struct mem_cgroup *memcg, *parent;
4982 long error = -ENOMEM;
4983 int node;
4984
4985 memcg = mem_cgroup_alloc();
4986 if (!memcg)
4987 return ERR_PTR(error);
4988
4989 for_each_node_state(node, N_POSSIBLE)
4990 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4991 goto free_out;
4992
4993 /* root ? */
4994 if (cont->parent == NULL) {
4995 int cpu;
4996 enable_swap_cgroup();
4997 parent = NULL;
4998 if (mem_cgroup_soft_limit_tree_init())
4999 goto free_out;
5000 root_mem_cgroup = memcg;
5001 for_each_possible_cpu(cpu) {
5002 struct memcg_stock_pcp *stock =
5003 &per_cpu(memcg_stock, cpu);
5004 INIT_WORK(&stock->work, drain_local_stock);
5005 }
5006 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5007 } else {
5008 parent = mem_cgroup_from_cont(cont->parent);
5009 memcg->use_hierarchy = parent->use_hierarchy;
5010 memcg->oom_kill_disable = parent->oom_kill_disable;
5011 }
5012
5013 if (parent && parent->use_hierarchy) {
5014 res_counter_init(&memcg->res, &parent->res);
5015 res_counter_init(&memcg->memsw, &parent->memsw);
5016 /*
5017 * We increment refcnt of the parent to ensure that we can
5018 * safely access it on res_counter_charge/uncharge.
5019 * This refcnt will be decremented when freeing this
5020 * mem_cgroup(see mem_cgroup_put).
5021 */
5022 mem_cgroup_get(parent);
5023 } else {
5024 res_counter_init(&memcg->res, NULL);
5025 res_counter_init(&memcg->memsw, NULL);
5026 }
5027 memcg->last_scanned_child = 0;
5028 memcg->last_scanned_node = MAX_NUMNODES;
5029 INIT_LIST_HEAD(&memcg->oom_notify);
5030
5031 if (parent)
5032 memcg->swappiness = mem_cgroup_swappiness(parent);
5033 atomic_set(&memcg->refcnt, 1);
5034 memcg->move_charge_at_immigrate = 0;
5035 mutex_init(&memcg->thresholds_lock);
5036 return &memcg->css;
5037 free_out:
5038 __mem_cgroup_free(memcg);
5039 return ERR_PTR(error);
5040 }
5041
5042 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
5043 struct cgroup *cont)
5044 {
5045 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5046
5047 return mem_cgroup_force_empty(memcg, false);
5048 }
5049
5050 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
5051 struct cgroup *cont)
5052 {
5053 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5054
5055 kmem_cgroup_destroy(ss, cont);
5056
5057 mem_cgroup_put(memcg);
5058 }
5059
5060 static int mem_cgroup_populate(struct cgroup_subsys *ss,
5061 struct cgroup *cont)
5062 {
5063 int ret;
5064
5065 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5066 ARRAY_SIZE(mem_cgroup_files));
5067
5068 if (!ret)
5069 ret = register_memsw_files(cont, ss);
5070
5071 if (!ret)
5072 ret = register_kmem_files(cont, ss);
5073
5074 return ret;
5075 }
5076
5077 #ifdef CONFIG_MMU
5078 /* Handlers for move charge at task migration. */
5079 #define PRECHARGE_COUNT_AT_ONCE 256
5080 static int mem_cgroup_do_precharge(unsigned long count)
5081 {
5082 int ret = 0;
5083 int batch_count = PRECHARGE_COUNT_AT_ONCE;
5084 struct mem_cgroup *memcg = mc.to;
5085
5086 if (mem_cgroup_is_root(memcg)) {
5087 mc.precharge += count;
5088 /* we don't need css_get for root */
5089 return ret;
5090 }
5091 /* try to charge at once */
5092 if (count > 1) {
5093 struct res_counter *dummy;
5094 /*
5095 * "memcg" cannot be under rmdir() because we've already checked
5096 * by cgroup_lock_live_cgroup() that it is not removed and we
5097 * are still under the same cgroup_mutex. So we can postpone
5098 * css_get().
5099 */
5100 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5101 goto one_by_one;
5102 if (do_swap_account && res_counter_charge(&memcg->memsw,
5103 PAGE_SIZE * count, &dummy)) {
5104 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5105 goto one_by_one;
5106 }
5107 mc.precharge += count;
5108 return ret;
5109 }
5110 one_by_one:
5111 /* fall back to one by one charge */
5112 while (count--) {
5113 if (signal_pending(current)) {
5114 ret = -EINTR;
5115 break;
5116 }
5117 if (!batch_count--) {
5118 batch_count = PRECHARGE_COUNT_AT_ONCE;
5119 cond_resched();
5120 }
5121 ret = __mem_cgroup_try_charge(NULL,
5122 GFP_KERNEL, 1, &memcg, false);
5123 if (ret || !memcg)
5124 /* mem_cgroup_clear_mc() will do uncharge later */
5125 return -ENOMEM;
5126 mc.precharge++;
5127 }
5128 return ret;
5129 }
5130
5131 /**
5132 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5133 * @vma: the vma the pte to be checked belongs
5134 * @addr: the address corresponding to the pte to be checked
5135 * @ptent: the pte to be checked
5136 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5137 *
5138 * Returns
5139 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5140 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5141 * move charge. if @target is not NULL, the page is stored in target->page
5142 * with extra refcnt got(Callers should handle it).
5143 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5144 * target for charge migration. if @target is not NULL, the entry is stored
5145 * in target->ent.
5146 *
5147 * Called with pte lock held.
5148 */
5149 union mc_target {
5150 struct page *page;
5151 swp_entry_t ent;
5152 };
5153
5154 enum mc_target_type {
5155 MC_TARGET_NONE, /* not used */
5156 MC_TARGET_PAGE,
5157 MC_TARGET_SWAP,
5158 };
5159
5160 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5161 unsigned long addr, pte_t ptent)
5162 {
5163 struct page *page = vm_normal_page(vma, addr, ptent);
5164
5165 if (!page || !page_mapped(page))
5166 return NULL;
5167 if (PageAnon(page)) {
5168 /* we don't move shared anon */
5169 if (!move_anon() || page_mapcount(page) > 2)
5170 return NULL;
5171 } else if (!move_file())
5172 /* we ignore mapcount for file pages */
5173 return NULL;
5174 if (!get_page_unless_zero(page))
5175 return NULL;
5176
5177 return page;
5178 }
5179
5180 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5181 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5182 {
5183 int usage_count;
5184 struct page *page = NULL;
5185 swp_entry_t ent = pte_to_swp_entry(ptent);
5186
5187 if (!move_anon() || non_swap_entry(ent))
5188 return NULL;
5189 usage_count = mem_cgroup_count_swap_user(ent, &page);
5190 if (usage_count > 1) { /* we don't move shared anon */
5191 if (page)
5192 put_page(page);
5193 return NULL;
5194 }
5195 if (do_swap_account)
5196 entry->val = ent.val;
5197
5198 return page;
5199 }
5200
5201 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5202 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5203 {
5204 struct page *page = NULL;
5205 struct inode *inode;
5206 struct address_space *mapping;
5207 pgoff_t pgoff;
5208
5209 if (!vma->vm_file) /* anonymous vma */
5210 return NULL;
5211 if (!move_file())
5212 return NULL;
5213
5214 inode = vma->vm_file->f_path.dentry->d_inode;
5215 mapping = vma->vm_file->f_mapping;
5216 if (pte_none(ptent))
5217 pgoff = linear_page_index(vma, addr);
5218 else /* pte_file(ptent) is true */
5219 pgoff = pte_to_pgoff(ptent);
5220
5221 /* page is moved even if it's not RSS of this task(page-faulted). */
5222 page = find_get_page(mapping, pgoff);
5223
5224 #ifdef CONFIG_SWAP
5225 /* shmem/tmpfs may report page out on swap: account for that too. */
5226 if (radix_tree_exceptional_entry(page)) {
5227 swp_entry_t swap = radix_to_swp_entry(page);
5228 if (do_swap_account)
5229 *entry = swap;
5230 page = find_get_page(&swapper_space, swap.val);
5231 }
5232 #endif
5233 return page;
5234 }
5235
5236 static int is_target_pte_for_mc(struct vm_area_struct *vma,
5237 unsigned long addr, pte_t ptent, union mc_target *target)
5238 {
5239 struct page *page = NULL;
5240 struct page_cgroup *pc;
5241 int ret = 0;
5242 swp_entry_t ent = { .val = 0 };
5243
5244 if (pte_present(ptent))
5245 page = mc_handle_present_pte(vma, addr, ptent);
5246 else if (is_swap_pte(ptent))
5247 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5248 else if (pte_none(ptent) || pte_file(ptent))
5249 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5250
5251 if (!page && !ent.val)
5252 return 0;
5253 if (page) {
5254 pc = lookup_page_cgroup(page);
5255 /*
5256 * Do only loose check w/o page_cgroup lock.
5257 * mem_cgroup_move_account() checks the pc is valid or not under
5258 * the lock.
5259 */
5260 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5261 ret = MC_TARGET_PAGE;
5262 if (target)
5263 target->page = page;
5264 }
5265 if (!ret || !target)
5266 put_page(page);
5267 }
5268 /* There is a swap entry and a page doesn't exist or isn't charged */
5269 if (ent.val && !ret &&
5270 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5271 ret = MC_TARGET_SWAP;
5272 if (target)
5273 target->ent = ent;
5274 }
5275 return ret;
5276 }
5277
5278 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5279 unsigned long addr, unsigned long end,
5280 struct mm_walk *walk)
5281 {
5282 struct vm_area_struct *vma = walk->private;
5283 pte_t *pte;
5284 spinlock_t *ptl;
5285
5286 split_huge_page_pmd(walk->mm, pmd);
5287
5288 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5289 for (; addr != end; pte++, addr += PAGE_SIZE)
5290 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5291 mc.precharge++; /* increment precharge temporarily */
5292 pte_unmap_unlock(pte - 1, ptl);
5293 cond_resched();
5294
5295 return 0;
5296 }
5297
5298 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5299 {
5300 unsigned long precharge;
5301 struct vm_area_struct *vma;
5302
5303 down_read(&mm->mmap_sem);
5304 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5305 struct mm_walk mem_cgroup_count_precharge_walk = {
5306 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5307 .mm = mm,
5308 .private = vma,
5309 };
5310 if (is_vm_hugetlb_page(vma))
5311 continue;
5312 walk_page_range(vma->vm_start, vma->vm_end,
5313 &mem_cgroup_count_precharge_walk);
5314 }
5315 up_read(&mm->mmap_sem);
5316
5317 precharge = mc.precharge;
5318 mc.precharge = 0;
5319
5320 return precharge;
5321 }
5322
5323 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5324 {
5325 unsigned long precharge = mem_cgroup_count_precharge(mm);
5326
5327 VM_BUG_ON(mc.moving_task);
5328 mc.moving_task = current;
5329 return mem_cgroup_do_precharge(precharge);
5330 }
5331
5332 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5333 static void __mem_cgroup_clear_mc(void)
5334 {
5335 struct mem_cgroup *from = mc.from;
5336 struct mem_cgroup *to = mc.to;
5337
5338 /* we must uncharge all the leftover precharges from mc.to */
5339 if (mc.precharge) {
5340 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5341 mc.precharge = 0;
5342 }
5343 /*
5344 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5345 * we must uncharge here.
5346 */
5347 if (mc.moved_charge) {
5348 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5349 mc.moved_charge = 0;
5350 }
5351 /* we must fixup refcnts and charges */
5352 if (mc.moved_swap) {
5353 /* uncharge swap account from the old cgroup */
5354 if (!mem_cgroup_is_root(mc.from))
5355 res_counter_uncharge(&mc.from->memsw,
5356 PAGE_SIZE * mc.moved_swap);
5357 __mem_cgroup_put(mc.from, mc.moved_swap);
5358
5359 if (!mem_cgroup_is_root(mc.to)) {
5360 /*
5361 * we charged both to->res and to->memsw, so we should
5362 * uncharge to->res.
5363 */
5364 res_counter_uncharge(&mc.to->res,
5365 PAGE_SIZE * mc.moved_swap);
5366 }
5367 /* we've already done mem_cgroup_get(mc.to) */
5368 mc.moved_swap = 0;
5369 }
5370 memcg_oom_recover(from);
5371 memcg_oom_recover(to);
5372 wake_up_all(&mc.waitq);
5373 }
5374
5375 static void mem_cgroup_clear_mc(void)
5376 {
5377 struct mem_cgroup *from = mc.from;
5378
5379 /*
5380 * we must clear moving_task before waking up waiters at the end of
5381 * task migration.
5382 */
5383 mc.moving_task = NULL;
5384 __mem_cgroup_clear_mc();
5385 spin_lock(&mc.lock);
5386 mc.from = NULL;
5387 mc.to = NULL;
5388 spin_unlock(&mc.lock);
5389 mem_cgroup_end_move(from);
5390 }
5391
5392 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5393 struct cgroup *cgroup,
5394 struct task_struct *p)
5395 {
5396 int ret = 0;
5397 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5398
5399 if (memcg->move_charge_at_immigrate) {
5400 struct mm_struct *mm;
5401 struct mem_cgroup *from = mem_cgroup_from_task(p);
5402
5403 VM_BUG_ON(from == memcg);
5404
5405 mm = get_task_mm(p);
5406 if (!mm)
5407 return 0;
5408 /* We move charges only when we move a owner of the mm */
5409 if (mm->owner == p) {
5410 VM_BUG_ON(mc.from);
5411 VM_BUG_ON(mc.to);
5412 VM_BUG_ON(mc.precharge);
5413 VM_BUG_ON(mc.moved_charge);
5414 VM_BUG_ON(mc.moved_swap);
5415 mem_cgroup_start_move(from);
5416 spin_lock(&mc.lock);
5417 mc.from = from;
5418 mc.to = memcg;
5419 spin_unlock(&mc.lock);
5420 /* We set mc.moving_task later */
5421
5422 ret = mem_cgroup_precharge_mc(mm);
5423 if (ret)
5424 mem_cgroup_clear_mc();
5425 }
5426 mmput(mm);
5427 }
5428 return ret;
5429 }
5430
5431 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5432 struct cgroup *cgroup,
5433 struct task_struct *p)
5434 {
5435 mem_cgroup_clear_mc();
5436 }
5437
5438 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5439 unsigned long addr, unsigned long end,
5440 struct mm_walk *walk)
5441 {
5442 int ret = 0;
5443 struct vm_area_struct *vma = walk->private;
5444 pte_t *pte;
5445 spinlock_t *ptl;
5446
5447 split_huge_page_pmd(walk->mm, pmd);
5448 retry:
5449 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5450 for (; addr != end; addr += PAGE_SIZE) {
5451 pte_t ptent = *(pte++);
5452 union mc_target target;
5453 int type;
5454 struct page *page;
5455 struct page_cgroup *pc;
5456 swp_entry_t ent;
5457
5458 if (!mc.precharge)
5459 break;
5460
5461 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5462 switch (type) {
5463 case MC_TARGET_PAGE:
5464 page = target.page;
5465 if (isolate_lru_page(page))
5466 goto put;
5467 pc = lookup_page_cgroup(page);
5468 if (!mem_cgroup_move_account(page, 1, pc,
5469 mc.from, mc.to, false)) {
5470 mc.precharge--;
5471 /* we uncharge from mc.from later. */
5472 mc.moved_charge++;
5473 }
5474 putback_lru_page(page);
5475 put: /* is_target_pte_for_mc() gets the page */
5476 put_page(page);
5477 break;
5478 case MC_TARGET_SWAP:
5479 ent = target.ent;
5480 if (!mem_cgroup_move_swap_account(ent,
5481 mc.from, mc.to, false)) {
5482 mc.precharge--;
5483 /* we fixup refcnts and charges later. */
5484 mc.moved_swap++;
5485 }
5486 break;
5487 default:
5488 break;
5489 }
5490 }
5491 pte_unmap_unlock(pte - 1, ptl);
5492 cond_resched();
5493
5494 if (addr != end) {
5495 /*
5496 * We have consumed all precharges we got in can_attach().
5497 * We try charge one by one, but don't do any additional
5498 * charges to mc.to if we have failed in charge once in attach()
5499 * phase.
5500 */
5501 ret = mem_cgroup_do_precharge(1);
5502 if (!ret)
5503 goto retry;
5504 }
5505
5506 return ret;
5507 }
5508
5509 static void mem_cgroup_move_charge(struct mm_struct *mm)
5510 {
5511 struct vm_area_struct *vma;
5512
5513 lru_add_drain_all();
5514 retry:
5515 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5516 /*
5517 * Someone who are holding the mmap_sem might be waiting in
5518 * waitq. So we cancel all extra charges, wake up all waiters,
5519 * and retry. Because we cancel precharges, we might not be able
5520 * to move enough charges, but moving charge is a best-effort
5521 * feature anyway, so it wouldn't be a big problem.
5522 */
5523 __mem_cgroup_clear_mc();
5524 cond_resched();
5525 goto retry;
5526 }
5527 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5528 int ret;
5529 struct mm_walk mem_cgroup_move_charge_walk = {
5530 .pmd_entry = mem_cgroup_move_charge_pte_range,
5531 .mm = mm,
5532 .private = vma,
5533 };
5534 if (is_vm_hugetlb_page(vma))
5535 continue;
5536 ret = walk_page_range(vma->vm_start, vma->vm_end,
5537 &mem_cgroup_move_charge_walk);
5538 if (ret)
5539 /*
5540 * means we have consumed all precharges and failed in
5541 * doing additional charge. Just abandon here.
5542 */
5543 break;
5544 }
5545 up_read(&mm->mmap_sem);
5546 }
5547
5548 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5549 struct cgroup *cont,
5550 struct cgroup *old_cont,
5551 struct task_struct *p)
5552 {
5553 struct mm_struct *mm = get_task_mm(p);
5554
5555 if (mm) {
5556 if (mc.to)
5557 mem_cgroup_move_charge(mm);
5558 put_swap_token(mm);
5559 mmput(mm);
5560 }
5561 if (mc.to)
5562 mem_cgroup_clear_mc();
5563 }
5564 #else /* !CONFIG_MMU */
5565 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5566 struct cgroup *cgroup,
5567 struct task_struct *p)
5568 {
5569 return 0;
5570 }
5571 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5572 struct cgroup *cgroup,
5573 struct task_struct *p)
5574 {
5575 }
5576 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5577 struct cgroup *cont,
5578 struct cgroup *old_cont,
5579 struct task_struct *p)
5580 {
5581 }
5582 #endif
5583
5584 struct cgroup_subsys mem_cgroup_subsys = {
5585 .name = "memory",
5586 .subsys_id = mem_cgroup_subsys_id,
5587 .create = mem_cgroup_create,
5588 .pre_destroy = mem_cgroup_pre_destroy,
5589 .destroy = mem_cgroup_destroy,
5590 .populate = mem_cgroup_populate,
5591 .can_attach = mem_cgroup_can_attach,
5592 .cancel_attach = mem_cgroup_cancel_attach,
5593 .attach = mem_cgroup_move_task,
5594 .early_init = 0,
5595 .use_id = 1,
5596 };
5597
5598 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5599 static int __init enable_swap_account(char *s)
5600 {
5601 /* consider enabled if no parameter or 1 is given */
5602 if (!strcmp(s, "1"))
5603 really_do_swap_account = 1;
5604 else if (!strcmp(s, "0"))
5605 really_do_swap_account = 0;
5606 return 1;
5607 }
5608 __setup("swapaccount=", enable_swap_account);
5609
5610 #endif
This page took 0.150135 seconds and 6 git commands to generate.