memcontrol: move mm_cgroup to header file
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/page-flags.h>
25 #include <linux/backing-dev.h>
26 #include <linux/bit_spinlock.h>
27 #include <linux/rcupdate.h>
28 #include <linux/swap.h>
29 #include <linux/spinlock.h>
30 #include <linux/fs.h>
31
32 #include <asm/uaccess.h>
33
34 struct cgroup_subsys mem_cgroup_subsys;
35 static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
36
37 /*
38 * The memory controller data structure. The memory controller controls both
39 * page cache and RSS per cgroup. We would eventually like to provide
40 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
41 * to help the administrator determine what knobs to tune.
42 *
43 * TODO: Add a water mark for the memory controller. Reclaim will begin when
44 * we hit the water mark. May be even add a low water mark, such that
45 * no reclaim occurs from a cgroup at it's low water mark, this is
46 * a feature that will be implemented much later in the future.
47 */
48 struct mem_cgroup {
49 struct cgroup_subsys_state css;
50 /*
51 * the counter to account for memory usage
52 */
53 struct res_counter res;
54 /*
55 * Per cgroup active and inactive list, similar to the
56 * per zone LRU lists.
57 * TODO: Consider making these lists per zone
58 */
59 struct list_head active_list;
60 struct list_head inactive_list;
61 /*
62 * spin_lock to protect the per cgroup LRU
63 */
64 spinlock_t lru_lock;
65 unsigned long control_type; /* control RSS or RSS+Pagecache */
66 };
67
68 /*
69 * We use the lower bit of the page->page_cgroup pointer as a bit spin
70 * lock. We need to ensure that page->page_cgroup is atleast two
71 * byte aligned (based on comments from Nick Piggin)
72 */
73 #define PAGE_CGROUP_LOCK_BIT 0x0
74 #define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
75
76 /*
77 * A page_cgroup page is associated with every page descriptor. The
78 * page_cgroup helps us identify information about the cgroup
79 */
80 struct page_cgroup {
81 struct list_head lru; /* per cgroup LRU list */
82 struct page *page;
83 struct mem_cgroup *mem_cgroup;
84 atomic_t ref_cnt; /* Helpful when pages move b/w */
85 /* mapped and cached states */
86 };
87
88 enum {
89 MEM_CGROUP_TYPE_UNSPEC = 0,
90 MEM_CGROUP_TYPE_MAPPED,
91 MEM_CGROUP_TYPE_CACHED,
92 MEM_CGROUP_TYPE_ALL,
93 MEM_CGROUP_TYPE_MAX,
94 };
95
96 static struct mem_cgroup init_mem_cgroup;
97
98 static inline
99 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
100 {
101 return container_of(cgroup_subsys_state(cont,
102 mem_cgroup_subsys_id), struct mem_cgroup,
103 css);
104 }
105
106 static inline
107 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
108 {
109 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
110 struct mem_cgroup, css);
111 }
112
113 void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p)
114 {
115 struct mem_cgroup *mem;
116
117 mem = mem_cgroup_from_task(p);
118 css_get(&mem->css);
119 mm->mem_cgroup = mem;
120 }
121
122 void mm_free_cgroup(struct mm_struct *mm)
123 {
124 css_put(&mm->mem_cgroup->css);
125 }
126
127 static inline int page_cgroup_locked(struct page *page)
128 {
129 return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT,
130 &page->page_cgroup);
131 }
132
133 void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
134 {
135 int locked;
136
137 /*
138 * While resetting the page_cgroup we might not hold the
139 * page_cgroup lock. free_hot_cold_page() is an example
140 * of such a scenario
141 */
142 if (pc)
143 VM_BUG_ON(!page_cgroup_locked(page));
144 locked = (page->page_cgroup & PAGE_CGROUP_LOCK);
145 page->page_cgroup = ((unsigned long)pc | locked);
146 }
147
148 struct page_cgroup *page_get_page_cgroup(struct page *page)
149 {
150 return (struct page_cgroup *)
151 (page->page_cgroup & ~PAGE_CGROUP_LOCK);
152 }
153
154 static void __always_inline lock_page_cgroup(struct page *page)
155 {
156 bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
157 VM_BUG_ON(!page_cgroup_locked(page));
158 }
159
160 static void __always_inline unlock_page_cgroup(struct page *page)
161 {
162 bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
163 }
164
165 static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
166 {
167 if (active)
168 list_move(&pc->lru, &pc->mem_cgroup->active_list);
169 else
170 list_move(&pc->lru, &pc->mem_cgroup->inactive_list);
171 }
172
173 /*
174 * This routine assumes that the appropriate zone's lru lock is already held
175 */
176 void mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
177 {
178 struct mem_cgroup *mem;
179 if (!pc)
180 return;
181
182 mem = pc->mem_cgroup;
183
184 spin_lock(&mem->lru_lock);
185 __mem_cgroup_move_lists(pc, active);
186 spin_unlock(&mem->lru_lock);
187 }
188
189 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
190 struct list_head *dst,
191 unsigned long *scanned, int order,
192 int mode, struct zone *z,
193 struct mem_cgroup *mem_cont,
194 int active)
195 {
196 unsigned long nr_taken = 0;
197 struct page *page;
198 unsigned long scan;
199 LIST_HEAD(pc_list);
200 struct list_head *src;
201 struct page_cgroup *pc;
202
203 if (active)
204 src = &mem_cont->active_list;
205 else
206 src = &mem_cont->inactive_list;
207
208 spin_lock(&mem_cont->lru_lock);
209 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
210 pc = list_entry(src->prev, struct page_cgroup, lru);
211 page = pc->page;
212 VM_BUG_ON(!pc);
213
214 if (PageActive(page) && !active) {
215 __mem_cgroup_move_lists(pc, true);
216 scan--;
217 continue;
218 }
219 if (!PageActive(page) && active) {
220 __mem_cgroup_move_lists(pc, false);
221 scan--;
222 continue;
223 }
224
225 /*
226 * Reclaim, per zone
227 * TODO: make the active/inactive lists per zone
228 */
229 if (page_zone(page) != z)
230 continue;
231
232 /*
233 * Check if the meta page went away from under us
234 */
235 if (!list_empty(&pc->lru))
236 list_move(&pc->lru, &pc_list);
237 else
238 continue;
239
240 if (__isolate_lru_page(page, mode) == 0) {
241 list_move(&page->lru, dst);
242 nr_taken++;
243 }
244 }
245
246 list_splice(&pc_list, src);
247 spin_unlock(&mem_cont->lru_lock);
248
249 *scanned = scan;
250 return nr_taken;
251 }
252
253 /*
254 * Charge the memory controller for page usage.
255 * Return
256 * 0 if the charge was successful
257 * < 0 if the cgroup is over its limit
258 */
259 int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
260 gfp_t gfp_mask)
261 {
262 struct mem_cgroup *mem;
263 struct page_cgroup *pc, *race_pc;
264 unsigned long flags;
265 unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
266
267 /*
268 * Should page_cgroup's go to their own slab?
269 * One could optimize the performance of the charging routine
270 * by saving a bit in the page_flags and using it as a lock
271 * to see if the cgroup page already has a page_cgroup associated
272 * with it
273 */
274 retry:
275 lock_page_cgroup(page);
276 pc = page_get_page_cgroup(page);
277 /*
278 * The page_cgroup exists and the page has already been accounted
279 */
280 if (pc) {
281 if (unlikely(!atomic_inc_not_zero(&pc->ref_cnt))) {
282 /* this page is under being uncharged ? */
283 unlock_page_cgroup(page);
284 cpu_relax();
285 goto retry;
286 } else
287 goto done;
288 }
289
290 unlock_page_cgroup(page);
291
292 pc = kzalloc(sizeof(struct page_cgroup), gfp_mask);
293 if (pc == NULL)
294 goto err;
295
296 rcu_read_lock();
297 /*
298 * We always charge the cgroup the mm_struct belongs to
299 * the mm_struct's mem_cgroup changes on task migration if the
300 * thread group leader migrates. It's possible that mm is not
301 * set, if so charge the init_mm (happens for pagecache usage).
302 */
303 if (!mm)
304 mm = &init_mm;
305
306 mem = rcu_dereference(mm->mem_cgroup);
307 /*
308 * For every charge from the cgroup, increment reference
309 * count
310 */
311 css_get(&mem->css);
312 rcu_read_unlock();
313
314 /*
315 * If we created the page_cgroup, we should free it on exceeding
316 * the cgroup limit.
317 */
318 while (res_counter_charge(&mem->res, PAGE_SIZE)) {
319 bool is_atomic = gfp_mask & GFP_ATOMIC;
320 /*
321 * We cannot reclaim under GFP_ATOMIC, fail the charge
322 */
323 if (is_atomic)
324 goto noreclaim;
325
326 if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
327 continue;
328
329 /*
330 * try_to_free_mem_cgroup_pages() might not give us a full
331 * picture of reclaim. Some pages are reclaimed and might be
332 * moved to swap cache or just unmapped from the cgroup.
333 * Check the limit again to see if the reclaim reduced the
334 * current usage of the cgroup before giving up
335 */
336 if (res_counter_check_under_limit(&mem->res))
337 continue;
338 /*
339 * Since we control both RSS and cache, we end up with a
340 * very interesting scenario where we end up reclaiming
341 * memory (essentially RSS), since the memory is pushed
342 * to swap cache, we eventually end up adding those
343 * pages back to our list. Hence we give ourselves a
344 * few chances before we fail
345 */
346 else if (nr_retries--) {
347 congestion_wait(WRITE, HZ/10);
348 continue;
349 }
350 noreclaim:
351 css_put(&mem->css);
352 if (!is_atomic)
353 mem_cgroup_out_of_memory(mem, GFP_KERNEL);
354 goto free_pc;
355 }
356
357 lock_page_cgroup(page);
358 /*
359 * Check if somebody else beat us to allocating the page_cgroup
360 */
361 race_pc = page_get_page_cgroup(page);
362 if (race_pc) {
363 kfree(pc);
364 pc = race_pc;
365 atomic_inc(&pc->ref_cnt);
366 res_counter_uncharge(&mem->res, PAGE_SIZE);
367 css_put(&mem->css);
368 goto done;
369 }
370
371 atomic_set(&pc->ref_cnt, 1);
372 pc->mem_cgroup = mem;
373 pc->page = page;
374 page_assign_page_cgroup(page, pc);
375
376 spin_lock_irqsave(&mem->lru_lock, flags);
377 list_add(&pc->lru, &mem->active_list);
378 spin_unlock_irqrestore(&mem->lru_lock, flags);
379
380 done:
381 unlock_page_cgroup(page);
382 return 0;
383 free_pc:
384 kfree(pc);
385 err:
386 return -ENOMEM;
387 }
388
389 /*
390 * See if the cached pages should be charged at all?
391 */
392 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
393 gfp_t gfp_mask)
394 {
395 struct mem_cgroup *mem;
396 if (!mm)
397 mm = &init_mm;
398
399 mem = rcu_dereference(mm->mem_cgroup);
400 if (mem->control_type == MEM_CGROUP_TYPE_ALL)
401 return mem_cgroup_charge(page, mm, gfp_mask);
402 else
403 return 0;
404 }
405
406 /*
407 * Uncharging is always a welcome operation, we never complain, simply
408 * uncharge.
409 */
410 void mem_cgroup_uncharge(struct page_cgroup *pc)
411 {
412 struct mem_cgroup *mem;
413 struct page *page;
414 unsigned long flags;
415
416 /*
417 * This can handle cases when a page is not charged at all and we
418 * are switching between handling the control_type.
419 */
420 if (!pc)
421 return;
422
423 if (atomic_dec_and_test(&pc->ref_cnt)) {
424 page = pc->page;
425 lock_page_cgroup(page);
426 mem = pc->mem_cgroup;
427 css_put(&mem->css);
428 page_assign_page_cgroup(page, NULL);
429 unlock_page_cgroup(page);
430 res_counter_uncharge(&mem->res, PAGE_SIZE);
431
432 spin_lock_irqsave(&mem->lru_lock, flags);
433 list_del_init(&pc->lru);
434 spin_unlock_irqrestore(&mem->lru_lock, flags);
435 kfree(pc);
436 }
437 }
438
439 int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
440 {
441 *tmp = memparse(buf, &buf);
442 if (*buf != '\0')
443 return -EINVAL;
444
445 /*
446 * Round up the value to the closest page size
447 */
448 *tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
449 return 0;
450 }
451
452 static ssize_t mem_cgroup_read(struct cgroup *cont,
453 struct cftype *cft, struct file *file,
454 char __user *userbuf, size_t nbytes, loff_t *ppos)
455 {
456 return res_counter_read(&mem_cgroup_from_cont(cont)->res,
457 cft->private, userbuf, nbytes, ppos,
458 NULL);
459 }
460
461 static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
462 struct file *file, const char __user *userbuf,
463 size_t nbytes, loff_t *ppos)
464 {
465 return res_counter_write(&mem_cgroup_from_cont(cont)->res,
466 cft->private, userbuf, nbytes, ppos,
467 mem_cgroup_write_strategy);
468 }
469
470 static ssize_t mem_control_type_write(struct cgroup *cont,
471 struct cftype *cft, struct file *file,
472 const char __user *userbuf,
473 size_t nbytes, loff_t *pos)
474 {
475 int ret;
476 char *buf, *end;
477 unsigned long tmp;
478 struct mem_cgroup *mem;
479
480 mem = mem_cgroup_from_cont(cont);
481 buf = kmalloc(nbytes + 1, GFP_KERNEL);
482 ret = -ENOMEM;
483 if (buf == NULL)
484 goto out;
485
486 buf[nbytes] = 0;
487 ret = -EFAULT;
488 if (copy_from_user(buf, userbuf, nbytes))
489 goto out_free;
490
491 ret = -EINVAL;
492 tmp = simple_strtoul(buf, &end, 10);
493 if (*end != '\0')
494 goto out_free;
495
496 if (tmp <= MEM_CGROUP_TYPE_UNSPEC || tmp >= MEM_CGROUP_TYPE_MAX)
497 goto out_free;
498
499 mem->control_type = tmp;
500 ret = nbytes;
501 out_free:
502 kfree(buf);
503 out:
504 return ret;
505 }
506
507 static ssize_t mem_control_type_read(struct cgroup *cont,
508 struct cftype *cft,
509 struct file *file, char __user *userbuf,
510 size_t nbytes, loff_t *ppos)
511 {
512 unsigned long val;
513 char buf[64], *s;
514 struct mem_cgroup *mem;
515
516 mem = mem_cgroup_from_cont(cont);
517 s = buf;
518 val = mem->control_type;
519 s += sprintf(s, "%lu\n", val);
520 return simple_read_from_buffer((void __user *)userbuf, nbytes,
521 ppos, buf, s - buf);
522 }
523
524 static struct cftype mem_cgroup_files[] = {
525 {
526 .name = "usage_in_bytes",
527 .private = RES_USAGE,
528 .read = mem_cgroup_read,
529 },
530 {
531 .name = "limit_in_bytes",
532 .private = RES_LIMIT,
533 .write = mem_cgroup_write,
534 .read = mem_cgroup_read,
535 },
536 {
537 .name = "failcnt",
538 .private = RES_FAILCNT,
539 .read = mem_cgroup_read,
540 },
541 {
542 .name = "control_type",
543 .write = mem_control_type_write,
544 .read = mem_control_type_read,
545 },
546 };
547
548 static struct mem_cgroup init_mem_cgroup;
549
550 static struct cgroup_subsys_state *
551 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
552 {
553 struct mem_cgroup *mem;
554
555 if (unlikely((cont->parent) == NULL)) {
556 mem = &init_mem_cgroup;
557 init_mm.mem_cgroup = mem;
558 } else
559 mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);
560
561 if (mem == NULL)
562 return NULL;
563
564 res_counter_init(&mem->res);
565 INIT_LIST_HEAD(&mem->active_list);
566 INIT_LIST_HEAD(&mem->inactive_list);
567 spin_lock_init(&mem->lru_lock);
568 mem->control_type = MEM_CGROUP_TYPE_ALL;
569 return &mem->css;
570 }
571
572 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
573 struct cgroup *cont)
574 {
575 kfree(mem_cgroup_from_cont(cont));
576 }
577
578 static int mem_cgroup_populate(struct cgroup_subsys *ss,
579 struct cgroup *cont)
580 {
581 return cgroup_add_files(cont, ss, mem_cgroup_files,
582 ARRAY_SIZE(mem_cgroup_files));
583 }
584
585 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
586 struct cgroup *cont,
587 struct cgroup *old_cont,
588 struct task_struct *p)
589 {
590 struct mm_struct *mm;
591 struct mem_cgroup *mem, *old_mem;
592
593 mm = get_task_mm(p);
594 if (mm == NULL)
595 return;
596
597 mem = mem_cgroup_from_cont(cont);
598 old_mem = mem_cgroup_from_cont(old_cont);
599
600 if (mem == old_mem)
601 goto out;
602
603 /*
604 * Only thread group leaders are allowed to migrate, the mm_struct is
605 * in effect owned by the leader
606 */
607 if (p->tgid != p->pid)
608 goto out;
609
610 css_get(&mem->css);
611 rcu_assign_pointer(mm->mem_cgroup, mem);
612 css_put(&old_mem->css);
613
614 out:
615 mmput(mm);
616 return;
617 }
618
619 struct cgroup_subsys mem_cgroup_subsys = {
620 .name = "memory",
621 .subsys_id = mem_cgroup_subsys_id,
622 .create = mem_cgroup_create,
623 .destroy = mem_cgroup_destroy,
624 .populate = mem_cgroup_populate,
625 .attach = mem_cgroup_move_task,
626 .early_init = 1,
627 };
This page took 0.053027 seconds and 6 git commands to generate.