memcg: export struct mem_cgroup
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include "internal.h"
66 #include <net/sock.h>
67 #include <net/ip.h>
68 #include <net/tcp_memcontrol.h>
69 #include "slab.h"
70
71 #include <asm/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 #define MEM_CGROUP_RECLAIM_RETRIES 5
79 static struct mem_cgroup *root_mem_cgroup __read_mostly;
80 struct cgroup_subsys_state *mem_cgroup_root_css __read_mostly;
81
82 /* Whether the swap controller is active */
83 #ifdef CONFIG_MEMCG_SWAP
84 int do_swap_account __read_mostly;
85 #else
86 #define do_swap_account 0
87 #endif
88
89 static const char * const mem_cgroup_stat_names[] = {
90 "cache",
91 "rss",
92 "rss_huge",
93 "mapped_file",
94 "dirty",
95 "writeback",
96 "swap",
97 };
98
99 static const char * const mem_cgroup_events_names[] = {
100 "pgpgin",
101 "pgpgout",
102 "pgfault",
103 "pgmajfault",
104 };
105
106 static const char * const mem_cgroup_lru_names[] = {
107 "inactive_anon",
108 "active_anon",
109 "inactive_file",
110 "active_file",
111 "unevictable",
112 };
113
114 #define THRESHOLDS_EVENTS_TARGET 128
115 #define SOFTLIMIT_EVENTS_TARGET 1024
116 #define NUMAINFO_EVENTS_TARGET 1024
117
118 /*
119 * Cgroups above their limits are maintained in a RB-Tree, independent of
120 * their hierarchy representation
121 */
122
123 struct mem_cgroup_tree_per_zone {
124 struct rb_root rb_root;
125 spinlock_t lock;
126 };
127
128 struct mem_cgroup_tree_per_node {
129 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
130 };
131
132 struct mem_cgroup_tree {
133 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
134 };
135
136 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
137
138 /* for OOM */
139 struct mem_cgroup_eventfd_list {
140 struct list_head list;
141 struct eventfd_ctx *eventfd;
142 };
143
144 /*
145 * cgroup_event represents events which userspace want to receive.
146 */
147 struct mem_cgroup_event {
148 /*
149 * memcg which the event belongs to.
150 */
151 struct mem_cgroup *memcg;
152 /*
153 * eventfd to signal userspace about the event.
154 */
155 struct eventfd_ctx *eventfd;
156 /*
157 * Each of these stored in a list by the cgroup.
158 */
159 struct list_head list;
160 /*
161 * register_event() callback will be used to add new userspace
162 * waiter for changes related to this event. Use eventfd_signal()
163 * on eventfd to send notification to userspace.
164 */
165 int (*register_event)(struct mem_cgroup *memcg,
166 struct eventfd_ctx *eventfd, const char *args);
167 /*
168 * unregister_event() callback will be called when userspace closes
169 * the eventfd or on cgroup removing. This callback must be set,
170 * if you want provide notification functionality.
171 */
172 void (*unregister_event)(struct mem_cgroup *memcg,
173 struct eventfd_ctx *eventfd);
174 /*
175 * All fields below needed to unregister event when
176 * userspace closes eventfd.
177 */
178 poll_table pt;
179 wait_queue_head_t *wqh;
180 wait_queue_t wait;
181 struct work_struct remove;
182 };
183
184 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
185 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
186
187 /* Stuffs for move charges at task migration. */
188 /*
189 * Types of charges to be moved.
190 */
191 #define MOVE_ANON 0x1U
192 #define MOVE_FILE 0x2U
193 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
194
195 /* "mc" and its members are protected by cgroup_mutex */
196 static struct move_charge_struct {
197 spinlock_t lock; /* for from, to */
198 struct mem_cgroup *from;
199 struct mem_cgroup *to;
200 unsigned long flags;
201 unsigned long precharge;
202 unsigned long moved_charge;
203 unsigned long moved_swap;
204 struct task_struct *moving_task; /* a task moving charges */
205 wait_queue_head_t waitq; /* a waitq for other context */
206 } mc = {
207 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
208 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
209 };
210
211 /*
212 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
213 * limit reclaim to prevent infinite loops, if they ever occur.
214 */
215 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
216 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
217
218 enum charge_type {
219 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
220 MEM_CGROUP_CHARGE_TYPE_ANON,
221 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
222 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
223 NR_CHARGE_TYPE,
224 };
225
226 /* for encoding cft->private value on file */
227 enum res_type {
228 _MEM,
229 _MEMSWAP,
230 _OOM_TYPE,
231 _KMEM,
232 };
233
234 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
235 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
236 #define MEMFILE_ATTR(val) ((val) & 0xffff)
237 /* Used for OOM nofiier */
238 #define OOM_CONTROL (0)
239
240 /*
241 * The memcg_create_mutex will be held whenever a new cgroup is created.
242 * As a consequence, any change that needs to protect against new child cgroups
243 * appearing has to hold it as well.
244 */
245 static DEFINE_MUTEX(memcg_create_mutex);
246
247 /* Some nice accessors for the vmpressure. */
248 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
249 {
250 if (!memcg)
251 memcg = root_mem_cgroup;
252 return &memcg->vmpressure;
253 }
254
255 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
256 {
257 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
258 }
259
260 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
261 {
262 return (memcg == root_mem_cgroup);
263 }
264
265 /*
266 * We restrict the id in the range of [1, 65535], so it can fit into
267 * an unsigned short.
268 */
269 #define MEM_CGROUP_ID_MAX USHRT_MAX
270
271 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
272 {
273 return memcg->css.id;
274 }
275
276 /*
277 * A helper function to get mem_cgroup from ID. must be called under
278 * rcu_read_lock(). The caller is responsible for calling
279 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
280 * refcnt from swap can be called against removed memcg.)
281 */
282 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
283 {
284 struct cgroup_subsys_state *css;
285
286 css = css_from_id(id, &memory_cgrp_subsys);
287 return mem_cgroup_from_css(css);
288 }
289
290 /* Writing them here to avoid exposing memcg's inner layout */
291 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
292
293 void sock_update_memcg(struct sock *sk)
294 {
295 if (mem_cgroup_sockets_enabled) {
296 struct mem_cgroup *memcg;
297 struct cg_proto *cg_proto;
298
299 BUG_ON(!sk->sk_prot->proto_cgroup);
300
301 /* Socket cloning can throw us here with sk_cgrp already
302 * filled. It won't however, necessarily happen from
303 * process context. So the test for root memcg given
304 * the current task's memcg won't help us in this case.
305 *
306 * Respecting the original socket's memcg is a better
307 * decision in this case.
308 */
309 if (sk->sk_cgrp) {
310 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
311 css_get(&sk->sk_cgrp->memcg->css);
312 return;
313 }
314
315 rcu_read_lock();
316 memcg = mem_cgroup_from_task(current);
317 cg_proto = sk->sk_prot->proto_cgroup(memcg);
318 if (!mem_cgroup_is_root(memcg) &&
319 memcg_proto_active(cg_proto) &&
320 css_tryget_online(&memcg->css)) {
321 sk->sk_cgrp = cg_proto;
322 }
323 rcu_read_unlock();
324 }
325 }
326 EXPORT_SYMBOL(sock_update_memcg);
327
328 void sock_release_memcg(struct sock *sk)
329 {
330 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
331 struct mem_cgroup *memcg;
332 WARN_ON(!sk->sk_cgrp->memcg);
333 memcg = sk->sk_cgrp->memcg;
334 css_put(&sk->sk_cgrp->memcg->css);
335 }
336 }
337
338 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
339 {
340 if (!memcg || mem_cgroup_is_root(memcg))
341 return NULL;
342
343 return &memcg->tcp_mem;
344 }
345 EXPORT_SYMBOL(tcp_proto_cgroup);
346
347 #endif
348
349 #ifdef CONFIG_MEMCG_KMEM
350 /*
351 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
352 * The main reason for not using cgroup id for this:
353 * this works better in sparse environments, where we have a lot of memcgs,
354 * but only a few kmem-limited. Or also, if we have, for instance, 200
355 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
356 * 200 entry array for that.
357 *
358 * The current size of the caches array is stored in memcg_nr_cache_ids. It
359 * will double each time we have to increase it.
360 */
361 static DEFINE_IDA(memcg_cache_ida);
362 int memcg_nr_cache_ids;
363
364 /* Protects memcg_nr_cache_ids */
365 static DECLARE_RWSEM(memcg_cache_ids_sem);
366
367 void memcg_get_cache_ids(void)
368 {
369 down_read(&memcg_cache_ids_sem);
370 }
371
372 void memcg_put_cache_ids(void)
373 {
374 up_read(&memcg_cache_ids_sem);
375 }
376
377 /*
378 * MIN_SIZE is different than 1, because we would like to avoid going through
379 * the alloc/free process all the time. In a small machine, 4 kmem-limited
380 * cgroups is a reasonable guess. In the future, it could be a parameter or
381 * tunable, but that is strictly not necessary.
382 *
383 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
384 * this constant directly from cgroup, but it is understandable that this is
385 * better kept as an internal representation in cgroup.c. In any case, the
386 * cgrp_id space is not getting any smaller, and we don't have to necessarily
387 * increase ours as well if it increases.
388 */
389 #define MEMCG_CACHES_MIN_SIZE 4
390 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
391
392 /*
393 * A lot of the calls to the cache allocation functions are expected to be
394 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
395 * conditional to this static branch, we'll have to allow modules that does
396 * kmem_cache_alloc and the such to see this symbol as well
397 */
398 struct static_key memcg_kmem_enabled_key;
399 EXPORT_SYMBOL(memcg_kmem_enabled_key);
400
401 #endif /* CONFIG_MEMCG_KMEM */
402
403 static struct mem_cgroup_per_zone *
404 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
405 {
406 int nid = zone_to_nid(zone);
407 int zid = zone_idx(zone);
408
409 return &memcg->nodeinfo[nid]->zoneinfo[zid];
410 }
411
412 /**
413 * mem_cgroup_css_from_page - css of the memcg associated with a page
414 * @page: page of interest
415 *
416 * If memcg is bound to the default hierarchy, css of the memcg associated
417 * with @page is returned. The returned css remains associated with @page
418 * until it is released.
419 *
420 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
421 * is returned.
422 *
423 * XXX: The above description of behavior on the default hierarchy isn't
424 * strictly true yet as replace_page_cache_page() can modify the
425 * association before @page is released even on the default hierarchy;
426 * however, the current and planned usages don't mix the the two functions
427 * and replace_page_cache_page() will soon be updated to make the invariant
428 * actually true.
429 */
430 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
431 {
432 struct mem_cgroup *memcg;
433
434 rcu_read_lock();
435
436 memcg = page->mem_cgroup;
437
438 if (!memcg || !cgroup_on_dfl(memcg->css.cgroup))
439 memcg = root_mem_cgroup;
440
441 rcu_read_unlock();
442 return &memcg->css;
443 }
444
445 static struct mem_cgroup_per_zone *
446 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
447 {
448 int nid = page_to_nid(page);
449 int zid = page_zonenum(page);
450
451 return &memcg->nodeinfo[nid]->zoneinfo[zid];
452 }
453
454 static struct mem_cgroup_tree_per_zone *
455 soft_limit_tree_node_zone(int nid, int zid)
456 {
457 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
458 }
459
460 static struct mem_cgroup_tree_per_zone *
461 soft_limit_tree_from_page(struct page *page)
462 {
463 int nid = page_to_nid(page);
464 int zid = page_zonenum(page);
465
466 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
467 }
468
469 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
470 struct mem_cgroup_tree_per_zone *mctz,
471 unsigned long new_usage_in_excess)
472 {
473 struct rb_node **p = &mctz->rb_root.rb_node;
474 struct rb_node *parent = NULL;
475 struct mem_cgroup_per_zone *mz_node;
476
477 if (mz->on_tree)
478 return;
479
480 mz->usage_in_excess = new_usage_in_excess;
481 if (!mz->usage_in_excess)
482 return;
483 while (*p) {
484 parent = *p;
485 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
486 tree_node);
487 if (mz->usage_in_excess < mz_node->usage_in_excess)
488 p = &(*p)->rb_left;
489 /*
490 * We can't avoid mem cgroups that are over their soft
491 * limit by the same amount
492 */
493 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
494 p = &(*p)->rb_right;
495 }
496 rb_link_node(&mz->tree_node, parent, p);
497 rb_insert_color(&mz->tree_node, &mctz->rb_root);
498 mz->on_tree = true;
499 }
500
501 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
502 struct mem_cgroup_tree_per_zone *mctz)
503 {
504 if (!mz->on_tree)
505 return;
506 rb_erase(&mz->tree_node, &mctz->rb_root);
507 mz->on_tree = false;
508 }
509
510 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
511 struct mem_cgroup_tree_per_zone *mctz)
512 {
513 unsigned long flags;
514
515 spin_lock_irqsave(&mctz->lock, flags);
516 __mem_cgroup_remove_exceeded(mz, mctz);
517 spin_unlock_irqrestore(&mctz->lock, flags);
518 }
519
520 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
521 {
522 unsigned long nr_pages = page_counter_read(&memcg->memory);
523 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
524 unsigned long excess = 0;
525
526 if (nr_pages > soft_limit)
527 excess = nr_pages - soft_limit;
528
529 return excess;
530 }
531
532 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
533 {
534 unsigned long excess;
535 struct mem_cgroup_per_zone *mz;
536 struct mem_cgroup_tree_per_zone *mctz;
537
538 mctz = soft_limit_tree_from_page(page);
539 /*
540 * Necessary to update all ancestors when hierarchy is used.
541 * because their event counter is not touched.
542 */
543 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
544 mz = mem_cgroup_page_zoneinfo(memcg, page);
545 excess = soft_limit_excess(memcg);
546 /*
547 * We have to update the tree if mz is on RB-tree or
548 * mem is over its softlimit.
549 */
550 if (excess || mz->on_tree) {
551 unsigned long flags;
552
553 spin_lock_irqsave(&mctz->lock, flags);
554 /* if on-tree, remove it */
555 if (mz->on_tree)
556 __mem_cgroup_remove_exceeded(mz, mctz);
557 /*
558 * Insert again. mz->usage_in_excess will be updated.
559 * If excess is 0, no tree ops.
560 */
561 __mem_cgroup_insert_exceeded(mz, mctz, excess);
562 spin_unlock_irqrestore(&mctz->lock, flags);
563 }
564 }
565 }
566
567 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
568 {
569 struct mem_cgroup_tree_per_zone *mctz;
570 struct mem_cgroup_per_zone *mz;
571 int nid, zid;
572
573 for_each_node(nid) {
574 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
575 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
576 mctz = soft_limit_tree_node_zone(nid, zid);
577 mem_cgroup_remove_exceeded(mz, mctz);
578 }
579 }
580 }
581
582 static struct mem_cgroup_per_zone *
583 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
584 {
585 struct rb_node *rightmost = NULL;
586 struct mem_cgroup_per_zone *mz;
587
588 retry:
589 mz = NULL;
590 rightmost = rb_last(&mctz->rb_root);
591 if (!rightmost)
592 goto done; /* Nothing to reclaim from */
593
594 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
595 /*
596 * Remove the node now but someone else can add it back,
597 * we will to add it back at the end of reclaim to its correct
598 * position in the tree.
599 */
600 __mem_cgroup_remove_exceeded(mz, mctz);
601 if (!soft_limit_excess(mz->memcg) ||
602 !css_tryget_online(&mz->memcg->css))
603 goto retry;
604 done:
605 return mz;
606 }
607
608 static struct mem_cgroup_per_zone *
609 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
610 {
611 struct mem_cgroup_per_zone *mz;
612
613 spin_lock_irq(&mctz->lock);
614 mz = __mem_cgroup_largest_soft_limit_node(mctz);
615 spin_unlock_irq(&mctz->lock);
616 return mz;
617 }
618
619 /*
620 * Implementation Note: reading percpu statistics for memcg.
621 *
622 * Both of vmstat[] and percpu_counter has threshold and do periodic
623 * synchronization to implement "quick" read. There are trade-off between
624 * reading cost and precision of value. Then, we may have a chance to implement
625 * a periodic synchronizion of counter in memcg's counter.
626 *
627 * But this _read() function is used for user interface now. The user accounts
628 * memory usage by memory cgroup and he _always_ requires exact value because
629 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
630 * have to visit all online cpus and make sum. So, for now, unnecessary
631 * synchronization is not implemented. (just implemented for cpu hotplug)
632 *
633 * If there are kernel internal actions which can make use of some not-exact
634 * value, and reading all cpu value can be performance bottleneck in some
635 * common workload, threashold and synchonization as vmstat[] should be
636 * implemented.
637 */
638 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
639 enum mem_cgroup_stat_index idx)
640 {
641 long val = 0;
642 int cpu;
643
644 for_each_possible_cpu(cpu)
645 val += per_cpu(memcg->stat->count[idx], cpu);
646 return val;
647 }
648
649 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
650 enum mem_cgroup_events_index idx)
651 {
652 unsigned long val = 0;
653 int cpu;
654
655 for_each_possible_cpu(cpu)
656 val += per_cpu(memcg->stat->events[idx], cpu);
657 return val;
658 }
659
660 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
661 struct page *page,
662 int nr_pages)
663 {
664 /*
665 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
666 * counted as CACHE even if it's on ANON LRU.
667 */
668 if (PageAnon(page))
669 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
670 nr_pages);
671 else
672 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
673 nr_pages);
674
675 if (PageTransHuge(page))
676 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
677 nr_pages);
678
679 /* pagein of a big page is an event. So, ignore page size */
680 if (nr_pages > 0)
681 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
682 else {
683 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
684 nr_pages = -nr_pages; /* for event */
685 }
686
687 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
688 }
689
690 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
691 int nid,
692 unsigned int lru_mask)
693 {
694 unsigned long nr = 0;
695 int zid;
696
697 VM_BUG_ON((unsigned)nid >= nr_node_ids);
698
699 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
700 struct mem_cgroup_per_zone *mz;
701 enum lru_list lru;
702
703 for_each_lru(lru) {
704 if (!(BIT(lru) & lru_mask))
705 continue;
706 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
707 nr += mz->lru_size[lru];
708 }
709 }
710 return nr;
711 }
712
713 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
714 unsigned int lru_mask)
715 {
716 unsigned long nr = 0;
717 int nid;
718
719 for_each_node_state(nid, N_MEMORY)
720 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
721 return nr;
722 }
723
724 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
725 enum mem_cgroup_events_target target)
726 {
727 unsigned long val, next;
728
729 val = __this_cpu_read(memcg->stat->nr_page_events);
730 next = __this_cpu_read(memcg->stat->targets[target]);
731 /* from time_after() in jiffies.h */
732 if ((long)next - (long)val < 0) {
733 switch (target) {
734 case MEM_CGROUP_TARGET_THRESH:
735 next = val + THRESHOLDS_EVENTS_TARGET;
736 break;
737 case MEM_CGROUP_TARGET_SOFTLIMIT:
738 next = val + SOFTLIMIT_EVENTS_TARGET;
739 break;
740 case MEM_CGROUP_TARGET_NUMAINFO:
741 next = val + NUMAINFO_EVENTS_TARGET;
742 break;
743 default:
744 break;
745 }
746 __this_cpu_write(memcg->stat->targets[target], next);
747 return true;
748 }
749 return false;
750 }
751
752 /*
753 * Check events in order.
754 *
755 */
756 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
757 {
758 /* threshold event is triggered in finer grain than soft limit */
759 if (unlikely(mem_cgroup_event_ratelimit(memcg,
760 MEM_CGROUP_TARGET_THRESH))) {
761 bool do_softlimit;
762 bool do_numainfo __maybe_unused;
763
764 do_softlimit = mem_cgroup_event_ratelimit(memcg,
765 MEM_CGROUP_TARGET_SOFTLIMIT);
766 #if MAX_NUMNODES > 1
767 do_numainfo = mem_cgroup_event_ratelimit(memcg,
768 MEM_CGROUP_TARGET_NUMAINFO);
769 #endif
770 mem_cgroup_threshold(memcg);
771 if (unlikely(do_softlimit))
772 mem_cgroup_update_tree(memcg, page);
773 #if MAX_NUMNODES > 1
774 if (unlikely(do_numainfo))
775 atomic_inc(&memcg->numainfo_events);
776 #endif
777 }
778 }
779
780 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
781 {
782 /*
783 * mm_update_next_owner() may clear mm->owner to NULL
784 * if it races with swapoff, page migration, etc.
785 * So this can be called with p == NULL.
786 */
787 if (unlikely(!p))
788 return NULL;
789
790 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
791 }
792 EXPORT_SYMBOL(mem_cgroup_from_task);
793
794 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
795 {
796 struct mem_cgroup *memcg = NULL;
797
798 rcu_read_lock();
799 do {
800 /*
801 * Page cache insertions can happen withou an
802 * actual mm context, e.g. during disk probing
803 * on boot, loopback IO, acct() writes etc.
804 */
805 if (unlikely(!mm))
806 memcg = root_mem_cgroup;
807 else {
808 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
809 if (unlikely(!memcg))
810 memcg = root_mem_cgroup;
811 }
812 } while (!css_tryget_online(&memcg->css));
813 rcu_read_unlock();
814 return memcg;
815 }
816
817 /**
818 * mem_cgroup_iter - iterate over memory cgroup hierarchy
819 * @root: hierarchy root
820 * @prev: previously returned memcg, NULL on first invocation
821 * @reclaim: cookie for shared reclaim walks, NULL for full walks
822 *
823 * Returns references to children of the hierarchy below @root, or
824 * @root itself, or %NULL after a full round-trip.
825 *
826 * Caller must pass the return value in @prev on subsequent
827 * invocations for reference counting, or use mem_cgroup_iter_break()
828 * to cancel a hierarchy walk before the round-trip is complete.
829 *
830 * Reclaimers can specify a zone and a priority level in @reclaim to
831 * divide up the memcgs in the hierarchy among all concurrent
832 * reclaimers operating on the same zone and priority.
833 */
834 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
835 struct mem_cgroup *prev,
836 struct mem_cgroup_reclaim_cookie *reclaim)
837 {
838 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
839 struct cgroup_subsys_state *css = NULL;
840 struct mem_cgroup *memcg = NULL;
841 struct mem_cgroup *pos = NULL;
842
843 if (mem_cgroup_disabled())
844 return NULL;
845
846 if (!root)
847 root = root_mem_cgroup;
848
849 if (prev && !reclaim)
850 pos = prev;
851
852 if (!root->use_hierarchy && root != root_mem_cgroup) {
853 if (prev)
854 goto out;
855 return root;
856 }
857
858 rcu_read_lock();
859
860 if (reclaim) {
861 struct mem_cgroup_per_zone *mz;
862
863 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
864 iter = &mz->iter[reclaim->priority];
865
866 if (prev && reclaim->generation != iter->generation)
867 goto out_unlock;
868
869 do {
870 pos = READ_ONCE(iter->position);
871 /*
872 * A racing update may change the position and
873 * put the last reference, hence css_tryget(),
874 * or retry to see the updated position.
875 */
876 } while (pos && !css_tryget(&pos->css));
877 }
878
879 if (pos)
880 css = &pos->css;
881
882 for (;;) {
883 css = css_next_descendant_pre(css, &root->css);
884 if (!css) {
885 /*
886 * Reclaimers share the hierarchy walk, and a
887 * new one might jump in right at the end of
888 * the hierarchy - make sure they see at least
889 * one group and restart from the beginning.
890 */
891 if (!prev)
892 continue;
893 break;
894 }
895
896 /*
897 * Verify the css and acquire a reference. The root
898 * is provided by the caller, so we know it's alive
899 * and kicking, and don't take an extra reference.
900 */
901 memcg = mem_cgroup_from_css(css);
902
903 if (css == &root->css)
904 break;
905
906 if (css_tryget(css)) {
907 /*
908 * Make sure the memcg is initialized:
909 * mem_cgroup_css_online() orders the the
910 * initialization against setting the flag.
911 */
912 if (smp_load_acquire(&memcg->initialized))
913 break;
914
915 css_put(css);
916 }
917
918 memcg = NULL;
919 }
920
921 if (reclaim) {
922 if (cmpxchg(&iter->position, pos, memcg) == pos) {
923 if (memcg)
924 css_get(&memcg->css);
925 if (pos)
926 css_put(&pos->css);
927 }
928
929 /*
930 * pairs with css_tryget when dereferencing iter->position
931 * above.
932 */
933 if (pos)
934 css_put(&pos->css);
935
936 if (!memcg)
937 iter->generation++;
938 else if (!prev)
939 reclaim->generation = iter->generation;
940 }
941
942 out_unlock:
943 rcu_read_unlock();
944 out:
945 if (prev && prev != root)
946 css_put(&prev->css);
947
948 return memcg;
949 }
950
951 /**
952 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
953 * @root: hierarchy root
954 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
955 */
956 void mem_cgroup_iter_break(struct mem_cgroup *root,
957 struct mem_cgroup *prev)
958 {
959 if (!root)
960 root = root_mem_cgroup;
961 if (prev && prev != root)
962 css_put(&prev->css);
963 }
964
965 /*
966 * Iteration constructs for visiting all cgroups (under a tree). If
967 * loops are exited prematurely (break), mem_cgroup_iter_break() must
968 * be used for reference counting.
969 */
970 #define for_each_mem_cgroup_tree(iter, root) \
971 for (iter = mem_cgroup_iter(root, NULL, NULL); \
972 iter != NULL; \
973 iter = mem_cgroup_iter(root, iter, NULL))
974
975 #define for_each_mem_cgroup(iter) \
976 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
977 iter != NULL; \
978 iter = mem_cgroup_iter(NULL, iter, NULL))
979
980 /**
981 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
982 * @zone: zone of the wanted lruvec
983 * @memcg: memcg of the wanted lruvec
984 *
985 * Returns the lru list vector holding pages for the given @zone and
986 * @mem. This can be the global zone lruvec, if the memory controller
987 * is disabled.
988 */
989 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
990 struct mem_cgroup *memcg)
991 {
992 struct mem_cgroup_per_zone *mz;
993 struct lruvec *lruvec;
994
995 if (mem_cgroup_disabled()) {
996 lruvec = &zone->lruvec;
997 goto out;
998 }
999
1000 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1001 lruvec = &mz->lruvec;
1002 out:
1003 /*
1004 * Since a node can be onlined after the mem_cgroup was created,
1005 * we have to be prepared to initialize lruvec->zone here;
1006 * and if offlined then reonlined, we need to reinitialize it.
1007 */
1008 if (unlikely(lruvec->zone != zone))
1009 lruvec->zone = zone;
1010 return lruvec;
1011 }
1012
1013 /**
1014 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1015 * @page: the page
1016 * @zone: zone of the page
1017 *
1018 * This function is only safe when following the LRU page isolation
1019 * and putback protocol: the LRU lock must be held, and the page must
1020 * either be PageLRU() or the caller must have isolated/allocated it.
1021 */
1022 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1023 {
1024 struct mem_cgroup_per_zone *mz;
1025 struct mem_cgroup *memcg;
1026 struct lruvec *lruvec;
1027
1028 if (mem_cgroup_disabled()) {
1029 lruvec = &zone->lruvec;
1030 goto out;
1031 }
1032
1033 memcg = page->mem_cgroup;
1034 /*
1035 * Swapcache readahead pages are added to the LRU - and
1036 * possibly migrated - before they are charged.
1037 */
1038 if (!memcg)
1039 memcg = root_mem_cgroup;
1040
1041 mz = mem_cgroup_page_zoneinfo(memcg, page);
1042 lruvec = &mz->lruvec;
1043 out:
1044 /*
1045 * Since a node can be onlined after the mem_cgroup was created,
1046 * we have to be prepared to initialize lruvec->zone here;
1047 * and if offlined then reonlined, we need to reinitialize it.
1048 */
1049 if (unlikely(lruvec->zone != zone))
1050 lruvec->zone = zone;
1051 return lruvec;
1052 }
1053
1054 /**
1055 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1056 * @lruvec: mem_cgroup per zone lru vector
1057 * @lru: index of lru list the page is sitting on
1058 * @nr_pages: positive when adding or negative when removing
1059 *
1060 * This function must be called when a page is added to or removed from an
1061 * lru list.
1062 */
1063 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1064 int nr_pages)
1065 {
1066 struct mem_cgroup_per_zone *mz;
1067 unsigned long *lru_size;
1068
1069 if (mem_cgroup_disabled())
1070 return;
1071
1072 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1073 lru_size = mz->lru_size + lru;
1074 *lru_size += nr_pages;
1075 VM_BUG_ON((long)(*lru_size) < 0);
1076 }
1077
1078 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1079 {
1080 struct mem_cgroup *task_memcg;
1081 struct task_struct *p;
1082 bool ret;
1083
1084 p = find_lock_task_mm(task);
1085 if (p) {
1086 task_memcg = get_mem_cgroup_from_mm(p->mm);
1087 task_unlock(p);
1088 } else {
1089 /*
1090 * All threads may have already detached their mm's, but the oom
1091 * killer still needs to detect if they have already been oom
1092 * killed to prevent needlessly killing additional tasks.
1093 */
1094 rcu_read_lock();
1095 task_memcg = mem_cgroup_from_task(task);
1096 css_get(&task_memcg->css);
1097 rcu_read_unlock();
1098 }
1099 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1100 css_put(&task_memcg->css);
1101 return ret;
1102 }
1103
1104 #define mem_cgroup_from_counter(counter, member) \
1105 container_of(counter, struct mem_cgroup, member)
1106
1107 /**
1108 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1109 * @memcg: the memory cgroup
1110 *
1111 * Returns the maximum amount of memory @mem can be charged with, in
1112 * pages.
1113 */
1114 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1115 {
1116 unsigned long margin = 0;
1117 unsigned long count;
1118 unsigned long limit;
1119
1120 count = page_counter_read(&memcg->memory);
1121 limit = READ_ONCE(memcg->memory.limit);
1122 if (count < limit)
1123 margin = limit - count;
1124
1125 if (do_swap_account) {
1126 count = page_counter_read(&memcg->memsw);
1127 limit = READ_ONCE(memcg->memsw.limit);
1128 if (count <= limit)
1129 margin = min(margin, limit - count);
1130 }
1131
1132 return margin;
1133 }
1134
1135 /*
1136 * A routine for checking "mem" is under move_account() or not.
1137 *
1138 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1139 * moving cgroups. This is for waiting at high-memory pressure
1140 * caused by "move".
1141 */
1142 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1143 {
1144 struct mem_cgroup *from;
1145 struct mem_cgroup *to;
1146 bool ret = false;
1147 /*
1148 * Unlike task_move routines, we access mc.to, mc.from not under
1149 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1150 */
1151 spin_lock(&mc.lock);
1152 from = mc.from;
1153 to = mc.to;
1154 if (!from)
1155 goto unlock;
1156
1157 ret = mem_cgroup_is_descendant(from, memcg) ||
1158 mem_cgroup_is_descendant(to, memcg);
1159 unlock:
1160 spin_unlock(&mc.lock);
1161 return ret;
1162 }
1163
1164 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1165 {
1166 if (mc.moving_task && current != mc.moving_task) {
1167 if (mem_cgroup_under_move(memcg)) {
1168 DEFINE_WAIT(wait);
1169 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1170 /* moving charge context might have finished. */
1171 if (mc.moving_task)
1172 schedule();
1173 finish_wait(&mc.waitq, &wait);
1174 return true;
1175 }
1176 }
1177 return false;
1178 }
1179
1180 #define K(x) ((x) << (PAGE_SHIFT-10))
1181 /**
1182 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1183 * @memcg: The memory cgroup that went over limit
1184 * @p: Task that is going to be killed
1185 *
1186 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1187 * enabled
1188 */
1189 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1190 {
1191 /* oom_info_lock ensures that parallel ooms do not interleave */
1192 static DEFINE_MUTEX(oom_info_lock);
1193 struct mem_cgroup *iter;
1194 unsigned int i;
1195
1196 mutex_lock(&oom_info_lock);
1197 rcu_read_lock();
1198
1199 if (p) {
1200 pr_info("Task in ");
1201 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1202 pr_cont(" killed as a result of limit of ");
1203 } else {
1204 pr_info("Memory limit reached of cgroup ");
1205 }
1206
1207 pr_cont_cgroup_path(memcg->css.cgroup);
1208 pr_cont("\n");
1209
1210 rcu_read_unlock();
1211
1212 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1213 K((u64)page_counter_read(&memcg->memory)),
1214 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1215 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1216 K((u64)page_counter_read(&memcg->memsw)),
1217 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1218 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1219 K((u64)page_counter_read(&memcg->kmem)),
1220 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1221
1222 for_each_mem_cgroup_tree(iter, memcg) {
1223 pr_info("Memory cgroup stats for ");
1224 pr_cont_cgroup_path(iter->css.cgroup);
1225 pr_cont(":");
1226
1227 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1228 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1229 continue;
1230 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1231 K(mem_cgroup_read_stat(iter, i)));
1232 }
1233
1234 for (i = 0; i < NR_LRU_LISTS; i++)
1235 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1236 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1237
1238 pr_cont("\n");
1239 }
1240 mutex_unlock(&oom_info_lock);
1241 }
1242
1243 /*
1244 * This function returns the number of memcg under hierarchy tree. Returns
1245 * 1(self count) if no children.
1246 */
1247 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1248 {
1249 int num = 0;
1250 struct mem_cgroup *iter;
1251
1252 for_each_mem_cgroup_tree(iter, memcg)
1253 num++;
1254 return num;
1255 }
1256
1257 /*
1258 * Return the memory (and swap, if configured) limit for a memcg.
1259 */
1260 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1261 {
1262 unsigned long limit;
1263
1264 limit = memcg->memory.limit;
1265 if (mem_cgroup_swappiness(memcg)) {
1266 unsigned long memsw_limit;
1267
1268 memsw_limit = memcg->memsw.limit;
1269 limit = min(limit + total_swap_pages, memsw_limit);
1270 }
1271 return limit;
1272 }
1273
1274 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1275 int order)
1276 {
1277 struct oom_control oc = {
1278 .zonelist = NULL,
1279 .nodemask = NULL,
1280 .gfp_mask = gfp_mask,
1281 .order = order,
1282 };
1283 struct mem_cgroup *iter;
1284 unsigned long chosen_points = 0;
1285 unsigned long totalpages;
1286 unsigned int points = 0;
1287 struct task_struct *chosen = NULL;
1288
1289 mutex_lock(&oom_lock);
1290
1291 /*
1292 * If current has a pending SIGKILL or is exiting, then automatically
1293 * select it. The goal is to allow it to allocate so that it may
1294 * quickly exit and free its memory.
1295 */
1296 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1297 mark_oom_victim(current);
1298 goto unlock;
1299 }
1300
1301 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1302 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1303 for_each_mem_cgroup_tree(iter, memcg) {
1304 struct css_task_iter it;
1305 struct task_struct *task;
1306
1307 css_task_iter_start(&iter->css, &it);
1308 while ((task = css_task_iter_next(&it))) {
1309 switch (oom_scan_process_thread(&oc, task, totalpages)) {
1310 case OOM_SCAN_SELECT:
1311 if (chosen)
1312 put_task_struct(chosen);
1313 chosen = task;
1314 chosen_points = ULONG_MAX;
1315 get_task_struct(chosen);
1316 /* fall through */
1317 case OOM_SCAN_CONTINUE:
1318 continue;
1319 case OOM_SCAN_ABORT:
1320 css_task_iter_end(&it);
1321 mem_cgroup_iter_break(memcg, iter);
1322 if (chosen)
1323 put_task_struct(chosen);
1324 goto unlock;
1325 case OOM_SCAN_OK:
1326 break;
1327 };
1328 points = oom_badness(task, memcg, NULL, totalpages);
1329 if (!points || points < chosen_points)
1330 continue;
1331 /* Prefer thread group leaders for display purposes */
1332 if (points == chosen_points &&
1333 thread_group_leader(chosen))
1334 continue;
1335
1336 if (chosen)
1337 put_task_struct(chosen);
1338 chosen = task;
1339 chosen_points = points;
1340 get_task_struct(chosen);
1341 }
1342 css_task_iter_end(&it);
1343 }
1344
1345 if (chosen) {
1346 points = chosen_points * 1000 / totalpages;
1347 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1348 "Memory cgroup out of memory");
1349 }
1350 unlock:
1351 mutex_unlock(&oom_lock);
1352 }
1353
1354 #if MAX_NUMNODES > 1
1355
1356 /**
1357 * test_mem_cgroup_node_reclaimable
1358 * @memcg: the target memcg
1359 * @nid: the node ID to be checked.
1360 * @noswap : specify true here if the user wants flle only information.
1361 *
1362 * This function returns whether the specified memcg contains any
1363 * reclaimable pages on a node. Returns true if there are any reclaimable
1364 * pages in the node.
1365 */
1366 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1367 int nid, bool noswap)
1368 {
1369 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1370 return true;
1371 if (noswap || !total_swap_pages)
1372 return false;
1373 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1374 return true;
1375 return false;
1376
1377 }
1378
1379 /*
1380 * Always updating the nodemask is not very good - even if we have an empty
1381 * list or the wrong list here, we can start from some node and traverse all
1382 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1383 *
1384 */
1385 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1386 {
1387 int nid;
1388 /*
1389 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1390 * pagein/pageout changes since the last update.
1391 */
1392 if (!atomic_read(&memcg->numainfo_events))
1393 return;
1394 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1395 return;
1396
1397 /* make a nodemask where this memcg uses memory from */
1398 memcg->scan_nodes = node_states[N_MEMORY];
1399
1400 for_each_node_mask(nid, node_states[N_MEMORY]) {
1401
1402 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1403 node_clear(nid, memcg->scan_nodes);
1404 }
1405
1406 atomic_set(&memcg->numainfo_events, 0);
1407 atomic_set(&memcg->numainfo_updating, 0);
1408 }
1409
1410 /*
1411 * Selecting a node where we start reclaim from. Because what we need is just
1412 * reducing usage counter, start from anywhere is O,K. Considering
1413 * memory reclaim from current node, there are pros. and cons.
1414 *
1415 * Freeing memory from current node means freeing memory from a node which
1416 * we'll use or we've used. So, it may make LRU bad. And if several threads
1417 * hit limits, it will see a contention on a node. But freeing from remote
1418 * node means more costs for memory reclaim because of memory latency.
1419 *
1420 * Now, we use round-robin. Better algorithm is welcomed.
1421 */
1422 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1423 {
1424 int node;
1425
1426 mem_cgroup_may_update_nodemask(memcg);
1427 node = memcg->last_scanned_node;
1428
1429 node = next_node(node, memcg->scan_nodes);
1430 if (node == MAX_NUMNODES)
1431 node = first_node(memcg->scan_nodes);
1432 /*
1433 * We call this when we hit limit, not when pages are added to LRU.
1434 * No LRU may hold pages because all pages are UNEVICTABLE or
1435 * memcg is too small and all pages are not on LRU. In that case,
1436 * we use curret node.
1437 */
1438 if (unlikely(node == MAX_NUMNODES))
1439 node = numa_node_id();
1440
1441 memcg->last_scanned_node = node;
1442 return node;
1443 }
1444 #else
1445 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1446 {
1447 return 0;
1448 }
1449 #endif
1450
1451 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1452 struct zone *zone,
1453 gfp_t gfp_mask,
1454 unsigned long *total_scanned)
1455 {
1456 struct mem_cgroup *victim = NULL;
1457 int total = 0;
1458 int loop = 0;
1459 unsigned long excess;
1460 unsigned long nr_scanned;
1461 struct mem_cgroup_reclaim_cookie reclaim = {
1462 .zone = zone,
1463 .priority = 0,
1464 };
1465
1466 excess = soft_limit_excess(root_memcg);
1467
1468 while (1) {
1469 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1470 if (!victim) {
1471 loop++;
1472 if (loop >= 2) {
1473 /*
1474 * If we have not been able to reclaim
1475 * anything, it might because there are
1476 * no reclaimable pages under this hierarchy
1477 */
1478 if (!total)
1479 break;
1480 /*
1481 * We want to do more targeted reclaim.
1482 * excess >> 2 is not to excessive so as to
1483 * reclaim too much, nor too less that we keep
1484 * coming back to reclaim from this cgroup
1485 */
1486 if (total >= (excess >> 2) ||
1487 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1488 break;
1489 }
1490 continue;
1491 }
1492 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1493 zone, &nr_scanned);
1494 *total_scanned += nr_scanned;
1495 if (!soft_limit_excess(root_memcg))
1496 break;
1497 }
1498 mem_cgroup_iter_break(root_memcg, victim);
1499 return total;
1500 }
1501
1502 #ifdef CONFIG_LOCKDEP
1503 static struct lockdep_map memcg_oom_lock_dep_map = {
1504 .name = "memcg_oom_lock",
1505 };
1506 #endif
1507
1508 static DEFINE_SPINLOCK(memcg_oom_lock);
1509
1510 /*
1511 * Check OOM-Killer is already running under our hierarchy.
1512 * If someone is running, return false.
1513 */
1514 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1515 {
1516 struct mem_cgroup *iter, *failed = NULL;
1517
1518 spin_lock(&memcg_oom_lock);
1519
1520 for_each_mem_cgroup_tree(iter, memcg) {
1521 if (iter->oom_lock) {
1522 /*
1523 * this subtree of our hierarchy is already locked
1524 * so we cannot give a lock.
1525 */
1526 failed = iter;
1527 mem_cgroup_iter_break(memcg, iter);
1528 break;
1529 } else
1530 iter->oom_lock = true;
1531 }
1532
1533 if (failed) {
1534 /*
1535 * OK, we failed to lock the whole subtree so we have
1536 * to clean up what we set up to the failing subtree
1537 */
1538 for_each_mem_cgroup_tree(iter, memcg) {
1539 if (iter == failed) {
1540 mem_cgroup_iter_break(memcg, iter);
1541 break;
1542 }
1543 iter->oom_lock = false;
1544 }
1545 } else
1546 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1547
1548 spin_unlock(&memcg_oom_lock);
1549
1550 return !failed;
1551 }
1552
1553 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1554 {
1555 struct mem_cgroup *iter;
1556
1557 spin_lock(&memcg_oom_lock);
1558 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1559 for_each_mem_cgroup_tree(iter, memcg)
1560 iter->oom_lock = false;
1561 spin_unlock(&memcg_oom_lock);
1562 }
1563
1564 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1565 {
1566 struct mem_cgroup *iter;
1567
1568 spin_lock(&memcg_oom_lock);
1569 for_each_mem_cgroup_tree(iter, memcg)
1570 iter->under_oom++;
1571 spin_unlock(&memcg_oom_lock);
1572 }
1573
1574 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1575 {
1576 struct mem_cgroup *iter;
1577
1578 /*
1579 * When a new child is created while the hierarchy is under oom,
1580 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1581 */
1582 spin_lock(&memcg_oom_lock);
1583 for_each_mem_cgroup_tree(iter, memcg)
1584 if (iter->under_oom > 0)
1585 iter->under_oom--;
1586 spin_unlock(&memcg_oom_lock);
1587 }
1588
1589 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1590
1591 struct oom_wait_info {
1592 struct mem_cgroup *memcg;
1593 wait_queue_t wait;
1594 };
1595
1596 static int memcg_oom_wake_function(wait_queue_t *wait,
1597 unsigned mode, int sync, void *arg)
1598 {
1599 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1600 struct mem_cgroup *oom_wait_memcg;
1601 struct oom_wait_info *oom_wait_info;
1602
1603 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1604 oom_wait_memcg = oom_wait_info->memcg;
1605
1606 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1607 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1608 return 0;
1609 return autoremove_wake_function(wait, mode, sync, arg);
1610 }
1611
1612 static void memcg_oom_recover(struct mem_cgroup *memcg)
1613 {
1614 /*
1615 * For the following lockless ->under_oom test, the only required
1616 * guarantee is that it must see the state asserted by an OOM when
1617 * this function is called as a result of userland actions
1618 * triggered by the notification of the OOM. This is trivially
1619 * achieved by invoking mem_cgroup_mark_under_oom() before
1620 * triggering notification.
1621 */
1622 if (memcg && memcg->under_oom)
1623 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1624 }
1625
1626 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1627 {
1628 if (!current->memcg_oom.may_oom)
1629 return;
1630 /*
1631 * We are in the middle of the charge context here, so we
1632 * don't want to block when potentially sitting on a callstack
1633 * that holds all kinds of filesystem and mm locks.
1634 *
1635 * Also, the caller may handle a failed allocation gracefully
1636 * (like optional page cache readahead) and so an OOM killer
1637 * invocation might not even be necessary.
1638 *
1639 * That's why we don't do anything here except remember the
1640 * OOM context and then deal with it at the end of the page
1641 * fault when the stack is unwound, the locks are released,
1642 * and when we know whether the fault was overall successful.
1643 */
1644 css_get(&memcg->css);
1645 current->memcg_oom.memcg = memcg;
1646 current->memcg_oom.gfp_mask = mask;
1647 current->memcg_oom.order = order;
1648 }
1649
1650 /**
1651 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1652 * @handle: actually kill/wait or just clean up the OOM state
1653 *
1654 * This has to be called at the end of a page fault if the memcg OOM
1655 * handler was enabled.
1656 *
1657 * Memcg supports userspace OOM handling where failed allocations must
1658 * sleep on a waitqueue until the userspace task resolves the
1659 * situation. Sleeping directly in the charge context with all kinds
1660 * of locks held is not a good idea, instead we remember an OOM state
1661 * in the task and mem_cgroup_oom_synchronize() has to be called at
1662 * the end of the page fault to complete the OOM handling.
1663 *
1664 * Returns %true if an ongoing memcg OOM situation was detected and
1665 * completed, %false otherwise.
1666 */
1667 bool mem_cgroup_oom_synchronize(bool handle)
1668 {
1669 struct mem_cgroup *memcg = current->memcg_oom.memcg;
1670 struct oom_wait_info owait;
1671 bool locked;
1672
1673 /* OOM is global, do not handle */
1674 if (!memcg)
1675 return false;
1676
1677 if (!handle || oom_killer_disabled)
1678 goto cleanup;
1679
1680 owait.memcg = memcg;
1681 owait.wait.flags = 0;
1682 owait.wait.func = memcg_oom_wake_function;
1683 owait.wait.private = current;
1684 INIT_LIST_HEAD(&owait.wait.task_list);
1685
1686 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1687 mem_cgroup_mark_under_oom(memcg);
1688
1689 locked = mem_cgroup_oom_trylock(memcg);
1690
1691 if (locked)
1692 mem_cgroup_oom_notify(memcg);
1693
1694 if (locked && !memcg->oom_kill_disable) {
1695 mem_cgroup_unmark_under_oom(memcg);
1696 finish_wait(&memcg_oom_waitq, &owait.wait);
1697 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1698 current->memcg_oom.order);
1699 } else {
1700 schedule();
1701 mem_cgroup_unmark_under_oom(memcg);
1702 finish_wait(&memcg_oom_waitq, &owait.wait);
1703 }
1704
1705 if (locked) {
1706 mem_cgroup_oom_unlock(memcg);
1707 /*
1708 * There is no guarantee that an OOM-lock contender
1709 * sees the wakeups triggered by the OOM kill
1710 * uncharges. Wake any sleepers explicitely.
1711 */
1712 memcg_oom_recover(memcg);
1713 }
1714 cleanup:
1715 current->memcg_oom.memcg = NULL;
1716 css_put(&memcg->css);
1717 return true;
1718 }
1719
1720 /**
1721 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1722 * @page: page that is going to change accounted state
1723 *
1724 * This function must mark the beginning of an accounted page state
1725 * change to prevent double accounting when the page is concurrently
1726 * being moved to another memcg:
1727 *
1728 * memcg = mem_cgroup_begin_page_stat(page);
1729 * if (TestClearPageState(page))
1730 * mem_cgroup_update_page_stat(memcg, state, -1);
1731 * mem_cgroup_end_page_stat(memcg);
1732 */
1733 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1734 {
1735 struct mem_cgroup *memcg;
1736 unsigned long flags;
1737
1738 /*
1739 * The RCU lock is held throughout the transaction. The fast
1740 * path can get away without acquiring the memcg->move_lock
1741 * because page moving starts with an RCU grace period.
1742 *
1743 * The RCU lock also protects the memcg from being freed when
1744 * the page state that is going to change is the only thing
1745 * preventing the page from being uncharged.
1746 * E.g. end-writeback clearing PageWriteback(), which allows
1747 * migration to go ahead and uncharge the page before the
1748 * account transaction might be complete.
1749 */
1750 rcu_read_lock();
1751
1752 if (mem_cgroup_disabled())
1753 return NULL;
1754 again:
1755 memcg = page->mem_cgroup;
1756 if (unlikely(!memcg))
1757 return NULL;
1758
1759 if (atomic_read(&memcg->moving_account) <= 0)
1760 return memcg;
1761
1762 spin_lock_irqsave(&memcg->move_lock, flags);
1763 if (memcg != page->mem_cgroup) {
1764 spin_unlock_irqrestore(&memcg->move_lock, flags);
1765 goto again;
1766 }
1767
1768 /*
1769 * When charge migration first begins, we can have locked and
1770 * unlocked page stat updates happening concurrently. Track
1771 * the task who has the lock for mem_cgroup_end_page_stat().
1772 */
1773 memcg->move_lock_task = current;
1774 memcg->move_lock_flags = flags;
1775
1776 return memcg;
1777 }
1778 EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
1779
1780 /**
1781 * mem_cgroup_end_page_stat - finish a page state statistics transaction
1782 * @memcg: the memcg that was accounted against
1783 */
1784 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
1785 {
1786 if (memcg && memcg->move_lock_task == current) {
1787 unsigned long flags = memcg->move_lock_flags;
1788
1789 memcg->move_lock_task = NULL;
1790 memcg->move_lock_flags = 0;
1791
1792 spin_unlock_irqrestore(&memcg->move_lock, flags);
1793 }
1794
1795 rcu_read_unlock();
1796 }
1797 EXPORT_SYMBOL(mem_cgroup_end_page_stat);
1798
1799 /*
1800 * size of first charge trial. "32" comes from vmscan.c's magic value.
1801 * TODO: maybe necessary to use big numbers in big irons.
1802 */
1803 #define CHARGE_BATCH 32U
1804 struct memcg_stock_pcp {
1805 struct mem_cgroup *cached; /* this never be root cgroup */
1806 unsigned int nr_pages;
1807 struct work_struct work;
1808 unsigned long flags;
1809 #define FLUSHING_CACHED_CHARGE 0
1810 };
1811 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1812 static DEFINE_MUTEX(percpu_charge_mutex);
1813
1814 /**
1815 * consume_stock: Try to consume stocked charge on this cpu.
1816 * @memcg: memcg to consume from.
1817 * @nr_pages: how many pages to charge.
1818 *
1819 * The charges will only happen if @memcg matches the current cpu's memcg
1820 * stock, and at least @nr_pages are available in that stock. Failure to
1821 * service an allocation will refill the stock.
1822 *
1823 * returns true if successful, false otherwise.
1824 */
1825 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1826 {
1827 struct memcg_stock_pcp *stock;
1828 bool ret = false;
1829
1830 if (nr_pages > CHARGE_BATCH)
1831 return ret;
1832
1833 stock = &get_cpu_var(memcg_stock);
1834 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1835 stock->nr_pages -= nr_pages;
1836 ret = true;
1837 }
1838 put_cpu_var(memcg_stock);
1839 return ret;
1840 }
1841
1842 /*
1843 * Returns stocks cached in percpu and reset cached information.
1844 */
1845 static void drain_stock(struct memcg_stock_pcp *stock)
1846 {
1847 struct mem_cgroup *old = stock->cached;
1848
1849 if (stock->nr_pages) {
1850 page_counter_uncharge(&old->memory, stock->nr_pages);
1851 if (do_swap_account)
1852 page_counter_uncharge(&old->memsw, stock->nr_pages);
1853 css_put_many(&old->css, stock->nr_pages);
1854 stock->nr_pages = 0;
1855 }
1856 stock->cached = NULL;
1857 }
1858
1859 /*
1860 * This must be called under preempt disabled or must be called by
1861 * a thread which is pinned to local cpu.
1862 */
1863 static void drain_local_stock(struct work_struct *dummy)
1864 {
1865 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1866 drain_stock(stock);
1867 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1868 }
1869
1870 /*
1871 * Cache charges(val) to local per_cpu area.
1872 * This will be consumed by consume_stock() function, later.
1873 */
1874 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1875 {
1876 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1877
1878 if (stock->cached != memcg) { /* reset if necessary */
1879 drain_stock(stock);
1880 stock->cached = memcg;
1881 }
1882 stock->nr_pages += nr_pages;
1883 put_cpu_var(memcg_stock);
1884 }
1885
1886 /*
1887 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1888 * of the hierarchy under it.
1889 */
1890 static void drain_all_stock(struct mem_cgroup *root_memcg)
1891 {
1892 int cpu, curcpu;
1893
1894 /* If someone's already draining, avoid adding running more workers. */
1895 if (!mutex_trylock(&percpu_charge_mutex))
1896 return;
1897 /* Notify other cpus that system-wide "drain" is running */
1898 get_online_cpus();
1899 curcpu = get_cpu();
1900 for_each_online_cpu(cpu) {
1901 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1902 struct mem_cgroup *memcg;
1903
1904 memcg = stock->cached;
1905 if (!memcg || !stock->nr_pages)
1906 continue;
1907 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1908 continue;
1909 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1910 if (cpu == curcpu)
1911 drain_local_stock(&stock->work);
1912 else
1913 schedule_work_on(cpu, &stock->work);
1914 }
1915 }
1916 put_cpu();
1917 put_online_cpus();
1918 mutex_unlock(&percpu_charge_mutex);
1919 }
1920
1921 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1922 unsigned long action,
1923 void *hcpu)
1924 {
1925 int cpu = (unsigned long)hcpu;
1926 struct memcg_stock_pcp *stock;
1927
1928 if (action == CPU_ONLINE)
1929 return NOTIFY_OK;
1930
1931 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1932 return NOTIFY_OK;
1933
1934 stock = &per_cpu(memcg_stock, cpu);
1935 drain_stock(stock);
1936 return NOTIFY_OK;
1937 }
1938
1939 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1940 unsigned int nr_pages)
1941 {
1942 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1943 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1944 struct mem_cgroup *mem_over_limit;
1945 struct page_counter *counter;
1946 unsigned long nr_reclaimed;
1947 bool may_swap = true;
1948 bool drained = false;
1949 int ret = 0;
1950
1951 if (mem_cgroup_is_root(memcg))
1952 goto done;
1953 retry:
1954 if (consume_stock(memcg, nr_pages))
1955 goto done;
1956
1957 if (!do_swap_account ||
1958 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1959 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
1960 goto done_restock;
1961 if (do_swap_account)
1962 page_counter_uncharge(&memcg->memsw, batch);
1963 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1964 } else {
1965 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1966 may_swap = false;
1967 }
1968
1969 if (batch > nr_pages) {
1970 batch = nr_pages;
1971 goto retry;
1972 }
1973
1974 /*
1975 * Unlike in global OOM situations, memcg is not in a physical
1976 * memory shortage. Allow dying and OOM-killed tasks to
1977 * bypass the last charges so that they can exit quickly and
1978 * free their memory.
1979 */
1980 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1981 fatal_signal_pending(current) ||
1982 current->flags & PF_EXITING))
1983 goto bypass;
1984
1985 if (unlikely(task_in_memcg_oom(current)))
1986 goto nomem;
1987
1988 if (!(gfp_mask & __GFP_WAIT))
1989 goto nomem;
1990
1991 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1992
1993 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1994 gfp_mask, may_swap);
1995
1996 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1997 goto retry;
1998
1999 if (!drained) {
2000 drain_all_stock(mem_over_limit);
2001 drained = true;
2002 goto retry;
2003 }
2004
2005 if (gfp_mask & __GFP_NORETRY)
2006 goto nomem;
2007 /*
2008 * Even though the limit is exceeded at this point, reclaim
2009 * may have been able to free some pages. Retry the charge
2010 * before killing the task.
2011 *
2012 * Only for regular pages, though: huge pages are rather
2013 * unlikely to succeed so close to the limit, and we fall back
2014 * to regular pages anyway in case of failure.
2015 */
2016 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2017 goto retry;
2018 /*
2019 * At task move, charge accounts can be doubly counted. So, it's
2020 * better to wait until the end of task_move if something is going on.
2021 */
2022 if (mem_cgroup_wait_acct_move(mem_over_limit))
2023 goto retry;
2024
2025 if (nr_retries--)
2026 goto retry;
2027
2028 if (gfp_mask & __GFP_NOFAIL)
2029 goto bypass;
2030
2031 if (fatal_signal_pending(current))
2032 goto bypass;
2033
2034 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2035
2036 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2037 nomem:
2038 if (!(gfp_mask & __GFP_NOFAIL))
2039 return -ENOMEM;
2040 bypass:
2041 return -EINTR;
2042
2043 done_restock:
2044 css_get_many(&memcg->css, batch);
2045 if (batch > nr_pages)
2046 refill_stock(memcg, batch - nr_pages);
2047 if (!(gfp_mask & __GFP_WAIT))
2048 goto done;
2049 /*
2050 * If the hierarchy is above the normal consumption range,
2051 * make the charging task trim their excess contribution.
2052 */
2053 do {
2054 if (page_counter_read(&memcg->memory) <= memcg->high)
2055 continue;
2056 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
2057 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2058 } while ((memcg = parent_mem_cgroup(memcg)));
2059 done:
2060 return ret;
2061 }
2062
2063 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2064 {
2065 if (mem_cgroup_is_root(memcg))
2066 return;
2067
2068 page_counter_uncharge(&memcg->memory, nr_pages);
2069 if (do_swap_account)
2070 page_counter_uncharge(&memcg->memsw, nr_pages);
2071
2072 css_put_many(&memcg->css, nr_pages);
2073 }
2074
2075 /*
2076 * try_get_mem_cgroup_from_page - look up page's memcg association
2077 * @page: the page
2078 *
2079 * Look up, get a css reference, and return the memcg that owns @page.
2080 *
2081 * The page must be locked to prevent racing with swap-in and page
2082 * cache charges. If coming from an unlocked page table, the caller
2083 * must ensure the page is on the LRU or this can race with charging.
2084 */
2085 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2086 {
2087 struct mem_cgroup *memcg;
2088 unsigned short id;
2089 swp_entry_t ent;
2090
2091 VM_BUG_ON_PAGE(!PageLocked(page), page);
2092
2093 memcg = page->mem_cgroup;
2094 if (memcg) {
2095 if (!css_tryget_online(&memcg->css))
2096 memcg = NULL;
2097 } else if (PageSwapCache(page)) {
2098 ent.val = page_private(page);
2099 id = lookup_swap_cgroup_id(ent);
2100 rcu_read_lock();
2101 memcg = mem_cgroup_from_id(id);
2102 if (memcg && !css_tryget_online(&memcg->css))
2103 memcg = NULL;
2104 rcu_read_unlock();
2105 }
2106 return memcg;
2107 }
2108
2109 static void lock_page_lru(struct page *page, int *isolated)
2110 {
2111 struct zone *zone = page_zone(page);
2112
2113 spin_lock_irq(&zone->lru_lock);
2114 if (PageLRU(page)) {
2115 struct lruvec *lruvec;
2116
2117 lruvec = mem_cgroup_page_lruvec(page, zone);
2118 ClearPageLRU(page);
2119 del_page_from_lru_list(page, lruvec, page_lru(page));
2120 *isolated = 1;
2121 } else
2122 *isolated = 0;
2123 }
2124
2125 static void unlock_page_lru(struct page *page, int isolated)
2126 {
2127 struct zone *zone = page_zone(page);
2128
2129 if (isolated) {
2130 struct lruvec *lruvec;
2131
2132 lruvec = mem_cgroup_page_lruvec(page, zone);
2133 VM_BUG_ON_PAGE(PageLRU(page), page);
2134 SetPageLRU(page);
2135 add_page_to_lru_list(page, lruvec, page_lru(page));
2136 }
2137 spin_unlock_irq(&zone->lru_lock);
2138 }
2139
2140 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2141 bool lrucare)
2142 {
2143 int isolated;
2144
2145 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2146
2147 /*
2148 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2149 * may already be on some other mem_cgroup's LRU. Take care of it.
2150 */
2151 if (lrucare)
2152 lock_page_lru(page, &isolated);
2153
2154 /*
2155 * Nobody should be changing or seriously looking at
2156 * page->mem_cgroup at this point:
2157 *
2158 * - the page is uncharged
2159 *
2160 * - the page is off-LRU
2161 *
2162 * - an anonymous fault has exclusive page access, except for
2163 * a locked page table
2164 *
2165 * - a page cache insertion, a swapin fault, or a migration
2166 * have the page locked
2167 */
2168 page->mem_cgroup = memcg;
2169
2170 if (lrucare)
2171 unlock_page_lru(page, isolated);
2172 }
2173
2174 #ifdef CONFIG_MEMCG_KMEM
2175 int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2176 unsigned long nr_pages)
2177 {
2178 struct page_counter *counter;
2179 int ret = 0;
2180
2181 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2182 if (ret < 0)
2183 return ret;
2184
2185 ret = try_charge(memcg, gfp, nr_pages);
2186 if (ret == -EINTR) {
2187 /*
2188 * try_charge() chose to bypass to root due to OOM kill or
2189 * fatal signal. Since our only options are to either fail
2190 * the allocation or charge it to this cgroup, do it as a
2191 * temporary condition. But we can't fail. From a kmem/slab
2192 * perspective, the cache has already been selected, by
2193 * mem_cgroup_kmem_get_cache(), so it is too late to change
2194 * our minds.
2195 *
2196 * This condition will only trigger if the task entered
2197 * memcg_charge_kmem in a sane state, but was OOM-killed
2198 * during try_charge() above. Tasks that were already dying
2199 * when the allocation triggers should have been already
2200 * directed to the root cgroup in memcontrol.h
2201 */
2202 page_counter_charge(&memcg->memory, nr_pages);
2203 if (do_swap_account)
2204 page_counter_charge(&memcg->memsw, nr_pages);
2205 css_get_many(&memcg->css, nr_pages);
2206 ret = 0;
2207 } else if (ret)
2208 page_counter_uncharge(&memcg->kmem, nr_pages);
2209
2210 return ret;
2211 }
2212
2213 void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
2214 {
2215 page_counter_uncharge(&memcg->memory, nr_pages);
2216 if (do_swap_account)
2217 page_counter_uncharge(&memcg->memsw, nr_pages);
2218
2219 page_counter_uncharge(&memcg->kmem, nr_pages);
2220
2221 css_put_many(&memcg->css, nr_pages);
2222 }
2223
2224 static int memcg_alloc_cache_id(void)
2225 {
2226 int id, size;
2227 int err;
2228
2229 id = ida_simple_get(&memcg_cache_ida,
2230 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2231 if (id < 0)
2232 return id;
2233
2234 if (id < memcg_nr_cache_ids)
2235 return id;
2236
2237 /*
2238 * There's no space for the new id in memcg_caches arrays,
2239 * so we have to grow them.
2240 */
2241 down_write(&memcg_cache_ids_sem);
2242
2243 size = 2 * (id + 1);
2244 if (size < MEMCG_CACHES_MIN_SIZE)
2245 size = MEMCG_CACHES_MIN_SIZE;
2246 else if (size > MEMCG_CACHES_MAX_SIZE)
2247 size = MEMCG_CACHES_MAX_SIZE;
2248
2249 err = memcg_update_all_caches(size);
2250 if (!err)
2251 err = memcg_update_all_list_lrus(size);
2252 if (!err)
2253 memcg_nr_cache_ids = size;
2254
2255 up_write(&memcg_cache_ids_sem);
2256
2257 if (err) {
2258 ida_simple_remove(&memcg_cache_ida, id);
2259 return err;
2260 }
2261 return id;
2262 }
2263
2264 static void memcg_free_cache_id(int id)
2265 {
2266 ida_simple_remove(&memcg_cache_ida, id);
2267 }
2268
2269 struct memcg_kmem_cache_create_work {
2270 struct mem_cgroup *memcg;
2271 struct kmem_cache *cachep;
2272 struct work_struct work;
2273 };
2274
2275 static void memcg_kmem_cache_create_func(struct work_struct *w)
2276 {
2277 struct memcg_kmem_cache_create_work *cw =
2278 container_of(w, struct memcg_kmem_cache_create_work, work);
2279 struct mem_cgroup *memcg = cw->memcg;
2280 struct kmem_cache *cachep = cw->cachep;
2281
2282 memcg_create_kmem_cache(memcg, cachep);
2283
2284 css_put(&memcg->css);
2285 kfree(cw);
2286 }
2287
2288 /*
2289 * Enqueue the creation of a per-memcg kmem_cache.
2290 */
2291 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2292 struct kmem_cache *cachep)
2293 {
2294 struct memcg_kmem_cache_create_work *cw;
2295
2296 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2297 if (!cw)
2298 return;
2299
2300 css_get(&memcg->css);
2301
2302 cw->memcg = memcg;
2303 cw->cachep = cachep;
2304 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2305
2306 schedule_work(&cw->work);
2307 }
2308
2309 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2310 struct kmem_cache *cachep)
2311 {
2312 /*
2313 * We need to stop accounting when we kmalloc, because if the
2314 * corresponding kmalloc cache is not yet created, the first allocation
2315 * in __memcg_schedule_kmem_cache_create will recurse.
2316 *
2317 * However, it is better to enclose the whole function. Depending on
2318 * the debugging options enabled, INIT_WORK(), for instance, can
2319 * trigger an allocation. This too, will make us recurse. Because at
2320 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2321 * the safest choice is to do it like this, wrapping the whole function.
2322 */
2323 current->memcg_kmem_skip_account = 1;
2324 __memcg_schedule_kmem_cache_create(memcg, cachep);
2325 current->memcg_kmem_skip_account = 0;
2326 }
2327
2328 /*
2329 * Return the kmem_cache we're supposed to use for a slab allocation.
2330 * We try to use the current memcg's version of the cache.
2331 *
2332 * If the cache does not exist yet, if we are the first user of it,
2333 * we either create it immediately, if possible, or create it asynchronously
2334 * in a workqueue.
2335 * In the latter case, we will let the current allocation go through with
2336 * the original cache.
2337 *
2338 * Can't be called in interrupt context or from kernel threads.
2339 * This function needs to be called with rcu_read_lock() held.
2340 */
2341 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2342 {
2343 struct mem_cgroup *memcg;
2344 struct kmem_cache *memcg_cachep;
2345 int kmemcg_id;
2346
2347 VM_BUG_ON(!is_root_cache(cachep));
2348
2349 if (current->memcg_kmem_skip_account)
2350 return cachep;
2351
2352 memcg = get_mem_cgroup_from_mm(current->mm);
2353 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2354 if (kmemcg_id < 0)
2355 goto out;
2356
2357 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2358 if (likely(memcg_cachep))
2359 return memcg_cachep;
2360
2361 /*
2362 * If we are in a safe context (can wait, and not in interrupt
2363 * context), we could be be predictable and return right away.
2364 * This would guarantee that the allocation being performed
2365 * already belongs in the new cache.
2366 *
2367 * However, there are some clashes that can arrive from locking.
2368 * For instance, because we acquire the slab_mutex while doing
2369 * memcg_create_kmem_cache, this means no further allocation
2370 * could happen with the slab_mutex held. So it's better to
2371 * defer everything.
2372 */
2373 memcg_schedule_kmem_cache_create(memcg, cachep);
2374 out:
2375 css_put(&memcg->css);
2376 return cachep;
2377 }
2378
2379 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2380 {
2381 if (!is_root_cache(cachep))
2382 css_put(&cachep->memcg_params.memcg->css);
2383 }
2384
2385 /*
2386 * We need to verify if the allocation against current->mm->owner's memcg is
2387 * possible for the given order. But the page is not allocated yet, so we'll
2388 * need a further commit step to do the final arrangements.
2389 *
2390 * It is possible for the task to switch cgroups in this mean time, so at
2391 * commit time, we can't rely on task conversion any longer. We'll then use
2392 * the handle argument to return to the caller which cgroup we should commit
2393 * against. We could also return the memcg directly and avoid the pointer
2394 * passing, but a boolean return value gives better semantics considering
2395 * the compiled-out case as well.
2396 *
2397 * Returning true means the allocation is possible.
2398 */
2399 bool
2400 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2401 {
2402 struct mem_cgroup *memcg;
2403 int ret;
2404
2405 *_memcg = NULL;
2406
2407 memcg = get_mem_cgroup_from_mm(current->mm);
2408
2409 if (!memcg_kmem_is_active(memcg)) {
2410 css_put(&memcg->css);
2411 return true;
2412 }
2413
2414 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2415 if (!ret)
2416 *_memcg = memcg;
2417
2418 css_put(&memcg->css);
2419 return (ret == 0);
2420 }
2421
2422 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2423 int order)
2424 {
2425 VM_BUG_ON(mem_cgroup_is_root(memcg));
2426
2427 /* The page allocation failed. Revert */
2428 if (!page) {
2429 memcg_uncharge_kmem(memcg, 1 << order);
2430 return;
2431 }
2432 page->mem_cgroup = memcg;
2433 }
2434
2435 void __memcg_kmem_uncharge_pages(struct page *page, int order)
2436 {
2437 struct mem_cgroup *memcg = page->mem_cgroup;
2438
2439 if (!memcg)
2440 return;
2441
2442 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2443
2444 memcg_uncharge_kmem(memcg, 1 << order);
2445 page->mem_cgroup = NULL;
2446 }
2447
2448 struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
2449 {
2450 struct mem_cgroup *memcg = NULL;
2451 struct kmem_cache *cachep;
2452 struct page *page;
2453
2454 page = virt_to_head_page(ptr);
2455 if (PageSlab(page)) {
2456 cachep = page->slab_cache;
2457 if (!is_root_cache(cachep))
2458 memcg = cachep->memcg_params.memcg;
2459 } else
2460 /* page allocated by alloc_kmem_pages */
2461 memcg = page->mem_cgroup;
2462
2463 return memcg;
2464 }
2465 #endif /* CONFIG_MEMCG_KMEM */
2466
2467 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2468
2469 /*
2470 * Because tail pages are not marked as "used", set it. We're under
2471 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2472 * charge/uncharge will be never happen and move_account() is done under
2473 * compound_lock(), so we don't have to take care of races.
2474 */
2475 void mem_cgroup_split_huge_fixup(struct page *head)
2476 {
2477 int i;
2478
2479 if (mem_cgroup_disabled())
2480 return;
2481
2482 for (i = 1; i < HPAGE_PMD_NR; i++)
2483 head[i].mem_cgroup = head->mem_cgroup;
2484
2485 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2486 HPAGE_PMD_NR);
2487 }
2488 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2489
2490 #ifdef CONFIG_MEMCG_SWAP
2491 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2492 bool charge)
2493 {
2494 int val = (charge) ? 1 : -1;
2495 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2496 }
2497
2498 /**
2499 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2500 * @entry: swap entry to be moved
2501 * @from: mem_cgroup which the entry is moved from
2502 * @to: mem_cgroup which the entry is moved to
2503 *
2504 * It succeeds only when the swap_cgroup's record for this entry is the same
2505 * as the mem_cgroup's id of @from.
2506 *
2507 * Returns 0 on success, -EINVAL on failure.
2508 *
2509 * The caller must have charged to @to, IOW, called page_counter_charge() about
2510 * both res and memsw, and called css_get().
2511 */
2512 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2513 struct mem_cgroup *from, struct mem_cgroup *to)
2514 {
2515 unsigned short old_id, new_id;
2516
2517 old_id = mem_cgroup_id(from);
2518 new_id = mem_cgroup_id(to);
2519
2520 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2521 mem_cgroup_swap_statistics(from, false);
2522 mem_cgroup_swap_statistics(to, true);
2523 return 0;
2524 }
2525 return -EINVAL;
2526 }
2527 #else
2528 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2529 struct mem_cgroup *from, struct mem_cgroup *to)
2530 {
2531 return -EINVAL;
2532 }
2533 #endif
2534
2535 static DEFINE_MUTEX(memcg_limit_mutex);
2536
2537 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2538 unsigned long limit)
2539 {
2540 unsigned long curusage;
2541 unsigned long oldusage;
2542 bool enlarge = false;
2543 int retry_count;
2544 int ret;
2545
2546 /*
2547 * For keeping hierarchical_reclaim simple, how long we should retry
2548 * is depends on callers. We set our retry-count to be function
2549 * of # of children which we should visit in this loop.
2550 */
2551 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2552 mem_cgroup_count_children(memcg);
2553
2554 oldusage = page_counter_read(&memcg->memory);
2555
2556 do {
2557 if (signal_pending(current)) {
2558 ret = -EINTR;
2559 break;
2560 }
2561
2562 mutex_lock(&memcg_limit_mutex);
2563 if (limit > memcg->memsw.limit) {
2564 mutex_unlock(&memcg_limit_mutex);
2565 ret = -EINVAL;
2566 break;
2567 }
2568 if (limit > memcg->memory.limit)
2569 enlarge = true;
2570 ret = page_counter_limit(&memcg->memory, limit);
2571 mutex_unlock(&memcg_limit_mutex);
2572
2573 if (!ret)
2574 break;
2575
2576 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2577
2578 curusage = page_counter_read(&memcg->memory);
2579 /* Usage is reduced ? */
2580 if (curusage >= oldusage)
2581 retry_count--;
2582 else
2583 oldusage = curusage;
2584 } while (retry_count);
2585
2586 if (!ret && enlarge)
2587 memcg_oom_recover(memcg);
2588
2589 return ret;
2590 }
2591
2592 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2593 unsigned long limit)
2594 {
2595 unsigned long curusage;
2596 unsigned long oldusage;
2597 bool enlarge = false;
2598 int retry_count;
2599 int ret;
2600
2601 /* see mem_cgroup_resize_res_limit */
2602 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2603 mem_cgroup_count_children(memcg);
2604
2605 oldusage = page_counter_read(&memcg->memsw);
2606
2607 do {
2608 if (signal_pending(current)) {
2609 ret = -EINTR;
2610 break;
2611 }
2612
2613 mutex_lock(&memcg_limit_mutex);
2614 if (limit < memcg->memory.limit) {
2615 mutex_unlock(&memcg_limit_mutex);
2616 ret = -EINVAL;
2617 break;
2618 }
2619 if (limit > memcg->memsw.limit)
2620 enlarge = true;
2621 ret = page_counter_limit(&memcg->memsw, limit);
2622 mutex_unlock(&memcg_limit_mutex);
2623
2624 if (!ret)
2625 break;
2626
2627 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2628
2629 curusage = page_counter_read(&memcg->memsw);
2630 /* Usage is reduced ? */
2631 if (curusage >= oldusage)
2632 retry_count--;
2633 else
2634 oldusage = curusage;
2635 } while (retry_count);
2636
2637 if (!ret && enlarge)
2638 memcg_oom_recover(memcg);
2639
2640 return ret;
2641 }
2642
2643 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2644 gfp_t gfp_mask,
2645 unsigned long *total_scanned)
2646 {
2647 unsigned long nr_reclaimed = 0;
2648 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2649 unsigned long reclaimed;
2650 int loop = 0;
2651 struct mem_cgroup_tree_per_zone *mctz;
2652 unsigned long excess;
2653 unsigned long nr_scanned;
2654
2655 if (order > 0)
2656 return 0;
2657
2658 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2659 /*
2660 * This loop can run a while, specially if mem_cgroup's continuously
2661 * keep exceeding their soft limit and putting the system under
2662 * pressure
2663 */
2664 do {
2665 if (next_mz)
2666 mz = next_mz;
2667 else
2668 mz = mem_cgroup_largest_soft_limit_node(mctz);
2669 if (!mz)
2670 break;
2671
2672 nr_scanned = 0;
2673 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2674 gfp_mask, &nr_scanned);
2675 nr_reclaimed += reclaimed;
2676 *total_scanned += nr_scanned;
2677 spin_lock_irq(&mctz->lock);
2678 __mem_cgroup_remove_exceeded(mz, mctz);
2679
2680 /*
2681 * If we failed to reclaim anything from this memory cgroup
2682 * it is time to move on to the next cgroup
2683 */
2684 next_mz = NULL;
2685 if (!reclaimed)
2686 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2687
2688 excess = soft_limit_excess(mz->memcg);
2689 /*
2690 * One school of thought says that we should not add
2691 * back the node to the tree if reclaim returns 0.
2692 * But our reclaim could return 0, simply because due
2693 * to priority we are exposing a smaller subset of
2694 * memory to reclaim from. Consider this as a longer
2695 * term TODO.
2696 */
2697 /* If excess == 0, no tree ops */
2698 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2699 spin_unlock_irq(&mctz->lock);
2700 css_put(&mz->memcg->css);
2701 loop++;
2702 /*
2703 * Could not reclaim anything and there are no more
2704 * mem cgroups to try or we seem to be looping without
2705 * reclaiming anything.
2706 */
2707 if (!nr_reclaimed &&
2708 (next_mz == NULL ||
2709 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2710 break;
2711 } while (!nr_reclaimed);
2712 if (next_mz)
2713 css_put(&next_mz->memcg->css);
2714 return nr_reclaimed;
2715 }
2716
2717 /*
2718 * Test whether @memcg has children, dead or alive. Note that this
2719 * function doesn't care whether @memcg has use_hierarchy enabled and
2720 * returns %true if there are child csses according to the cgroup
2721 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2722 */
2723 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2724 {
2725 bool ret;
2726
2727 /*
2728 * The lock does not prevent addition or deletion of children, but
2729 * it prevents a new child from being initialized based on this
2730 * parent in css_online(), so it's enough to decide whether
2731 * hierarchically inherited attributes can still be changed or not.
2732 */
2733 lockdep_assert_held(&memcg_create_mutex);
2734
2735 rcu_read_lock();
2736 ret = css_next_child(NULL, &memcg->css);
2737 rcu_read_unlock();
2738 return ret;
2739 }
2740
2741 /*
2742 * Reclaims as many pages from the given memcg as possible and moves
2743 * the rest to the parent.
2744 *
2745 * Caller is responsible for holding css reference for memcg.
2746 */
2747 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2748 {
2749 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2750
2751 /* we call try-to-free pages for make this cgroup empty */
2752 lru_add_drain_all();
2753 /* try to free all pages in this cgroup */
2754 while (nr_retries && page_counter_read(&memcg->memory)) {
2755 int progress;
2756
2757 if (signal_pending(current))
2758 return -EINTR;
2759
2760 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2761 GFP_KERNEL, true);
2762 if (!progress) {
2763 nr_retries--;
2764 /* maybe some writeback is necessary */
2765 congestion_wait(BLK_RW_ASYNC, HZ/10);
2766 }
2767
2768 }
2769
2770 return 0;
2771 }
2772
2773 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2774 char *buf, size_t nbytes,
2775 loff_t off)
2776 {
2777 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2778
2779 if (mem_cgroup_is_root(memcg))
2780 return -EINVAL;
2781 return mem_cgroup_force_empty(memcg) ?: nbytes;
2782 }
2783
2784 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2785 struct cftype *cft)
2786 {
2787 return mem_cgroup_from_css(css)->use_hierarchy;
2788 }
2789
2790 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2791 struct cftype *cft, u64 val)
2792 {
2793 int retval = 0;
2794 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2795 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2796
2797 mutex_lock(&memcg_create_mutex);
2798
2799 if (memcg->use_hierarchy == val)
2800 goto out;
2801
2802 /*
2803 * If parent's use_hierarchy is set, we can't make any modifications
2804 * in the child subtrees. If it is unset, then the change can
2805 * occur, provided the current cgroup has no children.
2806 *
2807 * For the root cgroup, parent_mem is NULL, we allow value to be
2808 * set if there are no children.
2809 */
2810 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2811 (val == 1 || val == 0)) {
2812 if (!memcg_has_children(memcg))
2813 memcg->use_hierarchy = val;
2814 else
2815 retval = -EBUSY;
2816 } else
2817 retval = -EINVAL;
2818
2819 out:
2820 mutex_unlock(&memcg_create_mutex);
2821
2822 return retval;
2823 }
2824
2825 static unsigned long tree_stat(struct mem_cgroup *memcg,
2826 enum mem_cgroup_stat_index idx)
2827 {
2828 struct mem_cgroup *iter;
2829 long val = 0;
2830
2831 /* Per-cpu values can be negative, use a signed accumulator */
2832 for_each_mem_cgroup_tree(iter, memcg)
2833 val += mem_cgroup_read_stat(iter, idx);
2834
2835 if (val < 0) /* race ? */
2836 val = 0;
2837 return val;
2838 }
2839
2840 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2841 {
2842 u64 val;
2843
2844 if (mem_cgroup_is_root(memcg)) {
2845 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2846 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2847 if (swap)
2848 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2849 } else {
2850 if (!swap)
2851 val = page_counter_read(&memcg->memory);
2852 else
2853 val = page_counter_read(&memcg->memsw);
2854 }
2855 return val << PAGE_SHIFT;
2856 }
2857
2858 enum {
2859 RES_USAGE,
2860 RES_LIMIT,
2861 RES_MAX_USAGE,
2862 RES_FAILCNT,
2863 RES_SOFT_LIMIT,
2864 };
2865
2866 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2867 struct cftype *cft)
2868 {
2869 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2870 struct page_counter *counter;
2871
2872 switch (MEMFILE_TYPE(cft->private)) {
2873 case _MEM:
2874 counter = &memcg->memory;
2875 break;
2876 case _MEMSWAP:
2877 counter = &memcg->memsw;
2878 break;
2879 case _KMEM:
2880 counter = &memcg->kmem;
2881 break;
2882 default:
2883 BUG();
2884 }
2885
2886 switch (MEMFILE_ATTR(cft->private)) {
2887 case RES_USAGE:
2888 if (counter == &memcg->memory)
2889 return mem_cgroup_usage(memcg, false);
2890 if (counter == &memcg->memsw)
2891 return mem_cgroup_usage(memcg, true);
2892 return (u64)page_counter_read(counter) * PAGE_SIZE;
2893 case RES_LIMIT:
2894 return (u64)counter->limit * PAGE_SIZE;
2895 case RES_MAX_USAGE:
2896 return (u64)counter->watermark * PAGE_SIZE;
2897 case RES_FAILCNT:
2898 return counter->failcnt;
2899 case RES_SOFT_LIMIT:
2900 return (u64)memcg->soft_limit * PAGE_SIZE;
2901 default:
2902 BUG();
2903 }
2904 }
2905
2906 #ifdef CONFIG_MEMCG_KMEM
2907 static int memcg_activate_kmem(struct mem_cgroup *memcg,
2908 unsigned long nr_pages)
2909 {
2910 int err = 0;
2911 int memcg_id;
2912
2913 BUG_ON(memcg->kmemcg_id >= 0);
2914 BUG_ON(memcg->kmem_acct_activated);
2915 BUG_ON(memcg->kmem_acct_active);
2916
2917 /*
2918 * For simplicity, we won't allow this to be disabled. It also can't
2919 * be changed if the cgroup has children already, or if tasks had
2920 * already joined.
2921 *
2922 * If tasks join before we set the limit, a person looking at
2923 * kmem.usage_in_bytes will have no way to determine when it took
2924 * place, which makes the value quite meaningless.
2925 *
2926 * After it first became limited, changes in the value of the limit are
2927 * of course permitted.
2928 */
2929 mutex_lock(&memcg_create_mutex);
2930 if (cgroup_has_tasks(memcg->css.cgroup) ||
2931 (memcg->use_hierarchy && memcg_has_children(memcg)))
2932 err = -EBUSY;
2933 mutex_unlock(&memcg_create_mutex);
2934 if (err)
2935 goto out;
2936
2937 memcg_id = memcg_alloc_cache_id();
2938 if (memcg_id < 0) {
2939 err = memcg_id;
2940 goto out;
2941 }
2942
2943 /*
2944 * We couldn't have accounted to this cgroup, because it hasn't got
2945 * activated yet, so this should succeed.
2946 */
2947 err = page_counter_limit(&memcg->kmem, nr_pages);
2948 VM_BUG_ON(err);
2949
2950 static_key_slow_inc(&memcg_kmem_enabled_key);
2951 /*
2952 * A memory cgroup is considered kmem-active as soon as it gets
2953 * kmemcg_id. Setting the id after enabling static branching will
2954 * guarantee no one starts accounting before all call sites are
2955 * patched.
2956 */
2957 memcg->kmemcg_id = memcg_id;
2958 memcg->kmem_acct_activated = true;
2959 memcg->kmem_acct_active = true;
2960 out:
2961 return err;
2962 }
2963
2964 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2965 unsigned long limit)
2966 {
2967 int ret;
2968
2969 mutex_lock(&memcg_limit_mutex);
2970 if (!memcg_kmem_is_active(memcg))
2971 ret = memcg_activate_kmem(memcg, limit);
2972 else
2973 ret = page_counter_limit(&memcg->kmem, limit);
2974 mutex_unlock(&memcg_limit_mutex);
2975 return ret;
2976 }
2977
2978 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
2979 {
2980 int ret = 0;
2981 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
2982
2983 if (!parent)
2984 return 0;
2985
2986 mutex_lock(&memcg_limit_mutex);
2987 /*
2988 * If the parent cgroup is not kmem-active now, it cannot be activated
2989 * after this point, because it has at least one child already.
2990 */
2991 if (memcg_kmem_is_active(parent))
2992 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
2993 mutex_unlock(&memcg_limit_mutex);
2994 return ret;
2995 }
2996 #else
2997 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2998 unsigned long limit)
2999 {
3000 return -EINVAL;
3001 }
3002 #endif /* CONFIG_MEMCG_KMEM */
3003
3004 /*
3005 * The user of this function is...
3006 * RES_LIMIT.
3007 */
3008 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3009 char *buf, size_t nbytes, loff_t off)
3010 {
3011 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3012 unsigned long nr_pages;
3013 int ret;
3014
3015 buf = strstrip(buf);
3016 ret = page_counter_memparse(buf, "-1", &nr_pages);
3017 if (ret)
3018 return ret;
3019
3020 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3021 case RES_LIMIT:
3022 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3023 ret = -EINVAL;
3024 break;
3025 }
3026 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3027 case _MEM:
3028 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3029 break;
3030 case _MEMSWAP:
3031 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3032 break;
3033 case _KMEM:
3034 ret = memcg_update_kmem_limit(memcg, nr_pages);
3035 break;
3036 }
3037 break;
3038 case RES_SOFT_LIMIT:
3039 memcg->soft_limit = nr_pages;
3040 ret = 0;
3041 break;
3042 }
3043 return ret ?: nbytes;
3044 }
3045
3046 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3047 size_t nbytes, loff_t off)
3048 {
3049 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3050 struct page_counter *counter;
3051
3052 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3053 case _MEM:
3054 counter = &memcg->memory;
3055 break;
3056 case _MEMSWAP:
3057 counter = &memcg->memsw;
3058 break;
3059 case _KMEM:
3060 counter = &memcg->kmem;
3061 break;
3062 default:
3063 BUG();
3064 }
3065
3066 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3067 case RES_MAX_USAGE:
3068 page_counter_reset_watermark(counter);
3069 break;
3070 case RES_FAILCNT:
3071 counter->failcnt = 0;
3072 break;
3073 default:
3074 BUG();
3075 }
3076
3077 return nbytes;
3078 }
3079
3080 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3081 struct cftype *cft)
3082 {
3083 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3084 }
3085
3086 #ifdef CONFIG_MMU
3087 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3088 struct cftype *cft, u64 val)
3089 {
3090 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3091
3092 if (val & ~MOVE_MASK)
3093 return -EINVAL;
3094
3095 /*
3096 * No kind of locking is needed in here, because ->can_attach() will
3097 * check this value once in the beginning of the process, and then carry
3098 * on with stale data. This means that changes to this value will only
3099 * affect task migrations starting after the change.
3100 */
3101 memcg->move_charge_at_immigrate = val;
3102 return 0;
3103 }
3104 #else
3105 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3106 struct cftype *cft, u64 val)
3107 {
3108 return -ENOSYS;
3109 }
3110 #endif
3111
3112 #ifdef CONFIG_NUMA
3113 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3114 {
3115 struct numa_stat {
3116 const char *name;
3117 unsigned int lru_mask;
3118 };
3119
3120 static const struct numa_stat stats[] = {
3121 { "total", LRU_ALL },
3122 { "file", LRU_ALL_FILE },
3123 { "anon", LRU_ALL_ANON },
3124 { "unevictable", BIT(LRU_UNEVICTABLE) },
3125 };
3126 const struct numa_stat *stat;
3127 int nid;
3128 unsigned long nr;
3129 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3130
3131 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3132 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3133 seq_printf(m, "%s=%lu", stat->name, nr);
3134 for_each_node_state(nid, N_MEMORY) {
3135 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3136 stat->lru_mask);
3137 seq_printf(m, " N%d=%lu", nid, nr);
3138 }
3139 seq_putc(m, '\n');
3140 }
3141
3142 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3143 struct mem_cgroup *iter;
3144
3145 nr = 0;
3146 for_each_mem_cgroup_tree(iter, memcg)
3147 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3148 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3149 for_each_node_state(nid, N_MEMORY) {
3150 nr = 0;
3151 for_each_mem_cgroup_tree(iter, memcg)
3152 nr += mem_cgroup_node_nr_lru_pages(
3153 iter, nid, stat->lru_mask);
3154 seq_printf(m, " N%d=%lu", nid, nr);
3155 }
3156 seq_putc(m, '\n');
3157 }
3158
3159 return 0;
3160 }
3161 #endif /* CONFIG_NUMA */
3162
3163 static int memcg_stat_show(struct seq_file *m, void *v)
3164 {
3165 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3166 unsigned long memory, memsw;
3167 struct mem_cgroup *mi;
3168 unsigned int i;
3169
3170 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3171 MEM_CGROUP_STAT_NSTATS);
3172 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3173 MEM_CGROUP_EVENTS_NSTATS);
3174 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3175
3176 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3177 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3178 continue;
3179 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3180 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3181 }
3182
3183 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3184 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3185 mem_cgroup_read_events(memcg, i));
3186
3187 for (i = 0; i < NR_LRU_LISTS; i++)
3188 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3189 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3190
3191 /* Hierarchical information */
3192 memory = memsw = PAGE_COUNTER_MAX;
3193 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3194 memory = min(memory, mi->memory.limit);
3195 memsw = min(memsw, mi->memsw.limit);
3196 }
3197 seq_printf(m, "hierarchical_memory_limit %llu\n",
3198 (u64)memory * PAGE_SIZE);
3199 if (do_swap_account)
3200 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3201 (u64)memsw * PAGE_SIZE);
3202
3203 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3204 long long val = 0;
3205
3206 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3207 continue;
3208 for_each_mem_cgroup_tree(mi, memcg)
3209 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3210 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3211 }
3212
3213 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3214 unsigned long long val = 0;
3215
3216 for_each_mem_cgroup_tree(mi, memcg)
3217 val += mem_cgroup_read_events(mi, i);
3218 seq_printf(m, "total_%s %llu\n",
3219 mem_cgroup_events_names[i], val);
3220 }
3221
3222 for (i = 0; i < NR_LRU_LISTS; i++) {
3223 unsigned long long val = 0;
3224
3225 for_each_mem_cgroup_tree(mi, memcg)
3226 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3227 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3228 }
3229
3230 #ifdef CONFIG_DEBUG_VM
3231 {
3232 int nid, zid;
3233 struct mem_cgroup_per_zone *mz;
3234 struct zone_reclaim_stat *rstat;
3235 unsigned long recent_rotated[2] = {0, 0};
3236 unsigned long recent_scanned[2] = {0, 0};
3237
3238 for_each_online_node(nid)
3239 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3240 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3241 rstat = &mz->lruvec.reclaim_stat;
3242
3243 recent_rotated[0] += rstat->recent_rotated[0];
3244 recent_rotated[1] += rstat->recent_rotated[1];
3245 recent_scanned[0] += rstat->recent_scanned[0];
3246 recent_scanned[1] += rstat->recent_scanned[1];
3247 }
3248 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3249 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3250 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3251 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3252 }
3253 #endif
3254
3255 return 0;
3256 }
3257
3258 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3259 struct cftype *cft)
3260 {
3261 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3262
3263 return mem_cgroup_swappiness(memcg);
3264 }
3265
3266 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3267 struct cftype *cft, u64 val)
3268 {
3269 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3270
3271 if (val > 100)
3272 return -EINVAL;
3273
3274 if (css->parent)
3275 memcg->swappiness = val;
3276 else
3277 vm_swappiness = val;
3278
3279 return 0;
3280 }
3281
3282 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3283 {
3284 struct mem_cgroup_threshold_ary *t;
3285 unsigned long usage;
3286 int i;
3287
3288 rcu_read_lock();
3289 if (!swap)
3290 t = rcu_dereference(memcg->thresholds.primary);
3291 else
3292 t = rcu_dereference(memcg->memsw_thresholds.primary);
3293
3294 if (!t)
3295 goto unlock;
3296
3297 usage = mem_cgroup_usage(memcg, swap);
3298
3299 /*
3300 * current_threshold points to threshold just below or equal to usage.
3301 * If it's not true, a threshold was crossed after last
3302 * call of __mem_cgroup_threshold().
3303 */
3304 i = t->current_threshold;
3305
3306 /*
3307 * Iterate backward over array of thresholds starting from
3308 * current_threshold and check if a threshold is crossed.
3309 * If none of thresholds below usage is crossed, we read
3310 * only one element of the array here.
3311 */
3312 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3313 eventfd_signal(t->entries[i].eventfd, 1);
3314
3315 /* i = current_threshold + 1 */
3316 i++;
3317
3318 /*
3319 * Iterate forward over array of thresholds starting from
3320 * current_threshold+1 and check if a threshold is crossed.
3321 * If none of thresholds above usage is crossed, we read
3322 * only one element of the array here.
3323 */
3324 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3325 eventfd_signal(t->entries[i].eventfd, 1);
3326
3327 /* Update current_threshold */
3328 t->current_threshold = i - 1;
3329 unlock:
3330 rcu_read_unlock();
3331 }
3332
3333 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3334 {
3335 while (memcg) {
3336 __mem_cgroup_threshold(memcg, false);
3337 if (do_swap_account)
3338 __mem_cgroup_threshold(memcg, true);
3339
3340 memcg = parent_mem_cgroup(memcg);
3341 }
3342 }
3343
3344 static int compare_thresholds(const void *a, const void *b)
3345 {
3346 const struct mem_cgroup_threshold *_a = a;
3347 const struct mem_cgroup_threshold *_b = b;
3348
3349 if (_a->threshold > _b->threshold)
3350 return 1;
3351
3352 if (_a->threshold < _b->threshold)
3353 return -1;
3354
3355 return 0;
3356 }
3357
3358 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3359 {
3360 struct mem_cgroup_eventfd_list *ev;
3361
3362 spin_lock(&memcg_oom_lock);
3363
3364 list_for_each_entry(ev, &memcg->oom_notify, list)
3365 eventfd_signal(ev->eventfd, 1);
3366
3367 spin_unlock(&memcg_oom_lock);
3368 return 0;
3369 }
3370
3371 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3372 {
3373 struct mem_cgroup *iter;
3374
3375 for_each_mem_cgroup_tree(iter, memcg)
3376 mem_cgroup_oom_notify_cb(iter);
3377 }
3378
3379 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3380 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3381 {
3382 struct mem_cgroup_thresholds *thresholds;
3383 struct mem_cgroup_threshold_ary *new;
3384 unsigned long threshold;
3385 unsigned long usage;
3386 int i, size, ret;
3387
3388 ret = page_counter_memparse(args, "-1", &threshold);
3389 if (ret)
3390 return ret;
3391
3392 mutex_lock(&memcg->thresholds_lock);
3393
3394 if (type == _MEM) {
3395 thresholds = &memcg->thresholds;
3396 usage = mem_cgroup_usage(memcg, false);
3397 } else if (type == _MEMSWAP) {
3398 thresholds = &memcg->memsw_thresholds;
3399 usage = mem_cgroup_usage(memcg, true);
3400 } else
3401 BUG();
3402
3403 /* Check if a threshold crossed before adding a new one */
3404 if (thresholds->primary)
3405 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3406
3407 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3408
3409 /* Allocate memory for new array of thresholds */
3410 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3411 GFP_KERNEL);
3412 if (!new) {
3413 ret = -ENOMEM;
3414 goto unlock;
3415 }
3416 new->size = size;
3417
3418 /* Copy thresholds (if any) to new array */
3419 if (thresholds->primary) {
3420 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3421 sizeof(struct mem_cgroup_threshold));
3422 }
3423
3424 /* Add new threshold */
3425 new->entries[size - 1].eventfd = eventfd;
3426 new->entries[size - 1].threshold = threshold;
3427
3428 /* Sort thresholds. Registering of new threshold isn't time-critical */
3429 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3430 compare_thresholds, NULL);
3431
3432 /* Find current threshold */
3433 new->current_threshold = -1;
3434 for (i = 0; i < size; i++) {
3435 if (new->entries[i].threshold <= usage) {
3436 /*
3437 * new->current_threshold will not be used until
3438 * rcu_assign_pointer(), so it's safe to increment
3439 * it here.
3440 */
3441 ++new->current_threshold;
3442 } else
3443 break;
3444 }
3445
3446 /* Free old spare buffer and save old primary buffer as spare */
3447 kfree(thresholds->spare);
3448 thresholds->spare = thresholds->primary;
3449
3450 rcu_assign_pointer(thresholds->primary, new);
3451
3452 /* To be sure that nobody uses thresholds */
3453 synchronize_rcu();
3454
3455 unlock:
3456 mutex_unlock(&memcg->thresholds_lock);
3457
3458 return ret;
3459 }
3460
3461 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3462 struct eventfd_ctx *eventfd, const char *args)
3463 {
3464 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3465 }
3466
3467 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3468 struct eventfd_ctx *eventfd, const char *args)
3469 {
3470 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3471 }
3472
3473 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3474 struct eventfd_ctx *eventfd, enum res_type type)
3475 {
3476 struct mem_cgroup_thresholds *thresholds;
3477 struct mem_cgroup_threshold_ary *new;
3478 unsigned long usage;
3479 int i, j, size;
3480
3481 mutex_lock(&memcg->thresholds_lock);
3482
3483 if (type == _MEM) {
3484 thresholds = &memcg->thresholds;
3485 usage = mem_cgroup_usage(memcg, false);
3486 } else if (type == _MEMSWAP) {
3487 thresholds = &memcg->memsw_thresholds;
3488 usage = mem_cgroup_usage(memcg, true);
3489 } else
3490 BUG();
3491
3492 if (!thresholds->primary)
3493 goto unlock;
3494
3495 /* Check if a threshold crossed before removing */
3496 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3497
3498 /* Calculate new number of threshold */
3499 size = 0;
3500 for (i = 0; i < thresholds->primary->size; i++) {
3501 if (thresholds->primary->entries[i].eventfd != eventfd)
3502 size++;
3503 }
3504
3505 new = thresholds->spare;
3506
3507 /* Set thresholds array to NULL if we don't have thresholds */
3508 if (!size) {
3509 kfree(new);
3510 new = NULL;
3511 goto swap_buffers;
3512 }
3513
3514 new->size = size;
3515
3516 /* Copy thresholds and find current threshold */
3517 new->current_threshold = -1;
3518 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3519 if (thresholds->primary->entries[i].eventfd == eventfd)
3520 continue;
3521
3522 new->entries[j] = thresholds->primary->entries[i];
3523 if (new->entries[j].threshold <= usage) {
3524 /*
3525 * new->current_threshold will not be used
3526 * until rcu_assign_pointer(), so it's safe to increment
3527 * it here.
3528 */
3529 ++new->current_threshold;
3530 }
3531 j++;
3532 }
3533
3534 swap_buffers:
3535 /* Swap primary and spare array */
3536 thresholds->spare = thresholds->primary;
3537 /* If all events are unregistered, free the spare array */
3538 if (!new) {
3539 kfree(thresholds->spare);
3540 thresholds->spare = NULL;
3541 }
3542
3543 rcu_assign_pointer(thresholds->primary, new);
3544
3545 /* To be sure that nobody uses thresholds */
3546 synchronize_rcu();
3547 unlock:
3548 mutex_unlock(&memcg->thresholds_lock);
3549 }
3550
3551 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3552 struct eventfd_ctx *eventfd)
3553 {
3554 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3555 }
3556
3557 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3558 struct eventfd_ctx *eventfd)
3559 {
3560 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3561 }
3562
3563 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3564 struct eventfd_ctx *eventfd, const char *args)
3565 {
3566 struct mem_cgroup_eventfd_list *event;
3567
3568 event = kmalloc(sizeof(*event), GFP_KERNEL);
3569 if (!event)
3570 return -ENOMEM;
3571
3572 spin_lock(&memcg_oom_lock);
3573
3574 event->eventfd = eventfd;
3575 list_add(&event->list, &memcg->oom_notify);
3576
3577 /* already in OOM ? */
3578 if (memcg->under_oom)
3579 eventfd_signal(eventfd, 1);
3580 spin_unlock(&memcg_oom_lock);
3581
3582 return 0;
3583 }
3584
3585 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3586 struct eventfd_ctx *eventfd)
3587 {
3588 struct mem_cgroup_eventfd_list *ev, *tmp;
3589
3590 spin_lock(&memcg_oom_lock);
3591
3592 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3593 if (ev->eventfd == eventfd) {
3594 list_del(&ev->list);
3595 kfree(ev);
3596 }
3597 }
3598
3599 spin_unlock(&memcg_oom_lock);
3600 }
3601
3602 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3603 {
3604 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3605
3606 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3607 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3608 return 0;
3609 }
3610
3611 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3612 struct cftype *cft, u64 val)
3613 {
3614 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3615
3616 /* cannot set to root cgroup and only 0 and 1 are allowed */
3617 if (!css->parent || !((val == 0) || (val == 1)))
3618 return -EINVAL;
3619
3620 memcg->oom_kill_disable = val;
3621 if (!val)
3622 memcg_oom_recover(memcg);
3623
3624 return 0;
3625 }
3626
3627 #ifdef CONFIG_MEMCG_KMEM
3628 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3629 {
3630 int ret;
3631
3632 ret = memcg_propagate_kmem(memcg);
3633 if (ret)
3634 return ret;
3635
3636 return mem_cgroup_sockets_init(memcg, ss);
3637 }
3638
3639 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3640 {
3641 struct cgroup_subsys_state *css;
3642 struct mem_cgroup *parent, *child;
3643 int kmemcg_id;
3644
3645 if (!memcg->kmem_acct_active)
3646 return;
3647
3648 /*
3649 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3650 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3651 * guarantees no cache will be created for this cgroup after we are
3652 * done (see memcg_create_kmem_cache()).
3653 */
3654 memcg->kmem_acct_active = false;
3655
3656 memcg_deactivate_kmem_caches(memcg);
3657
3658 kmemcg_id = memcg->kmemcg_id;
3659 BUG_ON(kmemcg_id < 0);
3660
3661 parent = parent_mem_cgroup(memcg);
3662 if (!parent)
3663 parent = root_mem_cgroup;
3664
3665 /*
3666 * Change kmemcg_id of this cgroup and all its descendants to the
3667 * parent's id, and then move all entries from this cgroup's list_lrus
3668 * to ones of the parent. After we have finished, all list_lrus
3669 * corresponding to this cgroup are guaranteed to remain empty. The
3670 * ordering is imposed by list_lru_node->lock taken by
3671 * memcg_drain_all_list_lrus().
3672 */
3673 css_for_each_descendant_pre(css, &memcg->css) {
3674 child = mem_cgroup_from_css(css);
3675 BUG_ON(child->kmemcg_id != kmemcg_id);
3676 child->kmemcg_id = parent->kmemcg_id;
3677 if (!memcg->use_hierarchy)
3678 break;
3679 }
3680 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3681
3682 memcg_free_cache_id(kmemcg_id);
3683 }
3684
3685 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3686 {
3687 if (memcg->kmem_acct_activated) {
3688 memcg_destroy_kmem_caches(memcg);
3689 static_key_slow_dec(&memcg_kmem_enabled_key);
3690 WARN_ON(page_counter_read(&memcg->kmem));
3691 }
3692 mem_cgroup_sockets_destroy(memcg);
3693 }
3694 #else
3695 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3696 {
3697 return 0;
3698 }
3699
3700 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3701 {
3702 }
3703
3704 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3705 {
3706 }
3707 #endif
3708
3709 #ifdef CONFIG_CGROUP_WRITEBACK
3710
3711 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3712 {
3713 return &memcg->cgwb_list;
3714 }
3715
3716 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3717 {
3718 return wb_domain_init(&memcg->cgwb_domain, gfp);
3719 }
3720
3721 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3722 {
3723 wb_domain_exit(&memcg->cgwb_domain);
3724 }
3725
3726 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3727 {
3728 wb_domain_size_changed(&memcg->cgwb_domain);
3729 }
3730
3731 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3732 {
3733 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3734
3735 if (!memcg->css.parent)
3736 return NULL;
3737
3738 return &memcg->cgwb_domain;
3739 }
3740
3741 /**
3742 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3743 * @wb: bdi_writeback in question
3744 * @pavail: out parameter for number of available pages
3745 * @pdirty: out parameter for number of dirty pages
3746 * @pwriteback: out parameter for number of pages under writeback
3747 *
3748 * Determine the numbers of available, dirty, and writeback pages in @wb's
3749 * memcg. Dirty and writeback are self-explanatory. Available is a bit
3750 * more involved.
3751 *
3752 * A memcg's headroom is "min(max, high) - used". The available memory is
3753 * calculated as the lowest headroom of itself and the ancestors plus the
3754 * number of pages already being used for file pages. Note that this
3755 * doesn't consider the actual amount of available memory in the system.
3756 * The caller should further cap *@pavail accordingly.
3757 */
3758 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pavail,
3759 unsigned long *pdirty, unsigned long *pwriteback)
3760 {
3761 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3762 struct mem_cgroup *parent;
3763 unsigned long head_room = PAGE_COUNTER_MAX;
3764 unsigned long file_pages;
3765
3766 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3767
3768 /* this should eventually include NR_UNSTABLE_NFS */
3769 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3770
3771 file_pages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3772 (1 << LRU_ACTIVE_FILE));
3773 while ((parent = parent_mem_cgroup(memcg))) {
3774 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3775 unsigned long used = page_counter_read(&memcg->memory);
3776
3777 head_room = min(head_room, ceiling - min(ceiling, used));
3778 memcg = parent;
3779 }
3780
3781 *pavail = file_pages + head_room;
3782 }
3783
3784 #else /* CONFIG_CGROUP_WRITEBACK */
3785
3786 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3787 {
3788 return 0;
3789 }
3790
3791 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3792 {
3793 }
3794
3795 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3796 {
3797 }
3798
3799 #endif /* CONFIG_CGROUP_WRITEBACK */
3800
3801 /*
3802 * DO NOT USE IN NEW FILES.
3803 *
3804 * "cgroup.event_control" implementation.
3805 *
3806 * This is way over-engineered. It tries to support fully configurable
3807 * events for each user. Such level of flexibility is completely
3808 * unnecessary especially in the light of the planned unified hierarchy.
3809 *
3810 * Please deprecate this and replace with something simpler if at all
3811 * possible.
3812 */
3813
3814 /*
3815 * Unregister event and free resources.
3816 *
3817 * Gets called from workqueue.
3818 */
3819 static void memcg_event_remove(struct work_struct *work)
3820 {
3821 struct mem_cgroup_event *event =
3822 container_of(work, struct mem_cgroup_event, remove);
3823 struct mem_cgroup *memcg = event->memcg;
3824
3825 remove_wait_queue(event->wqh, &event->wait);
3826
3827 event->unregister_event(memcg, event->eventfd);
3828
3829 /* Notify userspace the event is going away. */
3830 eventfd_signal(event->eventfd, 1);
3831
3832 eventfd_ctx_put(event->eventfd);
3833 kfree(event);
3834 css_put(&memcg->css);
3835 }
3836
3837 /*
3838 * Gets called on POLLHUP on eventfd when user closes it.
3839 *
3840 * Called with wqh->lock held and interrupts disabled.
3841 */
3842 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3843 int sync, void *key)
3844 {
3845 struct mem_cgroup_event *event =
3846 container_of(wait, struct mem_cgroup_event, wait);
3847 struct mem_cgroup *memcg = event->memcg;
3848 unsigned long flags = (unsigned long)key;
3849
3850 if (flags & POLLHUP) {
3851 /*
3852 * If the event has been detached at cgroup removal, we
3853 * can simply return knowing the other side will cleanup
3854 * for us.
3855 *
3856 * We can't race against event freeing since the other
3857 * side will require wqh->lock via remove_wait_queue(),
3858 * which we hold.
3859 */
3860 spin_lock(&memcg->event_list_lock);
3861 if (!list_empty(&event->list)) {
3862 list_del_init(&event->list);
3863 /*
3864 * We are in atomic context, but cgroup_event_remove()
3865 * may sleep, so we have to call it in workqueue.
3866 */
3867 schedule_work(&event->remove);
3868 }
3869 spin_unlock(&memcg->event_list_lock);
3870 }
3871
3872 return 0;
3873 }
3874
3875 static void memcg_event_ptable_queue_proc(struct file *file,
3876 wait_queue_head_t *wqh, poll_table *pt)
3877 {
3878 struct mem_cgroup_event *event =
3879 container_of(pt, struct mem_cgroup_event, pt);
3880
3881 event->wqh = wqh;
3882 add_wait_queue(wqh, &event->wait);
3883 }
3884
3885 /*
3886 * DO NOT USE IN NEW FILES.
3887 *
3888 * Parse input and register new cgroup event handler.
3889 *
3890 * Input must be in format '<event_fd> <control_fd> <args>'.
3891 * Interpretation of args is defined by control file implementation.
3892 */
3893 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3894 char *buf, size_t nbytes, loff_t off)
3895 {
3896 struct cgroup_subsys_state *css = of_css(of);
3897 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3898 struct mem_cgroup_event *event;
3899 struct cgroup_subsys_state *cfile_css;
3900 unsigned int efd, cfd;
3901 struct fd efile;
3902 struct fd cfile;
3903 const char *name;
3904 char *endp;
3905 int ret;
3906
3907 buf = strstrip(buf);
3908
3909 efd = simple_strtoul(buf, &endp, 10);
3910 if (*endp != ' ')
3911 return -EINVAL;
3912 buf = endp + 1;
3913
3914 cfd = simple_strtoul(buf, &endp, 10);
3915 if ((*endp != ' ') && (*endp != '\0'))
3916 return -EINVAL;
3917 buf = endp + 1;
3918
3919 event = kzalloc(sizeof(*event), GFP_KERNEL);
3920 if (!event)
3921 return -ENOMEM;
3922
3923 event->memcg = memcg;
3924 INIT_LIST_HEAD(&event->list);
3925 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3926 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3927 INIT_WORK(&event->remove, memcg_event_remove);
3928
3929 efile = fdget(efd);
3930 if (!efile.file) {
3931 ret = -EBADF;
3932 goto out_kfree;
3933 }
3934
3935 event->eventfd = eventfd_ctx_fileget(efile.file);
3936 if (IS_ERR(event->eventfd)) {
3937 ret = PTR_ERR(event->eventfd);
3938 goto out_put_efile;
3939 }
3940
3941 cfile = fdget(cfd);
3942 if (!cfile.file) {
3943 ret = -EBADF;
3944 goto out_put_eventfd;
3945 }
3946
3947 /* the process need read permission on control file */
3948 /* AV: shouldn't we check that it's been opened for read instead? */
3949 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3950 if (ret < 0)
3951 goto out_put_cfile;
3952
3953 /*
3954 * Determine the event callbacks and set them in @event. This used
3955 * to be done via struct cftype but cgroup core no longer knows
3956 * about these events. The following is crude but the whole thing
3957 * is for compatibility anyway.
3958 *
3959 * DO NOT ADD NEW FILES.
3960 */
3961 name = cfile.file->f_path.dentry->d_name.name;
3962
3963 if (!strcmp(name, "memory.usage_in_bytes")) {
3964 event->register_event = mem_cgroup_usage_register_event;
3965 event->unregister_event = mem_cgroup_usage_unregister_event;
3966 } else if (!strcmp(name, "memory.oom_control")) {
3967 event->register_event = mem_cgroup_oom_register_event;
3968 event->unregister_event = mem_cgroup_oom_unregister_event;
3969 } else if (!strcmp(name, "memory.pressure_level")) {
3970 event->register_event = vmpressure_register_event;
3971 event->unregister_event = vmpressure_unregister_event;
3972 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3973 event->register_event = memsw_cgroup_usage_register_event;
3974 event->unregister_event = memsw_cgroup_usage_unregister_event;
3975 } else {
3976 ret = -EINVAL;
3977 goto out_put_cfile;
3978 }
3979
3980 /*
3981 * Verify @cfile should belong to @css. Also, remaining events are
3982 * automatically removed on cgroup destruction but the removal is
3983 * asynchronous, so take an extra ref on @css.
3984 */
3985 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3986 &memory_cgrp_subsys);
3987 ret = -EINVAL;
3988 if (IS_ERR(cfile_css))
3989 goto out_put_cfile;
3990 if (cfile_css != css) {
3991 css_put(cfile_css);
3992 goto out_put_cfile;
3993 }
3994
3995 ret = event->register_event(memcg, event->eventfd, buf);
3996 if (ret)
3997 goto out_put_css;
3998
3999 efile.file->f_op->poll(efile.file, &event->pt);
4000
4001 spin_lock(&memcg->event_list_lock);
4002 list_add(&event->list, &memcg->event_list);
4003 spin_unlock(&memcg->event_list_lock);
4004
4005 fdput(cfile);
4006 fdput(efile);
4007
4008 return nbytes;
4009
4010 out_put_css:
4011 css_put(css);
4012 out_put_cfile:
4013 fdput(cfile);
4014 out_put_eventfd:
4015 eventfd_ctx_put(event->eventfd);
4016 out_put_efile:
4017 fdput(efile);
4018 out_kfree:
4019 kfree(event);
4020
4021 return ret;
4022 }
4023
4024 static struct cftype mem_cgroup_legacy_files[] = {
4025 {
4026 .name = "usage_in_bytes",
4027 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4028 .read_u64 = mem_cgroup_read_u64,
4029 },
4030 {
4031 .name = "max_usage_in_bytes",
4032 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4033 .write = mem_cgroup_reset,
4034 .read_u64 = mem_cgroup_read_u64,
4035 },
4036 {
4037 .name = "limit_in_bytes",
4038 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4039 .write = mem_cgroup_write,
4040 .read_u64 = mem_cgroup_read_u64,
4041 },
4042 {
4043 .name = "soft_limit_in_bytes",
4044 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4045 .write = mem_cgroup_write,
4046 .read_u64 = mem_cgroup_read_u64,
4047 },
4048 {
4049 .name = "failcnt",
4050 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4051 .write = mem_cgroup_reset,
4052 .read_u64 = mem_cgroup_read_u64,
4053 },
4054 {
4055 .name = "stat",
4056 .seq_show = memcg_stat_show,
4057 },
4058 {
4059 .name = "force_empty",
4060 .write = mem_cgroup_force_empty_write,
4061 },
4062 {
4063 .name = "use_hierarchy",
4064 .write_u64 = mem_cgroup_hierarchy_write,
4065 .read_u64 = mem_cgroup_hierarchy_read,
4066 },
4067 {
4068 .name = "cgroup.event_control", /* XXX: for compat */
4069 .write = memcg_write_event_control,
4070 .flags = CFTYPE_NO_PREFIX,
4071 .mode = S_IWUGO,
4072 },
4073 {
4074 .name = "swappiness",
4075 .read_u64 = mem_cgroup_swappiness_read,
4076 .write_u64 = mem_cgroup_swappiness_write,
4077 },
4078 {
4079 .name = "move_charge_at_immigrate",
4080 .read_u64 = mem_cgroup_move_charge_read,
4081 .write_u64 = mem_cgroup_move_charge_write,
4082 },
4083 {
4084 .name = "oom_control",
4085 .seq_show = mem_cgroup_oom_control_read,
4086 .write_u64 = mem_cgroup_oom_control_write,
4087 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4088 },
4089 {
4090 .name = "pressure_level",
4091 },
4092 #ifdef CONFIG_NUMA
4093 {
4094 .name = "numa_stat",
4095 .seq_show = memcg_numa_stat_show,
4096 },
4097 #endif
4098 #ifdef CONFIG_MEMCG_KMEM
4099 {
4100 .name = "kmem.limit_in_bytes",
4101 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4102 .write = mem_cgroup_write,
4103 .read_u64 = mem_cgroup_read_u64,
4104 },
4105 {
4106 .name = "kmem.usage_in_bytes",
4107 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4108 .read_u64 = mem_cgroup_read_u64,
4109 },
4110 {
4111 .name = "kmem.failcnt",
4112 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4113 .write = mem_cgroup_reset,
4114 .read_u64 = mem_cgroup_read_u64,
4115 },
4116 {
4117 .name = "kmem.max_usage_in_bytes",
4118 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4119 .write = mem_cgroup_reset,
4120 .read_u64 = mem_cgroup_read_u64,
4121 },
4122 #ifdef CONFIG_SLABINFO
4123 {
4124 .name = "kmem.slabinfo",
4125 .seq_start = slab_start,
4126 .seq_next = slab_next,
4127 .seq_stop = slab_stop,
4128 .seq_show = memcg_slab_show,
4129 },
4130 #endif
4131 #endif
4132 { }, /* terminate */
4133 };
4134
4135 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4136 {
4137 struct mem_cgroup_per_node *pn;
4138 struct mem_cgroup_per_zone *mz;
4139 int zone, tmp = node;
4140 /*
4141 * This routine is called against possible nodes.
4142 * But it's BUG to call kmalloc() against offline node.
4143 *
4144 * TODO: this routine can waste much memory for nodes which will
4145 * never be onlined. It's better to use memory hotplug callback
4146 * function.
4147 */
4148 if (!node_state(node, N_NORMAL_MEMORY))
4149 tmp = -1;
4150 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4151 if (!pn)
4152 return 1;
4153
4154 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4155 mz = &pn->zoneinfo[zone];
4156 lruvec_init(&mz->lruvec);
4157 mz->usage_in_excess = 0;
4158 mz->on_tree = false;
4159 mz->memcg = memcg;
4160 }
4161 memcg->nodeinfo[node] = pn;
4162 return 0;
4163 }
4164
4165 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4166 {
4167 kfree(memcg->nodeinfo[node]);
4168 }
4169
4170 static struct mem_cgroup *mem_cgroup_alloc(void)
4171 {
4172 struct mem_cgroup *memcg;
4173 size_t size;
4174
4175 size = sizeof(struct mem_cgroup);
4176 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4177
4178 memcg = kzalloc(size, GFP_KERNEL);
4179 if (!memcg)
4180 return NULL;
4181
4182 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4183 if (!memcg->stat)
4184 goto out_free;
4185
4186 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4187 goto out_free_stat;
4188
4189 spin_lock_init(&memcg->pcp_counter_lock);
4190 return memcg;
4191
4192 out_free_stat:
4193 free_percpu(memcg->stat);
4194 out_free:
4195 kfree(memcg);
4196 return NULL;
4197 }
4198
4199 /*
4200 * At destroying mem_cgroup, references from swap_cgroup can remain.
4201 * (scanning all at force_empty is too costly...)
4202 *
4203 * Instead of clearing all references at force_empty, we remember
4204 * the number of reference from swap_cgroup and free mem_cgroup when
4205 * it goes down to 0.
4206 *
4207 * Removal of cgroup itself succeeds regardless of refs from swap.
4208 */
4209
4210 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4211 {
4212 int node;
4213
4214 mem_cgroup_remove_from_trees(memcg);
4215
4216 for_each_node(node)
4217 free_mem_cgroup_per_zone_info(memcg, node);
4218
4219 free_percpu(memcg->stat);
4220 memcg_wb_domain_exit(memcg);
4221 kfree(memcg);
4222 }
4223
4224 /*
4225 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4226 */
4227 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4228 {
4229 if (!memcg->memory.parent)
4230 return NULL;
4231 return mem_cgroup_from_counter(memcg->memory.parent, memory);
4232 }
4233 EXPORT_SYMBOL(parent_mem_cgroup);
4234
4235 static struct cgroup_subsys_state * __ref
4236 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4237 {
4238 struct mem_cgroup *memcg;
4239 long error = -ENOMEM;
4240 int node;
4241
4242 memcg = mem_cgroup_alloc();
4243 if (!memcg)
4244 return ERR_PTR(error);
4245
4246 for_each_node(node)
4247 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4248 goto free_out;
4249
4250 /* root ? */
4251 if (parent_css == NULL) {
4252 root_mem_cgroup = memcg;
4253 mem_cgroup_root_css = &memcg->css;
4254 page_counter_init(&memcg->memory, NULL);
4255 memcg->high = PAGE_COUNTER_MAX;
4256 memcg->soft_limit = PAGE_COUNTER_MAX;
4257 page_counter_init(&memcg->memsw, NULL);
4258 page_counter_init(&memcg->kmem, NULL);
4259 }
4260
4261 memcg->last_scanned_node = MAX_NUMNODES;
4262 INIT_LIST_HEAD(&memcg->oom_notify);
4263 memcg->move_charge_at_immigrate = 0;
4264 mutex_init(&memcg->thresholds_lock);
4265 spin_lock_init(&memcg->move_lock);
4266 vmpressure_init(&memcg->vmpressure);
4267 INIT_LIST_HEAD(&memcg->event_list);
4268 spin_lock_init(&memcg->event_list_lock);
4269 #ifdef CONFIG_MEMCG_KMEM
4270 memcg->kmemcg_id = -1;
4271 #endif
4272 #ifdef CONFIG_CGROUP_WRITEBACK
4273 INIT_LIST_HEAD(&memcg->cgwb_list);
4274 #endif
4275 return &memcg->css;
4276
4277 free_out:
4278 __mem_cgroup_free(memcg);
4279 return ERR_PTR(error);
4280 }
4281
4282 static int
4283 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4284 {
4285 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4286 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4287 int ret;
4288
4289 if (css->id > MEM_CGROUP_ID_MAX)
4290 return -ENOSPC;
4291
4292 if (!parent)
4293 return 0;
4294
4295 mutex_lock(&memcg_create_mutex);
4296
4297 memcg->use_hierarchy = parent->use_hierarchy;
4298 memcg->oom_kill_disable = parent->oom_kill_disable;
4299 memcg->swappiness = mem_cgroup_swappiness(parent);
4300
4301 if (parent->use_hierarchy) {
4302 page_counter_init(&memcg->memory, &parent->memory);
4303 memcg->high = PAGE_COUNTER_MAX;
4304 memcg->soft_limit = PAGE_COUNTER_MAX;
4305 page_counter_init(&memcg->memsw, &parent->memsw);
4306 page_counter_init(&memcg->kmem, &parent->kmem);
4307
4308 /*
4309 * No need to take a reference to the parent because cgroup
4310 * core guarantees its existence.
4311 */
4312 } else {
4313 page_counter_init(&memcg->memory, NULL);
4314 memcg->high = PAGE_COUNTER_MAX;
4315 memcg->soft_limit = PAGE_COUNTER_MAX;
4316 page_counter_init(&memcg->memsw, NULL);
4317 page_counter_init(&memcg->kmem, NULL);
4318 /*
4319 * Deeper hierachy with use_hierarchy == false doesn't make
4320 * much sense so let cgroup subsystem know about this
4321 * unfortunate state in our controller.
4322 */
4323 if (parent != root_mem_cgroup)
4324 memory_cgrp_subsys.broken_hierarchy = true;
4325 }
4326 mutex_unlock(&memcg_create_mutex);
4327
4328 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4329 if (ret)
4330 return ret;
4331
4332 /*
4333 * Make sure the memcg is initialized: mem_cgroup_iter()
4334 * orders reading memcg->initialized against its callers
4335 * reading the memcg members.
4336 */
4337 smp_store_release(&memcg->initialized, 1);
4338
4339 return 0;
4340 }
4341
4342 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4343 {
4344 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4345 struct mem_cgroup_event *event, *tmp;
4346
4347 /*
4348 * Unregister events and notify userspace.
4349 * Notify userspace about cgroup removing only after rmdir of cgroup
4350 * directory to avoid race between userspace and kernelspace.
4351 */
4352 spin_lock(&memcg->event_list_lock);
4353 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4354 list_del_init(&event->list);
4355 schedule_work(&event->remove);
4356 }
4357 spin_unlock(&memcg->event_list_lock);
4358
4359 vmpressure_cleanup(&memcg->vmpressure);
4360
4361 memcg_deactivate_kmem(memcg);
4362
4363 wb_memcg_offline(memcg);
4364 }
4365
4366 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4367 {
4368 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4369
4370 memcg_destroy_kmem(memcg);
4371 __mem_cgroup_free(memcg);
4372 }
4373
4374 /**
4375 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4376 * @css: the target css
4377 *
4378 * Reset the states of the mem_cgroup associated with @css. This is
4379 * invoked when the userland requests disabling on the default hierarchy
4380 * but the memcg is pinned through dependency. The memcg should stop
4381 * applying policies and should revert to the vanilla state as it may be
4382 * made visible again.
4383 *
4384 * The current implementation only resets the essential configurations.
4385 * This needs to be expanded to cover all the visible parts.
4386 */
4387 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4388 {
4389 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4390
4391 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4392 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4393 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4394 memcg->low = 0;
4395 memcg->high = PAGE_COUNTER_MAX;
4396 memcg->soft_limit = PAGE_COUNTER_MAX;
4397 memcg_wb_domain_size_changed(memcg);
4398 }
4399
4400 #ifdef CONFIG_MMU
4401 /* Handlers for move charge at task migration. */
4402 static int mem_cgroup_do_precharge(unsigned long count)
4403 {
4404 int ret;
4405
4406 /* Try a single bulk charge without reclaim first */
4407 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4408 if (!ret) {
4409 mc.precharge += count;
4410 return ret;
4411 }
4412 if (ret == -EINTR) {
4413 cancel_charge(root_mem_cgroup, count);
4414 return ret;
4415 }
4416
4417 /* Try charges one by one with reclaim */
4418 while (count--) {
4419 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4420 /*
4421 * In case of failure, any residual charges against
4422 * mc.to will be dropped by mem_cgroup_clear_mc()
4423 * later on. However, cancel any charges that are
4424 * bypassed to root right away or they'll be lost.
4425 */
4426 if (ret == -EINTR)
4427 cancel_charge(root_mem_cgroup, 1);
4428 if (ret)
4429 return ret;
4430 mc.precharge++;
4431 cond_resched();
4432 }
4433 return 0;
4434 }
4435
4436 /**
4437 * get_mctgt_type - get target type of moving charge
4438 * @vma: the vma the pte to be checked belongs
4439 * @addr: the address corresponding to the pte to be checked
4440 * @ptent: the pte to be checked
4441 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4442 *
4443 * Returns
4444 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4445 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4446 * move charge. if @target is not NULL, the page is stored in target->page
4447 * with extra refcnt got(Callers should handle it).
4448 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4449 * target for charge migration. if @target is not NULL, the entry is stored
4450 * in target->ent.
4451 *
4452 * Called with pte lock held.
4453 */
4454 union mc_target {
4455 struct page *page;
4456 swp_entry_t ent;
4457 };
4458
4459 enum mc_target_type {
4460 MC_TARGET_NONE = 0,
4461 MC_TARGET_PAGE,
4462 MC_TARGET_SWAP,
4463 };
4464
4465 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4466 unsigned long addr, pte_t ptent)
4467 {
4468 struct page *page = vm_normal_page(vma, addr, ptent);
4469
4470 if (!page || !page_mapped(page))
4471 return NULL;
4472 if (PageAnon(page)) {
4473 if (!(mc.flags & MOVE_ANON))
4474 return NULL;
4475 } else {
4476 if (!(mc.flags & MOVE_FILE))
4477 return NULL;
4478 }
4479 if (!get_page_unless_zero(page))
4480 return NULL;
4481
4482 return page;
4483 }
4484
4485 #ifdef CONFIG_SWAP
4486 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4487 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4488 {
4489 struct page *page = NULL;
4490 swp_entry_t ent = pte_to_swp_entry(ptent);
4491
4492 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4493 return NULL;
4494 /*
4495 * Because lookup_swap_cache() updates some statistics counter,
4496 * we call find_get_page() with swapper_space directly.
4497 */
4498 page = find_get_page(swap_address_space(ent), ent.val);
4499 if (do_swap_account)
4500 entry->val = ent.val;
4501
4502 return page;
4503 }
4504 #else
4505 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4506 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4507 {
4508 return NULL;
4509 }
4510 #endif
4511
4512 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4513 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4514 {
4515 struct page *page = NULL;
4516 struct address_space *mapping;
4517 pgoff_t pgoff;
4518
4519 if (!vma->vm_file) /* anonymous vma */
4520 return NULL;
4521 if (!(mc.flags & MOVE_FILE))
4522 return NULL;
4523
4524 mapping = vma->vm_file->f_mapping;
4525 pgoff = linear_page_index(vma, addr);
4526
4527 /* page is moved even if it's not RSS of this task(page-faulted). */
4528 #ifdef CONFIG_SWAP
4529 /* shmem/tmpfs may report page out on swap: account for that too. */
4530 if (shmem_mapping(mapping)) {
4531 page = find_get_entry(mapping, pgoff);
4532 if (radix_tree_exceptional_entry(page)) {
4533 swp_entry_t swp = radix_to_swp_entry(page);
4534 if (do_swap_account)
4535 *entry = swp;
4536 page = find_get_page(swap_address_space(swp), swp.val);
4537 }
4538 } else
4539 page = find_get_page(mapping, pgoff);
4540 #else
4541 page = find_get_page(mapping, pgoff);
4542 #endif
4543 return page;
4544 }
4545
4546 /**
4547 * mem_cgroup_move_account - move account of the page
4548 * @page: the page
4549 * @nr_pages: number of regular pages (>1 for huge pages)
4550 * @from: mem_cgroup which the page is moved from.
4551 * @to: mem_cgroup which the page is moved to. @from != @to.
4552 *
4553 * The caller must confirm following.
4554 * - page is not on LRU (isolate_page() is useful.)
4555 * - compound_lock is held when nr_pages > 1
4556 *
4557 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4558 * from old cgroup.
4559 */
4560 static int mem_cgroup_move_account(struct page *page,
4561 unsigned int nr_pages,
4562 struct mem_cgroup *from,
4563 struct mem_cgroup *to)
4564 {
4565 unsigned long flags;
4566 int ret;
4567 bool anon;
4568
4569 VM_BUG_ON(from == to);
4570 VM_BUG_ON_PAGE(PageLRU(page), page);
4571 /*
4572 * The page is isolated from LRU. So, collapse function
4573 * will not handle this page. But page splitting can happen.
4574 * Do this check under compound_page_lock(). The caller should
4575 * hold it.
4576 */
4577 ret = -EBUSY;
4578 if (nr_pages > 1 && !PageTransHuge(page))
4579 goto out;
4580
4581 /*
4582 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
4583 * of its source page while we change it: page migration takes
4584 * both pages off the LRU, but page cache replacement doesn't.
4585 */
4586 if (!trylock_page(page))
4587 goto out;
4588
4589 ret = -EINVAL;
4590 if (page->mem_cgroup != from)
4591 goto out_unlock;
4592
4593 anon = PageAnon(page);
4594
4595 spin_lock_irqsave(&from->move_lock, flags);
4596
4597 if (!anon && page_mapped(page)) {
4598 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4599 nr_pages);
4600 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4601 nr_pages);
4602 }
4603
4604 /*
4605 * move_lock grabbed above and caller set from->moving_account, so
4606 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4607 * So mapping should be stable for dirty pages.
4608 */
4609 if (!anon && PageDirty(page)) {
4610 struct address_space *mapping = page_mapping(page);
4611
4612 if (mapping_cap_account_dirty(mapping)) {
4613 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4614 nr_pages);
4615 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4616 nr_pages);
4617 }
4618 }
4619
4620 if (PageWriteback(page)) {
4621 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4622 nr_pages);
4623 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4624 nr_pages);
4625 }
4626
4627 /*
4628 * It is safe to change page->mem_cgroup here because the page
4629 * is referenced, charged, and isolated - we can't race with
4630 * uncharging, charging, migration, or LRU putback.
4631 */
4632
4633 /* caller should have done css_get */
4634 page->mem_cgroup = to;
4635 spin_unlock_irqrestore(&from->move_lock, flags);
4636
4637 ret = 0;
4638
4639 local_irq_disable();
4640 mem_cgroup_charge_statistics(to, page, nr_pages);
4641 memcg_check_events(to, page);
4642 mem_cgroup_charge_statistics(from, page, -nr_pages);
4643 memcg_check_events(from, page);
4644 local_irq_enable();
4645 out_unlock:
4646 unlock_page(page);
4647 out:
4648 return ret;
4649 }
4650
4651 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4652 unsigned long addr, pte_t ptent, union mc_target *target)
4653 {
4654 struct page *page = NULL;
4655 enum mc_target_type ret = MC_TARGET_NONE;
4656 swp_entry_t ent = { .val = 0 };
4657
4658 if (pte_present(ptent))
4659 page = mc_handle_present_pte(vma, addr, ptent);
4660 else if (is_swap_pte(ptent))
4661 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4662 else if (pte_none(ptent))
4663 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4664
4665 if (!page && !ent.val)
4666 return ret;
4667 if (page) {
4668 /*
4669 * Do only loose check w/o serialization.
4670 * mem_cgroup_move_account() checks the page is valid or
4671 * not under LRU exclusion.
4672 */
4673 if (page->mem_cgroup == mc.from) {
4674 ret = MC_TARGET_PAGE;
4675 if (target)
4676 target->page = page;
4677 }
4678 if (!ret || !target)
4679 put_page(page);
4680 }
4681 /* There is a swap entry and a page doesn't exist or isn't charged */
4682 if (ent.val && !ret &&
4683 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4684 ret = MC_TARGET_SWAP;
4685 if (target)
4686 target->ent = ent;
4687 }
4688 return ret;
4689 }
4690
4691 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4692 /*
4693 * We don't consider swapping or file mapped pages because THP does not
4694 * support them for now.
4695 * Caller should make sure that pmd_trans_huge(pmd) is true.
4696 */
4697 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4698 unsigned long addr, pmd_t pmd, union mc_target *target)
4699 {
4700 struct page *page = NULL;
4701 enum mc_target_type ret = MC_TARGET_NONE;
4702
4703 page = pmd_page(pmd);
4704 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4705 if (!(mc.flags & MOVE_ANON))
4706 return ret;
4707 if (page->mem_cgroup == mc.from) {
4708 ret = MC_TARGET_PAGE;
4709 if (target) {
4710 get_page(page);
4711 target->page = page;
4712 }
4713 }
4714 return ret;
4715 }
4716 #else
4717 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4718 unsigned long addr, pmd_t pmd, union mc_target *target)
4719 {
4720 return MC_TARGET_NONE;
4721 }
4722 #endif
4723
4724 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4725 unsigned long addr, unsigned long end,
4726 struct mm_walk *walk)
4727 {
4728 struct vm_area_struct *vma = walk->vma;
4729 pte_t *pte;
4730 spinlock_t *ptl;
4731
4732 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4733 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4734 mc.precharge += HPAGE_PMD_NR;
4735 spin_unlock(ptl);
4736 return 0;
4737 }
4738
4739 if (pmd_trans_unstable(pmd))
4740 return 0;
4741 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4742 for (; addr != end; pte++, addr += PAGE_SIZE)
4743 if (get_mctgt_type(vma, addr, *pte, NULL))
4744 mc.precharge++; /* increment precharge temporarily */
4745 pte_unmap_unlock(pte - 1, ptl);
4746 cond_resched();
4747
4748 return 0;
4749 }
4750
4751 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4752 {
4753 unsigned long precharge;
4754
4755 struct mm_walk mem_cgroup_count_precharge_walk = {
4756 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4757 .mm = mm,
4758 };
4759 down_read(&mm->mmap_sem);
4760 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4761 up_read(&mm->mmap_sem);
4762
4763 precharge = mc.precharge;
4764 mc.precharge = 0;
4765
4766 return precharge;
4767 }
4768
4769 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4770 {
4771 unsigned long precharge = mem_cgroup_count_precharge(mm);
4772
4773 VM_BUG_ON(mc.moving_task);
4774 mc.moving_task = current;
4775 return mem_cgroup_do_precharge(precharge);
4776 }
4777
4778 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4779 static void __mem_cgroup_clear_mc(void)
4780 {
4781 struct mem_cgroup *from = mc.from;
4782 struct mem_cgroup *to = mc.to;
4783
4784 /* we must uncharge all the leftover precharges from mc.to */
4785 if (mc.precharge) {
4786 cancel_charge(mc.to, mc.precharge);
4787 mc.precharge = 0;
4788 }
4789 /*
4790 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4791 * we must uncharge here.
4792 */
4793 if (mc.moved_charge) {
4794 cancel_charge(mc.from, mc.moved_charge);
4795 mc.moved_charge = 0;
4796 }
4797 /* we must fixup refcnts and charges */
4798 if (mc.moved_swap) {
4799 /* uncharge swap account from the old cgroup */
4800 if (!mem_cgroup_is_root(mc.from))
4801 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4802
4803 /*
4804 * we charged both to->memory and to->memsw, so we
4805 * should uncharge to->memory.
4806 */
4807 if (!mem_cgroup_is_root(mc.to))
4808 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4809
4810 css_put_many(&mc.from->css, mc.moved_swap);
4811
4812 /* we've already done css_get(mc.to) */
4813 mc.moved_swap = 0;
4814 }
4815 memcg_oom_recover(from);
4816 memcg_oom_recover(to);
4817 wake_up_all(&mc.waitq);
4818 }
4819
4820 static void mem_cgroup_clear_mc(void)
4821 {
4822 /*
4823 * we must clear moving_task before waking up waiters at the end of
4824 * task migration.
4825 */
4826 mc.moving_task = NULL;
4827 __mem_cgroup_clear_mc();
4828 spin_lock(&mc.lock);
4829 mc.from = NULL;
4830 mc.to = NULL;
4831 spin_unlock(&mc.lock);
4832 }
4833
4834 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
4835 struct cgroup_taskset *tset)
4836 {
4837 struct task_struct *p = cgroup_taskset_first(tset);
4838 int ret = 0;
4839 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4840 unsigned long move_flags;
4841
4842 /*
4843 * We are now commited to this value whatever it is. Changes in this
4844 * tunable will only affect upcoming migrations, not the current one.
4845 * So we need to save it, and keep it going.
4846 */
4847 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4848 if (move_flags) {
4849 struct mm_struct *mm;
4850 struct mem_cgroup *from = mem_cgroup_from_task(p);
4851
4852 VM_BUG_ON(from == memcg);
4853
4854 mm = get_task_mm(p);
4855 if (!mm)
4856 return 0;
4857 /* We move charges only when we move a owner of the mm */
4858 if (mm->owner == p) {
4859 VM_BUG_ON(mc.from);
4860 VM_BUG_ON(mc.to);
4861 VM_BUG_ON(mc.precharge);
4862 VM_BUG_ON(mc.moved_charge);
4863 VM_BUG_ON(mc.moved_swap);
4864
4865 spin_lock(&mc.lock);
4866 mc.from = from;
4867 mc.to = memcg;
4868 mc.flags = move_flags;
4869 spin_unlock(&mc.lock);
4870 /* We set mc.moving_task later */
4871
4872 ret = mem_cgroup_precharge_mc(mm);
4873 if (ret)
4874 mem_cgroup_clear_mc();
4875 }
4876 mmput(mm);
4877 }
4878 return ret;
4879 }
4880
4881 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
4882 struct cgroup_taskset *tset)
4883 {
4884 if (mc.to)
4885 mem_cgroup_clear_mc();
4886 }
4887
4888 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4889 unsigned long addr, unsigned long end,
4890 struct mm_walk *walk)
4891 {
4892 int ret = 0;
4893 struct vm_area_struct *vma = walk->vma;
4894 pte_t *pte;
4895 spinlock_t *ptl;
4896 enum mc_target_type target_type;
4897 union mc_target target;
4898 struct page *page;
4899
4900 /*
4901 * We don't take compound_lock() here but no race with splitting thp
4902 * happens because:
4903 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
4904 * under splitting, which means there's no concurrent thp split,
4905 * - if another thread runs into split_huge_page() just after we
4906 * entered this if-block, the thread must wait for page table lock
4907 * to be unlocked in __split_huge_page_splitting(), where the main
4908 * part of thp split is not executed yet.
4909 */
4910 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4911 if (mc.precharge < HPAGE_PMD_NR) {
4912 spin_unlock(ptl);
4913 return 0;
4914 }
4915 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4916 if (target_type == MC_TARGET_PAGE) {
4917 page = target.page;
4918 if (!isolate_lru_page(page)) {
4919 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
4920 mc.from, mc.to)) {
4921 mc.precharge -= HPAGE_PMD_NR;
4922 mc.moved_charge += HPAGE_PMD_NR;
4923 }
4924 putback_lru_page(page);
4925 }
4926 put_page(page);
4927 }
4928 spin_unlock(ptl);
4929 return 0;
4930 }
4931
4932 if (pmd_trans_unstable(pmd))
4933 return 0;
4934 retry:
4935 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4936 for (; addr != end; addr += PAGE_SIZE) {
4937 pte_t ptent = *(pte++);
4938 swp_entry_t ent;
4939
4940 if (!mc.precharge)
4941 break;
4942
4943 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4944 case MC_TARGET_PAGE:
4945 page = target.page;
4946 if (isolate_lru_page(page))
4947 goto put;
4948 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4949 mc.precharge--;
4950 /* we uncharge from mc.from later. */
4951 mc.moved_charge++;
4952 }
4953 putback_lru_page(page);
4954 put: /* get_mctgt_type() gets the page */
4955 put_page(page);
4956 break;
4957 case MC_TARGET_SWAP:
4958 ent = target.ent;
4959 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4960 mc.precharge--;
4961 /* we fixup refcnts and charges later. */
4962 mc.moved_swap++;
4963 }
4964 break;
4965 default:
4966 break;
4967 }
4968 }
4969 pte_unmap_unlock(pte - 1, ptl);
4970 cond_resched();
4971
4972 if (addr != end) {
4973 /*
4974 * We have consumed all precharges we got in can_attach().
4975 * We try charge one by one, but don't do any additional
4976 * charges to mc.to if we have failed in charge once in attach()
4977 * phase.
4978 */
4979 ret = mem_cgroup_do_precharge(1);
4980 if (!ret)
4981 goto retry;
4982 }
4983
4984 return ret;
4985 }
4986
4987 static void mem_cgroup_move_charge(struct mm_struct *mm)
4988 {
4989 struct mm_walk mem_cgroup_move_charge_walk = {
4990 .pmd_entry = mem_cgroup_move_charge_pte_range,
4991 .mm = mm,
4992 };
4993
4994 lru_add_drain_all();
4995 /*
4996 * Signal mem_cgroup_begin_page_stat() to take the memcg's
4997 * move_lock while we're moving its pages to another memcg.
4998 * Then wait for already started RCU-only updates to finish.
4999 */
5000 atomic_inc(&mc.from->moving_account);
5001 synchronize_rcu();
5002 retry:
5003 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5004 /*
5005 * Someone who are holding the mmap_sem might be waiting in
5006 * waitq. So we cancel all extra charges, wake up all waiters,
5007 * and retry. Because we cancel precharges, we might not be able
5008 * to move enough charges, but moving charge is a best-effort
5009 * feature anyway, so it wouldn't be a big problem.
5010 */
5011 __mem_cgroup_clear_mc();
5012 cond_resched();
5013 goto retry;
5014 }
5015 /*
5016 * When we have consumed all precharges and failed in doing
5017 * additional charge, the page walk just aborts.
5018 */
5019 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5020 up_read(&mm->mmap_sem);
5021 atomic_dec(&mc.from->moving_account);
5022 }
5023
5024 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5025 struct cgroup_taskset *tset)
5026 {
5027 struct task_struct *p = cgroup_taskset_first(tset);
5028 struct mm_struct *mm = get_task_mm(p);
5029
5030 if (mm) {
5031 if (mc.to)
5032 mem_cgroup_move_charge(mm);
5033 mmput(mm);
5034 }
5035 if (mc.to)
5036 mem_cgroup_clear_mc();
5037 }
5038 #else /* !CONFIG_MMU */
5039 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5040 struct cgroup_taskset *tset)
5041 {
5042 return 0;
5043 }
5044 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5045 struct cgroup_taskset *tset)
5046 {
5047 }
5048 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5049 struct cgroup_taskset *tset)
5050 {
5051 }
5052 #endif
5053
5054 /*
5055 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5056 * to verify whether we're attached to the default hierarchy on each mount
5057 * attempt.
5058 */
5059 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5060 {
5061 /*
5062 * use_hierarchy is forced on the default hierarchy. cgroup core
5063 * guarantees that @root doesn't have any children, so turning it
5064 * on for the root memcg is enough.
5065 */
5066 if (cgroup_on_dfl(root_css->cgroup))
5067 root_mem_cgroup->use_hierarchy = true;
5068 else
5069 root_mem_cgroup->use_hierarchy = false;
5070 }
5071
5072 static u64 memory_current_read(struct cgroup_subsys_state *css,
5073 struct cftype *cft)
5074 {
5075 return mem_cgroup_usage(mem_cgroup_from_css(css), false);
5076 }
5077
5078 static int memory_low_show(struct seq_file *m, void *v)
5079 {
5080 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5081 unsigned long low = READ_ONCE(memcg->low);
5082
5083 if (low == PAGE_COUNTER_MAX)
5084 seq_puts(m, "max\n");
5085 else
5086 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5087
5088 return 0;
5089 }
5090
5091 static ssize_t memory_low_write(struct kernfs_open_file *of,
5092 char *buf, size_t nbytes, loff_t off)
5093 {
5094 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5095 unsigned long low;
5096 int err;
5097
5098 buf = strstrip(buf);
5099 err = page_counter_memparse(buf, "max", &low);
5100 if (err)
5101 return err;
5102
5103 memcg->low = low;
5104
5105 return nbytes;
5106 }
5107
5108 static int memory_high_show(struct seq_file *m, void *v)
5109 {
5110 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5111 unsigned long high = READ_ONCE(memcg->high);
5112
5113 if (high == PAGE_COUNTER_MAX)
5114 seq_puts(m, "max\n");
5115 else
5116 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5117
5118 return 0;
5119 }
5120
5121 static ssize_t memory_high_write(struct kernfs_open_file *of,
5122 char *buf, size_t nbytes, loff_t off)
5123 {
5124 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5125 unsigned long high;
5126 int err;
5127
5128 buf = strstrip(buf);
5129 err = page_counter_memparse(buf, "max", &high);
5130 if (err)
5131 return err;
5132
5133 memcg->high = high;
5134
5135 memcg_wb_domain_size_changed(memcg);
5136 return nbytes;
5137 }
5138
5139 static int memory_max_show(struct seq_file *m, void *v)
5140 {
5141 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5142 unsigned long max = READ_ONCE(memcg->memory.limit);
5143
5144 if (max == PAGE_COUNTER_MAX)
5145 seq_puts(m, "max\n");
5146 else
5147 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5148
5149 return 0;
5150 }
5151
5152 static ssize_t memory_max_write(struct kernfs_open_file *of,
5153 char *buf, size_t nbytes, loff_t off)
5154 {
5155 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5156 unsigned long max;
5157 int err;
5158
5159 buf = strstrip(buf);
5160 err = page_counter_memparse(buf, "max", &max);
5161 if (err)
5162 return err;
5163
5164 err = mem_cgroup_resize_limit(memcg, max);
5165 if (err)
5166 return err;
5167
5168 memcg_wb_domain_size_changed(memcg);
5169 return nbytes;
5170 }
5171
5172 static int memory_events_show(struct seq_file *m, void *v)
5173 {
5174 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5175
5176 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5177 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5178 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5179 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5180
5181 return 0;
5182 }
5183
5184 static struct cftype memory_files[] = {
5185 {
5186 .name = "current",
5187 .read_u64 = memory_current_read,
5188 },
5189 {
5190 .name = "low",
5191 .flags = CFTYPE_NOT_ON_ROOT,
5192 .seq_show = memory_low_show,
5193 .write = memory_low_write,
5194 },
5195 {
5196 .name = "high",
5197 .flags = CFTYPE_NOT_ON_ROOT,
5198 .seq_show = memory_high_show,
5199 .write = memory_high_write,
5200 },
5201 {
5202 .name = "max",
5203 .flags = CFTYPE_NOT_ON_ROOT,
5204 .seq_show = memory_max_show,
5205 .write = memory_max_write,
5206 },
5207 {
5208 .name = "events",
5209 .flags = CFTYPE_NOT_ON_ROOT,
5210 .seq_show = memory_events_show,
5211 },
5212 { } /* terminate */
5213 };
5214
5215 struct cgroup_subsys memory_cgrp_subsys = {
5216 .css_alloc = mem_cgroup_css_alloc,
5217 .css_online = mem_cgroup_css_online,
5218 .css_offline = mem_cgroup_css_offline,
5219 .css_free = mem_cgroup_css_free,
5220 .css_reset = mem_cgroup_css_reset,
5221 .can_attach = mem_cgroup_can_attach,
5222 .cancel_attach = mem_cgroup_cancel_attach,
5223 .attach = mem_cgroup_move_task,
5224 .bind = mem_cgroup_bind,
5225 .dfl_cftypes = memory_files,
5226 .legacy_cftypes = mem_cgroup_legacy_files,
5227 .early_init = 0,
5228 };
5229
5230 /**
5231 * mem_cgroup_low - check if memory consumption is below the normal range
5232 * @root: the highest ancestor to consider
5233 * @memcg: the memory cgroup to check
5234 *
5235 * Returns %true if memory consumption of @memcg, and that of all
5236 * configurable ancestors up to @root, is below the normal range.
5237 */
5238 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5239 {
5240 if (mem_cgroup_disabled())
5241 return false;
5242
5243 /*
5244 * The toplevel group doesn't have a configurable range, so
5245 * it's never low when looked at directly, and it is not
5246 * considered an ancestor when assessing the hierarchy.
5247 */
5248
5249 if (memcg == root_mem_cgroup)
5250 return false;
5251
5252 if (page_counter_read(&memcg->memory) >= memcg->low)
5253 return false;
5254
5255 while (memcg != root) {
5256 memcg = parent_mem_cgroup(memcg);
5257
5258 if (memcg == root_mem_cgroup)
5259 break;
5260
5261 if (page_counter_read(&memcg->memory) >= memcg->low)
5262 return false;
5263 }
5264 return true;
5265 }
5266
5267 /**
5268 * mem_cgroup_try_charge - try charging a page
5269 * @page: page to charge
5270 * @mm: mm context of the victim
5271 * @gfp_mask: reclaim mode
5272 * @memcgp: charged memcg return
5273 *
5274 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5275 * pages according to @gfp_mask if necessary.
5276 *
5277 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5278 * Otherwise, an error code is returned.
5279 *
5280 * After page->mapping has been set up, the caller must finalize the
5281 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5282 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5283 */
5284 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5285 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5286 {
5287 struct mem_cgroup *memcg = NULL;
5288 unsigned int nr_pages = 1;
5289 int ret = 0;
5290
5291 if (mem_cgroup_disabled())
5292 goto out;
5293
5294 if (PageSwapCache(page)) {
5295 /*
5296 * Every swap fault against a single page tries to charge the
5297 * page, bail as early as possible. shmem_unuse() encounters
5298 * already charged pages, too. The USED bit is protected by
5299 * the page lock, which serializes swap cache removal, which
5300 * in turn serializes uncharging.
5301 */
5302 if (page->mem_cgroup)
5303 goto out;
5304 }
5305
5306 if (PageTransHuge(page)) {
5307 nr_pages <<= compound_order(page);
5308 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5309 }
5310
5311 if (do_swap_account && PageSwapCache(page))
5312 memcg = try_get_mem_cgroup_from_page(page);
5313 if (!memcg)
5314 memcg = get_mem_cgroup_from_mm(mm);
5315
5316 ret = try_charge(memcg, gfp_mask, nr_pages);
5317
5318 css_put(&memcg->css);
5319
5320 if (ret == -EINTR) {
5321 memcg = root_mem_cgroup;
5322 ret = 0;
5323 }
5324 out:
5325 *memcgp = memcg;
5326 return ret;
5327 }
5328
5329 /**
5330 * mem_cgroup_commit_charge - commit a page charge
5331 * @page: page to charge
5332 * @memcg: memcg to charge the page to
5333 * @lrucare: page might be on LRU already
5334 *
5335 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5336 * after page->mapping has been set up. This must happen atomically
5337 * as part of the page instantiation, i.e. under the page table lock
5338 * for anonymous pages, under the page lock for page and swap cache.
5339 *
5340 * In addition, the page must not be on the LRU during the commit, to
5341 * prevent racing with task migration. If it might be, use @lrucare.
5342 *
5343 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5344 */
5345 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5346 bool lrucare)
5347 {
5348 unsigned int nr_pages = 1;
5349
5350 VM_BUG_ON_PAGE(!page->mapping, page);
5351 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5352
5353 if (mem_cgroup_disabled())
5354 return;
5355 /*
5356 * Swap faults will attempt to charge the same page multiple
5357 * times. But reuse_swap_page() might have removed the page
5358 * from swapcache already, so we can't check PageSwapCache().
5359 */
5360 if (!memcg)
5361 return;
5362
5363 commit_charge(page, memcg, lrucare);
5364
5365 if (PageTransHuge(page)) {
5366 nr_pages <<= compound_order(page);
5367 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5368 }
5369
5370 local_irq_disable();
5371 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5372 memcg_check_events(memcg, page);
5373 local_irq_enable();
5374
5375 if (do_swap_account && PageSwapCache(page)) {
5376 swp_entry_t entry = { .val = page_private(page) };
5377 /*
5378 * The swap entry might not get freed for a long time,
5379 * let's not wait for it. The page already received a
5380 * memory+swap charge, drop the swap entry duplicate.
5381 */
5382 mem_cgroup_uncharge_swap(entry);
5383 }
5384 }
5385
5386 /**
5387 * mem_cgroup_cancel_charge - cancel a page charge
5388 * @page: page to charge
5389 * @memcg: memcg to charge the page to
5390 *
5391 * Cancel a charge transaction started by mem_cgroup_try_charge().
5392 */
5393 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5394 {
5395 unsigned int nr_pages = 1;
5396
5397 if (mem_cgroup_disabled())
5398 return;
5399 /*
5400 * Swap faults will attempt to charge the same page multiple
5401 * times. But reuse_swap_page() might have removed the page
5402 * from swapcache already, so we can't check PageSwapCache().
5403 */
5404 if (!memcg)
5405 return;
5406
5407 if (PageTransHuge(page)) {
5408 nr_pages <<= compound_order(page);
5409 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5410 }
5411
5412 cancel_charge(memcg, nr_pages);
5413 }
5414
5415 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5416 unsigned long nr_anon, unsigned long nr_file,
5417 unsigned long nr_huge, struct page *dummy_page)
5418 {
5419 unsigned long nr_pages = nr_anon + nr_file;
5420 unsigned long flags;
5421
5422 if (!mem_cgroup_is_root(memcg)) {
5423 page_counter_uncharge(&memcg->memory, nr_pages);
5424 if (do_swap_account)
5425 page_counter_uncharge(&memcg->memsw, nr_pages);
5426 memcg_oom_recover(memcg);
5427 }
5428
5429 local_irq_save(flags);
5430 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5431 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5432 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5433 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5434 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5435 memcg_check_events(memcg, dummy_page);
5436 local_irq_restore(flags);
5437
5438 if (!mem_cgroup_is_root(memcg))
5439 css_put_many(&memcg->css, nr_pages);
5440 }
5441
5442 static void uncharge_list(struct list_head *page_list)
5443 {
5444 struct mem_cgroup *memcg = NULL;
5445 unsigned long nr_anon = 0;
5446 unsigned long nr_file = 0;
5447 unsigned long nr_huge = 0;
5448 unsigned long pgpgout = 0;
5449 struct list_head *next;
5450 struct page *page;
5451
5452 next = page_list->next;
5453 do {
5454 unsigned int nr_pages = 1;
5455
5456 page = list_entry(next, struct page, lru);
5457 next = page->lru.next;
5458
5459 VM_BUG_ON_PAGE(PageLRU(page), page);
5460 VM_BUG_ON_PAGE(page_count(page), page);
5461
5462 if (!page->mem_cgroup)
5463 continue;
5464
5465 /*
5466 * Nobody should be changing or seriously looking at
5467 * page->mem_cgroup at this point, we have fully
5468 * exclusive access to the page.
5469 */
5470
5471 if (memcg != page->mem_cgroup) {
5472 if (memcg) {
5473 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5474 nr_huge, page);
5475 pgpgout = nr_anon = nr_file = nr_huge = 0;
5476 }
5477 memcg = page->mem_cgroup;
5478 }
5479
5480 if (PageTransHuge(page)) {
5481 nr_pages <<= compound_order(page);
5482 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5483 nr_huge += nr_pages;
5484 }
5485
5486 if (PageAnon(page))
5487 nr_anon += nr_pages;
5488 else
5489 nr_file += nr_pages;
5490
5491 page->mem_cgroup = NULL;
5492
5493 pgpgout++;
5494 } while (next != page_list);
5495
5496 if (memcg)
5497 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5498 nr_huge, page);
5499 }
5500
5501 /**
5502 * mem_cgroup_uncharge - uncharge a page
5503 * @page: page to uncharge
5504 *
5505 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5506 * mem_cgroup_commit_charge().
5507 */
5508 void mem_cgroup_uncharge(struct page *page)
5509 {
5510 if (mem_cgroup_disabled())
5511 return;
5512
5513 /* Don't touch page->lru of any random page, pre-check: */
5514 if (!page->mem_cgroup)
5515 return;
5516
5517 INIT_LIST_HEAD(&page->lru);
5518 uncharge_list(&page->lru);
5519 }
5520
5521 /**
5522 * mem_cgroup_uncharge_list - uncharge a list of page
5523 * @page_list: list of pages to uncharge
5524 *
5525 * Uncharge a list of pages previously charged with
5526 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5527 */
5528 void mem_cgroup_uncharge_list(struct list_head *page_list)
5529 {
5530 if (mem_cgroup_disabled())
5531 return;
5532
5533 if (!list_empty(page_list))
5534 uncharge_list(page_list);
5535 }
5536
5537 /**
5538 * mem_cgroup_migrate - migrate a charge to another page
5539 * @oldpage: currently charged page
5540 * @newpage: page to transfer the charge to
5541 * @lrucare: either or both pages might be on the LRU already
5542 *
5543 * Migrate the charge from @oldpage to @newpage.
5544 *
5545 * Both pages must be locked, @newpage->mapping must be set up.
5546 */
5547 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5548 bool lrucare)
5549 {
5550 struct mem_cgroup *memcg;
5551 int isolated;
5552
5553 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5554 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5555 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5556 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5557 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5558 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5559 newpage);
5560
5561 if (mem_cgroup_disabled())
5562 return;
5563
5564 /* Page cache replacement: new page already charged? */
5565 if (newpage->mem_cgroup)
5566 return;
5567
5568 /*
5569 * Swapcache readahead pages can get migrated before being
5570 * charged, and migration from compaction can happen to an
5571 * uncharged page when the PFN walker finds a page that
5572 * reclaim just put back on the LRU but has not released yet.
5573 */
5574 memcg = oldpage->mem_cgroup;
5575 if (!memcg)
5576 return;
5577
5578 if (lrucare)
5579 lock_page_lru(oldpage, &isolated);
5580
5581 oldpage->mem_cgroup = NULL;
5582
5583 if (lrucare)
5584 unlock_page_lru(oldpage, isolated);
5585
5586 commit_charge(newpage, memcg, lrucare);
5587 }
5588
5589 /*
5590 * subsys_initcall() for memory controller.
5591 *
5592 * Some parts like hotcpu_notifier() have to be initialized from this context
5593 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5594 * everything that doesn't depend on a specific mem_cgroup structure should
5595 * be initialized from here.
5596 */
5597 static int __init mem_cgroup_init(void)
5598 {
5599 int cpu, node;
5600
5601 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5602
5603 for_each_possible_cpu(cpu)
5604 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5605 drain_local_stock);
5606
5607 for_each_node(node) {
5608 struct mem_cgroup_tree_per_node *rtpn;
5609 int zone;
5610
5611 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5612 node_online(node) ? node : NUMA_NO_NODE);
5613
5614 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5615 struct mem_cgroup_tree_per_zone *rtpz;
5616
5617 rtpz = &rtpn->rb_tree_per_zone[zone];
5618 rtpz->rb_root = RB_ROOT;
5619 spin_lock_init(&rtpz->lock);
5620 }
5621 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5622 }
5623
5624 return 0;
5625 }
5626 subsys_initcall(mem_cgroup_init);
5627
5628 #ifdef CONFIG_MEMCG_SWAP
5629 /**
5630 * mem_cgroup_swapout - transfer a memsw charge to swap
5631 * @page: page whose memsw charge to transfer
5632 * @entry: swap entry to move the charge to
5633 *
5634 * Transfer the memsw charge of @page to @entry.
5635 */
5636 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5637 {
5638 struct mem_cgroup *memcg;
5639 unsigned short oldid;
5640
5641 VM_BUG_ON_PAGE(PageLRU(page), page);
5642 VM_BUG_ON_PAGE(page_count(page), page);
5643
5644 if (!do_swap_account)
5645 return;
5646
5647 memcg = page->mem_cgroup;
5648
5649 /* Readahead page, never charged */
5650 if (!memcg)
5651 return;
5652
5653 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5654 VM_BUG_ON_PAGE(oldid, page);
5655 mem_cgroup_swap_statistics(memcg, true);
5656
5657 page->mem_cgroup = NULL;
5658
5659 if (!mem_cgroup_is_root(memcg))
5660 page_counter_uncharge(&memcg->memory, 1);
5661
5662 /*
5663 * Interrupts should be disabled here because the caller holds the
5664 * mapping->tree_lock lock which is taken with interrupts-off. It is
5665 * important here to have the interrupts disabled because it is the
5666 * only synchronisation we have for udpating the per-CPU variables.
5667 */
5668 VM_BUG_ON(!irqs_disabled());
5669 mem_cgroup_charge_statistics(memcg, page, -1);
5670 memcg_check_events(memcg, page);
5671 }
5672
5673 /**
5674 * mem_cgroup_uncharge_swap - uncharge a swap entry
5675 * @entry: swap entry to uncharge
5676 *
5677 * Drop the memsw charge associated with @entry.
5678 */
5679 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5680 {
5681 struct mem_cgroup *memcg;
5682 unsigned short id;
5683
5684 if (!do_swap_account)
5685 return;
5686
5687 id = swap_cgroup_record(entry, 0);
5688 rcu_read_lock();
5689 memcg = mem_cgroup_from_id(id);
5690 if (memcg) {
5691 if (!mem_cgroup_is_root(memcg))
5692 page_counter_uncharge(&memcg->memsw, 1);
5693 mem_cgroup_swap_statistics(memcg, false);
5694 css_put(&memcg->css);
5695 }
5696 rcu_read_unlock();
5697 }
5698
5699 /* for remember boot option*/
5700 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5701 static int really_do_swap_account __initdata = 1;
5702 #else
5703 static int really_do_swap_account __initdata;
5704 #endif
5705
5706 static int __init enable_swap_account(char *s)
5707 {
5708 if (!strcmp(s, "1"))
5709 really_do_swap_account = 1;
5710 else if (!strcmp(s, "0"))
5711 really_do_swap_account = 0;
5712 return 1;
5713 }
5714 __setup("swapaccount=", enable_swap_account);
5715
5716 static struct cftype memsw_cgroup_files[] = {
5717 {
5718 .name = "memsw.usage_in_bytes",
5719 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5720 .read_u64 = mem_cgroup_read_u64,
5721 },
5722 {
5723 .name = "memsw.max_usage_in_bytes",
5724 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5725 .write = mem_cgroup_reset,
5726 .read_u64 = mem_cgroup_read_u64,
5727 },
5728 {
5729 .name = "memsw.limit_in_bytes",
5730 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5731 .write = mem_cgroup_write,
5732 .read_u64 = mem_cgroup_read_u64,
5733 },
5734 {
5735 .name = "memsw.failcnt",
5736 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5737 .write = mem_cgroup_reset,
5738 .read_u64 = mem_cgroup_read_u64,
5739 },
5740 { }, /* terminate */
5741 };
5742
5743 static int __init mem_cgroup_swap_init(void)
5744 {
5745 if (!mem_cgroup_disabled() && really_do_swap_account) {
5746 do_swap_account = 1;
5747 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5748 memsw_cgroup_files));
5749 }
5750 return 0;
5751 }
5752 subsys_initcall(mem_cgroup_swap_init);
5753
5754 #endif /* CONFIG_MEMCG_SWAP */
This page took 0.184229 seconds and 6 git commands to generate.