memcgroup: tidy up mem_cgroup_charge_common
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/page-flags.h>
25 #include <linux/backing-dev.h>
26 #include <linux/bit_spinlock.h>
27 #include <linux/rcupdate.h>
28 #include <linux/swap.h>
29 #include <linux/spinlock.h>
30 #include <linux/fs.h>
31
32 #include <asm/uaccess.h>
33
34 struct cgroup_subsys mem_cgroup_subsys;
35 static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
36
37 /*
38 * The memory controller data structure. The memory controller controls both
39 * page cache and RSS per cgroup. We would eventually like to provide
40 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
41 * to help the administrator determine what knobs to tune.
42 *
43 * TODO: Add a water mark for the memory controller. Reclaim will begin when
44 * we hit the water mark. May be even add a low water mark, such that
45 * no reclaim occurs from a cgroup at it's low water mark, this is
46 * a feature that will be implemented much later in the future.
47 */
48 struct mem_cgroup {
49 struct cgroup_subsys_state css;
50 /*
51 * the counter to account for memory usage
52 */
53 struct res_counter res;
54 /*
55 * Per cgroup active and inactive list, similar to the
56 * per zone LRU lists.
57 * TODO: Consider making these lists per zone
58 */
59 struct list_head active_list;
60 struct list_head inactive_list;
61 /*
62 * spin_lock to protect the per cgroup LRU
63 */
64 spinlock_t lru_lock;
65 unsigned long control_type; /* control RSS or RSS+Pagecache */
66 };
67
68 /*
69 * We use the lower bit of the page->page_cgroup pointer as a bit spin
70 * lock. We need to ensure that page->page_cgroup is atleast two
71 * byte aligned (based on comments from Nick Piggin)
72 */
73 #define PAGE_CGROUP_LOCK_BIT 0x0
74 #define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
75
76 /*
77 * A page_cgroup page is associated with every page descriptor. The
78 * page_cgroup helps us identify information about the cgroup
79 */
80 struct page_cgroup {
81 struct list_head lru; /* per cgroup LRU list */
82 struct page *page;
83 struct mem_cgroup *mem_cgroup;
84 atomic_t ref_cnt; /* Helpful when pages move b/w */
85 /* mapped and cached states */
86 int flags;
87 };
88 #define PAGE_CGROUP_FLAG_CACHE (0x1) /* charged as cache */
89
90 enum {
91 MEM_CGROUP_TYPE_UNSPEC = 0,
92 MEM_CGROUP_TYPE_MAPPED,
93 MEM_CGROUP_TYPE_CACHED,
94 MEM_CGROUP_TYPE_ALL,
95 MEM_CGROUP_TYPE_MAX,
96 };
97
98 enum charge_type {
99 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
100 MEM_CGROUP_CHARGE_TYPE_MAPPED,
101 };
102
103 static struct mem_cgroup init_mem_cgroup;
104
105 static inline
106 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
107 {
108 return container_of(cgroup_subsys_state(cont,
109 mem_cgroup_subsys_id), struct mem_cgroup,
110 css);
111 }
112
113 static inline
114 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
115 {
116 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
117 struct mem_cgroup, css);
118 }
119
120 void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p)
121 {
122 struct mem_cgroup *mem;
123
124 mem = mem_cgroup_from_task(p);
125 css_get(&mem->css);
126 mm->mem_cgroup = mem;
127 }
128
129 void mm_free_cgroup(struct mm_struct *mm)
130 {
131 css_put(&mm->mem_cgroup->css);
132 }
133
134 static inline int page_cgroup_locked(struct page *page)
135 {
136 return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT,
137 &page->page_cgroup);
138 }
139
140 void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
141 {
142 int locked;
143
144 /*
145 * While resetting the page_cgroup we might not hold the
146 * page_cgroup lock. free_hot_cold_page() is an example
147 * of such a scenario
148 */
149 if (pc)
150 VM_BUG_ON(!page_cgroup_locked(page));
151 locked = (page->page_cgroup & PAGE_CGROUP_LOCK);
152 page->page_cgroup = ((unsigned long)pc | locked);
153 }
154
155 struct page_cgroup *page_get_page_cgroup(struct page *page)
156 {
157 return (struct page_cgroup *)
158 (page->page_cgroup & ~PAGE_CGROUP_LOCK);
159 }
160
161 static void __always_inline lock_page_cgroup(struct page *page)
162 {
163 bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
164 VM_BUG_ON(!page_cgroup_locked(page));
165 }
166
167 static void __always_inline unlock_page_cgroup(struct page *page)
168 {
169 bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
170 }
171
172 /*
173 * Tie new page_cgroup to struct page under lock_page_cgroup()
174 * This can fail if the page has been tied to a page_cgroup.
175 * If success, returns 0.
176 */
177 static inline int
178 page_cgroup_assign_new_page_cgroup(struct page *page, struct page_cgroup *pc)
179 {
180 int ret = 0;
181
182 lock_page_cgroup(page);
183 if (!page_get_page_cgroup(page))
184 page_assign_page_cgroup(page, pc);
185 else /* A page is tied to other pc. */
186 ret = 1;
187 unlock_page_cgroup(page);
188 return ret;
189 }
190
191 /*
192 * Clear page->page_cgroup member under lock_page_cgroup().
193 * If given "pc" value is different from one page->page_cgroup,
194 * page->cgroup is not cleared.
195 * Returns a value of page->page_cgroup at lock taken.
196 * A can can detect failure of clearing by following
197 * clear_page_cgroup(page, pc) == pc
198 */
199
200 static inline struct page_cgroup *
201 clear_page_cgroup(struct page *page, struct page_cgroup *pc)
202 {
203 struct page_cgroup *ret;
204 /* lock and clear */
205 lock_page_cgroup(page);
206 ret = page_get_page_cgroup(page);
207 if (likely(ret == pc))
208 page_assign_page_cgroup(page, NULL);
209 unlock_page_cgroup(page);
210 return ret;
211 }
212
213
214 static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
215 {
216 if (active)
217 list_move(&pc->lru, &pc->mem_cgroup->active_list);
218 else
219 list_move(&pc->lru, &pc->mem_cgroup->inactive_list);
220 }
221
222 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
223 {
224 int ret;
225
226 task_lock(task);
227 ret = task->mm && mm_cgroup(task->mm) == mem;
228 task_unlock(task);
229 return ret;
230 }
231
232 /*
233 * This routine assumes that the appropriate zone's lru lock is already held
234 */
235 void mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
236 {
237 struct mem_cgroup *mem;
238 if (!pc)
239 return;
240
241 mem = pc->mem_cgroup;
242
243 spin_lock(&mem->lru_lock);
244 __mem_cgroup_move_lists(pc, active);
245 spin_unlock(&mem->lru_lock);
246 }
247
248 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
249 struct list_head *dst,
250 unsigned long *scanned, int order,
251 int mode, struct zone *z,
252 struct mem_cgroup *mem_cont,
253 int active)
254 {
255 unsigned long nr_taken = 0;
256 struct page *page;
257 unsigned long scan;
258 LIST_HEAD(pc_list);
259 struct list_head *src;
260 struct page_cgroup *pc, *tmp;
261
262 if (active)
263 src = &mem_cont->active_list;
264 else
265 src = &mem_cont->inactive_list;
266
267 spin_lock(&mem_cont->lru_lock);
268 scan = 0;
269 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
270 if (scan >= nr_to_scan)
271 break;
272 page = pc->page;
273 VM_BUG_ON(!pc);
274
275 if (unlikely(!PageLRU(page)))
276 continue;
277
278 if (PageActive(page) && !active) {
279 __mem_cgroup_move_lists(pc, true);
280 continue;
281 }
282 if (!PageActive(page) && active) {
283 __mem_cgroup_move_lists(pc, false);
284 continue;
285 }
286
287 /*
288 * Reclaim, per zone
289 * TODO: make the active/inactive lists per zone
290 */
291 if (page_zone(page) != z)
292 continue;
293
294 scan++;
295 list_move(&pc->lru, &pc_list);
296
297 if (__isolate_lru_page(page, mode) == 0) {
298 list_move(&page->lru, dst);
299 nr_taken++;
300 }
301 }
302
303 list_splice(&pc_list, src);
304 spin_unlock(&mem_cont->lru_lock);
305
306 *scanned = scan;
307 return nr_taken;
308 }
309
310 /*
311 * Charge the memory controller for page usage.
312 * Return
313 * 0 if the charge was successful
314 * < 0 if the cgroup is over its limit
315 */
316 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
317 gfp_t gfp_mask, enum charge_type ctype)
318 {
319 struct mem_cgroup *mem;
320 struct page_cgroup *pc;
321 unsigned long flags;
322 unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
323
324 /*
325 * Should page_cgroup's go to their own slab?
326 * One could optimize the performance of the charging routine
327 * by saving a bit in the page_flags and using it as a lock
328 * to see if the cgroup page already has a page_cgroup associated
329 * with it
330 */
331 retry:
332 lock_page_cgroup(page);
333 pc = page_get_page_cgroup(page);
334 /*
335 * The page_cgroup exists and the page has already been accounted
336 */
337 if (pc) {
338 if (unlikely(!atomic_inc_not_zero(&pc->ref_cnt))) {
339 /* this page is under being uncharged ? */
340 unlock_page_cgroup(page);
341 cpu_relax();
342 goto retry;
343 } else {
344 unlock_page_cgroup(page);
345 goto done;
346 }
347 }
348 unlock_page_cgroup(page);
349
350 pc = kzalloc(sizeof(struct page_cgroup), gfp_mask);
351 if (pc == NULL)
352 goto err;
353
354 /*
355 * We always charge the cgroup the mm_struct belongs to.
356 * The mm_struct's mem_cgroup changes on task migration if the
357 * thread group leader migrates. It's possible that mm is not
358 * set, if so charge the init_mm (happens for pagecache usage).
359 */
360 if (!mm)
361 mm = &init_mm;
362
363 rcu_read_lock();
364 mem = rcu_dereference(mm->mem_cgroup);
365 /*
366 * For every charge from the cgroup, increment reference
367 * count
368 */
369 css_get(&mem->css);
370 rcu_read_unlock();
371
372 /*
373 * If we created the page_cgroup, we should free it on exceeding
374 * the cgroup limit.
375 */
376 while (res_counter_charge(&mem->res, PAGE_SIZE)) {
377 if (!(gfp_mask & __GFP_WAIT))
378 goto out;
379
380 if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
381 continue;
382
383 /*
384 * try_to_free_mem_cgroup_pages() might not give us a full
385 * picture of reclaim. Some pages are reclaimed and might be
386 * moved to swap cache or just unmapped from the cgroup.
387 * Check the limit again to see if the reclaim reduced the
388 * current usage of the cgroup before giving up
389 */
390 if (res_counter_check_under_limit(&mem->res))
391 continue;
392
393 if (!nr_retries--) {
394 mem_cgroup_out_of_memory(mem, gfp_mask);
395 goto out;
396 }
397 congestion_wait(WRITE, HZ/10);
398 }
399
400 atomic_set(&pc->ref_cnt, 1);
401 pc->mem_cgroup = mem;
402 pc->page = page;
403 pc->flags = 0;
404 if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
405 pc->flags |= PAGE_CGROUP_FLAG_CACHE;
406
407 if (page_cgroup_assign_new_page_cgroup(page, pc)) {
408 /*
409 * Another charge has been added to this page already.
410 * We take lock_page_cgroup(page) again and read
411 * page->cgroup, increment refcnt.... just retry is OK.
412 */
413 res_counter_uncharge(&mem->res, PAGE_SIZE);
414 css_put(&mem->css);
415 kfree(pc);
416 goto retry;
417 }
418
419 spin_lock_irqsave(&mem->lru_lock, flags);
420 list_add(&pc->lru, &mem->active_list);
421 spin_unlock_irqrestore(&mem->lru_lock, flags);
422
423 done:
424 return 0;
425 out:
426 css_put(&mem->css);
427 kfree(pc);
428 err:
429 return -ENOMEM;
430 }
431
432 int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
433 gfp_t gfp_mask)
434 {
435 return mem_cgroup_charge_common(page, mm, gfp_mask,
436 MEM_CGROUP_CHARGE_TYPE_MAPPED);
437 }
438
439 /*
440 * See if the cached pages should be charged at all?
441 */
442 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
443 gfp_t gfp_mask)
444 {
445 int ret = 0;
446 struct mem_cgroup *mem;
447 if (!mm)
448 mm = &init_mm;
449
450 rcu_read_lock();
451 mem = rcu_dereference(mm->mem_cgroup);
452 css_get(&mem->css);
453 rcu_read_unlock();
454 if (mem->control_type == MEM_CGROUP_TYPE_ALL)
455 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
456 MEM_CGROUP_CHARGE_TYPE_CACHE);
457 css_put(&mem->css);
458 return ret;
459 }
460
461 /*
462 * Uncharging is always a welcome operation, we never complain, simply
463 * uncharge.
464 */
465 void mem_cgroup_uncharge(struct page_cgroup *pc)
466 {
467 struct mem_cgroup *mem;
468 struct page *page;
469 unsigned long flags;
470
471 /*
472 * This can handle cases when a page is not charged at all and we
473 * are switching between handling the control_type.
474 */
475 if (!pc)
476 return;
477
478 if (atomic_dec_and_test(&pc->ref_cnt)) {
479 page = pc->page;
480 /*
481 * get page->cgroup and clear it under lock.
482 * force_empty can drop page->cgroup without checking refcnt.
483 */
484 if (clear_page_cgroup(page, pc) == pc) {
485 mem = pc->mem_cgroup;
486 css_put(&mem->css);
487 res_counter_uncharge(&mem->res, PAGE_SIZE);
488 spin_lock_irqsave(&mem->lru_lock, flags);
489 list_del_init(&pc->lru);
490 spin_unlock_irqrestore(&mem->lru_lock, flags);
491 kfree(pc);
492 }
493 }
494 }
495 /*
496 * Returns non-zero if a page (under migration) has valid page_cgroup member.
497 * Refcnt of page_cgroup is incremented.
498 */
499
500 int mem_cgroup_prepare_migration(struct page *page)
501 {
502 struct page_cgroup *pc;
503 int ret = 0;
504 lock_page_cgroup(page);
505 pc = page_get_page_cgroup(page);
506 if (pc && atomic_inc_not_zero(&pc->ref_cnt))
507 ret = 1;
508 unlock_page_cgroup(page);
509 return ret;
510 }
511
512 void mem_cgroup_end_migration(struct page *page)
513 {
514 struct page_cgroup *pc = page_get_page_cgroup(page);
515 mem_cgroup_uncharge(pc);
516 }
517 /*
518 * We know both *page* and *newpage* are now not-on-LRU and Pg_locked.
519 * And no race with uncharge() routines because page_cgroup for *page*
520 * has extra one reference by mem_cgroup_prepare_migration.
521 */
522
523 void mem_cgroup_page_migration(struct page *page, struct page *newpage)
524 {
525 struct page_cgroup *pc;
526 retry:
527 pc = page_get_page_cgroup(page);
528 if (!pc)
529 return;
530 if (clear_page_cgroup(page, pc) != pc)
531 goto retry;
532 pc->page = newpage;
533 lock_page_cgroup(newpage);
534 page_assign_page_cgroup(newpage, pc);
535 unlock_page_cgroup(newpage);
536 return;
537 }
538
539 /*
540 * This routine traverse page_cgroup in given list and drop them all.
541 * This routine ignores page_cgroup->ref_cnt.
542 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
543 */
544 #define FORCE_UNCHARGE_BATCH (128)
545 static void
546 mem_cgroup_force_empty_list(struct mem_cgroup *mem, struct list_head *list)
547 {
548 struct page_cgroup *pc;
549 struct page *page;
550 int count;
551 unsigned long flags;
552
553 retry:
554 count = FORCE_UNCHARGE_BATCH;
555 spin_lock_irqsave(&mem->lru_lock, flags);
556
557 while (--count && !list_empty(list)) {
558 pc = list_entry(list->prev, struct page_cgroup, lru);
559 page = pc->page;
560 /* Avoid race with charge */
561 atomic_set(&pc->ref_cnt, 0);
562 if (clear_page_cgroup(page, pc) == pc) {
563 css_put(&mem->css);
564 res_counter_uncharge(&mem->res, PAGE_SIZE);
565 list_del_init(&pc->lru);
566 kfree(pc);
567 } else /* being uncharged ? ...do relax */
568 break;
569 }
570 spin_unlock_irqrestore(&mem->lru_lock, flags);
571 if (!list_empty(list)) {
572 cond_resched();
573 goto retry;
574 }
575 return;
576 }
577
578 /*
579 * make mem_cgroup's charge to be 0 if there is no task.
580 * This enables deleting this mem_cgroup.
581 */
582
583 int mem_cgroup_force_empty(struct mem_cgroup *mem)
584 {
585 int ret = -EBUSY;
586 css_get(&mem->css);
587 /*
588 * page reclaim code (kswapd etc..) will move pages between
589 ` * active_list <-> inactive_list while we don't take a lock.
590 * So, we have to do loop here until all lists are empty.
591 */
592 while (!(list_empty(&mem->active_list) &&
593 list_empty(&mem->inactive_list))) {
594 if (atomic_read(&mem->css.cgroup->count) > 0)
595 goto out;
596 /* drop all page_cgroup in active_list */
597 mem_cgroup_force_empty_list(mem, &mem->active_list);
598 /* drop all page_cgroup in inactive_list */
599 mem_cgroup_force_empty_list(mem, &mem->inactive_list);
600 }
601 ret = 0;
602 out:
603 css_put(&mem->css);
604 return ret;
605 }
606
607
608
609 int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
610 {
611 *tmp = memparse(buf, &buf);
612 if (*buf != '\0')
613 return -EINVAL;
614
615 /*
616 * Round up the value to the closest page size
617 */
618 *tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
619 return 0;
620 }
621
622 static ssize_t mem_cgroup_read(struct cgroup *cont,
623 struct cftype *cft, struct file *file,
624 char __user *userbuf, size_t nbytes, loff_t *ppos)
625 {
626 return res_counter_read(&mem_cgroup_from_cont(cont)->res,
627 cft->private, userbuf, nbytes, ppos,
628 NULL);
629 }
630
631 static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
632 struct file *file, const char __user *userbuf,
633 size_t nbytes, loff_t *ppos)
634 {
635 return res_counter_write(&mem_cgroup_from_cont(cont)->res,
636 cft->private, userbuf, nbytes, ppos,
637 mem_cgroup_write_strategy);
638 }
639
640 static ssize_t mem_control_type_write(struct cgroup *cont,
641 struct cftype *cft, struct file *file,
642 const char __user *userbuf,
643 size_t nbytes, loff_t *pos)
644 {
645 int ret;
646 char *buf, *end;
647 unsigned long tmp;
648 struct mem_cgroup *mem;
649
650 mem = mem_cgroup_from_cont(cont);
651 buf = kmalloc(nbytes + 1, GFP_KERNEL);
652 ret = -ENOMEM;
653 if (buf == NULL)
654 goto out;
655
656 buf[nbytes] = 0;
657 ret = -EFAULT;
658 if (copy_from_user(buf, userbuf, nbytes))
659 goto out_free;
660
661 ret = -EINVAL;
662 tmp = simple_strtoul(buf, &end, 10);
663 if (*end != '\0')
664 goto out_free;
665
666 if (tmp <= MEM_CGROUP_TYPE_UNSPEC || tmp >= MEM_CGROUP_TYPE_MAX)
667 goto out_free;
668
669 mem->control_type = tmp;
670 ret = nbytes;
671 out_free:
672 kfree(buf);
673 out:
674 return ret;
675 }
676
677 static ssize_t mem_control_type_read(struct cgroup *cont,
678 struct cftype *cft,
679 struct file *file, char __user *userbuf,
680 size_t nbytes, loff_t *ppos)
681 {
682 unsigned long val;
683 char buf[64], *s;
684 struct mem_cgroup *mem;
685
686 mem = mem_cgroup_from_cont(cont);
687 s = buf;
688 val = mem->control_type;
689 s += sprintf(s, "%lu\n", val);
690 return simple_read_from_buffer((void __user *)userbuf, nbytes,
691 ppos, buf, s - buf);
692 }
693
694
695 static ssize_t mem_force_empty_write(struct cgroup *cont,
696 struct cftype *cft, struct file *file,
697 const char __user *userbuf,
698 size_t nbytes, loff_t *ppos)
699 {
700 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
701 int ret;
702 ret = mem_cgroup_force_empty(mem);
703 if (!ret)
704 ret = nbytes;
705 return ret;
706 }
707
708 /*
709 * Note: This should be removed if cgroup supports write-only file.
710 */
711
712 static ssize_t mem_force_empty_read(struct cgroup *cont,
713 struct cftype *cft,
714 struct file *file, char __user *userbuf,
715 size_t nbytes, loff_t *ppos)
716 {
717 return -EINVAL;
718 }
719
720
721 static struct cftype mem_cgroup_files[] = {
722 {
723 .name = "usage_in_bytes",
724 .private = RES_USAGE,
725 .read = mem_cgroup_read,
726 },
727 {
728 .name = "limit_in_bytes",
729 .private = RES_LIMIT,
730 .write = mem_cgroup_write,
731 .read = mem_cgroup_read,
732 },
733 {
734 .name = "failcnt",
735 .private = RES_FAILCNT,
736 .read = mem_cgroup_read,
737 },
738 {
739 .name = "control_type",
740 .write = mem_control_type_write,
741 .read = mem_control_type_read,
742 },
743 {
744 .name = "force_empty",
745 .write = mem_force_empty_write,
746 .read = mem_force_empty_read,
747 },
748 };
749
750 static struct mem_cgroup init_mem_cgroup;
751
752 static struct cgroup_subsys_state *
753 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
754 {
755 struct mem_cgroup *mem;
756
757 if (unlikely((cont->parent) == NULL)) {
758 mem = &init_mem_cgroup;
759 init_mm.mem_cgroup = mem;
760 } else
761 mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);
762
763 if (mem == NULL)
764 return NULL;
765
766 res_counter_init(&mem->res);
767 INIT_LIST_HEAD(&mem->active_list);
768 INIT_LIST_HEAD(&mem->inactive_list);
769 spin_lock_init(&mem->lru_lock);
770 mem->control_type = MEM_CGROUP_TYPE_ALL;
771 return &mem->css;
772 }
773
774 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
775 struct cgroup *cont)
776 {
777 kfree(mem_cgroup_from_cont(cont));
778 }
779
780 static int mem_cgroup_populate(struct cgroup_subsys *ss,
781 struct cgroup *cont)
782 {
783 return cgroup_add_files(cont, ss, mem_cgroup_files,
784 ARRAY_SIZE(mem_cgroup_files));
785 }
786
787 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
788 struct cgroup *cont,
789 struct cgroup *old_cont,
790 struct task_struct *p)
791 {
792 struct mm_struct *mm;
793 struct mem_cgroup *mem, *old_mem;
794
795 mm = get_task_mm(p);
796 if (mm == NULL)
797 return;
798
799 mem = mem_cgroup_from_cont(cont);
800 old_mem = mem_cgroup_from_cont(old_cont);
801
802 if (mem == old_mem)
803 goto out;
804
805 /*
806 * Only thread group leaders are allowed to migrate, the mm_struct is
807 * in effect owned by the leader
808 */
809 if (p->tgid != p->pid)
810 goto out;
811
812 css_get(&mem->css);
813 rcu_assign_pointer(mm->mem_cgroup, mem);
814 css_put(&old_mem->css);
815
816 out:
817 mmput(mm);
818 return;
819 }
820
821 struct cgroup_subsys mem_cgroup_subsys = {
822 .name = "memory",
823 .subsys_id = mem_cgroup_subsys_id,
824 .create = mem_cgroup_create,
825 .destroy = mem_cgroup_destroy,
826 .populate = mem_cgroup_populate,
827 .attach = mem_cgroup_move_task,
828 .early_init = 1,
829 };
This page took 0.048826 seconds and 6 git commands to generate.