memcg: add mem_cgroup_same_or_subtree() helper
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/shmem_fs.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53
54 #include <asm/uaccess.h>
55
56 #include <trace/events/vmscan.h>
57
58 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
59 #define MEM_CGROUP_RECLAIM_RETRIES 5
60 struct mem_cgroup *root_mem_cgroup __read_mostly;
61
62 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
63 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
64 int do_swap_account __read_mostly;
65
66 /* for remember boot option*/
67 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
68 static int really_do_swap_account __initdata = 1;
69 #else
70 static int really_do_swap_account __initdata = 0;
71 #endif
72
73 #else
74 #define do_swap_account (0)
75 #endif
76
77
78 /*
79 * Statistics for memory cgroup.
80 */
81 enum mem_cgroup_stat_index {
82 /*
83 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
84 */
85 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
86 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
87 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
88 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
89 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
90 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
91 MEM_CGROUP_STAT_NSTATS,
92 };
93
94 enum mem_cgroup_events_index {
95 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
96 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
97 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
98 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
99 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
100 MEM_CGROUP_EVENTS_NSTATS,
101 };
102 /*
103 * Per memcg event counter is incremented at every pagein/pageout. With THP,
104 * it will be incremated by the number of pages. This counter is used for
105 * for trigger some periodic events. This is straightforward and better
106 * than using jiffies etc. to handle periodic memcg event.
107 */
108 enum mem_cgroup_events_target {
109 MEM_CGROUP_TARGET_THRESH,
110 MEM_CGROUP_TARGET_SOFTLIMIT,
111 MEM_CGROUP_TARGET_NUMAINFO,
112 MEM_CGROUP_NTARGETS,
113 };
114 #define THRESHOLDS_EVENTS_TARGET (128)
115 #define SOFTLIMIT_EVENTS_TARGET (1024)
116 #define NUMAINFO_EVENTS_TARGET (1024)
117
118 struct mem_cgroup_stat_cpu {
119 long count[MEM_CGROUP_STAT_NSTATS];
120 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
121 unsigned long targets[MEM_CGROUP_NTARGETS];
122 };
123
124 /*
125 * per-zone information in memory controller.
126 */
127 struct mem_cgroup_per_zone {
128 /*
129 * spin_lock to protect the per cgroup LRU
130 */
131 struct list_head lists[NR_LRU_LISTS];
132 unsigned long count[NR_LRU_LISTS];
133
134 struct zone_reclaim_stat reclaim_stat;
135 struct rb_node tree_node; /* RB tree node */
136 unsigned long long usage_in_excess;/* Set to the value by which */
137 /* the soft limit is exceeded*/
138 bool on_tree;
139 struct mem_cgroup *mem; /* Back pointer, we cannot */
140 /* use container_of */
141 };
142 /* Macro for accessing counter */
143 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
144
145 struct mem_cgroup_per_node {
146 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
147 };
148
149 struct mem_cgroup_lru_info {
150 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
151 };
152
153 /*
154 * Cgroups above their limits are maintained in a RB-Tree, independent of
155 * their hierarchy representation
156 */
157
158 struct mem_cgroup_tree_per_zone {
159 struct rb_root rb_root;
160 spinlock_t lock;
161 };
162
163 struct mem_cgroup_tree_per_node {
164 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
165 };
166
167 struct mem_cgroup_tree {
168 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
169 };
170
171 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
172
173 struct mem_cgroup_threshold {
174 struct eventfd_ctx *eventfd;
175 u64 threshold;
176 };
177
178 /* For threshold */
179 struct mem_cgroup_threshold_ary {
180 /* An array index points to threshold just below usage. */
181 int current_threshold;
182 /* Size of entries[] */
183 unsigned int size;
184 /* Array of thresholds */
185 struct mem_cgroup_threshold entries[0];
186 };
187
188 struct mem_cgroup_thresholds {
189 /* Primary thresholds array */
190 struct mem_cgroup_threshold_ary *primary;
191 /*
192 * Spare threshold array.
193 * This is needed to make mem_cgroup_unregister_event() "never fail".
194 * It must be able to store at least primary->size - 1 entries.
195 */
196 struct mem_cgroup_threshold_ary *spare;
197 };
198
199 /* for OOM */
200 struct mem_cgroup_eventfd_list {
201 struct list_head list;
202 struct eventfd_ctx *eventfd;
203 };
204
205 static void mem_cgroup_threshold(struct mem_cgroup *mem);
206 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
207
208 enum {
209 SCAN_BY_LIMIT,
210 SCAN_BY_SYSTEM,
211 NR_SCAN_CONTEXT,
212 SCAN_BY_SHRINK, /* not recorded now */
213 };
214
215 enum {
216 SCAN,
217 SCAN_ANON,
218 SCAN_FILE,
219 ROTATE,
220 ROTATE_ANON,
221 ROTATE_FILE,
222 FREED,
223 FREED_ANON,
224 FREED_FILE,
225 ELAPSED,
226 NR_SCANSTATS,
227 };
228
229 struct scanstat {
230 spinlock_t lock;
231 unsigned long stats[NR_SCAN_CONTEXT][NR_SCANSTATS];
232 unsigned long rootstats[NR_SCAN_CONTEXT][NR_SCANSTATS];
233 };
234
235 const char *scanstat_string[NR_SCANSTATS] = {
236 "scanned_pages",
237 "scanned_anon_pages",
238 "scanned_file_pages",
239 "rotated_pages",
240 "rotated_anon_pages",
241 "rotated_file_pages",
242 "freed_pages",
243 "freed_anon_pages",
244 "freed_file_pages",
245 "elapsed_ns",
246 };
247 #define SCANSTAT_WORD_LIMIT "_by_limit"
248 #define SCANSTAT_WORD_SYSTEM "_by_system"
249 #define SCANSTAT_WORD_HIERARCHY "_under_hierarchy"
250
251
252 /*
253 * The memory controller data structure. The memory controller controls both
254 * page cache and RSS per cgroup. We would eventually like to provide
255 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
256 * to help the administrator determine what knobs to tune.
257 *
258 * TODO: Add a water mark for the memory controller. Reclaim will begin when
259 * we hit the water mark. May be even add a low water mark, such that
260 * no reclaim occurs from a cgroup at it's low water mark, this is
261 * a feature that will be implemented much later in the future.
262 */
263 struct mem_cgroup {
264 struct cgroup_subsys_state css;
265 /*
266 * the counter to account for memory usage
267 */
268 struct res_counter res;
269 /*
270 * the counter to account for mem+swap usage.
271 */
272 struct res_counter memsw;
273 /*
274 * Per cgroup active and inactive list, similar to the
275 * per zone LRU lists.
276 */
277 struct mem_cgroup_lru_info info;
278 /*
279 * While reclaiming in a hierarchy, we cache the last child we
280 * reclaimed from.
281 */
282 int last_scanned_child;
283 int last_scanned_node;
284 #if MAX_NUMNODES > 1
285 nodemask_t scan_nodes;
286 atomic_t numainfo_events;
287 atomic_t numainfo_updating;
288 #endif
289 /*
290 * Should the accounting and control be hierarchical, per subtree?
291 */
292 bool use_hierarchy;
293
294 bool oom_lock;
295 atomic_t under_oom;
296
297 atomic_t refcnt;
298
299 int swappiness;
300 /* OOM-Killer disable */
301 int oom_kill_disable;
302
303 /* set when res.limit == memsw.limit */
304 bool memsw_is_minimum;
305
306 /* protect arrays of thresholds */
307 struct mutex thresholds_lock;
308
309 /* thresholds for memory usage. RCU-protected */
310 struct mem_cgroup_thresholds thresholds;
311
312 /* thresholds for mem+swap usage. RCU-protected */
313 struct mem_cgroup_thresholds memsw_thresholds;
314
315 /* For oom notifier event fd */
316 struct list_head oom_notify;
317 /* For recording LRU-scan statistics */
318 struct scanstat scanstat;
319 /*
320 * Should we move charges of a task when a task is moved into this
321 * mem_cgroup ? And what type of charges should we move ?
322 */
323 unsigned long move_charge_at_immigrate;
324 /*
325 * percpu counter.
326 */
327 struct mem_cgroup_stat_cpu *stat;
328 /*
329 * used when a cpu is offlined or other synchronizations
330 * See mem_cgroup_read_stat().
331 */
332 struct mem_cgroup_stat_cpu nocpu_base;
333 spinlock_t pcp_counter_lock;
334 };
335
336 /* Stuffs for move charges at task migration. */
337 /*
338 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
339 * left-shifted bitmap of these types.
340 */
341 enum move_type {
342 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
343 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
344 NR_MOVE_TYPE,
345 };
346
347 /* "mc" and its members are protected by cgroup_mutex */
348 static struct move_charge_struct {
349 spinlock_t lock; /* for from, to */
350 struct mem_cgroup *from;
351 struct mem_cgroup *to;
352 unsigned long precharge;
353 unsigned long moved_charge;
354 unsigned long moved_swap;
355 struct task_struct *moving_task; /* a task moving charges */
356 wait_queue_head_t waitq; /* a waitq for other context */
357 } mc = {
358 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
359 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
360 };
361
362 static bool move_anon(void)
363 {
364 return test_bit(MOVE_CHARGE_TYPE_ANON,
365 &mc.to->move_charge_at_immigrate);
366 }
367
368 static bool move_file(void)
369 {
370 return test_bit(MOVE_CHARGE_TYPE_FILE,
371 &mc.to->move_charge_at_immigrate);
372 }
373
374 /*
375 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
376 * limit reclaim to prevent infinite loops, if they ever occur.
377 */
378 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
379 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
380
381 enum charge_type {
382 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
383 MEM_CGROUP_CHARGE_TYPE_MAPPED,
384 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
385 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
386 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
387 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
388 NR_CHARGE_TYPE,
389 };
390
391 /* for encoding cft->private value on file */
392 #define _MEM (0)
393 #define _MEMSWAP (1)
394 #define _OOM_TYPE (2)
395 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
396 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
397 #define MEMFILE_ATTR(val) ((val) & 0xffff)
398 /* Used for OOM nofiier */
399 #define OOM_CONTROL (0)
400
401 /*
402 * Reclaim flags for mem_cgroup_hierarchical_reclaim
403 */
404 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
405 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
406 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
407 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
408 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
409 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
410
411 static void mem_cgroup_get(struct mem_cgroup *mem);
412 static void mem_cgroup_put(struct mem_cgroup *mem);
413 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
414 static void drain_all_stock_async(struct mem_cgroup *mem);
415
416 static struct mem_cgroup_per_zone *
417 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
418 {
419 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
420 }
421
422 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
423 {
424 return &mem->css;
425 }
426
427 static struct mem_cgroup_per_zone *
428 page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
429 {
430 int nid = page_to_nid(page);
431 int zid = page_zonenum(page);
432
433 return mem_cgroup_zoneinfo(mem, nid, zid);
434 }
435
436 static struct mem_cgroup_tree_per_zone *
437 soft_limit_tree_node_zone(int nid, int zid)
438 {
439 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
440 }
441
442 static struct mem_cgroup_tree_per_zone *
443 soft_limit_tree_from_page(struct page *page)
444 {
445 int nid = page_to_nid(page);
446 int zid = page_zonenum(page);
447
448 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
449 }
450
451 static void
452 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
453 struct mem_cgroup_per_zone *mz,
454 struct mem_cgroup_tree_per_zone *mctz,
455 unsigned long long new_usage_in_excess)
456 {
457 struct rb_node **p = &mctz->rb_root.rb_node;
458 struct rb_node *parent = NULL;
459 struct mem_cgroup_per_zone *mz_node;
460
461 if (mz->on_tree)
462 return;
463
464 mz->usage_in_excess = new_usage_in_excess;
465 if (!mz->usage_in_excess)
466 return;
467 while (*p) {
468 parent = *p;
469 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
470 tree_node);
471 if (mz->usage_in_excess < mz_node->usage_in_excess)
472 p = &(*p)->rb_left;
473 /*
474 * We can't avoid mem cgroups that are over their soft
475 * limit by the same amount
476 */
477 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
478 p = &(*p)->rb_right;
479 }
480 rb_link_node(&mz->tree_node, parent, p);
481 rb_insert_color(&mz->tree_node, &mctz->rb_root);
482 mz->on_tree = true;
483 }
484
485 static void
486 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
487 struct mem_cgroup_per_zone *mz,
488 struct mem_cgroup_tree_per_zone *mctz)
489 {
490 if (!mz->on_tree)
491 return;
492 rb_erase(&mz->tree_node, &mctz->rb_root);
493 mz->on_tree = false;
494 }
495
496 static void
497 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
498 struct mem_cgroup_per_zone *mz,
499 struct mem_cgroup_tree_per_zone *mctz)
500 {
501 spin_lock(&mctz->lock);
502 __mem_cgroup_remove_exceeded(mem, mz, mctz);
503 spin_unlock(&mctz->lock);
504 }
505
506
507 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
508 {
509 unsigned long long excess;
510 struct mem_cgroup_per_zone *mz;
511 struct mem_cgroup_tree_per_zone *mctz;
512 int nid = page_to_nid(page);
513 int zid = page_zonenum(page);
514 mctz = soft_limit_tree_from_page(page);
515
516 /*
517 * Necessary to update all ancestors when hierarchy is used.
518 * because their event counter is not touched.
519 */
520 for (; mem; mem = parent_mem_cgroup(mem)) {
521 mz = mem_cgroup_zoneinfo(mem, nid, zid);
522 excess = res_counter_soft_limit_excess(&mem->res);
523 /*
524 * We have to update the tree if mz is on RB-tree or
525 * mem is over its softlimit.
526 */
527 if (excess || mz->on_tree) {
528 spin_lock(&mctz->lock);
529 /* if on-tree, remove it */
530 if (mz->on_tree)
531 __mem_cgroup_remove_exceeded(mem, mz, mctz);
532 /*
533 * Insert again. mz->usage_in_excess will be updated.
534 * If excess is 0, no tree ops.
535 */
536 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
537 spin_unlock(&mctz->lock);
538 }
539 }
540 }
541
542 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
543 {
544 int node, zone;
545 struct mem_cgroup_per_zone *mz;
546 struct mem_cgroup_tree_per_zone *mctz;
547
548 for_each_node_state(node, N_POSSIBLE) {
549 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
550 mz = mem_cgroup_zoneinfo(mem, node, zone);
551 mctz = soft_limit_tree_node_zone(node, zone);
552 mem_cgroup_remove_exceeded(mem, mz, mctz);
553 }
554 }
555 }
556
557 static struct mem_cgroup_per_zone *
558 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
559 {
560 struct rb_node *rightmost = NULL;
561 struct mem_cgroup_per_zone *mz;
562
563 retry:
564 mz = NULL;
565 rightmost = rb_last(&mctz->rb_root);
566 if (!rightmost)
567 goto done; /* Nothing to reclaim from */
568
569 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
570 /*
571 * Remove the node now but someone else can add it back,
572 * we will to add it back at the end of reclaim to its correct
573 * position in the tree.
574 */
575 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
576 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
577 !css_tryget(&mz->mem->css))
578 goto retry;
579 done:
580 return mz;
581 }
582
583 static struct mem_cgroup_per_zone *
584 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
585 {
586 struct mem_cgroup_per_zone *mz;
587
588 spin_lock(&mctz->lock);
589 mz = __mem_cgroup_largest_soft_limit_node(mctz);
590 spin_unlock(&mctz->lock);
591 return mz;
592 }
593
594 /*
595 * Implementation Note: reading percpu statistics for memcg.
596 *
597 * Both of vmstat[] and percpu_counter has threshold and do periodic
598 * synchronization to implement "quick" read. There are trade-off between
599 * reading cost and precision of value. Then, we may have a chance to implement
600 * a periodic synchronizion of counter in memcg's counter.
601 *
602 * But this _read() function is used for user interface now. The user accounts
603 * memory usage by memory cgroup and he _always_ requires exact value because
604 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
605 * have to visit all online cpus and make sum. So, for now, unnecessary
606 * synchronization is not implemented. (just implemented for cpu hotplug)
607 *
608 * If there are kernel internal actions which can make use of some not-exact
609 * value, and reading all cpu value can be performance bottleneck in some
610 * common workload, threashold and synchonization as vmstat[] should be
611 * implemented.
612 */
613 static long mem_cgroup_read_stat(struct mem_cgroup *mem,
614 enum mem_cgroup_stat_index idx)
615 {
616 long val = 0;
617 int cpu;
618
619 get_online_cpus();
620 for_each_online_cpu(cpu)
621 val += per_cpu(mem->stat->count[idx], cpu);
622 #ifdef CONFIG_HOTPLUG_CPU
623 spin_lock(&mem->pcp_counter_lock);
624 val += mem->nocpu_base.count[idx];
625 spin_unlock(&mem->pcp_counter_lock);
626 #endif
627 put_online_cpus();
628 return val;
629 }
630
631 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
632 bool charge)
633 {
634 int val = (charge) ? 1 : -1;
635 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
636 }
637
638 void mem_cgroup_pgfault(struct mem_cgroup *mem, int val)
639 {
640 this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
641 }
642
643 void mem_cgroup_pgmajfault(struct mem_cgroup *mem, int val)
644 {
645 this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
646 }
647
648 static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
649 enum mem_cgroup_events_index idx)
650 {
651 unsigned long val = 0;
652 int cpu;
653
654 for_each_online_cpu(cpu)
655 val += per_cpu(mem->stat->events[idx], cpu);
656 #ifdef CONFIG_HOTPLUG_CPU
657 spin_lock(&mem->pcp_counter_lock);
658 val += mem->nocpu_base.events[idx];
659 spin_unlock(&mem->pcp_counter_lock);
660 #endif
661 return val;
662 }
663
664 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
665 bool file, int nr_pages)
666 {
667 preempt_disable();
668
669 if (file)
670 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
671 else
672 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
673
674 /* pagein of a big page is an event. So, ignore page size */
675 if (nr_pages > 0)
676 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
677 else {
678 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
679 nr_pages = -nr_pages; /* for event */
680 }
681
682 __this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
683
684 preempt_enable();
685 }
686
687 unsigned long
688 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *mem, int nid, int zid,
689 unsigned int lru_mask)
690 {
691 struct mem_cgroup_per_zone *mz;
692 enum lru_list l;
693 unsigned long ret = 0;
694
695 mz = mem_cgroup_zoneinfo(mem, nid, zid);
696
697 for_each_lru(l) {
698 if (BIT(l) & lru_mask)
699 ret += MEM_CGROUP_ZSTAT(mz, l);
700 }
701 return ret;
702 }
703
704 static unsigned long
705 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *mem,
706 int nid, unsigned int lru_mask)
707 {
708 u64 total = 0;
709 int zid;
710
711 for (zid = 0; zid < MAX_NR_ZONES; zid++)
712 total += mem_cgroup_zone_nr_lru_pages(mem, nid, zid, lru_mask);
713
714 return total;
715 }
716
717 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *mem,
718 unsigned int lru_mask)
719 {
720 int nid;
721 u64 total = 0;
722
723 for_each_node_state(nid, N_HIGH_MEMORY)
724 total += mem_cgroup_node_nr_lru_pages(mem, nid, lru_mask);
725 return total;
726 }
727
728 static bool __memcg_event_check(struct mem_cgroup *mem, int target)
729 {
730 unsigned long val, next;
731
732 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
733 next = this_cpu_read(mem->stat->targets[target]);
734 /* from time_after() in jiffies.h */
735 return ((long)next - (long)val < 0);
736 }
737
738 static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
739 {
740 unsigned long val, next;
741
742 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
743
744 switch (target) {
745 case MEM_CGROUP_TARGET_THRESH:
746 next = val + THRESHOLDS_EVENTS_TARGET;
747 break;
748 case MEM_CGROUP_TARGET_SOFTLIMIT:
749 next = val + SOFTLIMIT_EVENTS_TARGET;
750 break;
751 case MEM_CGROUP_TARGET_NUMAINFO:
752 next = val + NUMAINFO_EVENTS_TARGET;
753 break;
754 default:
755 return;
756 }
757
758 this_cpu_write(mem->stat->targets[target], next);
759 }
760
761 /*
762 * Check events in order.
763 *
764 */
765 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
766 {
767 /* threshold event is triggered in finer grain than soft limit */
768 if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
769 mem_cgroup_threshold(mem);
770 __mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
771 if (unlikely(__memcg_event_check(mem,
772 MEM_CGROUP_TARGET_SOFTLIMIT))) {
773 mem_cgroup_update_tree(mem, page);
774 __mem_cgroup_target_update(mem,
775 MEM_CGROUP_TARGET_SOFTLIMIT);
776 }
777 #if MAX_NUMNODES > 1
778 if (unlikely(__memcg_event_check(mem,
779 MEM_CGROUP_TARGET_NUMAINFO))) {
780 atomic_inc(&mem->numainfo_events);
781 __mem_cgroup_target_update(mem,
782 MEM_CGROUP_TARGET_NUMAINFO);
783 }
784 #endif
785 }
786 }
787
788 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
789 {
790 return container_of(cgroup_subsys_state(cont,
791 mem_cgroup_subsys_id), struct mem_cgroup,
792 css);
793 }
794
795 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
796 {
797 /*
798 * mm_update_next_owner() may clear mm->owner to NULL
799 * if it races with swapoff, page migration, etc.
800 * So this can be called with p == NULL.
801 */
802 if (unlikely(!p))
803 return NULL;
804
805 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
806 struct mem_cgroup, css);
807 }
808
809 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
810 {
811 struct mem_cgroup *mem = NULL;
812
813 if (!mm)
814 return NULL;
815 /*
816 * Because we have no locks, mm->owner's may be being moved to other
817 * cgroup. We use css_tryget() here even if this looks
818 * pessimistic (rather than adding locks here).
819 */
820 rcu_read_lock();
821 do {
822 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
823 if (unlikely(!mem))
824 break;
825 } while (!css_tryget(&mem->css));
826 rcu_read_unlock();
827 return mem;
828 }
829
830 /* The caller has to guarantee "mem" exists before calling this */
831 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
832 {
833 struct cgroup_subsys_state *css;
834 int found;
835
836 if (!mem) /* ROOT cgroup has the smallest ID */
837 return root_mem_cgroup; /*css_put/get against root is ignored*/
838 if (!mem->use_hierarchy) {
839 if (css_tryget(&mem->css))
840 return mem;
841 return NULL;
842 }
843 rcu_read_lock();
844 /*
845 * searching a memory cgroup which has the smallest ID under given
846 * ROOT cgroup. (ID >= 1)
847 */
848 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
849 if (css && css_tryget(css))
850 mem = container_of(css, struct mem_cgroup, css);
851 else
852 mem = NULL;
853 rcu_read_unlock();
854 return mem;
855 }
856
857 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
858 struct mem_cgroup *root,
859 bool cond)
860 {
861 int nextid = css_id(&iter->css) + 1;
862 int found;
863 int hierarchy_used;
864 struct cgroup_subsys_state *css;
865
866 hierarchy_used = iter->use_hierarchy;
867
868 css_put(&iter->css);
869 /* If no ROOT, walk all, ignore hierarchy */
870 if (!cond || (root && !hierarchy_used))
871 return NULL;
872
873 if (!root)
874 root = root_mem_cgroup;
875
876 do {
877 iter = NULL;
878 rcu_read_lock();
879
880 css = css_get_next(&mem_cgroup_subsys, nextid,
881 &root->css, &found);
882 if (css && css_tryget(css))
883 iter = container_of(css, struct mem_cgroup, css);
884 rcu_read_unlock();
885 /* If css is NULL, no more cgroups will be found */
886 nextid = found + 1;
887 } while (css && !iter);
888
889 return iter;
890 }
891 /*
892 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
893 * be careful that "break" loop is not allowed. We have reference count.
894 * Instead of that modify "cond" to be false and "continue" to exit the loop.
895 */
896 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
897 for (iter = mem_cgroup_start_loop(root);\
898 iter != NULL;\
899 iter = mem_cgroup_get_next(iter, root, cond))
900
901 #define for_each_mem_cgroup_tree(iter, root) \
902 for_each_mem_cgroup_tree_cond(iter, root, true)
903
904 #define for_each_mem_cgroup_all(iter) \
905 for_each_mem_cgroup_tree_cond(iter, NULL, true)
906
907
908 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
909 {
910 return (mem == root_mem_cgroup);
911 }
912
913 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
914 {
915 struct mem_cgroup *mem;
916
917 if (!mm)
918 return;
919
920 rcu_read_lock();
921 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
922 if (unlikely(!mem))
923 goto out;
924
925 switch (idx) {
926 case PGMAJFAULT:
927 mem_cgroup_pgmajfault(mem, 1);
928 break;
929 case PGFAULT:
930 mem_cgroup_pgfault(mem, 1);
931 break;
932 default:
933 BUG();
934 }
935 out:
936 rcu_read_unlock();
937 }
938 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
939
940 /*
941 * Following LRU functions are allowed to be used without PCG_LOCK.
942 * Operations are called by routine of global LRU independently from memcg.
943 * What we have to take care of here is validness of pc->mem_cgroup.
944 *
945 * Changes to pc->mem_cgroup happens when
946 * 1. charge
947 * 2. moving account
948 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
949 * It is added to LRU before charge.
950 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
951 * When moving account, the page is not on LRU. It's isolated.
952 */
953
954 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
955 {
956 struct page_cgroup *pc;
957 struct mem_cgroup_per_zone *mz;
958
959 if (mem_cgroup_disabled())
960 return;
961 pc = lookup_page_cgroup(page);
962 /* can happen while we handle swapcache. */
963 if (!TestClearPageCgroupAcctLRU(pc))
964 return;
965 VM_BUG_ON(!pc->mem_cgroup);
966 /*
967 * We don't check PCG_USED bit. It's cleared when the "page" is finally
968 * removed from global LRU.
969 */
970 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
971 /* huge page split is done under lru_lock. so, we have no races. */
972 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
973 if (mem_cgroup_is_root(pc->mem_cgroup))
974 return;
975 VM_BUG_ON(list_empty(&pc->lru));
976 list_del_init(&pc->lru);
977 }
978
979 void mem_cgroup_del_lru(struct page *page)
980 {
981 mem_cgroup_del_lru_list(page, page_lru(page));
982 }
983
984 /*
985 * Writeback is about to end against a page which has been marked for immediate
986 * reclaim. If it still appears to be reclaimable, move it to the tail of the
987 * inactive list.
988 */
989 void mem_cgroup_rotate_reclaimable_page(struct page *page)
990 {
991 struct mem_cgroup_per_zone *mz;
992 struct page_cgroup *pc;
993 enum lru_list lru = page_lru(page);
994
995 if (mem_cgroup_disabled())
996 return;
997
998 pc = lookup_page_cgroup(page);
999 /* unused or root page is not rotated. */
1000 if (!PageCgroupUsed(pc))
1001 return;
1002 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1003 smp_rmb();
1004 if (mem_cgroup_is_root(pc->mem_cgroup))
1005 return;
1006 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1007 list_move_tail(&pc->lru, &mz->lists[lru]);
1008 }
1009
1010 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
1011 {
1012 struct mem_cgroup_per_zone *mz;
1013 struct page_cgroup *pc;
1014
1015 if (mem_cgroup_disabled())
1016 return;
1017
1018 pc = lookup_page_cgroup(page);
1019 /* unused or root page is not rotated. */
1020 if (!PageCgroupUsed(pc))
1021 return;
1022 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1023 smp_rmb();
1024 if (mem_cgroup_is_root(pc->mem_cgroup))
1025 return;
1026 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1027 list_move(&pc->lru, &mz->lists[lru]);
1028 }
1029
1030 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
1031 {
1032 struct page_cgroup *pc;
1033 struct mem_cgroup_per_zone *mz;
1034
1035 if (mem_cgroup_disabled())
1036 return;
1037 pc = lookup_page_cgroup(page);
1038 VM_BUG_ON(PageCgroupAcctLRU(pc));
1039 if (!PageCgroupUsed(pc))
1040 return;
1041 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1042 smp_rmb();
1043 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1044 /* huge page split is done under lru_lock. so, we have no races. */
1045 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1046 SetPageCgroupAcctLRU(pc);
1047 if (mem_cgroup_is_root(pc->mem_cgroup))
1048 return;
1049 list_add(&pc->lru, &mz->lists[lru]);
1050 }
1051
1052 /*
1053 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1054 * while it's linked to lru because the page may be reused after it's fully
1055 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1056 * It's done under lock_page and expected that zone->lru_lock isnever held.
1057 */
1058 static void mem_cgroup_lru_del_before_commit(struct page *page)
1059 {
1060 unsigned long flags;
1061 struct zone *zone = page_zone(page);
1062 struct page_cgroup *pc = lookup_page_cgroup(page);
1063
1064 /*
1065 * Doing this check without taking ->lru_lock seems wrong but this
1066 * is safe. Because if page_cgroup's USED bit is unset, the page
1067 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1068 * set, the commit after this will fail, anyway.
1069 * This all charge/uncharge is done under some mutual execustion.
1070 * So, we don't need to taking care of changes in USED bit.
1071 */
1072 if (likely(!PageLRU(page)))
1073 return;
1074
1075 spin_lock_irqsave(&zone->lru_lock, flags);
1076 /*
1077 * Forget old LRU when this page_cgroup is *not* used. This Used bit
1078 * is guarded by lock_page() because the page is SwapCache.
1079 */
1080 if (!PageCgroupUsed(pc))
1081 mem_cgroup_del_lru_list(page, page_lru(page));
1082 spin_unlock_irqrestore(&zone->lru_lock, flags);
1083 }
1084
1085 static void mem_cgroup_lru_add_after_commit(struct page *page)
1086 {
1087 unsigned long flags;
1088 struct zone *zone = page_zone(page);
1089 struct page_cgroup *pc = lookup_page_cgroup(page);
1090
1091 /* taking care of that the page is added to LRU while we commit it */
1092 if (likely(!PageLRU(page)))
1093 return;
1094 spin_lock_irqsave(&zone->lru_lock, flags);
1095 /* link when the page is linked to LRU but page_cgroup isn't */
1096 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1097 mem_cgroup_add_lru_list(page, page_lru(page));
1098 spin_unlock_irqrestore(&zone->lru_lock, flags);
1099 }
1100
1101
1102 void mem_cgroup_move_lists(struct page *page,
1103 enum lru_list from, enum lru_list to)
1104 {
1105 if (mem_cgroup_disabled())
1106 return;
1107 mem_cgroup_del_lru_list(page, from);
1108 mem_cgroup_add_lru_list(page, to);
1109 }
1110
1111 /*
1112 * Checks whether given mem is same or in the root_mem's
1113 * hierarchy subtree
1114 */
1115 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_mem,
1116 struct mem_cgroup *mem)
1117 {
1118 if (root_mem != mem) {
1119 return (root_mem->use_hierarchy &&
1120 css_is_ancestor(&mem->css, &root_mem->css));
1121 }
1122
1123 return true;
1124 }
1125
1126 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
1127 {
1128 int ret;
1129 struct mem_cgroup *curr = NULL;
1130 struct task_struct *p;
1131
1132 p = find_lock_task_mm(task);
1133 if (!p)
1134 return 0;
1135 curr = try_get_mem_cgroup_from_mm(p->mm);
1136 task_unlock(p);
1137 if (!curr)
1138 return 0;
1139 /*
1140 * We should check use_hierarchy of "mem" not "curr". Because checking
1141 * use_hierarchy of "curr" here make this function true if hierarchy is
1142 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
1143 * hierarchy(even if use_hierarchy is disabled in "mem").
1144 */
1145 ret = mem_cgroup_same_or_subtree(mem, curr);
1146 css_put(&curr->css);
1147 return ret;
1148 }
1149
1150 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
1151 {
1152 unsigned long active;
1153 unsigned long inactive;
1154 unsigned long gb;
1155 unsigned long inactive_ratio;
1156
1157 inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
1158 active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
1159
1160 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1161 if (gb)
1162 inactive_ratio = int_sqrt(10 * gb);
1163 else
1164 inactive_ratio = 1;
1165
1166 if (present_pages) {
1167 present_pages[0] = inactive;
1168 present_pages[1] = active;
1169 }
1170
1171 return inactive_ratio;
1172 }
1173
1174 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
1175 {
1176 unsigned long active;
1177 unsigned long inactive;
1178 unsigned long present_pages[2];
1179 unsigned long inactive_ratio;
1180
1181 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
1182
1183 inactive = present_pages[0];
1184 active = present_pages[1];
1185
1186 if (inactive * inactive_ratio < active)
1187 return 1;
1188
1189 return 0;
1190 }
1191
1192 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1193 {
1194 unsigned long active;
1195 unsigned long inactive;
1196
1197 inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
1198 active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
1199
1200 return (active > inactive);
1201 }
1202
1203 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1204 struct zone *zone)
1205 {
1206 int nid = zone_to_nid(zone);
1207 int zid = zone_idx(zone);
1208 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1209
1210 return &mz->reclaim_stat;
1211 }
1212
1213 struct zone_reclaim_stat *
1214 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1215 {
1216 struct page_cgroup *pc;
1217 struct mem_cgroup_per_zone *mz;
1218
1219 if (mem_cgroup_disabled())
1220 return NULL;
1221
1222 pc = lookup_page_cgroup(page);
1223 if (!PageCgroupUsed(pc))
1224 return NULL;
1225 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1226 smp_rmb();
1227 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1228 return &mz->reclaim_stat;
1229 }
1230
1231 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1232 struct list_head *dst,
1233 unsigned long *scanned, int order,
1234 int mode, struct zone *z,
1235 struct mem_cgroup *mem_cont,
1236 int active, int file)
1237 {
1238 unsigned long nr_taken = 0;
1239 struct page *page;
1240 unsigned long scan;
1241 LIST_HEAD(pc_list);
1242 struct list_head *src;
1243 struct page_cgroup *pc, *tmp;
1244 int nid = zone_to_nid(z);
1245 int zid = zone_idx(z);
1246 struct mem_cgroup_per_zone *mz;
1247 int lru = LRU_FILE * file + active;
1248 int ret;
1249
1250 BUG_ON(!mem_cont);
1251 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1252 src = &mz->lists[lru];
1253
1254 scan = 0;
1255 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1256 if (scan >= nr_to_scan)
1257 break;
1258
1259 if (unlikely(!PageCgroupUsed(pc)))
1260 continue;
1261
1262 page = lookup_cgroup_page(pc);
1263
1264 if (unlikely(!PageLRU(page)))
1265 continue;
1266
1267 scan++;
1268 ret = __isolate_lru_page(page, mode, file);
1269 switch (ret) {
1270 case 0:
1271 list_move(&page->lru, dst);
1272 mem_cgroup_del_lru(page);
1273 nr_taken += hpage_nr_pages(page);
1274 break;
1275 case -EBUSY:
1276 /* we don't affect global LRU but rotate in our LRU */
1277 mem_cgroup_rotate_lru_list(page, page_lru(page));
1278 break;
1279 default:
1280 break;
1281 }
1282 }
1283
1284 *scanned = scan;
1285
1286 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1287 0, 0, 0, mode);
1288
1289 return nr_taken;
1290 }
1291
1292 #define mem_cgroup_from_res_counter(counter, member) \
1293 container_of(counter, struct mem_cgroup, member)
1294
1295 /**
1296 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1297 * @mem: the memory cgroup
1298 *
1299 * Returns the maximum amount of memory @mem can be charged with, in
1300 * pages.
1301 */
1302 static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
1303 {
1304 unsigned long long margin;
1305
1306 margin = res_counter_margin(&mem->res);
1307 if (do_swap_account)
1308 margin = min(margin, res_counter_margin(&mem->memsw));
1309 return margin >> PAGE_SHIFT;
1310 }
1311
1312 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1313 {
1314 struct cgroup *cgrp = memcg->css.cgroup;
1315
1316 /* root ? */
1317 if (cgrp->parent == NULL)
1318 return vm_swappiness;
1319
1320 return memcg->swappiness;
1321 }
1322
1323 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1324 {
1325 int cpu;
1326
1327 get_online_cpus();
1328 spin_lock(&mem->pcp_counter_lock);
1329 for_each_online_cpu(cpu)
1330 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1331 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1332 spin_unlock(&mem->pcp_counter_lock);
1333 put_online_cpus();
1334
1335 synchronize_rcu();
1336 }
1337
1338 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1339 {
1340 int cpu;
1341
1342 if (!mem)
1343 return;
1344 get_online_cpus();
1345 spin_lock(&mem->pcp_counter_lock);
1346 for_each_online_cpu(cpu)
1347 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1348 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1349 spin_unlock(&mem->pcp_counter_lock);
1350 put_online_cpus();
1351 }
1352 /*
1353 * 2 routines for checking "mem" is under move_account() or not.
1354 *
1355 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1356 * for avoiding race in accounting. If true,
1357 * pc->mem_cgroup may be overwritten.
1358 *
1359 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1360 * under hierarchy of moving cgroups. This is for
1361 * waiting at hith-memory prressure caused by "move".
1362 */
1363
1364 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1365 {
1366 VM_BUG_ON(!rcu_read_lock_held());
1367 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1368 }
1369
1370 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1371 {
1372 struct mem_cgroup *from;
1373 struct mem_cgroup *to;
1374 bool ret = false;
1375 /*
1376 * Unlike task_move routines, we access mc.to, mc.from not under
1377 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1378 */
1379 spin_lock(&mc.lock);
1380 from = mc.from;
1381 to = mc.to;
1382 if (!from)
1383 goto unlock;
1384
1385 ret = mem_cgroup_same_or_subtree(mem, from)
1386 || mem_cgroup_same_or_subtree(mem, to);
1387 unlock:
1388 spin_unlock(&mc.lock);
1389 return ret;
1390 }
1391
1392 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1393 {
1394 if (mc.moving_task && current != mc.moving_task) {
1395 if (mem_cgroup_under_move(mem)) {
1396 DEFINE_WAIT(wait);
1397 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1398 /* moving charge context might have finished. */
1399 if (mc.moving_task)
1400 schedule();
1401 finish_wait(&mc.waitq, &wait);
1402 return true;
1403 }
1404 }
1405 return false;
1406 }
1407
1408 /**
1409 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1410 * @memcg: The memory cgroup that went over limit
1411 * @p: Task that is going to be killed
1412 *
1413 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1414 * enabled
1415 */
1416 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1417 {
1418 struct cgroup *task_cgrp;
1419 struct cgroup *mem_cgrp;
1420 /*
1421 * Need a buffer in BSS, can't rely on allocations. The code relies
1422 * on the assumption that OOM is serialized for memory controller.
1423 * If this assumption is broken, revisit this code.
1424 */
1425 static char memcg_name[PATH_MAX];
1426 int ret;
1427
1428 if (!memcg || !p)
1429 return;
1430
1431
1432 rcu_read_lock();
1433
1434 mem_cgrp = memcg->css.cgroup;
1435 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1436
1437 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1438 if (ret < 0) {
1439 /*
1440 * Unfortunately, we are unable to convert to a useful name
1441 * But we'll still print out the usage information
1442 */
1443 rcu_read_unlock();
1444 goto done;
1445 }
1446 rcu_read_unlock();
1447
1448 printk(KERN_INFO "Task in %s killed", memcg_name);
1449
1450 rcu_read_lock();
1451 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1452 if (ret < 0) {
1453 rcu_read_unlock();
1454 goto done;
1455 }
1456 rcu_read_unlock();
1457
1458 /*
1459 * Continues from above, so we don't need an KERN_ level
1460 */
1461 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1462 done:
1463
1464 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1465 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1466 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1467 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1468 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1469 "failcnt %llu\n",
1470 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1471 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1472 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1473 }
1474
1475 /*
1476 * This function returns the number of memcg under hierarchy tree. Returns
1477 * 1(self count) if no children.
1478 */
1479 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1480 {
1481 int num = 0;
1482 struct mem_cgroup *iter;
1483
1484 for_each_mem_cgroup_tree(iter, mem)
1485 num++;
1486 return num;
1487 }
1488
1489 /*
1490 * Return the memory (and swap, if configured) limit for a memcg.
1491 */
1492 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1493 {
1494 u64 limit;
1495 u64 memsw;
1496
1497 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1498 limit += total_swap_pages << PAGE_SHIFT;
1499
1500 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1501 /*
1502 * If memsw is finite and limits the amount of swap space available
1503 * to this memcg, return that limit.
1504 */
1505 return min(limit, memsw);
1506 }
1507
1508 /*
1509 * Visit the first child (need not be the first child as per the ordering
1510 * of the cgroup list, since we track last_scanned_child) of @mem and use
1511 * that to reclaim free pages from.
1512 */
1513 static struct mem_cgroup *
1514 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1515 {
1516 struct mem_cgroup *ret = NULL;
1517 struct cgroup_subsys_state *css;
1518 int nextid, found;
1519
1520 if (!root_mem->use_hierarchy) {
1521 css_get(&root_mem->css);
1522 ret = root_mem;
1523 }
1524
1525 while (!ret) {
1526 rcu_read_lock();
1527 nextid = root_mem->last_scanned_child + 1;
1528 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1529 &found);
1530 if (css && css_tryget(css))
1531 ret = container_of(css, struct mem_cgroup, css);
1532
1533 rcu_read_unlock();
1534 /* Updates scanning parameter */
1535 if (!css) {
1536 /* this means start scan from ID:1 */
1537 root_mem->last_scanned_child = 0;
1538 } else
1539 root_mem->last_scanned_child = found;
1540 }
1541
1542 return ret;
1543 }
1544
1545 /**
1546 * test_mem_cgroup_node_reclaimable
1547 * @mem: the target memcg
1548 * @nid: the node ID to be checked.
1549 * @noswap : specify true here if the user wants flle only information.
1550 *
1551 * This function returns whether the specified memcg contains any
1552 * reclaimable pages on a node. Returns true if there are any reclaimable
1553 * pages in the node.
1554 */
1555 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *mem,
1556 int nid, bool noswap)
1557 {
1558 if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_FILE))
1559 return true;
1560 if (noswap || !total_swap_pages)
1561 return false;
1562 if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_ANON))
1563 return true;
1564 return false;
1565
1566 }
1567 #if MAX_NUMNODES > 1
1568
1569 /*
1570 * Always updating the nodemask is not very good - even if we have an empty
1571 * list or the wrong list here, we can start from some node and traverse all
1572 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1573 *
1574 */
1575 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
1576 {
1577 int nid;
1578 /*
1579 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1580 * pagein/pageout changes since the last update.
1581 */
1582 if (!atomic_read(&mem->numainfo_events))
1583 return;
1584 if (atomic_inc_return(&mem->numainfo_updating) > 1)
1585 return;
1586
1587 /* make a nodemask where this memcg uses memory from */
1588 mem->scan_nodes = node_states[N_HIGH_MEMORY];
1589
1590 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1591
1592 if (!test_mem_cgroup_node_reclaimable(mem, nid, false))
1593 node_clear(nid, mem->scan_nodes);
1594 }
1595
1596 atomic_set(&mem->numainfo_events, 0);
1597 atomic_set(&mem->numainfo_updating, 0);
1598 }
1599
1600 /*
1601 * Selecting a node where we start reclaim from. Because what we need is just
1602 * reducing usage counter, start from anywhere is O,K. Considering
1603 * memory reclaim from current node, there are pros. and cons.
1604 *
1605 * Freeing memory from current node means freeing memory from a node which
1606 * we'll use or we've used. So, it may make LRU bad. And if several threads
1607 * hit limits, it will see a contention on a node. But freeing from remote
1608 * node means more costs for memory reclaim because of memory latency.
1609 *
1610 * Now, we use round-robin. Better algorithm is welcomed.
1611 */
1612 int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1613 {
1614 int node;
1615
1616 mem_cgroup_may_update_nodemask(mem);
1617 node = mem->last_scanned_node;
1618
1619 node = next_node(node, mem->scan_nodes);
1620 if (node == MAX_NUMNODES)
1621 node = first_node(mem->scan_nodes);
1622 /*
1623 * We call this when we hit limit, not when pages are added to LRU.
1624 * No LRU may hold pages because all pages are UNEVICTABLE or
1625 * memcg is too small and all pages are not on LRU. In that case,
1626 * we use curret node.
1627 */
1628 if (unlikely(node == MAX_NUMNODES))
1629 node = numa_node_id();
1630
1631 mem->last_scanned_node = node;
1632 return node;
1633 }
1634
1635 /*
1636 * Check all nodes whether it contains reclaimable pages or not.
1637 * For quick scan, we make use of scan_nodes. This will allow us to skip
1638 * unused nodes. But scan_nodes is lazily updated and may not cotain
1639 * enough new information. We need to do double check.
1640 */
1641 bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1642 {
1643 int nid;
1644
1645 /*
1646 * quick check...making use of scan_node.
1647 * We can skip unused nodes.
1648 */
1649 if (!nodes_empty(mem->scan_nodes)) {
1650 for (nid = first_node(mem->scan_nodes);
1651 nid < MAX_NUMNODES;
1652 nid = next_node(nid, mem->scan_nodes)) {
1653
1654 if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1655 return true;
1656 }
1657 }
1658 /*
1659 * Check rest of nodes.
1660 */
1661 for_each_node_state(nid, N_HIGH_MEMORY) {
1662 if (node_isset(nid, mem->scan_nodes))
1663 continue;
1664 if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1665 return true;
1666 }
1667 return false;
1668 }
1669
1670 #else
1671 int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1672 {
1673 return 0;
1674 }
1675
1676 bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1677 {
1678 return test_mem_cgroup_node_reclaimable(mem, 0, noswap);
1679 }
1680 #endif
1681
1682 static void __mem_cgroup_record_scanstat(unsigned long *stats,
1683 struct memcg_scanrecord *rec)
1684 {
1685
1686 stats[SCAN] += rec->nr_scanned[0] + rec->nr_scanned[1];
1687 stats[SCAN_ANON] += rec->nr_scanned[0];
1688 stats[SCAN_FILE] += rec->nr_scanned[1];
1689
1690 stats[ROTATE] += rec->nr_rotated[0] + rec->nr_rotated[1];
1691 stats[ROTATE_ANON] += rec->nr_rotated[0];
1692 stats[ROTATE_FILE] += rec->nr_rotated[1];
1693
1694 stats[FREED] += rec->nr_freed[0] + rec->nr_freed[1];
1695 stats[FREED_ANON] += rec->nr_freed[0];
1696 stats[FREED_FILE] += rec->nr_freed[1];
1697
1698 stats[ELAPSED] += rec->elapsed;
1699 }
1700
1701 static void mem_cgroup_record_scanstat(struct memcg_scanrecord *rec)
1702 {
1703 struct mem_cgroup *mem;
1704 int context = rec->context;
1705
1706 if (context >= NR_SCAN_CONTEXT)
1707 return;
1708
1709 mem = rec->mem;
1710 spin_lock(&mem->scanstat.lock);
1711 __mem_cgroup_record_scanstat(mem->scanstat.stats[context], rec);
1712 spin_unlock(&mem->scanstat.lock);
1713
1714 mem = rec->root;
1715 spin_lock(&mem->scanstat.lock);
1716 __mem_cgroup_record_scanstat(mem->scanstat.rootstats[context], rec);
1717 spin_unlock(&mem->scanstat.lock);
1718 }
1719
1720 /*
1721 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1722 * we reclaimed from, so that we don't end up penalizing one child extensively
1723 * based on its position in the children list.
1724 *
1725 * root_mem is the original ancestor that we've been reclaim from.
1726 *
1727 * We give up and return to the caller when we visit root_mem twice.
1728 * (other groups can be removed while we're walking....)
1729 *
1730 * If shrink==true, for avoiding to free too much, this returns immedieately.
1731 */
1732 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1733 struct zone *zone,
1734 gfp_t gfp_mask,
1735 unsigned long reclaim_options,
1736 unsigned long *total_scanned)
1737 {
1738 struct mem_cgroup *victim;
1739 int ret, total = 0;
1740 int loop = 0;
1741 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1742 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1743 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1744 struct memcg_scanrecord rec;
1745 unsigned long excess;
1746 unsigned long scanned;
1747
1748 excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
1749
1750 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1751 if (!check_soft && !shrink && root_mem->memsw_is_minimum)
1752 noswap = true;
1753
1754 if (shrink)
1755 rec.context = SCAN_BY_SHRINK;
1756 else if (check_soft)
1757 rec.context = SCAN_BY_SYSTEM;
1758 else
1759 rec.context = SCAN_BY_LIMIT;
1760
1761 rec.root = root_mem;
1762
1763 while (1) {
1764 victim = mem_cgroup_select_victim(root_mem);
1765 if (victim == root_mem) {
1766 loop++;
1767 /*
1768 * We are not draining per cpu cached charges during
1769 * soft limit reclaim because global reclaim doesn't
1770 * care about charges. It tries to free some memory and
1771 * charges will not give any.
1772 */
1773 if (!check_soft && loop >= 1)
1774 drain_all_stock_async(root_mem);
1775 if (loop >= 2) {
1776 /*
1777 * If we have not been able to reclaim
1778 * anything, it might because there are
1779 * no reclaimable pages under this hierarchy
1780 */
1781 if (!check_soft || !total) {
1782 css_put(&victim->css);
1783 break;
1784 }
1785 /*
1786 * We want to do more targeted reclaim.
1787 * excess >> 2 is not to excessive so as to
1788 * reclaim too much, nor too less that we keep
1789 * coming back to reclaim from this cgroup
1790 */
1791 if (total >= (excess >> 2) ||
1792 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1793 css_put(&victim->css);
1794 break;
1795 }
1796 }
1797 }
1798 if (!mem_cgroup_reclaimable(victim, noswap)) {
1799 /* this cgroup's local usage == 0 */
1800 css_put(&victim->css);
1801 continue;
1802 }
1803 rec.mem = victim;
1804 rec.nr_scanned[0] = 0;
1805 rec.nr_scanned[1] = 0;
1806 rec.nr_rotated[0] = 0;
1807 rec.nr_rotated[1] = 0;
1808 rec.nr_freed[0] = 0;
1809 rec.nr_freed[1] = 0;
1810 rec.elapsed = 0;
1811 /* we use swappiness of local cgroup */
1812 if (check_soft) {
1813 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1814 noswap, zone, &rec, &scanned);
1815 *total_scanned += scanned;
1816 } else
1817 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1818 noswap, &rec);
1819 mem_cgroup_record_scanstat(&rec);
1820 css_put(&victim->css);
1821 /*
1822 * At shrinking usage, we can't check we should stop here or
1823 * reclaim more. It's depends on callers. last_scanned_child
1824 * will work enough for keeping fairness under tree.
1825 */
1826 if (shrink)
1827 return ret;
1828 total += ret;
1829 if (check_soft) {
1830 if (!res_counter_soft_limit_excess(&root_mem->res))
1831 return total;
1832 } else if (mem_cgroup_margin(root_mem))
1833 return total;
1834 }
1835 return total;
1836 }
1837
1838 /*
1839 * Check OOM-Killer is already running under our hierarchy.
1840 * If someone is running, return false.
1841 * Has to be called with memcg_oom_lock
1842 */
1843 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1844 {
1845 int lock_count = -1;
1846 struct mem_cgroup *iter, *failed = NULL;
1847 bool cond = true;
1848
1849 for_each_mem_cgroup_tree_cond(iter, mem, cond) {
1850 bool locked = iter->oom_lock;
1851
1852 iter->oom_lock = true;
1853 if (lock_count == -1)
1854 lock_count = iter->oom_lock;
1855 else if (lock_count != locked) {
1856 /*
1857 * this subtree of our hierarchy is already locked
1858 * so we cannot give a lock.
1859 */
1860 lock_count = 0;
1861 failed = iter;
1862 cond = false;
1863 }
1864 }
1865
1866 if (!failed)
1867 goto done;
1868
1869 /*
1870 * OK, we failed to lock the whole subtree so we have to clean up
1871 * what we set up to the failing subtree
1872 */
1873 cond = true;
1874 for_each_mem_cgroup_tree_cond(iter, mem, cond) {
1875 if (iter == failed) {
1876 cond = false;
1877 continue;
1878 }
1879 iter->oom_lock = false;
1880 }
1881 done:
1882 return lock_count;
1883 }
1884
1885 /*
1886 * Has to be called with memcg_oom_lock
1887 */
1888 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1889 {
1890 struct mem_cgroup *iter;
1891
1892 for_each_mem_cgroup_tree(iter, mem)
1893 iter->oom_lock = false;
1894 return 0;
1895 }
1896
1897 static void mem_cgroup_mark_under_oom(struct mem_cgroup *mem)
1898 {
1899 struct mem_cgroup *iter;
1900
1901 for_each_mem_cgroup_tree(iter, mem)
1902 atomic_inc(&iter->under_oom);
1903 }
1904
1905 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *mem)
1906 {
1907 struct mem_cgroup *iter;
1908
1909 /*
1910 * When a new child is created while the hierarchy is under oom,
1911 * mem_cgroup_oom_lock() may not be called. We have to use
1912 * atomic_add_unless() here.
1913 */
1914 for_each_mem_cgroup_tree(iter, mem)
1915 atomic_add_unless(&iter->under_oom, -1, 0);
1916 }
1917
1918 static DEFINE_SPINLOCK(memcg_oom_lock);
1919 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1920
1921 struct oom_wait_info {
1922 struct mem_cgroup *mem;
1923 wait_queue_t wait;
1924 };
1925
1926 static int memcg_oom_wake_function(wait_queue_t *wait,
1927 unsigned mode, int sync, void *arg)
1928 {
1929 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg,
1930 *oom_wait_mem;
1931 struct oom_wait_info *oom_wait_info;
1932
1933 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1934 oom_wait_mem = oom_wait_info->mem;
1935
1936 /*
1937 * Both of oom_wait_info->mem and wake_mem are stable under us.
1938 * Then we can use css_is_ancestor without taking care of RCU.
1939 */
1940 if (!mem_cgroup_same_or_subtree(oom_wait_mem, wake_mem)
1941 && !mem_cgroup_same_or_subtree(wake_mem, oom_wait_mem))
1942 return 0;
1943 return autoremove_wake_function(wait, mode, sync, arg);
1944 }
1945
1946 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1947 {
1948 /* for filtering, pass "mem" as argument. */
1949 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1950 }
1951
1952 static void memcg_oom_recover(struct mem_cgroup *mem)
1953 {
1954 if (mem && atomic_read(&mem->under_oom))
1955 memcg_wakeup_oom(mem);
1956 }
1957
1958 /*
1959 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1960 */
1961 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1962 {
1963 struct oom_wait_info owait;
1964 bool locked, need_to_kill;
1965
1966 owait.mem = mem;
1967 owait.wait.flags = 0;
1968 owait.wait.func = memcg_oom_wake_function;
1969 owait.wait.private = current;
1970 INIT_LIST_HEAD(&owait.wait.task_list);
1971 need_to_kill = true;
1972 mem_cgroup_mark_under_oom(mem);
1973
1974 /* At first, try to OOM lock hierarchy under mem.*/
1975 spin_lock(&memcg_oom_lock);
1976 locked = mem_cgroup_oom_lock(mem);
1977 /*
1978 * Even if signal_pending(), we can't quit charge() loop without
1979 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1980 * under OOM is always welcomed, use TASK_KILLABLE here.
1981 */
1982 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1983 if (!locked || mem->oom_kill_disable)
1984 need_to_kill = false;
1985 if (locked)
1986 mem_cgroup_oom_notify(mem);
1987 spin_unlock(&memcg_oom_lock);
1988
1989 if (need_to_kill) {
1990 finish_wait(&memcg_oom_waitq, &owait.wait);
1991 mem_cgroup_out_of_memory(mem, mask);
1992 } else {
1993 schedule();
1994 finish_wait(&memcg_oom_waitq, &owait.wait);
1995 }
1996 spin_lock(&memcg_oom_lock);
1997 if (locked)
1998 mem_cgroup_oom_unlock(mem);
1999 memcg_wakeup_oom(mem);
2000 spin_unlock(&memcg_oom_lock);
2001
2002 mem_cgroup_unmark_under_oom(mem);
2003
2004 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2005 return false;
2006 /* Give chance to dying process */
2007 schedule_timeout(1);
2008 return true;
2009 }
2010
2011 /*
2012 * Currently used to update mapped file statistics, but the routine can be
2013 * generalized to update other statistics as well.
2014 *
2015 * Notes: Race condition
2016 *
2017 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2018 * it tends to be costly. But considering some conditions, we doesn't need
2019 * to do so _always_.
2020 *
2021 * Considering "charge", lock_page_cgroup() is not required because all
2022 * file-stat operations happen after a page is attached to radix-tree. There
2023 * are no race with "charge".
2024 *
2025 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2026 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2027 * if there are race with "uncharge". Statistics itself is properly handled
2028 * by flags.
2029 *
2030 * Considering "move", this is an only case we see a race. To make the race
2031 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
2032 * possibility of race condition. If there is, we take a lock.
2033 */
2034
2035 void mem_cgroup_update_page_stat(struct page *page,
2036 enum mem_cgroup_page_stat_item idx, int val)
2037 {
2038 struct mem_cgroup *mem;
2039 struct page_cgroup *pc = lookup_page_cgroup(page);
2040 bool need_unlock = false;
2041 unsigned long uninitialized_var(flags);
2042
2043 if (unlikely(!pc))
2044 return;
2045
2046 rcu_read_lock();
2047 mem = pc->mem_cgroup;
2048 if (unlikely(!mem || !PageCgroupUsed(pc)))
2049 goto out;
2050 /* pc->mem_cgroup is unstable ? */
2051 if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
2052 /* take a lock against to access pc->mem_cgroup */
2053 move_lock_page_cgroup(pc, &flags);
2054 need_unlock = true;
2055 mem = pc->mem_cgroup;
2056 if (!mem || !PageCgroupUsed(pc))
2057 goto out;
2058 }
2059
2060 switch (idx) {
2061 case MEMCG_NR_FILE_MAPPED:
2062 if (val > 0)
2063 SetPageCgroupFileMapped(pc);
2064 else if (!page_mapped(page))
2065 ClearPageCgroupFileMapped(pc);
2066 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2067 break;
2068 default:
2069 BUG();
2070 }
2071
2072 this_cpu_add(mem->stat->count[idx], val);
2073
2074 out:
2075 if (unlikely(need_unlock))
2076 move_unlock_page_cgroup(pc, &flags);
2077 rcu_read_unlock();
2078 return;
2079 }
2080 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
2081
2082 /*
2083 * size of first charge trial. "32" comes from vmscan.c's magic value.
2084 * TODO: maybe necessary to use big numbers in big irons.
2085 */
2086 #define CHARGE_BATCH 32U
2087 struct memcg_stock_pcp {
2088 struct mem_cgroup *cached; /* this never be root cgroup */
2089 unsigned int nr_pages;
2090 struct work_struct work;
2091 unsigned long flags;
2092 #define FLUSHING_CACHED_CHARGE (0)
2093 };
2094 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2095 static DEFINE_MUTEX(percpu_charge_mutex);
2096
2097 /*
2098 * Try to consume stocked charge on this cpu. If success, one page is consumed
2099 * from local stock and true is returned. If the stock is 0 or charges from a
2100 * cgroup which is not current target, returns false. This stock will be
2101 * refilled.
2102 */
2103 static bool consume_stock(struct mem_cgroup *mem)
2104 {
2105 struct memcg_stock_pcp *stock;
2106 bool ret = true;
2107
2108 stock = &get_cpu_var(memcg_stock);
2109 if (mem == stock->cached && stock->nr_pages)
2110 stock->nr_pages--;
2111 else /* need to call res_counter_charge */
2112 ret = false;
2113 put_cpu_var(memcg_stock);
2114 return ret;
2115 }
2116
2117 /*
2118 * Returns stocks cached in percpu to res_counter and reset cached information.
2119 */
2120 static void drain_stock(struct memcg_stock_pcp *stock)
2121 {
2122 struct mem_cgroup *old = stock->cached;
2123
2124 if (stock->nr_pages) {
2125 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2126
2127 res_counter_uncharge(&old->res, bytes);
2128 if (do_swap_account)
2129 res_counter_uncharge(&old->memsw, bytes);
2130 stock->nr_pages = 0;
2131 }
2132 stock->cached = NULL;
2133 }
2134
2135 /*
2136 * This must be called under preempt disabled or must be called by
2137 * a thread which is pinned to local cpu.
2138 */
2139 static void drain_local_stock(struct work_struct *dummy)
2140 {
2141 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2142 drain_stock(stock);
2143 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2144 }
2145
2146 /*
2147 * Cache charges(val) which is from res_counter, to local per_cpu area.
2148 * This will be consumed by consume_stock() function, later.
2149 */
2150 static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
2151 {
2152 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2153
2154 if (stock->cached != mem) { /* reset if necessary */
2155 drain_stock(stock);
2156 stock->cached = mem;
2157 }
2158 stock->nr_pages += nr_pages;
2159 put_cpu_var(memcg_stock);
2160 }
2161
2162 /*
2163 * Drains all per-CPU charge caches for given root_mem resp. subtree
2164 * of the hierarchy under it. sync flag says whether we should block
2165 * until the work is done.
2166 */
2167 static void drain_all_stock(struct mem_cgroup *root_mem, bool sync)
2168 {
2169 int cpu, curcpu;
2170
2171 /* Notify other cpus that system-wide "drain" is running */
2172 get_online_cpus();
2173 /*
2174 * Get a hint for avoiding draining charges on the current cpu,
2175 * which must be exhausted by our charging. It is not required that
2176 * this be a precise check, so we use raw_smp_processor_id() instead of
2177 * getcpu()/putcpu().
2178 */
2179 curcpu = raw_smp_processor_id();
2180 for_each_online_cpu(cpu) {
2181 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2182 struct mem_cgroup *mem;
2183
2184 mem = stock->cached;
2185 if (!mem || !stock->nr_pages)
2186 continue;
2187 if (!mem_cgroup_same_or_subtree(root_mem, mem))
2188 continue;
2189 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2190 if (cpu == curcpu)
2191 drain_local_stock(&stock->work);
2192 else
2193 schedule_work_on(cpu, &stock->work);
2194 }
2195 }
2196
2197 if (!sync)
2198 goto out;
2199
2200 for_each_online_cpu(cpu) {
2201 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2202 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2203 flush_work(&stock->work);
2204 }
2205 out:
2206 put_online_cpus();
2207 }
2208
2209 /*
2210 * Tries to drain stocked charges in other cpus. This function is asynchronous
2211 * and just put a work per cpu for draining localy on each cpu. Caller can
2212 * expects some charges will be back to res_counter later but cannot wait for
2213 * it.
2214 */
2215 static void drain_all_stock_async(struct mem_cgroup *root_mem)
2216 {
2217 /*
2218 * If someone calls draining, avoid adding more kworker runs.
2219 */
2220 if (!mutex_trylock(&percpu_charge_mutex))
2221 return;
2222 drain_all_stock(root_mem, false);
2223 mutex_unlock(&percpu_charge_mutex);
2224 }
2225
2226 /* This is a synchronous drain interface. */
2227 static void drain_all_stock_sync(struct mem_cgroup *root_mem)
2228 {
2229 /* called when force_empty is called */
2230 mutex_lock(&percpu_charge_mutex);
2231 drain_all_stock(root_mem, true);
2232 mutex_unlock(&percpu_charge_mutex);
2233 }
2234
2235 /*
2236 * This function drains percpu counter value from DEAD cpu and
2237 * move it to local cpu. Note that this function can be preempted.
2238 */
2239 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
2240 {
2241 int i;
2242
2243 spin_lock(&mem->pcp_counter_lock);
2244 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2245 long x = per_cpu(mem->stat->count[i], cpu);
2246
2247 per_cpu(mem->stat->count[i], cpu) = 0;
2248 mem->nocpu_base.count[i] += x;
2249 }
2250 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2251 unsigned long x = per_cpu(mem->stat->events[i], cpu);
2252
2253 per_cpu(mem->stat->events[i], cpu) = 0;
2254 mem->nocpu_base.events[i] += x;
2255 }
2256 /* need to clear ON_MOVE value, works as a kind of lock. */
2257 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2258 spin_unlock(&mem->pcp_counter_lock);
2259 }
2260
2261 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
2262 {
2263 int idx = MEM_CGROUP_ON_MOVE;
2264
2265 spin_lock(&mem->pcp_counter_lock);
2266 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
2267 spin_unlock(&mem->pcp_counter_lock);
2268 }
2269
2270 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2271 unsigned long action,
2272 void *hcpu)
2273 {
2274 int cpu = (unsigned long)hcpu;
2275 struct memcg_stock_pcp *stock;
2276 struct mem_cgroup *iter;
2277
2278 if ((action == CPU_ONLINE)) {
2279 for_each_mem_cgroup_all(iter)
2280 synchronize_mem_cgroup_on_move(iter, cpu);
2281 return NOTIFY_OK;
2282 }
2283
2284 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2285 return NOTIFY_OK;
2286
2287 for_each_mem_cgroup_all(iter)
2288 mem_cgroup_drain_pcp_counter(iter, cpu);
2289
2290 stock = &per_cpu(memcg_stock, cpu);
2291 drain_stock(stock);
2292 return NOTIFY_OK;
2293 }
2294
2295
2296 /* See __mem_cgroup_try_charge() for details */
2297 enum {
2298 CHARGE_OK, /* success */
2299 CHARGE_RETRY, /* need to retry but retry is not bad */
2300 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2301 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2302 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2303 };
2304
2305 static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
2306 unsigned int nr_pages, bool oom_check)
2307 {
2308 unsigned long csize = nr_pages * PAGE_SIZE;
2309 struct mem_cgroup *mem_over_limit;
2310 struct res_counter *fail_res;
2311 unsigned long flags = 0;
2312 int ret;
2313
2314 ret = res_counter_charge(&mem->res, csize, &fail_res);
2315
2316 if (likely(!ret)) {
2317 if (!do_swap_account)
2318 return CHARGE_OK;
2319 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
2320 if (likely(!ret))
2321 return CHARGE_OK;
2322
2323 res_counter_uncharge(&mem->res, csize);
2324 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2325 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2326 } else
2327 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2328 /*
2329 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2330 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2331 *
2332 * Never reclaim on behalf of optional batching, retry with a
2333 * single page instead.
2334 */
2335 if (nr_pages == CHARGE_BATCH)
2336 return CHARGE_RETRY;
2337
2338 if (!(gfp_mask & __GFP_WAIT))
2339 return CHARGE_WOULDBLOCK;
2340
2341 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2342 gfp_mask, flags, NULL);
2343 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2344 return CHARGE_RETRY;
2345 /*
2346 * Even though the limit is exceeded at this point, reclaim
2347 * may have been able to free some pages. Retry the charge
2348 * before killing the task.
2349 *
2350 * Only for regular pages, though: huge pages are rather
2351 * unlikely to succeed so close to the limit, and we fall back
2352 * to regular pages anyway in case of failure.
2353 */
2354 if (nr_pages == 1 && ret)
2355 return CHARGE_RETRY;
2356
2357 /*
2358 * At task move, charge accounts can be doubly counted. So, it's
2359 * better to wait until the end of task_move if something is going on.
2360 */
2361 if (mem_cgroup_wait_acct_move(mem_over_limit))
2362 return CHARGE_RETRY;
2363
2364 /* If we don't need to call oom-killer at el, return immediately */
2365 if (!oom_check)
2366 return CHARGE_NOMEM;
2367 /* check OOM */
2368 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2369 return CHARGE_OOM_DIE;
2370
2371 return CHARGE_RETRY;
2372 }
2373
2374 /*
2375 * Unlike exported interface, "oom" parameter is added. if oom==true,
2376 * oom-killer can be invoked.
2377 */
2378 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2379 gfp_t gfp_mask,
2380 unsigned int nr_pages,
2381 struct mem_cgroup **memcg,
2382 bool oom)
2383 {
2384 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2385 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2386 struct mem_cgroup *mem = NULL;
2387 int ret;
2388
2389 /*
2390 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2391 * in system level. So, allow to go ahead dying process in addition to
2392 * MEMDIE process.
2393 */
2394 if (unlikely(test_thread_flag(TIF_MEMDIE)
2395 || fatal_signal_pending(current)))
2396 goto bypass;
2397
2398 /*
2399 * We always charge the cgroup the mm_struct belongs to.
2400 * The mm_struct's mem_cgroup changes on task migration if the
2401 * thread group leader migrates. It's possible that mm is not
2402 * set, if so charge the init_mm (happens for pagecache usage).
2403 */
2404 if (!*memcg && !mm)
2405 goto bypass;
2406 again:
2407 if (*memcg) { /* css should be a valid one */
2408 mem = *memcg;
2409 VM_BUG_ON(css_is_removed(&mem->css));
2410 if (mem_cgroup_is_root(mem))
2411 goto done;
2412 if (nr_pages == 1 && consume_stock(mem))
2413 goto done;
2414 css_get(&mem->css);
2415 } else {
2416 struct task_struct *p;
2417
2418 rcu_read_lock();
2419 p = rcu_dereference(mm->owner);
2420 /*
2421 * Because we don't have task_lock(), "p" can exit.
2422 * In that case, "mem" can point to root or p can be NULL with
2423 * race with swapoff. Then, we have small risk of mis-accouning.
2424 * But such kind of mis-account by race always happens because
2425 * we don't have cgroup_mutex(). It's overkill and we allo that
2426 * small race, here.
2427 * (*) swapoff at el will charge against mm-struct not against
2428 * task-struct. So, mm->owner can be NULL.
2429 */
2430 mem = mem_cgroup_from_task(p);
2431 if (!mem || mem_cgroup_is_root(mem)) {
2432 rcu_read_unlock();
2433 goto done;
2434 }
2435 if (nr_pages == 1 && consume_stock(mem)) {
2436 /*
2437 * It seems dagerous to access memcg without css_get().
2438 * But considering how consume_stok works, it's not
2439 * necessary. If consume_stock success, some charges
2440 * from this memcg are cached on this cpu. So, we
2441 * don't need to call css_get()/css_tryget() before
2442 * calling consume_stock().
2443 */
2444 rcu_read_unlock();
2445 goto done;
2446 }
2447 /* after here, we may be blocked. we need to get refcnt */
2448 if (!css_tryget(&mem->css)) {
2449 rcu_read_unlock();
2450 goto again;
2451 }
2452 rcu_read_unlock();
2453 }
2454
2455 do {
2456 bool oom_check;
2457
2458 /* If killed, bypass charge */
2459 if (fatal_signal_pending(current)) {
2460 css_put(&mem->css);
2461 goto bypass;
2462 }
2463
2464 oom_check = false;
2465 if (oom && !nr_oom_retries) {
2466 oom_check = true;
2467 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2468 }
2469
2470 ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
2471 switch (ret) {
2472 case CHARGE_OK:
2473 break;
2474 case CHARGE_RETRY: /* not in OOM situation but retry */
2475 batch = nr_pages;
2476 css_put(&mem->css);
2477 mem = NULL;
2478 goto again;
2479 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2480 css_put(&mem->css);
2481 goto nomem;
2482 case CHARGE_NOMEM: /* OOM routine works */
2483 if (!oom) {
2484 css_put(&mem->css);
2485 goto nomem;
2486 }
2487 /* If oom, we never return -ENOMEM */
2488 nr_oom_retries--;
2489 break;
2490 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2491 css_put(&mem->css);
2492 goto bypass;
2493 }
2494 } while (ret != CHARGE_OK);
2495
2496 if (batch > nr_pages)
2497 refill_stock(mem, batch - nr_pages);
2498 css_put(&mem->css);
2499 done:
2500 *memcg = mem;
2501 return 0;
2502 nomem:
2503 *memcg = NULL;
2504 return -ENOMEM;
2505 bypass:
2506 *memcg = NULL;
2507 return 0;
2508 }
2509
2510 /*
2511 * Somemtimes we have to undo a charge we got by try_charge().
2512 * This function is for that and do uncharge, put css's refcnt.
2513 * gotten by try_charge().
2514 */
2515 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2516 unsigned int nr_pages)
2517 {
2518 if (!mem_cgroup_is_root(mem)) {
2519 unsigned long bytes = nr_pages * PAGE_SIZE;
2520
2521 res_counter_uncharge(&mem->res, bytes);
2522 if (do_swap_account)
2523 res_counter_uncharge(&mem->memsw, bytes);
2524 }
2525 }
2526
2527 /*
2528 * A helper function to get mem_cgroup from ID. must be called under
2529 * rcu_read_lock(). The caller must check css_is_removed() or some if
2530 * it's concern. (dropping refcnt from swap can be called against removed
2531 * memcg.)
2532 */
2533 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2534 {
2535 struct cgroup_subsys_state *css;
2536
2537 /* ID 0 is unused ID */
2538 if (!id)
2539 return NULL;
2540 css = css_lookup(&mem_cgroup_subsys, id);
2541 if (!css)
2542 return NULL;
2543 return container_of(css, struct mem_cgroup, css);
2544 }
2545
2546 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2547 {
2548 struct mem_cgroup *mem = NULL;
2549 struct page_cgroup *pc;
2550 unsigned short id;
2551 swp_entry_t ent;
2552
2553 VM_BUG_ON(!PageLocked(page));
2554
2555 pc = lookup_page_cgroup(page);
2556 lock_page_cgroup(pc);
2557 if (PageCgroupUsed(pc)) {
2558 mem = pc->mem_cgroup;
2559 if (mem && !css_tryget(&mem->css))
2560 mem = NULL;
2561 } else if (PageSwapCache(page)) {
2562 ent.val = page_private(page);
2563 id = lookup_swap_cgroup(ent);
2564 rcu_read_lock();
2565 mem = mem_cgroup_lookup(id);
2566 if (mem && !css_tryget(&mem->css))
2567 mem = NULL;
2568 rcu_read_unlock();
2569 }
2570 unlock_page_cgroup(pc);
2571 return mem;
2572 }
2573
2574 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2575 struct page *page,
2576 unsigned int nr_pages,
2577 struct page_cgroup *pc,
2578 enum charge_type ctype)
2579 {
2580 lock_page_cgroup(pc);
2581 if (unlikely(PageCgroupUsed(pc))) {
2582 unlock_page_cgroup(pc);
2583 __mem_cgroup_cancel_charge(mem, nr_pages);
2584 return;
2585 }
2586 /*
2587 * we don't need page_cgroup_lock about tail pages, becase they are not
2588 * accessed by any other context at this point.
2589 */
2590 pc->mem_cgroup = mem;
2591 /*
2592 * We access a page_cgroup asynchronously without lock_page_cgroup().
2593 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2594 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2595 * before USED bit, we need memory barrier here.
2596 * See mem_cgroup_add_lru_list(), etc.
2597 */
2598 smp_wmb();
2599 switch (ctype) {
2600 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2601 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2602 SetPageCgroupCache(pc);
2603 SetPageCgroupUsed(pc);
2604 break;
2605 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2606 ClearPageCgroupCache(pc);
2607 SetPageCgroupUsed(pc);
2608 break;
2609 default:
2610 break;
2611 }
2612
2613 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2614 unlock_page_cgroup(pc);
2615 /*
2616 * "charge_statistics" updated event counter. Then, check it.
2617 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2618 * if they exceeds softlimit.
2619 */
2620 memcg_check_events(mem, page);
2621 }
2622
2623 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2624
2625 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2626 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2627 /*
2628 * Because tail pages are not marked as "used", set it. We're under
2629 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2630 */
2631 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2632 {
2633 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2634 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2635 unsigned long flags;
2636
2637 if (mem_cgroup_disabled())
2638 return;
2639 /*
2640 * We have no races with charge/uncharge but will have races with
2641 * page state accounting.
2642 */
2643 move_lock_page_cgroup(head_pc, &flags);
2644
2645 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2646 smp_wmb(); /* see __commit_charge() */
2647 if (PageCgroupAcctLRU(head_pc)) {
2648 enum lru_list lru;
2649 struct mem_cgroup_per_zone *mz;
2650
2651 /*
2652 * LRU flags cannot be copied because we need to add tail
2653 *.page to LRU by generic call and our hook will be called.
2654 * We hold lru_lock, then, reduce counter directly.
2655 */
2656 lru = page_lru(head);
2657 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2658 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2659 }
2660 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2661 move_unlock_page_cgroup(head_pc, &flags);
2662 }
2663 #endif
2664
2665 /**
2666 * mem_cgroup_move_account - move account of the page
2667 * @page: the page
2668 * @nr_pages: number of regular pages (>1 for huge pages)
2669 * @pc: page_cgroup of the page.
2670 * @from: mem_cgroup which the page is moved from.
2671 * @to: mem_cgroup which the page is moved to. @from != @to.
2672 * @uncharge: whether we should call uncharge and css_put against @from.
2673 *
2674 * The caller must confirm following.
2675 * - page is not on LRU (isolate_page() is useful.)
2676 * - compound_lock is held when nr_pages > 1
2677 *
2678 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2679 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2680 * true, this function does "uncharge" from old cgroup, but it doesn't if
2681 * @uncharge is false, so a caller should do "uncharge".
2682 */
2683 static int mem_cgroup_move_account(struct page *page,
2684 unsigned int nr_pages,
2685 struct page_cgroup *pc,
2686 struct mem_cgroup *from,
2687 struct mem_cgroup *to,
2688 bool uncharge)
2689 {
2690 unsigned long flags;
2691 int ret;
2692
2693 VM_BUG_ON(from == to);
2694 VM_BUG_ON(PageLRU(page));
2695 /*
2696 * The page is isolated from LRU. So, collapse function
2697 * will not handle this page. But page splitting can happen.
2698 * Do this check under compound_page_lock(). The caller should
2699 * hold it.
2700 */
2701 ret = -EBUSY;
2702 if (nr_pages > 1 && !PageTransHuge(page))
2703 goto out;
2704
2705 lock_page_cgroup(pc);
2706
2707 ret = -EINVAL;
2708 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2709 goto unlock;
2710
2711 move_lock_page_cgroup(pc, &flags);
2712
2713 if (PageCgroupFileMapped(pc)) {
2714 /* Update mapped_file data for mem_cgroup */
2715 preempt_disable();
2716 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2717 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2718 preempt_enable();
2719 }
2720 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2721 if (uncharge)
2722 /* This is not "cancel", but cancel_charge does all we need. */
2723 __mem_cgroup_cancel_charge(from, nr_pages);
2724
2725 /* caller should have done css_get */
2726 pc->mem_cgroup = to;
2727 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2728 /*
2729 * We charges against "to" which may not have any tasks. Then, "to"
2730 * can be under rmdir(). But in current implementation, caller of
2731 * this function is just force_empty() and move charge, so it's
2732 * guaranteed that "to" is never removed. So, we don't check rmdir
2733 * status here.
2734 */
2735 move_unlock_page_cgroup(pc, &flags);
2736 ret = 0;
2737 unlock:
2738 unlock_page_cgroup(pc);
2739 /*
2740 * check events
2741 */
2742 memcg_check_events(to, page);
2743 memcg_check_events(from, page);
2744 out:
2745 return ret;
2746 }
2747
2748 /*
2749 * move charges to its parent.
2750 */
2751
2752 static int mem_cgroup_move_parent(struct page *page,
2753 struct page_cgroup *pc,
2754 struct mem_cgroup *child,
2755 gfp_t gfp_mask)
2756 {
2757 struct cgroup *cg = child->css.cgroup;
2758 struct cgroup *pcg = cg->parent;
2759 struct mem_cgroup *parent;
2760 unsigned int nr_pages;
2761 unsigned long uninitialized_var(flags);
2762 int ret;
2763
2764 /* Is ROOT ? */
2765 if (!pcg)
2766 return -EINVAL;
2767
2768 ret = -EBUSY;
2769 if (!get_page_unless_zero(page))
2770 goto out;
2771 if (isolate_lru_page(page))
2772 goto put;
2773
2774 nr_pages = hpage_nr_pages(page);
2775
2776 parent = mem_cgroup_from_cont(pcg);
2777 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2778 if (ret || !parent)
2779 goto put_back;
2780
2781 if (nr_pages > 1)
2782 flags = compound_lock_irqsave(page);
2783
2784 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2785 if (ret)
2786 __mem_cgroup_cancel_charge(parent, nr_pages);
2787
2788 if (nr_pages > 1)
2789 compound_unlock_irqrestore(page, flags);
2790 put_back:
2791 putback_lru_page(page);
2792 put:
2793 put_page(page);
2794 out:
2795 return ret;
2796 }
2797
2798 /*
2799 * Charge the memory controller for page usage.
2800 * Return
2801 * 0 if the charge was successful
2802 * < 0 if the cgroup is over its limit
2803 */
2804 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2805 gfp_t gfp_mask, enum charge_type ctype)
2806 {
2807 struct mem_cgroup *mem = NULL;
2808 unsigned int nr_pages = 1;
2809 struct page_cgroup *pc;
2810 bool oom = true;
2811 int ret;
2812
2813 if (PageTransHuge(page)) {
2814 nr_pages <<= compound_order(page);
2815 VM_BUG_ON(!PageTransHuge(page));
2816 /*
2817 * Never OOM-kill a process for a huge page. The
2818 * fault handler will fall back to regular pages.
2819 */
2820 oom = false;
2821 }
2822
2823 pc = lookup_page_cgroup(page);
2824 BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2825
2826 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
2827 if (ret || !mem)
2828 return ret;
2829
2830 __mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
2831 return 0;
2832 }
2833
2834 int mem_cgroup_newpage_charge(struct page *page,
2835 struct mm_struct *mm, gfp_t gfp_mask)
2836 {
2837 if (mem_cgroup_disabled())
2838 return 0;
2839 /*
2840 * If already mapped, we don't have to account.
2841 * If page cache, page->mapping has address_space.
2842 * But page->mapping may have out-of-use anon_vma pointer,
2843 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2844 * is NULL.
2845 */
2846 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2847 return 0;
2848 if (unlikely(!mm))
2849 mm = &init_mm;
2850 return mem_cgroup_charge_common(page, mm, gfp_mask,
2851 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2852 }
2853
2854 static void
2855 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2856 enum charge_type ctype);
2857
2858 static void
2859 __mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
2860 enum charge_type ctype)
2861 {
2862 struct page_cgroup *pc = lookup_page_cgroup(page);
2863 /*
2864 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2865 * is already on LRU. It means the page may on some other page_cgroup's
2866 * LRU. Take care of it.
2867 */
2868 mem_cgroup_lru_del_before_commit(page);
2869 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
2870 mem_cgroup_lru_add_after_commit(page);
2871 return;
2872 }
2873
2874 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2875 gfp_t gfp_mask)
2876 {
2877 struct mem_cgroup *mem = NULL;
2878 int ret;
2879
2880 if (mem_cgroup_disabled())
2881 return 0;
2882 if (PageCompound(page))
2883 return 0;
2884 /*
2885 * Corner case handling. This is called from add_to_page_cache()
2886 * in usual. But some FS (shmem) precharges this page before calling it
2887 * and call add_to_page_cache() with GFP_NOWAIT.
2888 *
2889 * For GFP_NOWAIT case, the page may be pre-charged before calling
2890 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2891 * charge twice. (It works but has to pay a bit larger cost.)
2892 * And when the page is SwapCache, it should take swap information
2893 * into account. This is under lock_page() now.
2894 */
2895 if (!(gfp_mask & __GFP_WAIT)) {
2896 struct page_cgroup *pc;
2897
2898 pc = lookup_page_cgroup(page);
2899 if (!pc)
2900 return 0;
2901 lock_page_cgroup(pc);
2902 if (PageCgroupUsed(pc)) {
2903 unlock_page_cgroup(pc);
2904 return 0;
2905 }
2906 unlock_page_cgroup(pc);
2907 }
2908
2909 if (unlikely(!mm))
2910 mm = &init_mm;
2911
2912 if (page_is_file_cache(page)) {
2913 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
2914 if (ret || !mem)
2915 return ret;
2916
2917 /*
2918 * FUSE reuses pages without going through the final
2919 * put that would remove them from the LRU list, make
2920 * sure that they get relinked properly.
2921 */
2922 __mem_cgroup_commit_charge_lrucare(page, mem,
2923 MEM_CGROUP_CHARGE_TYPE_CACHE);
2924 return ret;
2925 }
2926 /* shmem */
2927 if (PageSwapCache(page)) {
2928 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2929 if (!ret)
2930 __mem_cgroup_commit_charge_swapin(page, mem,
2931 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2932 } else
2933 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2934 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2935
2936 return ret;
2937 }
2938
2939 /*
2940 * While swap-in, try_charge -> commit or cancel, the page is locked.
2941 * And when try_charge() successfully returns, one refcnt to memcg without
2942 * struct page_cgroup is acquired. This refcnt will be consumed by
2943 * "commit()" or removed by "cancel()"
2944 */
2945 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2946 struct page *page,
2947 gfp_t mask, struct mem_cgroup **ptr)
2948 {
2949 struct mem_cgroup *mem;
2950 int ret;
2951
2952 *ptr = NULL;
2953
2954 if (mem_cgroup_disabled())
2955 return 0;
2956
2957 if (!do_swap_account)
2958 goto charge_cur_mm;
2959 /*
2960 * A racing thread's fault, or swapoff, may have already updated
2961 * the pte, and even removed page from swap cache: in those cases
2962 * do_swap_page()'s pte_same() test will fail; but there's also a
2963 * KSM case which does need to charge the page.
2964 */
2965 if (!PageSwapCache(page))
2966 goto charge_cur_mm;
2967 mem = try_get_mem_cgroup_from_page(page);
2968 if (!mem)
2969 goto charge_cur_mm;
2970 *ptr = mem;
2971 ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2972 css_put(&mem->css);
2973 return ret;
2974 charge_cur_mm:
2975 if (unlikely(!mm))
2976 mm = &init_mm;
2977 return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2978 }
2979
2980 static void
2981 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2982 enum charge_type ctype)
2983 {
2984 if (mem_cgroup_disabled())
2985 return;
2986 if (!ptr)
2987 return;
2988 cgroup_exclude_rmdir(&ptr->css);
2989
2990 __mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2991 /*
2992 * Now swap is on-memory. This means this page may be
2993 * counted both as mem and swap....double count.
2994 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2995 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2996 * may call delete_from_swap_cache() before reach here.
2997 */
2998 if (do_swap_account && PageSwapCache(page)) {
2999 swp_entry_t ent = {.val = page_private(page)};
3000 unsigned short id;
3001 struct mem_cgroup *memcg;
3002
3003 id = swap_cgroup_record(ent, 0);
3004 rcu_read_lock();
3005 memcg = mem_cgroup_lookup(id);
3006 if (memcg) {
3007 /*
3008 * This recorded memcg can be obsolete one. So, avoid
3009 * calling css_tryget
3010 */
3011 if (!mem_cgroup_is_root(memcg))
3012 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3013 mem_cgroup_swap_statistics(memcg, false);
3014 mem_cgroup_put(memcg);
3015 }
3016 rcu_read_unlock();
3017 }
3018 /*
3019 * At swapin, we may charge account against cgroup which has no tasks.
3020 * So, rmdir()->pre_destroy() can be called while we do this charge.
3021 * In that case, we need to call pre_destroy() again. check it here.
3022 */
3023 cgroup_release_and_wakeup_rmdir(&ptr->css);
3024 }
3025
3026 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
3027 {
3028 __mem_cgroup_commit_charge_swapin(page, ptr,
3029 MEM_CGROUP_CHARGE_TYPE_MAPPED);
3030 }
3031
3032 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
3033 {
3034 if (mem_cgroup_disabled())
3035 return;
3036 if (!mem)
3037 return;
3038 __mem_cgroup_cancel_charge(mem, 1);
3039 }
3040
3041 static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
3042 unsigned int nr_pages,
3043 const enum charge_type ctype)
3044 {
3045 struct memcg_batch_info *batch = NULL;
3046 bool uncharge_memsw = true;
3047
3048 /* If swapout, usage of swap doesn't decrease */
3049 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3050 uncharge_memsw = false;
3051
3052 batch = &current->memcg_batch;
3053 /*
3054 * In usual, we do css_get() when we remember memcg pointer.
3055 * But in this case, we keep res->usage until end of a series of
3056 * uncharges. Then, it's ok to ignore memcg's refcnt.
3057 */
3058 if (!batch->memcg)
3059 batch->memcg = mem;
3060 /*
3061 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
3062 * In those cases, all pages freed continuously can be expected to be in
3063 * the same cgroup and we have chance to coalesce uncharges.
3064 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3065 * because we want to do uncharge as soon as possible.
3066 */
3067
3068 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
3069 goto direct_uncharge;
3070
3071 if (nr_pages > 1)
3072 goto direct_uncharge;
3073
3074 /*
3075 * In typical case, batch->memcg == mem. This means we can
3076 * merge a series of uncharges to an uncharge of res_counter.
3077 * If not, we uncharge res_counter ony by one.
3078 */
3079 if (batch->memcg != mem)
3080 goto direct_uncharge;
3081 /* remember freed charge and uncharge it later */
3082 batch->nr_pages++;
3083 if (uncharge_memsw)
3084 batch->memsw_nr_pages++;
3085 return;
3086 direct_uncharge:
3087 res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
3088 if (uncharge_memsw)
3089 res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
3090 if (unlikely(batch->memcg != mem))
3091 memcg_oom_recover(mem);
3092 return;
3093 }
3094
3095 /*
3096 * uncharge if !page_mapped(page)
3097 */
3098 static struct mem_cgroup *
3099 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
3100 {
3101 struct mem_cgroup *mem = NULL;
3102 unsigned int nr_pages = 1;
3103 struct page_cgroup *pc;
3104
3105 if (mem_cgroup_disabled())
3106 return NULL;
3107
3108 if (PageSwapCache(page))
3109 return NULL;
3110
3111 if (PageTransHuge(page)) {
3112 nr_pages <<= compound_order(page);
3113 VM_BUG_ON(!PageTransHuge(page));
3114 }
3115 /*
3116 * Check if our page_cgroup is valid
3117 */
3118 pc = lookup_page_cgroup(page);
3119 if (unlikely(!pc || !PageCgroupUsed(pc)))
3120 return NULL;
3121
3122 lock_page_cgroup(pc);
3123
3124 mem = pc->mem_cgroup;
3125
3126 if (!PageCgroupUsed(pc))
3127 goto unlock_out;
3128
3129 switch (ctype) {
3130 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
3131 case MEM_CGROUP_CHARGE_TYPE_DROP:
3132 /* See mem_cgroup_prepare_migration() */
3133 if (page_mapped(page) || PageCgroupMigration(pc))
3134 goto unlock_out;
3135 break;
3136 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3137 if (!PageAnon(page)) { /* Shared memory */
3138 if (page->mapping && !page_is_file_cache(page))
3139 goto unlock_out;
3140 } else if (page_mapped(page)) /* Anon */
3141 goto unlock_out;
3142 break;
3143 default:
3144 break;
3145 }
3146
3147 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
3148
3149 ClearPageCgroupUsed(pc);
3150 /*
3151 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3152 * freed from LRU. This is safe because uncharged page is expected not
3153 * to be reused (freed soon). Exception is SwapCache, it's handled by
3154 * special functions.
3155 */
3156
3157 unlock_page_cgroup(pc);
3158 /*
3159 * even after unlock, we have mem->res.usage here and this memcg
3160 * will never be freed.
3161 */
3162 memcg_check_events(mem, page);
3163 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3164 mem_cgroup_swap_statistics(mem, true);
3165 mem_cgroup_get(mem);
3166 }
3167 if (!mem_cgroup_is_root(mem))
3168 mem_cgroup_do_uncharge(mem, nr_pages, ctype);
3169
3170 return mem;
3171
3172 unlock_out:
3173 unlock_page_cgroup(pc);
3174 return NULL;
3175 }
3176
3177 void mem_cgroup_uncharge_page(struct page *page)
3178 {
3179 /* early check. */
3180 if (page_mapped(page))
3181 return;
3182 if (page->mapping && !PageAnon(page))
3183 return;
3184 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3185 }
3186
3187 void mem_cgroup_uncharge_cache_page(struct page *page)
3188 {
3189 VM_BUG_ON(page_mapped(page));
3190 VM_BUG_ON(page->mapping);
3191 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3192 }
3193
3194 /*
3195 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3196 * In that cases, pages are freed continuously and we can expect pages
3197 * are in the same memcg. All these calls itself limits the number of
3198 * pages freed at once, then uncharge_start/end() is called properly.
3199 * This may be called prural(2) times in a context,
3200 */
3201
3202 void mem_cgroup_uncharge_start(void)
3203 {
3204 current->memcg_batch.do_batch++;
3205 /* We can do nest. */
3206 if (current->memcg_batch.do_batch == 1) {
3207 current->memcg_batch.memcg = NULL;
3208 current->memcg_batch.nr_pages = 0;
3209 current->memcg_batch.memsw_nr_pages = 0;
3210 }
3211 }
3212
3213 void mem_cgroup_uncharge_end(void)
3214 {
3215 struct memcg_batch_info *batch = &current->memcg_batch;
3216
3217 if (!batch->do_batch)
3218 return;
3219
3220 batch->do_batch--;
3221 if (batch->do_batch) /* If stacked, do nothing. */
3222 return;
3223
3224 if (!batch->memcg)
3225 return;
3226 /*
3227 * This "batch->memcg" is valid without any css_get/put etc...
3228 * bacause we hide charges behind us.
3229 */
3230 if (batch->nr_pages)
3231 res_counter_uncharge(&batch->memcg->res,
3232 batch->nr_pages * PAGE_SIZE);
3233 if (batch->memsw_nr_pages)
3234 res_counter_uncharge(&batch->memcg->memsw,
3235 batch->memsw_nr_pages * PAGE_SIZE);
3236 memcg_oom_recover(batch->memcg);
3237 /* forget this pointer (for sanity check) */
3238 batch->memcg = NULL;
3239 }
3240
3241 #ifdef CONFIG_SWAP
3242 /*
3243 * called after __delete_from_swap_cache() and drop "page" account.
3244 * memcg information is recorded to swap_cgroup of "ent"
3245 */
3246 void
3247 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3248 {
3249 struct mem_cgroup *memcg;
3250 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3251
3252 if (!swapout) /* this was a swap cache but the swap is unused ! */
3253 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3254
3255 memcg = __mem_cgroup_uncharge_common(page, ctype);
3256
3257 /*
3258 * record memcg information, if swapout && memcg != NULL,
3259 * mem_cgroup_get() was called in uncharge().
3260 */
3261 if (do_swap_account && swapout && memcg)
3262 swap_cgroup_record(ent, css_id(&memcg->css));
3263 }
3264 #endif
3265
3266 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3267 /*
3268 * called from swap_entry_free(). remove record in swap_cgroup and
3269 * uncharge "memsw" account.
3270 */
3271 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3272 {
3273 struct mem_cgroup *memcg;
3274 unsigned short id;
3275
3276 if (!do_swap_account)
3277 return;
3278
3279 id = swap_cgroup_record(ent, 0);
3280 rcu_read_lock();
3281 memcg = mem_cgroup_lookup(id);
3282 if (memcg) {
3283 /*
3284 * We uncharge this because swap is freed.
3285 * This memcg can be obsolete one. We avoid calling css_tryget
3286 */
3287 if (!mem_cgroup_is_root(memcg))
3288 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3289 mem_cgroup_swap_statistics(memcg, false);
3290 mem_cgroup_put(memcg);
3291 }
3292 rcu_read_unlock();
3293 }
3294
3295 /**
3296 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3297 * @entry: swap entry to be moved
3298 * @from: mem_cgroup which the entry is moved from
3299 * @to: mem_cgroup which the entry is moved to
3300 * @need_fixup: whether we should fixup res_counters and refcounts.
3301 *
3302 * It succeeds only when the swap_cgroup's record for this entry is the same
3303 * as the mem_cgroup's id of @from.
3304 *
3305 * Returns 0 on success, -EINVAL on failure.
3306 *
3307 * The caller must have charged to @to, IOW, called res_counter_charge() about
3308 * both res and memsw, and called css_get().
3309 */
3310 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3311 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3312 {
3313 unsigned short old_id, new_id;
3314
3315 old_id = css_id(&from->css);
3316 new_id = css_id(&to->css);
3317
3318 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3319 mem_cgroup_swap_statistics(from, false);
3320 mem_cgroup_swap_statistics(to, true);
3321 /*
3322 * This function is only called from task migration context now.
3323 * It postpones res_counter and refcount handling till the end
3324 * of task migration(mem_cgroup_clear_mc()) for performance
3325 * improvement. But we cannot postpone mem_cgroup_get(to)
3326 * because if the process that has been moved to @to does
3327 * swap-in, the refcount of @to might be decreased to 0.
3328 */
3329 mem_cgroup_get(to);
3330 if (need_fixup) {
3331 if (!mem_cgroup_is_root(from))
3332 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3333 mem_cgroup_put(from);
3334 /*
3335 * we charged both to->res and to->memsw, so we should
3336 * uncharge to->res.
3337 */
3338 if (!mem_cgroup_is_root(to))
3339 res_counter_uncharge(&to->res, PAGE_SIZE);
3340 }
3341 return 0;
3342 }
3343 return -EINVAL;
3344 }
3345 #else
3346 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3347 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3348 {
3349 return -EINVAL;
3350 }
3351 #endif
3352
3353 /*
3354 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3355 * page belongs to.
3356 */
3357 int mem_cgroup_prepare_migration(struct page *page,
3358 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3359 {
3360 struct mem_cgroup *mem = NULL;
3361 struct page_cgroup *pc;
3362 enum charge_type ctype;
3363 int ret = 0;
3364
3365 *ptr = NULL;
3366
3367 VM_BUG_ON(PageTransHuge(page));
3368 if (mem_cgroup_disabled())
3369 return 0;
3370
3371 pc = lookup_page_cgroup(page);
3372 lock_page_cgroup(pc);
3373 if (PageCgroupUsed(pc)) {
3374 mem = pc->mem_cgroup;
3375 css_get(&mem->css);
3376 /*
3377 * At migrating an anonymous page, its mapcount goes down
3378 * to 0 and uncharge() will be called. But, even if it's fully
3379 * unmapped, migration may fail and this page has to be
3380 * charged again. We set MIGRATION flag here and delay uncharge
3381 * until end_migration() is called
3382 *
3383 * Corner Case Thinking
3384 * A)
3385 * When the old page was mapped as Anon and it's unmap-and-freed
3386 * while migration was ongoing.
3387 * If unmap finds the old page, uncharge() of it will be delayed
3388 * until end_migration(). If unmap finds a new page, it's
3389 * uncharged when it make mapcount to be 1->0. If unmap code
3390 * finds swap_migration_entry, the new page will not be mapped
3391 * and end_migration() will find it(mapcount==0).
3392 *
3393 * B)
3394 * When the old page was mapped but migraion fails, the kernel
3395 * remaps it. A charge for it is kept by MIGRATION flag even
3396 * if mapcount goes down to 0. We can do remap successfully
3397 * without charging it again.
3398 *
3399 * C)
3400 * The "old" page is under lock_page() until the end of
3401 * migration, so, the old page itself will not be swapped-out.
3402 * If the new page is swapped out before end_migraton, our
3403 * hook to usual swap-out path will catch the event.
3404 */
3405 if (PageAnon(page))
3406 SetPageCgroupMigration(pc);
3407 }
3408 unlock_page_cgroup(pc);
3409 /*
3410 * If the page is not charged at this point,
3411 * we return here.
3412 */
3413 if (!mem)
3414 return 0;
3415
3416 *ptr = mem;
3417 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3418 css_put(&mem->css);/* drop extra refcnt */
3419 if (ret || *ptr == NULL) {
3420 if (PageAnon(page)) {
3421 lock_page_cgroup(pc);
3422 ClearPageCgroupMigration(pc);
3423 unlock_page_cgroup(pc);
3424 /*
3425 * The old page may be fully unmapped while we kept it.
3426 */
3427 mem_cgroup_uncharge_page(page);
3428 }
3429 return -ENOMEM;
3430 }
3431 /*
3432 * We charge new page before it's used/mapped. So, even if unlock_page()
3433 * is called before end_migration, we can catch all events on this new
3434 * page. In the case new page is migrated but not remapped, new page's
3435 * mapcount will be finally 0 and we call uncharge in end_migration().
3436 */
3437 pc = lookup_page_cgroup(newpage);
3438 if (PageAnon(page))
3439 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3440 else if (page_is_file_cache(page))
3441 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3442 else
3443 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3444 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
3445 return ret;
3446 }
3447
3448 /* remove redundant charge if migration failed*/
3449 void mem_cgroup_end_migration(struct mem_cgroup *mem,
3450 struct page *oldpage, struct page *newpage, bool migration_ok)
3451 {
3452 struct page *used, *unused;
3453 struct page_cgroup *pc;
3454
3455 if (!mem)
3456 return;
3457 /* blocks rmdir() */
3458 cgroup_exclude_rmdir(&mem->css);
3459 if (!migration_ok) {
3460 used = oldpage;
3461 unused = newpage;
3462 } else {
3463 used = newpage;
3464 unused = oldpage;
3465 }
3466 /*
3467 * We disallowed uncharge of pages under migration because mapcount
3468 * of the page goes down to zero, temporarly.
3469 * Clear the flag and check the page should be charged.
3470 */
3471 pc = lookup_page_cgroup(oldpage);
3472 lock_page_cgroup(pc);
3473 ClearPageCgroupMigration(pc);
3474 unlock_page_cgroup(pc);
3475
3476 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3477
3478 /*
3479 * If a page is a file cache, radix-tree replacement is very atomic
3480 * and we can skip this check. When it was an Anon page, its mapcount
3481 * goes down to 0. But because we added MIGRATION flage, it's not
3482 * uncharged yet. There are several case but page->mapcount check
3483 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3484 * check. (see prepare_charge() also)
3485 */
3486 if (PageAnon(used))
3487 mem_cgroup_uncharge_page(used);
3488 /*
3489 * At migration, we may charge account against cgroup which has no
3490 * tasks.
3491 * So, rmdir()->pre_destroy() can be called while we do this charge.
3492 * In that case, we need to call pre_destroy() again. check it here.
3493 */
3494 cgroup_release_and_wakeup_rmdir(&mem->css);
3495 }
3496
3497 /*
3498 * A call to try to shrink memory usage on charge failure at shmem's swapin.
3499 * Calling hierarchical_reclaim is not enough because we should update
3500 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3501 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3502 * not from the memcg which this page would be charged to.
3503 * try_charge_swapin does all of these works properly.
3504 */
3505 int mem_cgroup_shmem_charge_fallback(struct page *page,
3506 struct mm_struct *mm,
3507 gfp_t gfp_mask)
3508 {
3509 struct mem_cgroup *mem;
3510 int ret;
3511
3512 if (mem_cgroup_disabled())
3513 return 0;
3514
3515 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3516 if (!ret)
3517 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3518
3519 return ret;
3520 }
3521
3522 #ifdef CONFIG_DEBUG_VM
3523 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3524 {
3525 struct page_cgroup *pc;
3526
3527 pc = lookup_page_cgroup(page);
3528 if (likely(pc) && PageCgroupUsed(pc))
3529 return pc;
3530 return NULL;
3531 }
3532
3533 bool mem_cgroup_bad_page_check(struct page *page)
3534 {
3535 if (mem_cgroup_disabled())
3536 return false;
3537
3538 return lookup_page_cgroup_used(page) != NULL;
3539 }
3540
3541 void mem_cgroup_print_bad_page(struct page *page)
3542 {
3543 struct page_cgroup *pc;
3544
3545 pc = lookup_page_cgroup_used(page);
3546 if (pc) {
3547 int ret = -1;
3548 char *path;
3549
3550 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3551 pc, pc->flags, pc->mem_cgroup);
3552
3553 path = kmalloc(PATH_MAX, GFP_KERNEL);
3554 if (path) {
3555 rcu_read_lock();
3556 ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3557 path, PATH_MAX);
3558 rcu_read_unlock();
3559 }
3560
3561 printk(KERN_CONT "(%s)\n",
3562 (ret < 0) ? "cannot get the path" : path);
3563 kfree(path);
3564 }
3565 }
3566 #endif
3567
3568 static DEFINE_MUTEX(set_limit_mutex);
3569
3570 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3571 unsigned long long val)
3572 {
3573 int retry_count;
3574 u64 memswlimit, memlimit;
3575 int ret = 0;
3576 int children = mem_cgroup_count_children(memcg);
3577 u64 curusage, oldusage;
3578 int enlarge;
3579
3580 /*
3581 * For keeping hierarchical_reclaim simple, how long we should retry
3582 * is depends on callers. We set our retry-count to be function
3583 * of # of children which we should visit in this loop.
3584 */
3585 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3586
3587 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3588
3589 enlarge = 0;
3590 while (retry_count) {
3591 if (signal_pending(current)) {
3592 ret = -EINTR;
3593 break;
3594 }
3595 /*
3596 * Rather than hide all in some function, I do this in
3597 * open coded manner. You see what this really does.
3598 * We have to guarantee mem->res.limit < mem->memsw.limit.
3599 */
3600 mutex_lock(&set_limit_mutex);
3601 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3602 if (memswlimit < val) {
3603 ret = -EINVAL;
3604 mutex_unlock(&set_limit_mutex);
3605 break;
3606 }
3607
3608 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3609 if (memlimit < val)
3610 enlarge = 1;
3611
3612 ret = res_counter_set_limit(&memcg->res, val);
3613 if (!ret) {
3614 if (memswlimit == val)
3615 memcg->memsw_is_minimum = true;
3616 else
3617 memcg->memsw_is_minimum = false;
3618 }
3619 mutex_unlock(&set_limit_mutex);
3620
3621 if (!ret)
3622 break;
3623
3624 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3625 MEM_CGROUP_RECLAIM_SHRINK,
3626 NULL);
3627 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3628 /* Usage is reduced ? */
3629 if (curusage >= oldusage)
3630 retry_count--;
3631 else
3632 oldusage = curusage;
3633 }
3634 if (!ret && enlarge)
3635 memcg_oom_recover(memcg);
3636
3637 return ret;
3638 }
3639
3640 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3641 unsigned long long val)
3642 {
3643 int retry_count;
3644 u64 memlimit, memswlimit, oldusage, curusage;
3645 int children = mem_cgroup_count_children(memcg);
3646 int ret = -EBUSY;
3647 int enlarge = 0;
3648
3649 /* see mem_cgroup_resize_res_limit */
3650 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3651 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3652 while (retry_count) {
3653 if (signal_pending(current)) {
3654 ret = -EINTR;
3655 break;
3656 }
3657 /*
3658 * Rather than hide all in some function, I do this in
3659 * open coded manner. You see what this really does.
3660 * We have to guarantee mem->res.limit < mem->memsw.limit.
3661 */
3662 mutex_lock(&set_limit_mutex);
3663 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3664 if (memlimit > val) {
3665 ret = -EINVAL;
3666 mutex_unlock(&set_limit_mutex);
3667 break;
3668 }
3669 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3670 if (memswlimit < val)
3671 enlarge = 1;
3672 ret = res_counter_set_limit(&memcg->memsw, val);
3673 if (!ret) {
3674 if (memlimit == val)
3675 memcg->memsw_is_minimum = true;
3676 else
3677 memcg->memsw_is_minimum = false;
3678 }
3679 mutex_unlock(&set_limit_mutex);
3680
3681 if (!ret)
3682 break;
3683
3684 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3685 MEM_CGROUP_RECLAIM_NOSWAP |
3686 MEM_CGROUP_RECLAIM_SHRINK,
3687 NULL);
3688 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3689 /* Usage is reduced ? */
3690 if (curusage >= oldusage)
3691 retry_count--;
3692 else
3693 oldusage = curusage;
3694 }
3695 if (!ret && enlarge)
3696 memcg_oom_recover(memcg);
3697 return ret;
3698 }
3699
3700 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3701 gfp_t gfp_mask,
3702 unsigned long *total_scanned)
3703 {
3704 unsigned long nr_reclaimed = 0;
3705 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3706 unsigned long reclaimed;
3707 int loop = 0;
3708 struct mem_cgroup_tree_per_zone *mctz;
3709 unsigned long long excess;
3710 unsigned long nr_scanned;
3711
3712 if (order > 0)
3713 return 0;
3714
3715 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3716 /*
3717 * This loop can run a while, specially if mem_cgroup's continuously
3718 * keep exceeding their soft limit and putting the system under
3719 * pressure
3720 */
3721 do {
3722 if (next_mz)
3723 mz = next_mz;
3724 else
3725 mz = mem_cgroup_largest_soft_limit_node(mctz);
3726 if (!mz)
3727 break;
3728
3729 nr_scanned = 0;
3730 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3731 gfp_mask,
3732 MEM_CGROUP_RECLAIM_SOFT,
3733 &nr_scanned);
3734 nr_reclaimed += reclaimed;
3735 *total_scanned += nr_scanned;
3736 spin_lock(&mctz->lock);
3737
3738 /*
3739 * If we failed to reclaim anything from this memory cgroup
3740 * it is time to move on to the next cgroup
3741 */
3742 next_mz = NULL;
3743 if (!reclaimed) {
3744 do {
3745 /*
3746 * Loop until we find yet another one.
3747 *
3748 * By the time we get the soft_limit lock
3749 * again, someone might have aded the
3750 * group back on the RB tree. Iterate to
3751 * make sure we get a different mem.
3752 * mem_cgroup_largest_soft_limit_node returns
3753 * NULL if no other cgroup is present on
3754 * the tree
3755 */
3756 next_mz =
3757 __mem_cgroup_largest_soft_limit_node(mctz);
3758 if (next_mz == mz)
3759 css_put(&next_mz->mem->css);
3760 else /* next_mz == NULL or other memcg */
3761 break;
3762 } while (1);
3763 }
3764 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3765 excess = res_counter_soft_limit_excess(&mz->mem->res);
3766 /*
3767 * One school of thought says that we should not add
3768 * back the node to the tree if reclaim returns 0.
3769 * But our reclaim could return 0, simply because due
3770 * to priority we are exposing a smaller subset of
3771 * memory to reclaim from. Consider this as a longer
3772 * term TODO.
3773 */
3774 /* If excess == 0, no tree ops */
3775 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3776 spin_unlock(&mctz->lock);
3777 css_put(&mz->mem->css);
3778 loop++;
3779 /*
3780 * Could not reclaim anything and there are no more
3781 * mem cgroups to try or we seem to be looping without
3782 * reclaiming anything.
3783 */
3784 if (!nr_reclaimed &&
3785 (next_mz == NULL ||
3786 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3787 break;
3788 } while (!nr_reclaimed);
3789 if (next_mz)
3790 css_put(&next_mz->mem->css);
3791 return nr_reclaimed;
3792 }
3793
3794 /*
3795 * This routine traverse page_cgroup in given list and drop them all.
3796 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3797 */
3798 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3799 int node, int zid, enum lru_list lru)
3800 {
3801 struct zone *zone;
3802 struct mem_cgroup_per_zone *mz;
3803 struct page_cgroup *pc, *busy;
3804 unsigned long flags, loop;
3805 struct list_head *list;
3806 int ret = 0;
3807
3808 zone = &NODE_DATA(node)->node_zones[zid];
3809 mz = mem_cgroup_zoneinfo(mem, node, zid);
3810 list = &mz->lists[lru];
3811
3812 loop = MEM_CGROUP_ZSTAT(mz, lru);
3813 /* give some margin against EBUSY etc...*/
3814 loop += 256;
3815 busy = NULL;
3816 while (loop--) {
3817 struct page *page;
3818
3819 ret = 0;
3820 spin_lock_irqsave(&zone->lru_lock, flags);
3821 if (list_empty(list)) {
3822 spin_unlock_irqrestore(&zone->lru_lock, flags);
3823 break;
3824 }
3825 pc = list_entry(list->prev, struct page_cgroup, lru);
3826 if (busy == pc) {
3827 list_move(&pc->lru, list);
3828 busy = NULL;
3829 spin_unlock_irqrestore(&zone->lru_lock, flags);
3830 continue;
3831 }
3832 spin_unlock_irqrestore(&zone->lru_lock, flags);
3833
3834 page = lookup_cgroup_page(pc);
3835
3836 ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3837 if (ret == -ENOMEM)
3838 break;
3839
3840 if (ret == -EBUSY || ret == -EINVAL) {
3841 /* found lock contention or "pc" is obsolete. */
3842 busy = pc;
3843 cond_resched();
3844 } else
3845 busy = NULL;
3846 }
3847
3848 if (!ret && !list_empty(list))
3849 return -EBUSY;
3850 return ret;
3851 }
3852
3853 /*
3854 * make mem_cgroup's charge to be 0 if there is no task.
3855 * This enables deleting this mem_cgroup.
3856 */
3857 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3858 {
3859 int ret;
3860 int node, zid, shrink;
3861 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3862 struct cgroup *cgrp = mem->css.cgroup;
3863
3864 css_get(&mem->css);
3865
3866 shrink = 0;
3867 /* should free all ? */
3868 if (free_all)
3869 goto try_to_free;
3870 move_account:
3871 do {
3872 ret = -EBUSY;
3873 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3874 goto out;
3875 ret = -EINTR;
3876 if (signal_pending(current))
3877 goto out;
3878 /* This is for making all *used* pages to be on LRU. */
3879 lru_add_drain_all();
3880 drain_all_stock_sync(mem);
3881 ret = 0;
3882 mem_cgroup_start_move(mem);
3883 for_each_node_state(node, N_HIGH_MEMORY) {
3884 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3885 enum lru_list l;
3886 for_each_lru(l) {
3887 ret = mem_cgroup_force_empty_list(mem,
3888 node, zid, l);
3889 if (ret)
3890 break;
3891 }
3892 }
3893 if (ret)
3894 break;
3895 }
3896 mem_cgroup_end_move(mem);
3897 memcg_oom_recover(mem);
3898 /* it seems parent cgroup doesn't have enough mem */
3899 if (ret == -ENOMEM)
3900 goto try_to_free;
3901 cond_resched();
3902 /* "ret" should also be checked to ensure all lists are empty. */
3903 } while (mem->res.usage > 0 || ret);
3904 out:
3905 css_put(&mem->css);
3906 return ret;
3907
3908 try_to_free:
3909 /* returns EBUSY if there is a task or if we come here twice. */
3910 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3911 ret = -EBUSY;
3912 goto out;
3913 }
3914 /* we call try-to-free pages for make this cgroup empty */
3915 lru_add_drain_all();
3916 /* try to free all pages in this cgroup */
3917 shrink = 1;
3918 while (nr_retries && mem->res.usage > 0) {
3919 struct memcg_scanrecord rec;
3920 int progress;
3921
3922 if (signal_pending(current)) {
3923 ret = -EINTR;
3924 goto out;
3925 }
3926 rec.context = SCAN_BY_SHRINK;
3927 rec.mem = mem;
3928 rec.root = mem;
3929 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3930 false, &rec);
3931 if (!progress) {
3932 nr_retries--;
3933 /* maybe some writeback is necessary */
3934 congestion_wait(BLK_RW_ASYNC, HZ/10);
3935 }
3936
3937 }
3938 lru_add_drain();
3939 /* try move_account...there may be some *locked* pages. */
3940 goto move_account;
3941 }
3942
3943 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3944 {
3945 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3946 }
3947
3948
3949 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3950 {
3951 return mem_cgroup_from_cont(cont)->use_hierarchy;
3952 }
3953
3954 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3955 u64 val)
3956 {
3957 int retval = 0;
3958 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3959 struct cgroup *parent = cont->parent;
3960 struct mem_cgroup *parent_mem = NULL;
3961
3962 if (parent)
3963 parent_mem = mem_cgroup_from_cont(parent);
3964
3965 cgroup_lock();
3966 /*
3967 * If parent's use_hierarchy is set, we can't make any modifications
3968 * in the child subtrees. If it is unset, then the change can
3969 * occur, provided the current cgroup has no children.
3970 *
3971 * For the root cgroup, parent_mem is NULL, we allow value to be
3972 * set if there are no children.
3973 */
3974 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3975 (val == 1 || val == 0)) {
3976 if (list_empty(&cont->children))
3977 mem->use_hierarchy = val;
3978 else
3979 retval = -EBUSY;
3980 } else
3981 retval = -EINVAL;
3982 cgroup_unlock();
3983
3984 return retval;
3985 }
3986
3987
3988 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
3989 enum mem_cgroup_stat_index idx)
3990 {
3991 struct mem_cgroup *iter;
3992 long val = 0;
3993
3994 /* Per-cpu values can be negative, use a signed accumulator */
3995 for_each_mem_cgroup_tree(iter, mem)
3996 val += mem_cgroup_read_stat(iter, idx);
3997
3998 if (val < 0) /* race ? */
3999 val = 0;
4000 return val;
4001 }
4002
4003 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
4004 {
4005 u64 val;
4006
4007 if (!mem_cgroup_is_root(mem)) {
4008 if (!swap)
4009 return res_counter_read_u64(&mem->res, RES_USAGE);
4010 else
4011 return res_counter_read_u64(&mem->memsw, RES_USAGE);
4012 }
4013
4014 val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
4015 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
4016
4017 if (swap)
4018 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
4019
4020 return val << PAGE_SHIFT;
4021 }
4022
4023 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
4024 {
4025 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4026 u64 val;
4027 int type, name;
4028
4029 type = MEMFILE_TYPE(cft->private);
4030 name = MEMFILE_ATTR(cft->private);
4031 switch (type) {
4032 case _MEM:
4033 if (name == RES_USAGE)
4034 val = mem_cgroup_usage(mem, false);
4035 else
4036 val = res_counter_read_u64(&mem->res, name);
4037 break;
4038 case _MEMSWAP:
4039 if (name == RES_USAGE)
4040 val = mem_cgroup_usage(mem, true);
4041 else
4042 val = res_counter_read_u64(&mem->memsw, name);
4043 break;
4044 default:
4045 BUG();
4046 break;
4047 }
4048 return val;
4049 }
4050 /*
4051 * The user of this function is...
4052 * RES_LIMIT.
4053 */
4054 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
4055 const char *buffer)
4056 {
4057 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4058 int type, name;
4059 unsigned long long val;
4060 int ret;
4061
4062 type = MEMFILE_TYPE(cft->private);
4063 name = MEMFILE_ATTR(cft->private);
4064 switch (name) {
4065 case RES_LIMIT:
4066 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4067 ret = -EINVAL;
4068 break;
4069 }
4070 /* This function does all necessary parse...reuse it */
4071 ret = res_counter_memparse_write_strategy(buffer, &val);
4072 if (ret)
4073 break;
4074 if (type == _MEM)
4075 ret = mem_cgroup_resize_limit(memcg, val);
4076 else
4077 ret = mem_cgroup_resize_memsw_limit(memcg, val);
4078 break;
4079 case RES_SOFT_LIMIT:
4080 ret = res_counter_memparse_write_strategy(buffer, &val);
4081 if (ret)
4082 break;
4083 /*
4084 * For memsw, soft limits are hard to implement in terms
4085 * of semantics, for now, we support soft limits for
4086 * control without swap
4087 */
4088 if (type == _MEM)
4089 ret = res_counter_set_soft_limit(&memcg->res, val);
4090 else
4091 ret = -EINVAL;
4092 break;
4093 default:
4094 ret = -EINVAL; /* should be BUG() ? */
4095 break;
4096 }
4097 return ret;
4098 }
4099
4100 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4101 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4102 {
4103 struct cgroup *cgroup;
4104 unsigned long long min_limit, min_memsw_limit, tmp;
4105
4106 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4107 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4108 cgroup = memcg->css.cgroup;
4109 if (!memcg->use_hierarchy)
4110 goto out;
4111
4112 while (cgroup->parent) {
4113 cgroup = cgroup->parent;
4114 memcg = mem_cgroup_from_cont(cgroup);
4115 if (!memcg->use_hierarchy)
4116 break;
4117 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4118 min_limit = min(min_limit, tmp);
4119 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4120 min_memsw_limit = min(min_memsw_limit, tmp);
4121 }
4122 out:
4123 *mem_limit = min_limit;
4124 *memsw_limit = min_memsw_limit;
4125 return;
4126 }
4127
4128 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4129 {
4130 struct mem_cgroup *mem;
4131 int type, name;
4132
4133 mem = mem_cgroup_from_cont(cont);
4134 type = MEMFILE_TYPE(event);
4135 name = MEMFILE_ATTR(event);
4136 switch (name) {
4137 case RES_MAX_USAGE:
4138 if (type == _MEM)
4139 res_counter_reset_max(&mem->res);
4140 else
4141 res_counter_reset_max(&mem->memsw);
4142 break;
4143 case RES_FAILCNT:
4144 if (type == _MEM)
4145 res_counter_reset_failcnt(&mem->res);
4146 else
4147 res_counter_reset_failcnt(&mem->memsw);
4148 break;
4149 }
4150
4151 return 0;
4152 }
4153
4154 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4155 struct cftype *cft)
4156 {
4157 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4158 }
4159
4160 #ifdef CONFIG_MMU
4161 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4162 struct cftype *cft, u64 val)
4163 {
4164 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4165
4166 if (val >= (1 << NR_MOVE_TYPE))
4167 return -EINVAL;
4168 /*
4169 * We check this value several times in both in can_attach() and
4170 * attach(), so we need cgroup lock to prevent this value from being
4171 * inconsistent.
4172 */
4173 cgroup_lock();
4174 mem->move_charge_at_immigrate = val;
4175 cgroup_unlock();
4176
4177 return 0;
4178 }
4179 #else
4180 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4181 struct cftype *cft, u64 val)
4182 {
4183 return -ENOSYS;
4184 }
4185 #endif
4186
4187
4188 /* For read statistics */
4189 enum {
4190 MCS_CACHE,
4191 MCS_RSS,
4192 MCS_FILE_MAPPED,
4193 MCS_PGPGIN,
4194 MCS_PGPGOUT,
4195 MCS_SWAP,
4196 MCS_PGFAULT,
4197 MCS_PGMAJFAULT,
4198 MCS_INACTIVE_ANON,
4199 MCS_ACTIVE_ANON,
4200 MCS_INACTIVE_FILE,
4201 MCS_ACTIVE_FILE,
4202 MCS_UNEVICTABLE,
4203 NR_MCS_STAT,
4204 };
4205
4206 struct mcs_total_stat {
4207 s64 stat[NR_MCS_STAT];
4208 };
4209
4210 struct {
4211 char *local_name;
4212 char *total_name;
4213 } memcg_stat_strings[NR_MCS_STAT] = {
4214 {"cache", "total_cache"},
4215 {"rss", "total_rss"},
4216 {"mapped_file", "total_mapped_file"},
4217 {"pgpgin", "total_pgpgin"},
4218 {"pgpgout", "total_pgpgout"},
4219 {"swap", "total_swap"},
4220 {"pgfault", "total_pgfault"},
4221 {"pgmajfault", "total_pgmajfault"},
4222 {"inactive_anon", "total_inactive_anon"},
4223 {"active_anon", "total_active_anon"},
4224 {"inactive_file", "total_inactive_file"},
4225 {"active_file", "total_active_file"},
4226 {"unevictable", "total_unevictable"}
4227 };
4228
4229
4230 static void
4231 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4232 {
4233 s64 val;
4234
4235 /* per cpu stat */
4236 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
4237 s->stat[MCS_CACHE] += val * PAGE_SIZE;
4238 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
4239 s->stat[MCS_RSS] += val * PAGE_SIZE;
4240 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
4241 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4242 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
4243 s->stat[MCS_PGPGIN] += val;
4244 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
4245 s->stat[MCS_PGPGOUT] += val;
4246 if (do_swap_account) {
4247 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
4248 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4249 }
4250 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT);
4251 s->stat[MCS_PGFAULT] += val;
4252 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT);
4253 s->stat[MCS_PGMAJFAULT] += val;
4254
4255 /* per zone stat */
4256 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_ANON));
4257 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4258 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_ANON));
4259 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4260 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_FILE));
4261 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4262 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_FILE));
4263 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4264 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_UNEVICTABLE));
4265 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4266 }
4267
4268 static void
4269 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4270 {
4271 struct mem_cgroup *iter;
4272
4273 for_each_mem_cgroup_tree(iter, mem)
4274 mem_cgroup_get_local_stat(iter, s);
4275 }
4276
4277 #ifdef CONFIG_NUMA
4278 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4279 {
4280 int nid;
4281 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4282 unsigned long node_nr;
4283 struct cgroup *cont = m->private;
4284 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4285
4286 total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4287 seq_printf(m, "total=%lu", total_nr);
4288 for_each_node_state(nid, N_HIGH_MEMORY) {
4289 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4290 seq_printf(m, " N%d=%lu", nid, node_nr);
4291 }
4292 seq_putc(m, '\n');
4293
4294 file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4295 seq_printf(m, "file=%lu", file_nr);
4296 for_each_node_state(nid, N_HIGH_MEMORY) {
4297 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4298 LRU_ALL_FILE);
4299 seq_printf(m, " N%d=%lu", nid, node_nr);
4300 }
4301 seq_putc(m, '\n');
4302
4303 anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4304 seq_printf(m, "anon=%lu", anon_nr);
4305 for_each_node_state(nid, N_HIGH_MEMORY) {
4306 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4307 LRU_ALL_ANON);
4308 seq_printf(m, " N%d=%lu", nid, node_nr);
4309 }
4310 seq_putc(m, '\n');
4311
4312 unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4313 seq_printf(m, "unevictable=%lu", unevictable_nr);
4314 for_each_node_state(nid, N_HIGH_MEMORY) {
4315 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4316 BIT(LRU_UNEVICTABLE));
4317 seq_printf(m, " N%d=%lu", nid, node_nr);
4318 }
4319 seq_putc(m, '\n');
4320 return 0;
4321 }
4322 #endif /* CONFIG_NUMA */
4323
4324 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4325 struct cgroup_map_cb *cb)
4326 {
4327 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4328 struct mcs_total_stat mystat;
4329 int i;
4330
4331 memset(&mystat, 0, sizeof(mystat));
4332 mem_cgroup_get_local_stat(mem_cont, &mystat);
4333
4334
4335 for (i = 0; i < NR_MCS_STAT; i++) {
4336 if (i == MCS_SWAP && !do_swap_account)
4337 continue;
4338 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4339 }
4340
4341 /* Hierarchical information */
4342 {
4343 unsigned long long limit, memsw_limit;
4344 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4345 cb->fill(cb, "hierarchical_memory_limit", limit);
4346 if (do_swap_account)
4347 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4348 }
4349
4350 memset(&mystat, 0, sizeof(mystat));
4351 mem_cgroup_get_total_stat(mem_cont, &mystat);
4352 for (i = 0; i < NR_MCS_STAT; i++) {
4353 if (i == MCS_SWAP && !do_swap_account)
4354 continue;
4355 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4356 }
4357
4358 #ifdef CONFIG_DEBUG_VM
4359 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
4360
4361 {
4362 int nid, zid;
4363 struct mem_cgroup_per_zone *mz;
4364 unsigned long recent_rotated[2] = {0, 0};
4365 unsigned long recent_scanned[2] = {0, 0};
4366
4367 for_each_online_node(nid)
4368 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4369 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4370
4371 recent_rotated[0] +=
4372 mz->reclaim_stat.recent_rotated[0];
4373 recent_rotated[1] +=
4374 mz->reclaim_stat.recent_rotated[1];
4375 recent_scanned[0] +=
4376 mz->reclaim_stat.recent_scanned[0];
4377 recent_scanned[1] +=
4378 mz->reclaim_stat.recent_scanned[1];
4379 }
4380 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4381 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4382 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4383 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4384 }
4385 #endif
4386
4387 return 0;
4388 }
4389
4390 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4391 {
4392 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4393
4394 return mem_cgroup_swappiness(memcg);
4395 }
4396
4397 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4398 u64 val)
4399 {
4400 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4401 struct mem_cgroup *parent;
4402
4403 if (val > 100)
4404 return -EINVAL;
4405
4406 if (cgrp->parent == NULL)
4407 return -EINVAL;
4408
4409 parent = mem_cgroup_from_cont(cgrp->parent);
4410
4411 cgroup_lock();
4412
4413 /* If under hierarchy, only empty-root can set this value */
4414 if ((parent->use_hierarchy) ||
4415 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4416 cgroup_unlock();
4417 return -EINVAL;
4418 }
4419
4420 memcg->swappiness = val;
4421
4422 cgroup_unlock();
4423
4424 return 0;
4425 }
4426
4427 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4428 {
4429 struct mem_cgroup_threshold_ary *t;
4430 u64 usage;
4431 int i;
4432
4433 rcu_read_lock();
4434 if (!swap)
4435 t = rcu_dereference(memcg->thresholds.primary);
4436 else
4437 t = rcu_dereference(memcg->memsw_thresholds.primary);
4438
4439 if (!t)
4440 goto unlock;
4441
4442 usage = mem_cgroup_usage(memcg, swap);
4443
4444 /*
4445 * current_threshold points to threshold just below usage.
4446 * If it's not true, a threshold was crossed after last
4447 * call of __mem_cgroup_threshold().
4448 */
4449 i = t->current_threshold;
4450
4451 /*
4452 * Iterate backward over array of thresholds starting from
4453 * current_threshold and check if a threshold is crossed.
4454 * If none of thresholds below usage is crossed, we read
4455 * only one element of the array here.
4456 */
4457 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4458 eventfd_signal(t->entries[i].eventfd, 1);
4459
4460 /* i = current_threshold + 1 */
4461 i++;
4462
4463 /*
4464 * Iterate forward over array of thresholds starting from
4465 * current_threshold+1 and check if a threshold is crossed.
4466 * If none of thresholds above usage is crossed, we read
4467 * only one element of the array here.
4468 */
4469 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4470 eventfd_signal(t->entries[i].eventfd, 1);
4471
4472 /* Update current_threshold */
4473 t->current_threshold = i - 1;
4474 unlock:
4475 rcu_read_unlock();
4476 }
4477
4478 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4479 {
4480 while (memcg) {
4481 __mem_cgroup_threshold(memcg, false);
4482 if (do_swap_account)
4483 __mem_cgroup_threshold(memcg, true);
4484
4485 memcg = parent_mem_cgroup(memcg);
4486 }
4487 }
4488
4489 static int compare_thresholds(const void *a, const void *b)
4490 {
4491 const struct mem_cgroup_threshold *_a = a;
4492 const struct mem_cgroup_threshold *_b = b;
4493
4494 return _a->threshold - _b->threshold;
4495 }
4496
4497 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
4498 {
4499 struct mem_cgroup_eventfd_list *ev;
4500
4501 list_for_each_entry(ev, &mem->oom_notify, list)
4502 eventfd_signal(ev->eventfd, 1);
4503 return 0;
4504 }
4505
4506 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
4507 {
4508 struct mem_cgroup *iter;
4509
4510 for_each_mem_cgroup_tree(iter, mem)
4511 mem_cgroup_oom_notify_cb(iter);
4512 }
4513
4514 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4515 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4516 {
4517 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4518 struct mem_cgroup_thresholds *thresholds;
4519 struct mem_cgroup_threshold_ary *new;
4520 int type = MEMFILE_TYPE(cft->private);
4521 u64 threshold, usage;
4522 int i, size, ret;
4523
4524 ret = res_counter_memparse_write_strategy(args, &threshold);
4525 if (ret)
4526 return ret;
4527
4528 mutex_lock(&memcg->thresholds_lock);
4529
4530 if (type == _MEM)
4531 thresholds = &memcg->thresholds;
4532 else if (type == _MEMSWAP)
4533 thresholds = &memcg->memsw_thresholds;
4534 else
4535 BUG();
4536
4537 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4538
4539 /* Check if a threshold crossed before adding a new one */
4540 if (thresholds->primary)
4541 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4542
4543 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4544
4545 /* Allocate memory for new array of thresholds */
4546 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4547 GFP_KERNEL);
4548 if (!new) {
4549 ret = -ENOMEM;
4550 goto unlock;
4551 }
4552 new->size = size;
4553
4554 /* Copy thresholds (if any) to new array */
4555 if (thresholds->primary) {
4556 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4557 sizeof(struct mem_cgroup_threshold));
4558 }
4559
4560 /* Add new threshold */
4561 new->entries[size - 1].eventfd = eventfd;
4562 new->entries[size - 1].threshold = threshold;
4563
4564 /* Sort thresholds. Registering of new threshold isn't time-critical */
4565 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4566 compare_thresholds, NULL);
4567
4568 /* Find current threshold */
4569 new->current_threshold = -1;
4570 for (i = 0; i < size; i++) {
4571 if (new->entries[i].threshold < usage) {
4572 /*
4573 * new->current_threshold will not be used until
4574 * rcu_assign_pointer(), so it's safe to increment
4575 * it here.
4576 */
4577 ++new->current_threshold;
4578 }
4579 }
4580
4581 /* Free old spare buffer and save old primary buffer as spare */
4582 kfree(thresholds->spare);
4583 thresholds->spare = thresholds->primary;
4584
4585 rcu_assign_pointer(thresholds->primary, new);
4586
4587 /* To be sure that nobody uses thresholds */
4588 synchronize_rcu();
4589
4590 unlock:
4591 mutex_unlock(&memcg->thresholds_lock);
4592
4593 return ret;
4594 }
4595
4596 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4597 struct cftype *cft, struct eventfd_ctx *eventfd)
4598 {
4599 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4600 struct mem_cgroup_thresholds *thresholds;
4601 struct mem_cgroup_threshold_ary *new;
4602 int type = MEMFILE_TYPE(cft->private);
4603 u64 usage;
4604 int i, j, size;
4605
4606 mutex_lock(&memcg->thresholds_lock);
4607 if (type == _MEM)
4608 thresholds = &memcg->thresholds;
4609 else if (type == _MEMSWAP)
4610 thresholds = &memcg->memsw_thresholds;
4611 else
4612 BUG();
4613
4614 /*
4615 * Something went wrong if we trying to unregister a threshold
4616 * if we don't have thresholds
4617 */
4618 BUG_ON(!thresholds);
4619
4620 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4621
4622 /* Check if a threshold crossed before removing */
4623 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4624
4625 /* Calculate new number of threshold */
4626 size = 0;
4627 for (i = 0; i < thresholds->primary->size; i++) {
4628 if (thresholds->primary->entries[i].eventfd != eventfd)
4629 size++;
4630 }
4631
4632 new = thresholds->spare;
4633
4634 /* Set thresholds array to NULL if we don't have thresholds */
4635 if (!size) {
4636 kfree(new);
4637 new = NULL;
4638 goto swap_buffers;
4639 }
4640
4641 new->size = size;
4642
4643 /* Copy thresholds and find current threshold */
4644 new->current_threshold = -1;
4645 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4646 if (thresholds->primary->entries[i].eventfd == eventfd)
4647 continue;
4648
4649 new->entries[j] = thresholds->primary->entries[i];
4650 if (new->entries[j].threshold < usage) {
4651 /*
4652 * new->current_threshold will not be used
4653 * until rcu_assign_pointer(), so it's safe to increment
4654 * it here.
4655 */
4656 ++new->current_threshold;
4657 }
4658 j++;
4659 }
4660
4661 swap_buffers:
4662 /* Swap primary and spare array */
4663 thresholds->spare = thresholds->primary;
4664 rcu_assign_pointer(thresholds->primary, new);
4665
4666 /* To be sure that nobody uses thresholds */
4667 synchronize_rcu();
4668
4669 mutex_unlock(&memcg->thresholds_lock);
4670 }
4671
4672 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4673 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4674 {
4675 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4676 struct mem_cgroup_eventfd_list *event;
4677 int type = MEMFILE_TYPE(cft->private);
4678
4679 BUG_ON(type != _OOM_TYPE);
4680 event = kmalloc(sizeof(*event), GFP_KERNEL);
4681 if (!event)
4682 return -ENOMEM;
4683
4684 spin_lock(&memcg_oom_lock);
4685
4686 event->eventfd = eventfd;
4687 list_add(&event->list, &memcg->oom_notify);
4688
4689 /* already in OOM ? */
4690 if (atomic_read(&memcg->under_oom))
4691 eventfd_signal(eventfd, 1);
4692 spin_unlock(&memcg_oom_lock);
4693
4694 return 0;
4695 }
4696
4697 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4698 struct cftype *cft, struct eventfd_ctx *eventfd)
4699 {
4700 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4701 struct mem_cgroup_eventfd_list *ev, *tmp;
4702 int type = MEMFILE_TYPE(cft->private);
4703
4704 BUG_ON(type != _OOM_TYPE);
4705
4706 spin_lock(&memcg_oom_lock);
4707
4708 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4709 if (ev->eventfd == eventfd) {
4710 list_del(&ev->list);
4711 kfree(ev);
4712 }
4713 }
4714
4715 spin_unlock(&memcg_oom_lock);
4716 }
4717
4718 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4719 struct cftype *cft, struct cgroup_map_cb *cb)
4720 {
4721 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4722
4723 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4724
4725 if (atomic_read(&mem->under_oom))
4726 cb->fill(cb, "under_oom", 1);
4727 else
4728 cb->fill(cb, "under_oom", 0);
4729 return 0;
4730 }
4731
4732 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4733 struct cftype *cft, u64 val)
4734 {
4735 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4736 struct mem_cgroup *parent;
4737
4738 /* cannot set to root cgroup and only 0 and 1 are allowed */
4739 if (!cgrp->parent || !((val == 0) || (val == 1)))
4740 return -EINVAL;
4741
4742 parent = mem_cgroup_from_cont(cgrp->parent);
4743
4744 cgroup_lock();
4745 /* oom-kill-disable is a flag for subhierarchy. */
4746 if ((parent->use_hierarchy) ||
4747 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4748 cgroup_unlock();
4749 return -EINVAL;
4750 }
4751 mem->oom_kill_disable = val;
4752 if (!val)
4753 memcg_oom_recover(mem);
4754 cgroup_unlock();
4755 return 0;
4756 }
4757
4758 #ifdef CONFIG_NUMA
4759 static const struct file_operations mem_control_numa_stat_file_operations = {
4760 .read = seq_read,
4761 .llseek = seq_lseek,
4762 .release = single_release,
4763 };
4764
4765 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4766 {
4767 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4768
4769 file->f_op = &mem_control_numa_stat_file_operations;
4770 return single_open(file, mem_control_numa_stat_show, cont);
4771 }
4772 #endif /* CONFIG_NUMA */
4773
4774 static int mem_cgroup_vmscan_stat_read(struct cgroup *cgrp,
4775 struct cftype *cft,
4776 struct cgroup_map_cb *cb)
4777 {
4778 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4779 char string[64];
4780 int i;
4781
4782 for (i = 0; i < NR_SCANSTATS; i++) {
4783 strcpy(string, scanstat_string[i]);
4784 strcat(string, SCANSTAT_WORD_LIMIT);
4785 cb->fill(cb, string, mem->scanstat.stats[SCAN_BY_LIMIT][i]);
4786 }
4787
4788 for (i = 0; i < NR_SCANSTATS; i++) {
4789 strcpy(string, scanstat_string[i]);
4790 strcat(string, SCANSTAT_WORD_SYSTEM);
4791 cb->fill(cb, string, mem->scanstat.stats[SCAN_BY_SYSTEM][i]);
4792 }
4793
4794 for (i = 0; i < NR_SCANSTATS; i++) {
4795 strcpy(string, scanstat_string[i]);
4796 strcat(string, SCANSTAT_WORD_LIMIT);
4797 strcat(string, SCANSTAT_WORD_HIERARCHY);
4798 cb->fill(cb, string, mem->scanstat.rootstats[SCAN_BY_LIMIT][i]);
4799 }
4800 for (i = 0; i < NR_SCANSTATS; i++) {
4801 strcpy(string, scanstat_string[i]);
4802 strcat(string, SCANSTAT_WORD_SYSTEM);
4803 strcat(string, SCANSTAT_WORD_HIERARCHY);
4804 cb->fill(cb, string, mem->scanstat.rootstats[SCAN_BY_SYSTEM][i]);
4805 }
4806 return 0;
4807 }
4808
4809 static int mem_cgroup_reset_vmscan_stat(struct cgroup *cgrp,
4810 unsigned int event)
4811 {
4812 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4813
4814 spin_lock(&mem->scanstat.lock);
4815 memset(&mem->scanstat.stats, 0, sizeof(mem->scanstat.stats));
4816 memset(&mem->scanstat.rootstats, 0, sizeof(mem->scanstat.rootstats));
4817 spin_unlock(&mem->scanstat.lock);
4818 return 0;
4819 }
4820
4821
4822 static struct cftype mem_cgroup_files[] = {
4823 {
4824 .name = "usage_in_bytes",
4825 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4826 .read_u64 = mem_cgroup_read,
4827 .register_event = mem_cgroup_usage_register_event,
4828 .unregister_event = mem_cgroup_usage_unregister_event,
4829 },
4830 {
4831 .name = "max_usage_in_bytes",
4832 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4833 .trigger = mem_cgroup_reset,
4834 .read_u64 = mem_cgroup_read,
4835 },
4836 {
4837 .name = "limit_in_bytes",
4838 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4839 .write_string = mem_cgroup_write,
4840 .read_u64 = mem_cgroup_read,
4841 },
4842 {
4843 .name = "soft_limit_in_bytes",
4844 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4845 .write_string = mem_cgroup_write,
4846 .read_u64 = mem_cgroup_read,
4847 },
4848 {
4849 .name = "failcnt",
4850 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4851 .trigger = mem_cgroup_reset,
4852 .read_u64 = mem_cgroup_read,
4853 },
4854 {
4855 .name = "stat",
4856 .read_map = mem_control_stat_show,
4857 },
4858 {
4859 .name = "force_empty",
4860 .trigger = mem_cgroup_force_empty_write,
4861 },
4862 {
4863 .name = "use_hierarchy",
4864 .write_u64 = mem_cgroup_hierarchy_write,
4865 .read_u64 = mem_cgroup_hierarchy_read,
4866 },
4867 {
4868 .name = "swappiness",
4869 .read_u64 = mem_cgroup_swappiness_read,
4870 .write_u64 = mem_cgroup_swappiness_write,
4871 },
4872 {
4873 .name = "move_charge_at_immigrate",
4874 .read_u64 = mem_cgroup_move_charge_read,
4875 .write_u64 = mem_cgroup_move_charge_write,
4876 },
4877 {
4878 .name = "oom_control",
4879 .read_map = mem_cgroup_oom_control_read,
4880 .write_u64 = mem_cgroup_oom_control_write,
4881 .register_event = mem_cgroup_oom_register_event,
4882 .unregister_event = mem_cgroup_oom_unregister_event,
4883 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4884 },
4885 #ifdef CONFIG_NUMA
4886 {
4887 .name = "numa_stat",
4888 .open = mem_control_numa_stat_open,
4889 .mode = S_IRUGO,
4890 },
4891 #endif
4892 {
4893 .name = "vmscan_stat",
4894 .read_map = mem_cgroup_vmscan_stat_read,
4895 .trigger = mem_cgroup_reset_vmscan_stat,
4896 },
4897 };
4898
4899 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4900 static struct cftype memsw_cgroup_files[] = {
4901 {
4902 .name = "memsw.usage_in_bytes",
4903 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4904 .read_u64 = mem_cgroup_read,
4905 .register_event = mem_cgroup_usage_register_event,
4906 .unregister_event = mem_cgroup_usage_unregister_event,
4907 },
4908 {
4909 .name = "memsw.max_usage_in_bytes",
4910 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4911 .trigger = mem_cgroup_reset,
4912 .read_u64 = mem_cgroup_read,
4913 },
4914 {
4915 .name = "memsw.limit_in_bytes",
4916 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4917 .write_string = mem_cgroup_write,
4918 .read_u64 = mem_cgroup_read,
4919 },
4920 {
4921 .name = "memsw.failcnt",
4922 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4923 .trigger = mem_cgroup_reset,
4924 .read_u64 = mem_cgroup_read,
4925 },
4926 };
4927
4928 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4929 {
4930 if (!do_swap_account)
4931 return 0;
4932 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4933 ARRAY_SIZE(memsw_cgroup_files));
4934 };
4935 #else
4936 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4937 {
4938 return 0;
4939 }
4940 #endif
4941
4942 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4943 {
4944 struct mem_cgroup_per_node *pn;
4945 struct mem_cgroup_per_zone *mz;
4946 enum lru_list l;
4947 int zone, tmp = node;
4948 /*
4949 * This routine is called against possible nodes.
4950 * But it's BUG to call kmalloc() against offline node.
4951 *
4952 * TODO: this routine can waste much memory for nodes which will
4953 * never be onlined. It's better to use memory hotplug callback
4954 * function.
4955 */
4956 if (!node_state(node, N_NORMAL_MEMORY))
4957 tmp = -1;
4958 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4959 if (!pn)
4960 return 1;
4961
4962 mem->info.nodeinfo[node] = pn;
4963 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4964 mz = &pn->zoneinfo[zone];
4965 for_each_lru(l)
4966 INIT_LIST_HEAD(&mz->lists[l]);
4967 mz->usage_in_excess = 0;
4968 mz->on_tree = false;
4969 mz->mem = mem;
4970 }
4971 return 0;
4972 }
4973
4974 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4975 {
4976 kfree(mem->info.nodeinfo[node]);
4977 }
4978
4979 static struct mem_cgroup *mem_cgroup_alloc(void)
4980 {
4981 struct mem_cgroup *mem;
4982 int size = sizeof(struct mem_cgroup);
4983
4984 /* Can be very big if MAX_NUMNODES is very big */
4985 if (size < PAGE_SIZE)
4986 mem = kzalloc(size, GFP_KERNEL);
4987 else
4988 mem = vzalloc(size);
4989
4990 if (!mem)
4991 return NULL;
4992
4993 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4994 if (!mem->stat)
4995 goto out_free;
4996 spin_lock_init(&mem->pcp_counter_lock);
4997 return mem;
4998
4999 out_free:
5000 if (size < PAGE_SIZE)
5001 kfree(mem);
5002 else
5003 vfree(mem);
5004 return NULL;
5005 }
5006
5007 /*
5008 * At destroying mem_cgroup, references from swap_cgroup can remain.
5009 * (scanning all at force_empty is too costly...)
5010 *
5011 * Instead of clearing all references at force_empty, we remember
5012 * the number of reference from swap_cgroup and free mem_cgroup when
5013 * it goes down to 0.
5014 *
5015 * Removal of cgroup itself succeeds regardless of refs from swap.
5016 */
5017
5018 static void __mem_cgroup_free(struct mem_cgroup *mem)
5019 {
5020 int node;
5021
5022 mem_cgroup_remove_from_trees(mem);
5023 free_css_id(&mem_cgroup_subsys, &mem->css);
5024
5025 for_each_node_state(node, N_POSSIBLE)
5026 free_mem_cgroup_per_zone_info(mem, node);
5027
5028 free_percpu(mem->stat);
5029 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
5030 kfree(mem);
5031 else
5032 vfree(mem);
5033 }
5034
5035 static void mem_cgroup_get(struct mem_cgroup *mem)
5036 {
5037 atomic_inc(&mem->refcnt);
5038 }
5039
5040 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
5041 {
5042 if (atomic_sub_and_test(count, &mem->refcnt)) {
5043 struct mem_cgroup *parent = parent_mem_cgroup(mem);
5044 __mem_cgroup_free(mem);
5045 if (parent)
5046 mem_cgroup_put(parent);
5047 }
5048 }
5049
5050 static void mem_cgroup_put(struct mem_cgroup *mem)
5051 {
5052 __mem_cgroup_put(mem, 1);
5053 }
5054
5055 /*
5056 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
5057 */
5058 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
5059 {
5060 if (!mem->res.parent)
5061 return NULL;
5062 return mem_cgroup_from_res_counter(mem->res.parent, res);
5063 }
5064
5065 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5066 static void __init enable_swap_cgroup(void)
5067 {
5068 if (!mem_cgroup_disabled() && really_do_swap_account)
5069 do_swap_account = 1;
5070 }
5071 #else
5072 static void __init enable_swap_cgroup(void)
5073 {
5074 }
5075 #endif
5076
5077 static int mem_cgroup_soft_limit_tree_init(void)
5078 {
5079 struct mem_cgroup_tree_per_node *rtpn;
5080 struct mem_cgroup_tree_per_zone *rtpz;
5081 int tmp, node, zone;
5082
5083 for_each_node_state(node, N_POSSIBLE) {
5084 tmp = node;
5085 if (!node_state(node, N_NORMAL_MEMORY))
5086 tmp = -1;
5087 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
5088 if (!rtpn)
5089 return 1;
5090
5091 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5092
5093 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5094 rtpz = &rtpn->rb_tree_per_zone[zone];
5095 rtpz->rb_root = RB_ROOT;
5096 spin_lock_init(&rtpz->lock);
5097 }
5098 }
5099 return 0;
5100 }
5101
5102 static struct cgroup_subsys_state * __ref
5103 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
5104 {
5105 struct mem_cgroup *mem, *parent;
5106 long error = -ENOMEM;
5107 int node;
5108
5109 mem = mem_cgroup_alloc();
5110 if (!mem)
5111 return ERR_PTR(error);
5112
5113 for_each_node_state(node, N_POSSIBLE)
5114 if (alloc_mem_cgroup_per_zone_info(mem, node))
5115 goto free_out;
5116
5117 /* root ? */
5118 if (cont->parent == NULL) {
5119 int cpu;
5120 enable_swap_cgroup();
5121 parent = NULL;
5122 root_mem_cgroup = mem;
5123 if (mem_cgroup_soft_limit_tree_init())
5124 goto free_out;
5125 for_each_possible_cpu(cpu) {
5126 struct memcg_stock_pcp *stock =
5127 &per_cpu(memcg_stock, cpu);
5128 INIT_WORK(&stock->work, drain_local_stock);
5129 }
5130 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5131 } else {
5132 parent = mem_cgroup_from_cont(cont->parent);
5133 mem->use_hierarchy = parent->use_hierarchy;
5134 mem->oom_kill_disable = parent->oom_kill_disable;
5135 }
5136
5137 if (parent && parent->use_hierarchy) {
5138 res_counter_init(&mem->res, &parent->res);
5139 res_counter_init(&mem->memsw, &parent->memsw);
5140 /*
5141 * We increment refcnt of the parent to ensure that we can
5142 * safely access it on res_counter_charge/uncharge.
5143 * This refcnt will be decremented when freeing this
5144 * mem_cgroup(see mem_cgroup_put).
5145 */
5146 mem_cgroup_get(parent);
5147 } else {
5148 res_counter_init(&mem->res, NULL);
5149 res_counter_init(&mem->memsw, NULL);
5150 }
5151 mem->last_scanned_child = 0;
5152 mem->last_scanned_node = MAX_NUMNODES;
5153 INIT_LIST_HEAD(&mem->oom_notify);
5154
5155 if (parent)
5156 mem->swappiness = mem_cgroup_swappiness(parent);
5157 atomic_set(&mem->refcnt, 1);
5158 mem->move_charge_at_immigrate = 0;
5159 mutex_init(&mem->thresholds_lock);
5160 spin_lock_init(&mem->scanstat.lock);
5161 return &mem->css;
5162 free_out:
5163 __mem_cgroup_free(mem);
5164 root_mem_cgroup = NULL;
5165 return ERR_PTR(error);
5166 }
5167
5168 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
5169 struct cgroup *cont)
5170 {
5171 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
5172
5173 return mem_cgroup_force_empty(mem, false);
5174 }
5175
5176 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
5177 struct cgroup *cont)
5178 {
5179 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
5180
5181 mem_cgroup_put(mem);
5182 }
5183
5184 static int mem_cgroup_populate(struct cgroup_subsys *ss,
5185 struct cgroup *cont)
5186 {
5187 int ret;
5188
5189 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5190 ARRAY_SIZE(mem_cgroup_files));
5191
5192 if (!ret)
5193 ret = register_memsw_files(cont, ss);
5194 return ret;
5195 }
5196
5197 #ifdef CONFIG_MMU
5198 /* Handlers for move charge at task migration. */
5199 #define PRECHARGE_COUNT_AT_ONCE 256
5200 static int mem_cgroup_do_precharge(unsigned long count)
5201 {
5202 int ret = 0;
5203 int batch_count = PRECHARGE_COUNT_AT_ONCE;
5204 struct mem_cgroup *mem = mc.to;
5205
5206 if (mem_cgroup_is_root(mem)) {
5207 mc.precharge += count;
5208 /* we don't need css_get for root */
5209 return ret;
5210 }
5211 /* try to charge at once */
5212 if (count > 1) {
5213 struct res_counter *dummy;
5214 /*
5215 * "mem" cannot be under rmdir() because we've already checked
5216 * by cgroup_lock_live_cgroup() that it is not removed and we
5217 * are still under the same cgroup_mutex. So we can postpone
5218 * css_get().
5219 */
5220 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
5221 goto one_by_one;
5222 if (do_swap_account && res_counter_charge(&mem->memsw,
5223 PAGE_SIZE * count, &dummy)) {
5224 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
5225 goto one_by_one;
5226 }
5227 mc.precharge += count;
5228 return ret;
5229 }
5230 one_by_one:
5231 /* fall back to one by one charge */
5232 while (count--) {
5233 if (signal_pending(current)) {
5234 ret = -EINTR;
5235 break;
5236 }
5237 if (!batch_count--) {
5238 batch_count = PRECHARGE_COUNT_AT_ONCE;
5239 cond_resched();
5240 }
5241 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
5242 if (ret || !mem)
5243 /* mem_cgroup_clear_mc() will do uncharge later */
5244 return -ENOMEM;
5245 mc.precharge++;
5246 }
5247 return ret;
5248 }
5249
5250 /**
5251 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5252 * @vma: the vma the pte to be checked belongs
5253 * @addr: the address corresponding to the pte to be checked
5254 * @ptent: the pte to be checked
5255 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5256 *
5257 * Returns
5258 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5259 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5260 * move charge. if @target is not NULL, the page is stored in target->page
5261 * with extra refcnt got(Callers should handle it).
5262 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5263 * target for charge migration. if @target is not NULL, the entry is stored
5264 * in target->ent.
5265 *
5266 * Called with pte lock held.
5267 */
5268 union mc_target {
5269 struct page *page;
5270 swp_entry_t ent;
5271 };
5272
5273 enum mc_target_type {
5274 MC_TARGET_NONE, /* not used */
5275 MC_TARGET_PAGE,
5276 MC_TARGET_SWAP,
5277 };
5278
5279 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5280 unsigned long addr, pte_t ptent)
5281 {
5282 struct page *page = vm_normal_page(vma, addr, ptent);
5283
5284 if (!page || !page_mapped(page))
5285 return NULL;
5286 if (PageAnon(page)) {
5287 /* we don't move shared anon */
5288 if (!move_anon() || page_mapcount(page) > 2)
5289 return NULL;
5290 } else if (!move_file())
5291 /* we ignore mapcount for file pages */
5292 return NULL;
5293 if (!get_page_unless_zero(page))
5294 return NULL;
5295
5296 return page;
5297 }
5298
5299 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5300 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5301 {
5302 int usage_count;
5303 struct page *page = NULL;
5304 swp_entry_t ent = pte_to_swp_entry(ptent);
5305
5306 if (!move_anon() || non_swap_entry(ent))
5307 return NULL;
5308 usage_count = mem_cgroup_count_swap_user(ent, &page);
5309 if (usage_count > 1) { /* we don't move shared anon */
5310 if (page)
5311 put_page(page);
5312 return NULL;
5313 }
5314 if (do_swap_account)
5315 entry->val = ent.val;
5316
5317 return page;
5318 }
5319
5320 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5321 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5322 {
5323 struct page *page = NULL;
5324 struct inode *inode;
5325 struct address_space *mapping;
5326 pgoff_t pgoff;
5327
5328 if (!vma->vm_file) /* anonymous vma */
5329 return NULL;
5330 if (!move_file())
5331 return NULL;
5332
5333 inode = vma->vm_file->f_path.dentry->d_inode;
5334 mapping = vma->vm_file->f_mapping;
5335 if (pte_none(ptent))
5336 pgoff = linear_page_index(vma, addr);
5337 else /* pte_file(ptent) is true */
5338 pgoff = pte_to_pgoff(ptent);
5339
5340 /* page is moved even if it's not RSS of this task(page-faulted). */
5341 if (!mapping_cap_swap_backed(mapping)) { /* normal file */
5342 page = find_get_page(mapping, pgoff);
5343 } else { /* shmem/tmpfs file. we should take account of swap too. */
5344 swp_entry_t ent;
5345 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
5346 if (do_swap_account)
5347 entry->val = ent.val;
5348 }
5349
5350 return page;
5351 }
5352
5353 static int is_target_pte_for_mc(struct vm_area_struct *vma,
5354 unsigned long addr, pte_t ptent, union mc_target *target)
5355 {
5356 struct page *page = NULL;
5357 struct page_cgroup *pc;
5358 int ret = 0;
5359 swp_entry_t ent = { .val = 0 };
5360
5361 if (pte_present(ptent))
5362 page = mc_handle_present_pte(vma, addr, ptent);
5363 else if (is_swap_pte(ptent))
5364 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5365 else if (pte_none(ptent) || pte_file(ptent))
5366 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5367
5368 if (!page && !ent.val)
5369 return 0;
5370 if (page) {
5371 pc = lookup_page_cgroup(page);
5372 /*
5373 * Do only loose check w/o page_cgroup lock.
5374 * mem_cgroup_move_account() checks the pc is valid or not under
5375 * the lock.
5376 */
5377 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5378 ret = MC_TARGET_PAGE;
5379 if (target)
5380 target->page = page;
5381 }
5382 if (!ret || !target)
5383 put_page(page);
5384 }
5385 /* There is a swap entry and a page doesn't exist or isn't charged */
5386 if (ent.val && !ret &&
5387 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5388 ret = MC_TARGET_SWAP;
5389 if (target)
5390 target->ent = ent;
5391 }
5392 return ret;
5393 }
5394
5395 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5396 unsigned long addr, unsigned long end,
5397 struct mm_walk *walk)
5398 {
5399 struct vm_area_struct *vma = walk->private;
5400 pte_t *pte;
5401 spinlock_t *ptl;
5402
5403 split_huge_page_pmd(walk->mm, pmd);
5404
5405 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5406 for (; addr != end; pte++, addr += PAGE_SIZE)
5407 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5408 mc.precharge++; /* increment precharge temporarily */
5409 pte_unmap_unlock(pte - 1, ptl);
5410 cond_resched();
5411
5412 return 0;
5413 }
5414
5415 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5416 {
5417 unsigned long precharge;
5418 struct vm_area_struct *vma;
5419
5420 down_read(&mm->mmap_sem);
5421 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5422 struct mm_walk mem_cgroup_count_precharge_walk = {
5423 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5424 .mm = mm,
5425 .private = vma,
5426 };
5427 if (is_vm_hugetlb_page(vma))
5428 continue;
5429 walk_page_range(vma->vm_start, vma->vm_end,
5430 &mem_cgroup_count_precharge_walk);
5431 }
5432 up_read(&mm->mmap_sem);
5433
5434 precharge = mc.precharge;
5435 mc.precharge = 0;
5436
5437 return precharge;
5438 }
5439
5440 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5441 {
5442 unsigned long precharge = mem_cgroup_count_precharge(mm);
5443
5444 VM_BUG_ON(mc.moving_task);
5445 mc.moving_task = current;
5446 return mem_cgroup_do_precharge(precharge);
5447 }
5448
5449 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5450 static void __mem_cgroup_clear_mc(void)
5451 {
5452 struct mem_cgroup *from = mc.from;
5453 struct mem_cgroup *to = mc.to;
5454
5455 /* we must uncharge all the leftover precharges from mc.to */
5456 if (mc.precharge) {
5457 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5458 mc.precharge = 0;
5459 }
5460 /*
5461 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5462 * we must uncharge here.
5463 */
5464 if (mc.moved_charge) {
5465 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5466 mc.moved_charge = 0;
5467 }
5468 /* we must fixup refcnts and charges */
5469 if (mc.moved_swap) {
5470 /* uncharge swap account from the old cgroup */
5471 if (!mem_cgroup_is_root(mc.from))
5472 res_counter_uncharge(&mc.from->memsw,
5473 PAGE_SIZE * mc.moved_swap);
5474 __mem_cgroup_put(mc.from, mc.moved_swap);
5475
5476 if (!mem_cgroup_is_root(mc.to)) {
5477 /*
5478 * we charged both to->res and to->memsw, so we should
5479 * uncharge to->res.
5480 */
5481 res_counter_uncharge(&mc.to->res,
5482 PAGE_SIZE * mc.moved_swap);
5483 }
5484 /* we've already done mem_cgroup_get(mc.to) */
5485 mc.moved_swap = 0;
5486 }
5487 memcg_oom_recover(from);
5488 memcg_oom_recover(to);
5489 wake_up_all(&mc.waitq);
5490 }
5491
5492 static void mem_cgroup_clear_mc(void)
5493 {
5494 struct mem_cgroup *from = mc.from;
5495
5496 /*
5497 * we must clear moving_task before waking up waiters at the end of
5498 * task migration.
5499 */
5500 mc.moving_task = NULL;
5501 __mem_cgroup_clear_mc();
5502 spin_lock(&mc.lock);
5503 mc.from = NULL;
5504 mc.to = NULL;
5505 spin_unlock(&mc.lock);
5506 mem_cgroup_end_move(from);
5507 }
5508
5509 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5510 struct cgroup *cgroup,
5511 struct task_struct *p)
5512 {
5513 int ret = 0;
5514 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
5515
5516 if (mem->move_charge_at_immigrate) {
5517 struct mm_struct *mm;
5518 struct mem_cgroup *from = mem_cgroup_from_task(p);
5519
5520 VM_BUG_ON(from == mem);
5521
5522 mm = get_task_mm(p);
5523 if (!mm)
5524 return 0;
5525 /* We move charges only when we move a owner of the mm */
5526 if (mm->owner == p) {
5527 VM_BUG_ON(mc.from);
5528 VM_BUG_ON(mc.to);
5529 VM_BUG_ON(mc.precharge);
5530 VM_BUG_ON(mc.moved_charge);
5531 VM_BUG_ON(mc.moved_swap);
5532 mem_cgroup_start_move(from);
5533 spin_lock(&mc.lock);
5534 mc.from = from;
5535 mc.to = mem;
5536 spin_unlock(&mc.lock);
5537 /* We set mc.moving_task later */
5538
5539 ret = mem_cgroup_precharge_mc(mm);
5540 if (ret)
5541 mem_cgroup_clear_mc();
5542 }
5543 mmput(mm);
5544 }
5545 return ret;
5546 }
5547
5548 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5549 struct cgroup *cgroup,
5550 struct task_struct *p)
5551 {
5552 mem_cgroup_clear_mc();
5553 }
5554
5555 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5556 unsigned long addr, unsigned long end,
5557 struct mm_walk *walk)
5558 {
5559 int ret = 0;
5560 struct vm_area_struct *vma = walk->private;
5561 pte_t *pte;
5562 spinlock_t *ptl;
5563
5564 split_huge_page_pmd(walk->mm, pmd);
5565 retry:
5566 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5567 for (; addr != end; addr += PAGE_SIZE) {
5568 pte_t ptent = *(pte++);
5569 union mc_target target;
5570 int type;
5571 struct page *page;
5572 struct page_cgroup *pc;
5573 swp_entry_t ent;
5574
5575 if (!mc.precharge)
5576 break;
5577
5578 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5579 switch (type) {
5580 case MC_TARGET_PAGE:
5581 page = target.page;
5582 if (isolate_lru_page(page))
5583 goto put;
5584 pc = lookup_page_cgroup(page);
5585 if (!mem_cgroup_move_account(page, 1, pc,
5586 mc.from, mc.to, false)) {
5587 mc.precharge--;
5588 /* we uncharge from mc.from later. */
5589 mc.moved_charge++;
5590 }
5591 putback_lru_page(page);
5592 put: /* is_target_pte_for_mc() gets the page */
5593 put_page(page);
5594 break;
5595 case MC_TARGET_SWAP:
5596 ent = target.ent;
5597 if (!mem_cgroup_move_swap_account(ent,
5598 mc.from, mc.to, false)) {
5599 mc.precharge--;
5600 /* we fixup refcnts and charges later. */
5601 mc.moved_swap++;
5602 }
5603 break;
5604 default:
5605 break;
5606 }
5607 }
5608 pte_unmap_unlock(pte - 1, ptl);
5609 cond_resched();
5610
5611 if (addr != end) {
5612 /*
5613 * We have consumed all precharges we got in can_attach().
5614 * We try charge one by one, but don't do any additional
5615 * charges to mc.to if we have failed in charge once in attach()
5616 * phase.
5617 */
5618 ret = mem_cgroup_do_precharge(1);
5619 if (!ret)
5620 goto retry;
5621 }
5622
5623 return ret;
5624 }
5625
5626 static void mem_cgroup_move_charge(struct mm_struct *mm)
5627 {
5628 struct vm_area_struct *vma;
5629
5630 lru_add_drain_all();
5631 retry:
5632 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5633 /*
5634 * Someone who are holding the mmap_sem might be waiting in
5635 * waitq. So we cancel all extra charges, wake up all waiters,
5636 * and retry. Because we cancel precharges, we might not be able
5637 * to move enough charges, but moving charge is a best-effort
5638 * feature anyway, so it wouldn't be a big problem.
5639 */
5640 __mem_cgroup_clear_mc();
5641 cond_resched();
5642 goto retry;
5643 }
5644 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5645 int ret;
5646 struct mm_walk mem_cgroup_move_charge_walk = {
5647 .pmd_entry = mem_cgroup_move_charge_pte_range,
5648 .mm = mm,
5649 .private = vma,
5650 };
5651 if (is_vm_hugetlb_page(vma))
5652 continue;
5653 ret = walk_page_range(vma->vm_start, vma->vm_end,
5654 &mem_cgroup_move_charge_walk);
5655 if (ret)
5656 /*
5657 * means we have consumed all precharges and failed in
5658 * doing additional charge. Just abandon here.
5659 */
5660 break;
5661 }
5662 up_read(&mm->mmap_sem);
5663 }
5664
5665 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5666 struct cgroup *cont,
5667 struct cgroup *old_cont,
5668 struct task_struct *p)
5669 {
5670 struct mm_struct *mm = get_task_mm(p);
5671
5672 if (mm) {
5673 if (mc.to)
5674 mem_cgroup_move_charge(mm);
5675 put_swap_token(mm);
5676 mmput(mm);
5677 }
5678 if (mc.to)
5679 mem_cgroup_clear_mc();
5680 }
5681 #else /* !CONFIG_MMU */
5682 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5683 struct cgroup *cgroup,
5684 struct task_struct *p)
5685 {
5686 return 0;
5687 }
5688 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5689 struct cgroup *cgroup,
5690 struct task_struct *p)
5691 {
5692 }
5693 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5694 struct cgroup *cont,
5695 struct cgroup *old_cont,
5696 struct task_struct *p)
5697 {
5698 }
5699 #endif
5700
5701 struct cgroup_subsys mem_cgroup_subsys = {
5702 .name = "memory",
5703 .subsys_id = mem_cgroup_subsys_id,
5704 .create = mem_cgroup_create,
5705 .pre_destroy = mem_cgroup_pre_destroy,
5706 .destroy = mem_cgroup_destroy,
5707 .populate = mem_cgroup_populate,
5708 .can_attach = mem_cgroup_can_attach,
5709 .cancel_attach = mem_cgroup_cancel_attach,
5710 .attach = mem_cgroup_move_task,
5711 .early_init = 0,
5712 .use_id = 1,
5713 };
5714
5715 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5716 static int __init enable_swap_account(char *s)
5717 {
5718 /* consider enabled if no parameter or 1 is given */
5719 if (!strcmp(s, "1"))
5720 really_do_swap_account = 1;
5721 else if (!strcmp(s, "0"))
5722 really_do_swap_account = 0;
5723 return 1;
5724 }
5725 __setup("swapaccount=", enable_swap_account);
5726
5727 #endif
This page took 0.177202 seconds and 6 git commands to generate.