memcg: remove redundant function calls
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/page-flags.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bit_spinlock.h>
28 #include <linux/rcupdate.h>
29 #include <linux/slab.h>
30 #include <linux/swap.h>
31 #include <linux/spinlock.h>
32 #include <linux/fs.h>
33 #include <linux/seq_file.h>
34
35 #include <asm/uaccess.h>
36
37 struct cgroup_subsys mem_cgroup_subsys;
38 static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
39 static struct kmem_cache *page_cgroup_cache;
40
41 /*
42 * Statistics for memory cgroup.
43 */
44 enum mem_cgroup_stat_index {
45 /*
46 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
47 */
48 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
49 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
50
51 MEM_CGROUP_STAT_NSTATS,
52 };
53
54 struct mem_cgroup_stat_cpu {
55 s64 count[MEM_CGROUP_STAT_NSTATS];
56 } ____cacheline_aligned_in_smp;
57
58 struct mem_cgroup_stat {
59 struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
60 };
61
62 /*
63 * For accounting under irq disable, no need for increment preempt count.
64 */
65 static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat,
66 enum mem_cgroup_stat_index idx, int val)
67 {
68 int cpu = smp_processor_id();
69 stat->cpustat[cpu].count[idx] += val;
70 }
71
72 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
73 enum mem_cgroup_stat_index idx)
74 {
75 int cpu;
76 s64 ret = 0;
77 for_each_possible_cpu(cpu)
78 ret += stat->cpustat[cpu].count[idx];
79 return ret;
80 }
81
82 /*
83 * per-zone information in memory controller.
84 */
85
86 enum mem_cgroup_zstat_index {
87 MEM_CGROUP_ZSTAT_ACTIVE,
88 MEM_CGROUP_ZSTAT_INACTIVE,
89
90 NR_MEM_CGROUP_ZSTAT,
91 };
92
93 struct mem_cgroup_per_zone {
94 /*
95 * spin_lock to protect the per cgroup LRU
96 */
97 spinlock_t lru_lock;
98 struct list_head active_list;
99 struct list_head inactive_list;
100 unsigned long count[NR_MEM_CGROUP_ZSTAT];
101 };
102 /* Macro for accessing counter */
103 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
104
105 struct mem_cgroup_per_node {
106 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
107 };
108
109 struct mem_cgroup_lru_info {
110 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
111 };
112
113 /*
114 * The memory controller data structure. The memory controller controls both
115 * page cache and RSS per cgroup. We would eventually like to provide
116 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
117 * to help the administrator determine what knobs to tune.
118 *
119 * TODO: Add a water mark for the memory controller. Reclaim will begin when
120 * we hit the water mark. May be even add a low water mark, such that
121 * no reclaim occurs from a cgroup at it's low water mark, this is
122 * a feature that will be implemented much later in the future.
123 */
124 struct mem_cgroup {
125 struct cgroup_subsys_state css;
126 /*
127 * the counter to account for memory usage
128 */
129 struct res_counter res;
130 /*
131 * Per cgroup active and inactive list, similar to the
132 * per zone LRU lists.
133 */
134 struct mem_cgroup_lru_info info;
135
136 int prev_priority; /* for recording reclaim priority */
137 /*
138 * statistics.
139 */
140 struct mem_cgroup_stat stat;
141 };
142 static struct mem_cgroup init_mem_cgroup;
143
144 /*
145 * We use the lower bit of the page->page_cgroup pointer as a bit spin
146 * lock. We need to ensure that page->page_cgroup is at least two
147 * byte aligned (based on comments from Nick Piggin). But since
148 * bit_spin_lock doesn't actually set that lock bit in a non-debug
149 * uniprocessor kernel, we should avoid setting it here too.
150 */
151 #define PAGE_CGROUP_LOCK_BIT 0x0
152 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK)
153 #define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
154 #else
155 #define PAGE_CGROUP_LOCK 0x0
156 #endif
157
158 /*
159 * A page_cgroup page is associated with every page descriptor. The
160 * page_cgroup helps us identify information about the cgroup
161 */
162 struct page_cgroup {
163 struct list_head lru; /* per cgroup LRU list */
164 struct page *page;
165 struct mem_cgroup *mem_cgroup;
166 int ref_cnt; /* cached, mapped, migrating */
167 int flags;
168 };
169 #define PAGE_CGROUP_FLAG_CACHE (0x1) /* charged as cache */
170 #define PAGE_CGROUP_FLAG_ACTIVE (0x2) /* page is active in this cgroup */
171
172 static int page_cgroup_nid(struct page_cgroup *pc)
173 {
174 return page_to_nid(pc->page);
175 }
176
177 static enum zone_type page_cgroup_zid(struct page_cgroup *pc)
178 {
179 return page_zonenum(pc->page);
180 }
181
182 enum charge_type {
183 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
184 MEM_CGROUP_CHARGE_TYPE_MAPPED,
185 };
186
187 /*
188 * Always modified under lru lock. Then, not necessary to preempt_disable()
189 */
190 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags,
191 bool charge)
192 {
193 int val = (charge)? 1 : -1;
194 struct mem_cgroup_stat *stat = &mem->stat;
195
196 VM_BUG_ON(!irqs_disabled());
197 if (flags & PAGE_CGROUP_FLAG_CACHE)
198 __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_CACHE, val);
199 else
200 __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val);
201 }
202
203 static struct mem_cgroup_per_zone *
204 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
205 {
206 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
207 }
208
209 static struct mem_cgroup_per_zone *
210 page_cgroup_zoneinfo(struct page_cgroup *pc)
211 {
212 struct mem_cgroup *mem = pc->mem_cgroup;
213 int nid = page_cgroup_nid(pc);
214 int zid = page_cgroup_zid(pc);
215
216 return mem_cgroup_zoneinfo(mem, nid, zid);
217 }
218
219 static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
220 enum mem_cgroup_zstat_index idx)
221 {
222 int nid, zid;
223 struct mem_cgroup_per_zone *mz;
224 u64 total = 0;
225
226 for_each_online_node(nid)
227 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
228 mz = mem_cgroup_zoneinfo(mem, nid, zid);
229 total += MEM_CGROUP_ZSTAT(mz, idx);
230 }
231 return total;
232 }
233
234 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
235 {
236 return container_of(cgroup_subsys_state(cont,
237 mem_cgroup_subsys_id), struct mem_cgroup,
238 css);
239 }
240
241 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
242 {
243 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
244 struct mem_cgroup, css);
245 }
246
247 static inline int page_cgroup_locked(struct page *page)
248 {
249 return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
250 }
251
252 static void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
253 {
254 VM_BUG_ON(!page_cgroup_locked(page));
255 page->page_cgroup = ((unsigned long)pc | PAGE_CGROUP_LOCK);
256 }
257
258 struct page_cgroup *page_get_page_cgroup(struct page *page)
259 {
260 return (struct page_cgroup *) (page->page_cgroup & ~PAGE_CGROUP_LOCK);
261 }
262
263 static void lock_page_cgroup(struct page *page)
264 {
265 bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
266 }
267
268 static int try_lock_page_cgroup(struct page *page)
269 {
270 return bit_spin_trylock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
271 }
272
273 static void unlock_page_cgroup(struct page *page)
274 {
275 bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
276 }
277
278 static void __mem_cgroup_remove_list(struct mem_cgroup_per_zone *mz,
279 struct page_cgroup *pc)
280 {
281 int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
282
283 if (from)
284 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
285 else
286 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
287
288 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false);
289 list_del_init(&pc->lru);
290 }
291
292 static void __mem_cgroup_add_list(struct mem_cgroup_per_zone *mz,
293 struct page_cgroup *pc)
294 {
295 int to = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
296
297 if (!to) {
298 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
299 list_add(&pc->lru, &mz->inactive_list);
300 } else {
301 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
302 list_add(&pc->lru, &mz->active_list);
303 }
304 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true);
305 }
306
307 static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
308 {
309 int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
310 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
311
312 if (from)
313 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
314 else
315 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
316
317 if (active) {
318 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
319 pc->flags |= PAGE_CGROUP_FLAG_ACTIVE;
320 list_move(&pc->lru, &mz->active_list);
321 } else {
322 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
323 pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE;
324 list_move(&pc->lru, &mz->inactive_list);
325 }
326 }
327
328 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
329 {
330 int ret;
331
332 task_lock(task);
333 ret = task->mm && mm_match_cgroup(task->mm, mem);
334 task_unlock(task);
335 return ret;
336 }
337
338 /*
339 * This routine assumes that the appropriate zone's lru lock is already held
340 */
341 void mem_cgroup_move_lists(struct page *page, bool active)
342 {
343 struct page_cgroup *pc;
344 struct mem_cgroup_per_zone *mz;
345 unsigned long flags;
346
347 /*
348 * We cannot lock_page_cgroup while holding zone's lru_lock,
349 * because other holders of lock_page_cgroup can be interrupted
350 * with an attempt to rotate_reclaimable_page. But we cannot
351 * safely get to page_cgroup without it, so just try_lock it:
352 * mem_cgroup_isolate_pages allows for page left on wrong list.
353 */
354 if (!try_lock_page_cgroup(page))
355 return;
356
357 pc = page_get_page_cgroup(page);
358 if (pc) {
359 mz = page_cgroup_zoneinfo(pc);
360 spin_lock_irqsave(&mz->lru_lock, flags);
361 __mem_cgroup_move_lists(pc, active);
362 spin_unlock_irqrestore(&mz->lru_lock, flags);
363 }
364 unlock_page_cgroup(page);
365 }
366
367 /*
368 * Calculate mapped_ratio under memory controller. This will be used in
369 * vmscan.c for deteremining we have to reclaim mapped pages.
370 */
371 int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
372 {
373 long total, rss;
374
375 /*
376 * usage is recorded in bytes. But, here, we assume the number of
377 * physical pages can be represented by "long" on any arch.
378 */
379 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
380 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
381 return (int)((rss * 100L) / total);
382 }
383
384 /*
385 * This function is called from vmscan.c. In page reclaiming loop. balance
386 * between active and inactive list is calculated. For memory controller
387 * page reclaiming, we should use using mem_cgroup's imbalance rather than
388 * zone's global lru imbalance.
389 */
390 long mem_cgroup_reclaim_imbalance(struct mem_cgroup *mem)
391 {
392 unsigned long active, inactive;
393 /* active and inactive are the number of pages. 'long' is ok.*/
394 active = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_ACTIVE);
395 inactive = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_INACTIVE);
396 return (long) (active / (inactive + 1));
397 }
398
399 /*
400 * prev_priority control...this will be used in memory reclaim path.
401 */
402 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
403 {
404 return mem->prev_priority;
405 }
406
407 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
408 {
409 if (priority < mem->prev_priority)
410 mem->prev_priority = priority;
411 }
412
413 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
414 {
415 mem->prev_priority = priority;
416 }
417
418 /*
419 * Calculate # of pages to be scanned in this priority/zone.
420 * See also vmscan.c
421 *
422 * priority starts from "DEF_PRIORITY" and decremented in each loop.
423 * (see include/linux/mmzone.h)
424 */
425
426 long mem_cgroup_calc_reclaim_active(struct mem_cgroup *mem,
427 struct zone *zone, int priority)
428 {
429 long nr_active;
430 int nid = zone->zone_pgdat->node_id;
431 int zid = zone_idx(zone);
432 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
433
434 nr_active = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE);
435 return (nr_active >> priority);
436 }
437
438 long mem_cgroup_calc_reclaim_inactive(struct mem_cgroup *mem,
439 struct zone *zone, int priority)
440 {
441 long nr_inactive;
442 int nid = zone->zone_pgdat->node_id;
443 int zid = zone_idx(zone);
444 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
445
446 nr_inactive = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE);
447 return (nr_inactive >> priority);
448 }
449
450 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
451 struct list_head *dst,
452 unsigned long *scanned, int order,
453 int mode, struct zone *z,
454 struct mem_cgroup *mem_cont,
455 int active)
456 {
457 unsigned long nr_taken = 0;
458 struct page *page;
459 unsigned long scan;
460 LIST_HEAD(pc_list);
461 struct list_head *src;
462 struct page_cgroup *pc, *tmp;
463 int nid = z->zone_pgdat->node_id;
464 int zid = zone_idx(z);
465 struct mem_cgroup_per_zone *mz;
466
467 BUG_ON(!mem_cont);
468 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
469 if (active)
470 src = &mz->active_list;
471 else
472 src = &mz->inactive_list;
473
474
475 spin_lock(&mz->lru_lock);
476 scan = 0;
477 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
478 if (scan >= nr_to_scan)
479 break;
480 page = pc->page;
481
482 if (unlikely(!PageLRU(page)))
483 continue;
484
485 if (PageActive(page) && !active) {
486 __mem_cgroup_move_lists(pc, true);
487 continue;
488 }
489 if (!PageActive(page) && active) {
490 __mem_cgroup_move_lists(pc, false);
491 continue;
492 }
493
494 scan++;
495 list_move(&pc->lru, &pc_list);
496
497 if (__isolate_lru_page(page, mode) == 0) {
498 list_move(&page->lru, dst);
499 nr_taken++;
500 }
501 }
502
503 list_splice(&pc_list, src);
504 spin_unlock(&mz->lru_lock);
505
506 *scanned = scan;
507 return nr_taken;
508 }
509
510 /*
511 * Charge the memory controller for page usage.
512 * Return
513 * 0 if the charge was successful
514 * < 0 if the cgroup is over its limit
515 */
516 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
517 gfp_t gfp_mask, enum charge_type ctype)
518 {
519 struct mem_cgroup *mem;
520 struct page_cgroup *pc;
521 unsigned long flags;
522 unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
523 struct mem_cgroup_per_zone *mz;
524
525 if (mem_cgroup_subsys.disabled)
526 return 0;
527
528 /*
529 * Should page_cgroup's go to their own slab?
530 * One could optimize the performance of the charging routine
531 * by saving a bit in the page_flags and using it as a lock
532 * to see if the cgroup page already has a page_cgroup associated
533 * with it
534 */
535 retry:
536 lock_page_cgroup(page);
537 pc = page_get_page_cgroup(page);
538 /*
539 * The page_cgroup exists and
540 * the page has already been accounted.
541 */
542 if (pc) {
543 VM_BUG_ON(pc->page != page);
544 VM_BUG_ON(pc->ref_cnt <= 0);
545
546 pc->ref_cnt++;
547 unlock_page_cgroup(page);
548 goto done;
549 }
550 unlock_page_cgroup(page);
551
552 pc = kmem_cache_zalloc(page_cgroup_cache, gfp_mask);
553 if (pc == NULL)
554 goto err;
555
556 /*
557 * We always charge the cgroup the mm_struct belongs to.
558 * The mm_struct's mem_cgroup changes on task migration if the
559 * thread group leader migrates. It's possible that mm is not
560 * set, if so charge the init_mm (happens for pagecache usage).
561 */
562 if (!mm)
563 mm = &init_mm;
564
565 rcu_read_lock();
566 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
567 /*
568 * For every charge from the cgroup, increment reference count
569 */
570 css_get(&mem->css);
571 rcu_read_unlock();
572
573 while (res_counter_charge(&mem->res, PAGE_SIZE)) {
574 if (!(gfp_mask & __GFP_WAIT))
575 goto out;
576
577 if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
578 continue;
579
580 /*
581 * try_to_free_mem_cgroup_pages() might not give us a full
582 * picture of reclaim. Some pages are reclaimed and might be
583 * moved to swap cache or just unmapped from the cgroup.
584 * Check the limit again to see if the reclaim reduced the
585 * current usage of the cgroup before giving up
586 */
587 if (res_counter_check_under_limit(&mem->res))
588 continue;
589
590 if (!nr_retries--) {
591 mem_cgroup_out_of_memory(mem, gfp_mask);
592 goto out;
593 }
594 congestion_wait(WRITE, HZ/10);
595 }
596
597 pc->ref_cnt = 1;
598 pc->mem_cgroup = mem;
599 pc->page = page;
600 pc->flags = PAGE_CGROUP_FLAG_ACTIVE;
601 if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
602 pc->flags |= PAGE_CGROUP_FLAG_CACHE;
603
604 lock_page_cgroup(page);
605 if (page_get_page_cgroup(page)) {
606 unlock_page_cgroup(page);
607 /*
608 * Another charge has been added to this page already.
609 * We take lock_page_cgroup(page) again and read
610 * page->cgroup, increment refcnt.... just retry is OK.
611 */
612 res_counter_uncharge(&mem->res, PAGE_SIZE);
613 css_put(&mem->css);
614 kmem_cache_free(page_cgroup_cache, pc);
615 goto retry;
616 }
617 page_assign_page_cgroup(page, pc);
618
619 mz = page_cgroup_zoneinfo(pc);
620 spin_lock_irqsave(&mz->lru_lock, flags);
621 __mem_cgroup_add_list(mz, pc);
622 spin_unlock_irqrestore(&mz->lru_lock, flags);
623
624 unlock_page_cgroup(page);
625 done:
626 return 0;
627 out:
628 css_put(&mem->css);
629 kmem_cache_free(page_cgroup_cache, pc);
630 err:
631 return -ENOMEM;
632 }
633
634 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
635 {
636 return mem_cgroup_charge_common(page, mm, gfp_mask,
637 MEM_CGROUP_CHARGE_TYPE_MAPPED);
638 }
639
640 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
641 gfp_t gfp_mask)
642 {
643 if (!mm)
644 mm = &init_mm;
645 return mem_cgroup_charge_common(page, mm, gfp_mask,
646 MEM_CGROUP_CHARGE_TYPE_CACHE);
647 }
648
649 /*
650 * Uncharging is always a welcome operation, we never complain, simply
651 * uncharge.
652 */
653 void mem_cgroup_uncharge_page(struct page *page)
654 {
655 struct page_cgroup *pc;
656 struct mem_cgroup *mem;
657 struct mem_cgroup_per_zone *mz;
658 unsigned long flags;
659
660 if (mem_cgroup_subsys.disabled)
661 return;
662
663 /*
664 * Check if our page_cgroup is valid
665 */
666 lock_page_cgroup(page);
667 pc = page_get_page_cgroup(page);
668 if (!pc)
669 goto unlock;
670
671 VM_BUG_ON(pc->page != page);
672 VM_BUG_ON(pc->ref_cnt <= 0);
673
674 if (--(pc->ref_cnt) == 0) {
675 mz = page_cgroup_zoneinfo(pc);
676 spin_lock_irqsave(&mz->lru_lock, flags);
677 __mem_cgroup_remove_list(mz, pc);
678 spin_unlock_irqrestore(&mz->lru_lock, flags);
679
680 page_assign_page_cgroup(page, NULL);
681 unlock_page_cgroup(page);
682
683 mem = pc->mem_cgroup;
684 res_counter_uncharge(&mem->res, PAGE_SIZE);
685 css_put(&mem->css);
686
687 kmem_cache_free(page_cgroup_cache, pc);
688 return;
689 }
690
691 unlock:
692 unlock_page_cgroup(page);
693 }
694
695 /*
696 * Returns non-zero if a page (under migration) has valid page_cgroup member.
697 * Refcnt of page_cgroup is incremented.
698 */
699 int mem_cgroup_prepare_migration(struct page *page)
700 {
701 struct page_cgroup *pc;
702
703 if (mem_cgroup_subsys.disabled)
704 return 0;
705
706 lock_page_cgroup(page);
707 pc = page_get_page_cgroup(page);
708 if (pc)
709 pc->ref_cnt++;
710 unlock_page_cgroup(page);
711 return pc != NULL;
712 }
713
714 void mem_cgroup_end_migration(struct page *page)
715 {
716 mem_cgroup_uncharge_page(page);
717 }
718
719 /*
720 * We know both *page* and *newpage* are now not-on-LRU and PG_locked.
721 * And no race with uncharge() routines because page_cgroup for *page*
722 * has extra one reference by mem_cgroup_prepare_migration.
723 */
724 void mem_cgroup_page_migration(struct page *page, struct page *newpage)
725 {
726 struct page_cgroup *pc;
727 struct mem_cgroup_per_zone *mz;
728 unsigned long flags;
729
730 lock_page_cgroup(page);
731 pc = page_get_page_cgroup(page);
732 if (!pc) {
733 unlock_page_cgroup(page);
734 return;
735 }
736
737 mz = page_cgroup_zoneinfo(pc);
738 spin_lock_irqsave(&mz->lru_lock, flags);
739 __mem_cgroup_remove_list(mz, pc);
740 spin_unlock_irqrestore(&mz->lru_lock, flags);
741
742 page_assign_page_cgroup(page, NULL);
743 unlock_page_cgroup(page);
744
745 pc->page = newpage;
746 lock_page_cgroup(newpage);
747 page_assign_page_cgroup(newpage, pc);
748
749 mz = page_cgroup_zoneinfo(pc);
750 spin_lock_irqsave(&mz->lru_lock, flags);
751 __mem_cgroup_add_list(mz, pc);
752 spin_unlock_irqrestore(&mz->lru_lock, flags);
753
754 unlock_page_cgroup(newpage);
755 }
756
757 /*
758 * This routine traverse page_cgroup in given list and drop them all.
759 * This routine ignores page_cgroup->ref_cnt.
760 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
761 */
762 #define FORCE_UNCHARGE_BATCH (128)
763 static void mem_cgroup_force_empty_list(struct mem_cgroup *mem,
764 struct mem_cgroup_per_zone *mz,
765 int active)
766 {
767 struct page_cgroup *pc;
768 struct page *page;
769 int count = FORCE_UNCHARGE_BATCH;
770 unsigned long flags;
771 struct list_head *list;
772
773 if (active)
774 list = &mz->active_list;
775 else
776 list = &mz->inactive_list;
777
778 spin_lock_irqsave(&mz->lru_lock, flags);
779 while (!list_empty(list)) {
780 pc = list_entry(list->prev, struct page_cgroup, lru);
781 page = pc->page;
782 get_page(page);
783 spin_unlock_irqrestore(&mz->lru_lock, flags);
784 mem_cgroup_uncharge_page(page);
785 put_page(page);
786 if (--count <= 0) {
787 count = FORCE_UNCHARGE_BATCH;
788 cond_resched();
789 }
790 spin_lock_irqsave(&mz->lru_lock, flags);
791 }
792 spin_unlock_irqrestore(&mz->lru_lock, flags);
793 }
794
795 /*
796 * make mem_cgroup's charge to be 0 if there is no task.
797 * This enables deleting this mem_cgroup.
798 */
799 static int mem_cgroup_force_empty(struct mem_cgroup *mem)
800 {
801 int ret = -EBUSY;
802 int node, zid;
803
804 if (mem_cgroup_subsys.disabled)
805 return 0;
806
807 css_get(&mem->css);
808 /*
809 * page reclaim code (kswapd etc..) will move pages between
810 * active_list <-> inactive_list while we don't take a lock.
811 * So, we have to do loop here until all lists are empty.
812 */
813 while (mem->res.usage > 0) {
814 if (atomic_read(&mem->css.cgroup->count) > 0)
815 goto out;
816 for_each_node_state(node, N_POSSIBLE)
817 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
818 struct mem_cgroup_per_zone *mz;
819 mz = mem_cgroup_zoneinfo(mem, node, zid);
820 /* drop all page_cgroup in active_list */
821 mem_cgroup_force_empty_list(mem, mz, 1);
822 /* drop all page_cgroup in inactive_list */
823 mem_cgroup_force_empty_list(mem, mz, 0);
824 }
825 }
826 ret = 0;
827 out:
828 css_put(&mem->css);
829 return ret;
830 }
831
832 static int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
833 {
834 *tmp = memparse(buf, &buf);
835 if (*buf != '\0')
836 return -EINVAL;
837
838 /*
839 * Round up the value to the closest page size
840 */
841 *tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
842 return 0;
843 }
844
845 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
846 {
847 return res_counter_read_u64(&mem_cgroup_from_cont(cont)->res,
848 cft->private);
849 }
850
851 static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
852 struct file *file, const char __user *userbuf,
853 size_t nbytes, loff_t *ppos)
854 {
855 return res_counter_write(&mem_cgroup_from_cont(cont)->res,
856 cft->private, userbuf, nbytes, ppos,
857 mem_cgroup_write_strategy);
858 }
859
860 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
861 {
862 struct mem_cgroup *mem;
863
864 mem = mem_cgroup_from_cont(cont);
865 switch (event) {
866 case RES_MAX_USAGE:
867 res_counter_reset_max(&mem->res);
868 break;
869 case RES_FAILCNT:
870 res_counter_reset_failcnt(&mem->res);
871 break;
872 }
873 return 0;
874 }
875
876 static int mem_force_empty_write(struct cgroup *cont, unsigned int event)
877 {
878 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont));
879 }
880
881 static const struct mem_cgroup_stat_desc {
882 const char *msg;
883 u64 unit;
884 } mem_cgroup_stat_desc[] = {
885 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
886 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
887 };
888
889 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
890 struct cgroup_map_cb *cb)
891 {
892 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
893 struct mem_cgroup_stat *stat = &mem_cont->stat;
894 int i;
895
896 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
897 s64 val;
898
899 val = mem_cgroup_read_stat(stat, i);
900 val *= mem_cgroup_stat_desc[i].unit;
901 cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
902 }
903 /* showing # of active pages */
904 {
905 unsigned long active, inactive;
906
907 inactive = mem_cgroup_get_all_zonestat(mem_cont,
908 MEM_CGROUP_ZSTAT_INACTIVE);
909 active = mem_cgroup_get_all_zonestat(mem_cont,
910 MEM_CGROUP_ZSTAT_ACTIVE);
911 cb->fill(cb, "active", (active) * PAGE_SIZE);
912 cb->fill(cb, "inactive", (inactive) * PAGE_SIZE);
913 }
914 return 0;
915 }
916
917 static struct cftype mem_cgroup_files[] = {
918 {
919 .name = "usage_in_bytes",
920 .private = RES_USAGE,
921 .read_u64 = mem_cgroup_read,
922 },
923 {
924 .name = "max_usage_in_bytes",
925 .private = RES_MAX_USAGE,
926 .trigger = mem_cgroup_reset,
927 .read_u64 = mem_cgroup_read,
928 },
929 {
930 .name = "limit_in_bytes",
931 .private = RES_LIMIT,
932 .write = mem_cgroup_write,
933 .read_u64 = mem_cgroup_read,
934 },
935 {
936 .name = "failcnt",
937 .private = RES_FAILCNT,
938 .trigger = mem_cgroup_reset,
939 .read_u64 = mem_cgroup_read,
940 },
941 {
942 .name = "force_empty",
943 .trigger = mem_force_empty_write,
944 },
945 {
946 .name = "stat",
947 .read_map = mem_control_stat_show,
948 },
949 };
950
951 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
952 {
953 struct mem_cgroup_per_node *pn;
954 struct mem_cgroup_per_zone *mz;
955 int zone, tmp = node;
956 /*
957 * This routine is called against possible nodes.
958 * But it's BUG to call kmalloc() against offline node.
959 *
960 * TODO: this routine can waste much memory for nodes which will
961 * never be onlined. It's better to use memory hotplug callback
962 * function.
963 */
964 if (!node_state(node, N_NORMAL_MEMORY))
965 tmp = -1;
966 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
967 if (!pn)
968 return 1;
969
970 mem->info.nodeinfo[node] = pn;
971 memset(pn, 0, sizeof(*pn));
972
973 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
974 mz = &pn->zoneinfo[zone];
975 INIT_LIST_HEAD(&mz->active_list);
976 INIT_LIST_HEAD(&mz->inactive_list);
977 spin_lock_init(&mz->lru_lock);
978 }
979 return 0;
980 }
981
982 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
983 {
984 kfree(mem->info.nodeinfo[node]);
985 }
986
987 static struct cgroup_subsys_state *
988 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
989 {
990 struct mem_cgroup *mem;
991 int node;
992
993 if (unlikely((cont->parent) == NULL)) {
994 mem = &init_mem_cgroup;
995 page_cgroup_cache = KMEM_CACHE(page_cgroup, SLAB_PANIC);
996 } else {
997 mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);
998 }
999
1000 if (mem == NULL)
1001 return ERR_PTR(-ENOMEM);
1002
1003 res_counter_init(&mem->res);
1004
1005 memset(&mem->info, 0, sizeof(mem->info));
1006
1007 for_each_node_state(node, N_POSSIBLE)
1008 if (alloc_mem_cgroup_per_zone_info(mem, node))
1009 goto free_out;
1010
1011 return &mem->css;
1012 free_out:
1013 for_each_node_state(node, N_POSSIBLE)
1014 free_mem_cgroup_per_zone_info(mem, node);
1015 if (cont->parent != NULL)
1016 kfree(mem);
1017 return ERR_PTR(-ENOMEM);
1018 }
1019
1020 static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
1021 struct cgroup *cont)
1022 {
1023 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1024 mem_cgroup_force_empty(mem);
1025 }
1026
1027 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
1028 struct cgroup *cont)
1029 {
1030 int node;
1031 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1032
1033 for_each_node_state(node, N_POSSIBLE)
1034 free_mem_cgroup_per_zone_info(mem, node);
1035
1036 kfree(mem_cgroup_from_cont(cont));
1037 }
1038
1039 static int mem_cgroup_populate(struct cgroup_subsys *ss,
1040 struct cgroup *cont)
1041 {
1042 if (mem_cgroup_subsys.disabled)
1043 return 0;
1044 return cgroup_add_files(cont, ss, mem_cgroup_files,
1045 ARRAY_SIZE(mem_cgroup_files));
1046 }
1047
1048 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
1049 struct cgroup *cont,
1050 struct cgroup *old_cont,
1051 struct task_struct *p)
1052 {
1053 struct mm_struct *mm;
1054 struct mem_cgroup *mem, *old_mem;
1055
1056 if (mem_cgroup_subsys.disabled)
1057 return;
1058
1059 mm = get_task_mm(p);
1060 if (mm == NULL)
1061 return;
1062
1063 mem = mem_cgroup_from_cont(cont);
1064 old_mem = mem_cgroup_from_cont(old_cont);
1065
1066 if (mem == old_mem)
1067 goto out;
1068
1069 /*
1070 * Only thread group leaders are allowed to migrate, the mm_struct is
1071 * in effect owned by the leader
1072 */
1073 if (!thread_group_leader(p))
1074 goto out;
1075
1076 out:
1077 mmput(mm);
1078 }
1079
1080 struct cgroup_subsys mem_cgroup_subsys = {
1081 .name = "memory",
1082 .subsys_id = mem_cgroup_subsys_id,
1083 .create = mem_cgroup_create,
1084 .pre_destroy = mem_cgroup_pre_destroy,
1085 .destroy = mem_cgroup_destroy,
1086 .populate = mem_cgroup_populate,
1087 .attach = mem_cgroup_move_task,
1088 .early_init = 0,
1089 };
This page took 0.066518 seconds and 6 git commands to generate.