memcg: use css_get/put for swap memcg
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/sort.h>
49 #include <linux/fs.h>
50 #include <linux/seq_file.h>
51 #include <linux/vmalloc.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include "internal.h"
58 #include <net/sock.h>
59 #include <net/ip.h>
60 #include <net/tcp_memcontrol.h>
61
62 #include <asm/uaccess.h>
63
64 #include <trace/events/vmscan.h>
65
66 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
67 EXPORT_SYMBOL(mem_cgroup_subsys);
68
69 #define MEM_CGROUP_RECLAIM_RETRIES 5
70 static struct mem_cgroup *root_mem_cgroup __read_mostly;
71
72 #ifdef CONFIG_MEMCG_SWAP
73 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
74 int do_swap_account __read_mostly;
75
76 /* for remember boot option*/
77 #ifdef CONFIG_MEMCG_SWAP_ENABLED
78 static int really_do_swap_account __initdata = 1;
79 #else
80 static int really_do_swap_account __initdata = 0;
81 #endif
82
83 #else
84 #define do_swap_account 0
85 #endif
86
87
88 /*
89 * Statistics for memory cgroup.
90 */
91 enum mem_cgroup_stat_index {
92 /*
93 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
94 */
95 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
96 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
97 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */
98 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
99 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
100 MEM_CGROUP_STAT_NSTATS,
101 };
102
103 static const char * const mem_cgroup_stat_names[] = {
104 "cache",
105 "rss",
106 "rss_huge",
107 "mapped_file",
108 "swap",
109 };
110
111 enum mem_cgroup_events_index {
112 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
113 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
114 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
115 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
116 MEM_CGROUP_EVENTS_NSTATS,
117 };
118
119 static const char * const mem_cgroup_events_names[] = {
120 "pgpgin",
121 "pgpgout",
122 "pgfault",
123 "pgmajfault",
124 };
125
126 static const char * const mem_cgroup_lru_names[] = {
127 "inactive_anon",
128 "active_anon",
129 "inactive_file",
130 "active_file",
131 "unevictable",
132 };
133
134 /*
135 * Per memcg event counter is incremented at every pagein/pageout. With THP,
136 * it will be incremated by the number of pages. This counter is used for
137 * for trigger some periodic events. This is straightforward and better
138 * than using jiffies etc. to handle periodic memcg event.
139 */
140 enum mem_cgroup_events_target {
141 MEM_CGROUP_TARGET_THRESH,
142 MEM_CGROUP_TARGET_SOFTLIMIT,
143 MEM_CGROUP_TARGET_NUMAINFO,
144 MEM_CGROUP_NTARGETS,
145 };
146 #define THRESHOLDS_EVENTS_TARGET 128
147 #define SOFTLIMIT_EVENTS_TARGET 1024
148 #define NUMAINFO_EVENTS_TARGET 1024
149
150 struct mem_cgroup_stat_cpu {
151 long count[MEM_CGROUP_STAT_NSTATS];
152 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
153 unsigned long nr_page_events;
154 unsigned long targets[MEM_CGROUP_NTARGETS];
155 };
156
157 struct mem_cgroup_reclaim_iter {
158 /*
159 * last scanned hierarchy member. Valid only if last_dead_count
160 * matches memcg->dead_count of the hierarchy root group.
161 */
162 struct mem_cgroup *last_visited;
163 unsigned long last_dead_count;
164
165 /* scan generation, increased every round-trip */
166 unsigned int generation;
167 };
168
169 /*
170 * per-zone information in memory controller.
171 */
172 struct mem_cgroup_per_zone {
173 struct lruvec lruvec;
174 unsigned long lru_size[NR_LRU_LISTS];
175
176 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
177
178 struct rb_node tree_node; /* RB tree node */
179 unsigned long long usage_in_excess;/* Set to the value by which */
180 /* the soft limit is exceeded*/
181 bool on_tree;
182 struct mem_cgroup *memcg; /* Back pointer, we cannot */
183 /* use container_of */
184 };
185
186 struct mem_cgroup_per_node {
187 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
188 };
189
190 /*
191 * Cgroups above their limits are maintained in a RB-Tree, independent of
192 * their hierarchy representation
193 */
194
195 struct mem_cgroup_tree_per_zone {
196 struct rb_root rb_root;
197 spinlock_t lock;
198 };
199
200 struct mem_cgroup_tree_per_node {
201 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
202 };
203
204 struct mem_cgroup_tree {
205 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
206 };
207
208 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
209
210 struct mem_cgroup_threshold {
211 struct eventfd_ctx *eventfd;
212 u64 threshold;
213 };
214
215 /* For threshold */
216 struct mem_cgroup_threshold_ary {
217 /* An array index points to threshold just below or equal to usage. */
218 int current_threshold;
219 /* Size of entries[] */
220 unsigned int size;
221 /* Array of thresholds */
222 struct mem_cgroup_threshold entries[0];
223 };
224
225 struct mem_cgroup_thresholds {
226 /* Primary thresholds array */
227 struct mem_cgroup_threshold_ary *primary;
228 /*
229 * Spare threshold array.
230 * This is needed to make mem_cgroup_unregister_event() "never fail".
231 * It must be able to store at least primary->size - 1 entries.
232 */
233 struct mem_cgroup_threshold_ary *spare;
234 };
235
236 /* for OOM */
237 struct mem_cgroup_eventfd_list {
238 struct list_head list;
239 struct eventfd_ctx *eventfd;
240 };
241
242 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
243 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
244
245 /*
246 * The memory controller data structure. The memory controller controls both
247 * page cache and RSS per cgroup. We would eventually like to provide
248 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
249 * to help the administrator determine what knobs to tune.
250 *
251 * TODO: Add a water mark for the memory controller. Reclaim will begin when
252 * we hit the water mark. May be even add a low water mark, such that
253 * no reclaim occurs from a cgroup at it's low water mark, this is
254 * a feature that will be implemented much later in the future.
255 */
256 struct mem_cgroup {
257 struct cgroup_subsys_state css;
258 /*
259 * the counter to account for memory usage
260 */
261 struct res_counter res;
262
263 /* vmpressure notifications */
264 struct vmpressure vmpressure;
265
266 union {
267 /*
268 * the counter to account for mem+swap usage.
269 */
270 struct res_counter memsw;
271
272 /*
273 * rcu_freeing is used only when freeing struct mem_cgroup,
274 * so put it into a union to avoid wasting more memory.
275 * It must be disjoint from the css field. It could be
276 * in a union with the res field, but res plays a much
277 * larger part in mem_cgroup life than memsw, and might
278 * be of interest, even at time of free, when debugging.
279 * So share rcu_head with the less interesting memsw.
280 */
281 struct rcu_head rcu_freeing;
282 /*
283 * We also need some space for a worker in deferred freeing.
284 * By the time we call it, rcu_freeing is no longer in use.
285 */
286 struct work_struct work_freeing;
287 };
288
289 /*
290 * the counter to account for kernel memory usage.
291 */
292 struct res_counter kmem;
293 /*
294 * Should the accounting and control be hierarchical, per subtree?
295 */
296 bool use_hierarchy;
297 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
298
299 bool oom_lock;
300 atomic_t under_oom;
301
302 atomic_t refcnt;
303
304 int swappiness;
305 /* OOM-Killer disable */
306 int oom_kill_disable;
307
308 /* set when res.limit == memsw.limit */
309 bool memsw_is_minimum;
310
311 /* protect arrays of thresholds */
312 struct mutex thresholds_lock;
313
314 /* thresholds for memory usage. RCU-protected */
315 struct mem_cgroup_thresholds thresholds;
316
317 /* thresholds for mem+swap usage. RCU-protected */
318 struct mem_cgroup_thresholds memsw_thresholds;
319
320 /* For oom notifier event fd */
321 struct list_head oom_notify;
322
323 /*
324 * Should we move charges of a task when a task is moved into this
325 * mem_cgroup ? And what type of charges should we move ?
326 */
327 unsigned long move_charge_at_immigrate;
328 /*
329 * set > 0 if pages under this cgroup are moving to other cgroup.
330 */
331 atomic_t moving_account;
332 /* taken only while moving_account > 0 */
333 spinlock_t move_lock;
334 /*
335 * percpu counter.
336 */
337 struct mem_cgroup_stat_cpu __percpu *stat;
338 /*
339 * used when a cpu is offlined or other synchronizations
340 * See mem_cgroup_read_stat().
341 */
342 struct mem_cgroup_stat_cpu nocpu_base;
343 spinlock_t pcp_counter_lock;
344
345 atomic_t dead_count;
346 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
347 struct tcp_memcontrol tcp_mem;
348 #endif
349 #if defined(CONFIG_MEMCG_KMEM)
350 /* analogous to slab_common's slab_caches list. per-memcg */
351 struct list_head memcg_slab_caches;
352 /* Not a spinlock, we can take a lot of time walking the list */
353 struct mutex slab_caches_mutex;
354 /* Index in the kmem_cache->memcg_params->memcg_caches array */
355 int kmemcg_id;
356 #endif
357
358 int last_scanned_node;
359 #if MAX_NUMNODES > 1
360 nodemask_t scan_nodes;
361 atomic_t numainfo_events;
362 atomic_t numainfo_updating;
363 #endif
364
365 struct mem_cgroup_per_node *nodeinfo[0];
366 /* WARNING: nodeinfo must be the last member here */
367 };
368
369 static size_t memcg_size(void)
370 {
371 return sizeof(struct mem_cgroup) +
372 nr_node_ids * sizeof(struct mem_cgroup_per_node);
373 }
374
375 /* internal only representation about the status of kmem accounting. */
376 enum {
377 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
378 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
379 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
380 };
381
382 /* We account when limit is on, but only after call sites are patched */
383 #define KMEM_ACCOUNTED_MASK \
384 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
385
386 #ifdef CONFIG_MEMCG_KMEM
387 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
388 {
389 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
390 }
391
392 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
393 {
394 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
395 }
396
397 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
398 {
399 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
400 }
401
402 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
403 {
404 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
405 }
406
407 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
408 {
409 /*
410 * Our caller must use css_get() first, because memcg_uncharge_kmem()
411 * will call css_put() if it sees the memcg is dead.
412 */
413 smp_wmb();
414 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
415 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
416 }
417
418 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
419 {
420 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
421 &memcg->kmem_account_flags);
422 }
423 #endif
424
425 /* Stuffs for move charges at task migration. */
426 /*
427 * Types of charges to be moved. "move_charge_at_immitgrate" and
428 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
429 */
430 enum move_type {
431 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
432 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
433 NR_MOVE_TYPE,
434 };
435
436 /* "mc" and its members are protected by cgroup_mutex */
437 static struct move_charge_struct {
438 spinlock_t lock; /* for from, to */
439 struct mem_cgroup *from;
440 struct mem_cgroup *to;
441 unsigned long immigrate_flags;
442 unsigned long precharge;
443 unsigned long moved_charge;
444 unsigned long moved_swap;
445 struct task_struct *moving_task; /* a task moving charges */
446 wait_queue_head_t waitq; /* a waitq for other context */
447 } mc = {
448 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
449 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
450 };
451
452 static bool move_anon(void)
453 {
454 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
455 }
456
457 static bool move_file(void)
458 {
459 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
460 }
461
462 /*
463 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
464 * limit reclaim to prevent infinite loops, if they ever occur.
465 */
466 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
467 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
468
469 enum charge_type {
470 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
471 MEM_CGROUP_CHARGE_TYPE_ANON,
472 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
473 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
474 NR_CHARGE_TYPE,
475 };
476
477 /* for encoding cft->private value on file */
478 enum res_type {
479 _MEM,
480 _MEMSWAP,
481 _OOM_TYPE,
482 _KMEM,
483 };
484
485 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
486 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
487 #define MEMFILE_ATTR(val) ((val) & 0xffff)
488 /* Used for OOM nofiier */
489 #define OOM_CONTROL (0)
490
491 /*
492 * Reclaim flags for mem_cgroup_hierarchical_reclaim
493 */
494 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
495 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
496 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
497 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
498
499 /*
500 * The memcg_create_mutex will be held whenever a new cgroup is created.
501 * As a consequence, any change that needs to protect against new child cgroups
502 * appearing has to hold it as well.
503 */
504 static DEFINE_MUTEX(memcg_create_mutex);
505
506 static void mem_cgroup_get(struct mem_cgroup *memcg);
507 static void mem_cgroup_put(struct mem_cgroup *memcg);
508
509 static inline
510 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
511 {
512 return container_of(s, struct mem_cgroup, css);
513 }
514
515 /* Some nice accessors for the vmpressure. */
516 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
517 {
518 if (!memcg)
519 memcg = root_mem_cgroup;
520 return &memcg->vmpressure;
521 }
522
523 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
524 {
525 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
526 }
527
528 struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
529 {
530 return &mem_cgroup_from_css(css)->vmpressure;
531 }
532
533 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
534 {
535 return (memcg == root_mem_cgroup);
536 }
537
538 /* Writing them here to avoid exposing memcg's inner layout */
539 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
540
541 void sock_update_memcg(struct sock *sk)
542 {
543 if (mem_cgroup_sockets_enabled) {
544 struct mem_cgroup *memcg;
545 struct cg_proto *cg_proto;
546
547 BUG_ON(!sk->sk_prot->proto_cgroup);
548
549 /* Socket cloning can throw us here with sk_cgrp already
550 * filled. It won't however, necessarily happen from
551 * process context. So the test for root memcg given
552 * the current task's memcg won't help us in this case.
553 *
554 * Respecting the original socket's memcg is a better
555 * decision in this case.
556 */
557 if (sk->sk_cgrp) {
558 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
559 css_get(&sk->sk_cgrp->memcg->css);
560 return;
561 }
562
563 rcu_read_lock();
564 memcg = mem_cgroup_from_task(current);
565 cg_proto = sk->sk_prot->proto_cgroup(memcg);
566 if (!mem_cgroup_is_root(memcg) &&
567 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
568 sk->sk_cgrp = cg_proto;
569 }
570 rcu_read_unlock();
571 }
572 }
573 EXPORT_SYMBOL(sock_update_memcg);
574
575 void sock_release_memcg(struct sock *sk)
576 {
577 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
578 struct mem_cgroup *memcg;
579 WARN_ON(!sk->sk_cgrp->memcg);
580 memcg = sk->sk_cgrp->memcg;
581 css_put(&sk->sk_cgrp->memcg->css);
582 }
583 }
584
585 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
586 {
587 if (!memcg || mem_cgroup_is_root(memcg))
588 return NULL;
589
590 return &memcg->tcp_mem.cg_proto;
591 }
592 EXPORT_SYMBOL(tcp_proto_cgroup);
593
594 static void disarm_sock_keys(struct mem_cgroup *memcg)
595 {
596 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
597 return;
598 static_key_slow_dec(&memcg_socket_limit_enabled);
599 }
600 #else
601 static void disarm_sock_keys(struct mem_cgroup *memcg)
602 {
603 }
604 #endif
605
606 #ifdef CONFIG_MEMCG_KMEM
607 /*
608 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
609 * There are two main reasons for not using the css_id for this:
610 * 1) this works better in sparse environments, where we have a lot of memcgs,
611 * but only a few kmem-limited. Or also, if we have, for instance, 200
612 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
613 * 200 entry array for that.
614 *
615 * 2) In order not to violate the cgroup API, we would like to do all memory
616 * allocation in ->create(). At that point, we haven't yet allocated the
617 * css_id. Having a separate index prevents us from messing with the cgroup
618 * core for this
619 *
620 * The current size of the caches array is stored in
621 * memcg_limited_groups_array_size. It will double each time we have to
622 * increase it.
623 */
624 static DEFINE_IDA(kmem_limited_groups);
625 int memcg_limited_groups_array_size;
626
627 /*
628 * MIN_SIZE is different than 1, because we would like to avoid going through
629 * the alloc/free process all the time. In a small machine, 4 kmem-limited
630 * cgroups is a reasonable guess. In the future, it could be a parameter or
631 * tunable, but that is strictly not necessary.
632 *
633 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
634 * this constant directly from cgroup, but it is understandable that this is
635 * better kept as an internal representation in cgroup.c. In any case, the
636 * css_id space is not getting any smaller, and we don't have to necessarily
637 * increase ours as well if it increases.
638 */
639 #define MEMCG_CACHES_MIN_SIZE 4
640 #define MEMCG_CACHES_MAX_SIZE 65535
641
642 /*
643 * A lot of the calls to the cache allocation functions are expected to be
644 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
645 * conditional to this static branch, we'll have to allow modules that does
646 * kmem_cache_alloc and the such to see this symbol as well
647 */
648 struct static_key memcg_kmem_enabled_key;
649 EXPORT_SYMBOL(memcg_kmem_enabled_key);
650
651 static void disarm_kmem_keys(struct mem_cgroup *memcg)
652 {
653 if (memcg_kmem_is_active(memcg)) {
654 static_key_slow_dec(&memcg_kmem_enabled_key);
655 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
656 }
657 /*
658 * This check can't live in kmem destruction function,
659 * since the charges will outlive the cgroup
660 */
661 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
662 }
663 #else
664 static void disarm_kmem_keys(struct mem_cgroup *memcg)
665 {
666 }
667 #endif /* CONFIG_MEMCG_KMEM */
668
669 static void disarm_static_keys(struct mem_cgroup *memcg)
670 {
671 disarm_sock_keys(memcg);
672 disarm_kmem_keys(memcg);
673 }
674
675 static void drain_all_stock_async(struct mem_cgroup *memcg);
676
677 static struct mem_cgroup_per_zone *
678 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
679 {
680 VM_BUG_ON((unsigned)nid >= nr_node_ids);
681 return &memcg->nodeinfo[nid]->zoneinfo[zid];
682 }
683
684 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
685 {
686 return &memcg->css;
687 }
688
689 static struct mem_cgroup_per_zone *
690 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
691 {
692 int nid = page_to_nid(page);
693 int zid = page_zonenum(page);
694
695 return mem_cgroup_zoneinfo(memcg, nid, zid);
696 }
697
698 static struct mem_cgroup_tree_per_zone *
699 soft_limit_tree_node_zone(int nid, int zid)
700 {
701 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
702 }
703
704 static struct mem_cgroup_tree_per_zone *
705 soft_limit_tree_from_page(struct page *page)
706 {
707 int nid = page_to_nid(page);
708 int zid = page_zonenum(page);
709
710 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
711 }
712
713 static void
714 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
715 struct mem_cgroup_per_zone *mz,
716 struct mem_cgroup_tree_per_zone *mctz,
717 unsigned long long new_usage_in_excess)
718 {
719 struct rb_node **p = &mctz->rb_root.rb_node;
720 struct rb_node *parent = NULL;
721 struct mem_cgroup_per_zone *mz_node;
722
723 if (mz->on_tree)
724 return;
725
726 mz->usage_in_excess = new_usage_in_excess;
727 if (!mz->usage_in_excess)
728 return;
729 while (*p) {
730 parent = *p;
731 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
732 tree_node);
733 if (mz->usage_in_excess < mz_node->usage_in_excess)
734 p = &(*p)->rb_left;
735 /*
736 * We can't avoid mem cgroups that are over their soft
737 * limit by the same amount
738 */
739 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
740 p = &(*p)->rb_right;
741 }
742 rb_link_node(&mz->tree_node, parent, p);
743 rb_insert_color(&mz->tree_node, &mctz->rb_root);
744 mz->on_tree = true;
745 }
746
747 static void
748 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
749 struct mem_cgroup_per_zone *mz,
750 struct mem_cgroup_tree_per_zone *mctz)
751 {
752 if (!mz->on_tree)
753 return;
754 rb_erase(&mz->tree_node, &mctz->rb_root);
755 mz->on_tree = false;
756 }
757
758 static void
759 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
760 struct mem_cgroup_per_zone *mz,
761 struct mem_cgroup_tree_per_zone *mctz)
762 {
763 spin_lock(&mctz->lock);
764 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
765 spin_unlock(&mctz->lock);
766 }
767
768
769 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
770 {
771 unsigned long long excess;
772 struct mem_cgroup_per_zone *mz;
773 struct mem_cgroup_tree_per_zone *mctz;
774 int nid = page_to_nid(page);
775 int zid = page_zonenum(page);
776 mctz = soft_limit_tree_from_page(page);
777
778 /*
779 * Necessary to update all ancestors when hierarchy is used.
780 * because their event counter is not touched.
781 */
782 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
783 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
784 excess = res_counter_soft_limit_excess(&memcg->res);
785 /*
786 * We have to update the tree if mz is on RB-tree or
787 * mem is over its softlimit.
788 */
789 if (excess || mz->on_tree) {
790 spin_lock(&mctz->lock);
791 /* if on-tree, remove it */
792 if (mz->on_tree)
793 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
794 /*
795 * Insert again. mz->usage_in_excess will be updated.
796 * If excess is 0, no tree ops.
797 */
798 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
799 spin_unlock(&mctz->lock);
800 }
801 }
802 }
803
804 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
805 {
806 int node, zone;
807 struct mem_cgroup_per_zone *mz;
808 struct mem_cgroup_tree_per_zone *mctz;
809
810 for_each_node(node) {
811 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
812 mz = mem_cgroup_zoneinfo(memcg, node, zone);
813 mctz = soft_limit_tree_node_zone(node, zone);
814 mem_cgroup_remove_exceeded(memcg, mz, mctz);
815 }
816 }
817 }
818
819 static struct mem_cgroup_per_zone *
820 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
821 {
822 struct rb_node *rightmost = NULL;
823 struct mem_cgroup_per_zone *mz;
824
825 retry:
826 mz = NULL;
827 rightmost = rb_last(&mctz->rb_root);
828 if (!rightmost)
829 goto done; /* Nothing to reclaim from */
830
831 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
832 /*
833 * Remove the node now but someone else can add it back,
834 * we will to add it back at the end of reclaim to its correct
835 * position in the tree.
836 */
837 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
838 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
839 !css_tryget(&mz->memcg->css))
840 goto retry;
841 done:
842 return mz;
843 }
844
845 static struct mem_cgroup_per_zone *
846 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
847 {
848 struct mem_cgroup_per_zone *mz;
849
850 spin_lock(&mctz->lock);
851 mz = __mem_cgroup_largest_soft_limit_node(mctz);
852 spin_unlock(&mctz->lock);
853 return mz;
854 }
855
856 /*
857 * Implementation Note: reading percpu statistics for memcg.
858 *
859 * Both of vmstat[] and percpu_counter has threshold and do periodic
860 * synchronization to implement "quick" read. There are trade-off between
861 * reading cost and precision of value. Then, we may have a chance to implement
862 * a periodic synchronizion of counter in memcg's counter.
863 *
864 * But this _read() function is used for user interface now. The user accounts
865 * memory usage by memory cgroup and he _always_ requires exact value because
866 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
867 * have to visit all online cpus and make sum. So, for now, unnecessary
868 * synchronization is not implemented. (just implemented for cpu hotplug)
869 *
870 * If there are kernel internal actions which can make use of some not-exact
871 * value, and reading all cpu value can be performance bottleneck in some
872 * common workload, threashold and synchonization as vmstat[] should be
873 * implemented.
874 */
875 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
876 enum mem_cgroup_stat_index idx)
877 {
878 long val = 0;
879 int cpu;
880
881 get_online_cpus();
882 for_each_online_cpu(cpu)
883 val += per_cpu(memcg->stat->count[idx], cpu);
884 #ifdef CONFIG_HOTPLUG_CPU
885 spin_lock(&memcg->pcp_counter_lock);
886 val += memcg->nocpu_base.count[idx];
887 spin_unlock(&memcg->pcp_counter_lock);
888 #endif
889 put_online_cpus();
890 return val;
891 }
892
893 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
894 bool charge)
895 {
896 int val = (charge) ? 1 : -1;
897 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
898 }
899
900 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
901 enum mem_cgroup_events_index idx)
902 {
903 unsigned long val = 0;
904 int cpu;
905
906 for_each_online_cpu(cpu)
907 val += per_cpu(memcg->stat->events[idx], cpu);
908 #ifdef CONFIG_HOTPLUG_CPU
909 spin_lock(&memcg->pcp_counter_lock);
910 val += memcg->nocpu_base.events[idx];
911 spin_unlock(&memcg->pcp_counter_lock);
912 #endif
913 return val;
914 }
915
916 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
917 struct page *page,
918 bool anon, int nr_pages)
919 {
920 preempt_disable();
921
922 /*
923 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
924 * counted as CACHE even if it's on ANON LRU.
925 */
926 if (anon)
927 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
928 nr_pages);
929 else
930 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
931 nr_pages);
932
933 if (PageTransHuge(page))
934 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
935 nr_pages);
936
937 /* pagein of a big page is an event. So, ignore page size */
938 if (nr_pages > 0)
939 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
940 else {
941 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
942 nr_pages = -nr_pages; /* for event */
943 }
944
945 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
946
947 preempt_enable();
948 }
949
950 unsigned long
951 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
952 {
953 struct mem_cgroup_per_zone *mz;
954
955 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
956 return mz->lru_size[lru];
957 }
958
959 static unsigned long
960 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
961 unsigned int lru_mask)
962 {
963 struct mem_cgroup_per_zone *mz;
964 enum lru_list lru;
965 unsigned long ret = 0;
966
967 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
968
969 for_each_lru(lru) {
970 if (BIT(lru) & lru_mask)
971 ret += mz->lru_size[lru];
972 }
973 return ret;
974 }
975
976 static unsigned long
977 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
978 int nid, unsigned int lru_mask)
979 {
980 u64 total = 0;
981 int zid;
982
983 for (zid = 0; zid < MAX_NR_ZONES; zid++)
984 total += mem_cgroup_zone_nr_lru_pages(memcg,
985 nid, zid, lru_mask);
986
987 return total;
988 }
989
990 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
991 unsigned int lru_mask)
992 {
993 int nid;
994 u64 total = 0;
995
996 for_each_node_state(nid, N_MEMORY)
997 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
998 return total;
999 }
1000
1001 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1002 enum mem_cgroup_events_target target)
1003 {
1004 unsigned long val, next;
1005
1006 val = __this_cpu_read(memcg->stat->nr_page_events);
1007 next = __this_cpu_read(memcg->stat->targets[target]);
1008 /* from time_after() in jiffies.h */
1009 if ((long)next - (long)val < 0) {
1010 switch (target) {
1011 case MEM_CGROUP_TARGET_THRESH:
1012 next = val + THRESHOLDS_EVENTS_TARGET;
1013 break;
1014 case MEM_CGROUP_TARGET_SOFTLIMIT:
1015 next = val + SOFTLIMIT_EVENTS_TARGET;
1016 break;
1017 case MEM_CGROUP_TARGET_NUMAINFO:
1018 next = val + NUMAINFO_EVENTS_TARGET;
1019 break;
1020 default:
1021 break;
1022 }
1023 __this_cpu_write(memcg->stat->targets[target], next);
1024 return true;
1025 }
1026 return false;
1027 }
1028
1029 /*
1030 * Check events in order.
1031 *
1032 */
1033 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1034 {
1035 preempt_disable();
1036 /* threshold event is triggered in finer grain than soft limit */
1037 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1038 MEM_CGROUP_TARGET_THRESH))) {
1039 bool do_softlimit;
1040 bool do_numainfo __maybe_unused;
1041
1042 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1043 MEM_CGROUP_TARGET_SOFTLIMIT);
1044 #if MAX_NUMNODES > 1
1045 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1046 MEM_CGROUP_TARGET_NUMAINFO);
1047 #endif
1048 preempt_enable();
1049
1050 mem_cgroup_threshold(memcg);
1051 if (unlikely(do_softlimit))
1052 mem_cgroup_update_tree(memcg, page);
1053 #if MAX_NUMNODES > 1
1054 if (unlikely(do_numainfo))
1055 atomic_inc(&memcg->numainfo_events);
1056 #endif
1057 } else
1058 preempt_enable();
1059 }
1060
1061 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
1062 {
1063 return mem_cgroup_from_css(
1064 cgroup_subsys_state(cont, mem_cgroup_subsys_id));
1065 }
1066
1067 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1068 {
1069 /*
1070 * mm_update_next_owner() may clear mm->owner to NULL
1071 * if it races with swapoff, page migration, etc.
1072 * So this can be called with p == NULL.
1073 */
1074 if (unlikely(!p))
1075 return NULL;
1076
1077 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
1078 }
1079
1080 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1081 {
1082 struct mem_cgroup *memcg = NULL;
1083
1084 if (!mm)
1085 return NULL;
1086 /*
1087 * Because we have no locks, mm->owner's may be being moved to other
1088 * cgroup. We use css_tryget() here even if this looks
1089 * pessimistic (rather than adding locks here).
1090 */
1091 rcu_read_lock();
1092 do {
1093 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1094 if (unlikely(!memcg))
1095 break;
1096 } while (!css_tryget(&memcg->css));
1097 rcu_read_unlock();
1098 return memcg;
1099 }
1100
1101 /*
1102 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1103 * ref. count) or NULL if the whole root's subtree has been visited.
1104 *
1105 * helper function to be used by mem_cgroup_iter
1106 */
1107 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1108 struct mem_cgroup *last_visited)
1109 {
1110 struct cgroup *prev_cgroup, *next_cgroup;
1111
1112 /*
1113 * Root is not visited by cgroup iterators so it needs an
1114 * explicit visit.
1115 */
1116 if (!last_visited)
1117 return root;
1118
1119 prev_cgroup = (last_visited == root) ? NULL
1120 : last_visited->css.cgroup;
1121 skip_node:
1122 next_cgroup = cgroup_next_descendant_pre(
1123 prev_cgroup, root->css.cgroup);
1124
1125 /*
1126 * Even if we found a group we have to make sure it is
1127 * alive. css && !memcg means that the groups should be
1128 * skipped and we should continue the tree walk.
1129 * last_visited css is safe to use because it is
1130 * protected by css_get and the tree walk is rcu safe.
1131 */
1132 if (next_cgroup) {
1133 struct mem_cgroup *mem = mem_cgroup_from_cont(
1134 next_cgroup);
1135 if (css_tryget(&mem->css))
1136 return mem;
1137 else {
1138 prev_cgroup = next_cgroup;
1139 goto skip_node;
1140 }
1141 }
1142
1143 return NULL;
1144 }
1145
1146 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1147 {
1148 /*
1149 * When a group in the hierarchy below root is destroyed, the
1150 * hierarchy iterator can no longer be trusted since it might
1151 * have pointed to the destroyed group. Invalidate it.
1152 */
1153 atomic_inc(&root->dead_count);
1154 }
1155
1156 static struct mem_cgroup *
1157 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1158 struct mem_cgroup *root,
1159 int *sequence)
1160 {
1161 struct mem_cgroup *position = NULL;
1162 /*
1163 * A cgroup destruction happens in two stages: offlining and
1164 * release. They are separated by a RCU grace period.
1165 *
1166 * If the iterator is valid, we may still race with an
1167 * offlining. The RCU lock ensures the object won't be
1168 * released, tryget will fail if we lost the race.
1169 */
1170 *sequence = atomic_read(&root->dead_count);
1171 if (iter->last_dead_count == *sequence) {
1172 smp_rmb();
1173 position = iter->last_visited;
1174 if (position && !css_tryget(&position->css))
1175 position = NULL;
1176 }
1177 return position;
1178 }
1179
1180 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1181 struct mem_cgroup *last_visited,
1182 struct mem_cgroup *new_position,
1183 int sequence)
1184 {
1185 if (last_visited)
1186 css_put(&last_visited->css);
1187 /*
1188 * We store the sequence count from the time @last_visited was
1189 * loaded successfully instead of rereading it here so that we
1190 * don't lose destruction events in between. We could have
1191 * raced with the destruction of @new_position after all.
1192 */
1193 iter->last_visited = new_position;
1194 smp_wmb();
1195 iter->last_dead_count = sequence;
1196 }
1197
1198 /**
1199 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1200 * @root: hierarchy root
1201 * @prev: previously returned memcg, NULL on first invocation
1202 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1203 *
1204 * Returns references to children of the hierarchy below @root, or
1205 * @root itself, or %NULL after a full round-trip.
1206 *
1207 * Caller must pass the return value in @prev on subsequent
1208 * invocations for reference counting, or use mem_cgroup_iter_break()
1209 * to cancel a hierarchy walk before the round-trip is complete.
1210 *
1211 * Reclaimers can specify a zone and a priority level in @reclaim to
1212 * divide up the memcgs in the hierarchy among all concurrent
1213 * reclaimers operating on the same zone and priority.
1214 */
1215 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1216 struct mem_cgroup *prev,
1217 struct mem_cgroup_reclaim_cookie *reclaim)
1218 {
1219 struct mem_cgroup *memcg = NULL;
1220 struct mem_cgroup *last_visited = NULL;
1221
1222 if (mem_cgroup_disabled())
1223 return NULL;
1224
1225 if (!root)
1226 root = root_mem_cgroup;
1227
1228 if (prev && !reclaim)
1229 last_visited = prev;
1230
1231 if (!root->use_hierarchy && root != root_mem_cgroup) {
1232 if (prev)
1233 goto out_css_put;
1234 return root;
1235 }
1236
1237 rcu_read_lock();
1238 while (!memcg) {
1239 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1240 int uninitialized_var(seq);
1241
1242 if (reclaim) {
1243 int nid = zone_to_nid(reclaim->zone);
1244 int zid = zone_idx(reclaim->zone);
1245 struct mem_cgroup_per_zone *mz;
1246
1247 mz = mem_cgroup_zoneinfo(root, nid, zid);
1248 iter = &mz->reclaim_iter[reclaim->priority];
1249 if (prev && reclaim->generation != iter->generation) {
1250 iter->last_visited = NULL;
1251 goto out_unlock;
1252 }
1253
1254 last_visited = mem_cgroup_iter_load(iter, root, &seq);
1255 }
1256
1257 memcg = __mem_cgroup_iter_next(root, last_visited);
1258
1259 if (reclaim) {
1260 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1261
1262 if (!memcg)
1263 iter->generation++;
1264 else if (!prev && memcg)
1265 reclaim->generation = iter->generation;
1266 }
1267
1268 if (prev && !memcg)
1269 goto out_unlock;
1270 }
1271 out_unlock:
1272 rcu_read_unlock();
1273 out_css_put:
1274 if (prev && prev != root)
1275 css_put(&prev->css);
1276
1277 return memcg;
1278 }
1279
1280 /**
1281 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1282 * @root: hierarchy root
1283 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1284 */
1285 void mem_cgroup_iter_break(struct mem_cgroup *root,
1286 struct mem_cgroup *prev)
1287 {
1288 if (!root)
1289 root = root_mem_cgroup;
1290 if (prev && prev != root)
1291 css_put(&prev->css);
1292 }
1293
1294 /*
1295 * Iteration constructs for visiting all cgroups (under a tree). If
1296 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1297 * be used for reference counting.
1298 */
1299 #define for_each_mem_cgroup_tree(iter, root) \
1300 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1301 iter != NULL; \
1302 iter = mem_cgroup_iter(root, iter, NULL))
1303
1304 #define for_each_mem_cgroup(iter) \
1305 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1306 iter != NULL; \
1307 iter = mem_cgroup_iter(NULL, iter, NULL))
1308
1309 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1310 {
1311 struct mem_cgroup *memcg;
1312
1313 rcu_read_lock();
1314 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1315 if (unlikely(!memcg))
1316 goto out;
1317
1318 switch (idx) {
1319 case PGFAULT:
1320 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1321 break;
1322 case PGMAJFAULT:
1323 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1324 break;
1325 default:
1326 BUG();
1327 }
1328 out:
1329 rcu_read_unlock();
1330 }
1331 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1332
1333 /**
1334 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1335 * @zone: zone of the wanted lruvec
1336 * @memcg: memcg of the wanted lruvec
1337 *
1338 * Returns the lru list vector holding pages for the given @zone and
1339 * @mem. This can be the global zone lruvec, if the memory controller
1340 * is disabled.
1341 */
1342 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1343 struct mem_cgroup *memcg)
1344 {
1345 struct mem_cgroup_per_zone *mz;
1346 struct lruvec *lruvec;
1347
1348 if (mem_cgroup_disabled()) {
1349 lruvec = &zone->lruvec;
1350 goto out;
1351 }
1352
1353 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1354 lruvec = &mz->lruvec;
1355 out:
1356 /*
1357 * Since a node can be onlined after the mem_cgroup was created,
1358 * we have to be prepared to initialize lruvec->zone here;
1359 * and if offlined then reonlined, we need to reinitialize it.
1360 */
1361 if (unlikely(lruvec->zone != zone))
1362 lruvec->zone = zone;
1363 return lruvec;
1364 }
1365
1366 /*
1367 * Following LRU functions are allowed to be used without PCG_LOCK.
1368 * Operations are called by routine of global LRU independently from memcg.
1369 * What we have to take care of here is validness of pc->mem_cgroup.
1370 *
1371 * Changes to pc->mem_cgroup happens when
1372 * 1. charge
1373 * 2. moving account
1374 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1375 * It is added to LRU before charge.
1376 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1377 * When moving account, the page is not on LRU. It's isolated.
1378 */
1379
1380 /**
1381 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1382 * @page: the page
1383 * @zone: zone of the page
1384 */
1385 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1386 {
1387 struct mem_cgroup_per_zone *mz;
1388 struct mem_cgroup *memcg;
1389 struct page_cgroup *pc;
1390 struct lruvec *lruvec;
1391
1392 if (mem_cgroup_disabled()) {
1393 lruvec = &zone->lruvec;
1394 goto out;
1395 }
1396
1397 pc = lookup_page_cgroup(page);
1398 memcg = pc->mem_cgroup;
1399
1400 /*
1401 * Surreptitiously switch any uncharged offlist page to root:
1402 * an uncharged page off lru does nothing to secure
1403 * its former mem_cgroup from sudden removal.
1404 *
1405 * Our caller holds lru_lock, and PageCgroupUsed is updated
1406 * under page_cgroup lock: between them, they make all uses
1407 * of pc->mem_cgroup safe.
1408 */
1409 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1410 pc->mem_cgroup = memcg = root_mem_cgroup;
1411
1412 mz = page_cgroup_zoneinfo(memcg, page);
1413 lruvec = &mz->lruvec;
1414 out:
1415 /*
1416 * Since a node can be onlined after the mem_cgroup was created,
1417 * we have to be prepared to initialize lruvec->zone here;
1418 * and if offlined then reonlined, we need to reinitialize it.
1419 */
1420 if (unlikely(lruvec->zone != zone))
1421 lruvec->zone = zone;
1422 return lruvec;
1423 }
1424
1425 /**
1426 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1427 * @lruvec: mem_cgroup per zone lru vector
1428 * @lru: index of lru list the page is sitting on
1429 * @nr_pages: positive when adding or negative when removing
1430 *
1431 * This function must be called when a page is added to or removed from an
1432 * lru list.
1433 */
1434 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1435 int nr_pages)
1436 {
1437 struct mem_cgroup_per_zone *mz;
1438 unsigned long *lru_size;
1439
1440 if (mem_cgroup_disabled())
1441 return;
1442
1443 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1444 lru_size = mz->lru_size + lru;
1445 *lru_size += nr_pages;
1446 VM_BUG_ON((long)(*lru_size) < 0);
1447 }
1448
1449 /*
1450 * Checks whether given mem is same or in the root_mem_cgroup's
1451 * hierarchy subtree
1452 */
1453 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1454 struct mem_cgroup *memcg)
1455 {
1456 if (root_memcg == memcg)
1457 return true;
1458 if (!root_memcg->use_hierarchy || !memcg)
1459 return false;
1460 return css_is_ancestor(&memcg->css, &root_memcg->css);
1461 }
1462
1463 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1464 struct mem_cgroup *memcg)
1465 {
1466 bool ret;
1467
1468 rcu_read_lock();
1469 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1470 rcu_read_unlock();
1471 return ret;
1472 }
1473
1474 bool task_in_mem_cgroup(struct task_struct *task,
1475 const struct mem_cgroup *memcg)
1476 {
1477 struct mem_cgroup *curr = NULL;
1478 struct task_struct *p;
1479 bool ret;
1480
1481 p = find_lock_task_mm(task);
1482 if (p) {
1483 curr = try_get_mem_cgroup_from_mm(p->mm);
1484 task_unlock(p);
1485 } else {
1486 /*
1487 * All threads may have already detached their mm's, but the oom
1488 * killer still needs to detect if they have already been oom
1489 * killed to prevent needlessly killing additional tasks.
1490 */
1491 rcu_read_lock();
1492 curr = mem_cgroup_from_task(task);
1493 if (curr)
1494 css_get(&curr->css);
1495 rcu_read_unlock();
1496 }
1497 if (!curr)
1498 return false;
1499 /*
1500 * We should check use_hierarchy of "memcg" not "curr". Because checking
1501 * use_hierarchy of "curr" here make this function true if hierarchy is
1502 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1503 * hierarchy(even if use_hierarchy is disabled in "memcg").
1504 */
1505 ret = mem_cgroup_same_or_subtree(memcg, curr);
1506 css_put(&curr->css);
1507 return ret;
1508 }
1509
1510 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1511 {
1512 unsigned long inactive_ratio;
1513 unsigned long inactive;
1514 unsigned long active;
1515 unsigned long gb;
1516
1517 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1518 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1519
1520 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1521 if (gb)
1522 inactive_ratio = int_sqrt(10 * gb);
1523 else
1524 inactive_ratio = 1;
1525
1526 return inactive * inactive_ratio < active;
1527 }
1528
1529 #define mem_cgroup_from_res_counter(counter, member) \
1530 container_of(counter, struct mem_cgroup, member)
1531
1532 /**
1533 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1534 * @memcg: the memory cgroup
1535 *
1536 * Returns the maximum amount of memory @mem can be charged with, in
1537 * pages.
1538 */
1539 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1540 {
1541 unsigned long long margin;
1542
1543 margin = res_counter_margin(&memcg->res);
1544 if (do_swap_account)
1545 margin = min(margin, res_counter_margin(&memcg->memsw));
1546 return margin >> PAGE_SHIFT;
1547 }
1548
1549 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1550 {
1551 struct cgroup *cgrp = memcg->css.cgroup;
1552
1553 /* root ? */
1554 if (cgrp->parent == NULL)
1555 return vm_swappiness;
1556
1557 return memcg->swappiness;
1558 }
1559
1560 /*
1561 * memcg->moving_account is used for checking possibility that some thread is
1562 * calling move_account(). When a thread on CPU-A starts moving pages under
1563 * a memcg, other threads should check memcg->moving_account under
1564 * rcu_read_lock(), like this:
1565 *
1566 * CPU-A CPU-B
1567 * rcu_read_lock()
1568 * memcg->moving_account+1 if (memcg->mocing_account)
1569 * take heavy locks.
1570 * synchronize_rcu() update something.
1571 * rcu_read_unlock()
1572 * start move here.
1573 */
1574
1575 /* for quick checking without looking up memcg */
1576 atomic_t memcg_moving __read_mostly;
1577
1578 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1579 {
1580 atomic_inc(&memcg_moving);
1581 atomic_inc(&memcg->moving_account);
1582 synchronize_rcu();
1583 }
1584
1585 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1586 {
1587 /*
1588 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1589 * We check NULL in callee rather than caller.
1590 */
1591 if (memcg) {
1592 atomic_dec(&memcg_moving);
1593 atomic_dec(&memcg->moving_account);
1594 }
1595 }
1596
1597 /*
1598 * 2 routines for checking "mem" is under move_account() or not.
1599 *
1600 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1601 * is used for avoiding races in accounting. If true,
1602 * pc->mem_cgroup may be overwritten.
1603 *
1604 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1605 * under hierarchy of moving cgroups. This is for
1606 * waiting at hith-memory prressure caused by "move".
1607 */
1608
1609 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1610 {
1611 VM_BUG_ON(!rcu_read_lock_held());
1612 return atomic_read(&memcg->moving_account) > 0;
1613 }
1614
1615 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1616 {
1617 struct mem_cgroup *from;
1618 struct mem_cgroup *to;
1619 bool ret = false;
1620 /*
1621 * Unlike task_move routines, we access mc.to, mc.from not under
1622 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1623 */
1624 spin_lock(&mc.lock);
1625 from = mc.from;
1626 to = mc.to;
1627 if (!from)
1628 goto unlock;
1629
1630 ret = mem_cgroup_same_or_subtree(memcg, from)
1631 || mem_cgroup_same_or_subtree(memcg, to);
1632 unlock:
1633 spin_unlock(&mc.lock);
1634 return ret;
1635 }
1636
1637 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1638 {
1639 if (mc.moving_task && current != mc.moving_task) {
1640 if (mem_cgroup_under_move(memcg)) {
1641 DEFINE_WAIT(wait);
1642 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1643 /* moving charge context might have finished. */
1644 if (mc.moving_task)
1645 schedule();
1646 finish_wait(&mc.waitq, &wait);
1647 return true;
1648 }
1649 }
1650 return false;
1651 }
1652
1653 /*
1654 * Take this lock when
1655 * - a code tries to modify page's memcg while it's USED.
1656 * - a code tries to modify page state accounting in a memcg.
1657 * see mem_cgroup_stolen(), too.
1658 */
1659 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1660 unsigned long *flags)
1661 {
1662 spin_lock_irqsave(&memcg->move_lock, *flags);
1663 }
1664
1665 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1666 unsigned long *flags)
1667 {
1668 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1669 }
1670
1671 #define K(x) ((x) << (PAGE_SHIFT-10))
1672 /**
1673 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1674 * @memcg: The memory cgroup that went over limit
1675 * @p: Task that is going to be killed
1676 *
1677 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1678 * enabled
1679 */
1680 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1681 {
1682 struct cgroup *task_cgrp;
1683 struct cgroup *mem_cgrp;
1684 /*
1685 * Need a buffer in BSS, can't rely on allocations. The code relies
1686 * on the assumption that OOM is serialized for memory controller.
1687 * If this assumption is broken, revisit this code.
1688 */
1689 static char memcg_name[PATH_MAX];
1690 int ret;
1691 struct mem_cgroup *iter;
1692 unsigned int i;
1693
1694 if (!p)
1695 return;
1696
1697 rcu_read_lock();
1698
1699 mem_cgrp = memcg->css.cgroup;
1700 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1701
1702 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1703 if (ret < 0) {
1704 /*
1705 * Unfortunately, we are unable to convert to a useful name
1706 * But we'll still print out the usage information
1707 */
1708 rcu_read_unlock();
1709 goto done;
1710 }
1711 rcu_read_unlock();
1712
1713 pr_info("Task in %s killed", memcg_name);
1714
1715 rcu_read_lock();
1716 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1717 if (ret < 0) {
1718 rcu_read_unlock();
1719 goto done;
1720 }
1721 rcu_read_unlock();
1722
1723 /*
1724 * Continues from above, so we don't need an KERN_ level
1725 */
1726 pr_cont(" as a result of limit of %s\n", memcg_name);
1727 done:
1728
1729 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1730 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1731 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1732 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1733 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1734 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1735 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1736 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1737 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1738 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1739 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1740 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1741
1742 for_each_mem_cgroup_tree(iter, memcg) {
1743 pr_info("Memory cgroup stats");
1744
1745 rcu_read_lock();
1746 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1747 if (!ret)
1748 pr_cont(" for %s", memcg_name);
1749 rcu_read_unlock();
1750 pr_cont(":");
1751
1752 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1753 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1754 continue;
1755 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1756 K(mem_cgroup_read_stat(iter, i)));
1757 }
1758
1759 for (i = 0; i < NR_LRU_LISTS; i++)
1760 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1761 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1762
1763 pr_cont("\n");
1764 }
1765 }
1766
1767 /*
1768 * This function returns the number of memcg under hierarchy tree. Returns
1769 * 1(self count) if no children.
1770 */
1771 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1772 {
1773 int num = 0;
1774 struct mem_cgroup *iter;
1775
1776 for_each_mem_cgroup_tree(iter, memcg)
1777 num++;
1778 return num;
1779 }
1780
1781 /*
1782 * Return the memory (and swap, if configured) limit for a memcg.
1783 */
1784 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1785 {
1786 u64 limit;
1787
1788 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1789
1790 /*
1791 * Do not consider swap space if we cannot swap due to swappiness
1792 */
1793 if (mem_cgroup_swappiness(memcg)) {
1794 u64 memsw;
1795
1796 limit += total_swap_pages << PAGE_SHIFT;
1797 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1798
1799 /*
1800 * If memsw is finite and limits the amount of swap space
1801 * available to this memcg, return that limit.
1802 */
1803 limit = min(limit, memsw);
1804 }
1805
1806 return limit;
1807 }
1808
1809 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1810 int order)
1811 {
1812 struct mem_cgroup *iter;
1813 unsigned long chosen_points = 0;
1814 unsigned long totalpages;
1815 unsigned int points = 0;
1816 struct task_struct *chosen = NULL;
1817
1818 /*
1819 * If current has a pending SIGKILL or is exiting, then automatically
1820 * select it. The goal is to allow it to allocate so that it may
1821 * quickly exit and free its memory.
1822 */
1823 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1824 set_thread_flag(TIF_MEMDIE);
1825 return;
1826 }
1827
1828 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1829 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1830 for_each_mem_cgroup_tree(iter, memcg) {
1831 struct cgroup *cgroup = iter->css.cgroup;
1832 struct cgroup_iter it;
1833 struct task_struct *task;
1834
1835 cgroup_iter_start(cgroup, &it);
1836 while ((task = cgroup_iter_next(cgroup, &it))) {
1837 switch (oom_scan_process_thread(task, totalpages, NULL,
1838 false)) {
1839 case OOM_SCAN_SELECT:
1840 if (chosen)
1841 put_task_struct(chosen);
1842 chosen = task;
1843 chosen_points = ULONG_MAX;
1844 get_task_struct(chosen);
1845 /* fall through */
1846 case OOM_SCAN_CONTINUE:
1847 continue;
1848 case OOM_SCAN_ABORT:
1849 cgroup_iter_end(cgroup, &it);
1850 mem_cgroup_iter_break(memcg, iter);
1851 if (chosen)
1852 put_task_struct(chosen);
1853 return;
1854 case OOM_SCAN_OK:
1855 break;
1856 };
1857 points = oom_badness(task, memcg, NULL, totalpages);
1858 if (points > chosen_points) {
1859 if (chosen)
1860 put_task_struct(chosen);
1861 chosen = task;
1862 chosen_points = points;
1863 get_task_struct(chosen);
1864 }
1865 }
1866 cgroup_iter_end(cgroup, &it);
1867 }
1868
1869 if (!chosen)
1870 return;
1871 points = chosen_points * 1000 / totalpages;
1872 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1873 NULL, "Memory cgroup out of memory");
1874 }
1875
1876 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1877 gfp_t gfp_mask,
1878 unsigned long flags)
1879 {
1880 unsigned long total = 0;
1881 bool noswap = false;
1882 int loop;
1883
1884 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1885 noswap = true;
1886 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1887 noswap = true;
1888
1889 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1890 if (loop)
1891 drain_all_stock_async(memcg);
1892 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1893 /*
1894 * Allow limit shrinkers, which are triggered directly
1895 * by userspace, to catch signals and stop reclaim
1896 * after minimal progress, regardless of the margin.
1897 */
1898 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1899 break;
1900 if (mem_cgroup_margin(memcg))
1901 break;
1902 /*
1903 * If nothing was reclaimed after two attempts, there
1904 * may be no reclaimable pages in this hierarchy.
1905 */
1906 if (loop && !total)
1907 break;
1908 }
1909 return total;
1910 }
1911
1912 /**
1913 * test_mem_cgroup_node_reclaimable
1914 * @memcg: the target memcg
1915 * @nid: the node ID to be checked.
1916 * @noswap : specify true here if the user wants flle only information.
1917 *
1918 * This function returns whether the specified memcg contains any
1919 * reclaimable pages on a node. Returns true if there are any reclaimable
1920 * pages in the node.
1921 */
1922 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1923 int nid, bool noswap)
1924 {
1925 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1926 return true;
1927 if (noswap || !total_swap_pages)
1928 return false;
1929 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1930 return true;
1931 return false;
1932
1933 }
1934 #if MAX_NUMNODES > 1
1935
1936 /*
1937 * Always updating the nodemask is not very good - even if we have an empty
1938 * list or the wrong list here, we can start from some node and traverse all
1939 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1940 *
1941 */
1942 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1943 {
1944 int nid;
1945 /*
1946 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1947 * pagein/pageout changes since the last update.
1948 */
1949 if (!atomic_read(&memcg->numainfo_events))
1950 return;
1951 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1952 return;
1953
1954 /* make a nodemask where this memcg uses memory from */
1955 memcg->scan_nodes = node_states[N_MEMORY];
1956
1957 for_each_node_mask(nid, node_states[N_MEMORY]) {
1958
1959 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1960 node_clear(nid, memcg->scan_nodes);
1961 }
1962
1963 atomic_set(&memcg->numainfo_events, 0);
1964 atomic_set(&memcg->numainfo_updating, 0);
1965 }
1966
1967 /*
1968 * Selecting a node where we start reclaim from. Because what we need is just
1969 * reducing usage counter, start from anywhere is O,K. Considering
1970 * memory reclaim from current node, there are pros. and cons.
1971 *
1972 * Freeing memory from current node means freeing memory from a node which
1973 * we'll use or we've used. So, it may make LRU bad. And if several threads
1974 * hit limits, it will see a contention on a node. But freeing from remote
1975 * node means more costs for memory reclaim because of memory latency.
1976 *
1977 * Now, we use round-robin. Better algorithm is welcomed.
1978 */
1979 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1980 {
1981 int node;
1982
1983 mem_cgroup_may_update_nodemask(memcg);
1984 node = memcg->last_scanned_node;
1985
1986 node = next_node(node, memcg->scan_nodes);
1987 if (node == MAX_NUMNODES)
1988 node = first_node(memcg->scan_nodes);
1989 /*
1990 * We call this when we hit limit, not when pages are added to LRU.
1991 * No LRU may hold pages because all pages are UNEVICTABLE or
1992 * memcg is too small and all pages are not on LRU. In that case,
1993 * we use curret node.
1994 */
1995 if (unlikely(node == MAX_NUMNODES))
1996 node = numa_node_id();
1997
1998 memcg->last_scanned_node = node;
1999 return node;
2000 }
2001
2002 /*
2003 * Check all nodes whether it contains reclaimable pages or not.
2004 * For quick scan, we make use of scan_nodes. This will allow us to skip
2005 * unused nodes. But scan_nodes is lazily updated and may not cotain
2006 * enough new information. We need to do double check.
2007 */
2008 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2009 {
2010 int nid;
2011
2012 /*
2013 * quick check...making use of scan_node.
2014 * We can skip unused nodes.
2015 */
2016 if (!nodes_empty(memcg->scan_nodes)) {
2017 for (nid = first_node(memcg->scan_nodes);
2018 nid < MAX_NUMNODES;
2019 nid = next_node(nid, memcg->scan_nodes)) {
2020
2021 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2022 return true;
2023 }
2024 }
2025 /*
2026 * Check rest of nodes.
2027 */
2028 for_each_node_state(nid, N_MEMORY) {
2029 if (node_isset(nid, memcg->scan_nodes))
2030 continue;
2031 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2032 return true;
2033 }
2034 return false;
2035 }
2036
2037 #else
2038 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2039 {
2040 return 0;
2041 }
2042
2043 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2044 {
2045 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2046 }
2047 #endif
2048
2049 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2050 struct zone *zone,
2051 gfp_t gfp_mask,
2052 unsigned long *total_scanned)
2053 {
2054 struct mem_cgroup *victim = NULL;
2055 int total = 0;
2056 int loop = 0;
2057 unsigned long excess;
2058 unsigned long nr_scanned;
2059 struct mem_cgroup_reclaim_cookie reclaim = {
2060 .zone = zone,
2061 .priority = 0,
2062 };
2063
2064 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2065
2066 while (1) {
2067 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2068 if (!victim) {
2069 loop++;
2070 if (loop >= 2) {
2071 /*
2072 * If we have not been able to reclaim
2073 * anything, it might because there are
2074 * no reclaimable pages under this hierarchy
2075 */
2076 if (!total)
2077 break;
2078 /*
2079 * We want to do more targeted reclaim.
2080 * excess >> 2 is not to excessive so as to
2081 * reclaim too much, nor too less that we keep
2082 * coming back to reclaim from this cgroup
2083 */
2084 if (total >= (excess >> 2) ||
2085 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2086 break;
2087 }
2088 continue;
2089 }
2090 if (!mem_cgroup_reclaimable(victim, false))
2091 continue;
2092 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2093 zone, &nr_scanned);
2094 *total_scanned += nr_scanned;
2095 if (!res_counter_soft_limit_excess(&root_memcg->res))
2096 break;
2097 }
2098 mem_cgroup_iter_break(root_memcg, victim);
2099 return total;
2100 }
2101
2102 /*
2103 * Check OOM-Killer is already running under our hierarchy.
2104 * If someone is running, return false.
2105 * Has to be called with memcg_oom_lock
2106 */
2107 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
2108 {
2109 struct mem_cgroup *iter, *failed = NULL;
2110
2111 for_each_mem_cgroup_tree(iter, memcg) {
2112 if (iter->oom_lock) {
2113 /*
2114 * this subtree of our hierarchy is already locked
2115 * so we cannot give a lock.
2116 */
2117 failed = iter;
2118 mem_cgroup_iter_break(memcg, iter);
2119 break;
2120 } else
2121 iter->oom_lock = true;
2122 }
2123
2124 if (!failed)
2125 return true;
2126
2127 /*
2128 * OK, we failed to lock the whole subtree so we have to clean up
2129 * what we set up to the failing subtree
2130 */
2131 for_each_mem_cgroup_tree(iter, memcg) {
2132 if (iter == failed) {
2133 mem_cgroup_iter_break(memcg, iter);
2134 break;
2135 }
2136 iter->oom_lock = false;
2137 }
2138 return false;
2139 }
2140
2141 /*
2142 * Has to be called with memcg_oom_lock
2143 */
2144 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2145 {
2146 struct mem_cgroup *iter;
2147
2148 for_each_mem_cgroup_tree(iter, memcg)
2149 iter->oom_lock = false;
2150 return 0;
2151 }
2152
2153 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2154 {
2155 struct mem_cgroup *iter;
2156
2157 for_each_mem_cgroup_tree(iter, memcg)
2158 atomic_inc(&iter->under_oom);
2159 }
2160
2161 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2162 {
2163 struct mem_cgroup *iter;
2164
2165 /*
2166 * When a new child is created while the hierarchy is under oom,
2167 * mem_cgroup_oom_lock() may not be called. We have to use
2168 * atomic_add_unless() here.
2169 */
2170 for_each_mem_cgroup_tree(iter, memcg)
2171 atomic_add_unless(&iter->under_oom, -1, 0);
2172 }
2173
2174 static DEFINE_SPINLOCK(memcg_oom_lock);
2175 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2176
2177 struct oom_wait_info {
2178 struct mem_cgroup *memcg;
2179 wait_queue_t wait;
2180 };
2181
2182 static int memcg_oom_wake_function(wait_queue_t *wait,
2183 unsigned mode, int sync, void *arg)
2184 {
2185 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2186 struct mem_cgroup *oom_wait_memcg;
2187 struct oom_wait_info *oom_wait_info;
2188
2189 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2190 oom_wait_memcg = oom_wait_info->memcg;
2191
2192 /*
2193 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2194 * Then we can use css_is_ancestor without taking care of RCU.
2195 */
2196 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2197 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2198 return 0;
2199 return autoremove_wake_function(wait, mode, sync, arg);
2200 }
2201
2202 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2203 {
2204 /* for filtering, pass "memcg" as argument. */
2205 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2206 }
2207
2208 static void memcg_oom_recover(struct mem_cgroup *memcg)
2209 {
2210 if (memcg && atomic_read(&memcg->under_oom))
2211 memcg_wakeup_oom(memcg);
2212 }
2213
2214 /*
2215 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
2216 */
2217 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
2218 int order)
2219 {
2220 struct oom_wait_info owait;
2221 bool locked, need_to_kill;
2222
2223 owait.memcg = memcg;
2224 owait.wait.flags = 0;
2225 owait.wait.func = memcg_oom_wake_function;
2226 owait.wait.private = current;
2227 INIT_LIST_HEAD(&owait.wait.task_list);
2228 need_to_kill = true;
2229 mem_cgroup_mark_under_oom(memcg);
2230
2231 /* At first, try to OOM lock hierarchy under memcg.*/
2232 spin_lock(&memcg_oom_lock);
2233 locked = mem_cgroup_oom_lock(memcg);
2234 /*
2235 * Even if signal_pending(), we can't quit charge() loop without
2236 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
2237 * under OOM is always welcomed, use TASK_KILLABLE here.
2238 */
2239 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2240 if (!locked || memcg->oom_kill_disable)
2241 need_to_kill = false;
2242 if (locked)
2243 mem_cgroup_oom_notify(memcg);
2244 spin_unlock(&memcg_oom_lock);
2245
2246 if (need_to_kill) {
2247 finish_wait(&memcg_oom_waitq, &owait.wait);
2248 mem_cgroup_out_of_memory(memcg, mask, order);
2249 } else {
2250 schedule();
2251 finish_wait(&memcg_oom_waitq, &owait.wait);
2252 }
2253 spin_lock(&memcg_oom_lock);
2254 if (locked)
2255 mem_cgroup_oom_unlock(memcg);
2256 memcg_wakeup_oom(memcg);
2257 spin_unlock(&memcg_oom_lock);
2258
2259 mem_cgroup_unmark_under_oom(memcg);
2260
2261 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2262 return false;
2263 /* Give chance to dying process */
2264 schedule_timeout_uninterruptible(1);
2265 return true;
2266 }
2267
2268 /*
2269 * Currently used to update mapped file statistics, but the routine can be
2270 * generalized to update other statistics as well.
2271 *
2272 * Notes: Race condition
2273 *
2274 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2275 * it tends to be costly. But considering some conditions, we doesn't need
2276 * to do so _always_.
2277 *
2278 * Considering "charge", lock_page_cgroup() is not required because all
2279 * file-stat operations happen after a page is attached to radix-tree. There
2280 * are no race with "charge".
2281 *
2282 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2283 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2284 * if there are race with "uncharge". Statistics itself is properly handled
2285 * by flags.
2286 *
2287 * Considering "move", this is an only case we see a race. To make the race
2288 * small, we check mm->moving_account and detect there are possibility of race
2289 * If there is, we take a lock.
2290 */
2291
2292 void __mem_cgroup_begin_update_page_stat(struct page *page,
2293 bool *locked, unsigned long *flags)
2294 {
2295 struct mem_cgroup *memcg;
2296 struct page_cgroup *pc;
2297
2298 pc = lookup_page_cgroup(page);
2299 again:
2300 memcg = pc->mem_cgroup;
2301 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2302 return;
2303 /*
2304 * If this memory cgroup is not under account moving, we don't
2305 * need to take move_lock_mem_cgroup(). Because we already hold
2306 * rcu_read_lock(), any calls to move_account will be delayed until
2307 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2308 */
2309 if (!mem_cgroup_stolen(memcg))
2310 return;
2311
2312 move_lock_mem_cgroup(memcg, flags);
2313 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2314 move_unlock_mem_cgroup(memcg, flags);
2315 goto again;
2316 }
2317 *locked = true;
2318 }
2319
2320 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2321 {
2322 struct page_cgroup *pc = lookup_page_cgroup(page);
2323
2324 /*
2325 * It's guaranteed that pc->mem_cgroup never changes while
2326 * lock is held because a routine modifies pc->mem_cgroup
2327 * should take move_lock_mem_cgroup().
2328 */
2329 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2330 }
2331
2332 void mem_cgroup_update_page_stat(struct page *page,
2333 enum mem_cgroup_page_stat_item idx, int val)
2334 {
2335 struct mem_cgroup *memcg;
2336 struct page_cgroup *pc = lookup_page_cgroup(page);
2337 unsigned long uninitialized_var(flags);
2338
2339 if (mem_cgroup_disabled())
2340 return;
2341
2342 memcg = pc->mem_cgroup;
2343 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2344 return;
2345
2346 switch (idx) {
2347 case MEMCG_NR_FILE_MAPPED:
2348 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2349 break;
2350 default:
2351 BUG();
2352 }
2353
2354 this_cpu_add(memcg->stat->count[idx], val);
2355 }
2356
2357 /*
2358 * size of first charge trial. "32" comes from vmscan.c's magic value.
2359 * TODO: maybe necessary to use big numbers in big irons.
2360 */
2361 #define CHARGE_BATCH 32U
2362 struct memcg_stock_pcp {
2363 struct mem_cgroup *cached; /* this never be root cgroup */
2364 unsigned int nr_pages;
2365 struct work_struct work;
2366 unsigned long flags;
2367 #define FLUSHING_CACHED_CHARGE 0
2368 };
2369 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2370 static DEFINE_MUTEX(percpu_charge_mutex);
2371
2372 /**
2373 * consume_stock: Try to consume stocked charge on this cpu.
2374 * @memcg: memcg to consume from.
2375 * @nr_pages: how many pages to charge.
2376 *
2377 * The charges will only happen if @memcg matches the current cpu's memcg
2378 * stock, and at least @nr_pages are available in that stock. Failure to
2379 * service an allocation will refill the stock.
2380 *
2381 * returns true if successful, false otherwise.
2382 */
2383 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2384 {
2385 struct memcg_stock_pcp *stock;
2386 bool ret = true;
2387
2388 if (nr_pages > CHARGE_BATCH)
2389 return false;
2390
2391 stock = &get_cpu_var(memcg_stock);
2392 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2393 stock->nr_pages -= nr_pages;
2394 else /* need to call res_counter_charge */
2395 ret = false;
2396 put_cpu_var(memcg_stock);
2397 return ret;
2398 }
2399
2400 /*
2401 * Returns stocks cached in percpu to res_counter and reset cached information.
2402 */
2403 static void drain_stock(struct memcg_stock_pcp *stock)
2404 {
2405 struct mem_cgroup *old = stock->cached;
2406
2407 if (stock->nr_pages) {
2408 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2409
2410 res_counter_uncharge(&old->res, bytes);
2411 if (do_swap_account)
2412 res_counter_uncharge(&old->memsw, bytes);
2413 stock->nr_pages = 0;
2414 }
2415 stock->cached = NULL;
2416 }
2417
2418 /*
2419 * This must be called under preempt disabled or must be called by
2420 * a thread which is pinned to local cpu.
2421 */
2422 static void drain_local_stock(struct work_struct *dummy)
2423 {
2424 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2425 drain_stock(stock);
2426 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2427 }
2428
2429 static void __init memcg_stock_init(void)
2430 {
2431 int cpu;
2432
2433 for_each_possible_cpu(cpu) {
2434 struct memcg_stock_pcp *stock =
2435 &per_cpu(memcg_stock, cpu);
2436 INIT_WORK(&stock->work, drain_local_stock);
2437 }
2438 }
2439
2440 /*
2441 * Cache charges(val) which is from res_counter, to local per_cpu area.
2442 * This will be consumed by consume_stock() function, later.
2443 */
2444 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2445 {
2446 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2447
2448 if (stock->cached != memcg) { /* reset if necessary */
2449 drain_stock(stock);
2450 stock->cached = memcg;
2451 }
2452 stock->nr_pages += nr_pages;
2453 put_cpu_var(memcg_stock);
2454 }
2455
2456 /*
2457 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2458 * of the hierarchy under it. sync flag says whether we should block
2459 * until the work is done.
2460 */
2461 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2462 {
2463 int cpu, curcpu;
2464
2465 /* Notify other cpus that system-wide "drain" is running */
2466 get_online_cpus();
2467 curcpu = get_cpu();
2468 for_each_online_cpu(cpu) {
2469 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2470 struct mem_cgroup *memcg;
2471
2472 memcg = stock->cached;
2473 if (!memcg || !stock->nr_pages)
2474 continue;
2475 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2476 continue;
2477 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2478 if (cpu == curcpu)
2479 drain_local_stock(&stock->work);
2480 else
2481 schedule_work_on(cpu, &stock->work);
2482 }
2483 }
2484 put_cpu();
2485
2486 if (!sync)
2487 goto out;
2488
2489 for_each_online_cpu(cpu) {
2490 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2491 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2492 flush_work(&stock->work);
2493 }
2494 out:
2495 put_online_cpus();
2496 }
2497
2498 /*
2499 * Tries to drain stocked charges in other cpus. This function is asynchronous
2500 * and just put a work per cpu for draining localy on each cpu. Caller can
2501 * expects some charges will be back to res_counter later but cannot wait for
2502 * it.
2503 */
2504 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2505 {
2506 /*
2507 * If someone calls draining, avoid adding more kworker runs.
2508 */
2509 if (!mutex_trylock(&percpu_charge_mutex))
2510 return;
2511 drain_all_stock(root_memcg, false);
2512 mutex_unlock(&percpu_charge_mutex);
2513 }
2514
2515 /* This is a synchronous drain interface. */
2516 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2517 {
2518 /* called when force_empty is called */
2519 mutex_lock(&percpu_charge_mutex);
2520 drain_all_stock(root_memcg, true);
2521 mutex_unlock(&percpu_charge_mutex);
2522 }
2523
2524 /*
2525 * This function drains percpu counter value from DEAD cpu and
2526 * move it to local cpu. Note that this function can be preempted.
2527 */
2528 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2529 {
2530 int i;
2531
2532 spin_lock(&memcg->pcp_counter_lock);
2533 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2534 long x = per_cpu(memcg->stat->count[i], cpu);
2535
2536 per_cpu(memcg->stat->count[i], cpu) = 0;
2537 memcg->nocpu_base.count[i] += x;
2538 }
2539 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2540 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2541
2542 per_cpu(memcg->stat->events[i], cpu) = 0;
2543 memcg->nocpu_base.events[i] += x;
2544 }
2545 spin_unlock(&memcg->pcp_counter_lock);
2546 }
2547
2548 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2549 unsigned long action,
2550 void *hcpu)
2551 {
2552 int cpu = (unsigned long)hcpu;
2553 struct memcg_stock_pcp *stock;
2554 struct mem_cgroup *iter;
2555
2556 if (action == CPU_ONLINE)
2557 return NOTIFY_OK;
2558
2559 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2560 return NOTIFY_OK;
2561
2562 for_each_mem_cgroup(iter)
2563 mem_cgroup_drain_pcp_counter(iter, cpu);
2564
2565 stock = &per_cpu(memcg_stock, cpu);
2566 drain_stock(stock);
2567 return NOTIFY_OK;
2568 }
2569
2570
2571 /* See __mem_cgroup_try_charge() for details */
2572 enum {
2573 CHARGE_OK, /* success */
2574 CHARGE_RETRY, /* need to retry but retry is not bad */
2575 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2576 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2577 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2578 };
2579
2580 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2581 unsigned int nr_pages, unsigned int min_pages,
2582 bool oom_check)
2583 {
2584 unsigned long csize = nr_pages * PAGE_SIZE;
2585 struct mem_cgroup *mem_over_limit;
2586 struct res_counter *fail_res;
2587 unsigned long flags = 0;
2588 int ret;
2589
2590 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2591
2592 if (likely(!ret)) {
2593 if (!do_swap_account)
2594 return CHARGE_OK;
2595 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2596 if (likely(!ret))
2597 return CHARGE_OK;
2598
2599 res_counter_uncharge(&memcg->res, csize);
2600 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2601 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2602 } else
2603 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2604 /*
2605 * Never reclaim on behalf of optional batching, retry with a
2606 * single page instead.
2607 */
2608 if (nr_pages > min_pages)
2609 return CHARGE_RETRY;
2610
2611 if (!(gfp_mask & __GFP_WAIT))
2612 return CHARGE_WOULDBLOCK;
2613
2614 if (gfp_mask & __GFP_NORETRY)
2615 return CHARGE_NOMEM;
2616
2617 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2618 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2619 return CHARGE_RETRY;
2620 /*
2621 * Even though the limit is exceeded at this point, reclaim
2622 * may have been able to free some pages. Retry the charge
2623 * before killing the task.
2624 *
2625 * Only for regular pages, though: huge pages are rather
2626 * unlikely to succeed so close to the limit, and we fall back
2627 * to regular pages anyway in case of failure.
2628 */
2629 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2630 return CHARGE_RETRY;
2631
2632 /*
2633 * At task move, charge accounts can be doubly counted. So, it's
2634 * better to wait until the end of task_move if something is going on.
2635 */
2636 if (mem_cgroup_wait_acct_move(mem_over_limit))
2637 return CHARGE_RETRY;
2638
2639 /* If we don't need to call oom-killer at el, return immediately */
2640 if (!oom_check)
2641 return CHARGE_NOMEM;
2642 /* check OOM */
2643 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2644 return CHARGE_OOM_DIE;
2645
2646 return CHARGE_RETRY;
2647 }
2648
2649 /*
2650 * __mem_cgroup_try_charge() does
2651 * 1. detect memcg to be charged against from passed *mm and *ptr,
2652 * 2. update res_counter
2653 * 3. call memory reclaim if necessary.
2654 *
2655 * In some special case, if the task is fatal, fatal_signal_pending() or
2656 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2657 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2658 * as possible without any hazards. 2: all pages should have a valid
2659 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2660 * pointer, that is treated as a charge to root_mem_cgroup.
2661 *
2662 * So __mem_cgroup_try_charge() will return
2663 * 0 ... on success, filling *ptr with a valid memcg pointer.
2664 * -ENOMEM ... charge failure because of resource limits.
2665 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2666 *
2667 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2668 * the oom-killer can be invoked.
2669 */
2670 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2671 gfp_t gfp_mask,
2672 unsigned int nr_pages,
2673 struct mem_cgroup **ptr,
2674 bool oom)
2675 {
2676 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2677 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2678 struct mem_cgroup *memcg = NULL;
2679 int ret;
2680
2681 /*
2682 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2683 * in system level. So, allow to go ahead dying process in addition to
2684 * MEMDIE process.
2685 */
2686 if (unlikely(test_thread_flag(TIF_MEMDIE)
2687 || fatal_signal_pending(current)))
2688 goto bypass;
2689
2690 /*
2691 * We always charge the cgroup the mm_struct belongs to.
2692 * The mm_struct's mem_cgroup changes on task migration if the
2693 * thread group leader migrates. It's possible that mm is not
2694 * set, if so charge the root memcg (happens for pagecache usage).
2695 */
2696 if (!*ptr && !mm)
2697 *ptr = root_mem_cgroup;
2698 again:
2699 if (*ptr) { /* css should be a valid one */
2700 memcg = *ptr;
2701 if (mem_cgroup_is_root(memcg))
2702 goto done;
2703 if (consume_stock(memcg, nr_pages))
2704 goto done;
2705 css_get(&memcg->css);
2706 } else {
2707 struct task_struct *p;
2708
2709 rcu_read_lock();
2710 p = rcu_dereference(mm->owner);
2711 /*
2712 * Because we don't have task_lock(), "p" can exit.
2713 * In that case, "memcg" can point to root or p can be NULL with
2714 * race with swapoff. Then, we have small risk of mis-accouning.
2715 * But such kind of mis-account by race always happens because
2716 * we don't have cgroup_mutex(). It's overkill and we allo that
2717 * small race, here.
2718 * (*) swapoff at el will charge against mm-struct not against
2719 * task-struct. So, mm->owner can be NULL.
2720 */
2721 memcg = mem_cgroup_from_task(p);
2722 if (!memcg)
2723 memcg = root_mem_cgroup;
2724 if (mem_cgroup_is_root(memcg)) {
2725 rcu_read_unlock();
2726 goto done;
2727 }
2728 if (consume_stock(memcg, nr_pages)) {
2729 /*
2730 * It seems dagerous to access memcg without css_get().
2731 * But considering how consume_stok works, it's not
2732 * necessary. If consume_stock success, some charges
2733 * from this memcg are cached on this cpu. So, we
2734 * don't need to call css_get()/css_tryget() before
2735 * calling consume_stock().
2736 */
2737 rcu_read_unlock();
2738 goto done;
2739 }
2740 /* after here, we may be blocked. we need to get refcnt */
2741 if (!css_tryget(&memcg->css)) {
2742 rcu_read_unlock();
2743 goto again;
2744 }
2745 rcu_read_unlock();
2746 }
2747
2748 do {
2749 bool oom_check;
2750
2751 /* If killed, bypass charge */
2752 if (fatal_signal_pending(current)) {
2753 css_put(&memcg->css);
2754 goto bypass;
2755 }
2756
2757 oom_check = false;
2758 if (oom && !nr_oom_retries) {
2759 oom_check = true;
2760 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2761 }
2762
2763 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2764 oom_check);
2765 switch (ret) {
2766 case CHARGE_OK:
2767 break;
2768 case CHARGE_RETRY: /* not in OOM situation but retry */
2769 batch = nr_pages;
2770 css_put(&memcg->css);
2771 memcg = NULL;
2772 goto again;
2773 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2774 css_put(&memcg->css);
2775 goto nomem;
2776 case CHARGE_NOMEM: /* OOM routine works */
2777 if (!oom) {
2778 css_put(&memcg->css);
2779 goto nomem;
2780 }
2781 /* If oom, we never return -ENOMEM */
2782 nr_oom_retries--;
2783 break;
2784 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2785 css_put(&memcg->css);
2786 goto bypass;
2787 }
2788 } while (ret != CHARGE_OK);
2789
2790 if (batch > nr_pages)
2791 refill_stock(memcg, batch - nr_pages);
2792 css_put(&memcg->css);
2793 done:
2794 *ptr = memcg;
2795 return 0;
2796 nomem:
2797 *ptr = NULL;
2798 return -ENOMEM;
2799 bypass:
2800 *ptr = root_mem_cgroup;
2801 return -EINTR;
2802 }
2803
2804 /*
2805 * Somemtimes we have to undo a charge we got by try_charge().
2806 * This function is for that and do uncharge, put css's refcnt.
2807 * gotten by try_charge().
2808 */
2809 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2810 unsigned int nr_pages)
2811 {
2812 if (!mem_cgroup_is_root(memcg)) {
2813 unsigned long bytes = nr_pages * PAGE_SIZE;
2814
2815 res_counter_uncharge(&memcg->res, bytes);
2816 if (do_swap_account)
2817 res_counter_uncharge(&memcg->memsw, bytes);
2818 }
2819 }
2820
2821 /*
2822 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2823 * This is useful when moving usage to parent cgroup.
2824 */
2825 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2826 unsigned int nr_pages)
2827 {
2828 unsigned long bytes = nr_pages * PAGE_SIZE;
2829
2830 if (mem_cgroup_is_root(memcg))
2831 return;
2832
2833 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2834 if (do_swap_account)
2835 res_counter_uncharge_until(&memcg->memsw,
2836 memcg->memsw.parent, bytes);
2837 }
2838
2839 /*
2840 * A helper function to get mem_cgroup from ID. must be called under
2841 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2842 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2843 * called against removed memcg.)
2844 */
2845 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2846 {
2847 struct cgroup_subsys_state *css;
2848
2849 /* ID 0 is unused ID */
2850 if (!id)
2851 return NULL;
2852 css = css_lookup(&mem_cgroup_subsys, id);
2853 if (!css)
2854 return NULL;
2855 return mem_cgroup_from_css(css);
2856 }
2857
2858 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2859 {
2860 struct mem_cgroup *memcg = NULL;
2861 struct page_cgroup *pc;
2862 unsigned short id;
2863 swp_entry_t ent;
2864
2865 VM_BUG_ON(!PageLocked(page));
2866
2867 pc = lookup_page_cgroup(page);
2868 lock_page_cgroup(pc);
2869 if (PageCgroupUsed(pc)) {
2870 memcg = pc->mem_cgroup;
2871 if (memcg && !css_tryget(&memcg->css))
2872 memcg = NULL;
2873 } else if (PageSwapCache(page)) {
2874 ent.val = page_private(page);
2875 id = lookup_swap_cgroup_id(ent);
2876 rcu_read_lock();
2877 memcg = mem_cgroup_lookup(id);
2878 if (memcg && !css_tryget(&memcg->css))
2879 memcg = NULL;
2880 rcu_read_unlock();
2881 }
2882 unlock_page_cgroup(pc);
2883 return memcg;
2884 }
2885
2886 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2887 struct page *page,
2888 unsigned int nr_pages,
2889 enum charge_type ctype,
2890 bool lrucare)
2891 {
2892 struct page_cgroup *pc = lookup_page_cgroup(page);
2893 struct zone *uninitialized_var(zone);
2894 struct lruvec *lruvec;
2895 bool was_on_lru = false;
2896 bool anon;
2897
2898 lock_page_cgroup(pc);
2899 VM_BUG_ON(PageCgroupUsed(pc));
2900 /*
2901 * we don't need page_cgroup_lock about tail pages, becase they are not
2902 * accessed by any other context at this point.
2903 */
2904
2905 /*
2906 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2907 * may already be on some other mem_cgroup's LRU. Take care of it.
2908 */
2909 if (lrucare) {
2910 zone = page_zone(page);
2911 spin_lock_irq(&zone->lru_lock);
2912 if (PageLRU(page)) {
2913 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2914 ClearPageLRU(page);
2915 del_page_from_lru_list(page, lruvec, page_lru(page));
2916 was_on_lru = true;
2917 }
2918 }
2919
2920 pc->mem_cgroup = memcg;
2921 /*
2922 * We access a page_cgroup asynchronously without lock_page_cgroup().
2923 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2924 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2925 * before USED bit, we need memory barrier here.
2926 * See mem_cgroup_add_lru_list(), etc.
2927 */
2928 smp_wmb();
2929 SetPageCgroupUsed(pc);
2930
2931 if (lrucare) {
2932 if (was_on_lru) {
2933 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2934 VM_BUG_ON(PageLRU(page));
2935 SetPageLRU(page);
2936 add_page_to_lru_list(page, lruvec, page_lru(page));
2937 }
2938 spin_unlock_irq(&zone->lru_lock);
2939 }
2940
2941 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2942 anon = true;
2943 else
2944 anon = false;
2945
2946 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2947 unlock_page_cgroup(pc);
2948
2949 /*
2950 * "charge_statistics" updated event counter. Then, check it.
2951 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2952 * if they exceeds softlimit.
2953 */
2954 memcg_check_events(memcg, page);
2955 }
2956
2957 static DEFINE_MUTEX(set_limit_mutex);
2958
2959 #ifdef CONFIG_MEMCG_KMEM
2960 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2961 {
2962 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2963 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2964 }
2965
2966 /*
2967 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2968 * in the memcg_cache_params struct.
2969 */
2970 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2971 {
2972 struct kmem_cache *cachep;
2973
2974 VM_BUG_ON(p->is_root_cache);
2975 cachep = p->root_cache;
2976 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2977 }
2978
2979 #ifdef CONFIG_SLABINFO
2980 static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
2981 struct seq_file *m)
2982 {
2983 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2984 struct memcg_cache_params *params;
2985
2986 if (!memcg_can_account_kmem(memcg))
2987 return -EIO;
2988
2989 print_slabinfo_header(m);
2990
2991 mutex_lock(&memcg->slab_caches_mutex);
2992 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2993 cache_show(memcg_params_to_cache(params), m);
2994 mutex_unlock(&memcg->slab_caches_mutex);
2995
2996 return 0;
2997 }
2998 #endif
2999
3000 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
3001 {
3002 struct res_counter *fail_res;
3003 struct mem_cgroup *_memcg;
3004 int ret = 0;
3005 bool may_oom;
3006
3007 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
3008 if (ret)
3009 return ret;
3010
3011 /*
3012 * Conditions under which we can wait for the oom_killer. Those are
3013 * the same conditions tested by the core page allocator
3014 */
3015 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
3016
3017 _memcg = memcg;
3018 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
3019 &_memcg, may_oom);
3020
3021 if (ret == -EINTR) {
3022 /*
3023 * __mem_cgroup_try_charge() chosed to bypass to root due to
3024 * OOM kill or fatal signal. Since our only options are to
3025 * either fail the allocation or charge it to this cgroup, do
3026 * it as a temporary condition. But we can't fail. From a
3027 * kmem/slab perspective, the cache has already been selected,
3028 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3029 * our minds.
3030 *
3031 * This condition will only trigger if the task entered
3032 * memcg_charge_kmem in a sane state, but was OOM-killed during
3033 * __mem_cgroup_try_charge() above. Tasks that were already
3034 * dying when the allocation triggers should have been already
3035 * directed to the root cgroup in memcontrol.h
3036 */
3037 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3038 if (do_swap_account)
3039 res_counter_charge_nofail(&memcg->memsw, size,
3040 &fail_res);
3041 ret = 0;
3042 } else if (ret)
3043 res_counter_uncharge(&memcg->kmem, size);
3044
3045 return ret;
3046 }
3047
3048 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3049 {
3050 res_counter_uncharge(&memcg->res, size);
3051 if (do_swap_account)
3052 res_counter_uncharge(&memcg->memsw, size);
3053
3054 /* Not down to 0 */
3055 if (res_counter_uncharge(&memcg->kmem, size))
3056 return;
3057
3058 /*
3059 * Releases a reference taken in kmem_cgroup_css_offline in case
3060 * this last uncharge is racing with the offlining code or it is
3061 * outliving the memcg existence.
3062 *
3063 * The memory barrier imposed by test&clear is paired with the
3064 * explicit one in memcg_kmem_mark_dead().
3065 */
3066 if (memcg_kmem_test_and_clear_dead(memcg))
3067 css_put(&memcg->css);
3068 }
3069
3070 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3071 {
3072 if (!memcg)
3073 return;
3074
3075 mutex_lock(&memcg->slab_caches_mutex);
3076 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3077 mutex_unlock(&memcg->slab_caches_mutex);
3078 }
3079
3080 /*
3081 * helper for acessing a memcg's index. It will be used as an index in the
3082 * child cache array in kmem_cache, and also to derive its name. This function
3083 * will return -1 when this is not a kmem-limited memcg.
3084 */
3085 int memcg_cache_id(struct mem_cgroup *memcg)
3086 {
3087 return memcg ? memcg->kmemcg_id : -1;
3088 }
3089
3090 /*
3091 * This ends up being protected by the set_limit mutex, during normal
3092 * operation, because that is its main call site.
3093 *
3094 * But when we create a new cache, we can call this as well if its parent
3095 * is kmem-limited. That will have to hold set_limit_mutex as well.
3096 */
3097 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3098 {
3099 int num, ret;
3100
3101 num = ida_simple_get(&kmem_limited_groups,
3102 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3103 if (num < 0)
3104 return num;
3105 /*
3106 * After this point, kmem_accounted (that we test atomically in
3107 * the beginning of this conditional), is no longer 0. This
3108 * guarantees only one process will set the following boolean
3109 * to true. We don't need test_and_set because we're protected
3110 * by the set_limit_mutex anyway.
3111 */
3112 memcg_kmem_set_activated(memcg);
3113
3114 ret = memcg_update_all_caches(num+1);
3115 if (ret) {
3116 ida_simple_remove(&kmem_limited_groups, num);
3117 memcg_kmem_clear_activated(memcg);
3118 return ret;
3119 }
3120
3121 memcg->kmemcg_id = num;
3122 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3123 mutex_init(&memcg->slab_caches_mutex);
3124 return 0;
3125 }
3126
3127 static size_t memcg_caches_array_size(int num_groups)
3128 {
3129 ssize_t size;
3130 if (num_groups <= 0)
3131 return 0;
3132
3133 size = 2 * num_groups;
3134 if (size < MEMCG_CACHES_MIN_SIZE)
3135 size = MEMCG_CACHES_MIN_SIZE;
3136 else if (size > MEMCG_CACHES_MAX_SIZE)
3137 size = MEMCG_CACHES_MAX_SIZE;
3138
3139 return size;
3140 }
3141
3142 /*
3143 * We should update the current array size iff all caches updates succeed. This
3144 * can only be done from the slab side. The slab mutex needs to be held when
3145 * calling this.
3146 */
3147 void memcg_update_array_size(int num)
3148 {
3149 if (num > memcg_limited_groups_array_size)
3150 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3151 }
3152
3153 static void kmem_cache_destroy_work_func(struct work_struct *w);
3154
3155 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3156 {
3157 struct memcg_cache_params *cur_params = s->memcg_params;
3158
3159 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3160
3161 if (num_groups > memcg_limited_groups_array_size) {
3162 int i;
3163 ssize_t size = memcg_caches_array_size(num_groups);
3164
3165 size *= sizeof(void *);
3166 size += sizeof(struct memcg_cache_params);
3167
3168 s->memcg_params = kzalloc(size, GFP_KERNEL);
3169 if (!s->memcg_params) {
3170 s->memcg_params = cur_params;
3171 return -ENOMEM;
3172 }
3173
3174 s->memcg_params->is_root_cache = true;
3175
3176 /*
3177 * There is the chance it will be bigger than
3178 * memcg_limited_groups_array_size, if we failed an allocation
3179 * in a cache, in which case all caches updated before it, will
3180 * have a bigger array.
3181 *
3182 * But if that is the case, the data after
3183 * memcg_limited_groups_array_size is certainly unused
3184 */
3185 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3186 if (!cur_params->memcg_caches[i])
3187 continue;
3188 s->memcg_params->memcg_caches[i] =
3189 cur_params->memcg_caches[i];
3190 }
3191
3192 /*
3193 * Ideally, we would wait until all caches succeed, and only
3194 * then free the old one. But this is not worth the extra
3195 * pointer per-cache we'd have to have for this.
3196 *
3197 * It is not a big deal if some caches are left with a size
3198 * bigger than the others. And all updates will reset this
3199 * anyway.
3200 */
3201 kfree(cur_params);
3202 }
3203 return 0;
3204 }
3205
3206 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3207 struct kmem_cache *root_cache)
3208 {
3209 size_t size = sizeof(struct memcg_cache_params);
3210
3211 if (!memcg_kmem_enabled())
3212 return 0;
3213
3214 if (!memcg)
3215 size += memcg_limited_groups_array_size * sizeof(void *);
3216
3217 s->memcg_params = kzalloc(size, GFP_KERNEL);
3218 if (!s->memcg_params)
3219 return -ENOMEM;
3220
3221 INIT_WORK(&s->memcg_params->destroy,
3222 kmem_cache_destroy_work_func);
3223 if (memcg) {
3224 s->memcg_params->memcg = memcg;
3225 s->memcg_params->root_cache = root_cache;
3226 } else
3227 s->memcg_params->is_root_cache = true;
3228
3229 return 0;
3230 }
3231
3232 void memcg_release_cache(struct kmem_cache *s)
3233 {
3234 struct kmem_cache *root;
3235 struct mem_cgroup *memcg;
3236 int id;
3237
3238 /*
3239 * This happens, for instance, when a root cache goes away before we
3240 * add any memcg.
3241 */
3242 if (!s->memcg_params)
3243 return;
3244
3245 if (s->memcg_params->is_root_cache)
3246 goto out;
3247
3248 memcg = s->memcg_params->memcg;
3249 id = memcg_cache_id(memcg);
3250
3251 root = s->memcg_params->root_cache;
3252 root->memcg_params->memcg_caches[id] = NULL;
3253
3254 mutex_lock(&memcg->slab_caches_mutex);
3255 list_del(&s->memcg_params->list);
3256 mutex_unlock(&memcg->slab_caches_mutex);
3257
3258 css_put(&memcg->css);
3259 out:
3260 kfree(s->memcg_params);
3261 }
3262
3263 /*
3264 * During the creation a new cache, we need to disable our accounting mechanism
3265 * altogether. This is true even if we are not creating, but rather just
3266 * enqueing new caches to be created.
3267 *
3268 * This is because that process will trigger allocations; some visible, like
3269 * explicit kmallocs to auxiliary data structures, name strings and internal
3270 * cache structures; some well concealed, like INIT_WORK() that can allocate
3271 * objects during debug.
3272 *
3273 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3274 * to it. This may not be a bounded recursion: since the first cache creation
3275 * failed to complete (waiting on the allocation), we'll just try to create the
3276 * cache again, failing at the same point.
3277 *
3278 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3279 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3280 * inside the following two functions.
3281 */
3282 static inline void memcg_stop_kmem_account(void)
3283 {
3284 VM_BUG_ON(!current->mm);
3285 current->memcg_kmem_skip_account++;
3286 }
3287
3288 static inline void memcg_resume_kmem_account(void)
3289 {
3290 VM_BUG_ON(!current->mm);
3291 current->memcg_kmem_skip_account--;
3292 }
3293
3294 static void kmem_cache_destroy_work_func(struct work_struct *w)
3295 {
3296 struct kmem_cache *cachep;
3297 struct memcg_cache_params *p;
3298
3299 p = container_of(w, struct memcg_cache_params, destroy);
3300
3301 cachep = memcg_params_to_cache(p);
3302
3303 /*
3304 * If we get down to 0 after shrink, we could delete right away.
3305 * However, memcg_release_pages() already puts us back in the workqueue
3306 * in that case. If we proceed deleting, we'll get a dangling
3307 * reference, and removing the object from the workqueue in that case
3308 * is unnecessary complication. We are not a fast path.
3309 *
3310 * Note that this case is fundamentally different from racing with
3311 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3312 * kmem_cache_shrink, not only we would be reinserting a dead cache
3313 * into the queue, but doing so from inside the worker racing to
3314 * destroy it.
3315 *
3316 * So if we aren't down to zero, we'll just schedule a worker and try
3317 * again
3318 */
3319 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3320 kmem_cache_shrink(cachep);
3321 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3322 return;
3323 } else
3324 kmem_cache_destroy(cachep);
3325 }
3326
3327 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3328 {
3329 if (!cachep->memcg_params->dead)
3330 return;
3331
3332 /*
3333 * There are many ways in which we can get here.
3334 *
3335 * We can get to a memory-pressure situation while the delayed work is
3336 * still pending to run. The vmscan shrinkers can then release all
3337 * cache memory and get us to destruction. If this is the case, we'll
3338 * be executed twice, which is a bug (the second time will execute over
3339 * bogus data). In this case, cancelling the work should be fine.
3340 *
3341 * But we can also get here from the worker itself, if
3342 * kmem_cache_shrink is enough to shake all the remaining objects and
3343 * get the page count to 0. In this case, we'll deadlock if we try to
3344 * cancel the work (the worker runs with an internal lock held, which
3345 * is the same lock we would hold for cancel_work_sync().)
3346 *
3347 * Since we can't possibly know who got us here, just refrain from
3348 * running if there is already work pending
3349 */
3350 if (work_pending(&cachep->memcg_params->destroy))
3351 return;
3352 /*
3353 * We have to defer the actual destroying to a workqueue, because
3354 * we might currently be in a context that cannot sleep.
3355 */
3356 schedule_work(&cachep->memcg_params->destroy);
3357 }
3358
3359 /*
3360 * This lock protects updaters, not readers. We want readers to be as fast as
3361 * they can, and they will either see NULL or a valid cache value. Our model
3362 * allow them to see NULL, in which case the root memcg will be selected.
3363 *
3364 * We need this lock because multiple allocations to the same cache from a non
3365 * will span more than one worker. Only one of them can create the cache.
3366 */
3367 static DEFINE_MUTEX(memcg_cache_mutex);
3368
3369 /*
3370 * Called with memcg_cache_mutex held
3371 */
3372 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3373 struct kmem_cache *s)
3374 {
3375 struct kmem_cache *new;
3376 static char *tmp_name = NULL;
3377
3378 lockdep_assert_held(&memcg_cache_mutex);
3379
3380 /*
3381 * kmem_cache_create_memcg duplicates the given name and
3382 * cgroup_name for this name requires RCU context.
3383 * This static temporary buffer is used to prevent from
3384 * pointless shortliving allocation.
3385 */
3386 if (!tmp_name) {
3387 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3388 if (!tmp_name)
3389 return NULL;
3390 }
3391
3392 rcu_read_lock();
3393 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3394 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3395 rcu_read_unlock();
3396
3397 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3398 (s->flags & ~SLAB_PANIC), s->ctor, s);
3399
3400 if (new)
3401 new->allocflags |= __GFP_KMEMCG;
3402
3403 return new;
3404 }
3405
3406 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3407 struct kmem_cache *cachep)
3408 {
3409 struct kmem_cache *new_cachep;
3410 int idx;
3411
3412 BUG_ON(!memcg_can_account_kmem(memcg));
3413
3414 idx = memcg_cache_id(memcg);
3415
3416 mutex_lock(&memcg_cache_mutex);
3417 new_cachep = cachep->memcg_params->memcg_caches[idx];
3418 if (new_cachep) {
3419 css_put(&memcg->css);
3420 goto out;
3421 }
3422
3423 new_cachep = kmem_cache_dup(memcg, cachep);
3424 if (new_cachep == NULL) {
3425 new_cachep = cachep;
3426 css_put(&memcg->css);
3427 goto out;
3428 }
3429
3430 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3431
3432 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3433 /*
3434 * the readers won't lock, make sure everybody sees the updated value,
3435 * so they won't put stuff in the queue again for no reason
3436 */
3437 wmb();
3438 out:
3439 mutex_unlock(&memcg_cache_mutex);
3440 return new_cachep;
3441 }
3442
3443 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3444 {
3445 struct kmem_cache *c;
3446 int i;
3447
3448 if (!s->memcg_params)
3449 return;
3450 if (!s->memcg_params->is_root_cache)
3451 return;
3452
3453 /*
3454 * If the cache is being destroyed, we trust that there is no one else
3455 * requesting objects from it. Even if there are, the sanity checks in
3456 * kmem_cache_destroy should caught this ill-case.
3457 *
3458 * Still, we don't want anyone else freeing memcg_caches under our
3459 * noses, which can happen if a new memcg comes to life. As usual,
3460 * we'll take the set_limit_mutex to protect ourselves against this.
3461 */
3462 mutex_lock(&set_limit_mutex);
3463 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3464 c = s->memcg_params->memcg_caches[i];
3465 if (!c)
3466 continue;
3467
3468 /*
3469 * We will now manually delete the caches, so to avoid races
3470 * we need to cancel all pending destruction workers and
3471 * proceed with destruction ourselves.
3472 *
3473 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3474 * and that could spawn the workers again: it is likely that
3475 * the cache still have active pages until this very moment.
3476 * This would lead us back to mem_cgroup_destroy_cache.
3477 *
3478 * But that will not execute at all if the "dead" flag is not
3479 * set, so flip it down to guarantee we are in control.
3480 */
3481 c->memcg_params->dead = false;
3482 cancel_work_sync(&c->memcg_params->destroy);
3483 kmem_cache_destroy(c);
3484 }
3485 mutex_unlock(&set_limit_mutex);
3486 }
3487
3488 struct create_work {
3489 struct mem_cgroup *memcg;
3490 struct kmem_cache *cachep;
3491 struct work_struct work;
3492 };
3493
3494 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3495 {
3496 struct kmem_cache *cachep;
3497 struct memcg_cache_params *params;
3498
3499 if (!memcg_kmem_is_active(memcg))
3500 return;
3501
3502 mutex_lock(&memcg->slab_caches_mutex);
3503 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3504 cachep = memcg_params_to_cache(params);
3505 cachep->memcg_params->dead = true;
3506 schedule_work(&cachep->memcg_params->destroy);
3507 }
3508 mutex_unlock(&memcg->slab_caches_mutex);
3509 }
3510
3511 static void memcg_create_cache_work_func(struct work_struct *w)
3512 {
3513 struct create_work *cw;
3514
3515 cw = container_of(w, struct create_work, work);
3516 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3517 kfree(cw);
3518 }
3519
3520 /*
3521 * Enqueue the creation of a per-memcg kmem_cache.
3522 */
3523 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3524 struct kmem_cache *cachep)
3525 {
3526 struct create_work *cw;
3527
3528 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3529 if (cw == NULL) {
3530 css_put(&memcg->css);
3531 return;
3532 }
3533
3534 cw->memcg = memcg;
3535 cw->cachep = cachep;
3536
3537 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3538 schedule_work(&cw->work);
3539 }
3540
3541 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3542 struct kmem_cache *cachep)
3543 {
3544 /*
3545 * We need to stop accounting when we kmalloc, because if the
3546 * corresponding kmalloc cache is not yet created, the first allocation
3547 * in __memcg_create_cache_enqueue will recurse.
3548 *
3549 * However, it is better to enclose the whole function. Depending on
3550 * the debugging options enabled, INIT_WORK(), for instance, can
3551 * trigger an allocation. This too, will make us recurse. Because at
3552 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3553 * the safest choice is to do it like this, wrapping the whole function.
3554 */
3555 memcg_stop_kmem_account();
3556 __memcg_create_cache_enqueue(memcg, cachep);
3557 memcg_resume_kmem_account();
3558 }
3559 /*
3560 * Return the kmem_cache we're supposed to use for a slab allocation.
3561 * We try to use the current memcg's version of the cache.
3562 *
3563 * If the cache does not exist yet, if we are the first user of it,
3564 * we either create it immediately, if possible, or create it asynchronously
3565 * in a workqueue.
3566 * In the latter case, we will let the current allocation go through with
3567 * the original cache.
3568 *
3569 * Can't be called in interrupt context or from kernel threads.
3570 * This function needs to be called with rcu_read_lock() held.
3571 */
3572 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3573 gfp_t gfp)
3574 {
3575 struct mem_cgroup *memcg;
3576 int idx;
3577
3578 VM_BUG_ON(!cachep->memcg_params);
3579 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3580
3581 if (!current->mm || current->memcg_kmem_skip_account)
3582 return cachep;
3583
3584 rcu_read_lock();
3585 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3586
3587 if (!memcg_can_account_kmem(memcg))
3588 goto out;
3589
3590 idx = memcg_cache_id(memcg);
3591
3592 /*
3593 * barrier to mare sure we're always seeing the up to date value. The
3594 * code updating memcg_caches will issue a write barrier to match this.
3595 */
3596 read_barrier_depends();
3597 if (likely(cachep->memcg_params->memcg_caches[idx])) {
3598 cachep = cachep->memcg_params->memcg_caches[idx];
3599 goto out;
3600 }
3601
3602 /* The corresponding put will be done in the workqueue. */
3603 if (!css_tryget(&memcg->css))
3604 goto out;
3605 rcu_read_unlock();
3606
3607 /*
3608 * If we are in a safe context (can wait, and not in interrupt
3609 * context), we could be be predictable and return right away.
3610 * This would guarantee that the allocation being performed
3611 * already belongs in the new cache.
3612 *
3613 * However, there are some clashes that can arrive from locking.
3614 * For instance, because we acquire the slab_mutex while doing
3615 * kmem_cache_dup, this means no further allocation could happen
3616 * with the slab_mutex held.
3617 *
3618 * Also, because cache creation issue get_online_cpus(), this
3619 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3620 * that ends up reversed during cpu hotplug. (cpuset allocates
3621 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3622 * better to defer everything.
3623 */
3624 memcg_create_cache_enqueue(memcg, cachep);
3625 return cachep;
3626 out:
3627 rcu_read_unlock();
3628 return cachep;
3629 }
3630 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3631
3632 /*
3633 * We need to verify if the allocation against current->mm->owner's memcg is
3634 * possible for the given order. But the page is not allocated yet, so we'll
3635 * need a further commit step to do the final arrangements.
3636 *
3637 * It is possible for the task to switch cgroups in this mean time, so at
3638 * commit time, we can't rely on task conversion any longer. We'll then use
3639 * the handle argument to return to the caller which cgroup we should commit
3640 * against. We could also return the memcg directly and avoid the pointer
3641 * passing, but a boolean return value gives better semantics considering
3642 * the compiled-out case as well.
3643 *
3644 * Returning true means the allocation is possible.
3645 */
3646 bool
3647 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3648 {
3649 struct mem_cgroup *memcg;
3650 int ret;
3651
3652 *_memcg = NULL;
3653
3654 /*
3655 * Disabling accounting is only relevant for some specific memcg
3656 * internal allocations. Therefore we would initially not have such
3657 * check here, since direct calls to the page allocator that are marked
3658 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3659 * concerned with cache allocations, and by having this test at
3660 * memcg_kmem_get_cache, we are already able to relay the allocation to
3661 * the root cache and bypass the memcg cache altogether.
3662 *
3663 * There is one exception, though: the SLUB allocator does not create
3664 * large order caches, but rather service large kmallocs directly from
3665 * the page allocator. Therefore, the following sequence when backed by
3666 * the SLUB allocator:
3667 *
3668 * memcg_stop_kmem_account();
3669 * kmalloc(<large_number>)
3670 * memcg_resume_kmem_account();
3671 *
3672 * would effectively ignore the fact that we should skip accounting,
3673 * since it will drive us directly to this function without passing
3674 * through the cache selector memcg_kmem_get_cache. Such large
3675 * allocations are extremely rare but can happen, for instance, for the
3676 * cache arrays. We bring this test here.
3677 */
3678 if (!current->mm || current->memcg_kmem_skip_account)
3679 return true;
3680
3681 memcg = try_get_mem_cgroup_from_mm(current->mm);
3682
3683 /*
3684 * very rare case described in mem_cgroup_from_task. Unfortunately there
3685 * isn't much we can do without complicating this too much, and it would
3686 * be gfp-dependent anyway. Just let it go
3687 */
3688 if (unlikely(!memcg))
3689 return true;
3690
3691 if (!memcg_can_account_kmem(memcg)) {
3692 css_put(&memcg->css);
3693 return true;
3694 }
3695
3696 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3697 if (!ret)
3698 *_memcg = memcg;
3699
3700 css_put(&memcg->css);
3701 return (ret == 0);
3702 }
3703
3704 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3705 int order)
3706 {
3707 struct page_cgroup *pc;
3708
3709 VM_BUG_ON(mem_cgroup_is_root(memcg));
3710
3711 /* The page allocation failed. Revert */
3712 if (!page) {
3713 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3714 return;
3715 }
3716
3717 pc = lookup_page_cgroup(page);
3718 lock_page_cgroup(pc);
3719 pc->mem_cgroup = memcg;
3720 SetPageCgroupUsed(pc);
3721 unlock_page_cgroup(pc);
3722 }
3723
3724 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3725 {
3726 struct mem_cgroup *memcg = NULL;
3727 struct page_cgroup *pc;
3728
3729
3730 pc = lookup_page_cgroup(page);
3731 /*
3732 * Fast unlocked return. Theoretically might have changed, have to
3733 * check again after locking.
3734 */
3735 if (!PageCgroupUsed(pc))
3736 return;
3737
3738 lock_page_cgroup(pc);
3739 if (PageCgroupUsed(pc)) {
3740 memcg = pc->mem_cgroup;
3741 ClearPageCgroupUsed(pc);
3742 }
3743 unlock_page_cgroup(pc);
3744
3745 /*
3746 * We trust that only if there is a memcg associated with the page, it
3747 * is a valid allocation
3748 */
3749 if (!memcg)
3750 return;
3751
3752 VM_BUG_ON(mem_cgroup_is_root(memcg));
3753 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3754 }
3755 #else
3756 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3757 {
3758 }
3759 #endif /* CONFIG_MEMCG_KMEM */
3760
3761 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3762
3763 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3764 /*
3765 * Because tail pages are not marked as "used", set it. We're under
3766 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3767 * charge/uncharge will be never happen and move_account() is done under
3768 * compound_lock(), so we don't have to take care of races.
3769 */
3770 void mem_cgroup_split_huge_fixup(struct page *head)
3771 {
3772 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3773 struct page_cgroup *pc;
3774 struct mem_cgroup *memcg;
3775 int i;
3776
3777 if (mem_cgroup_disabled())
3778 return;
3779
3780 memcg = head_pc->mem_cgroup;
3781 for (i = 1; i < HPAGE_PMD_NR; i++) {
3782 pc = head_pc + i;
3783 pc->mem_cgroup = memcg;
3784 smp_wmb();/* see __commit_charge() */
3785 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3786 }
3787 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3788 HPAGE_PMD_NR);
3789 }
3790 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3791
3792 /**
3793 * mem_cgroup_move_account - move account of the page
3794 * @page: the page
3795 * @nr_pages: number of regular pages (>1 for huge pages)
3796 * @pc: page_cgroup of the page.
3797 * @from: mem_cgroup which the page is moved from.
3798 * @to: mem_cgroup which the page is moved to. @from != @to.
3799 *
3800 * The caller must confirm following.
3801 * - page is not on LRU (isolate_page() is useful.)
3802 * - compound_lock is held when nr_pages > 1
3803 *
3804 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3805 * from old cgroup.
3806 */
3807 static int mem_cgroup_move_account(struct page *page,
3808 unsigned int nr_pages,
3809 struct page_cgroup *pc,
3810 struct mem_cgroup *from,
3811 struct mem_cgroup *to)
3812 {
3813 unsigned long flags;
3814 int ret;
3815 bool anon = PageAnon(page);
3816
3817 VM_BUG_ON(from == to);
3818 VM_BUG_ON(PageLRU(page));
3819 /*
3820 * The page is isolated from LRU. So, collapse function
3821 * will not handle this page. But page splitting can happen.
3822 * Do this check under compound_page_lock(). The caller should
3823 * hold it.
3824 */
3825 ret = -EBUSY;
3826 if (nr_pages > 1 && !PageTransHuge(page))
3827 goto out;
3828
3829 lock_page_cgroup(pc);
3830
3831 ret = -EINVAL;
3832 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3833 goto unlock;
3834
3835 move_lock_mem_cgroup(from, &flags);
3836
3837 if (!anon && page_mapped(page)) {
3838 /* Update mapped_file data for mem_cgroup */
3839 preempt_disable();
3840 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3841 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3842 preempt_enable();
3843 }
3844 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3845
3846 /* caller should have done css_get */
3847 pc->mem_cgroup = to;
3848 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3849 move_unlock_mem_cgroup(from, &flags);
3850 ret = 0;
3851 unlock:
3852 unlock_page_cgroup(pc);
3853 /*
3854 * check events
3855 */
3856 memcg_check_events(to, page);
3857 memcg_check_events(from, page);
3858 out:
3859 return ret;
3860 }
3861
3862 /**
3863 * mem_cgroup_move_parent - moves page to the parent group
3864 * @page: the page to move
3865 * @pc: page_cgroup of the page
3866 * @child: page's cgroup
3867 *
3868 * move charges to its parent or the root cgroup if the group has no
3869 * parent (aka use_hierarchy==0).
3870 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3871 * mem_cgroup_move_account fails) the failure is always temporary and
3872 * it signals a race with a page removal/uncharge or migration. In the
3873 * first case the page is on the way out and it will vanish from the LRU
3874 * on the next attempt and the call should be retried later.
3875 * Isolation from the LRU fails only if page has been isolated from
3876 * the LRU since we looked at it and that usually means either global
3877 * reclaim or migration going on. The page will either get back to the
3878 * LRU or vanish.
3879 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3880 * (!PageCgroupUsed) or moved to a different group. The page will
3881 * disappear in the next attempt.
3882 */
3883 static int mem_cgroup_move_parent(struct page *page,
3884 struct page_cgroup *pc,
3885 struct mem_cgroup *child)
3886 {
3887 struct mem_cgroup *parent;
3888 unsigned int nr_pages;
3889 unsigned long uninitialized_var(flags);
3890 int ret;
3891
3892 VM_BUG_ON(mem_cgroup_is_root(child));
3893
3894 ret = -EBUSY;
3895 if (!get_page_unless_zero(page))
3896 goto out;
3897 if (isolate_lru_page(page))
3898 goto put;
3899
3900 nr_pages = hpage_nr_pages(page);
3901
3902 parent = parent_mem_cgroup(child);
3903 /*
3904 * If no parent, move charges to root cgroup.
3905 */
3906 if (!parent)
3907 parent = root_mem_cgroup;
3908
3909 if (nr_pages > 1) {
3910 VM_BUG_ON(!PageTransHuge(page));
3911 flags = compound_lock_irqsave(page);
3912 }
3913
3914 ret = mem_cgroup_move_account(page, nr_pages,
3915 pc, child, parent);
3916 if (!ret)
3917 __mem_cgroup_cancel_local_charge(child, nr_pages);
3918
3919 if (nr_pages > 1)
3920 compound_unlock_irqrestore(page, flags);
3921 putback_lru_page(page);
3922 put:
3923 put_page(page);
3924 out:
3925 return ret;
3926 }
3927
3928 /*
3929 * Charge the memory controller for page usage.
3930 * Return
3931 * 0 if the charge was successful
3932 * < 0 if the cgroup is over its limit
3933 */
3934 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3935 gfp_t gfp_mask, enum charge_type ctype)
3936 {
3937 struct mem_cgroup *memcg = NULL;
3938 unsigned int nr_pages = 1;
3939 bool oom = true;
3940 int ret;
3941
3942 if (PageTransHuge(page)) {
3943 nr_pages <<= compound_order(page);
3944 VM_BUG_ON(!PageTransHuge(page));
3945 /*
3946 * Never OOM-kill a process for a huge page. The
3947 * fault handler will fall back to regular pages.
3948 */
3949 oom = false;
3950 }
3951
3952 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3953 if (ret == -ENOMEM)
3954 return ret;
3955 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3956 return 0;
3957 }
3958
3959 int mem_cgroup_newpage_charge(struct page *page,
3960 struct mm_struct *mm, gfp_t gfp_mask)
3961 {
3962 if (mem_cgroup_disabled())
3963 return 0;
3964 VM_BUG_ON(page_mapped(page));
3965 VM_BUG_ON(page->mapping && !PageAnon(page));
3966 VM_BUG_ON(!mm);
3967 return mem_cgroup_charge_common(page, mm, gfp_mask,
3968 MEM_CGROUP_CHARGE_TYPE_ANON);
3969 }
3970
3971 /*
3972 * While swap-in, try_charge -> commit or cancel, the page is locked.
3973 * And when try_charge() successfully returns, one refcnt to memcg without
3974 * struct page_cgroup is acquired. This refcnt will be consumed by
3975 * "commit()" or removed by "cancel()"
3976 */
3977 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3978 struct page *page,
3979 gfp_t mask,
3980 struct mem_cgroup **memcgp)
3981 {
3982 struct mem_cgroup *memcg;
3983 struct page_cgroup *pc;
3984 int ret;
3985
3986 pc = lookup_page_cgroup(page);
3987 /*
3988 * Every swap fault against a single page tries to charge the
3989 * page, bail as early as possible. shmem_unuse() encounters
3990 * already charged pages, too. The USED bit is protected by
3991 * the page lock, which serializes swap cache removal, which
3992 * in turn serializes uncharging.
3993 */
3994 if (PageCgroupUsed(pc))
3995 return 0;
3996 if (!do_swap_account)
3997 goto charge_cur_mm;
3998 memcg = try_get_mem_cgroup_from_page(page);
3999 if (!memcg)
4000 goto charge_cur_mm;
4001 *memcgp = memcg;
4002 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
4003 css_put(&memcg->css);
4004 if (ret == -EINTR)
4005 ret = 0;
4006 return ret;
4007 charge_cur_mm:
4008 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
4009 if (ret == -EINTR)
4010 ret = 0;
4011 return ret;
4012 }
4013
4014 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
4015 gfp_t gfp_mask, struct mem_cgroup **memcgp)
4016 {
4017 *memcgp = NULL;
4018 if (mem_cgroup_disabled())
4019 return 0;
4020 /*
4021 * A racing thread's fault, or swapoff, may have already
4022 * updated the pte, and even removed page from swap cache: in
4023 * those cases unuse_pte()'s pte_same() test will fail; but
4024 * there's also a KSM case which does need to charge the page.
4025 */
4026 if (!PageSwapCache(page)) {
4027 int ret;
4028
4029 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4030 if (ret == -EINTR)
4031 ret = 0;
4032 return ret;
4033 }
4034 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4035 }
4036
4037 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4038 {
4039 if (mem_cgroup_disabled())
4040 return;
4041 if (!memcg)
4042 return;
4043 __mem_cgroup_cancel_charge(memcg, 1);
4044 }
4045
4046 static void
4047 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
4048 enum charge_type ctype)
4049 {
4050 if (mem_cgroup_disabled())
4051 return;
4052 if (!memcg)
4053 return;
4054
4055 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4056 /*
4057 * Now swap is on-memory. This means this page may be
4058 * counted both as mem and swap....double count.
4059 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4060 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4061 * may call delete_from_swap_cache() before reach here.
4062 */
4063 if (do_swap_account && PageSwapCache(page)) {
4064 swp_entry_t ent = {.val = page_private(page)};
4065 mem_cgroup_uncharge_swap(ent);
4066 }
4067 }
4068
4069 void mem_cgroup_commit_charge_swapin(struct page *page,
4070 struct mem_cgroup *memcg)
4071 {
4072 __mem_cgroup_commit_charge_swapin(page, memcg,
4073 MEM_CGROUP_CHARGE_TYPE_ANON);
4074 }
4075
4076 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4077 gfp_t gfp_mask)
4078 {
4079 struct mem_cgroup *memcg = NULL;
4080 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4081 int ret;
4082
4083 if (mem_cgroup_disabled())
4084 return 0;
4085 if (PageCompound(page))
4086 return 0;
4087
4088 if (!PageSwapCache(page))
4089 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4090 else { /* page is swapcache/shmem */
4091 ret = __mem_cgroup_try_charge_swapin(mm, page,
4092 gfp_mask, &memcg);
4093 if (!ret)
4094 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4095 }
4096 return ret;
4097 }
4098
4099 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4100 unsigned int nr_pages,
4101 const enum charge_type ctype)
4102 {
4103 struct memcg_batch_info *batch = NULL;
4104 bool uncharge_memsw = true;
4105
4106 /* If swapout, usage of swap doesn't decrease */
4107 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4108 uncharge_memsw = false;
4109
4110 batch = &current->memcg_batch;
4111 /*
4112 * In usual, we do css_get() when we remember memcg pointer.
4113 * But in this case, we keep res->usage until end of a series of
4114 * uncharges. Then, it's ok to ignore memcg's refcnt.
4115 */
4116 if (!batch->memcg)
4117 batch->memcg = memcg;
4118 /*
4119 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4120 * In those cases, all pages freed continuously can be expected to be in
4121 * the same cgroup and we have chance to coalesce uncharges.
4122 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4123 * because we want to do uncharge as soon as possible.
4124 */
4125
4126 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4127 goto direct_uncharge;
4128
4129 if (nr_pages > 1)
4130 goto direct_uncharge;
4131
4132 /*
4133 * In typical case, batch->memcg == mem. This means we can
4134 * merge a series of uncharges to an uncharge of res_counter.
4135 * If not, we uncharge res_counter ony by one.
4136 */
4137 if (batch->memcg != memcg)
4138 goto direct_uncharge;
4139 /* remember freed charge and uncharge it later */
4140 batch->nr_pages++;
4141 if (uncharge_memsw)
4142 batch->memsw_nr_pages++;
4143 return;
4144 direct_uncharge:
4145 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4146 if (uncharge_memsw)
4147 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4148 if (unlikely(batch->memcg != memcg))
4149 memcg_oom_recover(memcg);
4150 }
4151
4152 /*
4153 * uncharge if !page_mapped(page)
4154 */
4155 static struct mem_cgroup *
4156 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4157 bool end_migration)
4158 {
4159 struct mem_cgroup *memcg = NULL;
4160 unsigned int nr_pages = 1;
4161 struct page_cgroup *pc;
4162 bool anon;
4163
4164 if (mem_cgroup_disabled())
4165 return NULL;
4166
4167 if (PageTransHuge(page)) {
4168 nr_pages <<= compound_order(page);
4169 VM_BUG_ON(!PageTransHuge(page));
4170 }
4171 /*
4172 * Check if our page_cgroup is valid
4173 */
4174 pc = lookup_page_cgroup(page);
4175 if (unlikely(!PageCgroupUsed(pc)))
4176 return NULL;
4177
4178 lock_page_cgroup(pc);
4179
4180 memcg = pc->mem_cgroup;
4181
4182 if (!PageCgroupUsed(pc))
4183 goto unlock_out;
4184
4185 anon = PageAnon(page);
4186
4187 switch (ctype) {
4188 case MEM_CGROUP_CHARGE_TYPE_ANON:
4189 /*
4190 * Generally PageAnon tells if it's the anon statistics to be
4191 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4192 * used before page reached the stage of being marked PageAnon.
4193 */
4194 anon = true;
4195 /* fallthrough */
4196 case MEM_CGROUP_CHARGE_TYPE_DROP:
4197 /* See mem_cgroup_prepare_migration() */
4198 if (page_mapped(page))
4199 goto unlock_out;
4200 /*
4201 * Pages under migration may not be uncharged. But
4202 * end_migration() /must/ be the one uncharging the
4203 * unused post-migration page and so it has to call
4204 * here with the migration bit still set. See the
4205 * res_counter handling below.
4206 */
4207 if (!end_migration && PageCgroupMigration(pc))
4208 goto unlock_out;
4209 break;
4210 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4211 if (!PageAnon(page)) { /* Shared memory */
4212 if (page->mapping && !page_is_file_cache(page))
4213 goto unlock_out;
4214 } else if (page_mapped(page)) /* Anon */
4215 goto unlock_out;
4216 break;
4217 default:
4218 break;
4219 }
4220
4221 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4222
4223 ClearPageCgroupUsed(pc);
4224 /*
4225 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4226 * freed from LRU. This is safe because uncharged page is expected not
4227 * to be reused (freed soon). Exception is SwapCache, it's handled by
4228 * special functions.
4229 */
4230
4231 unlock_page_cgroup(pc);
4232 /*
4233 * even after unlock, we have memcg->res.usage here and this memcg
4234 * will never be freed, so it's safe to call css_get().
4235 */
4236 memcg_check_events(memcg, page);
4237 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4238 mem_cgroup_swap_statistics(memcg, true);
4239 css_get(&memcg->css);
4240 }
4241 /*
4242 * Migration does not charge the res_counter for the
4243 * replacement page, so leave it alone when phasing out the
4244 * page that is unused after the migration.
4245 */
4246 if (!end_migration && !mem_cgroup_is_root(memcg))
4247 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4248
4249 return memcg;
4250
4251 unlock_out:
4252 unlock_page_cgroup(pc);
4253 return NULL;
4254 }
4255
4256 void mem_cgroup_uncharge_page(struct page *page)
4257 {
4258 /* early check. */
4259 if (page_mapped(page))
4260 return;
4261 VM_BUG_ON(page->mapping && !PageAnon(page));
4262 /*
4263 * If the page is in swap cache, uncharge should be deferred
4264 * to the swap path, which also properly accounts swap usage
4265 * and handles memcg lifetime.
4266 *
4267 * Note that this check is not stable and reclaim may add the
4268 * page to swap cache at any time after this. However, if the
4269 * page is not in swap cache by the time page->mapcount hits
4270 * 0, there won't be any page table references to the swap
4271 * slot, and reclaim will free it and not actually write the
4272 * page to disk.
4273 */
4274 if (PageSwapCache(page))
4275 return;
4276 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4277 }
4278
4279 void mem_cgroup_uncharge_cache_page(struct page *page)
4280 {
4281 VM_BUG_ON(page_mapped(page));
4282 VM_BUG_ON(page->mapping);
4283 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4284 }
4285
4286 /*
4287 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4288 * In that cases, pages are freed continuously and we can expect pages
4289 * are in the same memcg. All these calls itself limits the number of
4290 * pages freed at once, then uncharge_start/end() is called properly.
4291 * This may be called prural(2) times in a context,
4292 */
4293
4294 void mem_cgroup_uncharge_start(void)
4295 {
4296 current->memcg_batch.do_batch++;
4297 /* We can do nest. */
4298 if (current->memcg_batch.do_batch == 1) {
4299 current->memcg_batch.memcg = NULL;
4300 current->memcg_batch.nr_pages = 0;
4301 current->memcg_batch.memsw_nr_pages = 0;
4302 }
4303 }
4304
4305 void mem_cgroup_uncharge_end(void)
4306 {
4307 struct memcg_batch_info *batch = &current->memcg_batch;
4308
4309 if (!batch->do_batch)
4310 return;
4311
4312 batch->do_batch--;
4313 if (batch->do_batch) /* If stacked, do nothing. */
4314 return;
4315
4316 if (!batch->memcg)
4317 return;
4318 /*
4319 * This "batch->memcg" is valid without any css_get/put etc...
4320 * bacause we hide charges behind us.
4321 */
4322 if (batch->nr_pages)
4323 res_counter_uncharge(&batch->memcg->res,
4324 batch->nr_pages * PAGE_SIZE);
4325 if (batch->memsw_nr_pages)
4326 res_counter_uncharge(&batch->memcg->memsw,
4327 batch->memsw_nr_pages * PAGE_SIZE);
4328 memcg_oom_recover(batch->memcg);
4329 /* forget this pointer (for sanity check) */
4330 batch->memcg = NULL;
4331 }
4332
4333 #ifdef CONFIG_SWAP
4334 /*
4335 * called after __delete_from_swap_cache() and drop "page" account.
4336 * memcg information is recorded to swap_cgroup of "ent"
4337 */
4338 void
4339 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4340 {
4341 struct mem_cgroup *memcg;
4342 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4343
4344 if (!swapout) /* this was a swap cache but the swap is unused ! */
4345 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4346
4347 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4348
4349 /*
4350 * record memcg information, if swapout && memcg != NULL,
4351 * css_get() was called in uncharge().
4352 */
4353 if (do_swap_account && swapout && memcg)
4354 swap_cgroup_record(ent, css_id(&memcg->css));
4355 }
4356 #endif
4357
4358 #ifdef CONFIG_MEMCG_SWAP
4359 /*
4360 * called from swap_entry_free(). remove record in swap_cgroup and
4361 * uncharge "memsw" account.
4362 */
4363 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4364 {
4365 struct mem_cgroup *memcg;
4366 unsigned short id;
4367
4368 if (!do_swap_account)
4369 return;
4370
4371 id = swap_cgroup_record(ent, 0);
4372 rcu_read_lock();
4373 memcg = mem_cgroup_lookup(id);
4374 if (memcg) {
4375 /*
4376 * We uncharge this because swap is freed.
4377 * This memcg can be obsolete one. We avoid calling css_tryget
4378 */
4379 if (!mem_cgroup_is_root(memcg))
4380 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4381 mem_cgroup_swap_statistics(memcg, false);
4382 css_put(&memcg->css);
4383 }
4384 rcu_read_unlock();
4385 }
4386
4387 /**
4388 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4389 * @entry: swap entry to be moved
4390 * @from: mem_cgroup which the entry is moved from
4391 * @to: mem_cgroup which the entry is moved to
4392 *
4393 * It succeeds only when the swap_cgroup's record for this entry is the same
4394 * as the mem_cgroup's id of @from.
4395 *
4396 * Returns 0 on success, -EINVAL on failure.
4397 *
4398 * The caller must have charged to @to, IOW, called res_counter_charge() about
4399 * both res and memsw, and called css_get().
4400 */
4401 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4402 struct mem_cgroup *from, struct mem_cgroup *to)
4403 {
4404 unsigned short old_id, new_id;
4405
4406 old_id = css_id(&from->css);
4407 new_id = css_id(&to->css);
4408
4409 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4410 mem_cgroup_swap_statistics(from, false);
4411 mem_cgroup_swap_statistics(to, true);
4412 /*
4413 * This function is only called from task migration context now.
4414 * It postpones res_counter and refcount handling till the end
4415 * of task migration(mem_cgroup_clear_mc()) for performance
4416 * improvement. But we cannot postpone css_get(to) because if
4417 * the process that has been moved to @to does swap-in, the
4418 * refcount of @to might be decreased to 0.
4419 *
4420 * We are in attach() phase, so the cgroup is guaranteed to be
4421 * alive, so we can just call css_get().
4422 */
4423 css_get(&to->css);
4424 return 0;
4425 }
4426 return -EINVAL;
4427 }
4428 #else
4429 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4430 struct mem_cgroup *from, struct mem_cgroup *to)
4431 {
4432 return -EINVAL;
4433 }
4434 #endif
4435
4436 /*
4437 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4438 * page belongs to.
4439 */
4440 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4441 struct mem_cgroup **memcgp)
4442 {
4443 struct mem_cgroup *memcg = NULL;
4444 unsigned int nr_pages = 1;
4445 struct page_cgroup *pc;
4446 enum charge_type ctype;
4447
4448 *memcgp = NULL;
4449
4450 if (mem_cgroup_disabled())
4451 return;
4452
4453 if (PageTransHuge(page))
4454 nr_pages <<= compound_order(page);
4455
4456 pc = lookup_page_cgroup(page);
4457 lock_page_cgroup(pc);
4458 if (PageCgroupUsed(pc)) {
4459 memcg = pc->mem_cgroup;
4460 css_get(&memcg->css);
4461 /*
4462 * At migrating an anonymous page, its mapcount goes down
4463 * to 0 and uncharge() will be called. But, even if it's fully
4464 * unmapped, migration may fail and this page has to be
4465 * charged again. We set MIGRATION flag here and delay uncharge
4466 * until end_migration() is called
4467 *
4468 * Corner Case Thinking
4469 * A)
4470 * When the old page was mapped as Anon and it's unmap-and-freed
4471 * while migration was ongoing.
4472 * If unmap finds the old page, uncharge() of it will be delayed
4473 * until end_migration(). If unmap finds a new page, it's
4474 * uncharged when it make mapcount to be 1->0. If unmap code
4475 * finds swap_migration_entry, the new page will not be mapped
4476 * and end_migration() will find it(mapcount==0).
4477 *
4478 * B)
4479 * When the old page was mapped but migraion fails, the kernel
4480 * remaps it. A charge for it is kept by MIGRATION flag even
4481 * if mapcount goes down to 0. We can do remap successfully
4482 * without charging it again.
4483 *
4484 * C)
4485 * The "old" page is under lock_page() until the end of
4486 * migration, so, the old page itself will not be swapped-out.
4487 * If the new page is swapped out before end_migraton, our
4488 * hook to usual swap-out path will catch the event.
4489 */
4490 if (PageAnon(page))
4491 SetPageCgroupMigration(pc);
4492 }
4493 unlock_page_cgroup(pc);
4494 /*
4495 * If the page is not charged at this point,
4496 * we return here.
4497 */
4498 if (!memcg)
4499 return;
4500
4501 *memcgp = memcg;
4502 /*
4503 * We charge new page before it's used/mapped. So, even if unlock_page()
4504 * is called before end_migration, we can catch all events on this new
4505 * page. In the case new page is migrated but not remapped, new page's
4506 * mapcount will be finally 0 and we call uncharge in end_migration().
4507 */
4508 if (PageAnon(page))
4509 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4510 else
4511 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4512 /*
4513 * The page is committed to the memcg, but it's not actually
4514 * charged to the res_counter since we plan on replacing the
4515 * old one and only one page is going to be left afterwards.
4516 */
4517 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4518 }
4519
4520 /* remove redundant charge if migration failed*/
4521 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4522 struct page *oldpage, struct page *newpage, bool migration_ok)
4523 {
4524 struct page *used, *unused;
4525 struct page_cgroup *pc;
4526 bool anon;
4527
4528 if (!memcg)
4529 return;
4530
4531 if (!migration_ok) {
4532 used = oldpage;
4533 unused = newpage;
4534 } else {
4535 used = newpage;
4536 unused = oldpage;
4537 }
4538 anon = PageAnon(used);
4539 __mem_cgroup_uncharge_common(unused,
4540 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4541 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4542 true);
4543 css_put(&memcg->css);
4544 /*
4545 * We disallowed uncharge of pages under migration because mapcount
4546 * of the page goes down to zero, temporarly.
4547 * Clear the flag and check the page should be charged.
4548 */
4549 pc = lookup_page_cgroup(oldpage);
4550 lock_page_cgroup(pc);
4551 ClearPageCgroupMigration(pc);
4552 unlock_page_cgroup(pc);
4553
4554 /*
4555 * If a page is a file cache, radix-tree replacement is very atomic
4556 * and we can skip this check. When it was an Anon page, its mapcount
4557 * goes down to 0. But because we added MIGRATION flage, it's not
4558 * uncharged yet. There are several case but page->mapcount check
4559 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4560 * check. (see prepare_charge() also)
4561 */
4562 if (anon)
4563 mem_cgroup_uncharge_page(used);
4564 }
4565
4566 /*
4567 * At replace page cache, newpage is not under any memcg but it's on
4568 * LRU. So, this function doesn't touch res_counter but handles LRU
4569 * in correct way. Both pages are locked so we cannot race with uncharge.
4570 */
4571 void mem_cgroup_replace_page_cache(struct page *oldpage,
4572 struct page *newpage)
4573 {
4574 struct mem_cgroup *memcg = NULL;
4575 struct page_cgroup *pc;
4576 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4577
4578 if (mem_cgroup_disabled())
4579 return;
4580
4581 pc = lookup_page_cgroup(oldpage);
4582 /* fix accounting on old pages */
4583 lock_page_cgroup(pc);
4584 if (PageCgroupUsed(pc)) {
4585 memcg = pc->mem_cgroup;
4586 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4587 ClearPageCgroupUsed(pc);
4588 }
4589 unlock_page_cgroup(pc);
4590
4591 /*
4592 * When called from shmem_replace_page(), in some cases the
4593 * oldpage has already been charged, and in some cases not.
4594 */
4595 if (!memcg)
4596 return;
4597 /*
4598 * Even if newpage->mapping was NULL before starting replacement,
4599 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4600 * LRU while we overwrite pc->mem_cgroup.
4601 */
4602 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4603 }
4604
4605 #ifdef CONFIG_DEBUG_VM
4606 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4607 {
4608 struct page_cgroup *pc;
4609
4610 pc = lookup_page_cgroup(page);
4611 /*
4612 * Can be NULL while feeding pages into the page allocator for
4613 * the first time, i.e. during boot or memory hotplug;
4614 * or when mem_cgroup_disabled().
4615 */
4616 if (likely(pc) && PageCgroupUsed(pc))
4617 return pc;
4618 return NULL;
4619 }
4620
4621 bool mem_cgroup_bad_page_check(struct page *page)
4622 {
4623 if (mem_cgroup_disabled())
4624 return false;
4625
4626 return lookup_page_cgroup_used(page) != NULL;
4627 }
4628
4629 void mem_cgroup_print_bad_page(struct page *page)
4630 {
4631 struct page_cgroup *pc;
4632
4633 pc = lookup_page_cgroup_used(page);
4634 if (pc) {
4635 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4636 pc, pc->flags, pc->mem_cgroup);
4637 }
4638 }
4639 #endif
4640
4641 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4642 unsigned long long val)
4643 {
4644 int retry_count;
4645 u64 memswlimit, memlimit;
4646 int ret = 0;
4647 int children = mem_cgroup_count_children(memcg);
4648 u64 curusage, oldusage;
4649 int enlarge;
4650
4651 /*
4652 * For keeping hierarchical_reclaim simple, how long we should retry
4653 * is depends on callers. We set our retry-count to be function
4654 * of # of children which we should visit in this loop.
4655 */
4656 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4657
4658 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4659
4660 enlarge = 0;
4661 while (retry_count) {
4662 if (signal_pending(current)) {
4663 ret = -EINTR;
4664 break;
4665 }
4666 /*
4667 * Rather than hide all in some function, I do this in
4668 * open coded manner. You see what this really does.
4669 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4670 */
4671 mutex_lock(&set_limit_mutex);
4672 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4673 if (memswlimit < val) {
4674 ret = -EINVAL;
4675 mutex_unlock(&set_limit_mutex);
4676 break;
4677 }
4678
4679 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4680 if (memlimit < val)
4681 enlarge = 1;
4682
4683 ret = res_counter_set_limit(&memcg->res, val);
4684 if (!ret) {
4685 if (memswlimit == val)
4686 memcg->memsw_is_minimum = true;
4687 else
4688 memcg->memsw_is_minimum = false;
4689 }
4690 mutex_unlock(&set_limit_mutex);
4691
4692 if (!ret)
4693 break;
4694
4695 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4696 MEM_CGROUP_RECLAIM_SHRINK);
4697 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4698 /* Usage is reduced ? */
4699 if (curusage >= oldusage)
4700 retry_count--;
4701 else
4702 oldusage = curusage;
4703 }
4704 if (!ret && enlarge)
4705 memcg_oom_recover(memcg);
4706
4707 return ret;
4708 }
4709
4710 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4711 unsigned long long val)
4712 {
4713 int retry_count;
4714 u64 memlimit, memswlimit, oldusage, curusage;
4715 int children = mem_cgroup_count_children(memcg);
4716 int ret = -EBUSY;
4717 int enlarge = 0;
4718
4719 /* see mem_cgroup_resize_res_limit */
4720 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4721 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4722 while (retry_count) {
4723 if (signal_pending(current)) {
4724 ret = -EINTR;
4725 break;
4726 }
4727 /*
4728 * Rather than hide all in some function, I do this in
4729 * open coded manner. You see what this really does.
4730 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4731 */
4732 mutex_lock(&set_limit_mutex);
4733 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4734 if (memlimit > val) {
4735 ret = -EINVAL;
4736 mutex_unlock(&set_limit_mutex);
4737 break;
4738 }
4739 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4740 if (memswlimit < val)
4741 enlarge = 1;
4742 ret = res_counter_set_limit(&memcg->memsw, val);
4743 if (!ret) {
4744 if (memlimit == val)
4745 memcg->memsw_is_minimum = true;
4746 else
4747 memcg->memsw_is_minimum = false;
4748 }
4749 mutex_unlock(&set_limit_mutex);
4750
4751 if (!ret)
4752 break;
4753
4754 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4755 MEM_CGROUP_RECLAIM_NOSWAP |
4756 MEM_CGROUP_RECLAIM_SHRINK);
4757 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4758 /* Usage is reduced ? */
4759 if (curusage >= oldusage)
4760 retry_count--;
4761 else
4762 oldusage = curusage;
4763 }
4764 if (!ret && enlarge)
4765 memcg_oom_recover(memcg);
4766 return ret;
4767 }
4768
4769 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4770 gfp_t gfp_mask,
4771 unsigned long *total_scanned)
4772 {
4773 unsigned long nr_reclaimed = 0;
4774 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4775 unsigned long reclaimed;
4776 int loop = 0;
4777 struct mem_cgroup_tree_per_zone *mctz;
4778 unsigned long long excess;
4779 unsigned long nr_scanned;
4780
4781 if (order > 0)
4782 return 0;
4783
4784 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4785 /*
4786 * This loop can run a while, specially if mem_cgroup's continuously
4787 * keep exceeding their soft limit and putting the system under
4788 * pressure
4789 */
4790 do {
4791 if (next_mz)
4792 mz = next_mz;
4793 else
4794 mz = mem_cgroup_largest_soft_limit_node(mctz);
4795 if (!mz)
4796 break;
4797
4798 nr_scanned = 0;
4799 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4800 gfp_mask, &nr_scanned);
4801 nr_reclaimed += reclaimed;
4802 *total_scanned += nr_scanned;
4803 spin_lock(&mctz->lock);
4804
4805 /*
4806 * If we failed to reclaim anything from this memory cgroup
4807 * it is time to move on to the next cgroup
4808 */
4809 next_mz = NULL;
4810 if (!reclaimed) {
4811 do {
4812 /*
4813 * Loop until we find yet another one.
4814 *
4815 * By the time we get the soft_limit lock
4816 * again, someone might have aded the
4817 * group back on the RB tree. Iterate to
4818 * make sure we get a different mem.
4819 * mem_cgroup_largest_soft_limit_node returns
4820 * NULL if no other cgroup is present on
4821 * the tree
4822 */
4823 next_mz =
4824 __mem_cgroup_largest_soft_limit_node(mctz);
4825 if (next_mz == mz)
4826 css_put(&next_mz->memcg->css);
4827 else /* next_mz == NULL or other memcg */
4828 break;
4829 } while (1);
4830 }
4831 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4832 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4833 /*
4834 * One school of thought says that we should not add
4835 * back the node to the tree if reclaim returns 0.
4836 * But our reclaim could return 0, simply because due
4837 * to priority we are exposing a smaller subset of
4838 * memory to reclaim from. Consider this as a longer
4839 * term TODO.
4840 */
4841 /* If excess == 0, no tree ops */
4842 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4843 spin_unlock(&mctz->lock);
4844 css_put(&mz->memcg->css);
4845 loop++;
4846 /*
4847 * Could not reclaim anything and there are no more
4848 * mem cgroups to try or we seem to be looping without
4849 * reclaiming anything.
4850 */
4851 if (!nr_reclaimed &&
4852 (next_mz == NULL ||
4853 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4854 break;
4855 } while (!nr_reclaimed);
4856 if (next_mz)
4857 css_put(&next_mz->memcg->css);
4858 return nr_reclaimed;
4859 }
4860
4861 /**
4862 * mem_cgroup_force_empty_list - clears LRU of a group
4863 * @memcg: group to clear
4864 * @node: NUMA node
4865 * @zid: zone id
4866 * @lru: lru to to clear
4867 *
4868 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4869 * reclaim the pages page themselves - pages are moved to the parent (or root)
4870 * group.
4871 */
4872 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4873 int node, int zid, enum lru_list lru)
4874 {
4875 struct lruvec *lruvec;
4876 unsigned long flags;
4877 struct list_head *list;
4878 struct page *busy;
4879 struct zone *zone;
4880
4881 zone = &NODE_DATA(node)->node_zones[zid];
4882 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4883 list = &lruvec->lists[lru];
4884
4885 busy = NULL;
4886 do {
4887 struct page_cgroup *pc;
4888 struct page *page;
4889
4890 spin_lock_irqsave(&zone->lru_lock, flags);
4891 if (list_empty(list)) {
4892 spin_unlock_irqrestore(&zone->lru_lock, flags);
4893 break;
4894 }
4895 page = list_entry(list->prev, struct page, lru);
4896 if (busy == page) {
4897 list_move(&page->lru, list);
4898 busy = NULL;
4899 spin_unlock_irqrestore(&zone->lru_lock, flags);
4900 continue;
4901 }
4902 spin_unlock_irqrestore(&zone->lru_lock, flags);
4903
4904 pc = lookup_page_cgroup(page);
4905
4906 if (mem_cgroup_move_parent(page, pc, memcg)) {
4907 /* found lock contention or "pc" is obsolete. */
4908 busy = page;
4909 cond_resched();
4910 } else
4911 busy = NULL;
4912 } while (!list_empty(list));
4913 }
4914
4915 /*
4916 * make mem_cgroup's charge to be 0 if there is no task by moving
4917 * all the charges and pages to the parent.
4918 * This enables deleting this mem_cgroup.
4919 *
4920 * Caller is responsible for holding css reference on the memcg.
4921 */
4922 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4923 {
4924 int node, zid;
4925 u64 usage;
4926
4927 do {
4928 /* This is for making all *used* pages to be on LRU. */
4929 lru_add_drain_all();
4930 drain_all_stock_sync(memcg);
4931 mem_cgroup_start_move(memcg);
4932 for_each_node_state(node, N_MEMORY) {
4933 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4934 enum lru_list lru;
4935 for_each_lru(lru) {
4936 mem_cgroup_force_empty_list(memcg,
4937 node, zid, lru);
4938 }
4939 }
4940 }
4941 mem_cgroup_end_move(memcg);
4942 memcg_oom_recover(memcg);
4943 cond_resched();
4944
4945 /*
4946 * Kernel memory may not necessarily be trackable to a specific
4947 * process. So they are not migrated, and therefore we can't
4948 * expect their value to drop to 0 here.
4949 * Having res filled up with kmem only is enough.
4950 *
4951 * This is a safety check because mem_cgroup_force_empty_list
4952 * could have raced with mem_cgroup_replace_page_cache callers
4953 * so the lru seemed empty but the page could have been added
4954 * right after the check. RES_USAGE should be safe as we always
4955 * charge before adding to the LRU.
4956 */
4957 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4958 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4959 } while (usage > 0);
4960 }
4961
4962 /*
4963 * This mainly exists for tests during the setting of set of use_hierarchy.
4964 * Since this is the very setting we are changing, the current hierarchy value
4965 * is meaningless
4966 */
4967 static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4968 {
4969 struct cgroup *pos;
4970
4971 /* bounce at first found */
4972 cgroup_for_each_child(pos, memcg->css.cgroup)
4973 return true;
4974 return false;
4975 }
4976
4977 /*
4978 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4979 * to be already dead (as in mem_cgroup_force_empty, for instance). This is
4980 * from mem_cgroup_count_children(), in the sense that we don't really care how
4981 * many children we have; we only need to know if we have any. It also counts
4982 * any memcg without hierarchy as infertile.
4983 */
4984 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4985 {
4986 return memcg->use_hierarchy && __memcg_has_children(memcg);
4987 }
4988
4989 /*
4990 * Reclaims as many pages from the given memcg as possible and moves
4991 * the rest to the parent.
4992 *
4993 * Caller is responsible for holding css reference for memcg.
4994 */
4995 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4996 {
4997 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4998 struct cgroup *cgrp = memcg->css.cgroup;
4999
5000 /* returns EBUSY if there is a task or if we come here twice. */
5001 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
5002 return -EBUSY;
5003
5004 /* we call try-to-free pages for make this cgroup empty */
5005 lru_add_drain_all();
5006 /* try to free all pages in this cgroup */
5007 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
5008 int progress;
5009
5010 if (signal_pending(current))
5011 return -EINTR;
5012
5013 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
5014 false);
5015 if (!progress) {
5016 nr_retries--;
5017 /* maybe some writeback is necessary */
5018 congestion_wait(BLK_RW_ASYNC, HZ/10);
5019 }
5020
5021 }
5022 lru_add_drain();
5023 mem_cgroup_reparent_charges(memcg);
5024
5025 return 0;
5026 }
5027
5028 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
5029 {
5030 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5031 int ret;
5032
5033 if (mem_cgroup_is_root(memcg))
5034 return -EINVAL;
5035 css_get(&memcg->css);
5036 ret = mem_cgroup_force_empty(memcg);
5037 css_put(&memcg->css);
5038
5039 return ret;
5040 }
5041
5042
5043 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
5044 {
5045 return mem_cgroup_from_cont(cont)->use_hierarchy;
5046 }
5047
5048 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
5049 u64 val)
5050 {
5051 int retval = 0;
5052 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5053 struct cgroup *parent = cont->parent;
5054 struct mem_cgroup *parent_memcg = NULL;
5055
5056 if (parent)
5057 parent_memcg = mem_cgroup_from_cont(parent);
5058
5059 mutex_lock(&memcg_create_mutex);
5060
5061 if (memcg->use_hierarchy == val)
5062 goto out;
5063
5064 /*
5065 * If parent's use_hierarchy is set, we can't make any modifications
5066 * in the child subtrees. If it is unset, then the change can
5067 * occur, provided the current cgroup has no children.
5068 *
5069 * For the root cgroup, parent_mem is NULL, we allow value to be
5070 * set if there are no children.
5071 */
5072 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5073 (val == 1 || val == 0)) {
5074 if (!__memcg_has_children(memcg))
5075 memcg->use_hierarchy = val;
5076 else
5077 retval = -EBUSY;
5078 } else
5079 retval = -EINVAL;
5080
5081 out:
5082 mutex_unlock(&memcg_create_mutex);
5083
5084 return retval;
5085 }
5086
5087
5088 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5089 enum mem_cgroup_stat_index idx)
5090 {
5091 struct mem_cgroup *iter;
5092 long val = 0;
5093
5094 /* Per-cpu values can be negative, use a signed accumulator */
5095 for_each_mem_cgroup_tree(iter, memcg)
5096 val += mem_cgroup_read_stat(iter, idx);
5097
5098 if (val < 0) /* race ? */
5099 val = 0;
5100 return val;
5101 }
5102
5103 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5104 {
5105 u64 val;
5106
5107 if (!mem_cgroup_is_root(memcg)) {
5108 if (!swap)
5109 return res_counter_read_u64(&memcg->res, RES_USAGE);
5110 else
5111 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5112 }
5113
5114 /*
5115 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5116 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5117 */
5118 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5119 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5120
5121 if (swap)
5122 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5123
5124 return val << PAGE_SHIFT;
5125 }
5126
5127 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
5128 struct file *file, char __user *buf,
5129 size_t nbytes, loff_t *ppos)
5130 {
5131 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5132 char str[64];
5133 u64 val;
5134 int name, len;
5135 enum res_type type;
5136
5137 type = MEMFILE_TYPE(cft->private);
5138 name = MEMFILE_ATTR(cft->private);
5139
5140 switch (type) {
5141 case _MEM:
5142 if (name == RES_USAGE)
5143 val = mem_cgroup_usage(memcg, false);
5144 else
5145 val = res_counter_read_u64(&memcg->res, name);
5146 break;
5147 case _MEMSWAP:
5148 if (name == RES_USAGE)
5149 val = mem_cgroup_usage(memcg, true);
5150 else
5151 val = res_counter_read_u64(&memcg->memsw, name);
5152 break;
5153 case _KMEM:
5154 val = res_counter_read_u64(&memcg->kmem, name);
5155 break;
5156 default:
5157 BUG();
5158 }
5159
5160 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5161 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
5162 }
5163
5164 static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
5165 {
5166 int ret = -EINVAL;
5167 #ifdef CONFIG_MEMCG_KMEM
5168 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5169 /*
5170 * For simplicity, we won't allow this to be disabled. It also can't
5171 * be changed if the cgroup has children already, or if tasks had
5172 * already joined.
5173 *
5174 * If tasks join before we set the limit, a person looking at
5175 * kmem.usage_in_bytes will have no way to determine when it took
5176 * place, which makes the value quite meaningless.
5177 *
5178 * After it first became limited, changes in the value of the limit are
5179 * of course permitted.
5180 */
5181 mutex_lock(&memcg_create_mutex);
5182 mutex_lock(&set_limit_mutex);
5183 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
5184 if (cgroup_task_count(cont) || memcg_has_children(memcg)) {
5185 ret = -EBUSY;
5186 goto out;
5187 }
5188 ret = res_counter_set_limit(&memcg->kmem, val);
5189 VM_BUG_ON(ret);
5190
5191 ret = memcg_update_cache_sizes(memcg);
5192 if (ret) {
5193 res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
5194 goto out;
5195 }
5196 static_key_slow_inc(&memcg_kmem_enabled_key);
5197 /*
5198 * setting the active bit after the inc will guarantee no one
5199 * starts accounting before all call sites are patched
5200 */
5201 memcg_kmem_set_active(memcg);
5202 } else
5203 ret = res_counter_set_limit(&memcg->kmem, val);
5204 out:
5205 mutex_unlock(&set_limit_mutex);
5206 mutex_unlock(&memcg_create_mutex);
5207 #endif
5208 return ret;
5209 }
5210
5211 #ifdef CONFIG_MEMCG_KMEM
5212 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5213 {
5214 int ret = 0;
5215 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5216 if (!parent)
5217 goto out;
5218
5219 memcg->kmem_account_flags = parent->kmem_account_flags;
5220 /*
5221 * When that happen, we need to disable the static branch only on those
5222 * memcgs that enabled it. To achieve this, we would be forced to
5223 * complicate the code by keeping track of which memcgs were the ones
5224 * that actually enabled limits, and which ones got it from its
5225 * parents.
5226 *
5227 * It is a lot simpler just to do static_key_slow_inc() on every child
5228 * that is accounted.
5229 */
5230 if (!memcg_kmem_is_active(memcg))
5231 goto out;
5232
5233 /*
5234 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5235 * memcg is active already. If the later initialization fails then the
5236 * cgroup core triggers the cleanup so we do not have to do it here.
5237 */
5238 static_key_slow_inc(&memcg_kmem_enabled_key);
5239
5240 mutex_lock(&set_limit_mutex);
5241 memcg_stop_kmem_account();
5242 ret = memcg_update_cache_sizes(memcg);
5243 memcg_resume_kmem_account();
5244 mutex_unlock(&set_limit_mutex);
5245 out:
5246 return ret;
5247 }
5248 #endif /* CONFIG_MEMCG_KMEM */
5249
5250 /*
5251 * The user of this function is...
5252 * RES_LIMIT.
5253 */
5254 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
5255 const char *buffer)
5256 {
5257 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5258 enum res_type type;
5259 int name;
5260 unsigned long long val;
5261 int ret;
5262
5263 type = MEMFILE_TYPE(cft->private);
5264 name = MEMFILE_ATTR(cft->private);
5265
5266 switch (name) {
5267 case RES_LIMIT:
5268 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5269 ret = -EINVAL;
5270 break;
5271 }
5272 /* This function does all necessary parse...reuse it */
5273 ret = res_counter_memparse_write_strategy(buffer, &val);
5274 if (ret)
5275 break;
5276 if (type == _MEM)
5277 ret = mem_cgroup_resize_limit(memcg, val);
5278 else if (type == _MEMSWAP)
5279 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5280 else if (type == _KMEM)
5281 ret = memcg_update_kmem_limit(cont, val);
5282 else
5283 return -EINVAL;
5284 break;
5285 case RES_SOFT_LIMIT:
5286 ret = res_counter_memparse_write_strategy(buffer, &val);
5287 if (ret)
5288 break;
5289 /*
5290 * For memsw, soft limits are hard to implement in terms
5291 * of semantics, for now, we support soft limits for
5292 * control without swap
5293 */
5294 if (type == _MEM)
5295 ret = res_counter_set_soft_limit(&memcg->res, val);
5296 else
5297 ret = -EINVAL;
5298 break;
5299 default:
5300 ret = -EINVAL; /* should be BUG() ? */
5301 break;
5302 }
5303 return ret;
5304 }
5305
5306 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5307 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5308 {
5309 struct cgroup *cgroup;
5310 unsigned long long min_limit, min_memsw_limit, tmp;
5311
5312 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5313 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5314 cgroup = memcg->css.cgroup;
5315 if (!memcg->use_hierarchy)
5316 goto out;
5317
5318 while (cgroup->parent) {
5319 cgroup = cgroup->parent;
5320 memcg = mem_cgroup_from_cont(cgroup);
5321 if (!memcg->use_hierarchy)
5322 break;
5323 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5324 min_limit = min(min_limit, tmp);
5325 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5326 min_memsw_limit = min(min_memsw_limit, tmp);
5327 }
5328 out:
5329 *mem_limit = min_limit;
5330 *memsw_limit = min_memsw_limit;
5331 }
5332
5333 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
5334 {
5335 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5336 int name;
5337 enum res_type type;
5338
5339 type = MEMFILE_TYPE(event);
5340 name = MEMFILE_ATTR(event);
5341
5342 switch (name) {
5343 case RES_MAX_USAGE:
5344 if (type == _MEM)
5345 res_counter_reset_max(&memcg->res);
5346 else if (type == _MEMSWAP)
5347 res_counter_reset_max(&memcg->memsw);
5348 else if (type == _KMEM)
5349 res_counter_reset_max(&memcg->kmem);
5350 else
5351 return -EINVAL;
5352 break;
5353 case RES_FAILCNT:
5354 if (type == _MEM)
5355 res_counter_reset_failcnt(&memcg->res);
5356 else if (type == _MEMSWAP)
5357 res_counter_reset_failcnt(&memcg->memsw);
5358 else if (type == _KMEM)
5359 res_counter_reset_failcnt(&memcg->kmem);
5360 else
5361 return -EINVAL;
5362 break;
5363 }
5364
5365 return 0;
5366 }
5367
5368 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
5369 struct cftype *cft)
5370 {
5371 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
5372 }
5373
5374 #ifdef CONFIG_MMU
5375 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5376 struct cftype *cft, u64 val)
5377 {
5378 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5379
5380 if (val >= (1 << NR_MOVE_TYPE))
5381 return -EINVAL;
5382
5383 /*
5384 * No kind of locking is needed in here, because ->can_attach() will
5385 * check this value once in the beginning of the process, and then carry
5386 * on with stale data. This means that changes to this value will only
5387 * affect task migrations starting after the change.
5388 */
5389 memcg->move_charge_at_immigrate = val;
5390 return 0;
5391 }
5392 #else
5393 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5394 struct cftype *cft, u64 val)
5395 {
5396 return -ENOSYS;
5397 }
5398 #endif
5399
5400 #ifdef CONFIG_NUMA
5401 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
5402 struct seq_file *m)
5403 {
5404 int nid;
5405 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5406 unsigned long node_nr;
5407 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5408
5409 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5410 seq_printf(m, "total=%lu", total_nr);
5411 for_each_node_state(nid, N_MEMORY) {
5412 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5413 seq_printf(m, " N%d=%lu", nid, node_nr);
5414 }
5415 seq_putc(m, '\n');
5416
5417 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5418 seq_printf(m, "file=%lu", file_nr);
5419 for_each_node_state(nid, N_MEMORY) {
5420 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5421 LRU_ALL_FILE);
5422 seq_printf(m, " N%d=%lu", nid, node_nr);
5423 }
5424 seq_putc(m, '\n');
5425
5426 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5427 seq_printf(m, "anon=%lu", anon_nr);
5428 for_each_node_state(nid, N_MEMORY) {
5429 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5430 LRU_ALL_ANON);
5431 seq_printf(m, " N%d=%lu", nid, node_nr);
5432 }
5433 seq_putc(m, '\n');
5434
5435 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5436 seq_printf(m, "unevictable=%lu", unevictable_nr);
5437 for_each_node_state(nid, N_MEMORY) {
5438 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5439 BIT(LRU_UNEVICTABLE));
5440 seq_printf(m, " N%d=%lu", nid, node_nr);
5441 }
5442 seq_putc(m, '\n');
5443 return 0;
5444 }
5445 #endif /* CONFIG_NUMA */
5446
5447 static inline void mem_cgroup_lru_names_not_uptodate(void)
5448 {
5449 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5450 }
5451
5452 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
5453 struct seq_file *m)
5454 {
5455 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5456 struct mem_cgroup *mi;
5457 unsigned int i;
5458
5459 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5460 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5461 continue;
5462 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5463 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5464 }
5465
5466 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5467 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5468 mem_cgroup_read_events(memcg, i));
5469
5470 for (i = 0; i < NR_LRU_LISTS; i++)
5471 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5472 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5473
5474 /* Hierarchical information */
5475 {
5476 unsigned long long limit, memsw_limit;
5477 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5478 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5479 if (do_swap_account)
5480 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5481 memsw_limit);
5482 }
5483
5484 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5485 long long val = 0;
5486
5487 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5488 continue;
5489 for_each_mem_cgroup_tree(mi, memcg)
5490 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5491 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5492 }
5493
5494 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5495 unsigned long long val = 0;
5496
5497 for_each_mem_cgroup_tree(mi, memcg)
5498 val += mem_cgroup_read_events(mi, i);
5499 seq_printf(m, "total_%s %llu\n",
5500 mem_cgroup_events_names[i], val);
5501 }
5502
5503 for (i = 0; i < NR_LRU_LISTS; i++) {
5504 unsigned long long val = 0;
5505
5506 for_each_mem_cgroup_tree(mi, memcg)
5507 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5508 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5509 }
5510
5511 #ifdef CONFIG_DEBUG_VM
5512 {
5513 int nid, zid;
5514 struct mem_cgroup_per_zone *mz;
5515 struct zone_reclaim_stat *rstat;
5516 unsigned long recent_rotated[2] = {0, 0};
5517 unsigned long recent_scanned[2] = {0, 0};
5518
5519 for_each_online_node(nid)
5520 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5521 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5522 rstat = &mz->lruvec.reclaim_stat;
5523
5524 recent_rotated[0] += rstat->recent_rotated[0];
5525 recent_rotated[1] += rstat->recent_rotated[1];
5526 recent_scanned[0] += rstat->recent_scanned[0];
5527 recent_scanned[1] += rstat->recent_scanned[1];
5528 }
5529 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5530 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5531 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5532 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5533 }
5534 #endif
5535
5536 return 0;
5537 }
5538
5539 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
5540 {
5541 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5542
5543 return mem_cgroup_swappiness(memcg);
5544 }
5545
5546 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
5547 u64 val)
5548 {
5549 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5550 struct mem_cgroup *parent;
5551
5552 if (val > 100)
5553 return -EINVAL;
5554
5555 if (cgrp->parent == NULL)
5556 return -EINVAL;
5557
5558 parent = mem_cgroup_from_cont(cgrp->parent);
5559
5560 mutex_lock(&memcg_create_mutex);
5561
5562 /* If under hierarchy, only empty-root can set this value */
5563 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5564 mutex_unlock(&memcg_create_mutex);
5565 return -EINVAL;
5566 }
5567
5568 memcg->swappiness = val;
5569
5570 mutex_unlock(&memcg_create_mutex);
5571
5572 return 0;
5573 }
5574
5575 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5576 {
5577 struct mem_cgroup_threshold_ary *t;
5578 u64 usage;
5579 int i;
5580
5581 rcu_read_lock();
5582 if (!swap)
5583 t = rcu_dereference(memcg->thresholds.primary);
5584 else
5585 t = rcu_dereference(memcg->memsw_thresholds.primary);
5586
5587 if (!t)
5588 goto unlock;
5589
5590 usage = mem_cgroup_usage(memcg, swap);
5591
5592 /*
5593 * current_threshold points to threshold just below or equal to usage.
5594 * If it's not true, a threshold was crossed after last
5595 * call of __mem_cgroup_threshold().
5596 */
5597 i = t->current_threshold;
5598
5599 /*
5600 * Iterate backward over array of thresholds starting from
5601 * current_threshold and check if a threshold is crossed.
5602 * If none of thresholds below usage is crossed, we read
5603 * only one element of the array here.
5604 */
5605 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5606 eventfd_signal(t->entries[i].eventfd, 1);
5607
5608 /* i = current_threshold + 1 */
5609 i++;
5610
5611 /*
5612 * Iterate forward over array of thresholds starting from
5613 * current_threshold+1 and check if a threshold is crossed.
5614 * If none of thresholds above usage is crossed, we read
5615 * only one element of the array here.
5616 */
5617 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5618 eventfd_signal(t->entries[i].eventfd, 1);
5619
5620 /* Update current_threshold */
5621 t->current_threshold = i - 1;
5622 unlock:
5623 rcu_read_unlock();
5624 }
5625
5626 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5627 {
5628 while (memcg) {
5629 __mem_cgroup_threshold(memcg, false);
5630 if (do_swap_account)
5631 __mem_cgroup_threshold(memcg, true);
5632
5633 memcg = parent_mem_cgroup(memcg);
5634 }
5635 }
5636
5637 static int compare_thresholds(const void *a, const void *b)
5638 {
5639 const struct mem_cgroup_threshold *_a = a;
5640 const struct mem_cgroup_threshold *_b = b;
5641
5642 return _a->threshold - _b->threshold;
5643 }
5644
5645 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5646 {
5647 struct mem_cgroup_eventfd_list *ev;
5648
5649 list_for_each_entry(ev, &memcg->oom_notify, list)
5650 eventfd_signal(ev->eventfd, 1);
5651 return 0;
5652 }
5653
5654 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5655 {
5656 struct mem_cgroup *iter;
5657
5658 for_each_mem_cgroup_tree(iter, memcg)
5659 mem_cgroup_oom_notify_cb(iter);
5660 }
5661
5662 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
5663 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5664 {
5665 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5666 struct mem_cgroup_thresholds *thresholds;
5667 struct mem_cgroup_threshold_ary *new;
5668 enum res_type type = MEMFILE_TYPE(cft->private);
5669 u64 threshold, usage;
5670 int i, size, ret;
5671
5672 ret = res_counter_memparse_write_strategy(args, &threshold);
5673 if (ret)
5674 return ret;
5675
5676 mutex_lock(&memcg->thresholds_lock);
5677
5678 if (type == _MEM)
5679 thresholds = &memcg->thresholds;
5680 else if (type == _MEMSWAP)
5681 thresholds = &memcg->memsw_thresholds;
5682 else
5683 BUG();
5684
5685 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5686
5687 /* Check if a threshold crossed before adding a new one */
5688 if (thresholds->primary)
5689 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5690
5691 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5692
5693 /* Allocate memory for new array of thresholds */
5694 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5695 GFP_KERNEL);
5696 if (!new) {
5697 ret = -ENOMEM;
5698 goto unlock;
5699 }
5700 new->size = size;
5701
5702 /* Copy thresholds (if any) to new array */
5703 if (thresholds->primary) {
5704 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5705 sizeof(struct mem_cgroup_threshold));
5706 }
5707
5708 /* Add new threshold */
5709 new->entries[size - 1].eventfd = eventfd;
5710 new->entries[size - 1].threshold = threshold;
5711
5712 /* Sort thresholds. Registering of new threshold isn't time-critical */
5713 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5714 compare_thresholds, NULL);
5715
5716 /* Find current threshold */
5717 new->current_threshold = -1;
5718 for (i = 0; i < size; i++) {
5719 if (new->entries[i].threshold <= usage) {
5720 /*
5721 * new->current_threshold will not be used until
5722 * rcu_assign_pointer(), so it's safe to increment
5723 * it here.
5724 */
5725 ++new->current_threshold;
5726 } else
5727 break;
5728 }
5729
5730 /* Free old spare buffer and save old primary buffer as spare */
5731 kfree(thresholds->spare);
5732 thresholds->spare = thresholds->primary;
5733
5734 rcu_assign_pointer(thresholds->primary, new);
5735
5736 /* To be sure that nobody uses thresholds */
5737 synchronize_rcu();
5738
5739 unlock:
5740 mutex_unlock(&memcg->thresholds_lock);
5741
5742 return ret;
5743 }
5744
5745 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
5746 struct cftype *cft, struct eventfd_ctx *eventfd)
5747 {
5748 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5749 struct mem_cgroup_thresholds *thresholds;
5750 struct mem_cgroup_threshold_ary *new;
5751 enum res_type type = MEMFILE_TYPE(cft->private);
5752 u64 usage;
5753 int i, j, size;
5754
5755 mutex_lock(&memcg->thresholds_lock);
5756 if (type == _MEM)
5757 thresholds = &memcg->thresholds;
5758 else if (type == _MEMSWAP)
5759 thresholds = &memcg->memsw_thresholds;
5760 else
5761 BUG();
5762
5763 if (!thresholds->primary)
5764 goto unlock;
5765
5766 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5767
5768 /* Check if a threshold crossed before removing */
5769 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5770
5771 /* Calculate new number of threshold */
5772 size = 0;
5773 for (i = 0; i < thresholds->primary->size; i++) {
5774 if (thresholds->primary->entries[i].eventfd != eventfd)
5775 size++;
5776 }
5777
5778 new = thresholds->spare;
5779
5780 /* Set thresholds array to NULL if we don't have thresholds */
5781 if (!size) {
5782 kfree(new);
5783 new = NULL;
5784 goto swap_buffers;
5785 }
5786
5787 new->size = size;
5788
5789 /* Copy thresholds and find current threshold */
5790 new->current_threshold = -1;
5791 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5792 if (thresholds->primary->entries[i].eventfd == eventfd)
5793 continue;
5794
5795 new->entries[j] = thresholds->primary->entries[i];
5796 if (new->entries[j].threshold <= usage) {
5797 /*
5798 * new->current_threshold will not be used
5799 * until rcu_assign_pointer(), so it's safe to increment
5800 * it here.
5801 */
5802 ++new->current_threshold;
5803 }
5804 j++;
5805 }
5806
5807 swap_buffers:
5808 /* Swap primary and spare array */
5809 thresholds->spare = thresholds->primary;
5810 /* If all events are unregistered, free the spare array */
5811 if (!new) {
5812 kfree(thresholds->spare);
5813 thresholds->spare = NULL;
5814 }
5815
5816 rcu_assign_pointer(thresholds->primary, new);
5817
5818 /* To be sure that nobody uses thresholds */
5819 synchronize_rcu();
5820 unlock:
5821 mutex_unlock(&memcg->thresholds_lock);
5822 }
5823
5824 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
5825 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5826 {
5827 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5828 struct mem_cgroup_eventfd_list *event;
5829 enum res_type type = MEMFILE_TYPE(cft->private);
5830
5831 BUG_ON(type != _OOM_TYPE);
5832 event = kmalloc(sizeof(*event), GFP_KERNEL);
5833 if (!event)
5834 return -ENOMEM;
5835
5836 spin_lock(&memcg_oom_lock);
5837
5838 event->eventfd = eventfd;
5839 list_add(&event->list, &memcg->oom_notify);
5840
5841 /* already in OOM ? */
5842 if (atomic_read(&memcg->under_oom))
5843 eventfd_signal(eventfd, 1);
5844 spin_unlock(&memcg_oom_lock);
5845
5846 return 0;
5847 }
5848
5849 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
5850 struct cftype *cft, struct eventfd_ctx *eventfd)
5851 {
5852 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5853 struct mem_cgroup_eventfd_list *ev, *tmp;
5854 enum res_type type = MEMFILE_TYPE(cft->private);
5855
5856 BUG_ON(type != _OOM_TYPE);
5857
5858 spin_lock(&memcg_oom_lock);
5859
5860 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5861 if (ev->eventfd == eventfd) {
5862 list_del(&ev->list);
5863 kfree(ev);
5864 }
5865 }
5866
5867 spin_unlock(&memcg_oom_lock);
5868 }
5869
5870 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
5871 struct cftype *cft, struct cgroup_map_cb *cb)
5872 {
5873 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5874
5875 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5876
5877 if (atomic_read(&memcg->under_oom))
5878 cb->fill(cb, "under_oom", 1);
5879 else
5880 cb->fill(cb, "under_oom", 0);
5881 return 0;
5882 }
5883
5884 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
5885 struct cftype *cft, u64 val)
5886 {
5887 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5888 struct mem_cgroup *parent;
5889
5890 /* cannot set to root cgroup and only 0 and 1 are allowed */
5891 if (!cgrp->parent || !((val == 0) || (val == 1)))
5892 return -EINVAL;
5893
5894 parent = mem_cgroup_from_cont(cgrp->parent);
5895
5896 mutex_lock(&memcg_create_mutex);
5897 /* oom-kill-disable is a flag for subhierarchy. */
5898 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5899 mutex_unlock(&memcg_create_mutex);
5900 return -EINVAL;
5901 }
5902 memcg->oom_kill_disable = val;
5903 if (!val)
5904 memcg_oom_recover(memcg);
5905 mutex_unlock(&memcg_create_mutex);
5906 return 0;
5907 }
5908
5909 #ifdef CONFIG_MEMCG_KMEM
5910 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5911 {
5912 int ret;
5913
5914 memcg->kmemcg_id = -1;
5915 ret = memcg_propagate_kmem(memcg);
5916 if (ret)
5917 return ret;
5918
5919 return mem_cgroup_sockets_init(memcg, ss);
5920 }
5921
5922 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5923 {
5924 mem_cgroup_sockets_destroy(memcg);
5925 }
5926
5927 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5928 {
5929 if (!memcg_kmem_is_active(memcg))
5930 return;
5931
5932 /*
5933 * kmem charges can outlive the cgroup. In the case of slab
5934 * pages, for instance, a page contain objects from various
5935 * processes. As we prevent from taking a reference for every
5936 * such allocation we have to be careful when doing uncharge
5937 * (see memcg_uncharge_kmem) and here during offlining.
5938 *
5939 * The idea is that that only the _last_ uncharge which sees
5940 * the dead memcg will drop the last reference. An additional
5941 * reference is taken here before the group is marked dead
5942 * which is then paired with css_put during uncharge resp. here.
5943 *
5944 * Although this might sound strange as this path is called from
5945 * css_offline() when the referencemight have dropped down to 0
5946 * and shouldn't be incremented anymore (css_tryget would fail)
5947 * we do not have other options because of the kmem allocations
5948 * lifetime.
5949 */
5950 css_get(&memcg->css);
5951
5952 memcg_kmem_mark_dead(memcg);
5953
5954 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5955 return;
5956
5957 if (memcg_kmem_test_and_clear_dead(memcg))
5958 css_put(&memcg->css);
5959 }
5960 #else
5961 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5962 {
5963 return 0;
5964 }
5965
5966 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5967 {
5968 }
5969
5970 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5971 {
5972 }
5973 #endif
5974
5975 static struct cftype mem_cgroup_files[] = {
5976 {
5977 .name = "usage_in_bytes",
5978 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5979 .read = mem_cgroup_read,
5980 .register_event = mem_cgroup_usage_register_event,
5981 .unregister_event = mem_cgroup_usage_unregister_event,
5982 },
5983 {
5984 .name = "max_usage_in_bytes",
5985 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5986 .trigger = mem_cgroup_reset,
5987 .read = mem_cgroup_read,
5988 },
5989 {
5990 .name = "limit_in_bytes",
5991 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5992 .write_string = mem_cgroup_write,
5993 .read = mem_cgroup_read,
5994 },
5995 {
5996 .name = "soft_limit_in_bytes",
5997 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5998 .write_string = mem_cgroup_write,
5999 .read = mem_cgroup_read,
6000 },
6001 {
6002 .name = "failcnt",
6003 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6004 .trigger = mem_cgroup_reset,
6005 .read = mem_cgroup_read,
6006 },
6007 {
6008 .name = "stat",
6009 .read_seq_string = memcg_stat_show,
6010 },
6011 {
6012 .name = "force_empty",
6013 .trigger = mem_cgroup_force_empty_write,
6014 },
6015 {
6016 .name = "use_hierarchy",
6017 .flags = CFTYPE_INSANE,
6018 .write_u64 = mem_cgroup_hierarchy_write,
6019 .read_u64 = mem_cgroup_hierarchy_read,
6020 },
6021 {
6022 .name = "swappiness",
6023 .read_u64 = mem_cgroup_swappiness_read,
6024 .write_u64 = mem_cgroup_swappiness_write,
6025 },
6026 {
6027 .name = "move_charge_at_immigrate",
6028 .read_u64 = mem_cgroup_move_charge_read,
6029 .write_u64 = mem_cgroup_move_charge_write,
6030 },
6031 {
6032 .name = "oom_control",
6033 .read_map = mem_cgroup_oom_control_read,
6034 .write_u64 = mem_cgroup_oom_control_write,
6035 .register_event = mem_cgroup_oom_register_event,
6036 .unregister_event = mem_cgroup_oom_unregister_event,
6037 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6038 },
6039 {
6040 .name = "pressure_level",
6041 .register_event = vmpressure_register_event,
6042 .unregister_event = vmpressure_unregister_event,
6043 },
6044 #ifdef CONFIG_NUMA
6045 {
6046 .name = "numa_stat",
6047 .read_seq_string = memcg_numa_stat_show,
6048 },
6049 #endif
6050 #ifdef CONFIG_MEMCG_KMEM
6051 {
6052 .name = "kmem.limit_in_bytes",
6053 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6054 .write_string = mem_cgroup_write,
6055 .read = mem_cgroup_read,
6056 },
6057 {
6058 .name = "kmem.usage_in_bytes",
6059 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6060 .read = mem_cgroup_read,
6061 },
6062 {
6063 .name = "kmem.failcnt",
6064 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6065 .trigger = mem_cgroup_reset,
6066 .read = mem_cgroup_read,
6067 },
6068 {
6069 .name = "kmem.max_usage_in_bytes",
6070 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6071 .trigger = mem_cgroup_reset,
6072 .read = mem_cgroup_read,
6073 },
6074 #ifdef CONFIG_SLABINFO
6075 {
6076 .name = "kmem.slabinfo",
6077 .read_seq_string = mem_cgroup_slabinfo_read,
6078 },
6079 #endif
6080 #endif
6081 { }, /* terminate */
6082 };
6083
6084 #ifdef CONFIG_MEMCG_SWAP
6085 static struct cftype memsw_cgroup_files[] = {
6086 {
6087 .name = "memsw.usage_in_bytes",
6088 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6089 .read = mem_cgroup_read,
6090 .register_event = mem_cgroup_usage_register_event,
6091 .unregister_event = mem_cgroup_usage_unregister_event,
6092 },
6093 {
6094 .name = "memsw.max_usage_in_bytes",
6095 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6096 .trigger = mem_cgroup_reset,
6097 .read = mem_cgroup_read,
6098 },
6099 {
6100 .name = "memsw.limit_in_bytes",
6101 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6102 .write_string = mem_cgroup_write,
6103 .read = mem_cgroup_read,
6104 },
6105 {
6106 .name = "memsw.failcnt",
6107 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6108 .trigger = mem_cgroup_reset,
6109 .read = mem_cgroup_read,
6110 },
6111 { }, /* terminate */
6112 };
6113 #endif
6114 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6115 {
6116 struct mem_cgroup_per_node *pn;
6117 struct mem_cgroup_per_zone *mz;
6118 int zone, tmp = node;
6119 /*
6120 * This routine is called against possible nodes.
6121 * But it's BUG to call kmalloc() against offline node.
6122 *
6123 * TODO: this routine can waste much memory for nodes which will
6124 * never be onlined. It's better to use memory hotplug callback
6125 * function.
6126 */
6127 if (!node_state(node, N_NORMAL_MEMORY))
6128 tmp = -1;
6129 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6130 if (!pn)
6131 return 1;
6132
6133 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6134 mz = &pn->zoneinfo[zone];
6135 lruvec_init(&mz->lruvec);
6136 mz->usage_in_excess = 0;
6137 mz->on_tree = false;
6138 mz->memcg = memcg;
6139 }
6140 memcg->nodeinfo[node] = pn;
6141 return 0;
6142 }
6143
6144 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6145 {
6146 kfree(memcg->nodeinfo[node]);
6147 }
6148
6149 static struct mem_cgroup *mem_cgroup_alloc(void)
6150 {
6151 struct mem_cgroup *memcg;
6152 size_t size = memcg_size();
6153
6154 /* Can be very big if nr_node_ids is very big */
6155 if (size < PAGE_SIZE)
6156 memcg = kzalloc(size, GFP_KERNEL);
6157 else
6158 memcg = vzalloc(size);
6159
6160 if (!memcg)
6161 return NULL;
6162
6163 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6164 if (!memcg->stat)
6165 goto out_free;
6166 spin_lock_init(&memcg->pcp_counter_lock);
6167 return memcg;
6168
6169 out_free:
6170 if (size < PAGE_SIZE)
6171 kfree(memcg);
6172 else
6173 vfree(memcg);
6174 return NULL;
6175 }
6176
6177 /*
6178 * At destroying mem_cgroup, references from swap_cgroup can remain.
6179 * (scanning all at force_empty is too costly...)
6180 *
6181 * Instead of clearing all references at force_empty, we remember
6182 * the number of reference from swap_cgroup and free mem_cgroup when
6183 * it goes down to 0.
6184 *
6185 * Removal of cgroup itself succeeds regardless of refs from swap.
6186 */
6187
6188 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6189 {
6190 int node;
6191 size_t size = memcg_size();
6192
6193 mem_cgroup_remove_from_trees(memcg);
6194 free_css_id(&mem_cgroup_subsys, &memcg->css);
6195
6196 for_each_node(node)
6197 free_mem_cgroup_per_zone_info(memcg, node);
6198
6199 free_percpu(memcg->stat);
6200
6201 /*
6202 * We need to make sure that (at least for now), the jump label
6203 * destruction code runs outside of the cgroup lock. This is because
6204 * get_online_cpus(), which is called from the static_branch update,
6205 * can't be called inside the cgroup_lock. cpusets are the ones
6206 * enforcing this dependency, so if they ever change, we might as well.
6207 *
6208 * schedule_work() will guarantee this happens. Be careful if you need
6209 * to move this code around, and make sure it is outside
6210 * the cgroup_lock.
6211 */
6212 disarm_static_keys(memcg);
6213 if (size < PAGE_SIZE)
6214 kfree(memcg);
6215 else
6216 vfree(memcg);
6217 }
6218
6219
6220 /*
6221 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
6222 * but in process context. The work_freeing structure is overlaid
6223 * on the rcu_freeing structure, which itself is overlaid on memsw.
6224 */
6225 static void free_work(struct work_struct *work)
6226 {
6227 struct mem_cgroup *memcg;
6228
6229 memcg = container_of(work, struct mem_cgroup, work_freeing);
6230 __mem_cgroup_free(memcg);
6231 }
6232
6233 static void free_rcu(struct rcu_head *rcu_head)
6234 {
6235 struct mem_cgroup *memcg;
6236
6237 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
6238 INIT_WORK(&memcg->work_freeing, free_work);
6239 schedule_work(&memcg->work_freeing);
6240 }
6241
6242 static void mem_cgroup_get(struct mem_cgroup *memcg)
6243 {
6244 atomic_inc(&memcg->refcnt);
6245 }
6246
6247 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
6248 {
6249 if (atomic_sub_and_test(count, &memcg->refcnt)) {
6250 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
6251 call_rcu(&memcg->rcu_freeing, free_rcu);
6252 if (parent)
6253 mem_cgroup_put(parent);
6254 }
6255 }
6256
6257 static void mem_cgroup_put(struct mem_cgroup *memcg)
6258 {
6259 __mem_cgroup_put(memcg, 1);
6260 }
6261
6262 /*
6263 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6264 */
6265 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6266 {
6267 if (!memcg->res.parent)
6268 return NULL;
6269 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6270 }
6271 EXPORT_SYMBOL(parent_mem_cgroup);
6272
6273 static void __init mem_cgroup_soft_limit_tree_init(void)
6274 {
6275 struct mem_cgroup_tree_per_node *rtpn;
6276 struct mem_cgroup_tree_per_zone *rtpz;
6277 int tmp, node, zone;
6278
6279 for_each_node(node) {
6280 tmp = node;
6281 if (!node_state(node, N_NORMAL_MEMORY))
6282 tmp = -1;
6283 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6284 BUG_ON(!rtpn);
6285
6286 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6287
6288 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6289 rtpz = &rtpn->rb_tree_per_zone[zone];
6290 rtpz->rb_root = RB_ROOT;
6291 spin_lock_init(&rtpz->lock);
6292 }
6293 }
6294 }
6295
6296 static struct cgroup_subsys_state * __ref
6297 mem_cgroup_css_alloc(struct cgroup *cont)
6298 {
6299 struct mem_cgroup *memcg;
6300 long error = -ENOMEM;
6301 int node;
6302
6303 memcg = mem_cgroup_alloc();
6304 if (!memcg)
6305 return ERR_PTR(error);
6306
6307 for_each_node(node)
6308 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6309 goto free_out;
6310
6311 /* root ? */
6312 if (cont->parent == NULL) {
6313 root_mem_cgroup = memcg;
6314 res_counter_init(&memcg->res, NULL);
6315 res_counter_init(&memcg->memsw, NULL);
6316 res_counter_init(&memcg->kmem, NULL);
6317 }
6318
6319 memcg->last_scanned_node = MAX_NUMNODES;
6320 INIT_LIST_HEAD(&memcg->oom_notify);
6321 atomic_set(&memcg->refcnt, 1);
6322 memcg->move_charge_at_immigrate = 0;
6323 mutex_init(&memcg->thresholds_lock);
6324 spin_lock_init(&memcg->move_lock);
6325 vmpressure_init(&memcg->vmpressure);
6326
6327 return &memcg->css;
6328
6329 free_out:
6330 __mem_cgroup_free(memcg);
6331 return ERR_PTR(error);
6332 }
6333
6334 static int
6335 mem_cgroup_css_online(struct cgroup *cont)
6336 {
6337 struct mem_cgroup *memcg, *parent;
6338 int error = 0;
6339
6340 if (!cont->parent)
6341 return 0;
6342
6343 mutex_lock(&memcg_create_mutex);
6344 memcg = mem_cgroup_from_cont(cont);
6345 parent = mem_cgroup_from_cont(cont->parent);
6346
6347 memcg->use_hierarchy = parent->use_hierarchy;
6348 memcg->oom_kill_disable = parent->oom_kill_disable;
6349 memcg->swappiness = mem_cgroup_swappiness(parent);
6350
6351 if (parent->use_hierarchy) {
6352 res_counter_init(&memcg->res, &parent->res);
6353 res_counter_init(&memcg->memsw, &parent->memsw);
6354 res_counter_init(&memcg->kmem, &parent->kmem);
6355
6356 /*
6357 * We increment refcnt of the parent to ensure that we can
6358 * safely access it on res_counter_charge/uncharge.
6359 * This refcnt will be decremented when freeing this
6360 * mem_cgroup(see mem_cgroup_put).
6361 */
6362 mem_cgroup_get(parent);
6363 } else {
6364 res_counter_init(&memcg->res, NULL);
6365 res_counter_init(&memcg->memsw, NULL);
6366 res_counter_init(&memcg->kmem, NULL);
6367 /*
6368 * Deeper hierachy with use_hierarchy == false doesn't make
6369 * much sense so let cgroup subsystem know about this
6370 * unfortunate state in our controller.
6371 */
6372 if (parent != root_mem_cgroup)
6373 mem_cgroup_subsys.broken_hierarchy = true;
6374 }
6375
6376 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6377 mutex_unlock(&memcg_create_mutex);
6378 return error;
6379 }
6380
6381 /*
6382 * Announce all parents that a group from their hierarchy is gone.
6383 */
6384 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6385 {
6386 struct mem_cgroup *parent = memcg;
6387
6388 while ((parent = parent_mem_cgroup(parent)))
6389 mem_cgroup_iter_invalidate(parent);
6390
6391 /*
6392 * if the root memcg is not hierarchical we have to check it
6393 * explicitely.
6394 */
6395 if (!root_mem_cgroup->use_hierarchy)
6396 mem_cgroup_iter_invalidate(root_mem_cgroup);
6397 }
6398
6399 static void mem_cgroup_css_offline(struct cgroup *cont)
6400 {
6401 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6402
6403 kmem_cgroup_css_offline(memcg);
6404
6405 mem_cgroup_invalidate_reclaim_iterators(memcg);
6406 mem_cgroup_reparent_charges(memcg);
6407 mem_cgroup_destroy_all_caches(memcg);
6408 }
6409
6410 static void mem_cgroup_css_free(struct cgroup *cont)
6411 {
6412 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6413
6414 memcg_destroy_kmem(memcg);
6415 __mem_cgroup_free(memcg);
6416 }
6417
6418 #ifdef CONFIG_MMU
6419 /* Handlers for move charge at task migration. */
6420 #define PRECHARGE_COUNT_AT_ONCE 256
6421 static int mem_cgroup_do_precharge(unsigned long count)
6422 {
6423 int ret = 0;
6424 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6425 struct mem_cgroup *memcg = mc.to;
6426
6427 if (mem_cgroup_is_root(memcg)) {
6428 mc.precharge += count;
6429 /* we don't need css_get for root */
6430 return ret;
6431 }
6432 /* try to charge at once */
6433 if (count > 1) {
6434 struct res_counter *dummy;
6435 /*
6436 * "memcg" cannot be under rmdir() because we've already checked
6437 * by cgroup_lock_live_cgroup() that it is not removed and we
6438 * are still under the same cgroup_mutex. So we can postpone
6439 * css_get().
6440 */
6441 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6442 goto one_by_one;
6443 if (do_swap_account && res_counter_charge(&memcg->memsw,
6444 PAGE_SIZE * count, &dummy)) {
6445 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6446 goto one_by_one;
6447 }
6448 mc.precharge += count;
6449 return ret;
6450 }
6451 one_by_one:
6452 /* fall back to one by one charge */
6453 while (count--) {
6454 if (signal_pending(current)) {
6455 ret = -EINTR;
6456 break;
6457 }
6458 if (!batch_count--) {
6459 batch_count = PRECHARGE_COUNT_AT_ONCE;
6460 cond_resched();
6461 }
6462 ret = __mem_cgroup_try_charge(NULL,
6463 GFP_KERNEL, 1, &memcg, false);
6464 if (ret)
6465 /* mem_cgroup_clear_mc() will do uncharge later */
6466 return ret;
6467 mc.precharge++;
6468 }
6469 return ret;
6470 }
6471
6472 /**
6473 * get_mctgt_type - get target type of moving charge
6474 * @vma: the vma the pte to be checked belongs
6475 * @addr: the address corresponding to the pte to be checked
6476 * @ptent: the pte to be checked
6477 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6478 *
6479 * Returns
6480 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6481 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6482 * move charge. if @target is not NULL, the page is stored in target->page
6483 * with extra refcnt got(Callers should handle it).
6484 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6485 * target for charge migration. if @target is not NULL, the entry is stored
6486 * in target->ent.
6487 *
6488 * Called with pte lock held.
6489 */
6490 union mc_target {
6491 struct page *page;
6492 swp_entry_t ent;
6493 };
6494
6495 enum mc_target_type {
6496 MC_TARGET_NONE = 0,
6497 MC_TARGET_PAGE,
6498 MC_TARGET_SWAP,
6499 };
6500
6501 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6502 unsigned long addr, pte_t ptent)
6503 {
6504 struct page *page = vm_normal_page(vma, addr, ptent);
6505
6506 if (!page || !page_mapped(page))
6507 return NULL;
6508 if (PageAnon(page)) {
6509 /* we don't move shared anon */
6510 if (!move_anon())
6511 return NULL;
6512 } else if (!move_file())
6513 /* we ignore mapcount for file pages */
6514 return NULL;
6515 if (!get_page_unless_zero(page))
6516 return NULL;
6517
6518 return page;
6519 }
6520
6521 #ifdef CONFIG_SWAP
6522 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6523 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6524 {
6525 struct page *page = NULL;
6526 swp_entry_t ent = pte_to_swp_entry(ptent);
6527
6528 if (!move_anon() || non_swap_entry(ent))
6529 return NULL;
6530 /*
6531 * Because lookup_swap_cache() updates some statistics counter,
6532 * we call find_get_page() with swapper_space directly.
6533 */
6534 page = find_get_page(swap_address_space(ent), ent.val);
6535 if (do_swap_account)
6536 entry->val = ent.val;
6537
6538 return page;
6539 }
6540 #else
6541 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6542 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6543 {
6544 return NULL;
6545 }
6546 #endif
6547
6548 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6549 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6550 {
6551 struct page *page = NULL;
6552 struct address_space *mapping;
6553 pgoff_t pgoff;
6554
6555 if (!vma->vm_file) /* anonymous vma */
6556 return NULL;
6557 if (!move_file())
6558 return NULL;
6559
6560 mapping = vma->vm_file->f_mapping;
6561 if (pte_none(ptent))
6562 pgoff = linear_page_index(vma, addr);
6563 else /* pte_file(ptent) is true */
6564 pgoff = pte_to_pgoff(ptent);
6565
6566 /* page is moved even if it's not RSS of this task(page-faulted). */
6567 page = find_get_page(mapping, pgoff);
6568
6569 #ifdef CONFIG_SWAP
6570 /* shmem/tmpfs may report page out on swap: account for that too. */
6571 if (radix_tree_exceptional_entry(page)) {
6572 swp_entry_t swap = radix_to_swp_entry(page);
6573 if (do_swap_account)
6574 *entry = swap;
6575 page = find_get_page(swap_address_space(swap), swap.val);
6576 }
6577 #endif
6578 return page;
6579 }
6580
6581 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6582 unsigned long addr, pte_t ptent, union mc_target *target)
6583 {
6584 struct page *page = NULL;
6585 struct page_cgroup *pc;
6586 enum mc_target_type ret = MC_TARGET_NONE;
6587 swp_entry_t ent = { .val = 0 };
6588
6589 if (pte_present(ptent))
6590 page = mc_handle_present_pte(vma, addr, ptent);
6591 else if (is_swap_pte(ptent))
6592 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6593 else if (pte_none(ptent) || pte_file(ptent))
6594 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6595
6596 if (!page && !ent.val)
6597 return ret;
6598 if (page) {
6599 pc = lookup_page_cgroup(page);
6600 /*
6601 * Do only loose check w/o page_cgroup lock.
6602 * mem_cgroup_move_account() checks the pc is valid or not under
6603 * the lock.
6604 */
6605 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6606 ret = MC_TARGET_PAGE;
6607 if (target)
6608 target->page = page;
6609 }
6610 if (!ret || !target)
6611 put_page(page);
6612 }
6613 /* There is a swap entry and a page doesn't exist or isn't charged */
6614 if (ent.val && !ret &&
6615 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6616 ret = MC_TARGET_SWAP;
6617 if (target)
6618 target->ent = ent;
6619 }
6620 return ret;
6621 }
6622
6623 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6624 /*
6625 * We don't consider swapping or file mapped pages because THP does not
6626 * support them for now.
6627 * Caller should make sure that pmd_trans_huge(pmd) is true.
6628 */
6629 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6630 unsigned long addr, pmd_t pmd, union mc_target *target)
6631 {
6632 struct page *page = NULL;
6633 struct page_cgroup *pc;
6634 enum mc_target_type ret = MC_TARGET_NONE;
6635
6636 page = pmd_page(pmd);
6637 VM_BUG_ON(!page || !PageHead(page));
6638 if (!move_anon())
6639 return ret;
6640 pc = lookup_page_cgroup(page);
6641 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6642 ret = MC_TARGET_PAGE;
6643 if (target) {
6644 get_page(page);
6645 target->page = page;
6646 }
6647 }
6648 return ret;
6649 }
6650 #else
6651 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6652 unsigned long addr, pmd_t pmd, union mc_target *target)
6653 {
6654 return MC_TARGET_NONE;
6655 }
6656 #endif
6657
6658 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6659 unsigned long addr, unsigned long end,
6660 struct mm_walk *walk)
6661 {
6662 struct vm_area_struct *vma = walk->private;
6663 pte_t *pte;
6664 spinlock_t *ptl;
6665
6666 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6667 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6668 mc.precharge += HPAGE_PMD_NR;
6669 spin_unlock(&vma->vm_mm->page_table_lock);
6670 return 0;
6671 }
6672
6673 if (pmd_trans_unstable(pmd))
6674 return 0;
6675 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6676 for (; addr != end; pte++, addr += PAGE_SIZE)
6677 if (get_mctgt_type(vma, addr, *pte, NULL))
6678 mc.precharge++; /* increment precharge temporarily */
6679 pte_unmap_unlock(pte - 1, ptl);
6680 cond_resched();
6681
6682 return 0;
6683 }
6684
6685 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6686 {
6687 unsigned long precharge;
6688 struct vm_area_struct *vma;
6689
6690 down_read(&mm->mmap_sem);
6691 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6692 struct mm_walk mem_cgroup_count_precharge_walk = {
6693 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6694 .mm = mm,
6695 .private = vma,
6696 };
6697 if (is_vm_hugetlb_page(vma))
6698 continue;
6699 walk_page_range(vma->vm_start, vma->vm_end,
6700 &mem_cgroup_count_precharge_walk);
6701 }
6702 up_read(&mm->mmap_sem);
6703
6704 precharge = mc.precharge;
6705 mc.precharge = 0;
6706
6707 return precharge;
6708 }
6709
6710 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6711 {
6712 unsigned long precharge = mem_cgroup_count_precharge(mm);
6713
6714 VM_BUG_ON(mc.moving_task);
6715 mc.moving_task = current;
6716 return mem_cgroup_do_precharge(precharge);
6717 }
6718
6719 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6720 static void __mem_cgroup_clear_mc(void)
6721 {
6722 struct mem_cgroup *from = mc.from;
6723 struct mem_cgroup *to = mc.to;
6724 int i;
6725
6726 /* we must uncharge all the leftover precharges from mc.to */
6727 if (mc.precharge) {
6728 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6729 mc.precharge = 0;
6730 }
6731 /*
6732 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6733 * we must uncharge here.
6734 */
6735 if (mc.moved_charge) {
6736 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6737 mc.moved_charge = 0;
6738 }
6739 /* we must fixup refcnts and charges */
6740 if (mc.moved_swap) {
6741 /* uncharge swap account from the old cgroup */
6742 if (!mem_cgroup_is_root(mc.from))
6743 res_counter_uncharge(&mc.from->memsw,
6744 PAGE_SIZE * mc.moved_swap);
6745
6746 for (i = 0; i < mc.moved_swap; i++)
6747 css_put(&mc.from->css);
6748
6749 if (!mem_cgroup_is_root(mc.to)) {
6750 /*
6751 * we charged both to->res and to->memsw, so we should
6752 * uncharge to->res.
6753 */
6754 res_counter_uncharge(&mc.to->res,
6755 PAGE_SIZE * mc.moved_swap);
6756 }
6757 /* we've already done css_get(mc.to) */
6758 mc.moved_swap = 0;
6759 }
6760 memcg_oom_recover(from);
6761 memcg_oom_recover(to);
6762 wake_up_all(&mc.waitq);
6763 }
6764
6765 static void mem_cgroup_clear_mc(void)
6766 {
6767 struct mem_cgroup *from = mc.from;
6768
6769 /*
6770 * we must clear moving_task before waking up waiters at the end of
6771 * task migration.
6772 */
6773 mc.moving_task = NULL;
6774 __mem_cgroup_clear_mc();
6775 spin_lock(&mc.lock);
6776 mc.from = NULL;
6777 mc.to = NULL;
6778 spin_unlock(&mc.lock);
6779 mem_cgroup_end_move(from);
6780 }
6781
6782 static int mem_cgroup_can_attach(struct cgroup *cgroup,
6783 struct cgroup_taskset *tset)
6784 {
6785 struct task_struct *p = cgroup_taskset_first(tset);
6786 int ret = 0;
6787 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
6788 unsigned long move_charge_at_immigrate;
6789
6790 /*
6791 * We are now commited to this value whatever it is. Changes in this
6792 * tunable will only affect upcoming migrations, not the current one.
6793 * So we need to save it, and keep it going.
6794 */
6795 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6796 if (move_charge_at_immigrate) {
6797 struct mm_struct *mm;
6798 struct mem_cgroup *from = mem_cgroup_from_task(p);
6799
6800 VM_BUG_ON(from == memcg);
6801
6802 mm = get_task_mm(p);
6803 if (!mm)
6804 return 0;
6805 /* We move charges only when we move a owner of the mm */
6806 if (mm->owner == p) {
6807 VM_BUG_ON(mc.from);
6808 VM_BUG_ON(mc.to);
6809 VM_BUG_ON(mc.precharge);
6810 VM_BUG_ON(mc.moved_charge);
6811 VM_BUG_ON(mc.moved_swap);
6812 mem_cgroup_start_move(from);
6813 spin_lock(&mc.lock);
6814 mc.from = from;
6815 mc.to = memcg;
6816 mc.immigrate_flags = move_charge_at_immigrate;
6817 spin_unlock(&mc.lock);
6818 /* We set mc.moving_task later */
6819
6820 ret = mem_cgroup_precharge_mc(mm);
6821 if (ret)
6822 mem_cgroup_clear_mc();
6823 }
6824 mmput(mm);
6825 }
6826 return ret;
6827 }
6828
6829 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6830 struct cgroup_taskset *tset)
6831 {
6832 mem_cgroup_clear_mc();
6833 }
6834
6835 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6836 unsigned long addr, unsigned long end,
6837 struct mm_walk *walk)
6838 {
6839 int ret = 0;
6840 struct vm_area_struct *vma = walk->private;
6841 pte_t *pte;
6842 spinlock_t *ptl;
6843 enum mc_target_type target_type;
6844 union mc_target target;
6845 struct page *page;
6846 struct page_cgroup *pc;
6847
6848 /*
6849 * We don't take compound_lock() here but no race with splitting thp
6850 * happens because:
6851 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6852 * under splitting, which means there's no concurrent thp split,
6853 * - if another thread runs into split_huge_page() just after we
6854 * entered this if-block, the thread must wait for page table lock
6855 * to be unlocked in __split_huge_page_splitting(), where the main
6856 * part of thp split is not executed yet.
6857 */
6858 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6859 if (mc.precharge < HPAGE_PMD_NR) {
6860 spin_unlock(&vma->vm_mm->page_table_lock);
6861 return 0;
6862 }
6863 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6864 if (target_type == MC_TARGET_PAGE) {
6865 page = target.page;
6866 if (!isolate_lru_page(page)) {
6867 pc = lookup_page_cgroup(page);
6868 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6869 pc, mc.from, mc.to)) {
6870 mc.precharge -= HPAGE_PMD_NR;
6871 mc.moved_charge += HPAGE_PMD_NR;
6872 }
6873 putback_lru_page(page);
6874 }
6875 put_page(page);
6876 }
6877 spin_unlock(&vma->vm_mm->page_table_lock);
6878 return 0;
6879 }
6880
6881 if (pmd_trans_unstable(pmd))
6882 return 0;
6883 retry:
6884 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6885 for (; addr != end; addr += PAGE_SIZE) {
6886 pte_t ptent = *(pte++);
6887 swp_entry_t ent;
6888
6889 if (!mc.precharge)
6890 break;
6891
6892 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6893 case MC_TARGET_PAGE:
6894 page = target.page;
6895 if (isolate_lru_page(page))
6896 goto put;
6897 pc = lookup_page_cgroup(page);
6898 if (!mem_cgroup_move_account(page, 1, pc,
6899 mc.from, mc.to)) {
6900 mc.precharge--;
6901 /* we uncharge from mc.from later. */
6902 mc.moved_charge++;
6903 }
6904 putback_lru_page(page);
6905 put: /* get_mctgt_type() gets the page */
6906 put_page(page);
6907 break;
6908 case MC_TARGET_SWAP:
6909 ent = target.ent;
6910 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6911 mc.precharge--;
6912 /* we fixup refcnts and charges later. */
6913 mc.moved_swap++;
6914 }
6915 break;
6916 default:
6917 break;
6918 }
6919 }
6920 pte_unmap_unlock(pte - 1, ptl);
6921 cond_resched();
6922
6923 if (addr != end) {
6924 /*
6925 * We have consumed all precharges we got in can_attach().
6926 * We try charge one by one, but don't do any additional
6927 * charges to mc.to if we have failed in charge once in attach()
6928 * phase.
6929 */
6930 ret = mem_cgroup_do_precharge(1);
6931 if (!ret)
6932 goto retry;
6933 }
6934
6935 return ret;
6936 }
6937
6938 static void mem_cgroup_move_charge(struct mm_struct *mm)
6939 {
6940 struct vm_area_struct *vma;
6941
6942 lru_add_drain_all();
6943 retry:
6944 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6945 /*
6946 * Someone who are holding the mmap_sem might be waiting in
6947 * waitq. So we cancel all extra charges, wake up all waiters,
6948 * and retry. Because we cancel precharges, we might not be able
6949 * to move enough charges, but moving charge is a best-effort
6950 * feature anyway, so it wouldn't be a big problem.
6951 */
6952 __mem_cgroup_clear_mc();
6953 cond_resched();
6954 goto retry;
6955 }
6956 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6957 int ret;
6958 struct mm_walk mem_cgroup_move_charge_walk = {
6959 .pmd_entry = mem_cgroup_move_charge_pte_range,
6960 .mm = mm,
6961 .private = vma,
6962 };
6963 if (is_vm_hugetlb_page(vma))
6964 continue;
6965 ret = walk_page_range(vma->vm_start, vma->vm_end,
6966 &mem_cgroup_move_charge_walk);
6967 if (ret)
6968 /*
6969 * means we have consumed all precharges and failed in
6970 * doing additional charge. Just abandon here.
6971 */
6972 break;
6973 }
6974 up_read(&mm->mmap_sem);
6975 }
6976
6977 static void mem_cgroup_move_task(struct cgroup *cont,
6978 struct cgroup_taskset *tset)
6979 {
6980 struct task_struct *p = cgroup_taskset_first(tset);
6981 struct mm_struct *mm = get_task_mm(p);
6982
6983 if (mm) {
6984 if (mc.to)
6985 mem_cgroup_move_charge(mm);
6986 mmput(mm);
6987 }
6988 if (mc.to)
6989 mem_cgroup_clear_mc();
6990 }
6991 #else /* !CONFIG_MMU */
6992 static int mem_cgroup_can_attach(struct cgroup *cgroup,
6993 struct cgroup_taskset *tset)
6994 {
6995 return 0;
6996 }
6997 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6998 struct cgroup_taskset *tset)
6999 {
7000 }
7001 static void mem_cgroup_move_task(struct cgroup *cont,
7002 struct cgroup_taskset *tset)
7003 {
7004 }
7005 #endif
7006
7007 /*
7008 * Cgroup retains root cgroups across [un]mount cycles making it necessary
7009 * to verify sane_behavior flag on each mount attempt.
7010 */
7011 static void mem_cgroup_bind(struct cgroup *root)
7012 {
7013 /*
7014 * use_hierarchy is forced with sane_behavior. cgroup core
7015 * guarantees that @root doesn't have any children, so turning it
7016 * on for the root memcg is enough.
7017 */
7018 if (cgroup_sane_behavior(root))
7019 mem_cgroup_from_cont(root)->use_hierarchy = true;
7020 }
7021
7022 struct cgroup_subsys mem_cgroup_subsys = {
7023 .name = "memory",
7024 .subsys_id = mem_cgroup_subsys_id,
7025 .css_alloc = mem_cgroup_css_alloc,
7026 .css_online = mem_cgroup_css_online,
7027 .css_offline = mem_cgroup_css_offline,
7028 .css_free = mem_cgroup_css_free,
7029 .can_attach = mem_cgroup_can_attach,
7030 .cancel_attach = mem_cgroup_cancel_attach,
7031 .attach = mem_cgroup_move_task,
7032 .bind = mem_cgroup_bind,
7033 .base_cftypes = mem_cgroup_files,
7034 .early_init = 0,
7035 .use_id = 1,
7036 };
7037
7038 #ifdef CONFIG_MEMCG_SWAP
7039 static int __init enable_swap_account(char *s)
7040 {
7041 /* consider enabled if no parameter or 1 is given */
7042 if (!strcmp(s, "1"))
7043 really_do_swap_account = 1;
7044 else if (!strcmp(s, "0"))
7045 really_do_swap_account = 0;
7046 return 1;
7047 }
7048 __setup("swapaccount=", enable_swap_account);
7049
7050 static void __init memsw_file_init(void)
7051 {
7052 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
7053 }
7054
7055 static void __init enable_swap_cgroup(void)
7056 {
7057 if (!mem_cgroup_disabled() && really_do_swap_account) {
7058 do_swap_account = 1;
7059 memsw_file_init();
7060 }
7061 }
7062
7063 #else
7064 static void __init enable_swap_cgroup(void)
7065 {
7066 }
7067 #endif
7068
7069 /*
7070 * subsys_initcall() for memory controller.
7071 *
7072 * Some parts like hotcpu_notifier() have to be initialized from this context
7073 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7074 * everything that doesn't depend on a specific mem_cgroup structure should
7075 * be initialized from here.
7076 */
7077 static int __init mem_cgroup_init(void)
7078 {
7079 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7080 enable_swap_cgroup();
7081 mem_cgroup_soft_limit_tree_init();
7082 memcg_stock_init();
7083 return 0;
7084 }
7085 subsys_initcall(mem_cgroup_init);
This page took 0.171347 seconds and 6 git commands to generate.