mm: memcontrol: pull the NULL check from __mem_cgroup_same_or_subtree()
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include "internal.h"
60 #include <net/sock.h>
61 #include <net/ip.h>
62 #include <net/tcp_memcontrol.h>
63 #include "slab.h"
64
65 #include <asm/uaccess.h>
66
67 #include <trace/events/vmscan.h>
68
69 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70 EXPORT_SYMBOL(memory_cgrp_subsys);
71
72 #define MEM_CGROUP_RECLAIM_RETRIES 5
73 static struct mem_cgroup *root_mem_cgroup __read_mostly;
74
75 #ifdef CONFIG_MEMCG_SWAP
76 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77 int do_swap_account __read_mostly;
78
79 /* for remember boot option*/
80 #ifdef CONFIG_MEMCG_SWAP_ENABLED
81 static int really_do_swap_account __initdata = 1;
82 #else
83 static int really_do_swap_account __initdata;
84 #endif
85
86 #else
87 #define do_swap_account 0
88 #endif
89
90
91 static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
94 "rss_huge",
95 "mapped_file",
96 "writeback",
97 "swap",
98 };
99
100 enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
105 MEM_CGROUP_EVENTS_NSTATS,
106 };
107
108 static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113 };
114
115 static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121 };
122
123 /*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129 enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
131 MEM_CGROUP_TARGET_SOFTLIMIT,
132 MEM_CGROUP_TARGET_NUMAINFO,
133 MEM_CGROUP_NTARGETS,
134 };
135 #define THRESHOLDS_EVENTS_TARGET 128
136 #define SOFTLIMIT_EVENTS_TARGET 1024
137 #define NUMAINFO_EVENTS_TARGET 1024
138
139 struct mem_cgroup_stat_cpu {
140 long count[MEM_CGROUP_STAT_NSTATS];
141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142 unsigned long nr_page_events;
143 unsigned long targets[MEM_CGROUP_NTARGETS];
144 };
145
146 struct reclaim_iter {
147 struct mem_cgroup *position;
148 /* scan generation, increased every round-trip */
149 unsigned int generation;
150 };
151
152 /*
153 * per-zone information in memory controller.
154 */
155 struct mem_cgroup_per_zone {
156 struct lruvec lruvec;
157 unsigned long lru_size[NR_LRU_LISTS];
158
159 struct reclaim_iter iter[DEF_PRIORITY + 1];
160
161 struct rb_node tree_node; /* RB tree node */
162 unsigned long usage_in_excess;/* Set to the value by which */
163 /* the soft limit is exceeded*/
164 bool on_tree;
165 struct mem_cgroup *memcg; /* Back pointer, we cannot */
166 /* use container_of */
167 };
168
169 struct mem_cgroup_per_node {
170 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
171 };
172
173 /*
174 * Cgroups above their limits are maintained in a RB-Tree, independent of
175 * their hierarchy representation
176 */
177
178 struct mem_cgroup_tree_per_zone {
179 struct rb_root rb_root;
180 spinlock_t lock;
181 };
182
183 struct mem_cgroup_tree_per_node {
184 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
185 };
186
187 struct mem_cgroup_tree {
188 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
189 };
190
191 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
192
193 struct mem_cgroup_threshold {
194 struct eventfd_ctx *eventfd;
195 unsigned long threshold;
196 };
197
198 /* For threshold */
199 struct mem_cgroup_threshold_ary {
200 /* An array index points to threshold just below or equal to usage. */
201 int current_threshold;
202 /* Size of entries[] */
203 unsigned int size;
204 /* Array of thresholds */
205 struct mem_cgroup_threshold entries[0];
206 };
207
208 struct mem_cgroup_thresholds {
209 /* Primary thresholds array */
210 struct mem_cgroup_threshold_ary *primary;
211 /*
212 * Spare threshold array.
213 * This is needed to make mem_cgroup_unregister_event() "never fail".
214 * It must be able to store at least primary->size - 1 entries.
215 */
216 struct mem_cgroup_threshold_ary *spare;
217 };
218
219 /* for OOM */
220 struct mem_cgroup_eventfd_list {
221 struct list_head list;
222 struct eventfd_ctx *eventfd;
223 };
224
225 /*
226 * cgroup_event represents events which userspace want to receive.
227 */
228 struct mem_cgroup_event {
229 /*
230 * memcg which the event belongs to.
231 */
232 struct mem_cgroup *memcg;
233 /*
234 * eventfd to signal userspace about the event.
235 */
236 struct eventfd_ctx *eventfd;
237 /*
238 * Each of these stored in a list by the cgroup.
239 */
240 struct list_head list;
241 /*
242 * register_event() callback will be used to add new userspace
243 * waiter for changes related to this event. Use eventfd_signal()
244 * on eventfd to send notification to userspace.
245 */
246 int (*register_event)(struct mem_cgroup *memcg,
247 struct eventfd_ctx *eventfd, const char *args);
248 /*
249 * unregister_event() callback will be called when userspace closes
250 * the eventfd or on cgroup removing. This callback must be set,
251 * if you want provide notification functionality.
252 */
253 void (*unregister_event)(struct mem_cgroup *memcg,
254 struct eventfd_ctx *eventfd);
255 /*
256 * All fields below needed to unregister event when
257 * userspace closes eventfd.
258 */
259 poll_table pt;
260 wait_queue_head_t *wqh;
261 wait_queue_t wait;
262 struct work_struct remove;
263 };
264
265 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
266 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
267
268 /*
269 * The memory controller data structure. The memory controller controls both
270 * page cache and RSS per cgroup. We would eventually like to provide
271 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
272 * to help the administrator determine what knobs to tune.
273 *
274 * TODO: Add a water mark for the memory controller. Reclaim will begin when
275 * we hit the water mark. May be even add a low water mark, such that
276 * no reclaim occurs from a cgroup at it's low water mark, this is
277 * a feature that will be implemented much later in the future.
278 */
279 struct mem_cgroup {
280 struct cgroup_subsys_state css;
281
282 /* Accounted resources */
283 struct page_counter memory;
284 struct page_counter memsw;
285 struct page_counter kmem;
286
287 unsigned long soft_limit;
288
289 /* vmpressure notifications */
290 struct vmpressure vmpressure;
291
292 /* css_online() has been completed */
293 int initialized;
294
295 /*
296 * Should the accounting and control be hierarchical, per subtree?
297 */
298 bool use_hierarchy;
299 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
300
301 bool oom_lock;
302 atomic_t under_oom;
303 atomic_t oom_wakeups;
304
305 int swappiness;
306 /* OOM-Killer disable */
307 int oom_kill_disable;
308
309 /* protect arrays of thresholds */
310 struct mutex thresholds_lock;
311
312 /* thresholds for memory usage. RCU-protected */
313 struct mem_cgroup_thresholds thresholds;
314
315 /* thresholds for mem+swap usage. RCU-protected */
316 struct mem_cgroup_thresholds memsw_thresholds;
317
318 /* For oom notifier event fd */
319 struct list_head oom_notify;
320
321 /*
322 * Should we move charges of a task when a task is moved into this
323 * mem_cgroup ? And what type of charges should we move ?
324 */
325 unsigned long move_charge_at_immigrate;
326 /*
327 * set > 0 if pages under this cgroup are moving to other cgroup.
328 */
329 atomic_t moving_account;
330 /* taken only while moving_account > 0 */
331 spinlock_t move_lock;
332 /*
333 * percpu counter.
334 */
335 struct mem_cgroup_stat_cpu __percpu *stat;
336 /*
337 * used when a cpu is offlined or other synchronizations
338 * See mem_cgroup_read_stat().
339 */
340 struct mem_cgroup_stat_cpu nocpu_base;
341 spinlock_t pcp_counter_lock;
342
343 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
344 struct cg_proto tcp_mem;
345 #endif
346 #if defined(CONFIG_MEMCG_KMEM)
347 /* analogous to slab_common's slab_caches list, but per-memcg;
348 * protected by memcg_slab_mutex */
349 struct list_head memcg_slab_caches;
350 /* Index in the kmem_cache->memcg_params->memcg_caches array */
351 int kmemcg_id;
352 #endif
353
354 int last_scanned_node;
355 #if MAX_NUMNODES > 1
356 nodemask_t scan_nodes;
357 atomic_t numainfo_events;
358 atomic_t numainfo_updating;
359 #endif
360
361 /* List of events which userspace want to receive */
362 struct list_head event_list;
363 spinlock_t event_list_lock;
364
365 struct mem_cgroup_per_node *nodeinfo[0];
366 /* WARNING: nodeinfo must be the last member here */
367 };
368
369 /* internal only representation about the status of kmem accounting. */
370 enum {
371 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
372 };
373
374 #ifdef CONFIG_MEMCG_KMEM
375 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
376 {
377 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
378 }
379
380 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
381 {
382 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
383 }
384
385 #endif
386
387 /* Stuffs for move charges at task migration. */
388 /*
389 * Types of charges to be moved. "move_charge_at_immitgrate" and
390 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
391 */
392 enum move_type {
393 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
394 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
395 NR_MOVE_TYPE,
396 };
397
398 /* "mc" and its members are protected by cgroup_mutex */
399 static struct move_charge_struct {
400 spinlock_t lock; /* for from, to */
401 struct mem_cgroup *from;
402 struct mem_cgroup *to;
403 unsigned long immigrate_flags;
404 unsigned long precharge;
405 unsigned long moved_charge;
406 unsigned long moved_swap;
407 struct task_struct *moving_task; /* a task moving charges */
408 wait_queue_head_t waitq; /* a waitq for other context */
409 } mc = {
410 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
411 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
412 };
413
414 static bool move_anon(void)
415 {
416 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
417 }
418
419 static bool move_file(void)
420 {
421 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
422 }
423
424 /*
425 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
426 * limit reclaim to prevent infinite loops, if they ever occur.
427 */
428 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
429 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
430
431 enum charge_type {
432 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
433 MEM_CGROUP_CHARGE_TYPE_ANON,
434 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
435 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
436 NR_CHARGE_TYPE,
437 };
438
439 /* for encoding cft->private value on file */
440 enum res_type {
441 _MEM,
442 _MEMSWAP,
443 _OOM_TYPE,
444 _KMEM,
445 };
446
447 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
448 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
449 #define MEMFILE_ATTR(val) ((val) & 0xffff)
450 /* Used for OOM nofiier */
451 #define OOM_CONTROL (0)
452
453 /*
454 * The memcg_create_mutex will be held whenever a new cgroup is created.
455 * As a consequence, any change that needs to protect against new child cgroups
456 * appearing has to hold it as well.
457 */
458 static DEFINE_MUTEX(memcg_create_mutex);
459
460 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
461 {
462 return s ? container_of(s, struct mem_cgroup, css) : NULL;
463 }
464
465 /* Some nice accessors for the vmpressure. */
466 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
467 {
468 if (!memcg)
469 memcg = root_mem_cgroup;
470 return &memcg->vmpressure;
471 }
472
473 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
474 {
475 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
476 }
477
478 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
479 {
480 return (memcg == root_mem_cgroup);
481 }
482
483 /*
484 * We restrict the id in the range of [1, 65535], so it can fit into
485 * an unsigned short.
486 */
487 #define MEM_CGROUP_ID_MAX USHRT_MAX
488
489 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
490 {
491 return memcg->css.id;
492 }
493
494 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
495 {
496 struct cgroup_subsys_state *css;
497
498 css = css_from_id(id, &memory_cgrp_subsys);
499 return mem_cgroup_from_css(css);
500 }
501
502 /* Writing them here to avoid exposing memcg's inner layout */
503 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
504
505 void sock_update_memcg(struct sock *sk)
506 {
507 if (mem_cgroup_sockets_enabled) {
508 struct mem_cgroup *memcg;
509 struct cg_proto *cg_proto;
510
511 BUG_ON(!sk->sk_prot->proto_cgroup);
512
513 /* Socket cloning can throw us here with sk_cgrp already
514 * filled. It won't however, necessarily happen from
515 * process context. So the test for root memcg given
516 * the current task's memcg won't help us in this case.
517 *
518 * Respecting the original socket's memcg is a better
519 * decision in this case.
520 */
521 if (sk->sk_cgrp) {
522 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
523 css_get(&sk->sk_cgrp->memcg->css);
524 return;
525 }
526
527 rcu_read_lock();
528 memcg = mem_cgroup_from_task(current);
529 cg_proto = sk->sk_prot->proto_cgroup(memcg);
530 if (!mem_cgroup_is_root(memcg) &&
531 memcg_proto_active(cg_proto) &&
532 css_tryget_online(&memcg->css)) {
533 sk->sk_cgrp = cg_proto;
534 }
535 rcu_read_unlock();
536 }
537 }
538 EXPORT_SYMBOL(sock_update_memcg);
539
540 void sock_release_memcg(struct sock *sk)
541 {
542 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
543 struct mem_cgroup *memcg;
544 WARN_ON(!sk->sk_cgrp->memcg);
545 memcg = sk->sk_cgrp->memcg;
546 css_put(&sk->sk_cgrp->memcg->css);
547 }
548 }
549
550 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
551 {
552 if (!memcg || mem_cgroup_is_root(memcg))
553 return NULL;
554
555 return &memcg->tcp_mem;
556 }
557 EXPORT_SYMBOL(tcp_proto_cgroup);
558
559 static void disarm_sock_keys(struct mem_cgroup *memcg)
560 {
561 if (!memcg_proto_activated(&memcg->tcp_mem))
562 return;
563 static_key_slow_dec(&memcg_socket_limit_enabled);
564 }
565 #else
566 static void disarm_sock_keys(struct mem_cgroup *memcg)
567 {
568 }
569 #endif
570
571 #ifdef CONFIG_MEMCG_KMEM
572 /*
573 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
574 * The main reason for not using cgroup id for this:
575 * this works better in sparse environments, where we have a lot of memcgs,
576 * but only a few kmem-limited. Or also, if we have, for instance, 200
577 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
578 * 200 entry array for that.
579 *
580 * The current size of the caches array is stored in
581 * memcg_limited_groups_array_size. It will double each time we have to
582 * increase it.
583 */
584 static DEFINE_IDA(kmem_limited_groups);
585 int memcg_limited_groups_array_size;
586
587 /*
588 * MIN_SIZE is different than 1, because we would like to avoid going through
589 * the alloc/free process all the time. In a small machine, 4 kmem-limited
590 * cgroups is a reasonable guess. In the future, it could be a parameter or
591 * tunable, but that is strictly not necessary.
592 *
593 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
594 * this constant directly from cgroup, but it is understandable that this is
595 * better kept as an internal representation in cgroup.c. In any case, the
596 * cgrp_id space is not getting any smaller, and we don't have to necessarily
597 * increase ours as well if it increases.
598 */
599 #define MEMCG_CACHES_MIN_SIZE 4
600 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
601
602 /*
603 * A lot of the calls to the cache allocation functions are expected to be
604 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
605 * conditional to this static branch, we'll have to allow modules that does
606 * kmem_cache_alloc and the such to see this symbol as well
607 */
608 struct static_key memcg_kmem_enabled_key;
609 EXPORT_SYMBOL(memcg_kmem_enabled_key);
610
611 static void memcg_free_cache_id(int id);
612
613 static void disarm_kmem_keys(struct mem_cgroup *memcg)
614 {
615 if (memcg_kmem_is_active(memcg)) {
616 static_key_slow_dec(&memcg_kmem_enabled_key);
617 memcg_free_cache_id(memcg->kmemcg_id);
618 }
619 /*
620 * This check can't live in kmem destruction function,
621 * since the charges will outlive the cgroup
622 */
623 WARN_ON(page_counter_read(&memcg->kmem));
624 }
625 #else
626 static void disarm_kmem_keys(struct mem_cgroup *memcg)
627 {
628 }
629 #endif /* CONFIG_MEMCG_KMEM */
630
631 static void disarm_static_keys(struct mem_cgroup *memcg)
632 {
633 disarm_sock_keys(memcg);
634 disarm_kmem_keys(memcg);
635 }
636
637 static struct mem_cgroup_per_zone *
638 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
639 {
640 int nid = zone_to_nid(zone);
641 int zid = zone_idx(zone);
642
643 return &memcg->nodeinfo[nid]->zoneinfo[zid];
644 }
645
646 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
647 {
648 return &memcg->css;
649 }
650
651 static struct mem_cgroup_per_zone *
652 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
653 {
654 int nid = page_to_nid(page);
655 int zid = page_zonenum(page);
656
657 return &memcg->nodeinfo[nid]->zoneinfo[zid];
658 }
659
660 static struct mem_cgroup_tree_per_zone *
661 soft_limit_tree_node_zone(int nid, int zid)
662 {
663 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
664 }
665
666 static struct mem_cgroup_tree_per_zone *
667 soft_limit_tree_from_page(struct page *page)
668 {
669 int nid = page_to_nid(page);
670 int zid = page_zonenum(page);
671
672 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
673 }
674
675 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
676 struct mem_cgroup_tree_per_zone *mctz,
677 unsigned long new_usage_in_excess)
678 {
679 struct rb_node **p = &mctz->rb_root.rb_node;
680 struct rb_node *parent = NULL;
681 struct mem_cgroup_per_zone *mz_node;
682
683 if (mz->on_tree)
684 return;
685
686 mz->usage_in_excess = new_usage_in_excess;
687 if (!mz->usage_in_excess)
688 return;
689 while (*p) {
690 parent = *p;
691 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
692 tree_node);
693 if (mz->usage_in_excess < mz_node->usage_in_excess)
694 p = &(*p)->rb_left;
695 /*
696 * We can't avoid mem cgroups that are over their soft
697 * limit by the same amount
698 */
699 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
700 p = &(*p)->rb_right;
701 }
702 rb_link_node(&mz->tree_node, parent, p);
703 rb_insert_color(&mz->tree_node, &mctz->rb_root);
704 mz->on_tree = true;
705 }
706
707 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
708 struct mem_cgroup_tree_per_zone *mctz)
709 {
710 if (!mz->on_tree)
711 return;
712 rb_erase(&mz->tree_node, &mctz->rb_root);
713 mz->on_tree = false;
714 }
715
716 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
717 struct mem_cgroup_tree_per_zone *mctz)
718 {
719 unsigned long flags;
720
721 spin_lock_irqsave(&mctz->lock, flags);
722 __mem_cgroup_remove_exceeded(mz, mctz);
723 spin_unlock_irqrestore(&mctz->lock, flags);
724 }
725
726 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
727 {
728 unsigned long nr_pages = page_counter_read(&memcg->memory);
729 unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
730 unsigned long excess = 0;
731
732 if (nr_pages > soft_limit)
733 excess = nr_pages - soft_limit;
734
735 return excess;
736 }
737
738 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
739 {
740 unsigned long excess;
741 struct mem_cgroup_per_zone *mz;
742 struct mem_cgroup_tree_per_zone *mctz;
743
744 mctz = soft_limit_tree_from_page(page);
745 /*
746 * Necessary to update all ancestors when hierarchy is used.
747 * because their event counter is not touched.
748 */
749 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
750 mz = mem_cgroup_page_zoneinfo(memcg, page);
751 excess = soft_limit_excess(memcg);
752 /*
753 * We have to update the tree if mz is on RB-tree or
754 * mem is over its softlimit.
755 */
756 if (excess || mz->on_tree) {
757 unsigned long flags;
758
759 spin_lock_irqsave(&mctz->lock, flags);
760 /* if on-tree, remove it */
761 if (mz->on_tree)
762 __mem_cgroup_remove_exceeded(mz, mctz);
763 /*
764 * Insert again. mz->usage_in_excess will be updated.
765 * If excess is 0, no tree ops.
766 */
767 __mem_cgroup_insert_exceeded(mz, mctz, excess);
768 spin_unlock_irqrestore(&mctz->lock, flags);
769 }
770 }
771 }
772
773 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
774 {
775 struct mem_cgroup_tree_per_zone *mctz;
776 struct mem_cgroup_per_zone *mz;
777 int nid, zid;
778
779 for_each_node(nid) {
780 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
781 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
782 mctz = soft_limit_tree_node_zone(nid, zid);
783 mem_cgroup_remove_exceeded(mz, mctz);
784 }
785 }
786 }
787
788 static struct mem_cgroup_per_zone *
789 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
790 {
791 struct rb_node *rightmost = NULL;
792 struct mem_cgroup_per_zone *mz;
793
794 retry:
795 mz = NULL;
796 rightmost = rb_last(&mctz->rb_root);
797 if (!rightmost)
798 goto done; /* Nothing to reclaim from */
799
800 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
801 /*
802 * Remove the node now but someone else can add it back,
803 * we will to add it back at the end of reclaim to its correct
804 * position in the tree.
805 */
806 __mem_cgroup_remove_exceeded(mz, mctz);
807 if (!soft_limit_excess(mz->memcg) ||
808 !css_tryget_online(&mz->memcg->css))
809 goto retry;
810 done:
811 return mz;
812 }
813
814 static struct mem_cgroup_per_zone *
815 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
816 {
817 struct mem_cgroup_per_zone *mz;
818
819 spin_lock_irq(&mctz->lock);
820 mz = __mem_cgroup_largest_soft_limit_node(mctz);
821 spin_unlock_irq(&mctz->lock);
822 return mz;
823 }
824
825 /*
826 * Implementation Note: reading percpu statistics for memcg.
827 *
828 * Both of vmstat[] and percpu_counter has threshold and do periodic
829 * synchronization to implement "quick" read. There are trade-off between
830 * reading cost and precision of value. Then, we may have a chance to implement
831 * a periodic synchronizion of counter in memcg's counter.
832 *
833 * But this _read() function is used for user interface now. The user accounts
834 * memory usage by memory cgroup and he _always_ requires exact value because
835 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
836 * have to visit all online cpus and make sum. So, for now, unnecessary
837 * synchronization is not implemented. (just implemented for cpu hotplug)
838 *
839 * If there are kernel internal actions which can make use of some not-exact
840 * value, and reading all cpu value can be performance bottleneck in some
841 * common workload, threashold and synchonization as vmstat[] should be
842 * implemented.
843 */
844 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
845 enum mem_cgroup_stat_index idx)
846 {
847 long val = 0;
848 int cpu;
849
850 get_online_cpus();
851 for_each_online_cpu(cpu)
852 val += per_cpu(memcg->stat->count[idx], cpu);
853 #ifdef CONFIG_HOTPLUG_CPU
854 spin_lock(&memcg->pcp_counter_lock);
855 val += memcg->nocpu_base.count[idx];
856 spin_unlock(&memcg->pcp_counter_lock);
857 #endif
858 put_online_cpus();
859 return val;
860 }
861
862 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
863 enum mem_cgroup_events_index idx)
864 {
865 unsigned long val = 0;
866 int cpu;
867
868 get_online_cpus();
869 for_each_online_cpu(cpu)
870 val += per_cpu(memcg->stat->events[idx], cpu);
871 #ifdef CONFIG_HOTPLUG_CPU
872 spin_lock(&memcg->pcp_counter_lock);
873 val += memcg->nocpu_base.events[idx];
874 spin_unlock(&memcg->pcp_counter_lock);
875 #endif
876 put_online_cpus();
877 return val;
878 }
879
880 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
881 struct page *page,
882 int nr_pages)
883 {
884 /*
885 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
886 * counted as CACHE even if it's on ANON LRU.
887 */
888 if (PageAnon(page))
889 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
890 nr_pages);
891 else
892 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
893 nr_pages);
894
895 if (PageTransHuge(page))
896 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
897 nr_pages);
898
899 /* pagein of a big page is an event. So, ignore page size */
900 if (nr_pages > 0)
901 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
902 else {
903 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
904 nr_pages = -nr_pages; /* for event */
905 }
906
907 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
908 }
909
910 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
911 {
912 struct mem_cgroup_per_zone *mz;
913
914 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
915 return mz->lru_size[lru];
916 }
917
918 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
919 int nid,
920 unsigned int lru_mask)
921 {
922 unsigned long nr = 0;
923 int zid;
924
925 VM_BUG_ON((unsigned)nid >= nr_node_ids);
926
927 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
928 struct mem_cgroup_per_zone *mz;
929 enum lru_list lru;
930
931 for_each_lru(lru) {
932 if (!(BIT(lru) & lru_mask))
933 continue;
934 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
935 nr += mz->lru_size[lru];
936 }
937 }
938 return nr;
939 }
940
941 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
942 unsigned int lru_mask)
943 {
944 unsigned long nr = 0;
945 int nid;
946
947 for_each_node_state(nid, N_MEMORY)
948 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
949 return nr;
950 }
951
952 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
953 enum mem_cgroup_events_target target)
954 {
955 unsigned long val, next;
956
957 val = __this_cpu_read(memcg->stat->nr_page_events);
958 next = __this_cpu_read(memcg->stat->targets[target]);
959 /* from time_after() in jiffies.h */
960 if ((long)next - (long)val < 0) {
961 switch (target) {
962 case MEM_CGROUP_TARGET_THRESH:
963 next = val + THRESHOLDS_EVENTS_TARGET;
964 break;
965 case MEM_CGROUP_TARGET_SOFTLIMIT:
966 next = val + SOFTLIMIT_EVENTS_TARGET;
967 break;
968 case MEM_CGROUP_TARGET_NUMAINFO:
969 next = val + NUMAINFO_EVENTS_TARGET;
970 break;
971 default:
972 break;
973 }
974 __this_cpu_write(memcg->stat->targets[target], next);
975 return true;
976 }
977 return false;
978 }
979
980 /*
981 * Check events in order.
982 *
983 */
984 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
985 {
986 /* threshold event is triggered in finer grain than soft limit */
987 if (unlikely(mem_cgroup_event_ratelimit(memcg,
988 MEM_CGROUP_TARGET_THRESH))) {
989 bool do_softlimit;
990 bool do_numainfo __maybe_unused;
991
992 do_softlimit = mem_cgroup_event_ratelimit(memcg,
993 MEM_CGROUP_TARGET_SOFTLIMIT);
994 #if MAX_NUMNODES > 1
995 do_numainfo = mem_cgroup_event_ratelimit(memcg,
996 MEM_CGROUP_TARGET_NUMAINFO);
997 #endif
998 mem_cgroup_threshold(memcg);
999 if (unlikely(do_softlimit))
1000 mem_cgroup_update_tree(memcg, page);
1001 #if MAX_NUMNODES > 1
1002 if (unlikely(do_numainfo))
1003 atomic_inc(&memcg->numainfo_events);
1004 #endif
1005 }
1006 }
1007
1008 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1009 {
1010 /*
1011 * mm_update_next_owner() may clear mm->owner to NULL
1012 * if it races with swapoff, page migration, etc.
1013 * So this can be called with p == NULL.
1014 */
1015 if (unlikely(!p))
1016 return NULL;
1017
1018 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1019 }
1020
1021 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1022 {
1023 struct mem_cgroup *memcg = NULL;
1024
1025 rcu_read_lock();
1026 do {
1027 /*
1028 * Page cache insertions can happen withou an
1029 * actual mm context, e.g. during disk probing
1030 * on boot, loopback IO, acct() writes etc.
1031 */
1032 if (unlikely(!mm))
1033 memcg = root_mem_cgroup;
1034 else {
1035 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1036 if (unlikely(!memcg))
1037 memcg = root_mem_cgroup;
1038 }
1039 } while (!css_tryget_online(&memcg->css));
1040 rcu_read_unlock();
1041 return memcg;
1042 }
1043
1044 /**
1045 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1046 * @root: hierarchy root
1047 * @prev: previously returned memcg, NULL on first invocation
1048 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1049 *
1050 * Returns references to children of the hierarchy below @root, or
1051 * @root itself, or %NULL after a full round-trip.
1052 *
1053 * Caller must pass the return value in @prev on subsequent
1054 * invocations for reference counting, or use mem_cgroup_iter_break()
1055 * to cancel a hierarchy walk before the round-trip is complete.
1056 *
1057 * Reclaimers can specify a zone and a priority level in @reclaim to
1058 * divide up the memcgs in the hierarchy among all concurrent
1059 * reclaimers operating on the same zone and priority.
1060 */
1061 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1062 struct mem_cgroup *prev,
1063 struct mem_cgroup_reclaim_cookie *reclaim)
1064 {
1065 struct reclaim_iter *uninitialized_var(iter);
1066 struct cgroup_subsys_state *css = NULL;
1067 struct mem_cgroup *memcg = NULL;
1068 struct mem_cgroup *pos = NULL;
1069
1070 if (mem_cgroup_disabled())
1071 return NULL;
1072
1073 if (!root)
1074 root = root_mem_cgroup;
1075
1076 if (prev && !reclaim)
1077 pos = prev;
1078
1079 if (!root->use_hierarchy && root != root_mem_cgroup) {
1080 if (prev)
1081 goto out;
1082 return root;
1083 }
1084
1085 rcu_read_lock();
1086
1087 if (reclaim) {
1088 struct mem_cgroup_per_zone *mz;
1089
1090 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1091 iter = &mz->iter[reclaim->priority];
1092
1093 if (prev && reclaim->generation != iter->generation)
1094 goto out_unlock;
1095
1096 do {
1097 pos = ACCESS_ONCE(iter->position);
1098 /*
1099 * A racing update may change the position and
1100 * put the last reference, hence css_tryget(),
1101 * or retry to see the updated position.
1102 */
1103 } while (pos && !css_tryget(&pos->css));
1104 }
1105
1106 if (pos)
1107 css = &pos->css;
1108
1109 for (;;) {
1110 css = css_next_descendant_pre(css, &root->css);
1111 if (!css) {
1112 /*
1113 * Reclaimers share the hierarchy walk, and a
1114 * new one might jump in right at the end of
1115 * the hierarchy - make sure they see at least
1116 * one group and restart from the beginning.
1117 */
1118 if (!prev)
1119 continue;
1120 break;
1121 }
1122
1123 /*
1124 * Verify the css and acquire a reference. The root
1125 * is provided by the caller, so we know it's alive
1126 * and kicking, and don't take an extra reference.
1127 */
1128 memcg = mem_cgroup_from_css(css);
1129
1130 if (css == &root->css)
1131 break;
1132
1133 if (css_tryget(css)) {
1134 /*
1135 * Make sure the memcg is initialized:
1136 * mem_cgroup_css_online() orders the the
1137 * initialization against setting the flag.
1138 */
1139 if (smp_load_acquire(&memcg->initialized))
1140 break;
1141
1142 css_put(css);
1143 }
1144
1145 memcg = NULL;
1146 }
1147
1148 if (reclaim) {
1149 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1150 if (memcg)
1151 css_get(&memcg->css);
1152 if (pos)
1153 css_put(&pos->css);
1154 }
1155
1156 /*
1157 * pairs with css_tryget when dereferencing iter->position
1158 * above.
1159 */
1160 if (pos)
1161 css_put(&pos->css);
1162
1163 if (!memcg)
1164 iter->generation++;
1165 else if (!prev)
1166 reclaim->generation = iter->generation;
1167 }
1168
1169 out_unlock:
1170 rcu_read_unlock();
1171 out:
1172 if (prev && prev != root)
1173 css_put(&prev->css);
1174
1175 return memcg;
1176 }
1177
1178 /**
1179 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1180 * @root: hierarchy root
1181 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1182 */
1183 void mem_cgroup_iter_break(struct mem_cgroup *root,
1184 struct mem_cgroup *prev)
1185 {
1186 if (!root)
1187 root = root_mem_cgroup;
1188 if (prev && prev != root)
1189 css_put(&prev->css);
1190 }
1191
1192 /*
1193 * Iteration constructs for visiting all cgroups (under a tree). If
1194 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1195 * be used for reference counting.
1196 */
1197 #define for_each_mem_cgroup_tree(iter, root) \
1198 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1199 iter != NULL; \
1200 iter = mem_cgroup_iter(root, iter, NULL))
1201
1202 #define for_each_mem_cgroup(iter) \
1203 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1204 iter != NULL; \
1205 iter = mem_cgroup_iter(NULL, iter, NULL))
1206
1207 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1208 {
1209 struct mem_cgroup *memcg;
1210
1211 rcu_read_lock();
1212 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1213 if (unlikely(!memcg))
1214 goto out;
1215
1216 switch (idx) {
1217 case PGFAULT:
1218 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1219 break;
1220 case PGMAJFAULT:
1221 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1222 break;
1223 default:
1224 BUG();
1225 }
1226 out:
1227 rcu_read_unlock();
1228 }
1229 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1230
1231 /**
1232 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1233 * @zone: zone of the wanted lruvec
1234 * @memcg: memcg of the wanted lruvec
1235 *
1236 * Returns the lru list vector holding pages for the given @zone and
1237 * @mem. This can be the global zone lruvec, if the memory controller
1238 * is disabled.
1239 */
1240 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1241 struct mem_cgroup *memcg)
1242 {
1243 struct mem_cgroup_per_zone *mz;
1244 struct lruvec *lruvec;
1245
1246 if (mem_cgroup_disabled()) {
1247 lruvec = &zone->lruvec;
1248 goto out;
1249 }
1250
1251 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1252 lruvec = &mz->lruvec;
1253 out:
1254 /*
1255 * Since a node can be onlined after the mem_cgroup was created,
1256 * we have to be prepared to initialize lruvec->zone here;
1257 * and if offlined then reonlined, we need to reinitialize it.
1258 */
1259 if (unlikely(lruvec->zone != zone))
1260 lruvec->zone = zone;
1261 return lruvec;
1262 }
1263
1264 /**
1265 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1266 * @page: the page
1267 * @zone: zone of the page
1268 *
1269 * This function is only safe when following the LRU page isolation
1270 * and putback protocol: the LRU lock must be held, and the page must
1271 * either be PageLRU() or the caller must have isolated/allocated it.
1272 */
1273 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1274 {
1275 struct mem_cgroup_per_zone *mz;
1276 struct mem_cgroup *memcg;
1277 struct page_cgroup *pc;
1278 struct lruvec *lruvec;
1279
1280 if (mem_cgroup_disabled()) {
1281 lruvec = &zone->lruvec;
1282 goto out;
1283 }
1284
1285 pc = lookup_page_cgroup(page);
1286 memcg = pc->mem_cgroup;
1287 /*
1288 * Swapcache readahead pages are added to the LRU - and
1289 * possibly migrated - before they are charged.
1290 */
1291 if (!memcg)
1292 memcg = root_mem_cgroup;
1293
1294 mz = mem_cgroup_page_zoneinfo(memcg, page);
1295 lruvec = &mz->lruvec;
1296 out:
1297 /*
1298 * Since a node can be onlined after the mem_cgroup was created,
1299 * we have to be prepared to initialize lruvec->zone here;
1300 * and if offlined then reonlined, we need to reinitialize it.
1301 */
1302 if (unlikely(lruvec->zone != zone))
1303 lruvec->zone = zone;
1304 return lruvec;
1305 }
1306
1307 /**
1308 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1309 * @lruvec: mem_cgroup per zone lru vector
1310 * @lru: index of lru list the page is sitting on
1311 * @nr_pages: positive when adding or negative when removing
1312 *
1313 * This function must be called when a page is added to or removed from an
1314 * lru list.
1315 */
1316 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1317 int nr_pages)
1318 {
1319 struct mem_cgroup_per_zone *mz;
1320 unsigned long *lru_size;
1321
1322 if (mem_cgroup_disabled())
1323 return;
1324
1325 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1326 lru_size = mz->lru_size + lru;
1327 *lru_size += nr_pages;
1328 VM_BUG_ON((long)(*lru_size) < 0);
1329 }
1330
1331 /*
1332 * Checks whether given mem is same or in the root_mem_cgroup's
1333 * hierarchy subtree
1334 */
1335 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1336 struct mem_cgroup *memcg)
1337 {
1338 if (root_memcg == memcg)
1339 return true;
1340 if (!root_memcg->use_hierarchy)
1341 return false;
1342 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1343 }
1344
1345 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1346 struct mem_cgroup *memcg)
1347 {
1348 bool ret;
1349
1350 rcu_read_lock();
1351 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1352 rcu_read_unlock();
1353 return ret;
1354 }
1355
1356 bool task_in_mem_cgroup(struct task_struct *task,
1357 const struct mem_cgroup *memcg)
1358 {
1359 struct mem_cgroup *curr;
1360 struct task_struct *p;
1361 bool ret;
1362
1363 p = find_lock_task_mm(task);
1364 if (p) {
1365 curr = get_mem_cgroup_from_mm(p->mm);
1366 task_unlock(p);
1367 } else {
1368 /*
1369 * All threads may have already detached their mm's, but the oom
1370 * killer still needs to detect if they have already been oom
1371 * killed to prevent needlessly killing additional tasks.
1372 */
1373 rcu_read_lock();
1374 curr = mem_cgroup_from_task(task);
1375 css_get(&curr->css);
1376 rcu_read_unlock();
1377 }
1378 /*
1379 * We should check use_hierarchy of "memcg" not "curr". Because checking
1380 * use_hierarchy of "curr" here make this function true if hierarchy is
1381 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1382 * hierarchy(even if use_hierarchy is disabled in "memcg").
1383 */
1384 ret = mem_cgroup_same_or_subtree(memcg, curr);
1385 css_put(&curr->css);
1386 return ret;
1387 }
1388
1389 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1390 {
1391 unsigned long inactive_ratio;
1392 unsigned long inactive;
1393 unsigned long active;
1394 unsigned long gb;
1395
1396 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1397 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1398
1399 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1400 if (gb)
1401 inactive_ratio = int_sqrt(10 * gb);
1402 else
1403 inactive_ratio = 1;
1404
1405 return inactive * inactive_ratio < active;
1406 }
1407
1408 #define mem_cgroup_from_counter(counter, member) \
1409 container_of(counter, struct mem_cgroup, member)
1410
1411 /**
1412 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1413 * @memcg: the memory cgroup
1414 *
1415 * Returns the maximum amount of memory @mem can be charged with, in
1416 * pages.
1417 */
1418 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1419 {
1420 unsigned long margin = 0;
1421 unsigned long count;
1422 unsigned long limit;
1423
1424 count = page_counter_read(&memcg->memory);
1425 limit = ACCESS_ONCE(memcg->memory.limit);
1426 if (count < limit)
1427 margin = limit - count;
1428
1429 if (do_swap_account) {
1430 count = page_counter_read(&memcg->memsw);
1431 limit = ACCESS_ONCE(memcg->memsw.limit);
1432 if (count <= limit)
1433 margin = min(margin, limit - count);
1434 }
1435
1436 return margin;
1437 }
1438
1439 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1440 {
1441 /* root ? */
1442 if (mem_cgroup_disabled() || !memcg->css.parent)
1443 return vm_swappiness;
1444
1445 return memcg->swappiness;
1446 }
1447
1448 /*
1449 * A routine for checking "mem" is under move_account() or not.
1450 *
1451 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1452 * moving cgroups. This is for waiting at high-memory pressure
1453 * caused by "move".
1454 */
1455 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1456 {
1457 struct mem_cgroup *from;
1458 struct mem_cgroup *to;
1459 bool ret = false;
1460 /*
1461 * Unlike task_move routines, we access mc.to, mc.from not under
1462 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1463 */
1464 spin_lock(&mc.lock);
1465 from = mc.from;
1466 to = mc.to;
1467 if (!from)
1468 goto unlock;
1469
1470 ret = mem_cgroup_same_or_subtree(memcg, from)
1471 || mem_cgroup_same_or_subtree(memcg, to);
1472 unlock:
1473 spin_unlock(&mc.lock);
1474 return ret;
1475 }
1476
1477 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1478 {
1479 if (mc.moving_task && current != mc.moving_task) {
1480 if (mem_cgroup_under_move(memcg)) {
1481 DEFINE_WAIT(wait);
1482 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1483 /* moving charge context might have finished. */
1484 if (mc.moving_task)
1485 schedule();
1486 finish_wait(&mc.waitq, &wait);
1487 return true;
1488 }
1489 }
1490 return false;
1491 }
1492
1493 #define K(x) ((x) << (PAGE_SHIFT-10))
1494 /**
1495 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1496 * @memcg: The memory cgroup that went over limit
1497 * @p: Task that is going to be killed
1498 *
1499 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1500 * enabled
1501 */
1502 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1503 {
1504 /* oom_info_lock ensures that parallel ooms do not interleave */
1505 static DEFINE_MUTEX(oom_info_lock);
1506 struct mem_cgroup *iter;
1507 unsigned int i;
1508
1509 if (!p)
1510 return;
1511
1512 mutex_lock(&oom_info_lock);
1513 rcu_read_lock();
1514
1515 pr_info("Task in ");
1516 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1517 pr_info(" killed as a result of limit of ");
1518 pr_cont_cgroup_path(memcg->css.cgroup);
1519 pr_info("\n");
1520
1521 rcu_read_unlock();
1522
1523 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1524 K((u64)page_counter_read(&memcg->memory)),
1525 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1526 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1527 K((u64)page_counter_read(&memcg->memsw)),
1528 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1529 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1530 K((u64)page_counter_read(&memcg->kmem)),
1531 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1532
1533 for_each_mem_cgroup_tree(iter, memcg) {
1534 pr_info("Memory cgroup stats for ");
1535 pr_cont_cgroup_path(iter->css.cgroup);
1536 pr_cont(":");
1537
1538 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1539 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1540 continue;
1541 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1542 K(mem_cgroup_read_stat(iter, i)));
1543 }
1544
1545 for (i = 0; i < NR_LRU_LISTS; i++)
1546 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1547 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1548
1549 pr_cont("\n");
1550 }
1551 mutex_unlock(&oom_info_lock);
1552 }
1553
1554 /*
1555 * This function returns the number of memcg under hierarchy tree. Returns
1556 * 1(self count) if no children.
1557 */
1558 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1559 {
1560 int num = 0;
1561 struct mem_cgroup *iter;
1562
1563 for_each_mem_cgroup_tree(iter, memcg)
1564 num++;
1565 return num;
1566 }
1567
1568 /*
1569 * Return the memory (and swap, if configured) limit for a memcg.
1570 */
1571 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1572 {
1573 unsigned long limit;
1574
1575 limit = memcg->memory.limit;
1576 if (mem_cgroup_swappiness(memcg)) {
1577 unsigned long memsw_limit;
1578
1579 memsw_limit = memcg->memsw.limit;
1580 limit = min(limit + total_swap_pages, memsw_limit);
1581 }
1582 return limit;
1583 }
1584
1585 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1586 int order)
1587 {
1588 struct mem_cgroup *iter;
1589 unsigned long chosen_points = 0;
1590 unsigned long totalpages;
1591 unsigned int points = 0;
1592 struct task_struct *chosen = NULL;
1593
1594 /*
1595 * If current has a pending SIGKILL or is exiting, then automatically
1596 * select it. The goal is to allow it to allocate so that it may
1597 * quickly exit and free its memory.
1598 */
1599 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1600 set_thread_flag(TIF_MEMDIE);
1601 return;
1602 }
1603
1604 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1605 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1606 for_each_mem_cgroup_tree(iter, memcg) {
1607 struct css_task_iter it;
1608 struct task_struct *task;
1609
1610 css_task_iter_start(&iter->css, &it);
1611 while ((task = css_task_iter_next(&it))) {
1612 switch (oom_scan_process_thread(task, totalpages, NULL,
1613 false)) {
1614 case OOM_SCAN_SELECT:
1615 if (chosen)
1616 put_task_struct(chosen);
1617 chosen = task;
1618 chosen_points = ULONG_MAX;
1619 get_task_struct(chosen);
1620 /* fall through */
1621 case OOM_SCAN_CONTINUE:
1622 continue;
1623 case OOM_SCAN_ABORT:
1624 css_task_iter_end(&it);
1625 mem_cgroup_iter_break(memcg, iter);
1626 if (chosen)
1627 put_task_struct(chosen);
1628 return;
1629 case OOM_SCAN_OK:
1630 break;
1631 };
1632 points = oom_badness(task, memcg, NULL, totalpages);
1633 if (!points || points < chosen_points)
1634 continue;
1635 /* Prefer thread group leaders for display purposes */
1636 if (points == chosen_points &&
1637 thread_group_leader(chosen))
1638 continue;
1639
1640 if (chosen)
1641 put_task_struct(chosen);
1642 chosen = task;
1643 chosen_points = points;
1644 get_task_struct(chosen);
1645 }
1646 css_task_iter_end(&it);
1647 }
1648
1649 if (!chosen)
1650 return;
1651 points = chosen_points * 1000 / totalpages;
1652 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1653 NULL, "Memory cgroup out of memory");
1654 }
1655
1656 /**
1657 * test_mem_cgroup_node_reclaimable
1658 * @memcg: the target memcg
1659 * @nid: the node ID to be checked.
1660 * @noswap : specify true here if the user wants flle only information.
1661 *
1662 * This function returns whether the specified memcg contains any
1663 * reclaimable pages on a node. Returns true if there are any reclaimable
1664 * pages in the node.
1665 */
1666 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1667 int nid, bool noswap)
1668 {
1669 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1670 return true;
1671 if (noswap || !total_swap_pages)
1672 return false;
1673 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1674 return true;
1675 return false;
1676
1677 }
1678 #if MAX_NUMNODES > 1
1679
1680 /*
1681 * Always updating the nodemask is not very good - even if we have an empty
1682 * list or the wrong list here, we can start from some node and traverse all
1683 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1684 *
1685 */
1686 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1687 {
1688 int nid;
1689 /*
1690 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1691 * pagein/pageout changes since the last update.
1692 */
1693 if (!atomic_read(&memcg->numainfo_events))
1694 return;
1695 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1696 return;
1697
1698 /* make a nodemask where this memcg uses memory from */
1699 memcg->scan_nodes = node_states[N_MEMORY];
1700
1701 for_each_node_mask(nid, node_states[N_MEMORY]) {
1702
1703 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1704 node_clear(nid, memcg->scan_nodes);
1705 }
1706
1707 atomic_set(&memcg->numainfo_events, 0);
1708 atomic_set(&memcg->numainfo_updating, 0);
1709 }
1710
1711 /*
1712 * Selecting a node where we start reclaim from. Because what we need is just
1713 * reducing usage counter, start from anywhere is O,K. Considering
1714 * memory reclaim from current node, there are pros. and cons.
1715 *
1716 * Freeing memory from current node means freeing memory from a node which
1717 * we'll use or we've used. So, it may make LRU bad. And if several threads
1718 * hit limits, it will see a contention on a node. But freeing from remote
1719 * node means more costs for memory reclaim because of memory latency.
1720 *
1721 * Now, we use round-robin. Better algorithm is welcomed.
1722 */
1723 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1724 {
1725 int node;
1726
1727 mem_cgroup_may_update_nodemask(memcg);
1728 node = memcg->last_scanned_node;
1729
1730 node = next_node(node, memcg->scan_nodes);
1731 if (node == MAX_NUMNODES)
1732 node = first_node(memcg->scan_nodes);
1733 /*
1734 * We call this when we hit limit, not when pages are added to LRU.
1735 * No LRU may hold pages because all pages are UNEVICTABLE or
1736 * memcg is too small and all pages are not on LRU. In that case,
1737 * we use curret node.
1738 */
1739 if (unlikely(node == MAX_NUMNODES))
1740 node = numa_node_id();
1741
1742 memcg->last_scanned_node = node;
1743 return node;
1744 }
1745 #else
1746 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1747 {
1748 return 0;
1749 }
1750 #endif
1751
1752 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1753 struct zone *zone,
1754 gfp_t gfp_mask,
1755 unsigned long *total_scanned)
1756 {
1757 struct mem_cgroup *victim = NULL;
1758 int total = 0;
1759 int loop = 0;
1760 unsigned long excess;
1761 unsigned long nr_scanned;
1762 struct mem_cgroup_reclaim_cookie reclaim = {
1763 .zone = zone,
1764 .priority = 0,
1765 };
1766
1767 excess = soft_limit_excess(root_memcg);
1768
1769 while (1) {
1770 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1771 if (!victim) {
1772 loop++;
1773 if (loop >= 2) {
1774 /*
1775 * If we have not been able to reclaim
1776 * anything, it might because there are
1777 * no reclaimable pages under this hierarchy
1778 */
1779 if (!total)
1780 break;
1781 /*
1782 * We want to do more targeted reclaim.
1783 * excess >> 2 is not to excessive so as to
1784 * reclaim too much, nor too less that we keep
1785 * coming back to reclaim from this cgroup
1786 */
1787 if (total >= (excess >> 2) ||
1788 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1789 break;
1790 }
1791 continue;
1792 }
1793 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1794 zone, &nr_scanned);
1795 *total_scanned += nr_scanned;
1796 if (!soft_limit_excess(root_memcg))
1797 break;
1798 }
1799 mem_cgroup_iter_break(root_memcg, victim);
1800 return total;
1801 }
1802
1803 #ifdef CONFIG_LOCKDEP
1804 static struct lockdep_map memcg_oom_lock_dep_map = {
1805 .name = "memcg_oom_lock",
1806 };
1807 #endif
1808
1809 static DEFINE_SPINLOCK(memcg_oom_lock);
1810
1811 /*
1812 * Check OOM-Killer is already running under our hierarchy.
1813 * If someone is running, return false.
1814 */
1815 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1816 {
1817 struct mem_cgroup *iter, *failed = NULL;
1818
1819 spin_lock(&memcg_oom_lock);
1820
1821 for_each_mem_cgroup_tree(iter, memcg) {
1822 if (iter->oom_lock) {
1823 /*
1824 * this subtree of our hierarchy is already locked
1825 * so we cannot give a lock.
1826 */
1827 failed = iter;
1828 mem_cgroup_iter_break(memcg, iter);
1829 break;
1830 } else
1831 iter->oom_lock = true;
1832 }
1833
1834 if (failed) {
1835 /*
1836 * OK, we failed to lock the whole subtree so we have
1837 * to clean up what we set up to the failing subtree
1838 */
1839 for_each_mem_cgroup_tree(iter, memcg) {
1840 if (iter == failed) {
1841 mem_cgroup_iter_break(memcg, iter);
1842 break;
1843 }
1844 iter->oom_lock = false;
1845 }
1846 } else
1847 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1848
1849 spin_unlock(&memcg_oom_lock);
1850
1851 return !failed;
1852 }
1853
1854 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1855 {
1856 struct mem_cgroup *iter;
1857
1858 spin_lock(&memcg_oom_lock);
1859 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1860 for_each_mem_cgroup_tree(iter, memcg)
1861 iter->oom_lock = false;
1862 spin_unlock(&memcg_oom_lock);
1863 }
1864
1865 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1866 {
1867 struct mem_cgroup *iter;
1868
1869 for_each_mem_cgroup_tree(iter, memcg)
1870 atomic_inc(&iter->under_oom);
1871 }
1872
1873 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1874 {
1875 struct mem_cgroup *iter;
1876
1877 /*
1878 * When a new child is created while the hierarchy is under oom,
1879 * mem_cgroup_oom_lock() may not be called. We have to use
1880 * atomic_add_unless() here.
1881 */
1882 for_each_mem_cgroup_tree(iter, memcg)
1883 atomic_add_unless(&iter->under_oom, -1, 0);
1884 }
1885
1886 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1887
1888 struct oom_wait_info {
1889 struct mem_cgroup *memcg;
1890 wait_queue_t wait;
1891 };
1892
1893 static int memcg_oom_wake_function(wait_queue_t *wait,
1894 unsigned mode, int sync, void *arg)
1895 {
1896 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1897 struct mem_cgroup *oom_wait_memcg;
1898 struct oom_wait_info *oom_wait_info;
1899
1900 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1901 oom_wait_memcg = oom_wait_info->memcg;
1902
1903 /*
1904 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1905 * Then we can use css_is_ancestor without taking care of RCU.
1906 */
1907 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1908 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1909 return 0;
1910 return autoremove_wake_function(wait, mode, sync, arg);
1911 }
1912
1913 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1914 {
1915 atomic_inc(&memcg->oom_wakeups);
1916 /* for filtering, pass "memcg" as argument. */
1917 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1918 }
1919
1920 static void memcg_oom_recover(struct mem_cgroup *memcg)
1921 {
1922 if (memcg && atomic_read(&memcg->under_oom))
1923 memcg_wakeup_oom(memcg);
1924 }
1925
1926 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1927 {
1928 if (!current->memcg_oom.may_oom)
1929 return;
1930 /*
1931 * We are in the middle of the charge context here, so we
1932 * don't want to block when potentially sitting on a callstack
1933 * that holds all kinds of filesystem and mm locks.
1934 *
1935 * Also, the caller may handle a failed allocation gracefully
1936 * (like optional page cache readahead) and so an OOM killer
1937 * invocation might not even be necessary.
1938 *
1939 * That's why we don't do anything here except remember the
1940 * OOM context and then deal with it at the end of the page
1941 * fault when the stack is unwound, the locks are released,
1942 * and when we know whether the fault was overall successful.
1943 */
1944 css_get(&memcg->css);
1945 current->memcg_oom.memcg = memcg;
1946 current->memcg_oom.gfp_mask = mask;
1947 current->memcg_oom.order = order;
1948 }
1949
1950 /**
1951 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1952 * @handle: actually kill/wait or just clean up the OOM state
1953 *
1954 * This has to be called at the end of a page fault if the memcg OOM
1955 * handler was enabled.
1956 *
1957 * Memcg supports userspace OOM handling where failed allocations must
1958 * sleep on a waitqueue until the userspace task resolves the
1959 * situation. Sleeping directly in the charge context with all kinds
1960 * of locks held is not a good idea, instead we remember an OOM state
1961 * in the task and mem_cgroup_oom_synchronize() has to be called at
1962 * the end of the page fault to complete the OOM handling.
1963 *
1964 * Returns %true if an ongoing memcg OOM situation was detected and
1965 * completed, %false otherwise.
1966 */
1967 bool mem_cgroup_oom_synchronize(bool handle)
1968 {
1969 struct mem_cgroup *memcg = current->memcg_oom.memcg;
1970 struct oom_wait_info owait;
1971 bool locked;
1972
1973 /* OOM is global, do not handle */
1974 if (!memcg)
1975 return false;
1976
1977 if (!handle)
1978 goto cleanup;
1979
1980 owait.memcg = memcg;
1981 owait.wait.flags = 0;
1982 owait.wait.func = memcg_oom_wake_function;
1983 owait.wait.private = current;
1984 INIT_LIST_HEAD(&owait.wait.task_list);
1985
1986 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1987 mem_cgroup_mark_under_oom(memcg);
1988
1989 locked = mem_cgroup_oom_trylock(memcg);
1990
1991 if (locked)
1992 mem_cgroup_oom_notify(memcg);
1993
1994 if (locked && !memcg->oom_kill_disable) {
1995 mem_cgroup_unmark_under_oom(memcg);
1996 finish_wait(&memcg_oom_waitq, &owait.wait);
1997 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1998 current->memcg_oom.order);
1999 } else {
2000 schedule();
2001 mem_cgroup_unmark_under_oom(memcg);
2002 finish_wait(&memcg_oom_waitq, &owait.wait);
2003 }
2004
2005 if (locked) {
2006 mem_cgroup_oom_unlock(memcg);
2007 /*
2008 * There is no guarantee that an OOM-lock contender
2009 * sees the wakeups triggered by the OOM kill
2010 * uncharges. Wake any sleepers explicitely.
2011 */
2012 memcg_oom_recover(memcg);
2013 }
2014 cleanup:
2015 current->memcg_oom.memcg = NULL;
2016 css_put(&memcg->css);
2017 return true;
2018 }
2019
2020 /**
2021 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
2022 * @page: page that is going to change accounted state
2023 * @locked: &memcg->move_lock slowpath was taken
2024 * @flags: IRQ-state flags for &memcg->move_lock
2025 *
2026 * This function must mark the beginning of an accounted page state
2027 * change to prevent double accounting when the page is concurrently
2028 * being moved to another memcg:
2029 *
2030 * memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
2031 * if (TestClearPageState(page))
2032 * mem_cgroup_update_page_stat(memcg, state, -1);
2033 * mem_cgroup_end_page_stat(memcg, locked, flags);
2034 *
2035 * The RCU lock is held throughout the transaction. The fast path can
2036 * get away without acquiring the memcg->move_lock (@locked is false)
2037 * because page moving starts with an RCU grace period.
2038 *
2039 * The RCU lock also protects the memcg from being freed when the page
2040 * state that is going to change is the only thing preventing the page
2041 * from being uncharged. E.g. end-writeback clearing PageWriteback(),
2042 * which allows migration to go ahead and uncharge the page before the
2043 * account transaction might be complete.
2044 */
2045 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page,
2046 bool *locked,
2047 unsigned long *flags)
2048 {
2049 struct mem_cgroup *memcg;
2050 struct page_cgroup *pc;
2051
2052 rcu_read_lock();
2053
2054 if (mem_cgroup_disabled())
2055 return NULL;
2056
2057 pc = lookup_page_cgroup(page);
2058 again:
2059 memcg = pc->mem_cgroup;
2060 if (unlikely(!memcg))
2061 return NULL;
2062
2063 *locked = false;
2064 if (atomic_read(&memcg->moving_account) <= 0)
2065 return memcg;
2066
2067 spin_lock_irqsave(&memcg->move_lock, *flags);
2068 if (memcg != pc->mem_cgroup) {
2069 spin_unlock_irqrestore(&memcg->move_lock, *flags);
2070 goto again;
2071 }
2072 *locked = true;
2073
2074 return memcg;
2075 }
2076
2077 /**
2078 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2079 * @memcg: the memcg that was accounted against
2080 * @locked: value received from mem_cgroup_begin_page_stat()
2081 * @flags: value received from mem_cgroup_begin_page_stat()
2082 */
2083 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool locked,
2084 unsigned long flags)
2085 {
2086 if (memcg && locked)
2087 spin_unlock_irqrestore(&memcg->move_lock, flags);
2088
2089 rcu_read_unlock();
2090 }
2091
2092 /**
2093 * mem_cgroup_update_page_stat - update page state statistics
2094 * @memcg: memcg to account against
2095 * @idx: page state item to account
2096 * @val: number of pages (positive or negative)
2097 *
2098 * See mem_cgroup_begin_page_stat() for locking requirements.
2099 */
2100 void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
2101 enum mem_cgroup_stat_index idx, int val)
2102 {
2103 VM_BUG_ON(!rcu_read_lock_held());
2104
2105 if (memcg)
2106 this_cpu_add(memcg->stat->count[idx], val);
2107 }
2108
2109 /*
2110 * size of first charge trial. "32" comes from vmscan.c's magic value.
2111 * TODO: maybe necessary to use big numbers in big irons.
2112 */
2113 #define CHARGE_BATCH 32U
2114 struct memcg_stock_pcp {
2115 struct mem_cgroup *cached; /* this never be root cgroup */
2116 unsigned int nr_pages;
2117 struct work_struct work;
2118 unsigned long flags;
2119 #define FLUSHING_CACHED_CHARGE 0
2120 };
2121 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2122 static DEFINE_MUTEX(percpu_charge_mutex);
2123
2124 /**
2125 * consume_stock: Try to consume stocked charge on this cpu.
2126 * @memcg: memcg to consume from.
2127 * @nr_pages: how many pages to charge.
2128 *
2129 * The charges will only happen if @memcg matches the current cpu's memcg
2130 * stock, and at least @nr_pages are available in that stock. Failure to
2131 * service an allocation will refill the stock.
2132 *
2133 * returns true if successful, false otherwise.
2134 */
2135 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2136 {
2137 struct memcg_stock_pcp *stock;
2138 bool ret = false;
2139
2140 if (nr_pages > CHARGE_BATCH)
2141 return ret;
2142
2143 stock = &get_cpu_var(memcg_stock);
2144 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2145 stock->nr_pages -= nr_pages;
2146 ret = true;
2147 }
2148 put_cpu_var(memcg_stock);
2149 return ret;
2150 }
2151
2152 /*
2153 * Returns stocks cached in percpu and reset cached information.
2154 */
2155 static void drain_stock(struct memcg_stock_pcp *stock)
2156 {
2157 struct mem_cgroup *old = stock->cached;
2158
2159 if (stock->nr_pages) {
2160 page_counter_uncharge(&old->memory, stock->nr_pages);
2161 if (do_swap_account)
2162 page_counter_uncharge(&old->memsw, stock->nr_pages);
2163 css_put_many(&old->css, stock->nr_pages);
2164 stock->nr_pages = 0;
2165 }
2166 stock->cached = NULL;
2167 }
2168
2169 /*
2170 * This must be called under preempt disabled or must be called by
2171 * a thread which is pinned to local cpu.
2172 */
2173 static void drain_local_stock(struct work_struct *dummy)
2174 {
2175 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2176 drain_stock(stock);
2177 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2178 }
2179
2180 static void __init memcg_stock_init(void)
2181 {
2182 int cpu;
2183
2184 for_each_possible_cpu(cpu) {
2185 struct memcg_stock_pcp *stock =
2186 &per_cpu(memcg_stock, cpu);
2187 INIT_WORK(&stock->work, drain_local_stock);
2188 }
2189 }
2190
2191 /*
2192 * Cache charges(val) to local per_cpu area.
2193 * This will be consumed by consume_stock() function, later.
2194 */
2195 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2196 {
2197 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2198
2199 if (stock->cached != memcg) { /* reset if necessary */
2200 drain_stock(stock);
2201 stock->cached = memcg;
2202 }
2203 stock->nr_pages += nr_pages;
2204 put_cpu_var(memcg_stock);
2205 }
2206
2207 /*
2208 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2209 * of the hierarchy under it.
2210 */
2211 static void drain_all_stock(struct mem_cgroup *root_memcg)
2212 {
2213 int cpu, curcpu;
2214
2215 /* If someone's already draining, avoid adding running more workers. */
2216 if (!mutex_trylock(&percpu_charge_mutex))
2217 return;
2218 /* Notify other cpus that system-wide "drain" is running */
2219 get_online_cpus();
2220 curcpu = get_cpu();
2221 for_each_online_cpu(cpu) {
2222 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2223 struct mem_cgroup *memcg;
2224
2225 memcg = stock->cached;
2226 if (!memcg || !stock->nr_pages)
2227 continue;
2228 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2229 continue;
2230 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2231 if (cpu == curcpu)
2232 drain_local_stock(&stock->work);
2233 else
2234 schedule_work_on(cpu, &stock->work);
2235 }
2236 }
2237 put_cpu();
2238 put_online_cpus();
2239 mutex_unlock(&percpu_charge_mutex);
2240 }
2241
2242 /*
2243 * This function drains percpu counter value from DEAD cpu and
2244 * move it to local cpu. Note that this function can be preempted.
2245 */
2246 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2247 {
2248 int i;
2249
2250 spin_lock(&memcg->pcp_counter_lock);
2251 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2252 long x = per_cpu(memcg->stat->count[i], cpu);
2253
2254 per_cpu(memcg->stat->count[i], cpu) = 0;
2255 memcg->nocpu_base.count[i] += x;
2256 }
2257 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2258 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2259
2260 per_cpu(memcg->stat->events[i], cpu) = 0;
2261 memcg->nocpu_base.events[i] += x;
2262 }
2263 spin_unlock(&memcg->pcp_counter_lock);
2264 }
2265
2266 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2267 unsigned long action,
2268 void *hcpu)
2269 {
2270 int cpu = (unsigned long)hcpu;
2271 struct memcg_stock_pcp *stock;
2272 struct mem_cgroup *iter;
2273
2274 if (action == CPU_ONLINE)
2275 return NOTIFY_OK;
2276
2277 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2278 return NOTIFY_OK;
2279
2280 for_each_mem_cgroup(iter)
2281 mem_cgroup_drain_pcp_counter(iter, cpu);
2282
2283 stock = &per_cpu(memcg_stock, cpu);
2284 drain_stock(stock);
2285 return NOTIFY_OK;
2286 }
2287
2288 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2289 unsigned int nr_pages)
2290 {
2291 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2292 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2293 struct mem_cgroup *mem_over_limit;
2294 struct page_counter *counter;
2295 unsigned long nr_reclaimed;
2296 bool may_swap = true;
2297 bool drained = false;
2298 int ret = 0;
2299
2300 if (mem_cgroup_is_root(memcg))
2301 goto done;
2302 retry:
2303 if (consume_stock(memcg, nr_pages))
2304 goto done;
2305
2306 if (!do_swap_account ||
2307 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2308 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2309 goto done_restock;
2310 if (do_swap_account)
2311 page_counter_uncharge(&memcg->memsw, batch);
2312 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2313 } else {
2314 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2315 may_swap = false;
2316 }
2317
2318 if (batch > nr_pages) {
2319 batch = nr_pages;
2320 goto retry;
2321 }
2322
2323 /*
2324 * Unlike in global OOM situations, memcg is not in a physical
2325 * memory shortage. Allow dying and OOM-killed tasks to
2326 * bypass the last charges so that they can exit quickly and
2327 * free their memory.
2328 */
2329 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2330 fatal_signal_pending(current) ||
2331 current->flags & PF_EXITING))
2332 goto bypass;
2333
2334 if (unlikely(task_in_memcg_oom(current)))
2335 goto nomem;
2336
2337 if (!(gfp_mask & __GFP_WAIT))
2338 goto nomem;
2339
2340 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2341 gfp_mask, may_swap);
2342
2343 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2344 goto retry;
2345
2346 if (!drained) {
2347 drain_all_stock(mem_over_limit);
2348 drained = true;
2349 goto retry;
2350 }
2351
2352 if (gfp_mask & __GFP_NORETRY)
2353 goto nomem;
2354 /*
2355 * Even though the limit is exceeded at this point, reclaim
2356 * may have been able to free some pages. Retry the charge
2357 * before killing the task.
2358 *
2359 * Only for regular pages, though: huge pages are rather
2360 * unlikely to succeed so close to the limit, and we fall back
2361 * to regular pages anyway in case of failure.
2362 */
2363 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2364 goto retry;
2365 /*
2366 * At task move, charge accounts can be doubly counted. So, it's
2367 * better to wait until the end of task_move if something is going on.
2368 */
2369 if (mem_cgroup_wait_acct_move(mem_over_limit))
2370 goto retry;
2371
2372 if (nr_retries--)
2373 goto retry;
2374
2375 if (gfp_mask & __GFP_NOFAIL)
2376 goto bypass;
2377
2378 if (fatal_signal_pending(current))
2379 goto bypass;
2380
2381 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2382 nomem:
2383 if (!(gfp_mask & __GFP_NOFAIL))
2384 return -ENOMEM;
2385 bypass:
2386 return -EINTR;
2387
2388 done_restock:
2389 css_get_many(&memcg->css, batch);
2390 if (batch > nr_pages)
2391 refill_stock(memcg, batch - nr_pages);
2392 done:
2393 return ret;
2394 }
2395
2396 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2397 {
2398 if (mem_cgroup_is_root(memcg))
2399 return;
2400
2401 page_counter_uncharge(&memcg->memory, nr_pages);
2402 if (do_swap_account)
2403 page_counter_uncharge(&memcg->memsw, nr_pages);
2404
2405 css_put_many(&memcg->css, nr_pages);
2406 }
2407
2408 /*
2409 * A helper function to get mem_cgroup from ID. must be called under
2410 * rcu_read_lock(). The caller is responsible for calling
2411 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2412 * refcnt from swap can be called against removed memcg.)
2413 */
2414 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2415 {
2416 /* ID 0 is unused ID */
2417 if (!id)
2418 return NULL;
2419 return mem_cgroup_from_id(id);
2420 }
2421
2422 /*
2423 * try_get_mem_cgroup_from_page - look up page's memcg association
2424 * @page: the page
2425 *
2426 * Look up, get a css reference, and return the memcg that owns @page.
2427 *
2428 * The page must be locked to prevent racing with swap-in and page
2429 * cache charges. If coming from an unlocked page table, the caller
2430 * must ensure the page is on the LRU or this can race with charging.
2431 */
2432 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2433 {
2434 struct mem_cgroup *memcg;
2435 struct page_cgroup *pc;
2436 unsigned short id;
2437 swp_entry_t ent;
2438
2439 VM_BUG_ON_PAGE(!PageLocked(page), page);
2440
2441 pc = lookup_page_cgroup(page);
2442 memcg = pc->mem_cgroup;
2443
2444 if (memcg) {
2445 if (!css_tryget_online(&memcg->css))
2446 memcg = NULL;
2447 } else if (PageSwapCache(page)) {
2448 ent.val = page_private(page);
2449 id = lookup_swap_cgroup_id(ent);
2450 rcu_read_lock();
2451 memcg = mem_cgroup_lookup(id);
2452 if (memcg && !css_tryget_online(&memcg->css))
2453 memcg = NULL;
2454 rcu_read_unlock();
2455 }
2456 return memcg;
2457 }
2458
2459 static void lock_page_lru(struct page *page, int *isolated)
2460 {
2461 struct zone *zone = page_zone(page);
2462
2463 spin_lock_irq(&zone->lru_lock);
2464 if (PageLRU(page)) {
2465 struct lruvec *lruvec;
2466
2467 lruvec = mem_cgroup_page_lruvec(page, zone);
2468 ClearPageLRU(page);
2469 del_page_from_lru_list(page, lruvec, page_lru(page));
2470 *isolated = 1;
2471 } else
2472 *isolated = 0;
2473 }
2474
2475 static void unlock_page_lru(struct page *page, int isolated)
2476 {
2477 struct zone *zone = page_zone(page);
2478
2479 if (isolated) {
2480 struct lruvec *lruvec;
2481
2482 lruvec = mem_cgroup_page_lruvec(page, zone);
2483 VM_BUG_ON_PAGE(PageLRU(page), page);
2484 SetPageLRU(page);
2485 add_page_to_lru_list(page, lruvec, page_lru(page));
2486 }
2487 spin_unlock_irq(&zone->lru_lock);
2488 }
2489
2490 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2491 bool lrucare)
2492 {
2493 struct page_cgroup *pc = lookup_page_cgroup(page);
2494 int isolated;
2495
2496 VM_BUG_ON_PAGE(pc->mem_cgroup, page);
2497 /*
2498 * we don't need page_cgroup_lock about tail pages, becase they are not
2499 * accessed by any other context at this point.
2500 */
2501
2502 /*
2503 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2504 * may already be on some other mem_cgroup's LRU. Take care of it.
2505 */
2506 if (lrucare)
2507 lock_page_lru(page, &isolated);
2508
2509 /*
2510 * Nobody should be changing or seriously looking at
2511 * pc->mem_cgroup at this point:
2512 *
2513 * - the page is uncharged
2514 *
2515 * - the page is off-LRU
2516 *
2517 * - an anonymous fault has exclusive page access, except for
2518 * a locked page table
2519 *
2520 * - a page cache insertion, a swapin fault, or a migration
2521 * have the page locked
2522 */
2523 pc->mem_cgroup = memcg;
2524
2525 if (lrucare)
2526 unlock_page_lru(page, isolated);
2527 }
2528
2529 #ifdef CONFIG_MEMCG_KMEM
2530 /*
2531 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2532 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2533 */
2534 static DEFINE_MUTEX(memcg_slab_mutex);
2535
2536 /*
2537 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2538 * in the memcg_cache_params struct.
2539 */
2540 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2541 {
2542 struct kmem_cache *cachep;
2543
2544 VM_BUG_ON(p->is_root_cache);
2545 cachep = p->root_cache;
2546 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
2547 }
2548
2549 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2550 unsigned long nr_pages)
2551 {
2552 struct page_counter *counter;
2553 int ret = 0;
2554
2555 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2556 if (ret < 0)
2557 return ret;
2558
2559 ret = try_charge(memcg, gfp, nr_pages);
2560 if (ret == -EINTR) {
2561 /*
2562 * try_charge() chose to bypass to root due to OOM kill or
2563 * fatal signal. Since our only options are to either fail
2564 * the allocation or charge it to this cgroup, do it as a
2565 * temporary condition. But we can't fail. From a kmem/slab
2566 * perspective, the cache has already been selected, by
2567 * mem_cgroup_kmem_get_cache(), so it is too late to change
2568 * our minds.
2569 *
2570 * This condition will only trigger if the task entered
2571 * memcg_charge_kmem in a sane state, but was OOM-killed
2572 * during try_charge() above. Tasks that were already dying
2573 * when the allocation triggers should have been already
2574 * directed to the root cgroup in memcontrol.h
2575 */
2576 page_counter_charge(&memcg->memory, nr_pages);
2577 if (do_swap_account)
2578 page_counter_charge(&memcg->memsw, nr_pages);
2579 css_get_many(&memcg->css, nr_pages);
2580 ret = 0;
2581 } else if (ret)
2582 page_counter_uncharge(&memcg->kmem, nr_pages);
2583
2584 return ret;
2585 }
2586
2587 static void memcg_uncharge_kmem(struct mem_cgroup *memcg,
2588 unsigned long nr_pages)
2589 {
2590 page_counter_uncharge(&memcg->memory, nr_pages);
2591 if (do_swap_account)
2592 page_counter_uncharge(&memcg->memsw, nr_pages);
2593
2594 page_counter_uncharge(&memcg->kmem, nr_pages);
2595
2596 css_put_many(&memcg->css, nr_pages);
2597 }
2598
2599 /*
2600 * helper for acessing a memcg's index. It will be used as an index in the
2601 * child cache array in kmem_cache, and also to derive its name. This function
2602 * will return -1 when this is not a kmem-limited memcg.
2603 */
2604 int memcg_cache_id(struct mem_cgroup *memcg)
2605 {
2606 return memcg ? memcg->kmemcg_id : -1;
2607 }
2608
2609 static int memcg_alloc_cache_id(void)
2610 {
2611 int id, size;
2612 int err;
2613
2614 id = ida_simple_get(&kmem_limited_groups,
2615 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2616 if (id < 0)
2617 return id;
2618
2619 if (id < memcg_limited_groups_array_size)
2620 return id;
2621
2622 /*
2623 * There's no space for the new id in memcg_caches arrays,
2624 * so we have to grow them.
2625 */
2626
2627 size = 2 * (id + 1);
2628 if (size < MEMCG_CACHES_MIN_SIZE)
2629 size = MEMCG_CACHES_MIN_SIZE;
2630 else if (size > MEMCG_CACHES_MAX_SIZE)
2631 size = MEMCG_CACHES_MAX_SIZE;
2632
2633 mutex_lock(&memcg_slab_mutex);
2634 err = memcg_update_all_caches(size);
2635 mutex_unlock(&memcg_slab_mutex);
2636
2637 if (err) {
2638 ida_simple_remove(&kmem_limited_groups, id);
2639 return err;
2640 }
2641 return id;
2642 }
2643
2644 static void memcg_free_cache_id(int id)
2645 {
2646 ida_simple_remove(&kmem_limited_groups, id);
2647 }
2648
2649 /*
2650 * We should update the current array size iff all caches updates succeed. This
2651 * can only be done from the slab side. The slab mutex needs to be held when
2652 * calling this.
2653 */
2654 void memcg_update_array_size(int num)
2655 {
2656 memcg_limited_groups_array_size = num;
2657 }
2658
2659 static void memcg_register_cache(struct mem_cgroup *memcg,
2660 struct kmem_cache *root_cache)
2661 {
2662 static char memcg_name_buf[NAME_MAX + 1]; /* protected by
2663 memcg_slab_mutex */
2664 struct kmem_cache *cachep;
2665 int id;
2666
2667 lockdep_assert_held(&memcg_slab_mutex);
2668
2669 id = memcg_cache_id(memcg);
2670
2671 /*
2672 * Since per-memcg caches are created asynchronously on first
2673 * allocation (see memcg_kmem_get_cache()), several threads can try to
2674 * create the same cache, but only one of them may succeed.
2675 */
2676 if (cache_from_memcg_idx(root_cache, id))
2677 return;
2678
2679 cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
2680 cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2681 /*
2682 * If we could not create a memcg cache, do not complain, because
2683 * that's not critical at all as we can always proceed with the root
2684 * cache.
2685 */
2686 if (!cachep)
2687 return;
2688
2689 css_get(&memcg->css);
2690 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
2691
2692 /*
2693 * Since readers won't lock (see cache_from_memcg_idx()), we need a
2694 * barrier here to ensure nobody will see the kmem_cache partially
2695 * initialized.
2696 */
2697 smp_wmb();
2698
2699 BUG_ON(root_cache->memcg_params->memcg_caches[id]);
2700 root_cache->memcg_params->memcg_caches[id] = cachep;
2701 }
2702
2703 static void memcg_unregister_cache(struct kmem_cache *cachep)
2704 {
2705 struct kmem_cache *root_cache;
2706 struct mem_cgroup *memcg;
2707 int id;
2708
2709 lockdep_assert_held(&memcg_slab_mutex);
2710
2711 BUG_ON(is_root_cache(cachep));
2712
2713 root_cache = cachep->memcg_params->root_cache;
2714 memcg = cachep->memcg_params->memcg;
2715 id = memcg_cache_id(memcg);
2716
2717 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
2718 root_cache->memcg_params->memcg_caches[id] = NULL;
2719
2720 list_del(&cachep->memcg_params->list);
2721
2722 kmem_cache_destroy(cachep);
2723
2724 /* drop the reference taken in memcg_register_cache */
2725 css_put(&memcg->css);
2726 }
2727
2728 /*
2729 * During the creation a new cache, we need to disable our accounting mechanism
2730 * altogether. This is true even if we are not creating, but rather just
2731 * enqueing new caches to be created.
2732 *
2733 * This is because that process will trigger allocations; some visible, like
2734 * explicit kmallocs to auxiliary data structures, name strings and internal
2735 * cache structures; some well concealed, like INIT_WORK() that can allocate
2736 * objects during debug.
2737 *
2738 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
2739 * to it. This may not be a bounded recursion: since the first cache creation
2740 * failed to complete (waiting on the allocation), we'll just try to create the
2741 * cache again, failing at the same point.
2742 *
2743 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
2744 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
2745 * inside the following two functions.
2746 */
2747 static inline void memcg_stop_kmem_account(void)
2748 {
2749 VM_BUG_ON(!current->mm);
2750 current->memcg_kmem_skip_account++;
2751 }
2752
2753 static inline void memcg_resume_kmem_account(void)
2754 {
2755 VM_BUG_ON(!current->mm);
2756 current->memcg_kmem_skip_account--;
2757 }
2758
2759 int __memcg_cleanup_cache_params(struct kmem_cache *s)
2760 {
2761 struct kmem_cache *c;
2762 int i, failed = 0;
2763
2764 mutex_lock(&memcg_slab_mutex);
2765 for_each_memcg_cache_index(i) {
2766 c = cache_from_memcg_idx(s, i);
2767 if (!c)
2768 continue;
2769
2770 memcg_unregister_cache(c);
2771
2772 if (cache_from_memcg_idx(s, i))
2773 failed++;
2774 }
2775 mutex_unlock(&memcg_slab_mutex);
2776 return failed;
2777 }
2778
2779 static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
2780 {
2781 struct kmem_cache *cachep;
2782 struct memcg_cache_params *params, *tmp;
2783
2784 if (!memcg_kmem_is_active(memcg))
2785 return;
2786
2787 mutex_lock(&memcg_slab_mutex);
2788 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
2789 cachep = memcg_params_to_cache(params);
2790 kmem_cache_shrink(cachep);
2791 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
2792 memcg_unregister_cache(cachep);
2793 }
2794 mutex_unlock(&memcg_slab_mutex);
2795 }
2796
2797 struct memcg_register_cache_work {
2798 struct mem_cgroup *memcg;
2799 struct kmem_cache *cachep;
2800 struct work_struct work;
2801 };
2802
2803 static void memcg_register_cache_func(struct work_struct *w)
2804 {
2805 struct memcg_register_cache_work *cw =
2806 container_of(w, struct memcg_register_cache_work, work);
2807 struct mem_cgroup *memcg = cw->memcg;
2808 struct kmem_cache *cachep = cw->cachep;
2809
2810 mutex_lock(&memcg_slab_mutex);
2811 memcg_register_cache(memcg, cachep);
2812 mutex_unlock(&memcg_slab_mutex);
2813
2814 css_put(&memcg->css);
2815 kfree(cw);
2816 }
2817
2818 /*
2819 * Enqueue the creation of a per-memcg kmem_cache.
2820 */
2821 static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
2822 struct kmem_cache *cachep)
2823 {
2824 struct memcg_register_cache_work *cw;
2825
2826 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2827 if (cw == NULL) {
2828 css_put(&memcg->css);
2829 return;
2830 }
2831
2832 cw->memcg = memcg;
2833 cw->cachep = cachep;
2834
2835 INIT_WORK(&cw->work, memcg_register_cache_func);
2836 schedule_work(&cw->work);
2837 }
2838
2839 static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
2840 struct kmem_cache *cachep)
2841 {
2842 /*
2843 * We need to stop accounting when we kmalloc, because if the
2844 * corresponding kmalloc cache is not yet created, the first allocation
2845 * in __memcg_schedule_register_cache will recurse.
2846 *
2847 * However, it is better to enclose the whole function. Depending on
2848 * the debugging options enabled, INIT_WORK(), for instance, can
2849 * trigger an allocation. This too, will make us recurse. Because at
2850 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2851 * the safest choice is to do it like this, wrapping the whole function.
2852 */
2853 memcg_stop_kmem_account();
2854 __memcg_schedule_register_cache(memcg, cachep);
2855 memcg_resume_kmem_account();
2856 }
2857
2858 int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
2859 {
2860 unsigned int nr_pages = 1 << order;
2861 int res;
2862
2863 res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp, nr_pages);
2864 if (!res)
2865 atomic_add(nr_pages, &cachep->memcg_params->nr_pages);
2866 return res;
2867 }
2868
2869 void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
2870 {
2871 unsigned int nr_pages = 1 << order;
2872
2873 memcg_uncharge_kmem(cachep->memcg_params->memcg, nr_pages);
2874 atomic_sub(nr_pages, &cachep->memcg_params->nr_pages);
2875 }
2876
2877 /*
2878 * Return the kmem_cache we're supposed to use for a slab allocation.
2879 * We try to use the current memcg's version of the cache.
2880 *
2881 * If the cache does not exist yet, if we are the first user of it,
2882 * we either create it immediately, if possible, or create it asynchronously
2883 * in a workqueue.
2884 * In the latter case, we will let the current allocation go through with
2885 * the original cache.
2886 *
2887 * Can't be called in interrupt context or from kernel threads.
2888 * This function needs to be called with rcu_read_lock() held.
2889 */
2890 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
2891 gfp_t gfp)
2892 {
2893 struct mem_cgroup *memcg;
2894 struct kmem_cache *memcg_cachep;
2895
2896 VM_BUG_ON(!cachep->memcg_params);
2897 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
2898
2899 if (!current->mm || current->memcg_kmem_skip_account)
2900 return cachep;
2901
2902 rcu_read_lock();
2903 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
2904
2905 if (!memcg_kmem_is_active(memcg))
2906 goto out;
2907
2908 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
2909 if (likely(memcg_cachep)) {
2910 cachep = memcg_cachep;
2911 goto out;
2912 }
2913
2914 /* The corresponding put will be done in the workqueue. */
2915 if (!css_tryget_online(&memcg->css))
2916 goto out;
2917 rcu_read_unlock();
2918
2919 /*
2920 * If we are in a safe context (can wait, and not in interrupt
2921 * context), we could be be predictable and return right away.
2922 * This would guarantee that the allocation being performed
2923 * already belongs in the new cache.
2924 *
2925 * However, there are some clashes that can arrive from locking.
2926 * For instance, because we acquire the slab_mutex while doing
2927 * memcg_create_kmem_cache, this means no further allocation
2928 * could happen with the slab_mutex held. So it's better to
2929 * defer everything.
2930 */
2931 memcg_schedule_register_cache(memcg, cachep);
2932 return cachep;
2933 out:
2934 rcu_read_unlock();
2935 return cachep;
2936 }
2937
2938 /*
2939 * We need to verify if the allocation against current->mm->owner's memcg is
2940 * possible for the given order. But the page is not allocated yet, so we'll
2941 * need a further commit step to do the final arrangements.
2942 *
2943 * It is possible for the task to switch cgroups in this mean time, so at
2944 * commit time, we can't rely on task conversion any longer. We'll then use
2945 * the handle argument to return to the caller which cgroup we should commit
2946 * against. We could also return the memcg directly and avoid the pointer
2947 * passing, but a boolean return value gives better semantics considering
2948 * the compiled-out case as well.
2949 *
2950 * Returning true means the allocation is possible.
2951 */
2952 bool
2953 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2954 {
2955 struct mem_cgroup *memcg;
2956 int ret;
2957
2958 *_memcg = NULL;
2959
2960 /*
2961 * Disabling accounting is only relevant for some specific memcg
2962 * internal allocations. Therefore we would initially not have such
2963 * check here, since direct calls to the page allocator that are
2964 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
2965 * outside memcg core. We are mostly concerned with cache allocations,
2966 * and by having this test at memcg_kmem_get_cache, we are already able
2967 * to relay the allocation to the root cache and bypass the memcg cache
2968 * altogether.
2969 *
2970 * There is one exception, though: the SLUB allocator does not create
2971 * large order caches, but rather service large kmallocs directly from
2972 * the page allocator. Therefore, the following sequence when backed by
2973 * the SLUB allocator:
2974 *
2975 * memcg_stop_kmem_account();
2976 * kmalloc(<large_number>)
2977 * memcg_resume_kmem_account();
2978 *
2979 * would effectively ignore the fact that we should skip accounting,
2980 * since it will drive us directly to this function without passing
2981 * through the cache selector memcg_kmem_get_cache. Such large
2982 * allocations are extremely rare but can happen, for instance, for the
2983 * cache arrays. We bring this test here.
2984 */
2985 if (!current->mm || current->memcg_kmem_skip_account)
2986 return true;
2987
2988 memcg = get_mem_cgroup_from_mm(current->mm);
2989
2990 if (!memcg_kmem_is_active(memcg)) {
2991 css_put(&memcg->css);
2992 return true;
2993 }
2994
2995 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2996 if (!ret)
2997 *_memcg = memcg;
2998
2999 css_put(&memcg->css);
3000 return (ret == 0);
3001 }
3002
3003 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3004 int order)
3005 {
3006 struct page_cgroup *pc;
3007
3008 VM_BUG_ON(mem_cgroup_is_root(memcg));
3009
3010 /* The page allocation failed. Revert */
3011 if (!page) {
3012 memcg_uncharge_kmem(memcg, 1 << order);
3013 return;
3014 }
3015 pc = lookup_page_cgroup(page);
3016 pc->mem_cgroup = memcg;
3017 }
3018
3019 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3020 {
3021 struct page_cgroup *pc = lookup_page_cgroup(page);
3022 struct mem_cgroup *memcg = pc->mem_cgroup;
3023
3024 if (!memcg)
3025 return;
3026
3027 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3028
3029 memcg_uncharge_kmem(memcg, 1 << order);
3030 pc->mem_cgroup = NULL;
3031 }
3032 #else
3033 static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
3034 {
3035 }
3036 #endif /* CONFIG_MEMCG_KMEM */
3037
3038 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3039
3040 /*
3041 * Because tail pages are not marked as "used", set it. We're under
3042 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3043 * charge/uncharge will be never happen and move_account() is done under
3044 * compound_lock(), so we don't have to take care of races.
3045 */
3046 void mem_cgroup_split_huge_fixup(struct page *head)
3047 {
3048 struct page_cgroup *pc = lookup_page_cgroup(head);
3049 int i;
3050
3051 if (mem_cgroup_disabled())
3052 return;
3053
3054 for (i = 1; i < HPAGE_PMD_NR; i++)
3055 pc[i].mem_cgroup = pc[0].mem_cgroup;
3056
3057 __this_cpu_sub(pc[0].mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3058 HPAGE_PMD_NR);
3059 }
3060 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3061
3062 /**
3063 * mem_cgroup_move_account - move account of the page
3064 * @page: the page
3065 * @nr_pages: number of regular pages (>1 for huge pages)
3066 * @pc: page_cgroup of the page.
3067 * @from: mem_cgroup which the page is moved from.
3068 * @to: mem_cgroup which the page is moved to. @from != @to.
3069 *
3070 * The caller must confirm following.
3071 * - page is not on LRU (isolate_page() is useful.)
3072 * - compound_lock is held when nr_pages > 1
3073 *
3074 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3075 * from old cgroup.
3076 */
3077 static int mem_cgroup_move_account(struct page *page,
3078 unsigned int nr_pages,
3079 struct page_cgroup *pc,
3080 struct mem_cgroup *from,
3081 struct mem_cgroup *to)
3082 {
3083 unsigned long flags;
3084 int ret;
3085
3086 VM_BUG_ON(from == to);
3087 VM_BUG_ON_PAGE(PageLRU(page), page);
3088 /*
3089 * The page is isolated from LRU. So, collapse function
3090 * will not handle this page. But page splitting can happen.
3091 * Do this check under compound_page_lock(). The caller should
3092 * hold it.
3093 */
3094 ret = -EBUSY;
3095 if (nr_pages > 1 && !PageTransHuge(page))
3096 goto out;
3097
3098 /*
3099 * Prevent mem_cgroup_migrate() from looking at pc->mem_cgroup
3100 * of its source page while we change it: page migration takes
3101 * both pages off the LRU, but page cache replacement doesn't.
3102 */
3103 if (!trylock_page(page))
3104 goto out;
3105
3106 ret = -EINVAL;
3107 if (pc->mem_cgroup != from)
3108 goto out_unlock;
3109
3110 spin_lock_irqsave(&from->move_lock, flags);
3111
3112 if (!PageAnon(page) && page_mapped(page)) {
3113 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3114 nr_pages);
3115 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3116 nr_pages);
3117 }
3118
3119 if (PageWriteback(page)) {
3120 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3121 nr_pages);
3122 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3123 nr_pages);
3124 }
3125
3126 /*
3127 * It is safe to change pc->mem_cgroup here because the page
3128 * is referenced, charged, and isolated - we can't race with
3129 * uncharging, charging, migration, or LRU putback.
3130 */
3131
3132 /* caller should have done css_get */
3133 pc->mem_cgroup = to;
3134 spin_unlock_irqrestore(&from->move_lock, flags);
3135
3136 ret = 0;
3137
3138 local_irq_disable();
3139 mem_cgroup_charge_statistics(to, page, nr_pages);
3140 memcg_check_events(to, page);
3141 mem_cgroup_charge_statistics(from, page, -nr_pages);
3142 memcg_check_events(from, page);
3143 local_irq_enable();
3144 out_unlock:
3145 unlock_page(page);
3146 out:
3147 return ret;
3148 }
3149
3150 #ifdef CONFIG_MEMCG_SWAP
3151 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
3152 bool charge)
3153 {
3154 int val = (charge) ? 1 : -1;
3155 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
3156 }
3157
3158 /**
3159 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3160 * @entry: swap entry to be moved
3161 * @from: mem_cgroup which the entry is moved from
3162 * @to: mem_cgroup which the entry is moved to
3163 *
3164 * It succeeds only when the swap_cgroup's record for this entry is the same
3165 * as the mem_cgroup's id of @from.
3166 *
3167 * Returns 0 on success, -EINVAL on failure.
3168 *
3169 * The caller must have charged to @to, IOW, called page_counter_charge() about
3170 * both res and memsw, and called css_get().
3171 */
3172 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3173 struct mem_cgroup *from, struct mem_cgroup *to)
3174 {
3175 unsigned short old_id, new_id;
3176
3177 old_id = mem_cgroup_id(from);
3178 new_id = mem_cgroup_id(to);
3179
3180 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3181 mem_cgroup_swap_statistics(from, false);
3182 mem_cgroup_swap_statistics(to, true);
3183 /*
3184 * This function is only called from task migration context now.
3185 * It postpones page_counter and refcount handling till the end
3186 * of task migration(mem_cgroup_clear_mc()) for performance
3187 * improvement. But we cannot postpone css_get(to) because if
3188 * the process that has been moved to @to does swap-in, the
3189 * refcount of @to might be decreased to 0.
3190 *
3191 * We are in attach() phase, so the cgroup is guaranteed to be
3192 * alive, so we can just call css_get().
3193 */
3194 css_get(&to->css);
3195 return 0;
3196 }
3197 return -EINVAL;
3198 }
3199 #else
3200 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3201 struct mem_cgroup *from, struct mem_cgroup *to)
3202 {
3203 return -EINVAL;
3204 }
3205 #endif
3206
3207 #ifdef CONFIG_DEBUG_VM
3208 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3209 {
3210 struct page_cgroup *pc;
3211
3212 pc = lookup_page_cgroup(page);
3213 /*
3214 * Can be NULL while feeding pages into the page allocator for
3215 * the first time, i.e. during boot or memory hotplug;
3216 * or when mem_cgroup_disabled().
3217 */
3218 if (likely(pc) && pc->mem_cgroup)
3219 return pc;
3220 return NULL;
3221 }
3222
3223 bool mem_cgroup_bad_page_check(struct page *page)
3224 {
3225 if (mem_cgroup_disabled())
3226 return false;
3227
3228 return lookup_page_cgroup_used(page) != NULL;
3229 }
3230
3231 void mem_cgroup_print_bad_page(struct page *page)
3232 {
3233 struct page_cgroup *pc;
3234
3235 pc = lookup_page_cgroup_used(page);
3236 if (pc)
3237 pr_alert("pc:%p pc->mem_cgroup:%p\n", pc, pc->mem_cgroup);
3238 }
3239 #endif
3240
3241 static DEFINE_MUTEX(memcg_limit_mutex);
3242
3243 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3244 unsigned long limit)
3245 {
3246 unsigned long curusage;
3247 unsigned long oldusage;
3248 bool enlarge = false;
3249 int retry_count;
3250 int ret;
3251
3252 /*
3253 * For keeping hierarchical_reclaim simple, how long we should retry
3254 * is depends on callers. We set our retry-count to be function
3255 * of # of children which we should visit in this loop.
3256 */
3257 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3258 mem_cgroup_count_children(memcg);
3259
3260 oldusage = page_counter_read(&memcg->memory);
3261
3262 do {
3263 if (signal_pending(current)) {
3264 ret = -EINTR;
3265 break;
3266 }
3267
3268 mutex_lock(&memcg_limit_mutex);
3269 if (limit > memcg->memsw.limit) {
3270 mutex_unlock(&memcg_limit_mutex);
3271 ret = -EINVAL;
3272 break;
3273 }
3274 if (limit > memcg->memory.limit)
3275 enlarge = true;
3276 ret = page_counter_limit(&memcg->memory, limit);
3277 mutex_unlock(&memcg_limit_mutex);
3278
3279 if (!ret)
3280 break;
3281
3282 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
3283
3284 curusage = page_counter_read(&memcg->memory);
3285 /* Usage is reduced ? */
3286 if (curusage >= oldusage)
3287 retry_count--;
3288 else
3289 oldusage = curusage;
3290 } while (retry_count);
3291
3292 if (!ret && enlarge)
3293 memcg_oom_recover(memcg);
3294
3295 return ret;
3296 }
3297
3298 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3299 unsigned long limit)
3300 {
3301 unsigned long curusage;
3302 unsigned long oldusage;
3303 bool enlarge = false;
3304 int retry_count;
3305 int ret;
3306
3307 /* see mem_cgroup_resize_res_limit */
3308 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3309 mem_cgroup_count_children(memcg);
3310
3311 oldusage = page_counter_read(&memcg->memsw);
3312
3313 do {
3314 if (signal_pending(current)) {
3315 ret = -EINTR;
3316 break;
3317 }
3318
3319 mutex_lock(&memcg_limit_mutex);
3320 if (limit < memcg->memory.limit) {
3321 mutex_unlock(&memcg_limit_mutex);
3322 ret = -EINVAL;
3323 break;
3324 }
3325 if (limit > memcg->memsw.limit)
3326 enlarge = true;
3327 ret = page_counter_limit(&memcg->memsw, limit);
3328 mutex_unlock(&memcg_limit_mutex);
3329
3330 if (!ret)
3331 break;
3332
3333 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
3334
3335 curusage = page_counter_read(&memcg->memsw);
3336 /* Usage is reduced ? */
3337 if (curusage >= oldusage)
3338 retry_count--;
3339 else
3340 oldusage = curusage;
3341 } while (retry_count);
3342
3343 if (!ret && enlarge)
3344 memcg_oom_recover(memcg);
3345
3346 return ret;
3347 }
3348
3349 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3350 gfp_t gfp_mask,
3351 unsigned long *total_scanned)
3352 {
3353 unsigned long nr_reclaimed = 0;
3354 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3355 unsigned long reclaimed;
3356 int loop = 0;
3357 struct mem_cgroup_tree_per_zone *mctz;
3358 unsigned long excess;
3359 unsigned long nr_scanned;
3360
3361 if (order > 0)
3362 return 0;
3363
3364 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3365 /*
3366 * This loop can run a while, specially if mem_cgroup's continuously
3367 * keep exceeding their soft limit and putting the system under
3368 * pressure
3369 */
3370 do {
3371 if (next_mz)
3372 mz = next_mz;
3373 else
3374 mz = mem_cgroup_largest_soft_limit_node(mctz);
3375 if (!mz)
3376 break;
3377
3378 nr_scanned = 0;
3379 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3380 gfp_mask, &nr_scanned);
3381 nr_reclaimed += reclaimed;
3382 *total_scanned += nr_scanned;
3383 spin_lock_irq(&mctz->lock);
3384 __mem_cgroup_remove_exceeded(mz, mctz);
3385
3386 /*
3387 * If we failed to reclaim anything from this memory cgroup
3388 * it is time to move on to the next cgroup
3389 */
3390 next_mz = NULL;
3391 if (!reclaimed)
3392 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3393
3394 excess = soft_limit_excess(mz->memcg);
3395 /*
3396 * One school of thought says that we should not add
3397 * back the node to the tree if reclaim returns 0.
3398 * But our reclaim could return 0, simply because due
3399 * to priority we are exposing a smaller subset of
3400 * memory to reclaim from. Consider this as a longer
3401 * term TODO.
3402 */
3403 /* If excess == 0, no tree ops */
3404 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3405 spin_unlock_irq(&mctz->lock);
3406 css_put(&mz->memcg->css);
3407 loop++;
3408 /*
3409 * Could not reclaim anything and there are no more
3410 * mem cgroups to try or we seem to be looping without
3411 * reclaiming anything.
3412 */
3413 if (!nr_reclaimed &&
3414 (next_mz == NULL ||
3415 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3416 break;
3417 } while (!nr_reclaimed);
3418 if (next_mz)
3419 css_put(&next_mz->memcg->css);
3420 return nr_reclaimed;
3421 }
3422
3423 /*
3424 * Test whether @memcg has children, dead or alive. Note that this
3425 * function doesn't care whether @memcg has use_hierarchy enabled and
3426 * returns %true if there are child csses according to the cgroup
3427 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3428 */
3429 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3430 {
3431 bool ret;
3432
3433 /*
3434 * The lock does not prevent addition or deletion of children, but
3435 * it prevents a new child from being initialized based on this
3436 * parent in css_online(), so it's enough to decide whether
3437 * hierarchically inherited attributes can still be changed or not.
3438 */
3439 lockdep_assert_held(&memcg_create_mutex);
3440
3441 rcu_read_lock();
3442 ret = css_next_child(NULL, &memcg->css);
3443 rcu_read_unlock();
3444 return ret;
3445 }
3446
3447 /*
3448 * Reclaims as many pages from the given memcg as possible and moves
3449 * the rest to the parent.
3450 *
3451 * Caller is responsible for holding css reference for memcg.
3452 */
3453 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3454 {
3455 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3456
3457 /* we call try-to-free pages for make this cgroup empty */
3458 lru_add_drain_all();
3459 /* try to free all pages in this cgroup */
3460 while (nr_retries && page_counter_read(&memcg->memory)) {
3461 int progress;
3462
3463 if (signal_pending(current))
3464 return -EINTR;
3465
3466 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3467 GFP_KERNEL, true);
3468 if (!progress) {
3469 nr_retries--;
3470 /* maybe some writeback is necessary */
3471 congestion_wait(BLK_RW_ASYNC, HZ/10);
3472 }
3473
3474 }
3475
3476 return 0;
3477 }
3478
3479 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3480 char *buf, size_t nbytes,
3481 loff_t off)
3482 {
3483 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3484
3485 if (mem_cgroup_is_root(memcg))
3486 return -EINVAL;
3487 return mem_cgroup_force_empty(memcg) ?: nbytes;
3488 }
3489
3490 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3491 struct cftype *cft)
3492 {
3493 return mem_cgroup_from_css(css)->use_hierarchy;
3494 }
3495
3496 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3497 struct cftype *cft, u64 val)
3498 {
3499 int retval = 0;
3500 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3501 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3502
3503 mutex_lock(&memcg_create_mutex);
3504
3505 if (memcg->use_hierarchy == val)
3506 goto out;
3507
3508 /*
3509 * If parent's use_hierarchy is set, we can't make any modifications
3510 * in the child subtrees. If it is unset, then the change can
3511 * occur, provided the current cgroup has no children.
3512 *
3513 * For the root cgroup, parent_mem is NULL, we allow value to be
3514 * set if there are no children.
3515 */
3516 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3517 (val == 1 || val == 0)) {
3518 if (!memcg_has_children(memcg))
3519 memcg->use_hierarchy = val;
3520 else
3521 retval = -EBUSY;
3522 } else
3523 retval = -EINVAL;
3524
3525 out:
3526 mutex_unlock(&memcg_create_mutex);
3527
3528 return retval;
3529 }
3530
3531 static unsigned long tree_stat(struct mem_cgroup *memcg,
3532 enum mem_cgroup_stat_index idx)
3533 {
3534 struct mem_cgroup *iter;
3535 long val = 0;
3536
3537 /* Per-cpu values can be negative, use a signed accumulator */
3538 for_each_mem_cgroup_tree(iter, memcg)
3539 val += mem_cgroup_read_stat(iter, idx);
3540
3541 if (val < 0) /* race ? */
3542 val = 0;
3543 return val;
3544 }
3545
3546 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3547 {
3548 u64 val;
3549
3550 if (mem_cgroup_is_root(memcg)) {
3551 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3552 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3553 if (swap)
3554 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3555 } else {
3556 if (!swap)
3557 val = page_counter_read(&memcg->memory);
3558 else
3559 val = page_counter_read(&memcg->memsw);
3560 }
3561 return val << PAGE_SHIFT;
3562 }
3563
3564 enum {
3565 RES_USAGE,
3566 RES_LIMIT,
3567 RES_MAX_USAGE,
3568 RES_FAILCNT,
3569 RES_SOFT_LIMIT,
3570 };
3571
3572 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3573 struct cftype *cft)
3574 {
3575 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3576 struct page_counter *counter;
3577
3578 switch (MEMFILE_TYPE(cft->private)) {
3579 case _MEM:
3580 counter = &memcg->memory;
3581 break;
3582 case _MEMSWAP:
3583 counter = &memcg->memsw;
3584 break;
3585 case _KMEM:
3586 counter = &memcg->kmem;
3587 break;
3588 default:
3589 BUG();
3590 }
3591
3592 switch (MEMFILE_ATTR(cft->private)) {
3593 case RES_USAGE:
3594 if (counter == &memcg->memory)
3595 return mem_cgroup_usage(memcg, false);
3596 if (counter == &memcg->memsw)
3597 return mem_cgroup_usage(memcg, true);
3598 return (u64)page_counter_read(counter) * PAGE_SIZE;
3599 case RES_LIMIT:
3600 return (u64)counter->limit * PAGE_SIZE;
3601 case RES_MAX_USAGE:
3602 return (u64)counter->watermark * PAGE_SIZE;
3603 case RES_FAILCNT:
3604 return counter->failcnt;
3605 case RES_SOFT_LIMIT:
3606 return (u64)memcg->soft_limit * PAGE_SIZE;
3607 default:
3608 BUG();
3609 }
3610 }
3611
3612 #ifdef CONFIG_MEMCG_KMEM
3613 static int memcg_activate_kmem(struct mem_cgroup *memcg,
3614 unsigned long nr_pages)
3615 {
3616 int err = 0;
3617 int memcg_id;
3618
3619 if (memcg_kmem_is_active(memcg))
3620 return 0;
3621
3622 /*
3623 * We are going to allocate memory for data shared by all memory
3624 * cgroups so let's stop accounting here.
3625 */
3626 memcg_stop_kmem_account();
3627
3628 /*
3629 * For simplicity, we won't allow this to be disabled. It also can't
3630 * be changed if the cgroup has children already, or if tasks had
3631 * already joined.
3632 *
3633 * If tasks join before we set the limit, a person looking at
3634 * kmem.usage_in_bytes will have no way to determine when it took
3635 * place, which makes the value quite meaningless.
3636 *
3637 * After it first became limited, changes in the value of the limit are
3638 * of course permitted.
3639 */
3640 mutex_lock(&memcg_create_mutex);
3641 if (cgroup_has_tasks(memcg->css.cgroup) ||
3642 (memcg->use_hierarchy && memcg_has_children(memcg)))
3643 err = -EBUSY;
3644 mutex_unlock(&memcg_create_mutex);
3645 if (err)
3646 goto out;
3647
3648 memcg_id = memcg_alloc_cache_id();
3649 if (memcg_id < 0) {
3650 err = memcg_id;
3651 goto out;
3652 }
3653
3654 memcg->kmemcg_id = memcg_id;
3655 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3656
3657 /*
3658 * We couldn't have accounted to this cgroup, because it hasn't got the
3659 * active bit set yet, so this should succeed.
3660 */
3661 err = page_counter_limit(&memcg->kmem, nr_pages);
3662 VM_BUG_ON(err);
3663
3664 static_key_slow_inc(&memcg_kmem_enabled_key);
3665 /*
3666 * Setting the active bit after enabling static branching will
3667 * guarantee no one starts accounting before all call sites are
3668 * patched.
3669 */
3670 memcg_kmem_set_active(memcg);
3671 out:
3672 memcg_resume_kmem_account();
3673 return err;
3674 }
3675
3676 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3677 unsigned long limit)
3678 {
3679 int ret;
3680
3681 mutex_lock(&memcg_limit_mutex);
3682 if (!memcg_kmem_is_active(memcg))
3683 ret = memcg_activate_kmem(memcg, limit);
3684 else
3685 ret = page_counter_limit(&memcg->kmem, limit);
3686 mutex_unlock(&memcg_limit_mutex);
3687 return ret;
3688 }
3689
3690 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3691 {
3692 int ret = 0;
3693 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3694
3695 if (!parent)
3696 return 0;
3697
3698 mutex_lock(&memcg_limit_mutex);
3699 /*
3700 * If the parent cgroup is not kmem-active now, it cannot be activated
3701 * after this point, because it has at least one child already.
3702 */
3703 if (memcg_kmem_is_active(parent))
3704 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3705 mutex_unlock(&memcg_limit_mutex);
3706 return ret;
3707 }
3708 #else
3709 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3710 unsigned long limit)
3711 {
3712 return -EINVAL;
3713 }
3714 #endif /* CONFIG_MEMCG_KMEM */
3715
3716 /*
3717 * The user of this function is...
3718 * RES_LIMIT.
3719 */
3720 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3721 char *buf, size_t nbytes, loff_t off)
3722 {
3723 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3724 unsigned long nr_pages;
3725 int ret;
3726
3727 buf = strstrip(buf);
3728 ret = page_counter_memparse(buf, &nr_pages);
3729 if (ret)
3730 return ret;
3731
3732 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3733 case RES_LIMIT:
3734 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3735 ret = -EINVAL;
3736 break;
3737 }
3738 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3739 case _MEM:
3740 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3741 break;
3742 case _MEMSWAP:
3743 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3744 break;
3745 case _KMEM:
3746 ret = memcg_update_kmem_limit(memcg, nr_pages);
3747 break;
3748 }
3749 break;
3750 case RES_SOFT_LIMIT:
3751 memcg->soft_limit = nr_pages;
3752 ret = 0;
3753 break;
3754 }
3755 return ret ?: nbytes;
3756 }
3757
3758 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3759 size_t nbytes, loff_t off)
3760 {
3761 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3762 struct page_counter *counter;
3763
3764 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3765 case _MEM:
3766 counter = &memcg->memory;
3767 break;
3768 case _MEMSWAP:
3769 counter = &memcg->memsw;
3770 break;
3771 case _KMEM:
3772 counter = &memcg->kmem;
3773 break;
3774 default:
3775 BUG();
3776 }
3777
3778 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3779 case RES_MAX_USAGE:
3780 page_counter_reset_watermark(counter);
3781 break;
3782 case RES_FAILCNT:
3783 counter->failcnt = 0;
3784 break;
3785 default:
3786 BUG();
3787 }
3788
3789 return nbytes;
3790 }
3791
3792 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3793 struct cftype *cft)
3794 {
3795 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3796 }
3797
3798 #ifdef CONFIG_MMU
3799 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3800 struct cftype *cft, u64 val)
3801 {
3802 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3803
3804 if (val >= (1 << NR_MOVE_TYPE))
3805 return -EINVAL;
3806
3807 /*
3808 * No kind of locking is needed in here, because ->can_attach() will
3809 * check this value once in the beginning of the process, and then carry
3810 * on with stale data. This means that changes to this value will only
3811 * affect task migrations starting after the change.
3812 */
3813 memcg->move_charge_at_immigrate = val;
3814 return 0;
3815 }
3816 #else
3817 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3818 struct cftype *cft, u64 val)
3819 {
3820 return -ENOSYS;
3821 }
3822 #endif
3823
3824 #ifdef CONFIG_NUMA
3825 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3826 {
3827 struct numa_stat {
3828 const char *name;
3829 unsigned int lru_mask;
3830 };
3831
3832 static const struct numa_stat stats[] = {
3833 { "total", LRU_ALL },
3834 { "file", LRU_ALL_FILE },
3835 { "anon", LRU_ALL_ANON },
3836 { "unevictable", BIT(LRU_UNEVICTABLE) },
3837 };
3838 const struct numa_stat *stat;
3839 int nid;
3840 unsigned long nr;
3841 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3842
3843 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3844 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3845 seq_printf(m, "%s=%lu", stat->name, nr);
3846 for_each_node_state(nid, N_MEMORY) {
3847 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3848 stat->lru_mask);
3849 seq_printf(m, " N%d=%lu", nid, nr);
3850 }
3851 seq_putc(m, '\n');
3852 }
3853
3854 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3855 struct mem_cgroup *iter;
3856
3857 nr = 0;
3858 for_each_mem_cgroup_tree(iter, memcg)
3859 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3860 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3861 for_each_node_state(nid, N_MEMORY) {
3862 nr = 0;
3863 for_each_mem_cgroup_tree(iter, memcg)
3864 nr += mem_cgroup_node_nr_lru_pages(
3865 iter, nid, stat->lru_mask);
3866 seq_printf(m, " N%d=%lu", nid, nr);
3867 }
3868 seq_putc(m, '\n');
3869 }
3870
3871 return 0;
3872 }
3873 #endif /* CONFIG_NUMA */
3874
3875 static inline void mem_cgroup_lru_names_not_uptodate(void)
3876 {
3877 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3878 }
3879
3880 static int memcg_stat_show(struct seq_file *m, void *v)
3881 {
3882 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3883 unsigned long memory, memsw;
3884 struct mem_cgroup *mi;
3885 unsigned int i;
3886
3887 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3888 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3889 continue;
3890 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3891 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3892 }
3893
3894 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3895 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3896 mem_cgroup_read_events(memcg, i));
3897
3898 for (i = 0; i < NR_LRU_LISTS; i++)
3899 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3900 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3901
3902 /* Hierarchical information */
3903 memory = memsw = PAGE_COUNTER_MAX;
3904 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3905 memory = min(memory, mi->memory.limit);
3906 memsw = min(memsw, mi->memsw.limit);
3907 }
3908 seq_printf(m, "hierarchical_memory_limit %llu\n",
3909 (u64)memory * PAGE_SIZE);
3910 if (do_swap_account)
3911 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3912 (u64)memsw * PAGE_SIZE);
3913
3914 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3915 long long val = 0;
3916
3917 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3918 continue;
3919 for_each_mem_cgroup_tree(mi, memcg)
3920 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3921 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3922 }
3923
3924 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3925 unsigned long long val = 0;
3926
3927 for_each_mem_cgroup_tree(mi, memcg)
3928 val += mem_cgroup_read_events(mi, i);
3929 seq_printf(m, "total_%s %llu\n",
3930 mem_cgroup_events_names[i], val);
3931 }
3932
3933 for (i = 0; i < NR_LRU_LISTS; i++) {
3934 unsigned long long val = 0;
3935
3936 for_each_mem_cgroup_tree(mi, memcg)
3937 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3938 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3939 }
3940
3941 #ifdef CONFIG_DEBUG_VM
3942 {
3943 int nid, zid;
3944 struct mem_cgroup_per_zone *mz;
3945 struct zone_reclaim_stat *rstat;
3946 unsigned long recent_rotated[2] = {0, 0};
3947 unsigned long recent_scanned[2] = {0, 0};
3948
3949 for_each_online_node(nid)
3950 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3951 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3952 rstat = &mz->lruvec.reclaim_stat;
3953
3954 recent_rotated[0] += rstat->recent_rotated[0];
3955 recent_rotated[1] += rstat->recent_rotated[1];
3956 recent_scanned[0] += rstat->recent_scanned[0];
3957 recent_scanned[1] += rstat->recent_scanned[1];
3958 }
3959 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3960 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3961 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3962 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3963 }
3964 #endif
3965
3966 return 0;
3967 }
3968
3969 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3970 struct cftype *cft)
3971 {
3972 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3973
3974 return mem_cgroup_swappiness(memcg);
3975 }
3976
3977 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3978 struct cftype *cft, u64 val)
3979 {
3980 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3981
3982 if (val > 100)
3983 return -EINVAL;
3984
3985 if (css->parent)
3986 memcg->swappiness = val;
3987 else
3988 vm_swappiness = val;
3989
3990 return 0;
3991 }
3992
3993 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3994 {
3995 struct mem_cgroup_threshold_ary *t;
3996 unsigned long usage;
3997 int i;
3998
3999 rcu_read_lock();
4000 if (!swap)
4001 t = rcu_dereference(memcg->thresholds.primary);
4002 else
4003 t = rcu_dereference(memcg->memsw_thresholds.primary);
4004
4005 if (!t)
4006 goto unlock;
4007
4008 usage = mem_cgroup_usage(memcg, swap);
4009
4010 /*
4011 * current_threshold points to threshold just below or equal to usage.
4012 * If it's not true, a threshold was crossed after last
4013 * call of __mem_cgroup_threshold().
4014 */
4015 i = t->current_threshold;
4016
4017 /*
4018 * Iterate backward over array of thresholds starting from
4019 * current_threshold and check if a threshold is crossed.
4020 * If none of thresholds below usage is crossed, we read
4021 * only one element of the array here.
4022 */
4023 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4024 eventfd_signal(t->entries[i].eventfd, 1);
4025
4026 /* i = current_threshold + 1 */
4027 i++;
4028
4029 /*
4030 * Iterate forward over array of thresholds starting from
4031 * current_threshold+1 and check if a threshold is crossed.
4032 * If none of thresholds above usage is crossed, we read
4033 * only one element of the array here.
4034 */
4035 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4036 eventfd_signal(t->entries[i].eventfd, 1);
4037
4038 /* Update current_threshold */
4039 t->current_threshold = i - 1;
4040 unlock:
4041 rcu_read_unlock();
4042 }
4043
4044 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4045 {
4046 while (memcg) {
4047 __mem_cgroup_threshold(memcg, false);
4048 if (do_swap_account)
4049 __mem_cgroup_threshold(memcg, true);
4050
4051 memcg = parent_mem_cgroup(memcg);
4052 }
4053 }
4054
4055 static int compare_thresholds(const void *a, const void *b)
4056 {
4057 const struct mem_cgroup_threshold *_a = a;
4058 const struct mem_cgroup_threshold *_b = b;
4059
4060 if (_a->threshold > _b->threshold)
4061 return 1;
4062
4063 if (_a->threshold < _b->threshold)
4064 return -1;
4065
4066 return 0;
4067 }
4068
4069 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4070 {
4071 struct mem_cgroup_eventfd_list *ev;
4072
4073 spin_lock(&memcg_oom_lock);
4074
4075 list_for_each_entry(ev, &memcg->oom_notify, list)
4076 eventfd_signal(ev->eventfd, 1);
4077
4078 spin_unlock(&memcg_oom_lock);
4079 return 0;
4080 }
4081
4082 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4083 {
4084 struct mem_cgroup *iter;
4085
4086 for_each_mem_cgroup_tree(iter, memcg)
4087 mem_cgroup_oom_notify_cb(iter);
4088 }
4089
4090 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4091 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4092 {
4093 struct mem_cgroup_thresholds *thresholds;
4094 struct mem_cgroup_threshold_ary *new;
4095 unsigned long threshold;
4096 unsigned long usage;
4097 int i, size, ret;
4098
4099 ret = page_counter_memparse(args, &threshold);
4100 if (ret)
4101 return ret;
4102
4103 mutex_lock(&memcg->thresholds_lock);
4104
4105 if (type == _MEM) {
4106 thresholds = &memcg->thresholds;
4107 usage = mem_cgroup_usage(memcg, false);
4108 } else if (type == _MEMSWAP) {
4109 thresholds = &memcg->memsw_thresholds;
4110 usage = mem_cgroup_usage(memcg, true);
4111 } else
4112 BUG();
4113
4114 /* Check if a threshold crossed before adding a new one */
4115 if (thresholds->primary)
4116 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4117
4118 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4119
4120 /* Allocate memory for new array of thresholds */
4121 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4122 GFP_KERNEL);
4123 if (!new) {
4124 ret = -ENOMEM;
4125 goto unlock;
4126 }
4127 new->size = size;
4128
4129 /* Copy thresholds (if any) to new array */
4130 if (thresholds->primary) {
4131 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4132 sizeof(struct mem_cgroup_threshold));
4133 }
4134
4135 /* Add new threshold */
4136 new->entries[size - 1].eventfd = eventfd;
4137 new->entries[size - 1].threshold = threshold;
4138
4139 /* Sort thresholds. Registering of new threshold isn't time-critical */
4140 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4141 compare_thresholds, NULL);
4142
4143 /* Find current threshold */
4144 new->current_threshold = -1;
4145 for (i = 0; i < size; i++) {
4146 if (new->entries[i].threshold <= usage) {
4147 /*
4148 * new->current_threshold will not be used until
4149 * rcu_assign_pointer(), so it's safe to increment
4150 * it here.
4151 */
4152 ++new->current_threshold;
4153 } else
4154 break;
4155 }
4156
4157 /* Free old spare buffer and save old primary buffer as spare */
4158 kfree(thresholds->spare);
4159 thresholds->spare = thresholds->primary;
4160
4161 rcu_assign_pointer(thresholds->primary, new);
4162
4163 /* To be sure that nobody uses thresholds */
4164 synchronize_rcu();
4165
4166 unlock:
4167 mutex_unlock(&memcg->thresholds_lock);
4168
4169 return ret;
4170 }
4171
4172 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4173 struct eventfd_ctx *eventfd, const char *args)
4174 {
4175 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4176 }
4177
4178 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4179 struct eventfd_ctx *eventfd, const char *args)
4180 {
4181 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4182 }
4183
4184 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4185 struct eventfd_ctx *eventfd, enum res_type type)
4186 {
4187 struct mem_cgroup_thresholds *thresholds;
4188 struct mem_cgroup_threshold_ary *new;
4189 unsigned long usage;
4190 int i, j, size;
4191
4192 mutex_lock(&memcg->thresholds_lock);
4193
4194 if (type == _MEM) {
4195 thresholds = &memcg->thresholds;
4196 usage = mem_cgroup_usage(memcg, false);
4197 } else if (type == _MEMSWAP) {
4198 thresholds = &memcg->memsw_thresholds;
4199 usage = mem_cgroup_usage(memcg, true);
4200 } else
4201 BUG();
4202
4203 if (!thresholds->primary)
4204 goto unlock;
4205
4206 /* Check if a threshold crossed before removing */
4207 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4208
4209 /* Calculate new number of threshold */
4210 size = 0;
4211 for (i = 0; i < thresholds->primary->size; i++) {
4212 if (thresholds->primary->entries[i].eventfd != eventfd)
4213 size++;
4214 }
4215
4216 new = thresholds->spare;
4217
4218 /* Set thresholds array to NULL if we don't have thresholds */
4219 if (!size) {
4220 kfree(new);
4221 new = NULL;
4222 goto swap_buffers;
4223 }
4224
4225 new->size = size;
4226
4227 /* Copy thresholds and find current threshold */
4228 new->current_threshold = -1;
4229 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4230 if (thresholds->primary->entries[i].eventfd == eventfd)
4231 continue;
4232
4233 new->entries[j] = thresholds->primary->entries[i];
4234 if (new->entries[j].threshold <= usage) {
4235 /*
4236 * new->current_threshold will not be used
4237 * until rcu_assign_pointer(), so it's safe to increment
4238 * it here.
4239 */
4240 ++new->current_threshold;
4241 }
4242 j++;
4243 }
4244
4245 swap_buffers:
4246 /* Swap primary and spare array */
4247 thresholds->spare = thresholds->primary;
4248 /* If all events are unregistered, free the spare array */
4249 if (!new) {
4250 kfree(thresholds->spare);
4251 thresholds->spare = NULL;
4252 }
4253
4254 rcu_assign_pointer(thresholds->primary, new);
4255
4256 /* To be sure that nobody uses thresholds */
4257 synchronize_rcu();
4258 unlock:
4259 mutex_unlock(&memcg->thresholds_lock);
4260 }
4261
4262 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4263 struct eventfd_ctx *eventfd)
4264 {
4265 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4266 }
4267
4268 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4269 struct eventfd_ctx *eventfd)
4270 {
4271 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4272 }
4273
4274 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4275 struct eventfd_ctx *eventfd, const char *args)
4276 {
4277 struct mem_cgroup_eventfd_list *event;
4278
4279 event = kmalloc(sizeof(*event), GFP_KERNEL);
4280 if (!event)
4281 return -ENOMEM;
4282
4283 spin_lock(&memcg_oom_lock);
4284
4285 event->eventfd = eventfd;
4286 list_add(&event->list, &memcg->oom_notify);
4287
4288 /* already in OOM ? */
4289 if (atomic_read(&memcg->under_oom))
4290 eventfd_signal(eventfd, 1);
4291 spin_unlock(&memcg_oom_lock);
4292
4293 return 0;
4294 }
4295
4296 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4297 struct eventfd_ctx *eventfd)
4298 {
4299 struct mem_cgroup_eventfd_list *ev, *tmp;
4300
4301 spin_lock(&memcg_oom_lock);
4302
4303 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4304 if (ev->eventfd == eventfd) {
4305 list_del(&ev->list);
4306 kfree(ev);
4307 }
4308 }
4309
4310 spin_unlock(&memcg_oom_lock);
4311 }
4312
4313 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4314 {
4315 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4316
4317 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4318 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
4319 return 0;
4320 }
4321
4322 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4323 struct cftype *cft, u64 val)
4324 {
4325 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4326
4327 /* cannot set to root cgroup and only 0 and 1 are allowed */
4328 if (!css->parent || !((val == 0) || (val == 1)))
4329 return -EINVAL;
4330
4331 memcg->oom_kill_disable = val;
4332 if (!val)
4333 memcg_oom_recover(memcg);
4334
4335 return 0;
4336 }
4337
4338 #ifdef CONFIG_MEMCG_KMEM
4339 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4340 {
4341 int ret;
4342
4343 memcg->kmemcg_id = -1;
4344 ret = memcg_propagate_kmem(memcg);
4345 if (ret)
4346 return ret;
4347
4348 return mem_cgroup_sockets_init(memcg, ss);
4349 }
4350
4351 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4352 {
4353 mem_cgroup_sockets_destroy(memcg);
4354 }
4355 #else
4356 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4357 {
4358 return 0;
4359 }
4360
4361 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4362 {
4363 }
4364 #endif
4365
4366 /*
4367 * DO NOT USE IN NEW FILES.
4368 *
4369 * "cgroup.event_control" implementation.
4370 *
4371 * This is way over-engineered. It tries to support fully configurable
4372 * events for each user. Such level of flexibility is completely
4373 * unnecessary especially in the light of the planned unified hierarchy.
4374 *
4375 * Please deprecate this and replace with something simpler if at all
4376 * possible.
4377 */
4378
4379 /*
4380 * Unregister event and free resources.
4381 *
4382 * Gets called from workqueue.
4383 */
4384 static void memcg_event_remove(struct work_struct *work)
4385 {
4386 struct mem_cgroup_event *event =
4387 container_of(work, struct mem_cgroup_event, remove);
4388 struct mem_cgroup *memcg = event->memcg;
4389
4390 remove_wait_queue(event->wqh, &event->wait);
4391
4392 event->unregister_event(memcg, event->eventfd);
4393
4394 /* Notify userspace the event is going away. */
4395 eventfd_signal(event->eventfd, 1);
4396
4397 eventfd_ctx_put(event->eventfd);
4398 kfree(event);
4399 css_put(&memcg->css);
4400 }
4401
4402 /*
4403 * Gets called on POLLHUP on eventfd when user closes it.
4404 *
4405 * Called with wqh->lock held and interrupts disabled.
4406 */
4407 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4408 int sync, void *key)
4409 {
4410 struct mem_cgroup_event *event =
4411 container_of(wait, struct mem_cgroup_event, wait);
4412 struct mem_cgroup *memcg = event->memcg;
4413 unsigned long flags = (unsigned long)key;
4414
4415 if (flags & POLLHUP) {
4416 /*
4417 * If the event has been detached at cgroup removal, we
4418 * can simply return knowing the other side will cleanup
4419 * for us.
4420 *
4421 * We can't race against event freeing since the other
4422 * side will require wqh->lock via remove_wait_queue(),
4423 * which we hold.
4424 */
4425 spin_lock(&memcg->event_list_lock);
4426 if (!list_empty(&event->list)) {
4427 list_del_init(&event->list);
4428 /*
4429 * We are in atomic context, but cgroup_event_remove()
4430 * may sleep, so we have to call it in workqueue.
4431 */
4432 schedule_work(&event->remove);
4433 }
4434 spin_unlock(&memcg->event_list_lock);
4435 }
4436
4437 return 0;
4438 }
4439
4440 static void memcg_event_ptable_queue_proc(struct file *file,
4441 wait_queue_head_t *wqh, poll_table *pt)
4442 {
4443 struct mem_cgroup_event *event =
4444 container_of(pt, struct mem_cgroup_event, pt);
4445
4446 event->wqh = wqh;
4447 add_wait_queue(wqh, &event->wait);
4448 }
4449
4450 /*
4451 * DO NOT USE IN NEW FILES.
4452 *
4453 * Parse input and register new cgroup event handler.
4454 *
4455 * Input must be in format '<event_fd> <control_fd> <args>'.
4456 * Interpretation of args is defined by control file implementation.
4457 */
4458 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4459 char *buf, size_t nbytes, loff_t off)
4460 {
4461 struct cgroup_subsys_state *css = of_css(of);
4462 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4463 struct mem_cgroup_event *event;
4464 struct cgroup_subsys_state *cfile_css;
4465 unsigned int efd, cfd;
4466 struct fd efile;
4467 struct fd cfile;
4468 const char *name;
4469 char *endp;
4470 int ret;
4471
4472 buf = strstrip(buf);
4473
4474 efd = simple_strtoul(buf, &endp, 10);
4475 if (*endp != ' ')
4476 return -EINVAL;
4477 buf = endp + 1;
4478
4479 cfd = simple_strtoul(buf, &endp, 10);
4480 if ((*endp != ' ') && (*endp != '\0'))
4481 return -EINVAL;
4482 buf = endp + 1;
4483
4484 event = kzalloc(sizeof(*event), GFP_KERNEL);
4485 if (!event)
4486 return -ENOMEM;
4487
4488 event->memcg = memcg;
4489 INIT_LIST_HEAD(&event->list);
4490 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4491 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4492 INIT_WORK(&event->remove, memcg_event_remove);
4493
4494 efile = fdget(efd);
4495 if (!efile.file) {
4496 ret = -EBADF;
4497 goto out_kfree;
4498 }
4499
4500 event->eventfd = eventfd_ctx_fileget(efile.file);
4501 if (IS_ERR(event->eventfd)) {
4502 ret = PTR_ERR(event->eventfd);
4503 goto out_put_efile;
4504 }
4505
4506 cfile = fdget(cfd);
4507 if (!cfile.file) {
4508 ret = -EBADF;
4509 goto out_put_eventfd;
4510 }
4511
4512 /* the process need read permission on control file */
4513 /* AV: shouldn't we check that it's been opened for read instead? */
4514 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4515 if (ret < 0)
4516 goto out_put_cfile;
4517
4518 /*
4519 * Determine the event callbacks and set them in @event. This used
4520 * to be done via struct cftype but cgroup core no longer knows
4521 * about these events. The following is crude but the whole thing
4522 * is for compatibility anyway.
4523 *
4524 * DO NOT ADD NEW FILES.
4525 */
4526 name = cfile.file->f_dentry->d_name.name;
4527
4528 if (!strcmp(name, "memory.usage_in_bytes")) {
4529 event->register_event = mem_cgroup_usage_register_event;
4530 event->unregister_event = mem_cgroup_usage_unregister_event;
4531 } else if (!strcmp(name, "memory.oom_control")) {
4532 event->register_event = mem_cgroup_oom_register_event;
4533 event->unregister_event = mem_cgroup_oom_unregister_event;
4534 } else if (!strcmp(name, "memory.pressure_level")) {
4535 event->register_event = vmpressure_register_event;
4536 event->unregister_event = vmpressure_unregister_event;
4537 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4538 event->register_event = memsw_cgroup_usage_register_event;
4539 event->unregister_event = memsw_cgroup_usage_unregister_event;
4540 } else {
4541 ret = -EINVAL;
4542 goto out_put_cfile;
4543 }
4544
4545 /*
4546 * Verify @cfile should belong to @css. Also, remaining events are
4547 * automatically removed on cgroup destruction but the removal is
4548 * asynchronous, so take an extra ref on @css.
4549 */
4550 cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
4551 &memory_cgrp_subsys);
4552 ret = -EINVAL;
4553 if (IS_ERR(cfile_css))
4554 goto out_put_cfile;
4555 if (cfile_css != css) {
4556 css_put(cfile_css);
4557 goto out_put_cfile;
4558 }
4559
4560 ret = event->register_event(memcg, event->eventfd, buf);
4561 if (ret)
4562 goto out_put_css;
4563
4564 efile.file->f_op->poll(efile.file, &event->pt);
4565
4566 spin_lock(&memcg->event_list_lock);
4567 list_add(&event->list, &memcg->event_list);
4568 spin_unlock(&memcg->event_list_lock);
4569
4570 fdput(cfile);
4571 fdput(efile);
4572
4573 return nbytes;
4574
4575 out_put_css:
4576 css_put(css);
4577 out_put_cfile:
4578 fdput(cfile);
4579 out_put_eventfd:
4580 eventfd_ctx_put(event->eventfd);
4581 out_put_efile:
4582 fdput(efile);
4583 out_kfree:
4584 kfree(event);
4585
4586 return ret;
4587 }
4588
4589 static struct cftype mem_cgroup_files[] = {
4590 {
4591 .name = "usage_in_bytes",
4592 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4593 .read_u64 = mem_cgroup_read_u64,
4594 },
4595 {
4596 .name = "max_usage_in_bytes",
4597 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4598 .write = mem_cgroup_reset,
4599 .read_u64 = mem_cgroup_read_u64,
4600 },
4601 {
4602 .name = "limit_in_bytes",
4603 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4604 .write = mem_cgroup_write,
4605 .read_u64 = mem_cgroup_read_u64,
4606 },
4607 {
4608 .name = "soft_limit_in_bytes",
4609 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4610 .write = mem_cgroup_write,
4611 .read_u64 = mem_cgroup_read_u64,
4612 },
4613 {
4614 .name = "failcnt",
4615 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4616 .write = mem_cgroup_reset,
4617 .read_u64 = mem_cgroup_read_u64,
4618 },
4619 {
4620 .name = "stat",
4621 .seq_show = memcg_stat_show,
4622 },
4623 {
4624 .name = "force_empty",
4625 .write = mem_cgroup_force_empty_write,
4626 },
4627 {
4628 .name = "use_hierarchy",
4629 .write_u64 = mem_cgroup_hierarchy_write,
4630 .read_u64 = mem_cgroup_hierarchy_read,
4631 },
4632 {
4633 .name = "cgroup.event_control", /* XXX: for compat */
4634 .write = memcg_write_event_control,
4635 .flags = CFTYPE_NO_PREFIX,
4636 .mode = S_IWUGO,
4637 },
4638 {
4639 .name = "swappiness",
4640 .read_u64 = mem_cgroup_swappiness_read,
4641 .write_u64 = mem_cgroup_swappiness_write,
4642 },
4643 {
4644 .name = "move_charge_at_immigrate",
4645 .read_u64 = mem_cgroup_move_charge_read,
4646 .write_u64 = mem_cgroup_move_charge_write,
4647 },
4648 {
4649 .name = "oom_control",
4650 .seq_show = mem_cgroup_oom_control_read,
4651 .write_u64 = mem_cgroup_oom_control_write,
4652 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4653 },
4654 {
4655 .name = "pressure_level",
4656 },
4657 #ifdef CONFIG_NUMA
4658 {
4659 .name = "numa_stat",
4660 .seq_show = memcg_numa_stat_show,
4661 },
4662 #endif
4663 #ifdef CONFIG_MEMCG_KMEM
4664 {
4665 .name = "kmem.limit_in_bytes",
4666 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4667 .write = mem_cgroup_write,
4668 .read_u64 = mem_cgroup_read_u64,
4669 },
4670 {
4671 .name = "kmem.usage_in_bytes",
4672 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4673 .read_u64 = mem_cgroup_read_u64,
4674 },
4675 {
4676 .name = "kmem.failcnt",
4677 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4678 .write = mem_cgroup_reset,
4679 .read_u64 = mem_cgroup_read_u64,
4680 },
4681 {
4682 .name = "kmem.max_usage_in_bytes",
4683 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4684 .write = mem_cgroup_reset,
4685 .read_u64 = mem_cgroup_read_u64,
4686 },
4687 #ifdef CONFIG_SLABINFO
4688 {
4689 .name = "kmem.slabinfo",
4690 .seq_start = slab_start,
4691 .seq_next = slab_next,
4692 .seq_stop = slab_stop,
4693 .seq_show = memcg_slab_show,
4694 },
4695 #endif
4696 #endif
4697 { }, /* terminate */
4698 };
4699
4700 #ifdef CONFIG_MEMCG_SWAP
4701 static struct cftype memsw_cgroup_files[] = {
4702 {
4703 .name = "memsw.usage_in_bytes",
4704 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4705 .read_u64 = mem_cgroup_read_u64,
4706 },
4707 {
4708 .name = "memsw.max_usage_in_bytes",
4709 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4710 .write = mem_cgroup_reset,
4711 .read_u64 = mem_cgroup_read_u64,
4712 },
4713 {
4714 .name = "memsw.limit_in_bytes",
4715 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4716 .write = mem_cgroup_write,
4717 .read_u64 = mem_cgroup_read_u64,
4718 },
4719 {
4720 .name = "memsw.failcnt",
4721 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4722 .write = mem_cgroup_reset,
4723 .read_u64 = mem_cgroup_read_u64,
4724 },
4725 { }, /* terminate */
4726 };
4727 #endif
4728 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4729 {
4730 struct mem_cgroup_per_node *pn;
4731 struct mem_cgroup_per_zone *mz;
4732 int zone, tmp = node;
4733 /*
4734 * This routine is called against possible nodes.
4735 * But it's BUG to call kmalloc() against offline node.
4736 *
4737 * TODO: this routine can waste much memory for nodes which will
4738 * never be onlined. It's better to use memory hotplug callback
4739 * function.
4740 */
4741 if (!node_state(node, N_NORMAL_MEMORY))
4742 tmp = -1;
4743 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4744 if (!pn)
4745 return 1;
4746
4747 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4748 mz = &pn->zoneinfo[zone];
4749 lruvec_init(&mz->lruvec);
4750 mz->usage_in_excess = 0;
4751 mz->on_tree = false;
4752 mz->memcg = memcg;
4753 }
4754 memcg->nodeinfo[node] = pn;
4755 return 0;
4756 }
4757
4758 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4759 {
4760 kfree(memcg->nodeinfo[node]);
4761 }
4762
4763 static struct mem_cgroup *mem_cgroup_alloc(void)
4764 {
4765 struct mem_cgroup *memcg;
4766 size_t size;
4767
4768 size = sizeof(struct mem_cgroup);
4769 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4770
4771 memcg = kzalloc(size, GFP_KERNEL);
4772 if (!memcg)
4773 return NULL;
4774
4775 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4776 if (!memcg->stat)
4777 goto out_free;
4778 spin_lock_init(&memcg->pcp_counter_lock);
4779 return memcg;
4780
4781 out_free:
4782 kfree(memcg);
4783 return NULL;
4784 }
4785
4786 /*
4787 * At destroying mem_cgroup, references from swap_cgroup can remain.
4788 * (scanning all at force_empty is too costly...)
4789 *
4790 * Instead of clearing all references at force_empty, we remember
4791 * the number of reference from swap_cgroup and free mem_cgroup when
4792 * it goes down to 0.
4793 *
4794 * Removal of cgroup itself succeeds regardless of refs from swap.
4795 */
4796
4797 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4798 {
4799 int node;
4800
4801 mem_cgroup_remove_from_trees(memcg);
4802
4803 for_each_node(node)
4804 free_mem_cgroup_per_zone_info(memcg, node);
4805
4806 free_percpu(memcg->stat);
4807
4808 /*
4809 * We need to make sure that (at least for now), the jump label
4810 * destruction code runs outside of the cgroup lock. This is because
4811 * get_online_cpus(), which is called from the static_branch update,
4812 * can't be called inside the cgroup_lock. cpusets are the ones
4813 * enforcing this dependency, so if they ever change, we might as well.
4814 *
4815 * schedule_work() will guarantee this happens. Be careful if you need
4816 * to move this code around, and make sure it is outside
4817 * the cgroup_lock.
4818 */
4819 disarm_static_keys(memcg);
4820 kfree(memcg);
4821 }
4822
4823 /*
4824 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4825 */
4826 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4827 {
4828 if (!memcg->memory.parent)
4829 return NULL;
4830 return mem_cgroup_from_counter(memcg->memory.parent, memory);
4831 }
4832 EXPORT_SYMBOL(parent_mem_cgroup);
4833
4834 static void __init mem_cgroup_soft_limit_tree_init(void)
4835 {
4836 struct mem_cgroup_tree_per_node *rtpn;
4837 struct mem_cgroup_tree_per_zone *rtpz;
4838 int tmp, node, zone;
4839
4840 for_each_node(node) {
4841 tmp = node;
4842 if (!node_state(node, N_NORMAL_MEMORY))
4843 tmp = -1;
4844 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4845 BUG_ON(!rtpn);
4846
4847 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4848
4849 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4850 rtpz = &rtpn->rb_tree_per_zone[zone];
4851 rtpz->rb_root = RB_ROOT;
4852 spin_lock_init(&rtpz->lock);
4853 }
4854 }
4855 }
4856
4857 static struct cgroup_subsys_state * __ref
4858 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4859 {
4860 struct mem_cgroup *memcg;
4861 long error = -ENOMEM;
4862 int node;
4863
4864 memcg = mem_cgroup_alloc();
4865 if (!memcg)
4866 return ERR_PTR(error);
4867
4868 for_each_node(node)
4869 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4870 goto free_out;
4871
4872 /* root ? */
4873 if (parent_css == NULL) {
4874 root_mem_cgroup = memcg;
4875 page_counter_init(&memcg->memory, NULL);
4876 page_counter_init(&memcg->memsw, NULL);
4877 page_counter_init(&memcg->kmem, NULL);
4878 }
4879
4880 memcg->last_scanned_node = MAX_NUMNODES;
4881 INIT_LIST_HEAD(&memcg->oom_notify);
4882 memcg->move_charge_at_immigrate = 0;
4883 mutex_init(&memcg->thresholds_lock);
4884 spin_lock_init(&memcg->move_lock);
4885 vmpressure_init(&memcg->vmpressure);
4886 INIT_LIST_HEAD(&memcg->event_list);
4887 spin_lock_init(&memcg->event_list_lock);
4888
4889 return &memcg->css;
4890
4891 free_out:
4892 __mem_cgroup_free(memcg);
4893 return ERR_PTR(error);
4894 }
4895
4896 static int
4897 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4898 {
4899 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4900 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4901 int ret;
4902
4903 if (css->id > MEM_CGROUP_ID_MAX)
4904 return -ENOSPC;
4905
4906 if (!parent)
4907 return 0;
4908
4909 mutex_lock(&memcg_create_mutex);
4910
4911 memcg->use_hierarchy = parent->use_hierarchy;
4912 memcg->oom_kill_disable = parent->oom_kill_disable;
4913 memcg->swappiness = mem_cgroup_swappiness(parent);
4914
4915 if (parent->use_hierarchy) {
4916 page_counter_init(&memcg->memory, &parent->memory);
4917 page_counter_init(&memcg->memsw, &parent->memsw);
4918 page_counter_init(&memcg->kmem, &parent->kmem);
4919
4920 /*
4921 * No need to take a reference to the parent because cgroup
4922 * core guarantees its existence.
4923 */
4924 } else {
4925 page_counter_init(&memcg->memory, NULL);
4926 page_counter_init(&memcg->memsw, NULL);
4927 page_counter_init(&memcg->kmem, NULL);
4928 /*
4929 * Deeper hierachy with use_hierarchy == false doesn't make
4930 * much sense so let cgroup subsystem know about this
4931 * unfortunate state in our controller.
4932 */
4933 if (parent != root_mem_cgroup)
4934 memory_cgrp_subsys.broken_hierarchy = true;
4935 }
4936 mutex_unlock(&memcg_create_mutex);
4937
4938 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4939 if (ret)
4940 return ret;
4941
4942 /*
4943 * Make sure the memcg is initialized: mem_cgroup_iter()
4944 * orders reading memcg->initialized against its callers
4945 * reading the memcg members.
4946 */
4947 smp_store_release(&memcg->initialized, 1);
4948
4949 return 0;
4950 }
4951
4952 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4953 {
4954 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4955 struct mem_cgroup_event *event, *tmp;
4956
4957 /*
4958 * Unregister events and notify userspace.
4959 * Notify userspace about cgroup removing only after rmdir of cgroup
4960 * directory to avoid race between userspace and kernelspace.
4961 */
4962 spin_lock(&memcg->event_list_lock);
4963 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4964 list_del_init(&event->list);
4965 schedule_work(&event->remove);
4966 }
4967 spin_unlock(&memcg->event_list_lock);
4968
4969 memcg_unregister_all_caches(memcg);
4970 vmpressure_cleanup(&memcg->vmpressure);
4971 }
4972
4973 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4974 {
4975 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4976
4977 memcg_destroy_kmem(memcg);
4978 __mem_cgroup_free(memcg);
4979 }
4980
4981 /**
4982 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4983 * @css: the target css
4984 *
4985 * Reset the states of the mem_cgroup associated with @css. This is
4986 * invoked when the userland requests disabling on the default hierarchy
4987 * but the memcg is pinned through dependency. The memcg should stop
4988 * applying policies and should revert to the vanilla state as it may be
4989 * made visible again.
4990 *
4991 * The current implementation only resets the essential configurations.
4992 * This needs to be expanded to cover all the visible parts.
4993 */
4994 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4995 {
4996 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4997
4998 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4999 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
5000 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
5001 memcg->soft_limit = 0;
5002 }
5003
5004 #ifdef CONFIG_MMU
5005 /* Handlers for move charge at task migration. */
5006 static int mem_cgroup_do_precharge(unsigned long count)
5007 {
5008 int ret;
5009
5010 /* Try a single bulk charge without reclaim first */
5011 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
5012 if (!ret) {
5013 mc.precharge += count;
5014 return ret;
5015 }
5016 if (ret == -EINTR) {
5017 cancel_charge(root_mem_cgroup, count);
5018 return ret;
5019 }
5020
5021 /* Try charges one by one with reclaim */
5022 while (count--) {
5023 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
5024 /*
5025 * In case of failure, any residual charges against
5026 * mc.to will be dropped by mem_cgroup_clear_mc()
5027 * later on. However, cancel any charges that are
5028 * bypassed to root right away or they'll be lost.
5029 */
5030 if (ret == -EINTR)
5031 cancel_charge(root_mem_cgroup, 1);
5032 if (ret)
5033 return ret;
5034 mc.precharge++;
5035 cond_resched();
5036 }
5037 return 0;
5038 }
5039
5040 /**
5041 * get_mctgt_type - get target type of moving charge
5042 * @vma: the vma the pte to be checked belongs
5043 * @addr: the address corresponding to the pte to be checked
5044 * @ptent: the pte to be checked
5045 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5046 *
5047 * Returns
5048 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5049 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5050 * move charge. if @target is not NULL, the page is stored in target->page
5051 * with extra refcnt got(Callers should handle it).
5052 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5053 * target for charge migration. if @target is not NULL, the entry is stored
5054 * in target->ent.
5055 *
5056 * Called with pte lock held.
5057 */
5058 union mc_target {
5059 struct page *page;
5060 swp_entry_t ent;
5061 };
5062
5063 enum mc_target_type {
5064 MC_TARGET_NONE = 0,
5065 MC_TARGET_PAGE,
5066 MC_TARGET_SWAP,
5067 };
5068
5069 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5070 unsigned long addr, pte_t ptent)
5071 {
5072 struct page *page = vm_normal_page(vma, addr, ptent);
5073
5074 if (!page || !page_mapped(page))
5075 return NULL;
5076 if (PageAnon(page)) {
5077 /* we don't move shared anon */
5078 if (!move_anon())
5079 return NULL;
5080 } else if (!move_file())
5081 /* we ignore mapcount for file pages */
5082 return NULL;
5083 if (!get_page_unless_zero(page))
5084 return NULL;
5085
5086 return page;
5087 }
5088
5089 #ifdef CONFIG_SWAP
5090 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5091 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5092 {
5093 struct page *page = NULL;
5094 swp_entry_t ent = pte_to_swp_entry(ptent);
5095
5096 if (!move_anon() || non_swap_entry(ent))
5097 return NULL;
5098 /*
5099 * Because lookup_swap_cache() updates some statistics counter,
5100 * we call find_get_page() with swapper_space directly.
5101 */
5102 page = find_get_page(swap_address_space(ent), ent.val);
5103 if (do_swap_account)
5104 entry->val = ent.val;
5105
5106 return page;
5107 }
5108 #else
5109 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5110 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5111 {
5112 return NULL;
5113 }
5114 #endif
5115
5116 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5117 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5118 {
5119 struct page *page = NULL;
5120 struct address_space *mapping;
5121 pgoff_t pgoff;
5122
5123 if (!vma->vm_file) /* anonymous vma */
5124 return NULL;
5125 if (!move_file())
5126 return NULL;
5127
5128 mapping = vma->vm_file->f_mapping;
5129 if (pte_none(ptent))
5130 pgoff = linear_page_index(vma, addr);
5131 else /* pte_file(ptent) is true */
5132 pgoff = pte_to_pgoff(ptent);
5133
5134 /* page is moved even if it's not RSS of this task(page-faulted). */
5135 #ifdef CONFIG_SWAP
5136 /* shmem/tmpfs may report page out on swap: account for that too. */
5137 if (shmem_mapping(mapping)) {
5138 page = find_get_entry(mapping, pgoff);
5139 if (radix_tree_exceptional_entry(page)) {
5140 swp_entry_t swp = radix_to_swp_entry(page);
5141 if (do_swap_account)
5142 *entry = swp;
5143 page = find_get_page(swap_address_space(swp), swp.val);
5144 }
5145 } else
5146 page = find_get_page(mapping, pgoff);
5147 #else
5148 page = find_get_page(mapping, pgoff);
5149 #endif
5150 return page;
5151 }
5152
5153 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5154 unsigned long addr, pte_t ptent, union mc_target *target)
5155 {
5156 struct page *page = NULL;
5157 struct page_cgroup *pc;
5158 enum mc_target_type ret = MC_TARGET_NONE;
5159 swp_entry_t ent = { .val = 0 };
5160
5161 if (pte_present(ptent))
5162 page = mc_handle_present_pte(vma, addr, ptent);
5163 else if (is_swap_pte(ptent))
5164 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5165 else if (pte_none(ptent) || pte_file(ptent))
5166 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5167
5168 if (!page && !ent.val)
5169 return ret;
5170 if (page) {
5171 pc = lookup_page_cgroup(page);
5172 /*
5173 * Do only loose check w/o serialization.
5174 * mem_cgroup_move_account() checks the pc is valid or
5175 * not under LRU exclusion.
5176 */
5177 if (pc->mem_cgroup == mc.from) {
5178 ret = MC_TARGET_PAGE;
5179 if (target)
5180 target->page = page;
5181 }
5182 if (!ret || !target)
5183 put_page(page);
5184 }
5185 /* There is a swap entry and a page doesn't exist or isn't charged */
5186 if (ent.val && !ret &&
5187 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5188 ret = MC_TARGET_SWAP;
5189 if (target)
5190 target->ent = ent;
5191 }
5192 return ret;
5193 }
5194
5195 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5196 /*
5197 * We don't consider swapping or file mapped pages because THP does not
5198 * support them for now.
5199 * Caller should make sure that pmd_trans_huge(pmd) is true.
5200 */
5201 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5202 unsigned long addr, pmd_t pmd, union mc_target *target)
5203 {
5204 struct page *page = NULL;
5205 struct page_cgroup *pc;
5206 enum mc_target_type ret = MC_TARGET_NONE;
5207
5208 page = pmd_page(pmd);
5209 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5210 if (!move_anon())
5211 return ret;
5212 pc = lookup_page_cgroup(page);
5213 if (pc->mem_cgroup == mc.from) {
5214 ret = MC_TARGET_PAGE;
5215 if (target) {
5216 get_page(page);
5217 target->page = page;
5218 }
5219 }
5220 return ret;
5221 }
5222 #else
5223 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5224 unsigned long addr, pmd_t pmd, union mc_target *target)
5225 {
5226 return MC_TARGET_NONE;
5227 }
5228 #endif
5229
5230 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5231 unsigned long addr, unsigned long end,
5232 struct mm_walk *walk)
5233 {
5234 struct vm_area_struct *vma = walk->private;
5235 pte_t *pte;
5236 spinlock_t *ptl;
5237
5238 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5239 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5240 mc.precharge += HPAGE_PMD_NR;
5241 spin_unlock(ptl);
5242 return 0;
5243 }
5244
5245 if (pmd_trans_unstable(pmd))
5246 return 0;
5247 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5248 for (; addr != end; pte++, addr += PAGE_SIZE)
5249 if (get_mctgt_type(vma, addr, *pte, NULL))
5250 mc.precharge++; /* increment precharge temporarily */
5251 pte_unmap_unlock(pte - 1, ptl);
5252 cond_resched();
5253
5254 return 0;
5255 }
5256
5257 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5258 {
5259 unsigned long precharge;
5260 struct vm_area_struct *vma;
5261
5262 down_read(&mm->mmap_sem);
5263 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5264 struct mm_walk mem_cgroup_count_precharge_walk = {
5265 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5266 .mm = mm,
5267 .private = vma,
5268 };
5269 if (is_vm_hugetlb_page(vma))
5270 continue;
5271 walk_page_range(vma->vm_start, vma->vm_end,
5272 &mem_cgroup_count_precharge_walk);
5273 }
5274 up_read(&mm->mmap_sem);
5275
5276 precharge = mc.precharge;
5277 mc.precharge = 0;
5278
5279 return precharge;
5280 }
5281
5282 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5283 {
5284 unsigned long precharge = mem_cgroup_count_precharge(mm);
5285
5286 VM_BUG_ON(mc.moving_task);
5287 mc.moving_task = current;
5288 return mem_cgroup_do_precharge(precharge);
5289 }
5290
5291 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5292 static void __mem_cgroup_clear_mc(void)
5293 {
5294 struct mem_cgroup *from = mc.from;
5295 struct mem_cgroup *to = mc.to;
5296
5297 /* we must uncharge all the leftover precharges from mc.to */
5298 if (mc.precharge) {
5299 cancel_charge(mc.to, mc.precharge);
5300 mc.precharge = 0;
5301 }
5302 /*
5303 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5304 * we must uncharge here.
5305 */
5306 if (mc.moved_charge) {
5307 cancel_charge(mc.from, mc.moved_charge);
5308 mc.moved_charge = 0;
5309 }
5310 /* we must fixup refcnts and charges */
5311 if (mc.moved_swap) {
5312 /* uncharge swap account from the old cgroup */
5313 if (!mem_cgroup_is_root(mc.from))
5314 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5315
5316 /*
5317 * we charged both to->memory and to->memsw, so we
5318 * should uncharge to->memory.
5319 */
5320 if (!mem_cgroup_is_root(mc.to))
5321 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5322
5323 css_put_many(&mc.from->css, mc.moved_swap);
5324
5325 /* we've already done css_get(mc.to) */
5326 mc.moved_swap = 0;
5327 }
5328 memcg_oom_recover(from);
5329 memcg_oom_recover(to);
5330 wake_up_all(&mc.waitq);
5331 }
5332
5333 static void mem_cgroup_clear_mc(void)
5334 {
5335 /*
5336 * we must clear moving_task before waking up waiters at the end of
5337 * task migration.
5338 */
5339 mc.moving_task = NULL;
5340 __mem_cgroup_clear_mc();
5341 spin_lock(&mc.lock);
5342 mc.from = NULL;
5343 mc.to = NULL;
5344 spin_unlock(&mc.lock);
5345 }
5346
5347 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5348 struct cgroup_taskset *tset)
5349 {
5350 struct task_struct *p = cgroup_taskset_first(tset);
5351 int ret = 0;
5352 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5353 unsigned long move_charge_at_immigrate;
5354
5355 /*
5356 * We are now commited to this value whatever it is. Changes in this
5357 * tunable will only affect upcoming migrations, not the current one.
5358 * So we need to save it, and keep it going.
5359 */
5360 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
5361 if (move_charge_at_immigrate) {
5362 struct mm_struct *mm;
5363 struct mem_cgroup *from = mem_cgroup_from_task(p);
5364
5365 VM_BUG_ON(from == memcg);
5366
5367 mm = get_task_mm(p);
5368 if (!mm)
5369 return 0;
5370 /* We move charges only when we move a owner of the mm */
5371 if (mm->owner == p) {
5372 VM_BUG_ON(mc.from);
5373 VM_BUG_ON(mc.to);
5374 VM_BUG_ON(mc.precharge);
5375 VM_BUG_ON(mc.moved_charge);
5376 VM_BUG_ON(mc.moved_swap);
5377
5378 spin_lock(&mc.lock);
5379 mc.from = from;
5380 mc.to = memcg;
5381 mc.immigrate_flags = move_charge_at_immigrate;
5382 spin_unlock(&mc.lock);
5383 /* We set mc.moving_task later */
5384
5385 ret = mem_cgroup_precharge_mc(mm);
5386 if (ret)
5387 mem_cgroup_clear_mc();
5388 }
5389 mmput(mm);
5390 }
5391 return ret;
5392 }
5393
5394 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5395 struct cgroup_taskset *tset)
5396 {
5397 if (mc.to)
5398 mem_cgroup_clear_mc();
5399 }
5400
5401 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5402 unsigned long addr, unsigned long end,
5403 struct mm_walk *walk)
5404 {
5405 int ret = 0;
5406 struct vm_area_struct *vma = walk->private;
5407 pte_t *pte;
5408 spinlock_t *ptl;
5409 enum mc_target_type target_type;
5410 union mc_target target;
5411 struct page *page;
5412 struct page_cgroup *pc;
5413
5414 /*
5415 * We don't take compound_lock() here but no race with splitting thp
5416 * happens because:
5417 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5418 * under splitting, which means there's no concurrent thp split,
5419 * - if another thread runs into split_huge_page() just after we
5420 * entered this if-block, the thread must wait for page table lock
5421 * to be unlocked in __split_huge_page_splitting(), where the main
5422 * part of thp split is not executed yet.
5423 */
5424 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5425 if (mc.precharge < HPAGE_PMD_NR) {
5426 spin_unlock(ptl);
5427 return 0;
5428 }
5429 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5430 if (target_type == MC_TARGET_PAGE) {
5431 page = target.page;
5432 if (!isolate_lru_page(page)) {
5433 pc = lookup_page_cgroup(page);
5434 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5435 pc, mc.from, mc.to)) {
5436 mc.precharge -= HPAGE_PMD_NR;
5437 mc.moved_charge += HPAGE_PMD_NR;
5438 }
5439 putback_lru_page(page);
5440 }
5441 put_page(page);
5442 }
5443 spin_unlock(ptl);
5444 return 0;
5445 }
5446
5447 if (pmd_trans_unstable(pmd))
5448 return 0;
5449 retry:
5450 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5451 for (; addr != end; addr += PAGE_SIZE) {
5452 pte_t ptent = *(pte++);
5453 swp_entry_t ent;
5454
5455 if (!mc.precharge)
5456 break;
5457
5458 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5459 case MC_TARGET_PAGE:
5460 page = target.page;
5461 if (isolate_lru_page(page))
5462 goto put;
5463 pc = lookup_page_cgroup(page);
5464 if (!mem_cgroup_move_account(page, 1, pc,
5465 mc.from, mc.to)) {
5466 mc.precharge--;
5467 /* we uncharge from mc.from later. */
5468 mc.moved_charge++;
5469 }
5470 putback_lru_page(page);
5471 put: /* get_mctgt_type() gets the page */
5472 put_page(page);
5473 break;
5474 case MC_TARGET_SWAP:
5475 ent = target.ent;
5476 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5477 mc.precharge--;
5478 /* we fixup refcnts and charges later. */
5479 mc.moved_swap++;
5480 }
5481 break;
5482 default:
5483 break;
5484 }
5485 }
5486 pte_unmap_unlock(pte - 1, ptl);
5487 cond_resched();
5488
5489 if (addr != end) {
5490 /*
5491 * We have consumed all precharges we got in can_attach().
5492 * We try charge one by one, but don't do any additional
5493 * charges to mc.to if we have failed in charge once in attach()
5494 * phase.
5495 */
5496 ret = mem_cgroup_do_precharge(1);
5497 if (!ret)
5498 goto retry;
5499 }
5500
5501 return ret;
5502 }
5503
5504 static void mem_cgroup_move_charge(struct mm_struct *mm)
5505 {
5506 struct vm_area_struct *vma;
5507
5508 lru_add_drain_all();
5509 /*
5510 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5511 * move_lock while we're moving its pages to another memcg.
5512 * Then wait for already started RCU-only updates to finish.
5513 */
5514 atomic_inc(&mc.from->moving_account);
5515 synchronize_rcu();
5516 retry:
5517 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5518 /*
5519 * Someone who are holding the mmap_sem might be waiting in
5520 * waitq. So we cancel all extra charges, wake up all waiters,
5521 * and retry. Because we cancel precharges, we might not be able
5522 * to move enough charges, but moving charge is a best-effort
5523 * feature anyway, so it wouldn't be a big problem.
5524 */
5525 __mem_cgroup_clear_mc();
5526 cond_resched();
5527 goto retry;
5528 }
5529 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5530 int ret;
5531 struct mm_walk mem_cgroup_move_charge_walk = {
5532 .pmd_entry = mem_cgroup_move_charge_pte_range,
5533 .mm = mm,
5534 .private = vma,
5535 };
5536 if (is_vm_hugetlb_page(vma))
5537 continue;
5538 ret = walk_page_range(vma->vm_start, vma->vm_end,
5539 &mem_cgroup_move_charge_walk);
5540 if (ret)
5541 /*
5542 * means we have consumed all precharges and failed in
5543 * doing additional charge. Just abandon here.
5544 */
5545 break;
5546 }
5547 up_read(&mm->mmap_sem);
5548 atomic_dec(&mc.from->moving_account);
5549 }
5550
5551 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5552 struct cgroup_taskset *tset)
5553 {
5554 struct task_struct *p = cgroup_taskset_first(tset);
5555 struct mm_struct *mm = get_task_mm(p);
5556
5557 if (mm) {
5558 if (mc.to)
5559 mem_cgroup_move_charge(mm);
5560 mmput(mm);
5561 }
5562 if (mc.to)
5563 mem_cgroup_clear_mc();
5564 }
5565 #else /* !CONFIG_MMU */
5566 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5567 struct cgroup_taskset *tset)
5568 {
5569 return 0;
5570 }
5571 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5572 struct cgroup_taskset *tset)
5573 {
5574 }
5575 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5576 struct cgroup_taskset *tset)
5577 {
5578 }
5579 #endif
5580
5581 /*
5582 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5583 * to verify whether we're attached to the default hierarchy on each mount
5584 * attempt.
5585 */
5586 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5587 {
5588 /*
5589 * use_hierarchy is forced on the default hierarchy. cgroup core
5590 * guarantees that @root doesn't have any children, so turning it
5591 * on for the root memcg is enough.
5592 */
5593 if (cgroup_on_dfl(root_css->cgroup))
5594 mem_cgroup_from_css(root_css)->use_hierarchy = true;
5595 }
5596
5597 struct cgroup_subsys memory_cgrp_subsys = {
5598 .css_alloc = mem_cgroup_css_alloc,
5599 .css_online = mem_cgroup_css_online,
5600 .css_offline = mem_cgroup_css_offline,
5601 .css_free = mem_cgroup_css_free,
5602 .css_reset = mem_cgroup_css_reset,
5603 .can_attach = mem_cgroup_can_attach,
5604 .cancel_attach = mem_cgroup_cancel_attach,
5605 .attach = mem_cgroup_move_task,
5606 .bind = mem_cgroup_bind,
5607 .legacy_cftypes = mem_cgroup_files,
5608 .early_init = 0,
5609 };
5610
5611 #ifdef CONFIG_MEMCG_SWAP
5612 static int __init enable_swap_account(char *s)
5613 {
5614 if (!strcmp(s, "1"))
5615 really_do_swap_account = 1;
5616 else if (!strcmp(s, "0"))
5617 really_do_swap_account = 0;
5618 return 1;
5619 }
5620 __setup("swapaccount=", enable_swap_account);
5621
5622 static void __init memsw_file_init(void)
5623 {
5624 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5625 memsw_cgroup_files));
5626 }
5627
5628 static void __init enable_swap_cgroup(void)
5629 {
5630 if (!mem_cgroup_disabled() && really_do_swap_account) {
5631 do_swap_account = 1;
5632 memsw_file_init();
5633 }
5634 }
5635
5636 #else
5637 static void __init enable_swap_cgroup(void)
5638 {
5639 }
5640 #endif
5641
5642 #ifdef CONFIG_MEMCG_SWAP
5643 /**
5644 * mem_cgroup_swapout - transfer a memsw charge to swap
5645 * @page: page whose memsw charge to transfer
5646 * @entry: swap entry to move the charge to
5647 *
5648 * Transfer the memsw charge of @page to @entry.
5649 */
5650 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5651 {
5652 struct mem_cgroup *memcg;
5653 struct page_cgroup *pc;
5654 unsigned short oldid;
5655
5656 VM_BUG_ON_PAGE(PageLRU(page), page);
5657 VM_BUG_ON_PAGE(page_count(page), page);
5658
5659 if (!do_swap_account)
5660 return;
5661
5662 pc = lookup_page_cgroup(page);
5663 memcg = pc->mem_cgroup;
5664
5665 /* Readahead page, never charged */
5666 if (!memcg)
5667 return;
5668
5669 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5670 VM_BUG_ON_PAGE(oldid, page);
5671 mem_cgroup_swap_statistics(memcg, true);
5672
5673 pc->mem_cgroup = NULL;
5674
5675 if (!mem_cgroup_is_root(memcg))
5676 page_counter_uncharge(&memcg->memory, 1);
5677
5678 /* XXX: caller holds IRQ-safe mapping->tree_lock */
5679 VM_BUG_ON(!irqs_disabled());
5680
5681 mem_cgroup_charge_statistics(memcg, page, -1);
5682 memcg_check_events(memcg, page);
5683 }
5684
5685 /**
5686 * mem_cgroup_uncharge_swap - uncharge a swap entry
5687 * @entry: swap entry to uncharge
5688 *
5689 * Drop the memsw charge associated with @entry.
5690 */
5691 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5692 {
5693 struct mem_cgroup *memcg;
5694 unsigned short id;
5695
5696 if (!do_swap_account)
5697 return;
5698
5699 id = swap_cgroup_record(entry, 0);
5700 rcu_read_lock();
5701 memcg = mem_cgroup_lookup(id);
5702 if (memcg) {
5703 if (!mem_cgroup_is_root(memcg))
5704 page_counter_uncharge(&memcg->memsw, 1);
5705 mem_cgroup_swap_statistics(memcg, false);
5706 css_put(&memcg->css);
5707 }
5708 rcu_read_unlock();
5709 }
5710 #endif
5711
5712 /**
5713 * mem_cgroup_try_charge - try charging a page
5714 * @page: page to charge
5715 * @mm: mm context of the victim
5716 * @gfp_mask: reclaim mode
5717 * @memcgp: charged memcg return
5718 *
5719 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5720 * pages according to @gfp_mask if necessary.
5721 *
5722 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5723 * Otherwise, an error code is returned.
5724 *
5725 * After page->mapping has been set up, the caller must finalize the
5726 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5727 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5728 */
5729 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5730 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5731 {
5732 struct mem_cgroup *memcg = NULL;
5733 unsigned int nr_pages = 1;
5734 int ret = 0;
5735
5736 if (mem_cgroup_disabled())
5737 goto out;
5738
5739 if (PageSwapCache(page)) {
5740 struct page_cgroup *pc = lookup_page_cgroup(page);
5741 /*
5742 * Every swap fault against a single page tries to charge the
5743 * page, bail as early as possible. shmem_unuse() encounters
5744 * already charged pages, too. The USED bit is protected by
5745 * the page lock, which serializes swap cache removal, which
5746 * in turn serializes uncharging.
5747 */
5748 if (pc->mem_cgroup)
5749 goto out;
5750 }
5751
5752 if (PageTransHuge(page)) {
5753 nr_pages <<= compound_order(page);
5754 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5755 }
5756
5757 if (do_swap_account && PageSwapCache(page))
5758 memcg = try_get_mem_cgroup_from_page(page);
5759 if (!memcg)
5760 memcg = get_mem_cgroup_from_mm(mm);
5761
5762 ret = try_charge(memcg, gfp_mask, nr_pages);
5763
5764 css_put(&memcg->css);
5765
5766 if (ret == -EINTR) {
5767 memcg = root_mem_cgroup;
5768 ret = 0;
5769 }
5770 out:
5771 *memcgp = memcg;
5772 return ret;
5773 }
5774
5775 /**
5776 * mem_cgroup_commit_charge - commit a page charge
5777 * @page: page to charge
5778 * @memcg: memcg to charge the page to
5779 * @lrucare: page might be on LRU already
5780 *
5781 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5782 * after page->mapping has been set up. This must happen atomically
5783 * as part of the page instantiation, i.e. under the page table lock
5784 * for anonymous pages, under the page lock for page and swap cache.
5785 *
5786 * In addition, the page must not be on the LRU during the commit, to
5787 * prevent racing with task migration. If it might be, use @lrucare.
5788 *
5789 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5790 */
5791 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5792 bool lrucare)
5793 {
5794 unsigned int nr_pages = 1;
5795
5796 VM_BUG_ON_PAGE(!page->mapping, page);
5797 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5798
5799 if (mem_cgroup_disabled())
5800 return;
5801 /*
5802 * Swap faults will attempt to charge the same page multiple
5803 * times. But reuse_swap_page() might have removed the page
5804 * from swapcache already, so we can't check PageSwapCache().
5805 */
5806 if (!memcg)
5807 return;
5808
5809 commit_charge(page, memcg, lrucare);
5810
5811 if (PageTransHuge(page)) {
5812 nr_pages <<= compound_order(page);
5813 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5814 }
5815
5816 local_irq_disable();
5817 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5818 memcg_check_events(memcg, page);
5819 local_irq_enable();
5820
5821 if (do_swap_account && PageSwapCache(page)) {
5822 swp_entry_t entry = { .val = page_private(page) };
5823 /*
5824 * The swap entry might not get freed for a long time,
5825 * let's not wait for it. The page already received a
5826 * memory+swap charge, drop the swap entry duplicate.
5827 */
5828 mem_cgroup_uncharge_swap(entry);
5829 }
5830 }
5831
5832 /**
5833 * mem_cgroup_cancel_charge - cancel a page charge
5834 * @page: page to charge
5835 * @memcg: memcg to charge the page to
5836 *
5837 * Cancel a charge transaction started by mem_cgroup_try_charge().
5838 */
5839 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5840 {
5841 unsigned int nr_pages = 1;
5842
5843 if (mem_cgroup_disabled())
5844 return;
5845 /*
5846 * Swap faults will attempt to charge the same page multiple
5847 * times. But reuse_swap_page() might have removed the page
5848 * from swapcache already, so we can't check PageSwapCache().
5849 */
5850 if (!memcg)
5851 return;
5852
5853 if (PageTransHuge(page)) {
5854 nr_pages <<= compound_order(page);
5855 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5856 }
5857
5858 cancel_charge(memcg, nr_pages);
5859 }
5860
5861 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5862 unsigned long nr_anon, unsigned long nr_file,
5863 unsigned long nr_huge, struct page *dummy_page)
5864 {
5865 unsigned long nr_pages = nr_anon + nr_file;
5866 unsigned long flags;
5867
5868 if (!mem_cgroup_is_root(memcg)) {
5869 page_counter_uncharge(&memcg->memory, nr_pages);
5870 if (do_swap_account)
5871 page_counter_uncharge(&memcg->memsw, nr_pages);
5872 memcg_oom_recover(memcg);
5873 }
5874
5875 local_irq_save(flags);
5876 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5877 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5878 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5879 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5880 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5881 memcg_check_events(memcg, dummy_page);
5882 local_irq_restore(flags);
5883
5884 if (!mem_cgroup_is_root(memcg))
5885 css_put_many(&memcg->css, nr_pages);
5886 }
5887
5888 static void uncharge_list(struct list_head *page_list)
5889 {
5890 struct mem_cgroup *memcg = NULL;
5891 unsigned long nr_anon = 0;
5892 unsigned long nr_file = 0;
5893 unsigned long nr_huge = 0;
5894 unsigned long pgpgout = 0;
5895 struct list_head *next;
5896 struct page *page;
5897
5898 next = page_list->next;
5899 do {
5900 unsigned int nr_pages = 1;
5901 struct page_cgroup *pc;
5902
5903 page = list_entry(next, struct page, lru);
5904 next = page->lru.next;
5905
5906 VM_BUG_ON_PAGE(PageLRU(page), page);
5907 VM_BUG_ON_PAGE(page_count(page), page);
5908
5909 pc = lookup_page_cgroup(page);
5910 if (!pc->mem_cgroup)
5911 continue;
5912
5913 /*
5914 * Nobody should be changing or seriously looking at
5915 * pc->mem_cgroup at this point, we have fully
5916 * exclusive access to the page.
5917 */
5918
5919 if (memcg != pc->mem_cgroup) {
5920 if (memcg) {
5921 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5922 nr_huge, page);
5923 pgpgout = nr_anon = nr_file = nr_huge = 0;
5924 }
5925 memcg = pc->mem_cgroup;
5926 }
5927
5928 if (PageTransHuge(page)) {
5929 nr_pages <<= compound_order(page);
5930 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5931 nr_huge += nr_pages;
5932 }
5933
5934 if (PageAnon(page))
5935 nr_anon += nr_pages;
5936 else
5937 nr_file += nr_pages;
5938
5939 pc->mem_cgroup = NULL;
5940
5941 pgpgout++;
5942 } while (next != page_list);
5943
5944 if (memcg)
5945 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5946 nr_huge, page);
5947 }
5948
5949 /**
5950 * mem_cgroup_uncharge - uncharge a page
5951 * @page: page to uncharge
5952 *
5953 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5954 * mem_cgroup_commit_charge().
5955 */
5956 void mem_cgroup_uncharge(struct page *page)
5957 {
5958 struct page_cgroup *pc;
5959
5960 if (mem_cgroup_disabled())
5961 return;
5962
5963 /* Don't touch page->lru of any random page, pre-check: */
5964 pc = lookup_page_cgroup(page);
5965 if (!pc->mem_cgroup)
5966 return;
5967
5968 INIT_LIST_HEAD(&page->lru);
5969 uncharge_list(&page->lru);
5970 }
5971
5972 /**
5973 * mem_cgroup_uncharge_list - uncharge a list of page
5974 * @page_list: list of pages to uncharge
5975 *
5976 * Uncharge a list of pages previously charged with
5977 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5978 */
5979 void mem_cgroup_uncharge_list(struct list_head *page_list)
5980 {
5981 if (mem_cgroup_disabled())
5982 return;
5983
5984 if (!list_empty(page_list))
5985 uncharge_list(page_list);
5986 }
5987
5988 /**
5989 * mem_cgroup_migrate - migrate a charge to another page
5990 * @oldpage: currently charged page
5991 * @newpage: page to transfer the charge to
5992 * @lrucare: both pages might be on the LRU already
5993 *
5994 * Migrate the charge from @oldpage to @newpage.
5995 *
5996 * Both pages must be locked, @newpage->mapping must be set up.
5997 */
5998 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5999 bool lrucare)
6000 {
6001 struct mem_cgroup *memcg;
6002 struct page_cgroup *pc;
6003 int isolated;
6004
6005 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6006 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6007 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
6008 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
6009 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6010 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6011 newpage);
6012
6013 if (mem_cgroup_disabled())
6014 return;
6015
6016 /* Page cache replacement: new page already charged? */
6017 pc = lookup_page_cgroup(newpage);
6018 if (pc->mem_cgroup)
6019 return;
6020
6021 /*
6022 * Swapcache readahead pages can get migrated before being
6023 * charged, and migration from compaction can happen to an
6024 * uncharged page when the PFN walker finds a page that
6025 * reclaim just put back on the LRU but has not released yet.
6026 */
6027 pc = lookup_page_cgroup(oldpage);
6028 memcg = pc->mem_cgroup;
6029 if (!memcg)
6030 return;
6031
6032 if (lrucare)
6033 lock_page_lru(oldpage, &isolated);
6034
6035 pc->mem_cgroup = NULL;
6036
6037 if (lrucare)
6038 unlock_page_lru(oldpage, isolated);
6039
6040 commit_charge(newpage, memcg, lrucare);
6041 }
6042
6043 /*
6044 * subsys_initcall() for memory controller.
6045 *
6046 * Some parts like hotcpu_notifier() have to be initialized from this context
6047 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6048 * everything that doesn't depend on a specific mem_cgroup structure should
6049 * be initialized from here.
6050 */
6051 static int __init mem_cgroup_init(void)
6052 {
6053 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6054 enable_swap_cgroup();
6055 mem_cgroup_soft_limit_tree_init();
6056 memcg_stock_init();
6057 return 0;
6058 }
6059 subsys_initcall(mem_cgroup_init);
This page took 0.142956 seconds and 6 git commands to generate.