Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmalloc.h>
53 #include <linux/vmpressure.h>
54 #include <linux/mm_inline.h>
55 #include <linux/page_cgroup.h>
56 #include <linux/cpu.h>
57 #include <linux/oom.h>
58 #include <linux/lockdep.h>
59 #include <linux/file.h>
60 #include "internal.h"
61 #include <net/sock.h>
62 #include <net/ip.h>
63 #include <net/tcp_memcontrol.h>
64 #include "slab.h"
65
66 #include <asm/uaccess.h>
67
68 #include <trace/events/vmscan.h>
69
70 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
71 EXPORT_SYMBOL(mem_cgroup_subsys);
72
73 #define MEM_CGROUP_RECLAIM_RETRIES 5
74 static struct mem_cgroup *root_mem_cgroup __read_mostly;
75
76 #ifdef CONFIG_MEMCG_SWAP
77 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
78 int do_swap_account __read_mostly;
79
80 /* for remember boot option*/
81 #ifdef CONFIG_MEMCG_SWAP_ENABLED
82 static int really_do_swap_account __initdata = 1;
83 #else
84 static int really_do_swap_account __initdata = 0;
85 #endif
86
87 #else
88 #define do_swap_account 0
89 #endif
90
91
92 static const char * const mem_cgroup_stat_names[] = {
93 "cache",
94 "rss",
95 "rss_huge",
96 "mapped_file",
97 "writeback",
98 "swap",
99 };
100
101 enum mem_cgroup_events_index {
102 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
103 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
104 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
105 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
106 MEM_CGROUP_EVENTS_NSTATS,
107 };
108
109 static const char * const mem_cgroup_events_names[] = {
110 "pgpgin",
111 "pgpgout",
112 "pgfault",
113 "pgmajfault",
114 };
115
116 static const char * const mem_cgroup_lru_names[] = {
117 "inactive_anon",
118 "active_anon",
119 "inactive_file",
120 "active_file",
121 "unevictable",
122 };
123
124 /*
125 * Per memcg event counter is incremented at every pagein/pageout. With THP,
126 * it will be incremated by the number of pages. This counter is used for
127 * for trigger some periodic events. This is straightforward and better
128 * than using jiffies etc. to handle periodic memcg event.
129 */
130 enum mem_cgroup_events_target {
131 MEM_CGROUP_TARGET_THRESH,
132 MEM_CGROUP_TARGET_SOFTLIMIT,
133 MEM_CGROUP_TARGET_NUMAINFO,
134 MEM_CGROUP_NTARGETS,
135 };
136 #define THRESHOLDS_EVENTS_TARGET 128
137 #define SOFTLIMIT_EVENTS_TARGET 1024
138 #define NUMAINFO_EVENTS_TARGET 1024
139
140 struct mem_cgroup_stat_cpu {
141 long count[MEM_CGROUP_STAT_NSTATS];
142 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
143 unsigned long nr_page_events;
144 unsigned long targets[MEM_CGROUP_NTARGETS];
145 };
146
147 struct mem_cgroup_reclaim_iter {
148 /*
149 * last scanned hierarchy member. Valid only if last_dead_count
150 * matches memcg->dead_count of the hierarchy root group.
151 */
152 struct mem_cgroup *last_visited;
153 unsigned long last_dead_count;
154
155 /* scan generation, increased every round-trip */
156 unsigned int generation;
157 };
158
159 /*
160 * per-zone information in memory controller.
161 */
162 struct mem_cgroup_per_zone {
163 struct lruvec lruvec;
164 unsigned long lru_size[NR_LRU_LISTS];
165
166 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
167
168 struct rb_node tree_node; /* RB tree node */
169 unsigned long long usage_in_excess;/* Set to the value by which */
170 /* the soft limit is exceeded*/
171 bool on_tree;
172 struct mem_cgroup *memcg; /* Back pointer, we cannot */
173 /* use container_of */
174 };
175
176 struct mem_cgroup_per_node {
177 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
178 };
179
180 /*
181 * Cgroups above their limits are maintained in a RB-Tree, independent of
182 * their hierarchy representation
183 */
184
185 struct mem_cgroup_tree_per_zone {
186 struct rb_root rb_root;
187 spinlock_t lock;
188 };
189
190 struct mem_cgroup_tree_per_node {
191 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
192 };
193
194 struct mem_cgroup_tree {
195 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
196 };
197
198 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
199
200 struct mem_cgroup_threshold {
201 struct eventfd_ctx *eventfd;
202 u64 threshold;
203 };
204
205 /* For threshold */
206 struct mem_cgroup_threshold_ary {
207 /* An array index points to threshold just below or equal to usage. */
208 int current_threshold;
209 /* Size of entries[] */
210 unsigned int size;
211 /* Array of thresholds */
212 struct mem_cgroup_threshold entries[0];
213 };
214
215 struct mem_cgroup_thresholds {
216 /* Primary thresholds array */
217 struct mem_cgroup_threshold_ary *primary;
218 /*
219 * Spare threshold array.
220 * This is needed to make mem_cgroup_unregister_event() "never fail".
221 * It must be able to store at least primary->size - 1 entries.
222 */
223 struct mem_cgroup_threshold_ary *spare;
224 };
225
226 /* for OOM */
227 struct mem_cgroup_eventfd_list {
228 struct list_head list;
229 struct eventfd_ctx *eventfd;
230 };
231
232 /*
233 * cgroup_event represents events which userspace want to receive.
234 */
235 struct mem_cgroup_event {
236 /*
237 * memcg which the event belongs to.
238 */
239 struct mem_cgroup *memcg;
240 /*
241 * eventfd to signal userspace about the event.
242 */
243 struct eventfd_ctx *eventfd;
244 /*
245 * Each of these stored in a list by the cgroup.
246 */
247 struct list_head list;
248 /*
249 * register_event() callback will be used to add new userspace
250 * waiter for changes related to this event. Use eventfd_signal()
251 * on eventfd to send notification to userspace.
252 */
253 int (*register_event)(struct mem_cgroup *memcg,
254 struct eventfd_ctx *eventfd, const char *args);
255 /*
256 * unregister_event() callback will be called when userspace closes
257 * the eventfd or on cgroup removing. This callback must be set,
258 * if you want provide notification functionality.
259 */
260 void (*unregister_event)(struct mem_cgroup *memcg,
261 struct eventfd_ctx *eventfd);
262 /*
263 * All fields below needed to unregister event when
264 * userspace closes eventfd.
265 */
266 poll_table pt;
267 wait_queue_head_t *wqh;
268 wait_queue_t wait;
269 struct work_struct remove;
270 };
271
272 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
273 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
274
275 /*
276 * The memory controller data structure. The memory controller controls both
277 * page cache and RSS per cgroup. We would eventually like to provide
278 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
279 * to help the administrator determine what knobs to tune.
280 *
281 * TODO: Add a water mark for the memory controller. Reclaim will begin when
282 * we hit the water mark. May be even add a low water mark, such that
283 * no reclaim occurs from a cgroup at it's low water mark, this is
284 * a feature that will be implemented much later in the future.
285 */
286 struct mem_cgroup {
287 struct cgroup_subsys_state css;
288 /*
289 * the counter to account for memory usage
290 */
291 struct res_counter res;
292
293 /* vmpressure notifications */
294 struct vmpressure vmpressure;
295
296 /*
297 * the counter to account for mem+swap usage.
298 */
299 struct res_counter memsw;
300
301 /*
302 * the counter to account for kernel memory usage.
303 */
304 struct res_counter kmem;
305 /*
306 * Should the accounting and control be hierarchical, per subtree?
307 */
308 bool use_hierarchy;
309 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
310
311 bool oom_lock;
312 atomic_t under_oom;
313 atomic_t oom_wakeups;
314
315 int swappiness;
316 /* OOM-Killer disable */
317 int oom_kill_disable;
318
319 /* set when res.limit == memsw.limit */
320 bool memsw_is_minimum;
321
322 /* protect arrays of thresholds */
323 struct mutex thresholds_lock;
324
325 /* thresholds for memory usage. RCU-protected */
326 struct mem_cgroup_thresholds thresholds;
327
328 /* thresholds for mem+swap usage. RCU-protected */
329 struct mem_cgroup_thresholds memsw_thresholds;
330
331 /* For oom notifier event fd */
332 struct list_head oom_notify;
333
334 /*
335 * Should we move charges of a task when a task is moved into this
336 * mem_cgroup ? And what type of charges should we move ?
337 */
338 unsigned long move_charge_at_immigrate;
339 /*
340 * set > 0 if pages under this cgroup are moving to other cgroup.
341 */
342 atomic_t moving_account;
343 /* taken only while moving_account > 0 */
344 spinlock_t move_lock;
345 /*
346 * percpu counter.
347 */
348 struct mem_cgroup_stat_cpu __percpu *stat;
349 /*
350 * used when a cpu is offlined or other synchronizations
351 * See mem_cgroup_read_stat().
352 */
353 struct mem_cgroup_stat_cpu nocpu_base;
354 spinlock_t pcp_counter_lock;
355
356 atomic_t dead_count;
357 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
358 struct cg_proto tcp_mem;
359 #endif
360 #if defined(CONFIG_MEMCG_KMEM)
361 /* analogous to slab_common's slab_caches list. per-memcg */
362 struct list_head memcg_slab_caches;
363 /* Not a spinlock, we can take a lot of time walking the list */
364 struct mutex slab_caches_mutex;
365 /* Index in the kmem_cache->memcg_params->memcg_caches array */
366 int kmemcg_id;
367 #endif
368
369 int last_scanned_node;
370 #if MAX_NUMNODES > 1
371 nodemask_t scan_nodes;
372 atomic_t numainfo_events;
373 atomic_t numainfo_updating;
374 #endif
375
376 /* List of events which userspace want to receive */
377 struct list_head event_list;
378 spinlock_t event_list_lock;
379
380 struct mem_cgroup_per_node *nodeinfo[0];
381 /* WARNING: nodeinfo must be the last member here */
382 };
383
384 static size_t memcg_size(void)
385 {
386 return sizeof(struct mem_cgroup) +
387 nr_node_ids * sizeof(struct mem_cgroup_per_node *);
388 }
389
390 /* internal only representation about the status of kmem accounting. */
391 enum {
392 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
393 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
394 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
395 };
396
397 /* We account when limit is on, but only after call sites are patched */
398 #define KMEM_ACCOUNTED_MASK \
399 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
400
401 #ifdef CONFIG_MEMCG_KMEM
402 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
403 {
404 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
405 }
406
407 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
408 {
409 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
410 }
411
412 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
413 {
414 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
415 }
416
417 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
418 {
419 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
420 }
421
422 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
423 {
424 /*
425 * Our caller must use css_get() first, because memcg_uncharge_kmem()
426 * will call css_put() if it sees the memcg is dead.
427 */
428 smp_wmb();
429 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
430 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
431 }
432
433 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
434 {
435 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
436 &memcg->kmem_account_flags);
437 }
438 #endif
439
440 /* Stuffs for move charges at task migration. */
441 /*
442 * Types of charges to be moved. "move_charge_at_immitgrate" and
443 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
444 */
445 enum move_type {
446 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
447 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
448 NR_MOVE_TYPE,
449 };
450
451 /* "mc" and its members are protected by cgroup_mutex */
452 static struct move_charge_struct {
453 spinlock_t lock; /* for from, to */
454 struct mem_cgroup *from;
455 struct mem_cgroup *to;
456 unsigned long immigrate_flags;
457 unsigned long precharge;
458 unsigned long moved_charge;
459 unsigned long moved_swap;
460 struct task_struct *moving_task; /* a task moving charges */
461 wait_queue_head_t waitq; /* a waitq for other context */
462 } mc = {
463 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
464 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
465 };
466
467 static bool move_anon(void)
468 {
469 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
470 }
471
472 static bool move_file(void)
473 {
474 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
475 }
476
477 /*
478 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
479 * limit reclaim to prevent infinite loops, if they ever occur.
480 */
481 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
482 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
483
484 enum charge_type {
485 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
486 MEM_CGROUP_CHARGE_TYPE_ANON,
487 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
488 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
489 NR_CHARGE_TYPE,
490 };
491
492 /* for encoding cft->private value on file */
493 enum res_type {
494 _MEM,
495 _MEMSWAP,
496 _OOM_TYPE,
497 _KMEM,
498 };
499
500 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
501 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
502 #define MEMFILE_ATTR(val) ((val) & 0xffff)
503 /* Used for OOM nofiier */
504 #define OOM_CONTROL (0)
505
506 /*
507 * Reclaim flags for mem_cgroup_hierarchical_reclaim
508 */
509 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
510 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
511 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
512 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
513
514 /*
515 * The memcg_create_mutex will be held whenever a new cgroup is created.
516 * As a consequence, any change that needs to protect against new child cgroups
517 * appearing has to hold it as well.
518 */
519 static DEFINE_MUTEX(memcg_create_mutex);
520
521 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
522 {
523 return s ? container_of(s, struct mem_cgroup, css) : NULL;
524 }
525
526 /* Some nice accessors for the vmpressure. */
527 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
528 {
529 if (!memcg)
530 memcg = root_mem_cgroup;
531 return &memcg->vmpressure;
532 }
533
534 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
535 {
536 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
537 }
538
539 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
540 {
541 return (memcg == root_mem_cgroup);
542 }
543
544 /*
545 * We restrict the id in the range of [1, 65535], so it can fit into
546 * an unsigned short.
547 */
548 #define MEM_CGROUP_ID_MAX USHRT_MAX
549
550 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
551 {
552 /*
553 * The ID of the root cgroup is 0, but memcg treat 0 as an
554 * invalid ID, so we return (cgroup_id + 1).
555 */
556 return memcg->css.cgroup->id + 1;
557 }
558
559 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
560 {
561 struct cgroup_subsys_state *css;
562
563 css = css_from_id(id - 1, &mem_cgroup_subsys);
564 return mem_cgroup_from_css(css);
565 }
566
567 /* Writing them here to avoid exposing memcg's inner layout */
568 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
569
570 void sock_update_memcg(struct sock *sk)
571 {
572 if (mem_cgroup_sockets_enabled) {
573 struct mem_cgroup *memcg;
574 struct cg_proto *cg_proto;
575
576 BUG_ON(!sk->sk_prot->proto_cgroup);
577
578 /* Socket cloning can throw us here with sk_cgrp already
579 * filled. It won't however, necessarily happen from
580 * process context. So the test for root memcg given
581 * the current task's memcg won't help us in this case.
582 *
583 * Respecting the original socket's memcg is a better
584 * decision in this case.
585 */
586 if (sk->sk_cgrp) {
587 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
588 css_get(&sk->sk_cgrp->memcg->css);
589 return;
590 }
591
592 rcu_read_lock();
593 memcg = mem_cgroup_from_task(current);
594 cg_proto = sk->sk_prot->proto_cgroup(memcg);
595 if (!mem_cgroup_is_root(memcg) &&
596 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
597 sk->sk_cgrp = cg_proto;
598 }
599 rcu_read_unlock();
600 }
601 }
602 EXPORT_SYMBOL(sock_update_memcg);
603
604 void sock_release_memcg(struct sock *sk)
605 {
606 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
607 struct mem_cgroup *memcg;
608 WARN_ON(!sk->sk_cgrp->memcg);
609 memcg = sk->sk_cgrp->memcg;
610 css_put(&sk->sk_cgrp->memcg->css);
611 }
612 }
613
614 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
615 {
616 if (!memcg || mem_cgroup_is_root(memcg))
617 return NULL;
618
619 return &memcg->tcp_mem;
620 }
621 EXPORT_SYMBOL(tcp_proto_cgroup);
622
623 static void disarm_sock_keys(struct mem_cgroup *memcg)
624 {
625 if (!memcg_proto_activated(&memcg->tcp_mem))
626 return;
627 static_key_slow_dec(&memcg_socket_limit_enabled);
628 }
629 #else
630 static void disarm_sock_keys(struct mem_cgroup *memcg)
631 {
632 }
633 #endif
634
635 #ifdef CONFIG_MEMCG_KMEM
636 /*
637 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
638 * The main reason for not using cgroup id for this:
639 * this works better in sparse environments, where we have a lot of memcgs,
640 * but only a few kmem-limited. Or also, if we have, for instance, 200
641 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
642 * 200 entry array for that.
643 *
644 * The current size of the caches array is stored in
645 * memcg_limited_groups_array_size. It will double each time we have to
646 * increase it.
647 */
648 static DEFINE_IDA(kmem_limited_groups);
649 int memcg_limited_groups_array_size;
650
651 /*
652 * MIN_SIZE is different than 1, because we would like to avoid going through
653 * the alloc/free process all the time. In a small machine, 4 kmem-limited
654 * cgroups is a reasonable guess. In the future, it could be a parameter or
655 * tunable, but that is strictly not necessary.
656 *
657 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
658 * this constant directly from cgroup, but it is understandable that this is
659 * better kept as an internal representation in cgroup.c. In any case, the
660 * cgrp_id space is not getting any smaller, and we don't have to necessarily
661 * increase ours as well if it increases.
662 */
663 #define MEMCG_CACHES_MIN_SIZE 4
664 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
665
666 /*
667 * A lot of the calls to the cache allocation functions are expected to be
668 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
669 * conditional to this static branch, we'll have to allow modules that does
670 * kmem_cache_alloc and the such to see this symbol as well
671 */
672 struct static_key memcg_kmem_enabled_key;
673 EXPORT_SYMBOL(memcg_kmem_enabled_key);
674
675 static void disarm_kmem_keys(struct mem_cgroup *memcg)
676 {
677 if (memcg_kmem_is_active(memcg)) {
678 static_key_slow_dec(&memcg_kmem_enabled_key);
679 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
680 }
681 /*
682 * This check can't live in kmem destruction function,
683 * since the charges will outlive the cgroup
684 */
685 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
686 }
687 #else
688 static void disarm_kmem_keys(struct mem_cgroup *memcg)
689 {
690 }
691 #endif /* CONFIG_MEMCG_KMEM */
692
693 static void disarm_static_keys(struct mem_cgroup *memcg)
694 {
695 disarm_sock_keys(memcg);
696 disarm_kmem_keys(memcg);
697 }
698
699 static void drain_all_stock_async(struct mem_cgroup *memcg);
700
701 static struct mem_cgroup_per_zone *
702 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
703 {
704 VM_BUG_ON((unsigned)nid >= nr_node_ids);
705 return &memcg->nodeinfo[nid]->zoneinfo[zid];
706 }
707
708 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
709 {
710 return &memcg->css;
711 }
712
713 static struct mem_cgroup_per_zone *
714 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
715 {
716 int nid = page_to_nid(page);
717 int zid = page_zonenum(page);
718
719 return mem_cgroup_zoneinfo(memcg, nid, zid);
720 }
721
722 static struct mem_cgroup_tree_per_zone *
723 soft_limit_tree_node_zone(int nid, int zid)
724 {
725 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
726 }
727
728 static struct mem_cgroup_tree_per_zone *
729 soft_limit_tree_from_page(struct page *page)
730 {
731 int nid = page_to_nid(page);
732 int zid = page_zonenum(page);
733
734 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
735 }
736
737 static void
738 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
739 struct mem_cgroup_per_zone *mz,
740 struct mem_cgroup_tree_per_zone *mctz,
741 unsigned long long new_usage_in_excess)
742 {
743 struct rb_node **p = &mctz->rb_root.rb_node;
744 struct rb_node *parent = NULL;
745 struct mem_cgroup_per_zone *mz_node;
746
747 if (mz->on_tree)
748 return;
749
750 mz->usage_in_excess = new_usage_in_excess;
751 if (!mz->usage_in_excess)
752 return;
753 while (*p) {
754 parent = *p;
755 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
756 tree_node);
757 if (mz->usage_in_excess < mz_node->usage_in_excess)
758 p = &(*p)->rb_left;
759 /*
760 * We can't avoid mem cgroups that are over their soft
761 * limit by the same amount
762 */
763 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
764 p = &(*p)->rb_right;
765 }
766 rb_link_node(&mz->tree_node, parent, p);
767 rb_insert_color(&mz->tree_node, &mctz->rb_root);
768 mz->on_tree = true;
769 }
770
771 static void
772 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
773 struct mem_cgroup_per_zone *mz,
774 struct mem_cgroup_tree_per_zone *mctz)
775 {
776 if (!mz->on_tree)
777 return;
778 rb_erase(&mz->tree_node, &mctz->rb_root);
779 mz->on_tree = false;
780 }
781
782 static void
783 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
784 struct mem_cgroup_per_zone *mz,
785 struct mem_cgroup_tree_per_zone *mctz)
786 {
787 spin_lock(&mctz->lock);
788 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
789 spin_unlock(&mctz->lock);
790 }
791
792
793 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
794 {
795 unsigned long long excess;
796 struct mem_cgroup_per_zone *mz;
797 struct mem_cgroup_tree_per_zone *mctz;
798 int nid = page_to_nid(page);
799 int zid = page_zonenum(page);
800 mctz = soft_limit_tree_from_page(page);
801
802 /*
803 * Necessary to update all ancestors when hierarchy is used.
804 * because their event counter is not touched.
805 */
806 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
807 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
808 excess = res_counter_soft_limit_excess(&memcg->res);
809 /*
810 * We have to update the tree if mz is on RB-tree or
811 * mem is over its softlimit.
812 */
813 if (excess || mz->on_tree) {
814 spin_lock(&mctz->lock);
815 /* if on-tree, remove it */
816 if (mz->on_tree)
817 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
818 /*
819 * Insert again. mz->usage_in_excess will be updated.
820 * If excess is 0, no tree ops.
821 */
822 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
823 spin_unlock(&mctz->lock);
824 }
825 }
826 }
827
828 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
829 {
830 int node, zone;
831 struct mem_cgroup_per_zone *mz;
832 struct mem_cgroup_tree_per_zone *mctz;
833
834 for_each_node(node) {
835 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
836 mz = mem_cgroup_zoneinfo(memcg, node, zone);
837 mctz = soft_limit_tree_node_zone(node, zone);
838 mem_cgroup_remove_exceeded(memcg, mz, mctz);
839 }
840 }
841 }
842
843 static struct mem_cgroup_per_zone *
844 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
845 {
846 struct rb_node *rightmost = NULL;
847 struct mem_cgroup_per_zone *mz;
848
849 retry:
850 mz = NULL;
851 rightmost = rb_last(&mctz->rb_root);
852 if (!rightmost)
853 goto done; /* Nothing to reclaim from */
854
855 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
856 /*
857 * Remove the node now but someone else can add it back,
858 * we will to add it back at the end of reclaim to its correct
859 * position in the tree.
860 */
861 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
862 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
863 !css_tryget(&mz->memcg->css))
864 goto retry;
865 done:
866 return mz;
867 }
868
869 static struct mem_cgroup_per_zone *
870 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
871 {
872 struct mem_cgroup_per_zone *mz;
873
874 spin_lock(&mctz->lock);
875 mz = __mem_cgroup_largest_soft_limit_node(mctz);
876 spin_unlock(&mctz->lock);
877 return mz;
878 }
879
880 /*
881 * Implementation Note: reading percpu statistics for memcg.
882 *
883 * Both of vmstat[] and percpu_counter has threshold and do periodic
884 * synchronization to implement "quick" read. There are trade-off between
885 * reading cost and precision of value. Then, we may have a chance to implement
886 * a periodic synchronizion of counter in memcg's counter.
887 *
888 * But this _read() function is used for user interface now. The user accounts
889 * memory usage by memory cgroup and he _always_ requires exact value because
890 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
891 * have to visit all online cpus and make sum. So, for now, unnecessary
892 * synchronization is not implemented. (just implemented for cpu hotplug)
893 *
894 * If there are kernel internal actions which can make use of some not-exact
895 * value, and reading all cpu value can be performance bottleneck in some
896 * common workload, threashold and synchonization as vmstat[] should be
897 * implemented.
898 */
899 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
900 enum mem_cgroup_stat_index idx)
901 {
902 long val = 0;
903 int cpu;
904
905 get_online_cpus();
906 for_each_online_cpu(cpu)
907 val += per_cpu(memcg->stat->count[idx], cpu);
908 #ifdef CONFIG_HOTPLUG_CPU
909 spin_lock(&memcg->pcp_counter_lock);
910 val += memcg->nocpu_base.count[idx];
911 spin_unlock(&memcg->pcp_counter_lock);
912 #endif
913 put_online_cpus();
914 return val;
915 }
916
917 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
918 bool charge)
919 {
920 int val = (charge) ? 1 : -1;
921 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
922 }
923
924 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
925 enum mem_cgroup_events_index idx)
926 {
927 unsigned long val = 0;
928 int cpu;
929
930 get_online_cpus();
931 for_each_online_cpu(cpu)
932 val += per_cpu(memcg->stat->events[idx], cpu);
933 #ifdef CONFIG_HOTPLUG_CPU
934 spin_lock(&memcg->pcp_counter_lock);
935 val += memcg->nocpu_base.events[idx];
936 spin_unlock(&memcg->pcp_counter_lock);
937 #endif
938 put_online_cpus();
939 return val;
940 }
941
942 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
943 struct page *page,
944 bool anon, int nr_pages)
945 {
946 preempt_disable();
947
948 /*
949 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
950 * counted as CACHE even if it's on ANON LRU.
951 */
952 if (anon)
953 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
954 nr_pages);
955 else
956 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
957 nr_pages);
958
959 if (PageTransHuge(page))
960 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
961 nr_pages);
962
963 /* pagein of a big page is an event. So, ignore page size */
964 if (nr_pages > 0)
965 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
966 else {
967 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
968 nr_pages = -nr_pages; /* for event */
969 }
970
971 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
972
973 preempt_enable();
974 }
975
976 unsigned long
977 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
978 {
979 struct mem_cgroup_per_zone *mz;
980
981 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
982 return mz->lru_size[lru];
983 }
984
985 static unsigned long
986 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
987 unsigned int lru_mask)
988 {
989 struct mem_cgroup_per_zone *mz;
990 enum lru_list lru;
991 unsigned long ret = 0;
992
993 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
994
995 for_each_lru(lru) {
996 if (BIT(lru) & lru_mask)
997 ret += mz->lru_size[lru];
998 }
999 return ret;
1000 }
1001
1002 static unsigned long
1003 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
1004 int nid, unsigned int lru_mask)
1005 {
1006 u64 total = 0;
1007 int zid;
1008
1009 for (zid = 0; zid < MAX_NR_ZONES; zid++)
1010 total += mem_cgroup_zone_nr_lru_pages(memcg,
1011 nid, zid, lru_mask);
1012
1013 return total;
1014 }
1015
1016 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
1017 unsigned int lru_mask)
1018 {
1019 int nid;
1020 u64 total = 0;
1021
1022 for_each_node_state(nid, N_MEMORY)
1023 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
1024 return total;
1025 }
1026
1027 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1028 enum mem_cgroup_events_target target)
1029 {
1030 unsigned long val, next;
1031
1032 val = __this_cpu_read(memcg->stat->nr_page_events);
1033 next = __this_cpu_read(memcg->stat->targets[target]);
1034 /* from time_after() in jiffies.h */
1035 if ((long)next - (long)val < 0) {
1036 switch (target) {
1037 case MEM_CGROUP_TARGET_THRESH:
1038 next = val + THRESHOLDS_EVENTS_TARGET;
1039 break;
1040 case MEM_CGROUP_TARGET_SOFTLIMIT:
1041 next = val + SOFTLIMIT_EVENTS_TARGET;
1042 break;
1043 case MEM_CGROUP_TARGET_NUMAINFO:
1044 next = val + NUMAINFO_EVENTS_TARGET;
1045 break;
1046 default:
1047 break;
1048 }
1049 __this_cpu_write(memcg->stat->targets[target], next);
1050 return true;
1051 }
1052 return false;
1053 }
1054
1055 /*
1056 * Check events in order.
1057 *
1058 */
1059 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1060 {
1061 preempt_disable();
1062 /* threshold event is triggered in finer grain than soft limit */
1063 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1064 MEM_CGROUP_TARGET_THRESH))) {
1065 bool do_softlimit;
1066 bool do_numainfo __maybe_unused;
1067
1068 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1069 MEM_CGROUP_TARGET_SOFTLIMIT);
1070 #if MAX_NUMNODES > 1
1071 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1072 MEM_CGROUP_TARGET_NUMAINFO);
1073 #endif
1074 preempt_enable();
1075
1076 mem_cgroup_threshold(memcg);
1077 if (unlikely(do_softlimit))
1078 mem_cgroup_update_tree(memcg, page);
1079 #if MAX_NUMNODES > 1
1080 if (unlikely(do_numainfo))
1081 atomic_inc(&memcg->numainfo_events);
1082 #endif
1083 } else
1084 preempt_enable();
1085 }
1086
1087 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1088 {
1089 /*
1090 * mm_update_next_owner() may clear mm->owner to NULL
1091 * if it races with swapoff, page migration, etc.
1092 * So this can be called with p == NULL.
1093 */
1094 if (unlikely(!p))
1095 return NULL;
1096
1097 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1098 }
1099
1100 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1101 {
1102 struct mem_cgroup *memcg = NULL;
1103
1104 if (!mm)
1105 return NULL;
1106 /*
1107 * Because we have no locks, mm->owner's may be being moved to other
1108 * cgroup. We use css_tryget() here even if this looks
1109 * pessimistic (rather than adding locks here).
1110 */
1111 rcu_read_lock();
1112 do {
1113 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1114 if (unlikely(!memcg))
1115 break;
1116 } while (!css_tryget(&memcg->css));
1117 rcu_read_unlock();
1118 return memcg;
1119 }
1120
1121 /*
1122 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1123 * ref. count) or NULL if the whole root's subtree has been visited.
1124 *
1125 * helper function to be used by mem_cgroup_iter
1126 */
1127 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1128 struct mem_cgroup *last_visited)
1129 {
1130 struct cgroup_subsys_state *prev_css, *next_css;
1131
1132 prev_css = last_visited ? &last_visited->css : NULL;
1133 skip_node:
1134 next_css = css_next_descendant_pre(prev_css, &root->css);
1135
1136 /*
1137 * Even if we found a group we have to make sure it is
1138 * alive. css && !memcg means that the groups should be
1139 * skipped and we should continue the tree walk.
1140 * last_visited css is safe to use because it is
1141 * protected by css_get and the tree walk is rcu safe.
1142 */
1143 if (next_css) {
1144 struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
1145
1146 if (css_tryget(&mem->css))
1147 return mem;
1148 else {
1149 prev_css = next_css;
1150 goto skip_node;
1151 }
1152 }
1153
1154 return NULL;
1155 }
1156
1157 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1158 {
1159 /*
1160 * When a group in the hierarchy below root is destroyed, the
1161 * hierarchy iterator can no longer be trusted since it might
1162 * have pointed to the destroyed group. Invalidate it.
1163 */
1164 atomic_inc(&root->dead_count);
1165 }
1166
1167 static struct mem_cgroup *
1168 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1169 struct mem_cgroup *root,
1170 int *sequence)
1171 {
1172 struct mem_cgroup *position = NULL;
1173 /*
1174 * A cgroup destruction happens in two stages: offlining and
1175 * release. They are separated by a RCU grace period.
1176 *
1177 * If the iterator is valid, we may still race with an
1178 * offlining. The RCU lock ensures the object won't be
1179 * released, tryget will fail if we lost the race.
1180 */
1181 *sequence = atomic_read(&root->dead_count);
1182 if (iter->last_dead_count == *sequence) {
1183 smp_rmb();
1184 position = iter->last_visited;
1185 if (position && !css_tryget(&position->css))
1186 position = NULL;
1187 }
1188 return position;
1189 }
1190
1191 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1192 struct mem_cgroup *last_visited,
1193 struct mem_cgroup *new_position,
1194 int sequence)
1195 {
1196 if (last_visited)
1197 css_put(&last_visited->css);
1198 /*
1199 * We store the sequence count from the time @last_visited was
1200 * loaded successfully instead of rereading it here so that we
1201 * don't lose destruction events in between. We could have
1202 * raced with the destruction of @new_position after all.
1203 */
1204 iter->last_visited = new_position;
1205 smp_wmb();
1206 iter->last_dead_count = sequence;
1207 }
1208
1209 /**
1210 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1211 * @root: hierarchy root
1212 * @prev: previously returned memcg, NULL on first invocation
1213 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1214 *
1215 * Returns references to children of the hierarchy below @root, or
1216 * @root itself, or %NULL after a full round-trip.
1217 *
1218 * Caller must pass the return value in @prev on subsequent
1219 * invocations for reference counting, or use mem_cgroup_iter_break()
1220 * to cancel a hierarchy walk before the round-trip is complete.
1221 *
1222 * Reclaimers can specify a zone and a priority level in @reclaim to
1223 * divide up the memcgs in the hierarchy among all concurrent
1224 * reclaimers operating on the same zone and priority.
1225 */
1226 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1227 struct mem_cgroup *prev,
1228 struct mem_cgroup_reclaim_cookie *reclaim)
1229 {
1230 struct mem_cgroup *memcg = NULL;
1231 struct mem_cgroup *last_visited = NULL;
1232
1233 if (mem_cgroup_disabled())
1234 return NULL;
1235
1236 if (!root)
1237 root = root_mem_cgroup;
1238
1239 if (prev && !reclaim)
1240 last_visited = prev;
1241
1242 if (!root->use_hierarchy && root != root_mem_cgroup) {
1243 if (prev)
1244 goto out_css_put;
1245 return root;
1246 }
1247
1248 rcu_read_lock();
1249 while (!memcg) {
1250 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1251 int uninitialized_var(seq);
1252
1253 if (reclaim) {
1254 int nid = zone_to_nid(reclaim->zone);
1255 int zid = zone_idx(reclaim->zone);
1256 struct mem_cgroup_per_zone *mz;
1257
1258 mz = mem_cgroup_zoneinfo(root, nid, zid);
1259 iter = &mz->reclaim_iter[reclaim->priority];
1260 if (prev && reclaim->generation != iter->generation) {
1261 iter->last_visited = NULL;
1262 goto out_unlock;
1263 }
1264
1265 last_visited = mem_cgroup_iter_load(iter, root, &seq);
1266 }
1267
1268 memcg = __mem_cgroup_iter_next(root, last_visited);
1269
1270 if (reclaim) {
1271 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1272
1273 if (!memcg)
1274 iter->generation++;
1275 else if (!prev && memcg)
1276 reclaim->generation = iter->generation;
1277 }
1278
1279 if (prev && !memcg)
1280 goto out_unlock;
1281 }
1282 out_unlock:
1283 rcu_read_unlock();
1284 out_css_put:
1285 if (prev && prev != root)
1286 css_put(&prev->css);
1287
1288 return memcg;
1289 }
1290
1291 /**
1292 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1293 * @root: hierarchy root
1294 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1295 */
1296 void mem_cgroup_iter_break(struct mem_cgroup *root,
1297 struct mem_cgroup *prev)
1298 {
1299 if (!root)
1300 root = root_mem_cgroup;
1301 if (prev && prev != root)
1302 css_put(&prev->css);
1303 }
1304
1305 /*
1306 * Iteration constructs for visiting all cgroups (under a tree). If
1307 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1308 * be used for reference counting.
1309 */
1310 #define for_each_mem_cgroup_tree(iter, root) \
1311 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1312 iter != NULL; \
1313 iter = mem_cgroup_iter(root, iter, NULL))
1314
1315 #define for_each_mem_cgroup(iter) \
1316 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1317 iter != NULL; \
1318 iter = mem_cgroup_iter(NULL, iter, NULL))
1319
1320 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1321 {
1322 struct mem_cgroup *memcg;
1323
1324 rcu_read_lock();
1325 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1326 if (unlikely(!memcg))
1327 goto out;
1328
1329 switch (idx) {
1330 case PGFAULT:
1331 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1332 break;
1333 case PGMAJFAULT:
1334 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1335 break;
1336 default:
1337 BUG();
1338 }
1339 out:
1340 rcu_read_unlock();
1341 }
1342 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1343
1344 /**
1345 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1346 * @zone: zone of the wanted lruvec
1347 * @memcg: memcg of the wanted lruvec
1348 *
1349 * Returns the lru list vector holding pages for the given @zone and
1350 * @mem. This can be the global zone lruvec, if the memory controller
1351 * is disabled.
1352 */
1353 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1354 struct mem_cgroup *memcg)
1355 {
1356 struct mem_cgroup_per_zone *mz;
1357 struct lruvec *lruvec;
1358
1359 if (mem_cgroup_disabled()) {
1360 lruvec = &zone->lruvec;
1361 goto out;
1362 }
1363
1364 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1365 lruvec = &mz->lruvec;
1366 out:
1367 /*
1368 * Since a node can be onlined after the mem_cgroup was created,
1369 * we have to be prepared to initialize lruvec->zone here;
1370 * and if offlined then reonlined, we need to reinitialize it.
1371 */
1372 if (unlikely(lruvec->zone != zone))
1373 lruvec->zone = zone;
1374 return lruvec;
1375 }
1376
1377 /*
1378 * Following LRU functions are allowed to be used without PCG_LOCK.
1379 * Operations are called by routine of global LRU independently from memcg.
1380 * What we have to take care of here is validness of pc->mem_cgroup.
1381 *
1382 * Changes to pc->mem_cgroup happens when
1383 * 1. charge
1384 * 2. moving account
1385 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1386 * It is added to LRU before charge.
1387 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1388 * When moving account, the page is not on LRU. It's isolated.
1389 */
1390
1391 /**
1392 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1393 * @page: the page
1394 * @zone: zone of the page
1395 */
1396 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1397 {
1398 struct mem_cgroup_per_zone *mz;
1399 struct mem_cgroup *memcg;
1400 struct page_cgroup *pc;
1401 struct lruvec *lruvec;
1402
1403 if (mem_cgroup_disabled()) {
1404 lruvec = &zone->lruvec;
1405 goto out;
1406 }
1407
1408 pc = lookup_page_cgroup(page);
1409 memcg = pc->mem_cgroup;
1410
1411 /*
1412 * Surreptitiously switch any uncharged offlist page to root:
1413 * an uncharged page off lru does nothing to secure
1414 * its former mem_cgroup from sudden removal.
1415 *
1416 * Our caller holds lru_lock, and PageCgroupUsed is updated
1417 * under page_cgroup lock: between them, they make all uses
1418 * of pc->mem_cgroup safe.
1419 */
1420 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1421 pc->mem_cgroup = memcg = root_mem_cgroup;
1422
1423 mz = page_cgroup_zoneinfo(memcg, page);
1424 lruvec = &mz->lruvec;
1425 out:
1426 /*
1427 * Since a node can be onlined after the mem_cgroup was created,
1428 * we have to be prepared to initialize lruvec->zone here;
1429 * and if offlined then reonlined, we need to reinitialize it.
1430 */
1431 if (unlikely(lruvec->zone != zone))
1432 lruvec->zone = zone;
1433 return lruvec;
1434 }
1435
1436 /**
1437 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1438 * @lruvec: mem_cgroup per zone lru vector
1439 * @lru: index of lru list the page is sitting on
1440 * @nr_pages: positive when adding or negative when removing
1441 *
1442 * This function must be called when a page is added to or removed from an
1443 * lru list.
1444 */
1445 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1446 int nr_pages)
1447 {
1448 struct mem_cgroup_per_zone *mz;
1449 unsigned long *lru_size;
1450
1451 if (mem_cgroup_disabled())
1452 return;
1453
1454 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1455 lru_size = mz->lru_size + lru;
1456 *lru_size += nr_pages;
1457 VM_BUG_ON((long)(*lru_size) < 0);
1458 }
1459
1460 /*
1461 * Checks whether given mem is same or in the root_mem_cgroup's
1462 * hierarchy subtree
1463 */
1464 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1465 struct mem_cgroup *memcg)
1466 {
1467 if (root_memcg == memcg)
1468 return true;
1469 if (!root_memcg->use_hierarchy || !memcg)
1470 return false;
1471 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1472 }
1473
1474 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1475 struct mem_cgroup *memcg)
1476 {
1477 bool ret;
1478
1479 rcu_read_lock();
1480 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1481 rcu_read_unlock();
1482 return ret;
1483 }
1484
1485 bool task_in_mem_cgroup(struct task_struct *task,
1486 const struct mem_cgroup *memcg)
1487 {
1488 struct mem_cgroup *curr = NULL;
1489 struct task_struct *p;
1490 bool ret;
1491
1492 p = find_lock_task_mm(task);
1493 if (p) {
1494 curr = try_get_mem_cgroup_from_mm(p->mm);
1495 task_unlock(p);
1496 } else {
1497 /*
1498 * All threads may have already detached their mm's, but the oom
1499 * killer still needs to detect if they have already been oom
1500 * killed to prevent needlessly killing additional tasks.
1501 */
1502 rcu_read_lock();
1503 curr = mem_cgroup_from_task(task);
1504 if (curr)
1505 css_get(&curr->css);
1506 rcu_read_unlock();
1507 }
1508 if (!curr)
1509 return false;
1510 /*
1511 * We should check use_hierarchy of "memcg" not "curr". Because checking
1512 * use_hierarchy of "curr" here make this function true if hierarchy is
1513 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1514 * hierarchy(even if use_hierarchy is disabled in "memcg").
1515 */
1516 ret = mem_cgroup_same_or_subtree(memcg, curr);
1517 css_put(&curr->css);
1518 return ret;
1519 }
1520
1521 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1522 {
1523 unsigned long inactive_ratio;
1524 unsigned long inactive;
1525 unsigned long active;
1526 unsigned long gb;
1527
1528 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1529 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1530
1531 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1532 if (gb)
1533 inactive_ratio = int_sqrt(10 * gb);
1534 else
1535 inactive_ratio = 1;
1536
1537 return inactive * inactive_ratio < active;
1538 }
1539
1540 #define mem_cgroup_from_res_counter(counter, member) \
1541 container_of(counter, struct mem_cgroup, member)
1542
1543 /**
1544 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1545 * @memcg: the memory cgroup
1546 *
1547 * Returns the maximum amount of memory @mem can be charged with, in
1548 * pages.
1549 */
1550 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1551 {
1552 unsigned long long margin;
1553
1554 margin = res_counter_margin(&memcg->res);
1555 if (do_swap_account)
1556 margin = min(margin, res_counter_margin(&memcg->memsw));
1557 return margin >> PAGE_SHIFT;
1558 }
1559
1560 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1561 {
1562 /* root ? */
1563 if (!css_parent(&memcg->css))
1564 return vm_swappiness;
1565
1566 return memcg->swappiness;
1567 }
1568
1569 /*
1570 * memcg->moving_account is used for checking possibility that some thread is
1571 * calling move_account(). When a thread on CPU-A starts moving pages under
1572 * a memcg, other threads should check memcg->moving_account under
1573 * rcu_read_lock(), like this:
1574 *
1575 * CPU-A CPU-B
1576 * rcu_read_lock()
1577 * memcg->moving_account+1 if (memcg->mocing_account)
1578 * take heavy locks.
1579 * synchronize_rcu() update something.
1580 * rcu_read_unlock()
1581 * start move here.
1582 */
1583
1584 /* for quick checking without looking up memcg */
1585 atomic_t memcg_moving __read_mostly;
1586
1587 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1588 {
1589 atomic_inc(&memcg_moving);
1590 atomic_inc(&memcg->moving_account);
1591 synchronize_rcu();
1592 }
1593
1594 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1595 {
1596 /*
1597 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1598 * We check NULL in callee rather than caller.
1599 */
1600 if (memcg) {
1601 atomic_dec(&memcg_moving);
1602 atomic_dec(&memcg->moving_account);
1603 }
1604 }
1605
1606 /*
1607 * 2 routines for checking "mem" is under move_account() or not.
1608 *
1609 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1610 * is used for avoiding races in accounting. If true,
1611 * pc->mem_cgroup may be overwritten.
1612 *
1613 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1614 * under hierarchy of moving cgroups. This is for
1615 * waiting at hith-memory prressure caused by "move".
1616 */
1617
1618 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1619 {
1620 VM_BUG_ON(!rcu_read_lock_held());
1621 return atomic_read(&memcg->moving_account) > 0;
1622 }
1623
1624 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1625 {
1626 struct mem_cgroup *from;
1627 struct mem_cgroup *to;
1628 bool ret = false;
1629 /*
1630 * Unlike task_move routines, we access mc.to, mc.from not under
1631 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1632 */
1633 spin_lock(&mc.lock);
1634 from = mc.from;
1635 to = mc.to;
1636 if (!from)
1637 goto unlock;
1638
1639 ret = mem_cgroup_same_or_subtree(memcg, from)
1640 || mem_cgroup_same_or_subtree(memcg, to);
1641 unlock:
1642 spin_unlock(&mc.lock);
1643 return ret;
1644 }
1645
1646 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1647 {
1648 if (mc.moving_task && current != mc.moving_task) {
1649 if (mem_cgroup_under_move(memcg)) {
1650 DEFINE_WAIT(wait);
1651 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1652 /* moving charge context might have finished. */
1653 if (mc.moving_task)
1654 schedule();
1655 finish_wait(&mc.waitq, &wait);
1656 return true;
1657 }
1658 }
1659 return false;
1660 }
1661
1662 /*
1663 * Take this lock when
1664 * - a code tries to modify page's memcg while it's USED.
1665 * - a code tries to modify page state accounting in a memcg.
1666 * see mem_cgroup_stolen(), too.
1667 */
1668 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1669 unsigned long *flags)
1670 {
1671 spin_lock_irqsave(&memcg->move_lock, *flags);
1672 }
1673
1674 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1675 unsigned long *flags)
1676 {
1677 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1678 }
1679
1680 #define K(x) ((x) << (PAGE_SHIFT-10))
1681 /**
1682 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1683 * @memcg: The memory cgroup that went over limit
1684 * @p: Task that is going to be killed
1685 *
1686 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1687 * enabled
1688 */
1689 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1690 {
1691 /*
1692 * protects memcg_name and makes sure that parallel ooms do not
1693 * interleave
1694 */
1695 static DEFINE_SPINLOCK(oom_info_lock);
1696 struct cgroup *task_cgrp;
1697 struct cgroup *mem_cgrp;
1698 static char memcg_name[PATH_MAX];
1699 int ret;
1700 struct mem_cgroup *iter;
1701 unsigned int i;
1702
1703 if (!p)
1704 return;
1705
1706 spin_lock(&oom_info_lock);
1707 rcu_read_lock();
1708
1709 mem_cgrp = memcg->css.cgroup;
1710 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1711
1712 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1713 if (ret < 0) {
1714 /*
1715 * Unfortunately, we are unable to convert to a useful name
1716 * But we'll still print out the usage information
1717 */
1718 rcu_read_unlock();
1719 goto done;
1720 }
1721 rcu_read_unlock();
1722
1723 pr_info("Task in %s killed", memcg_name);
1724
1725 rcu_read_lock();
1726 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1727 if (ret < 0) {
1728 rcu_read_unlock();
1729 goto done;
1730 }
1731 rcu_read_unlock();
1732
1733 /*
1734 * Continues from above, so we don't need an KERN_ level
1735 */
1736 pr_cont(" as a result of limit of %s\n", memcg_name);
1737 done:
1738
1739 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1740 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1741 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1742 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1743 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1744 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1745 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1746 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1747 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1748 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1749 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1750 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1751
1752 for_each_mem_cgroup_tree(iter, memcg) {
1753 pr_info("Memory cgroup stats");
1754
1755 rcu_read_lock();
1756 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1757 if (!ret)
1758 pr_cont(" for %s", memcg_name);
1759 rcu_read_unlock();
1760 pr_cont(":");
1761
1762 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1763 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1764 continue;
1765 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1766 K(mem_cgroup_read_stat(iter, i)));
1767 }
1768
1769 for (i = 0; i < NR_LRU_LISTS; i++)
1770 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1771 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1772
1773 pr_cont("\n");
1774 }
1775 spin_unlock(&oom_info_lock);
1776 }
1777
1778 /*
1779 * This function returns the number of memcg under hierarchy tree. Returns
1780 * 1(self count) if no children.
1781 */
1782 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1783 {
1784 int num = 0;
1785 struct mem_cgroup *iter;
1786
1787 for_each_mem_cgroup_tree(iter, memcg)
1788 num++;
1789 return num;
1790 }
1791
1792 /*
1793 * Return the memory (and swap, if configured) limit for a memcg.
1794 */
1795 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1796 {
1797 u64 limit;
1798
1799 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1800
1801 /*
1802 * Do not consider swap space if we cannot swap due to swappiness
1803 */
1804 if (mem_cgroup_swappiness(memcg)) {
1805 u64 memsw;
1806
1807 limit += total_swap_pages << PAGE_SHIFT;
1808 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1809
1810 /*
1811 * If memsw is finite and limits the amount of swap space
1812 * available to this memcg, return that limit.
1813 */
1814 limit = min(limit, memsw);
1815 }
1816
1817 return limit;
1818 }
1819
1820 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1821 int order)
1822 {
1823 struct mem_cgroup *iter;
1824 unsigned long chosen_points = 0;
1825 unsigned long totalpages;
1826 unsigned int points = 0;
1827 struct task_struct *chosen = NULL;
1828
1829 /*
1830 * If current has a pending SIGKILL or is exiting, then automatically
1831 * select it. The goal is to allow it to allocate so that it may
1832 * quickly exit and free its memory.
1833 */
1834 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1835 set_thread_flag(TIF_MEMDIE);
1836 return;
1837 }
1838
1839 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1840 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1841 for_each_mem_cgroup_tree(iter, memcg) {
1842 struct css_task_iter it;
1843 struct task_struct *task;
1844
1845 css_task_iter_start(&iter->css, &it);
1846 while ((task = css_task_iter_next(&it))) {
1847 switch (oom_scan_process_thread(task, totalpages, NULL,
1848 false)) {
1849 case OOM_SCAN_SELECT:
1850 if (chosen)
1851 put_task_struct(chosen);
1852 chosen = task;
1853 chosen_points = ULONG_MAX;
1854 get_task_struct(chosen);
1855 /* fall through */
1856 case OOM_SCAN_CONTINUE:
1857 continue;
1858 case OOM_SCAN_ABORT:
1859 css_task_iter_end(&it);
1860 mem_cgroup_iter_break(memcg, iter);
1861 if (chosen)
1862 put_task_struct(chosen);
1863 return;
1864 case OOM_SCAN_OK:
1865 break;
1866 };
1867 points = oom_badness(task, memcg, NULL, totalpages);
1868 if (points > chosen_points) {
1869 if (chosen)
1870 put_task_struct(chosen);
1871 chosen = task;
1872 chosen_points = points;
1873 get_task_struct(chosen);
1874 }
1875 }
1876 css_task_iter_end(&it);
1877 }
1878
1879 if (!chosen)
1880 return;
1881 points = chosen_points * 1000 / totalpages;
1882 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1883 NULL, "Memory cgroup out of memory");
1884 }
1885
1886 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1887 gfp_t gfp_mask,
1888 unsigned long flags)
1889 {
1890 unsigned long total = 0;
1891 bool noswap = false;
1892 int loop;
1893
1894 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1895 noswap = true;
1896 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1897 noswap = true;
1898
1899 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1900 if (loop)
1901 drain_all_stock_async(memcg);
1902 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1903 /*
1904 * Allow limit shrinkers, which are triggered directly
1905 * by userspace, to catch signals and stop reclaim
1906 * after minimal progress, regardless of the margin.
1907 */
1908 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1909 break;
1910 if (mem_cgroup_margin(memcg))
1911 break;
1912 /*
1913 * If nothing was reclaimed after two attempts, there
1914 * may be no reclaimable pages in this hierarchy.
1915 */
1916 if (loop && !total)
1917 break;
1918 }
1919 return total;
1920 }
1921
1922 /**
1923 * test_mem_cgroup_node_reclaimable
1924 * @memcg: the target memcg
1925 * @nid: the node ID to be checked.
1926 * @noswap : specify true here if the user wants flle only information.
1927 *
1928 * This function returns whether the specified memcg contains any
1929 * reclaimable pages on a node. Returns true if there are any reclaimable
1930 * pages in the node.
1931 */
1932 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1933 int nid, bool noswap)
1934 {
1935 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1936 return true;
1937 if (noswap || !total_swap_pages)
1938 return false;
1939 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1940 return true;
1941 return false;
1942
1943 }
1944 #if MAX_NUMNODES > 1
1945
1946 /*
1947 * Always updating the nodemask is not very good - even if we have an empty
1948 * list or the wrong list here, we can start from some node and traverse all
1949 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1950 *
1951 */
1952 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1953 {
1954 int nid;
1955 /*
1956 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1957 * pagein/pageout changes since the last update.
1958 */
1959 if (!atomic_read(&memcg->numainfo_events))
1960 return;
1961 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1962 return;
1963
1964 /* make a nodemask where this memcg uses memory from */
1965 memcg->scan_nodes = node_states[N_MEMORY];
1966
1967 for_each_node_mask(nid, node_states[N_MEMORY]) {
1968
1969 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1970 node_clear(nid, memcg->scan_nodes);
1971 }
1972
1973 atomic_set(&memcg->numainfo_events, 0);
1974 atomic_set(&memcg->numainfo_updating, 0);
1975 }
1976
1977 /*
1978 * Selecting a node where we start reclaim from. Because what we need is just
1979 * reducing usage counter, start from anywhere is O,K. Considering
1980 * memory reclaim from current node, there are pros. and cons.
1981 *
1982 * Freeing memory from current node means freeing memory from a node which
1983 * we'll use or we've used. So, it may make LRU bad. And if several threads
1984 * hit limits, it will see a contention on a node. But freeing from remote
1985 * node means more costs for memory reclaim because of memory latency.
1986 *
1987 * Now, we use round-robin. Better algorithm is welcomed.
1988 */
1989 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1990 {
1991 int node;
1992
1993 mem_cgroup_may_update_nodemask(memcg);
1994 node = memcg->last_scanned_node;
1995
1996 node = next_node(node, memcg->scan_nodes);
1997 if (node == MAX_NUMNODES)
1998 node = first_node(memcg->scan_nodes);
1999 /*
2000 * We call this when we hit limit, not when pages are added to LRU.
2001 * No LRU may hold pages because all pages are UNEVICTABLE or
2002 * memcg is too small and all pages are not on LRU. In that case,
2003 * we use curret node.
2004 */
2005 if (unlikely(node == MAX_NUMNODES))
2006 node = numa_node_id();
2007
2008 memcg->last_scanned_node = node;
2009 return node;
2010 }
2011
2012 /*
2013 * Check all nodes whether it contains reclaimable pages or not.
2014 * For quick scan, we make use of scan_nodes. This will allow us to skip
2015 * unused nodes. But scan_nodes is lazily updated and may not cotain
2016 * enough new information. We need to do double check.
2017 */
2018 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2019 {
2020 int nid;
2021
2022 /*
2023 * quick check...making use of scan_node.
2024 * We can skip unused nodes.
2025 */
2026 if (!nodes_empty(memcg->scan_nodes)) {
2027 for (nid = first_node(memcg->scan_nodes);
2028 nid < MAX_NUMNODES;
2029 nid = next_node(nid, memcg->scan_nodes)) {
2030
2031 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2032 return true;
2033 }
2034 }
2035 /*
2036 * Check rest of nodes.
2037 */
2038 for_each_node_state(nid, N_MEMORY) {
2039 if (node_isset(nid, memcg->scan_nodes))
2040 continue;
2041 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2042 return true;
2043 }
2044 return false;
2045 }
2046
2047 #else
2048 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2049 {
2050 return 0;
2051 }
2052
2053 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2054 {
2055 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2056 }
2057 #endif
2058
2059 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2060 struct zone *zone,
2061 gfp_t gfp_mask,
2062 unsigned long *total_scanned)
2063 {
2064 struct mem_cgroup *victim = NULL;
2065 int total = 0;
2066 int loop = 0;
2067 unsigned long excess;
2068 unsigned long nr_scanned;
2069 struct mem_cgroup_reclaim_cookie reclaim = {
2070 .zone = zone,
2071 .priority = 0,
2072 };
2073
2074 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2075
2076 while (1) {
2077 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2078 if (!victim) {
2079 loop++;
2080 if (loop >= 2) {
2081 /*
2082 * If we have not been able to reclaim
2083 * anything, it might because there are
2084 * no reclaimable pages under this hierarchy
2085 */
2086 if (!total)
2087 break;
2088 /*
2089 * We want to do more targeted reclaim.
2090 * excess >> 2 is not to excessive so as to
2091 * reclaim too much, nor too less that we keep
2092 * coming back to reclaim from this cgroup
2093 */
2094 if (total >= (excess >> 2) ||
2095 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2096 break;
2097 }
2098 continue;
2099 }
2100 if (!mem_cgroup_reclaimable(victim, false))
2101 continue;
2102 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2103 zone, &nr_scanned);
2104 *total_scanned += nr_scanned;
2105 if (!res_counter_soft_limit_excess(&root_memcg->res))
2106 break;
2107 }
2108 mem_cgroup_iter_break(root_memcg, victim);
2109 return total;
2110 }
2111
2112 #ifdef CONFIG_LOCKDEP
2113 static struct lockdep_map memcg_oom_lock_dep_map = {
2114 .name = "memcg_oom_lock",
2115 };
2116 #endif
2117
2118 static DEFINE_SPINLOCK(memcg_oom_lock);
2119
2120 /*
2121 * Check OOM-Killer is already running under our hierarchy.
2122 * If someone is running, return false.
2123 */
2124 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2125 {
2126 struct mem_cgroup *iter, *failed = NULL;
2127
2128 spin_lock(&memcg_oom_lock);
2129
2130 for_each_mem_cgroup_tree(iter, memcg) {
2131 if (iter->oom_lock) {
2132 /*
2133 * this subtree of our hierarchy is already locked
2134 * so we cannot give a lock.
2135 */
2136 failed = iter;
2137 mem_cgroup_iter_break(memcg, iter);
2138 break;
2139 } else
2140 iter->oom_lock = true;
2141 }
2142
2143 if (failed) {
2144 /*
2145 * OK, we failed to lock the whole subtree so we have
2146 * to clean up what we set up to the failing subtree
2147 */
2148 for_each_mem_cgroup_tree(iter, memcg) {
2149 if (iter == failed) {
2150 mem_cgroup_iter_break(memcg, iter);
2151 break;
2152 }
2153 iter->oom_lock = false;
2154 }
2155 } else
2156 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2157
2158 spin_unlock(&memcg_oom_lock);
2159
2160 return !failed;
2161 }
2162
2163 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2164 {
2165 struct mem_cgroup *iter;
2166
2167 spin_lock(&memcg_oom_lock);
2168 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2169 for_each_mem_cgroup_tree(iter, memcg)
2170 iter->oom_lock = false;
2171 spin_unlock(&memcg_oom_lock);
2172 }
2173
2174 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2175 {
2176 struct mem_cgroup *iter;
2177
2178 for_each_mem_cgroup_tree(iter, memcg)
2179 atomic_inc(&iter->under_oom);
2180 }
2181
2182 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2183 {
2184 struct mem_cgroup *iter;
2185
2186 /*
2187 * When a new child is created while the hierarchy is under oom,
2188 * mem_cgroup_oom_lock() may not be called. We have to use
2189 * atomic_add_unless() here.
2190 */
2191 for_each_mem_cgroup_tree(iter, memcg)
2192 atomic_add_unless(&iter->under_oom, -1, 0);
2193 }
2194
2195 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2196
2197 struct oom_wait_info {
2198 struct mem_cgroup *memcg;
2199 wait_queue_t wait;
2200 };
2201
2202 static int memcg_oom_wake_function(wait_queue_t *wait,
2203 unsigned mode, int sync, void *arg)
2204 {
2205 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2206 struct mem_cgroup *oom_wait_memcg;
2207 struct oom_wait_info *oom_wait_info;
2208
2209 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2210 oom_wait_memcg = oom_wait_info->memcg;
2211
2212 /*
2213 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2214 * Then we can use css_is_ancestor without taking care of RCU.
2215 */
2216 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2217 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2218 return 0;
2219 return autoremove_wake_function(wait, mode, sync, arg);
2220 }
2221
2222 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2223 {
2224 atomic_inc(&memcg->oom_wakeups);
2225 /* for filtering, pass "memcg" as argument. */
2226 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2227 }
2228
2229 static void memcg_oom_recover(struct mem_cgroup *memcg)
2230 {
2231 if (memcg && atomic_read(&memcg->under_oom))
2232 memcg_wakeup_oom(memcg);
2233 }
2234
2235 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2236 {
2237 if (!current->memcg_oom.may_oom)
2238 return;
2239 /*
2240 * We are in the middle of the charge context here, so we
2241 * don't want to block when potentially sitting on a callstack
2242 * that holds all kinds of filesystem and mm locks.
2243 *
2244 * Also, the caller may handle a failed allocation gracefully
2245 * (like optional page cache readahead) and so an OOM killer
2246 * invocation might not even be necessary.
2247 *
2248 * That's why we don't do anything here except remember the
2249 * OOM context and then deal with it at the end of the page
2250 * fault when the stack is unwound, the locks are released,
2251 * and when we know whether the fault was overall successful.
2252 */
2253 css_get(&memcg->css);
2254 current->memcg_oom.memcg = memcg;
2255 current->memcg_oom.gfp_mask = mask;
2256 current->memcg_oom.order = order;
2257 }
2258
2259 /**
2260 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2261 * @handle: actually kill/wait or just clean up the OOM state
2262 *
2263 * This has to be called at the end of a page fault if the memcg OOM
2264 * handler was enabled.
2265 *
2266 * Memcg supports userspace OOM handling where failed allocations must
2267 * sleep on a waitqueue until the userspace task resolves the
2268 * situation. Sleeping directly in the charge context with all kinds
2269 * of locks held is not a good idea, instead we remember an OOM state
2270 * in the task and mem_cgroup_oom_synchronize() has to be called at
2271 * the end of the page fault to complete the OOM handling.
2272 *
2273 * Returns %true if an ongoing memcg OOM situation was detected and
2274 * completed, %false otherwise.
2275 */
2276 bool mem_cgroup_oom_synchronize(bool handle)
2277 {
2278 struct mem_cgroup *memcg = current->memcg_oom.memcg;
2279 struct oom_wait_info owait;
2280 bool locked;
2281
2282 /* OOM is global, do not handle */
2283 if (!memcg)
2284 return false;
2285
2286 if (!handle)
2287 goto cleanup;
2288
2289 owait.memcg = memcg;
2290 owait.wait.flags = 0;
2291 owait.wait.func = memcg_oom_wake_function;
2292 owait.wait.private = current;
2293 INIT_LIST_HEAD(&owait.wait.task_list);
2294
2295 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2296 mem_cgroup_mark_under_oom(memcg);
2297
2298 locked = mem_cgroup_oom_trylock(memcg);
2299
2300 if (locked)
2301 mem_cgroup_oom_notify(memcg);
2302
2303 if (locked && !memcg->oom_kill_disable) {
2304 mem_cgroup_unmark_under_oom(memcg);
2305 finish_wait(&memcg_oom_waitq, &owait.wait);
2306 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2307 current->memcg_oom.order);
2308 } else {
2309 schedule();
2310 mem_cgroup_unmark_under_oom(memcg);
2311 finish_wait(&memcg_oom_waitq, &owait.wait);
2312 }
2313
2314 if (locked) {
2315 mem_cgroup_oom_unlock(memcg);
2316 /*
2317 * There is no guarantee that an OOM-lock contender
2318 * sees the wakeups triggered by the OOM kill
2319 * uncharges. Wake any sleepers explicitely.
2320 */
2321 memcg_oom_recover(memcg);
2322 }
2323 cleanup:
2324 current->memcg_oom.memcg = NULL;
2325 css_put(&memcg->css);
2326 return true;
2327 }
2328
2329 /*
2330 * Currently used to update mapped file statistics, but the routine can be
2331 * generalized to update other statistics as well.
2332 *
2333 * Notes: Race condition
2334 *
2335 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2336 * it tends to be costly. But considering some conditions, we doesn't need
2337 * to do so _always_.
2338 *
2339 * Considering "charge", lock_page_cgroup() is not required because all
2340 * file-stat operations happen after a page is attached to radix-tree. There
2341 * are no race with "charge".
2342 *
2343 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2344 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2345 * if there are race with "uncharge". Statistics itself is properly handled
2346 * by flags.
2347 *
2348 * Considering "move", this is an only case we see a race. To make the race
2349 * small, we check mm->moving_account and detect there are possibility of race
2350 * If there is, we take a lock.
2351 */
2352
2353 void __mem_cgroup_begin_update_page_stat(struct page *page,
2354 bool *locked, unsigned long *flags)
2355 {
2356 struct mem_cgroup *memcg;
2357 struct page_cgroup *pc;
2358
2359 pc = lookup_page_cgroup(page);
2360 again:
2361 memcg = pc->mem_cgroup;
2362 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2363 return;
2364 /*
2365 * If this memory cgroup is not under account moving, we don't
2366 * need to take move_lock_mem_cgroup(). Because we already hold
2367 * rcu_read_lock(), any calls to move_account will be delayed until
2368 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2369 */
2370 if (!mem_cgroup_stolen(memcg))
2371 return;
2372
2373 move_lock_mem_cgroup(memcg, flags);
2374 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2375 move_unlock_mem_cgroup(memcg, flags);
2376 goto again;
2377 }
2378 *locked = true;
2379 }
2380
2381 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2382 {
2383 struct page_cgroup *pc = lookup_page_cgroup(page);
2384
2385 /*
2386 * It's guaranteed that pc->mem_cgroup never changes while
2387 * lock is held because a routine modifies pc->mem_cgroup
2388 * should take move_lock_mem_cgroup().
2389 */
2390 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2391 }
2392
2393 void mem_cgroup_update_page_stat(struct page *page,
2394 enum mem_cgroup_stat_index idx, int val)
2395 {
2396 struct mem_cgroup *memcg;
2397 struct page_cgroup *pc = lookup_page_cgroup(page);
2398 unsigned long uninitialized_var(flags);
2399
2400 if (mem_cgroup_disabled())
2401 return;
2402
2403 VM_BUG_ON(!rcu_read_lock_held());
2404 memcg = pc->mem_cgroup;
2405 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2406 return;
2407
2408 this_cpu_add(memcg->stat->count[idx], val);
2409 }
2410
2411 /*
2412 * size of first charge trial. "32" comes from vmscan.c's magic value.
2413 * TODO: maybe necessary to use big numbers in big irons.
2414 */
2415 #define CHARGE_BATCH 32U
2416 struct memcg_stock_pcp {
2417 struct mem_cgroup *cached; /* this never be root cgroup */
2418 unsigned int nr_pages;
2419 struct work_struct work;
2420 unsigned long flags;
2421 #define FLUSHING_CACHED_CHARGE 0
2422 };
2423 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2424 static DEFINE_MUTEX(percpu_charge_mutex);
2425
2426 /**
2427 * consume_stock: Try to consume stocked charge on this cpu.
2428 * @memcg: memcg to consume from.
2429 * @nr_pages: how many pages to charge.
2430 *
2431 * The charges will only happen if @memcg matches the current cpu's memcg
2432 * stock, and at least @nr_pages are available in that stock. Failure to
2433 * service an allocation will refill the stock.
2434 *
2435 * returns true if successful, false otherwise.
2436 */
2437 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2438 {
2439 struct memcg_stock_pcp *stock;
2440 bool ret = true;
2441
2442 if (nr_pages > CHARGE_BATCH)
2443 return false;
2444
2445 stock = &get_cpu_var(memcg_stock);
2446 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2447 stock->nr_pages -= nr_pages;
2448 else /* need to call res_counter_charge */
2449 ret = false;
2450 put_cpu_var(memcg_stock);
2451 return ret;
2452 }
2453
2454 /*
2455 * Returns stocks cached in percpu to res_counter and reset cached information.
2456 */
2457 static void drain_stock(struct memcg_stock_pcp *stock)
2458 {
2459 struct mem_cgroup *old = stock->cached;
2460
2461 if (stock->nr_pages) {
2462 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2463
2464 res_counter_uncharge(&old->res, bytes);
2465 if (do_swap_account)
2466 res_counter_uncharge(&old->memsw, bytes);
2467 stock->nr_pages = 0;
2468 }
2469 stock->cached = NULL;
2470 }
2471
2472 /*
2473 * This must be called under preempt disabled or must be called by
2474 * a thread which is pinned to local cpu.
2475 */
2476 static void drain_local_stock(struct work_struct *dummy)
2477 {
2478 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2479 drain_stock(stock);
2480 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2481 }
2482
2483 static void __init memcg_stock_init(void)
2484 {
2485 int cpu;
2486
2487 for_each_possible_cpu(cpu) {
2488 struct memcg_stock_pcp *stock =
2489 &per_cpu(memcg_stock, cpu);
2490 INIT_WORK(&stock->work, drain_local_stock);
2491 }
2492 }
2493
2494 /*
2495 * Cache charges(val) which is from res_counter, to local per_cpu area.
2496 * This will be consumed by consume_stock() function, later.
2497 */
2498 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2499 {
2500 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2501
2502 if (stock->cached != memcg) { /* reset if necessary */
2503 drain_stock(stock);
2504 stock->cached = memcg;
2505 }
2506 stock->nr_pages += nr_pages;
2507 put_cpu_var(memcg_stock);
2508 }
2509
2510 /*
2511 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2512 * of the hierarchy under it. sync flag says whether we should block
2513 * until the work is done.
2514 */
2515 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2516 {
2517 int cpu, curcpu;
2518
2519 /* Notify other cpus that system-wide "drain" is running */
2520 get_online_cpus();
2521 curcpu = get_cpu();
2522 for_each_online_cpu(cpu) {
2523 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2524 struct mem_cgroup *memcg;
2525
2526 memcg = stock->cached;
2527 if (!memcg || !stock->nr_pages)
2528 continue;
2529 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2530 continue;
2531 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2532 if (cpu == curcpu)
2533 drain_local_stock(&stock->work);
2534 else
2535 schedule_work_on(cpu, &stock->work);
2536 }
2537 }
2538 put_cpu();
2539
2540 if (!sync)
2541 goto out;
2542
2543 for_each_online_cpu(cpu) {
2544 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2545 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2546 flush_work(&stock->work);
2547 }
2548 out:
2549 put_online_cpus();
2550 }
2551
2552 /*
2553 * Tries to drain stocked charges in other cpus. This function is asynchronous
2554 * and just put a work per cpu for draining localy on each cpu. Caller can
2555 * expects some charges will be back to res_counter later but cannot wait for
2556 * it.
2557 */
2558 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2559 {
2560 /*
2561 * If someone calls draining, avoid adding more kworker runs.
2562 */
2563 if (!mutex_trylock(&percpu_charge_mutex))
2564 return;
2565 drain_all_stock(root_memcg, false);
2566 mutex_unlock(&percpu_charge_mutex);
2567 }
2568
2569 /* This is a synchronous drain interface. */
2570 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2571 {
2572 /* called when force_empty is called */
2573 mutex_lock(&percpu_charge_mutex);
2574 drain_all_stock(root_memcg, true);
2575 mutex_unlock(&percpu_charge_mutex);
2576 }
2577
2578 /*
2579 * This function drains percpu counter value from DEAD cpu and
2580 * move it to local cpu. Note that this function can be preempted.
2581 */
2582 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2583 {
2584 int i;
2585
2586 spin_lock(&memcg->pcp_counter_lock);
2587 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2588 long x = per_cpu(memcg->stat->count[i], cpu);
2589
2590 per_cpu(memcg->stat->count[i], cpu) = 0;
2591 memcg->nocpu_base.count[i] += x;
2592 }
2593 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2594 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2595
2596 per_cpu(memcg->stat->events[i], cpu) = 0;
2597 memcg->nocpu_base.events[i] += x;
2598 }
2599 spin_unlock(&memcg->pcp_counter_lock);
2600 }
2601
2602 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2603 unsigned long action,
2604 void *hcpu)
2605 {
2606 int cpu = (unsigned long)hcpu;
2607 struct memcg_stock_pcp *stock;
2608 struct mem_cgroup *iter;
2609
2610 if (action == CPU_ONLINE)
2611 return NOTIFY_OK;
2612
2613 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2614 return NOTIFY_OK;
2615
2616 for_each_mem_cgroup(iter)
2617 mem_cgroup_drain_pcp_counter(iter, cpu);
2618
2619 stock = &per_cpu(memcg_stock, cpu);
2620 drain_stock(stock);
2621 return NOTIFY_OK;
2622 }
2623
2624
2625 /* See __mem_cgroup_try_charge() for details */
2626 enum {
2627 CHARGE_OK, /* success */
2628 CHARGE_RETRY, /* need to retry but retry is not bad */
2629 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2630 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2631 };
2632
2633 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2634 unsigned int nr_pages, unsigned int min_pages,
2635 bool invoke_oom)
2636 {
2637 unsigned long csize = nr_pages * PAGE_SIZE;
2638 struct mem_cgroup *mem_over_limit;
2639 struct res_counter *fail_res;
2640 unsigned long flags = 0;
2641 int ret;
2642
2643 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2644
2645 if (likely(!ret)) {
2646 if (!do_swap_account)
2647 return CHARGE_OK;
2648 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2649 if (likely(!ret))
2650 return CHARGE_OK;
2651
2652 res_counter_uncharge(&memcg->res, csize);
2653 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2654 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2655 } else
2656 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2657 /*
2658 * Never reclaim on behalf of optional batching, retry with a
2659 * single page instead.
2660 */
2661 if (nr_pages > min_pages)
2662 return CHARGE_RETRY;
2663
2664 if (!(gfp_mask & __GFP_WAIT))
2665 return CHARGE_WOULDBLOCK;
2666
2667 if (gfp_mask & __GFP_NORETRY)
2668 return CHARGE_NOMEM;
2669
2670 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2671 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2672 return CHARGE_RETRY;
2673 /*
2674 * Even though the limit is exceeded at this point, reclaim
2675 * may have been able to free some pages. Retry the charge
2676 * before killing the task.
2677 *
2678 * Only for regular pages, though: huge pages are rather
2679 * unlikely to succeed so close to the limit, and we fall back
2680 * to regular pages anyway in case of failure.
2681 */
2682 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2683 return CHARGE_RETRY;
2684
2685 /*
2686 * At task move, charge accounts can be doubly counted. So, it's
2687 * better to wait until the end of task_move if something is going on.
2688 */
2689 if (mem_cgroup_wait_acct_move(mem_over_limit))
2690 return CHARGE_RETRY;
2691
2692 if (invoke_oom)
2693 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2694
2695 return CHARGE_NOMEM;
2696 }
2697
2698 /*
2699 * __mem_cgroup_try_charge() does
2700 * 1. detect memcg to be charged against from passed *mm and *ptr,
2701 * 2. update res_counter
2702 * 3. call memory reclaim if necessary.
2703 *
2704 * In some special case, if the task is fatal, fatal_signal_pending() or
2705 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2706 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2707 * as possible without any hazards. 2: all pages should have a valid
2708 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2709 * pointer, that is treated as a charge to root_mem_cgroup.
2710 *
2711 * So __mem_cgroup_try_charge() will return
2712 * 0 ... on success, filling *ptr with a valid memcg pointer.
2713 * -ENOMEM ... charge failure because of resource limits.
2714 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2715 *
2716 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2717 * the oom-killer can be invoked.
2718 */
2719 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2720 gfp_t gfp_mask,
2721 unsigned int nr_pages,
2722 struct mem_cgroup **ptr,
2723 bool oom)
2724 {
2725 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2726 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2727 struct mem_cgroup *memcg = NULL;
2728 int ret;
2729
2730 /*
2731 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2732 * in system level. So, allow to go ahead dying process in addition to
2733 * MEMDIE process.
2734 */
2735 if (unlikely(test_thread_flag(TIF_MEMDIE)
2736 || fatal_signal_pending(current)))
2737 goto bypass;
2738
2739 if (unlikely(task_in_memcg_oom(current)))
2740 goto nomem;
2741
2742 if (gfp_mask & __GFP_NOFAIL)
2743 oom = false;
2744
2745 /*
2746 * We always charge the cgroup the mm_struct belongs to.
2747 * The mm_struct's mem_cgroup changes on task migration if the
2748 * thread group leader migrates. It's possible that mm is not
2749 * set, if so charge the root memcg (happens for pagecache usage).
2750 */
2751 if (!*ptr && !mm)
2752 *ptr = root_mem_cgroup;
2753 again:
2754 if (*ptr) { /* css should be a valid one */
2755 memcg = *ptr;
2756 if (mem_cgroup_is_root(memcg))
2757 goto done;
2758 if (consume_stock(memcg, nr_pages))
2759 goto done;
2760 css_get(&memcg->css);
2761 } else {
2762 struct task_struct *p;
2763
2764 rcu_read_lock();
2765 p = rcu_dereference(mm->owner);
2766 /*
2767 * Because we don't have task_lock(), "p" can exit.
2768 * In that case, "memcg" can point to root or p can be NULL with
2769 * race with swapoff. Then, we have small risk of mis-accouning.
2770 * But such kind of mis-account by race always happens because
2771 * we don't have cgroup_mutex(). It's overkill and we allo that
2772 * small race, here.
2773 * (*) swapoff at el will charge against mm-struct not against
2774 * task-struct. So, mm->owner can be NULL.
2775 */
2776 memcg = mem_cgroup_from_task(p);
2777 if (!memcg)
2778 memcg = root_mem_cgroup;
2779 if (mem_cgroup_is_root(memcg)) {
2780 rcu_read_unlock();
2781 goto done;
2782 }
2783 if (consume_stock(memcg, nr_pages)) {
2784 /*
2785 * It seems dagerous to access memcg without css_get().
2786 * But considering how consume_stok works, it's not
2787 * necessary. If consume_stock success, some charges
2788 * from this memcg are cached on this cpu. So, we
2789 * don't need to call css_get()/css_tryget() before
2790 * calling consume_stock().
2791 */
2792 rcu_read_unlock();
2793 goto done;
2794 }
2795 /* after here, we may be blocked. we need to get refcnt */
2796 if (!css_tryget(&memcg->css)) {
2797 rcu_read_unlock();
2798 goto again;
2799 }
2800 rcu_read_unlock();
2801 }
2802
2803 do {
2804 bool invoke_oom = oom && !nr_oom_retries;
2805
2806 /* If killed, bypass charge */
2807 if (fatal_signal_pending(current)) {
2808 css_put(&memcg->css);
2809 goto bypass;
2810 }
2811
2812 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2813 nr_pages, invoke_oom);
2814 switch (ret) {
2815 case CHARGE_OK:
2816 break;
2817 case CHARGE_RETRY: /* not in OOM situation but retry */
2818 batch = nr_pages;
2819 css_put(&memcg->css);
2820 memcg = NULL;
2821 goto again;
2822 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2823 css_put(&memcg->css);
2824 goto nomem;
2825 case CHARGE_NOMEM: /* OOM routine works */
2826 if (!oom || invoke_oom) {
2827 css_put(&memcg->css);
2828 goto nomem;
2829 }
2830 nr_oom_retries--;
2831 break;
2832 }
2833 } while (ret != CHARGE_OK);
2834
2835 if (batch > nr_pages)
2836 refill_stock(memcg, batch - nr_pages);
2837 css_put(&memcg->css);
2838 done:
2839 *ptr = memcg;
2840 return 0;
2841 nomem:
2842 if (!(gfp_mask & __GFP_NOFAIL)) {
2843 *ptr = NULL;
2844 return -ENOMEM;
2845 }
2846 bypass:
2847 *ptr = root_mem_cgroup;
2848 return -EINTR;
2849 }
2850
2851 /*
2852 * Somemtimes we have to undo a charge we got by try_charge().
2853 * This function is for that and do uncharge, put css's refcnt.
2854 * gotten by try_charge().
2855 */
2856 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2857 unsigned int nr_pages)
2858 {
2859 if (!mem_cgroup_is_root(memcg)) {
2860 unsigned long bytes = nr_pages * PAGE_SIZE;
2861
2862 res_counter_uncharge(&memcg->res, bytes);
2863 if (do_swap_account)
2864 res_counter_uncharge(&memcg->memsw, bytes);
2865 }
2866 }
2867
2868 /*
2869 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2870 * This is useful when moving usage to parent cgroup.
2871 */
2872 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2873 unsigned int nr_pages)
2874 {
2875 unsigned long bytes = nr_pages * PAGE_SIZE;
2876
2877 if (mem_cgroup_is_root(memcg))
2878 return;
2879
2880 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2881 if (do_swap_account)
2882 res_counter_uncharge_until(&memcg->memsw,
2883 memcg->memsw.parent, bytes);
2884 }
2885
2886 /*
2887 * A helper function to get mem_cgroup from ID. must be called under
2888 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2889 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2890 * called against removed memcg.)
2891 */
2892 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2893 {
2894 /* ID 0 is unused ID */
2895 if (!id)
2896 return NULL;
2897 return mem_cgroup_from_id(id);
2898 }
2899
2900 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2901 {
2902 struct mem_cgroup *memcg = NULL;
2903 struct page_cgroup *pc;
2904 unsigned short id;
2905 swp_entry_t ent;
2906
2907 VM_BUG_ON(!PageLocked(page));
2908
2909 pc = lookup_page_cgroup(page);
2910 lock_page_cgroup(pc);
2911 if (PageCgroupUsed(pc)) {
2912 memcg = pc->mem_cgroup;
2913 if (memcg && !css_tryget(&memcg->css))
2914 memcg = NULL;
2915 } else if (PageSwapCache(page)) {
2916 ent.val = page_private(page);
2917 id = lookup_swap_cgroup_id(ent);
2918 rcu_read_lock();
2919 memcg = mem_cgroup_lookup(id);
2920 if (memcg && !css_tryget(&memcg->css))
2921 memcg = NULL;
2922 rcu_read_unlock();
2923 }
2924 unlock_page_cgroup(pc);
2925 return memcg;
2926 }
2927
2928 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2929 struct page *page,
2930 unsigned int nr_pages,
2931 enum charge_type ctype,
2932 bool lrucare)
2933 {
2934 struct page_cgroup *pc = lookup_page_cgroup(page);
2935 struct zone *uninitialized_var(zone);
2936 struct lruvec *lruvec;
2937 bool was_on_lru = false;
2938 bool anon;
2939
2940 lock_page_cgroup(pc);
2941 VM_BUG_ON(PageCgroupUsed(pc));
2942 /*
2943 * we don't need page_cgroup_lock about tail pages, becase they are not
2944 * accessed by any other context at this point.
2945 */
2946
2947 /*
2948 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2949 * may already be on some other mem_cgroup's LRU. Take care of it.
2950 */
2951 if (lrucare) {
2952 zone = page_zone(page);
2953 spin_lock_irq(&zone->lru_lock);
2954 if (PageLRU(page)) {
2955 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2956 ClearPageLRU(page);
2957 del_page_from_lru_list(page, lruvec, page_lru(page));
2958 was_on_lru = true;
2959 }
2960 }
2961
2962 pc->mem_cgroup = memcg;
2963 /*
2964 * We access a page_cgroup asynchronously without lock_page_cgroup().
2965 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2966 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2967 * before USED bit, we need memory barrier here.
2968 * See mem_cgroup_add_lru_list(), etc.
2969 */
2970 smp_wmb();
2971 SetPageCgroupUsed(pc);
2972
2973 if (lrucare) {
2974 if (was_on_lru) {
2975 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2976 VM_BUG_ON(PageLRU(page));
2977 SetPageLRU(page);
2978 add_page_to_lru_list(page, lruvec, page_lru(page));
2979 }
2980 spin_unlock_irq(&zone->lru_lock);
2981 }
2982
2983 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2984 anon = true;
2985 else
2986 anon = false;
2987
2988 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2989 unlock_page_cgroup(pc);
2990
2991 /*
2992 * "charge_statistics" updated event counter. Then, check it.
2993 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2994 * if they exceeds softlimit.
2995 */
2996 memcg_check_events(memcg, page);
2997 }
2998
2999 static DEFINE_MUTEX(set_limit_mutex);
3000
3001 #ifdef CONFIG_MEMCG_KMEM
3002 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
3003 {
3004 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
3005 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK) ==
3006 KMEM_ACCOUNTED_MASK;
3007 }
3008
3009 /*
3010 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
3011 * in the memcg_cache_params struct.
3012 */
3013 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
3014 {
3015 struct kmem_cache *cachep;
3016
3017 VM_BUG_ON(p->is_root_cache);
3018 cachep = p->root_cache;
3019 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
3020 }
3021
3022 #ifdef CONFIG_SLABINFO
3023 static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
3024 {
3025 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3026 struct memcg_cache_params *params;
3027
3028 if (!memcg_can_account_kmem(memcg))
3029 return -EIO;
3030
3031 print_slabinfo_header(m);
3032
3033 mutex_lock(&memcg->slab_caches_mutex);
3034 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
3035 cache_show(memcg_params_to_cache(params), m);
3036 mutex_unlock(&memcg->slab_caches_mutex);
3037
3038 return 0;
3039 }
3040 #endif
3041
3042 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
3043 {
3044 struct res_counter *fail_res;
3045 struct mem_cgroup *_memcg;
3046 int ret = 0;
3047
3048 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
3049 if (ret)
3050 return ret;
3051
3052 _memcg = memcg;
3053 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
3054 &_memcg, oom_gfp_allowed(gfp));
3055
3056 if (ret == -EINTR) {
3057 /*
3058 * __mem_cgroup_try_charge() chosed to bypass to root due to
3059 * OOM kill or fatal signal. Since our only options are to
3060 * either fail the allocation or charge it to this cgroup, do
3061 * it as a temporary condition. But we can't fail. From a
3062 * kmem/slab perspective, the cache has already been selected,
3063 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3064 * our minds.
3065 *
3066 * This condition will only trigger if the task entered
3067 * memcg_charge_kmem in a sane state, but was OOM-killed during
3068 * __mem_cgroup_try_charge() above. Tasks that were already
3069 * dying when the allocation triggers should have been already
3070 * directed to the root cgroup in memcontrol.h
3071 */
3072 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3073 if (do_swap_account)
3074 res_counter_charge_nofail(&memcg->memsw, size,
3075 &fail_res);
3076 ret = 0;
3077 } else if (ret)
3078 res_counter_uncharge(&memcg->kmem, size);
3079
3080 return ret;
3081 }
3082
3083 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3084 {
3085 res_counter_uncharge(&memcg->res, size);
3086 if (do_swap_account)
3087 res_counter_uncharge(&memcg->memsw, size);
3088
3089 /* Not down to 0 */
3090 if (res_counter_uncharge(&memcg->kmem, size))
3091 return;
3092
3093 /*
3094 * Releases a reference taken in kmem_cgroup_css_offline in case
3095 * this last uncharge is racing with the offlining code or it is
3096 * outliving the memcg existence.
3097 *
3098 * The memory barrier imposed by test&clear is paired with the
3099 * explicit one in memcg_kmem_mark_dead().
3100 */
3101 if (memcg_kmem_test_and_clear_dead(memcg))
3102 css_put(&memcg->css);
3103 }
3104
3105 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3106 {
3107 if (!memcg)
3108 return;
3109
3110 mutex_lock(&memcg->slab_caches_mutex);
3111 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3112 mutex_unlock(&memcg->slab_caches_mutex);
3113 }
3114
3115 /*
3116 * helper for acessing a memcg's index. It will be used as an index in the
3117 * child cache array in kmem_cache, and also to derive its name. This function
3118 * will return -1 when this is not a kmem-limited memcg.
3119 */
3120 int memcg_cache_id(struct mem_cgroup *memcg)
3121 {
3122 return memcg ? memcg->kmemcg_id : -1;
3123 }
3124
3125 /*
3126 * This ends up being protected by the set_limit mutex, during normal
3127 * operation, because that is its main call site.
3128 *
3129 * But when we create a new cache, we can call this as well if its parent
3130 * is kmem-limited. That will have to hold set_limit_mutex as well.
3131 */
3132 static int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3133 {
3134 int num, ret;
3135
3136 num = ida_simple_get(&kmem_limited_groups,
3137 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3138 if (num < 0)
3139 return num;
3140 /*
3141 * After this point, kmem_accounted (that we test atomically in
3142 * the beginning of this conditional), is no longer 0. This
3143 * guarantees only one process will set the following boolean
3144 * to true. We don't need test_and_set because we're protected
3145 * by the set_limit_mutex anyway.
3146 */
3147 memcg_kmem_set_activated(memcg);
3148
3149 ret = memcg_update_all_caches(num+1);
3150 if (ret) {
3151 ida_simple_remove(&kmem_limited_groups, num);
3152 memcg_kmem_clear_activated(memcg);
3153 return ret;
3154 }
3155
3156 memcg->kmemcg_id = num;
3157 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3158 mutex_init(&memcg->slab_caches_mutex);
3159 return 0;
3160 }
3161
3162 static size_t memcg_caches_array_size(int num_groups)
3163 {
3164 ssize_t size;
3165 if (num_groups <= 0)
3166 return 0;
3167
3168 size = 2 * num_groups;
3169 if (size < MEMCG_CACHES_MIN_SIZE)
3170 size = MEMCG_CACHES_MIN_SIZE;
3171 else if (size > MEMCG_CACHES_MAX_SIZE)
3172 size = MEMCG_CACHES_MAX_SIZE;
3173
3174 return size;
3175 }
3176
3177 /*
3178 * We should update the current array size iff all caches updates succeed. This
3179 * can only be done from the slab side. The slab mutex needs to be held when
3180 * calling this.
3181 */
3182 void memcg_update_array_size(int num)
3183 {
3184 if (num > memcg_limited_groups_array_size)
3185 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3186 }
3187
3188 static void kmem_cache_destroy_work_func(struct work_struct *w);
3189
3190 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3191 {
3192 struct memcg_cache_params *cur_params = s->memcg_params;
3193
3194 VM_BUG_ON(!is_root_cache(s));
3195
3196 if (num_groups > memcg_limited_groups_array_size) {
3197 int i;
3198 ssize_t size = memcg_caches_array_size(num_groups);
3199
3200 size *= sizeof(void *);
3201 size += offsetof(struct memcg_cache_params, memcg_caches);
3202
3203 s->memcg_params = kzalloc(size, GFP_KERNEL);
3204 if (!s->memcg_params) {
3205 s->memcg_params = cur_params;
3206 return -ENOMEM;
3207 }
3208
3209 s->memcg_params->is_root_cache = true;
3210
3211 /*
3212 * There is the chance it will be bigger than
3213 * memcg_limited_groups_array_size, if we failed an allocation
3214 * in a cache, in which case all caches updated before it, will
3215 * have a bigger array.
3216 *
3217 * But if that is the case, the data after
3218 * memcg_limited_groups_array_size is certainly unused
3219 */
3220 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3221 if (!cur_params->memcg_caches[i])
3222 continue;
3223 s->memcg_params->memcg_caches[i] =
3224 cur_params->memcg_caches[i];
3225 }
3226
3227 /*
3228 * Ideally, we would wait until all caches succeed, and only
3229 * then free the old one. But this is not worth the extra
3230 * pointer per-cache we'd have to have for this.
3231 *
3232 * It is not a big deal if some caches are left with a size
3233 * bigger than the others. And all updates will reset this
3234 * anyway.
3235 */
3236 kfree(cur_params);
3237 }
3238 return 0;
3239 }
3240
3241 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3242 struct kmem_cache *root_cache)
3243 {
3244 size_t size;
3245
3246 if (!memcg_kmem_enabled())
3247 return 0;
3248
3249 if (!memcg) {
3250 size = offsetof(struct memcg_cache_params, memcg_caches);
3251 size += memcg_limited_groups_array_size * sizeof(void *);
3252 } else
3253 size = sizeof(struct memcg_cache_params);
3254
3255 s->memcg_params = kzalloc(size, GFP_KERNEL);
3256 if (!s->memcg_params)
3257 return -ENOMEM;
3258
3259 if (memcg) {
3260 s->memcg_params->memcg = memcg;
3261 s->memcg_params->root_cache = root_cache;
3262 INIT_WORK(&s->memcg_params->destroy,
3263 kmem_cache_destroy_work_func);
3264 } else
3265 s->memcg_params->is_root_cache = true;
3266
3267 return 0;
3268 }
3269
3270 void memcg_release_cache(struct kmem_cache *s)
3271 {
3272 struct kmem_cache *root;
3273 struct mem_cgroup *memcg;
3274 int id;
3275
3276 /*
3277 * This happens, for instance, when a root cache goes away before we
3278 * add any memcg.
3279 */
3280 if (!s->memcg_params)
3281 return;
3282
3283 if (s->memcg_params->is_root_cache)
3284 goto out;
3285
3286 memcg = s->memcg_params->memcg;
3287 id = memcg_cache_id(memcg);
3288
3289 root = s->memcg_params->root_cache;
3290 root->memcg_params->memcg_caches[id] = NULL;
3291
3292 mutex_lock(&memcg->slab_caches_mutex);
3293 list_del(&s->memcg_params->list);
3294 mutex_unlock(&memcg->slab_caches_mutex);
3295
3296 css_put(&memcg->css);
3297 out:
3298 kfree(s->memcg_params);
3299 }
3300
3301 /*
3302 * During the creation a new cache, we need to disable our accounting mechanism
3303 * altogether. This is true even if we are not creating, but rather just
3304 * enqueing new caches to be created.
3305 *
3306 * This is because that process will trigger allocations; some visible, like
3307 * explicit kmallocs to auxiliary data structures, name strings and internal
3308 * cache structures; some well concealed, like INIT_WORK() that can allocate
3309 * objects during debug.
3310 *
3311 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3312 * to it. This may not be a bounded recursion: since the first cache creation
3313 * failed to complete (waiting on the allocation), we'll just try to create the
3314 * cache again, failing at the same point.
3315 *
3316 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3317 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3318 * inside the following two functions.
3319 */
3320 static inline void memcg_stop_kmem_account(void)
3321 {
3322 VM_BUG_ON(!current->mm);
3323 current->memcg_kmem_skip_account++;
3324 }
3325
3326 static inline void memcg_resume_kmem_account(void)
3327 {
3328 VM_BUG_ON(!current->mm);
3329 current->memcg_kmem_skip_account--;
3330 }
3331
3332 static void kmem_cache_destroy_work_func(struct work_struct *w)
3333 {
3334 struct kmem_cache *cachep;
3335 struct memcg_cache_params *p;
3336
3337 p = container_of(w, struct memcg_cache_params, destroy);
3338
3339 cachep = memcg_params_to_cache(p);
3340
3341 /*
3342 * If we get down to 0 after shrink, we could delete right away.
3343 * However, memcg_release_pages() already puts us back in the workqueue
3344 * in that case. If we proceed deleting, we'll get a dangling
3345 * reference, and removing the object from the workqueue in that case
3346 * is unnecessary complication. We are not a fast path.
3347 *
3348 * Note that this case is fundamentally different from racing with
3349 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3350 * kmem_cache_shrink, not only we would be reinserting a dead cache
3351 * into the queue, but doing so from inside the worker racing to
3352 * destroy it.
3353 *
3354 * So if we aren't down to zero, we'll just schedule a worker and try
3355 * again
3356 */
3357 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3358 kmem_cache_shrink(cachep);
3359 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3360 return;
3361 } else
3362 kmem_cache_destroy(cachep);
3363 }
3364
3365 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3366 {
3367 if (!cachep->memcg_params->dead)
3368 return;
3369
3370 /*
3371 * There are many ways in which we can get here.
3372 *
3373 * We can get to a memory-pressure situation while the delayed work is
3374 * still pending to run. The vmscan shrinkers can then release all
3375 * cache memory and get us to destruction. If this is the case, we'll
3376 * be executed twice, which is a bug (the second time will execute over
3377 * bogus data). In this case, cancelling the work should be fine.
3378 *
3379 * But we can also get here from the worker itself, if
3380 * kmem_cache_shrink is enough to shake all the remaining objects and
3381 * get the page count to 0. In this case, we'll deadlock if we try to
3382 * cancel the work (the worker runs with an internal lock held, which
3383 * is the same lock we would hold for cancel_work_sync().)
3384 *
3385 * Since we can't possibly know who got us here, just refrain from
3386 * running if there is already work pending
3387 */
3388 if (work_pending(&cachep->memcg_params->destroy))
3389 return;
3390 /*
3391 * We have to defer the actual destroying to a workqueue, because
3392 * we might currently be in a context that cannot sleep.
3393 */
3394 schedule_work(&cachep->memcg_params->destroy);
3395 }
3396
3397 /*
3398 * This lock protects updaters, not readers. We want readers to be as fast as
3399 * they can, and they will either see NULL or a valid cache value. Our model
3400 * allow them to see NULL, in which case the root memcg will be selected.
3401 *
3402 * We need this lock because multiple allocations to the same cache from a non
3403 * will span more than one worker. Only one of them can create the cache.
3404 */
3405 static DEFINE_MUTEX(memcg_cache_mutex);
3406
3407 /*
3408 * Called with memcg_cache_mutex held
3409 */
3410 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3411 struct kmem_cache *s)
3412 {
3413 struct kmem_cache *new;
3414 static char *tmp_name = NULL;
3415
3416 lockdep_assert_held(&memcg_cache_mutex);
3417
3418 /*
3419 * kmem_cache_create_memcg duplicates the given name and
3420 * cgroup_name for this name requires RCU context.
3421 * This static temporary buffer is used to prevent from
3422 * pointless shortliving allocation.
3423 */
3424 if (!tmp_name) {
3425 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3426 if (!tmp_name)
3427 return NULL;
3428 }
3429
3430 rcu_read_lock();
3431 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3432 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3433 rcu_read_unlock();
3434
3435 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3436 (s->flags & ~SLAB_PANIC), s->ctor, s);
3437
3438 if (new)
3439 new->allocflags |= __GFP_KMEMCG;
3440
3441 return new;
3442 }
3443
3444 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3445 struct kmem_cache *cachep)
3446 {
3447 struct kmem_cache *new_cachep;
3448 int idx;
3449
3450 BUG_ON(!memcg_can_account_kmem(memcg));
3451
3452 idx = memcg_cache_id(memcg);
3453
3454 mutex_lock(&memcg_cache_mutex);
3455 new_cachep = cache_from_memcg_idx(cachep, idx);
3456 if (new_cachep) {
3457 css_put(&memcg->css);
3458 goto out;
3459 }
3460
3461 new_cachep = kmem_cache_dup(memcg, cachep);
3462 if (new_cachep == NULL) {
3463 new_cachep = cachep;
3464 css_put(&memcg->css);
3465 goto out;
3466 }
3467
3468 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3469
3470 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3471 /*
3472 * the readers won't lock, make sure everybody sees the updated value,
3473 * so they won't put stuff in the queue again for no reason
3474 */
3475 wmb();
3476 out:
3477 mutex_unlock(&memcg_cache_mutex);
3478 return new_cachep;
3479 }
3480
3481 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3482 {
3483 struct kmem_cache *c;
3484 int i;
3485
3486 if (!s->memcg_params)
3487 return;
3488 if (!s->memcg_params->is_root_cache)
3489 return;
3490
3491 /*
3492 * If the cache is being destroyed, we trust that there is no one else
3493 * requesting objects from it. Even if there are, the sanity checks in
3494 * kmem_cache_destroy should caught this ill-case.
3495 *
3496 * Still, we don't want anyone else freeing memcg_caches under our
3497 * noses, which can happen if a new memcg comes to life. As usual,
3498 * we'll take the set_limit_mutex to protect ourselves against this.
3499 */
3500 mutex_lock(&set_limit_mutex);
3501 for_each_memcg_cache_index(i) {
3502 c = cache_from_memcg_idx(s, i);
3503 if (!c)
3504 continue;
3505
3506 /*
3507 * We will now manually delete the caches, so to avoid races
3508 * we need to cancel all pending destruction workers and
3509 * proceed with destruction ourselves.
3510 *
3511 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3512 * and that could spawn the workers again: it is likely that
3513 * the cache still have active pages until this very moment.
3514 * This would lead us back to mem_cgroup_destroy_cache.
3515 *
3516 * But that will not execute at all if the "dead" flag is not
3517 * set, so flip it down to guarantee we are in control.
3518 */
3519 c->memcg_params->dead = false;
3520 cancel_work_sync(&c->memcg_params->destroy);
3521 kmem_cache_destroy(c);
3522 }
3523 mutex_unlock(&set_limit_mutex);
3524 }
3525
3526 struct create_work {
3527 struct mem_cgroup *memcg;
3528 struct kmem_cache *cachep;
3529 struct work_struct work;
3530 };
3531
3532 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3533 {
3534 struct kmem_cache *cachep;
3535 struct memcg_cache_params *params;
3536
3537 if (!memcg_kmem_is_active(memcg))
3538 return;
3539
3540 mutex_lock(&memcg->slab_caches_mutex);
3541 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3542 cachep = memcg_params_to_cache(params);
3543 cachep->memcg_params->dead = true;
3544 schedule_work(&cachep->memcg_params->destroy);
3545 }
3546 mutex_unlock(&memcg->slab_caches_mutex);
3547 }
3548
3549 static void memcg_create_cache_work_func(struct work_struct *w)
3550 {
3551 struct create_work *cw;
3552
3553 cw = container_of(w, struct create_work, work);
3554 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3555 kfree(cw);
3556 }
3557
3558 /*
3559 * Enqueue the creation of a per-memcg kmem_cache.
3560 */
3561 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3562 struct kmem_cache *cachep)
3563 {
3564 struct create_work *cw;
3565
3566 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3567 if (cw == NULL) {
3568 css_put(&memcg->css);
3569 return;
3570 }
3571
3572 cw->memcg = memcg;
3573 cw->cachep = cachep;
3574
3575 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3576 schedule_work(&cw->work);
3577 }
3578
3579 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3580 struct kmem_cache *cachep)
3581 {
3582 /*
3583 * We need to stop accounting when we kmalloc, because if the
3584 * corresponding kmalloc cache is not yet created, the first allocation
3585 * in __memcg_create_cache_enqueue will recurse.
3586 *
3587 * However, it is better to enclose the whole function. Depending on
3588 * the debugging options enabled, INIT_WORK(), for instance, can
3589 * trigger an allocation. This too, will make us recurse. Because at
3590 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3591 * the safest choice is to do it like this, wrapping the whole function.
3592 */
3593 memcg_stop_kmem_account();
3594 __memcg_create_cache_enqueue(memcg, cachep);
3595 memcg_resume_kmem_account();
3596 }
3597 /*
3598 * Return the kmem_cache we're supposed to use for a slab allocation.
3599 * We try to use the current memcg's version of the cache.
3600 *
3601 * If the cache does not exist yet, if we are the first user of it,
3602 * we either create it immediately, if possible, or create it asynchronously
3603 * in a workqueue.
3604 * In the latter case, we will let the current allocation go through with
3605 * the original cache.
3606 *
3607 * Can't be called in interrupt context or from kernel threads.
3608 * This function needs to be called with rcu_read_lock() held.
3609 */
3610 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3611 gfp_t gfp)
3612 {
3613 struct mem_cgroup *memcg;
3614 int idx;
3615
3616 VM_BUG_ON(!cachep->memcg_params);
3617 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3618
3619 if (!current->mm || current->memcg_kmem_skip_account)
3620 return cachep;
3621
3622 rcu_read_lock();
3623 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3624
3625 if (!memcg_can_account_kmem(memcg))
3626 goto out;
3627
3628 idx = memcg_cache_id(memcg);
3629
3630 /*
3631 * barrier to mare sure we're always seeing the up to date value. The
3632 * code updating memcg_caches will issue a write barrier to match this.
3633 */
3634 read_barrier_depends();
3635 if (likely(cache_from_memcg_idx(cachep, idx))) {
3636 cachep = cache_from_memcg_idx(cachep, idx);
3637 goto out;
3638 }
3639
3640 /* The corresponding put will be done in the workqueue. */
3641 if (!css_tryget(&memcg->css))
3642 goto out;
3643 rcu_read_unlock();
3644
3645 /*
3646 * If we are in a safe context (can wait, and not in interrupt
3647 * context), we could be be predictable and return right away.
3648 * This would guarantee that the allocation being performed
3649 * already belongs in the new cache.
3650 *
3651 * However, there are some clashes that can arrive from locking.
3652 * For instance, because we acquire the slab_mutex while doing
3653 * kmem_cache_dup, this means no further allocation could happen
3654 * with the slab_mutex held.
3655 *
3656 * Also, because cache creation issue get_online_cpus(), this
3657 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3658 * that ends up reversed during cpu hotplug. (cpuset allocates
3659 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3660 * better to defer everything.
3661 */
3662 memcg_create_cache_enqueue(memcg, cachep);
3663 return cachep;
3664 out:
3665 rcu_read_unlock();
3666 return cachep;
3667 }
3668 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3669
3670 /*
3671 * We need to verify if the allocation against current->mm->owner's memcg is
3672 * possible for the given order. But the page is not allocated yet, so we'll
3673 * need a further commit step to do the final arrangements.
3674 *
3675 * It is possible for the task to switch cgroups in this mean time, so at
3676 * commit time, we can't rely on task conversion any longer. We'll then use
3677 * the handle argument to return to the caller which cgroup we should commit
3678 * against. We could also return the memcg directly and avoid the pointer
3679 * passing, but a boolean return value gives better semantics considering
3680 * the compiled-out case as well.
3681 *
3682 * Returning true means the allocation is possible.
3683 */
3684 bool
3685 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3686 {
3687 struct mem_cgroup *memcg;
3688 int ret;
3689
3690 *_memcg = NULL;
3691
3692 /*
3693 * Disabling accounting is only relevant for some specific memcg
3694 * internal allocations. Therefore we would initially not have such
3695 * check here, since direct calls to the page allocator that are marked
3696 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3697 * concerned with cache allocations, and by having this test at
3698 * memcg_kmem_get_cache, we are already able to relay the allocation to
3699 * the root cache and bypass the memcg cache altogether.
3700 *
3701 * There is one exception, though: the SLUB allocator does not create
3702 * large order caches, but rather service large kmallocs directly from
3703 * the page allocator. Therefore, the following sequence when backed by
3704 * the SLUB allocator:
3705 *
3706 * memcg_stop_kmem_account();
3707 * kmalloc(<large_number>)
3708 * memcg_resume_kmem_account();
3709 *
3710 * would effectively ignore the fact that we should skip accounting,
3711 * since it will drive us directly to this function without passing
3712 * through the cache selector memcg_kmem_get_cache. Such large
3713 * allocations are extremely rare but can happen, for instance, for the
3714 * cache arrays. We bring this test here.
3715 */
3716 if (!current->mm || current->memcg_kmem_skip_account)
3717 return true;
3718
3719 memcg = try_get_mem_cgroup_from_mm(current->mm);
3720
3721 /*
3722 * very rare case described in mem_cgroup_from_task. Unfortunately there
3723 * isn't much we can do without complicating this too much, and it would
3724 * be gfp-dependent anyway. Just let it go
3725 */
3726 if (unlikely(!memcg))
3727 return true;
3728
3729 if (!memcg_can_account_kmem(memcg)) {
3730 css_put(&memcg->css);
3731 return true;
3732 }
3733
3734 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3735 if (!ret)
3736 *_memcg = memcg;
3737
3738 css_put(&memcg->css);
3739 return (ret == 0);
3740 }
3741
3742 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3743 int order)
3744 {
3745 struct page_cgroup *pc;
3746
3747 VM_BUG_ON(mem_cgroup_is_root(memcg));
3748
3749 /* The page allocation failed. Revert */
3750 if (!page) {
3751 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3752 return;
3753 }
3754
3755 pc = lookup_page_cgroup(page);
3756 lock_page_cgroup(pc);
3757 pc->mem_cgroup = memcg;
3758 SetPageCgroupUsed(pc);
3759 unlock_page_cgroup(pc);
3760 }
3761
3762 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3763 {
3764 struct mem_cgroup *memcg = NULL;
3765 struct page_cgroup *pc;
3766
3767
3768 pc = lookup_page_cgroup(page);
3769 /*
3770 * Fast unlocked return. Theoretically might have changed, have to
3771 * check again after locking.
3772 */
3773 if (!PageCgroupUsed(pc))
3774 return;
3775
3776 lock_page_cgroup(pc);
3777 if (PageCgroupUsed(pc)) {
3778 memcg = pc->mem_cgroup;
3779 ClearPageCgroupUsed(pc);
3780 }
3781 unlock_page_cgroup(pc);
3782
3783 /*
3784 * We trust that only if there is a memcg associated with the page, it
3785 * is a valid allocation
3786 */
3787 if (!memcg)
3788 return;
3789
3790 VM_BUG_ON(mem_cgroup_is_root(memcg));
3791 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3792 }
3793 #else
3794 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3795 {
3796 }
3797 #endif /* CONFIG_MEMCG_KMEM */
3798
3799 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3800
3801 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3802 /*
3803 * Because tail pages are not marked as "used", set it. We're under
3804 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3805 * charge/uncharge will be never happen and move_account() is done under
3806 * compound_lock(), so we don't have to take care of races.
3807 */
3808 void mem_cgroup_split_huge_fixup(struct page *head)
3809 {
3810 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3811 struct page_cgroup *pc;
3812 struct mem_cgroup *memcg;
3813 int i;
3814
3815 if (mem_cgroup_disabled())
3816 return;
3817
3818 memcg = head_pc->mem_cgroup;
3819 for (i = 1; i < HPAGE_PMD_NR; i++) {
3820 pc = head_pc + i;
3821 pc->mem_cgroup = memcg;
3822 smp_wmb();/* see __commit_charge() */
3823 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3824 }
3825 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3826 HPAGE_PMD_NR);
3827 }
3828 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3829
3830 static inline
3831 void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
3832 struct mem_cgroup *to,
3833 unsigned int nr_pages,
3834 enum mem_cgroup_stat_index idx)
3835 {
3836 /* Update stat data for mem_cgroup */
3837 preempt_disable();
3838 __this_cpu_sub(from->stat->count[idx], nr_pages);
3839 __this_cpu_add(to->stat->count[idx], nr_pages);
3840 preempt_enable();
3841 }
3842
3843 /**
3844 * mem_cgroup_move_account - move account of the page
3845 * @page: the page
3846 * @nr_pages: number of regular pages (>1 for huge pages)
3847 * @pc: page_cgroup of the page.
3848 * @from: mem_cgroup which the page is moved from.
3849 * @to: mem_cgroup which the page is moved to. @from != @to.
3850 *
3851 * The caller must confirm following.
3852 * - page is not on LRU (isolate_page() is useful.)
3853 * - compound_lock is held when nr_pages > 1
3854 *
3855 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3856 * from old cgroup.
3857 */
3858 static int mem_cgroup_move_account(struct page *page,
3859 unsigned int nr_pages,
3860 struct page_cgroup *pc,
3861 struct mem_cgroup *from,
3862 struct mem_cgroup *to)
3863 {
3864 unsigned long flags;
3865 int ret;
3866 bool anon = PageAnon(page);
3867
3868 VM_BUG_ON(from == to);
3869 VM_BUG_ON(PageLRU(page));
3870 /*
3871 * The page is isolated from LRU. So, collapse function
3872 * will not handle this page. But page splitting can happen.
3873 * Do this check under compound_page_lock(). The caller should
3874 * hold it.
3875 */
3876 ret = -EBUSY;
3877 if (nr_pages > 1 && !PageTransHuge(page))
3878 goto out;
3879
3880 lock_page_cgroup(pc);
3881
3882 ret = -EINVAL;
3883 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3884 goto unlock;
3885
3886 move_lock_mem_cgroup(from, &flags);
3887
3888 if (!anon && page_mapped(page))
3889 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3890 MEM_CGROUP_STAT_FILE_MAPPED);
3891
3892 if (PageWriteback(page))
3893 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3894 MEM_CGROUP_STAT_WRITEBACK);
3895
3896 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3897
3898 /* caller should have done css_get */
3899 pc->mem_cgroup = to;
3900 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3901 move_unlock_mem_cgroup(from, &flags);
3902 ret = 0;
3903 unlock:
3904 unlock_page_cgroup(pc);
3905 /*
3906 * check events
3907 */
3908 memcg_check_events(to, page);
3909 memcg_check_events(from, page);
3910 out:
3911 return ret;
3912 }
3913
3914 /**
3915 * mem_cgroup_move_parent - moves page to the parent group
3916 * @page: the page to move
3917 * @pc: page_cgroup of the page
3918 * @child: page's cgroup
3919 *
3920 * move charges to its parent or the root cgroup if the group has no
3921 * parent (aka use_hierarchy==0).
3922 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3923 * mem_cgroup_move_account fails) the failure is always temporary and
3924 * it signals a race with a page removal/uncharge or migration. In the
3925 * first case the page is on the way out and it will vanish from the LRU
3926 * on the next attempt and the call should be retried later.
3927 * Isolation from the LRU fails only if page has been isolated from
3928 * the LRU since we looked at it and that usually means either global
3929 * reclaim or migration going on. The page will either get back to the
3930 * LRU or vanish.
3931 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3932 * (!PageCgroupUsed) or moved to a different group. The page will
3933 * disappear in the next attempt.
3934 */
3935 static int mem_cgroup_move_parent(struct page *page,
3936 struct page_cgroup *pc,
3937 struct mem_cgroup *child)
3938 {
3939 struct mem_cgroup *parent;
3940 unsigned int nr_pages;
3941 unsigned long uninitialized_var(flags);
3942 int ret;
3943
3944 VM_BUG_ON(mem_cgroup_is_root(child));
3945
3946 ret = -EBUSY;
3947 if (!get_page_unless_zero(page))
3948 goto out;
3949 if (isolate_lru_page(page))
3950 goto put;
3951
3952 nr_pages = hpage_nr_pages(page);
3953
3954 parent = parent_mem_cgroup(child);
3955 /*
3956 * If no parent, move charges to root cgroup.
3957 */
3958 if (!parent)
3959 parent = root_mem_cgroup;
3960
3961 if (nr_pages > 1) {
3962 VM_BUG_ON(!PageTransHuge(page));
3963 flags = compound_lock_irqsave(page);
3964 }
3965
3966 ret = mem_cgroup_move_account(page, nr_pages,
3967 pc, child, parent);
3968 if (!ret)
3969 __mem_cgroup_cancel_local_charge(child, nr_pages);
3970
3971 if (nr_pages > 1)
3972 compound_unlock_irqrestore(page, flags);
3973 putback_lru_page(page);
3974 put:
3975 put_page(page);
3976 out:
3977 return ret;
3978 }
3979
3980 /*
3981 * Charge the memory controller for page usage.
3982 * Return
3983 * 0 if the charge was successful
3984 * < 0 if the cgroup is over its limit
3985 */
3986 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3987 gfp_t gfp_mask, enum charge_type ctype)
3988 {
3989 struct mem_cgroup *memcg = NULL;
3990 unsigned int nr_pages = 1;
3991 bool oom = true;
3992 int ret;
3993
3994 if (PageTransHuge(page)) {
3995 nr_pages <<= compound_order(page);
3996 VM_BUG_ON(!PageTransHuge(page));
3997 /*
3998 * Never OOM-kill a process for a huge page. The
3999 * fault handler will fall back to regular pages.
4000 */
4001 oom = false;
4002 }
4003
4004 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
4005 if (ret == -ENOMEM)
4006 return ret;
4007 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
4008 return 0;
4009 }
4010
4011 int mem_cgroup_newpage_charge(struct page *page,
4012 struct mm_struct *mm, gfp_t gfp_mask)
4013 {
4014 if (mem_cgroup_disabled())
4015 return 0;
4016 VM_BUG_ON(page_mapped(page));
4017 VM_BUG_ON(page->mapping && !PageAnon(page));
4018 VM_BUG_ON(!mm);
4019 return mem_cgroup_charge_common(page, mm, gfp_mask,
4020 MEM_CGROUP_CHARGE_TYPE_ANON);
4021 }
4022
4023 /*
4024 * While swap-in, try_charge -> commit or cancel, the page is locked.
4025 * And when try_charge() successfully returns, one refcnt to memcg without
4026 * struct page_cgroup is acquired. This refcnt will be consumed by
4027 * "commit()" or removed by "cancel()"
4028 */
4029 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
4030 struct page *page,
4031 gfp_t mask,
4032 struct mem_cgroup **memcgp)
4033 {
4034 struct mem_cgroup *memcg;
4035 struct page_cgroup *pc;
4036 int ret;
4037
4038 pc = lookup_page_cgroup(page);
4039 /*
4040 * Every swap fault against a single page tries to charge the
4041 * page, bail as early as possible. shmem_unuse() encounters
4042 * already charged pages, too. The USED bit is protected by
4043 * the page lock, which serializes swap cache removal, which
4044 * in turn serializes uncharging.
4045 */
4046 if (PageCgroupUsed(pc))
4047 return 0;
4048 if (!do_swap_account)
4049 goto charge_cur_mm;
4050 memcg = try_get_mem_cgroup_from_page(page);
4051 if (!memcg)
4052 goto charge_cur_mm;
4053 *memcgp = memcg;
4054 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
4055 css_put(&memcg->css);
4056 if (ret == -EINTR)
4057 ret = 0;
4058 return ret;
4059 charge_cur_mm:
4060 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
4061 if (ret == -EINTR)
4062 ret = 0;
4063 return ret;
4064 }
4065
4066 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
4067 gfp_t gfp_mask, struct mem_cgroup **memcgp)
4068 {
4069 *memcgp = NULL;
4070 if (mem_cgroup_disabled())
4071 return 0;
4072 /*
4073 * A racing thread's fault, or swapoff, may have already
4074 * updated the pte, and even removed page from swap cache: in
4075 * those cases unuse_pte()'s pte_same() test will fail; but
4076 * there's also a KSM case which does need to charge the page.
4077 */
4078 if (!PageSwapCache(page)) {
4079 int ret;
4080
4081 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4082 if (ret == -EINTR)
4083 ret = 0;
4084 return ret;
4085 }
4086 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4087 }
4088
4089 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4090 {
4091 if (mem_cgroup_disabled())
4092 return;
4093 if (!memcg)
4094 return;
4095 __mem_cgroup_cancel_charge(memcg, 1);
4096 }
4097
4098 static void
4099 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
4100 enum charge_type ctype)
4101 {
4102 if (mem_cgroup_disabled())
4103 return;
4104 if (!memcg)
4105 return;
4106
4107 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4108 /*
4109 * Now swap is on-memory. This means this page may be
4110 * counted both as mem and swap....double count.
4111 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4112 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4113 * may call delete_from_swap_cache() before reach here.
4114 */
4115 if (do_swap_account && PageSwapCache(page)) {
4116 swp_entry_t ent = {.val = page_private(page)};
4117 mem_cgroup_uncharge_swap(ent);
4118 }
4119 }
4120
4121 void mem_cgroup_commit_charge_swapin(struct page *page,
4122 struct mem_cgroup *memcg)
4123 {
4124 __mem_cgroup_commit_charge_swapin(page, memcg,
4125 MEM_CGROUP_CHARGE_TYPE_ANON);
4126 }
4127
4128 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4129 gfp_t gfp_mask)
4130 {
4131 struct mem_cgroup *memcg = NULL;
4132 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4133 int ret;
4134
4135 if (mem_cgroup_disabled())
4136 return 0;
4137 if (PageCompound(page))
4138 return 0;
4139
4140 if (!PageSwapCache(page))
4141 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4142 else { /* page is swapcache/shmem */
4143 ret = __mem_cgroup_try_charge_swapin(mm, page,
4144 gfp_mask, &memcg);
4145 if (!ret)
4146 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4147 }
4148 return ret;
4149 }
4150
4151 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4152 unsigned int nr_pages,
4153 const enum charge_type ctype)
4154 {
4155 struct memcg_batch_info *batch = NULL;
4156 bool uncharge_memsw = true;
4157
4158 /* If swapout, usage of swap doesn't decrease */
4159 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4160 uncharge_memsw = false;
4161
4162 batch = &current->memcg_batch;
4163 /*
4164 * In usual, we do css_get() when we remember memcg pointer.
4165 * But in this case, we keep res->usage until end of a series of
4166 * uncharges. Then, it's ok to ignore memcg's refcnt.
4167 */
4168 if (!batch->memcg)
4169 batch->memcg = memcg;
4170 /*
4171 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4172 * In those cases, all pages freed continuously can be expected to be in
4173 * the same cgroup and we have chance to coalesce uncharges.
4174 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4175 * because we want to do uncharge as soon as possible.
4176 */
4177
4178 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4179 goto direct_uncharge;
4180
4181 if (nr_pages > 1)
4182 goto direct_uncharge;
4183
4184 /*
4185 * In typical case, batch->memcg == mem. This means we can
4186 * merge a series of uncharges to an uncharge of res_counter.
4187 * If not, we uncharge res_counter ony by one.
4188 */
4189 if (batch->memcg != memcg)
4190 goto direct_uncharge;
4191 /* remember freed charge and uncharge it later */
4192 batch->nr_pages++;
4193 if (uncharge_memsw)
4194 batch->memsw_nr_pages++;
4195 return;
4196 direct_uncharge:
4197 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4198 if (uncharge_memsw)
4199 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4200 if (unlikely(batch->memcg != memcg))
4201 memcg_oom_recover(memcg);
4202 }
4203
4204 /*
4205 * uncharge if !page_mapped(page)
4206 */
4207 static struct mem_cgroup *
4208 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4209 bool end_migration)
4210 {
4211 struct mem_cgroup *memcg = NULL;
4212 unsigned int nr_pages = 1;
4213 struct page_cgroup *pc;
4214 bool anon;
4215
4216 if (mem_cgroup_disabled())
4217 return NULL;
4218
4219 if (PageTransHuge(page)) {
4220 nr_pages <<= compound_order(page);
4221 VM_BUG_ON(!PageTransHuge(page));
4222 }
4223 /*
4224 * Check if our page_cgroup is valid
4225 */
4226 pc = lookup_page_cgroup(page);
4227 if (unlikely(!PageCgroupUsed(pc)))
4228 return NULL;
4229
4230 lock_page_cgroup(pc);
4231
4232 memcg = pc->mem_cgroup;
4233
4234 if (!PageCgroupUsed(pc))
4235 goto unlock_out;
4236
4237 anon = PageAnon(page);
4238
4239 switch (ctype) {
4240 case MEM_CGROUP_CHARGE_TYPE_ANON:
4241 /*
4242 * Generally PageAnon tells if it's the anon statistics to be
4243 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4244 * used before page reached the stage of being marked PageAnon.
4245 */
4246 anon = true;
4247 /* fallthrough */
4248 case MEM_CGROUP_CHARGE_TYPE_DROP:
4249 /* See mem_cgroup_prepare_migration() */
4250 if (page_mapped(page))
4251 goto unlock_out;
4252 /*
4253 * Pages under migration may not be uncharged. But
4254 * end_migration() /must/ be the one uncharging the
4255 * unused post-migration page and so it has to call
4256 * here with the migration bit still set. See the
4257 * res_counter handling below.
4258 */
4259 if (!end_migration && PageCgroupMigration(pc))
4260 goto unlock_out;
4261 break;
4262 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4263 if (!PageAnon(page)) { /* Shared memory */
4264 if (page->mapping && !page_is_file_cache(page))
4265 goto unlock_out;
4266 } else if (page_mapped(page)) /* Anon */
4267 goto unlock_out;
4268 break;
4269 default:
4270 break;
4271 }
4272
4273 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4274
4275 ClearPageCgroupUsed(pc);
4276 /*
4277 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4278 * freed from LRU. This is safe because uncharged page is expected not
4279 * to be reused (freed soon). Exception is SwapCache, it's handled by
4280 * special functions.
4281 */
4282
4283 unlock_page_cgroup(pc);
4284 /*
4285 * even after unlock, we have memcg->res.usage here and this memcg
4286 * will never be freed, so it's safe to call css_get().
4287 */
4288 memcg_check_events(memcg, page);
4289 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4290 mem_cgroup_swap_statistics(memcg, true);
4291 css_get(&memcg->css);
4292 }
4293 /*
4294 * Migration does not charge the res_counter for the
4295 * replacement page, so leave it alone when phasing out the
4296 * page that is unused after the migration.
4297 */
4298 if (!end_migration && !mem_cgroup_is_root(memcg))
4299 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4300
4301 return memcg;
4302
4303 unlock_out:
4304 unlock_page_cgroup(pc);
4305 return NULL;
4306 }
4307
4308 void mem_cgroup_uncharge_page(struct page *page)
4309 {
4310 /* early check. */
4311 if (page_mapped(page))
4312 return;
4313 VM_BUG_ON(page->mapping && !PageAnon(page));
4314 /*
4315 * If the page is in swap cache, uncharge should be deferred
4316 * to the swap path, which also properly accounts swap usage
4317 * and handles memcg lifetime.
4318 *
4319 * Note that this check is not stable and reclaim may add the
4320 * page to swap cache at any time after this. However, if the
4321 * page is not in swap cache by the time page->mapcount hits
4322 * 0, there won't be any page table references to the swap
4323 * slot, and reclaim will free it and not actually write the
4324 * page to disk.
4325 */
4326 if (PageSwapCache(page))
4327 return;
4328 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4329 }
4330
4331 void mem_cgroup_uncharge_cache_page(struct page *page)
4332 {
4333 VM_BUG_ON(page_mapped(page));
4334 VM_BUG_ON(page->mapping);
4335 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4336 }
4337
4338 /*
4339 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4340 * In that cases, pages are freed continuously and we can expect pages
4341 * are in the same memcg. All these calls itself limits the number of
4342 * pages freed at once, then uncharge_start/end() is called properly.
4343 * This may be called prural(2) times in a context,
4344 */
4345
4346 void mem_cgroup_uncharge_start(void)
4347 {
4348 current->memcg_batch.do_batch++;
4349 /* We can do nest. */
4350 if (current->memcg_batch.do_batch == 1) {
4351 current->memcg_batch.memcg = NULL;
4352 current->memcg_batch.nr_pages = 0;
4353 current->memcg_batch.memsw_nr_pages = 0;
4354 }
4355 }
4356
4357 void mem_cgroup_uncharge_end(void)
4358 {
4359 struct memcg_batch_info *batch = &current->memcg_batch;
4360
4361 if (!batch->do_batch)
4362 return;
4363
4364 batch->do_batch--;
4365 if (batch->do_batch) /* If stacked, do nothing. */
4366 return;
4367
4368 if (!batch->memcg)
4369 return;
4370 /*
4371 * This "batch->memcg" is valid without any css_get/put etc...
4372 * bacause we hide charges behind us.
4373 */
4374 if (batch->nr_pages)
4375 res_counter_uncharge(&batch->memcg->res,
4376 batch->nr_pages * PAGE_SIZE);
4377 if (batch->memsw_nr_pages)
4378 res_counter_uncharge(&batch->memcg->memsw,
4379 batch->memsw_nr_pages * PAGE_SIZE);
4380 memcg_oom_recover(batch->memcg);
4381 /* forget this pointer (for sanity check) */
4382 batch->memcg = NULL;
4383 }
4384
4385 #ifdef CONFIG_SWAP
4386 /*
4387 * called after __delete_from_swap_cache() and drop "page" account.
4388 * memcg information is recorded to swap_cgroup of "ent"
4389 */
4390 void
4391 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4392 {
4393 struct mem_cgroup *memcg;
4394 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4395
4396 if (!swapout) /* this was a swap cache but the swap is unused ! */
4397 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4398
4399 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4400
4401 /*
4402 * record memcg information, if swapout && memcg != NULL,
4403 * css_get() was called in uncharge().
4404 */
4405 if (do_swap_account && swapout && memcg)
4406 swap_cgroup_record(ent, mem_cgroup_id(memcg));
4407 }
4408 #endif
4409
4410 #ifdef CONFIG_MEMCG_SWAP
4411 /*
4412 * called from swap_entry_free(). remove record in swap_cgroup and
4413 * uncharge "memsw" account.
4414 */
4415 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4416 {
4417 struct mem_cgroup *memcg;
4418 unsigned short id;
4419
4420 if (!do_swap_account)
4421 return;
4422
4423 id = swap_cgroup_record(ent, 0);
4424 rcu_read_lock();
4425 memcg = mem_cgroup_lookup(id);
4426 if (memcg) {
4427 /*
4428 * We uncharge this because swap is freed.
4429 * This memcg can be obsolete one. We avoid calling css_tryget
4430 */
4431 if (!mem_cgroup_is_root(memcg))
4432 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4433 mem_cgroup_swap_statistics(memcg, false);
4434 css_put(&memcg->css);
4435 }
4436 rcu_read_unlock();
4437 }
4438
4439 /**
4440 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4441 * @entry: swap entry to be moved
4442 * @from: mem_cgroup which the entry is moved from
4443 * @to: mem_cgroup which the entry is moved to
4444 *
4445 * It succeeds only when the swap_cgroup's record for this entry is the same
4446 * as the mem_cgroup's id of @from.
4447 *
4448 * Returns 0 on success, -EINVAL on failure.
4449 *
4450 * The caller must have charged to @to, IOW, called res_counter_charge() about
4451 * both res and memsw, and called css_get().
4452 */
4453 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4454 struct mem_cgroup *from, struct mem_cgroup *to)
4455 {
4456 unsigned short old_id, new_id;
4457
4458 old_id = mem_cgroup_id(from);
4459 new_id = mem_cgroup_id(to);
4460
4461 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4462 mem_cgroup_swap_statistics(from, false);
4463 mem_cgroup_swap_statistics(to, true);
4464 /*
4465 * This function is only called from task migration context now.
4466 * It postpones res_counter and refcount handling till the end
4467 * of task migration(mem_cgroup_clear_mc()) for performance
4468 * improvement. But we cannot postpone css_get(to) because if
4469 * the process that has been moved to @to does swap-in, the
4470 * refcount of @to might be decreased to 0.
4471 *
4472 * We are in attach() phase, so the cgroup is guaranteed to be
4473 * alive, so we can just call css_get().
4474 */
4475 css_get(&to->css);
4476 return 0;
4477 }
4478 return -EINVAL;
4479 }
4480 #else
4481 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4482 struct mem_cgroup *from, struct mem_cgroup *to)
4483 {
4484 return -EINVAL;
4485 }
4486 #endif
4487
4488 /*
4489 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4490 * page belongs to.
4491 */
4492 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4493 struct mem_cgroup **memcgp)
4494 {
4495 struct mem_cgroup *memcg = NULL;
4496 unsigned int nr_pages = 1;
4497 struct page_cgroup *pc;
4498 enum charge_type ctype;
4499
4500 *memcgp = NULL;
4501
4502 if (mem_cgroup_disabled())
4503 return;
4504
4505 if (PageTransHuge(page))
4506 nr_pages <<= compound_order(page);
4507
4508 pc = lookup_page_cgroup(page);
4509 lock_page_cgroup(pc);
4510 if (PageCgroupUsed(pc)) {
4511 memcg = pc->mem_cgroup;
4512 css_get(&memcg->css);
4513 /*
4514 * At migrating an anonymous page, its mapcount goes down
4515 * to 0 and uncharge() will be called. But, even if it's fully
4516 * unmapped, migration may fail and this page has to be
4517 * charged again. We set MIGRATION flag here and delay uncharge
4518 * until end_migration() is called
4519 *
4520 * Corner Case Thinking
4521 * A)
4522 * When the old page was mapped as Anon and it's unmap-and-freed
4523 * while migration was ongoing.
4524 * If unmap finds the old page, uncharge() of it will be delayed
4525 * until end_migration(). If unmap finds a new page, it's
4526 * uncharged when it make mapcount to be 1->0. If unmap code
4527 * finds swap_migration_entry, the new page will not be mapped
4528 * and end_migration() will find it(mapcount==0).
4529 *
4530 * B)
4531 * When the old page was mapped but migraion fails, the kernel
4532 * remaps it. A charge for it is kept by MIGRATION flag even
4533 * if mapcount goes down to 0. We can do remap successfully
4534 * without charging it again.
4535 *
4536 * C)
4537 * The "old" page is under lock_page() until the end of
4538 * migration, so, the old page itself will not be swapped-out.
4539 * If the new page is swapped out before end_migraton, our
4540 * hook to usual swap-out path will catch the event.
4541 */
4542 if (PageAnon(page))
4543 SetPageCgroupMigration(pc);
4544 }
4545 unlock_page_cgroup(pc);
4546 /*
4547 * If the page is not charged at this point,
4548 * we return here.
4549 */
4550 if (!memcg)
4551 return;
4552
4553 *memcgp = memcg;
4554 /*
4555 * We charge new page before it's used/mapped. So, even if unlock_page()
4556 * is called before end_migration, we can catch all events on this new
4557 * page. In the case new page is migrated but not remapped, new page's
4558 * mapcount will be finally 0 and we call uncharge in end_migration().
4559 */
4560 if (PageAnon(page))
4561 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4562 else
4563 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4564 /*
4565 * The page is committed to the memcg, but it's not actually
4566 * charged to the res_counter since we plan on replacing the
4567 * old one and only one page is going to be left afterwards.
4568 */
4569 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4570 }
4571
4572 /* remove redundant charge if migration failed*/
4573 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4574 struct page *oldpage, struct page *newpage, bool migration_ok)
4575 {
4576 struct page *used, *unused;
4577 struct page_cgroup *pc;
4578 bool anon;
4579
4580 if (!memcg)
4581 return;
4582
4583 if (!migration_ok) {
4584 used = oldpage;
4585 unused = newpage;
4586 } else {
4587 used = newpage;
4588 unused = oldpage;
4589 }
4590 anon = PageAnon(used);
4591 __mem_cgroup_uncharge_common(unused,
4592 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4593 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4594 true);
4595 css_put(&memcg->css);
4596 /*
4597 * We disallowed uncharge of pages under migration because mapcount
4598 * of the page goes down to zero, temporarly.
4599 * Clear the flag and check the page should be charged.
4600 */
4601 pc = lookup_page_cgroup(oldpage);
4602 lock_page_cgroup(pc);
4603 ClearPageCgroupMigration(pc);
4604 unlock_page_cgroup(pc);
4605
4606 /*
4607 * If a page is a file cache, radix-tree replacement is very atomic
4608 * and we can skip this check. When it was an Anon page, its mapcount
4609 * goes down to 0. But because we added MIGRATION flage, it's not
4610 * uncharged yet. There are several case but page->mapcount check
4611 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4612 * check. (see prepare_charge() also)
4613 */
4614 if (anon)
4615 mem_cgroup_uncharge_page(used);
4616 }
4617
4618 /*
4619 * At replace page cache, newpage is not under any memcg but it's on
4620 * LRU. So, this function doesn't touch res_counter but handles LRU
4621 * in correct way. Both pages are locked so we cannot race with uncharge.
4622 */
4623 void mem_cgroup_replace_page_cache(struct page *oldpage,
4624 struct page *newpage)
4625 {
4626 struct mem_cgroup *memcg = NULL;
4627 struct page_cgroup *pc;
4628 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4629
4630 if (mem_cgroup_disabled())
4631 return;
4632
4633 pc = lookup_page_cgroup(oldpage);
4634 /* fix accounting on old pages */
4635 lock_page_cgroup(pc);
4636 if (PageCgroupUsed(pc)) {
4637 memcg = pc->mem_cgroup;
4638 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4639 ClearPageCgroupUsed(pc);
4640 }
4641 unlock_page_cgroup(pc);
4642
4643 /*
4644 * When called from shmem_replace_page(), in some cases the
4645 * oldpage has already been charged, and in some cases not.
4646 */
4647 if (!memcg)
4648 return;
4649 /*
4650 * Even if newpage->mapping was NULL before starting replacement,
4651 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4652 * LRU while we overwrite pc->mem_cgroup.
4653 */
4654 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4655 }
4656
4657 #ifdef CONFIG_DEBUG_VM
4658 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4659 {
4660 struct page_cgroup *pc;
4661
4662 pc = lookup_page_cgroup(page);
4663 /*
4664 * Can be NULL while feeding pages into the page allocator for
4665 * the first time, i.e. during boot or memory hotplug;
4666 * or when mem_cgroup_disabled().
4667 */
4668 if (likely(pc) && PageCgroupUsed(pc))
4669 return pc;
4670 return NULL;
4671 }
4672
4673 bool mem_cgroup_bad_page_check(struct page *page)
4674 {
4675 if (mem_cgroup_disabled())
4676 return false;
4677
4678 return lookup_page_cgroup_used(page) != NULL;
4679 }
4680
4681 void mem_cgroup_print_bad_page(struct page *page)
4682 {
4683 struct page_cgroup *pc;
4684
4685 pc = lookup_page_cgroup_used(page);
4686 if (pc) {
4687 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4688 pc, pc->flags, pc->mem_cgroup);
4689 }
4690 }
4691 #endif
4692
4693 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4694 unsigned long long val)
4695 {
4696 int retry_count;
4697 u64 memswlimit, memlimit;
4698 int ret = 0;
4699 int children = mem_cgroup_count_children(memcg);
4700 u64 curusage, oldusage;
4701 int enlarge;
4702
4703 /*
4704 * For keeping hierarchical_reclaim simple, how long we should retry
4705 * is depends on callers. We set our retry-count to be function
4706 * of # of children which we should visit in this loop.
4707 */
4708 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4709
4710 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4711
4712 enlarge = 0;
4713 while (retry_count) {
4714 if (signal_pending(current)) {
4715 ret = -EINTR;
4716 break;
4717 }
4718 /*
4719 * Rather than hide all in some function, I do this in
4720 * open coded manner. You see what this really does.
4721 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4722 */
4723 mutex_lock(&set_limit_mutex);
4724 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4725 if (memswlimit < val) {
4726 ret = -EINVAL;
4727 mutex_unlock(&set_limit_mutex);
4728 break;
4729 }
4730
4731 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4732 if (memlimit < val)
4733 enlarge = 1;
4734
4735 ret = res_counter_set_limit(&memcg->res, val);
4736 if (!ret) {
4737 if (memswlimit == val)
4738 memcg->memsw_is_minimum = true;
4739 else
4740 memcg->memsw_is_minimum = false;
4741 }
4742 mutex_unlock(&set_limit_mutex);
4743
4744 if (!ret)
4745 break;
4746
4747 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4748 MEM_CGROUP_RECLAIM_SHRINK);
4749 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4750 /* Usage is reduced ? */
4751 if (curusage >= oldusage)
4752 retry_count--;
4753 else
4754 oldusage = curusage;
4755 }
4756 if (!ret && enlarge)
4757 memcg_oom_recover(memcg);
4758
4759 return ret;
4760 }
4761
4762 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4763 unsigned long long val)
4764 {
4765 int retry_count;
4766 u64 memlimit, memswlimit, oldusage, curusage;
4767 int children = mem_cgroup_count_children(memcg);
4768 int ret = -EBUSY;
4769 int enlarge = 0;
4770
4771 /* see mem_cgroup_resize_res_limit */
4772 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4773 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4774 while (retry_count) {
4775 if (signal_pending(current)) {
4776 ret = -EINTR;
4777 break;
4778 }
4779 /*
4780 * Rather than hide all in some function, I do this in
4781 * open coded manner. You see what this really does.
4782 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4783 */
4784 mutex_lock(&set_limit_mutex);
4785 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4786 if (memlimit > val) {
4787 ret = -EINVAL;
4788 mutex_unlock(&set_limit_mutex);
4789 break;
4790 }
4791 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4792 if (memswlimit < val)
4793 enlarge = 1;
4794 ret = res_counter_set_limit(&memcg->memsw, val);
4795 if (!ret) {
4796 if (memlimit == val)
4797 memcg->memsw_is_minimum = true;
4798 else
4799 memcg->memsw_is_minimum = false;
4800 }
4801 mutex_unlock(&set_limit_mutex);
4802
4803 if (!ret)
4804 break;
4805
4806 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4807 MEM_CGROUP_RECLAIM_NOSWAP |
4808 MEM_CGROUP_RECLAIM_SHRINK);
4809 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4810 /* Usage is reduced ? */
4811 if (curusage >= oldusage)
4812 retry_count--;
4813 else
4814 oldusage = curusage;
4815 }
4816 if (!ret && enlarge)
4817 memcg_oom_recover(memcg);
4818 return ret;
4819 }
4820
4821 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4822 gfp_t gfp_mask,
4823 unsigned long *total_scanned)
4824 {
4825 unsigned long nr_reclaimed = 0;
4826 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4827 unsigned long reclaimed;
4828 int loop = 0;
4829 struct mem_cgroup_tree_per_zone *mctz;
4830 unsigned long long excess;
4831 unsigned long nr_scanned;
4832
4833 if (order > 0)
4834 return 0;
4835
4836 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4837 /*
4838 * This loop can run a while, specially if mem_cgroup's continuously
4839 * keep exceeding their soft limit and putting the system under
4840 * pressure
4841 */
4842 do {
4843 if (next_mz)
4844 mz = next_mz;
4845 else
4846 mz = mem_cgroup_largest_soft_limit_node(mctz);
4847 if (!mz)
4848 break;
4849
4850 nr_scanned = 0;
4851 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4852 gfp_mask, &nr_scanned);
4853 nr_reclaimed += reclaimed;
4854 *total_scanned += nr_scanned;
4855 spin_lock(&mctz->lock);
4856
4857 /*
4858 * If we failed to reclaim anything from this memory cgroup
4859 * it is time to move on to the next cgroup
4860 */
4861 next_mz = NULL;
4862 if (!reclaimed) {
4863 do {
4864 /*
4865 * Loop until we find yet another one.
4866 *
4867 * By the time we get the soft_limit lock
4868 * again, someone might have aded the
4869 * group back on the RB tree. Iterate to
4870 * make sure we get a different mem.
4871 * mem_cgroup_largest_soft_limit_node returns
4872 * NULL if no other cgroup is present on
4873 * the tree
4874 */
4875 next_mz =
4876 __mem_cgroup_largest_soft_limit_node(mctz);
4877 if (next_mz == mz)
4878 css_put(&next_mz->memcg->css);
4879 else /* next_mz == NULL or other memcg */
4880 break;
4881 } while (1);
4882 }
4883 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4884 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4885 /*
4886 * One school of thought says that we should not add
4887 * back the node to the tree if reclaim returns 0.
4888 * But our reclaim could return 0, simply because due
4889 * to priority we are exposing a smaller subset of
4890 * memory to reclaim from. Consider this as a longer
4891 * term TODO.
4892 */
4893 /* If excess == 0, no tree ops */
4894 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4895 spin_unlock(&mctz->lock);
4896 css_put(&mz->memcg->css);
4897 loop++;
4898 /*
4899 * Could not reclaim anything and there are no more
4900 * mem cgroups to try or we seem to be looping without
4901 * reclaiming anything.
4902 */
4903 if (!nr_reclaimed &&
4904 (next_mz == NULL ||
4905 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4906 break;
4907 } while (!nr_reclaimed);
4908 if (next_mz)
4909 css_put(&next_mz->memcg->css);
4910 return nr_reclaimed;
4911 }
4912
4913 /**
4914 * mem_cgroup_force_empty_list - clears LRU of a group
4915 * @memcg: group to clear
4916 * @node: NUMA node
4917 * @zid: zone id
4918 * @lru: lru to to clear
4919 *
4920 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4921 * reclaim the pages page themselves - pages are moved to the parent (or root)
4922 * group.
4923 */
4924 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4925 int node, int zid, enum lru_list lru)
4926 {
4927 struct lruvec *lruvec;
4928 unsigned long flags;
4929 struct list_head *list;
4930 struct page *busy;
4931 struct zone *zone;
4932
4933 zone = &NODE_DATA(node)->node_zones[zid];
4934 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4935 list = &lruvec->lists[lru];
4936
4937 busy = NULL;
4938 do {
4939 struct page_cgroup *pc;
4940 struct page *page;
4941
4942 spin_lock_irqsave(&zone->lru_lock, flags);
4943 if (list_empty(list)) {
4944 spin_unlock_irqrestore(&zone->lru_lock, flags);
4945 break;
4946 }
4947 page = list_entry(list->prev, struct page, lru);
4948 if (busy == page) {
4949 list_move(&page->lru, list);
4950 busy = NULL;
4951 spin_unlock_irqrestore(&zone->lru_lock, flags);
4952 continue;
4953 }
4954 spin_unlock_irqrestore(&zone->lru_lock, flags);
4955
4956 pc = lookup_page_cgroup(page);
4957
4958 if (mem_cgroup_move_parent(page, pc, memcg)) {
4959 /* found lock contention or "pc" is obsolete. */
4960 busy = page;
4961 cond_resched();
4962 } else
4963 busy = NULL;
4964 } while (!list_empty(list));
4965 }
4966
4967 /*
4968 * make mem_cgroup's charge to be 0 if there is no task by moving
4969 * all the charges and pages to the parent.
4970 * This enables deleting this mem_cgroup.
4971 *
4972 * Caller is responsible for holding css reference on the memcg.
4973 */
4974 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4975 {
4976 int node, zid;
4977 u64 usage;
4978
4979 do {
4980 /* This is for making all *used* pages to be on LRU. */
4981 lru_add_drain_all();
4982 drain_all_stock_sync(memcg);
4983 mem_cgroup_start_move(memcg);
4984 for_each_node_state(node, N_MEMORY) {
4985 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4986 enum lru_list lru;
4987 for_each_lru(lru) {
4988 mem_cgroup_force_empty_list(memcg,
4989 node, zid, lru);
4990 }
4991 }
4992 }
4993 mem_cgroup_end_move(memcg);
4994 memcg_oom_recover(memcg);
4995 cond_resched();
4996
4997 /*
4998 * Kernel memory may not necessarily be trackable to a specific
4999 * process. So they are not migrated, and therefore we can't
5000 * expect their value to drop to 0 here.
5001 * Having res filled up with kmem only is enough.
5002 *
5003 * This is a safety check because mem_cgroup_force_empty_list
5004 * could have raced with mem_cgroup_replace_page_cache callers
5005 * so the lru seemed empty but the page could have been added
5006 * right after the check. RES_USAGE should be safe as we always
5007 * charge before adding to the LRU.
5008 */
5009 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
5010 res_counter_read_u64(&memcg->kmem, RES_USAGE);
5011 } while (usage > 0);
5012 }
5013
5014 static inline bool memcg_has_children(struct mem_cgroup *memcg)
5015 {
5016 lockdep_assert_held(&memcg_create_mutex);
5017 /*
5018 * The lock does not prevent addition or deletion to the list
5019 * of children, but it prevents a new child from being
5020 * initialized based on this parent in css_online(), so it's
5021 * enough to decide whether hierarchically inherited
5022 * attributes can still be changed or not.
5023 */
5024 return memcg->use_hierarchy &&
5025 !list_empty(&memcg->css.cgroup->children);
5026 }
5027
5028 /*
5029 * Reclaims as many pages from the given memcg as possible and moves
5030 * the rest to the parent.
5031 *
5032 * Caller is responsible for holding css reference for memcg.
5033 */
5034 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
5035 {
5036 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
5037 struct cgroup *cgrp = memcg->css.cgroup;
5038
5039 /* returns EBUSY if there is a task or if we come here twice. */
5040 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
5041 return -EBUSY;
5042
5043 /* we call try-to-free pages for make this cgroup empty */
5044 lru_add_drain_all();
5045 /* try to free all pages in this cgroup */
5046 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
5047 int progress;
5048
5049 if (signal_pending(current))
5050 return -EINTR;
5051
5052 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
5053 false);
5054 if (!progress) {
5055 nr_retries--;
5056 /* maybe some writeback is necessary */
5057 congestion_wait(BLK_RW_ASYNC, HZ/10);
5058 }
5059
5060 }
5061 lru_add_drain();
5062 mem_cgroup_reparent_charges(memcg);
5063
5064 return 0;
5065 }
5066
5067 static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
5068 unsigned int event)
5069 {
5070 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5071
5072 if (mem_cgroup_is_root(memcg))
5073 return -EINVAL;
5074 return mem_cgroup_force_empty(memcg);
5075 }
5076
5077 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
5078 struct cftype *cft)
5079 {
5080 return mem_cgroup_from_css(css)->use_hierarchy;
5081 }
5082
5083 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
5084 struct cftype *cft, u64 val)
5085 {
5086 int retval = 0;
5087 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5088 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5089
5090 mutex_lock(&memcg_create_mutex);
5091
5092 if (memcg->use_hierarchy == val)
5093 goto out;
5094
5095 /*
5096 * If parent's use_hierarchy is set, we can't make any modifications
5097 * in the child subtrees. If it is unset, then the change can
5098 * occur, provided the current cgroup has no children.
5099 *
5100 * For the root cgroup, parent_mem is NULL, we allow value to be
5101 * set if there are no children.
5102 */
5103 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5104 (val == 1 || val == 0)) {
5105 if (list_empty(&memcg->css.cgroup->children))
5106 memcg->use_hierarchy = val;
5107 else
5108 retval = -EBUSY;
5109 } else
5110 retval = -EINVAL;
5111
5112 out:
5113 mutex_unlock(&memcg_create_mutex);
5114
5115 return retval;
5116 }
5117
5118
5119 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5120 enum mem_cgroup_stat_index idx)
5121 {
5122 struct mem_cgroup *iter;
5123 long val = 0;
5124
5125 /* Per-cpu values can be negative, use a signed accumulator */
5126 for_each_mem_cgroup_tree(iter, memcg)
5127 val += mem_cgroup_read_stat(iter, idx);
5128
5129 if (val < 0) /* race ? */
5130 val = 0;
5131 return val;
5132 }
5133
5134 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5135 {
5136 u64 val;
5137
5138 if (!mem_cgroup_is_root(memcg)) {
5139 if (!swap)
5140 return res_counter_read_u64(&memcg->res, RES_USAGE);
5141 else
5142 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5143 }
5144
5145 /*
5146 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5147 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5148 */
5149 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5150 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5151
5152 if (swap)
5153 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5154
5155 return val << PAGE_SHIFT;
5156 }
5157
5158 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
5159 struct cftype *cft)
5160 {
5161 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5162 u64 val;
5163 int name;
5164 enum res_type type;
5165
5166 type = MEMFILE_TYPE(cft->private);
5167 name = MEMFILE_ATTR(cft->private);
5168
5169 switch (type) {
5170 case _MEM:
5171 if (name == RES_USAGE)
5172 val = mem_cgroup_usage(memcg, false);
5173 else
5174 val = res_counter_read_u64(&memcg->res, name);
5175 break;
5176 case _MEMSWAP:
5177 if (name == RES_USAGE)
5178 val = mem_cgroup_usage(memcg, true);
5179 else
5180 val = res_counter_read_u64(&memcg->memsw, name);
5181 break;
5182 case _KMEM:
5183 val = res_counter_read_u64(&memcg->kmem, name);
5184 break;
5185 default:
5186 BUG();
5187 }
5188
5189 return val;
5190 }
5191
5192 static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
5193 {
5194 int ret = -EINVAL;
5195 #ifdef CONFIG_MEMCG_KMEM
5196 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5197 /*
5198 * For simplicity, we won't allow this to be disabled. It also can't
5199 * be changed if the cgroup has children already, or if tasks had
5200 * already joined.
5201 *
5202 * If tasks join before we set the limit, a person looking at
5203 * kmem.usage_in_bytes will have no way to determine when it took
5204 * place, which makes the value quite meaningless.
5205 *
5206 * After it first became limited, changes in the value of the limit are
5207 * of course permitted.
5208 */
5209 mutex_lock(&memcg_create_mutex);
5210 mutex_lock(&set_limit_mutex);
5211 if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
5212 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
5213 ret = -EBUSY;
5214 goto out;
5215 }
5216 ret = res_counter_set_limit(&memcg->kmem, val);
5217 VM_BUG_ON(ret);
5218
5219 ret = memcg_update_cache_sizes(memcg);
5220 if (ret) {
5221 res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
5222 goto out;
5223 }
5224 static_key_slow_inc(&memcg_kmem_enabled_key);
5225 /*
5226 * setting the active bit after the inc will guarantee no one
5227 * starts accounting before all call sites are patched
5228 */
5229 memcg_kmem_set_active(memcg);
5230 } else
5231 ret = res_counter_set_limit(&memcg->kmem, val);
5232 out:
5233 mutex_unlock(&set_limit_mutex);
5234 mutex_unlock(&memcg_create_mutex);
5235 #endif
5236 return ret;
5237 }
5238
5239 #ifdef CONFIG_MEMCG_KMEM
5240 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5241 {
5242 int ret = 0;
5243 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5244 if (!parent)
5245 goto out;
5246
5247 memcg->kmem_account_flags = parent->kmem_account_flags;
5248 /*
5249 * When that happen, we need to disable the static branch only on those
5250 * memcgs that enabled it. To achieve this, we would be forced to
5251 * complicate the code by keeping track of which memcgs were the ones
5252 * that actually enabled limits, and which ones got it from its
5253 * parents.
5254 *
5255 * It is a lot simpler just to do static_key_slow_inc() on every child
5256 * that is accounted.
5257 */
5258 if (!memcg_kmem_is_active(memcg))
5259 goto out;
5260
5261 /*
5262 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5263 * memcg is active already. If the later initialization fails then the
5264 * cgroup core triggers the cleanup so we do not have to do it here.
5265 */
5266 static_key_slow_inc(&memcg_kmem_enabled_key);
5267
5268 mutex_lock(&set_limit_mutex);
5269 memcg_stop_kmem_account();
5270 ret = memcg_update_cache_sizes(memcg);
5271 memcg_resume_kmem_account();
5272 mutex_unlock(&set_limit_mutex);
5273 out:
5274 return ret;
5275 }
5276 #endif /* CONFIG_MEMCG_KMEM */
5277
5278 /*
5279 * The user of this function is...
5280 * RES_LIMIT.
5281 */
5282 static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5283 const char *buffer)
5284 {
5285 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5286 enum res_type type;
5287 int name;
5288 unsigned long long val;
5289 int ret;
5290
5291 type = MEMFILE_TYPE(cft->private);
5292 name = MEMFILE_ATTR(cft->private);
5293
5294 switch (name) {
5295 case RES_LIMIT:
5296 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5297 ret = -EINVAL;
5298 break;
5299 }
5300 /* This function does all necessary parse...reuse it */
5301 ret = res_counter_memparse_write_strategy(buffer, &val);
5302 if (ret)
5303 break;
5304 if (type == _MEM)
5305 ret = mem_cgroup_resize_limit(memcg, val);
5306 else if (type == _MEMSWAP)
5307 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5308 else if (type == _KMEM)
5309 ret = memcg_update_kmem_limit(css, val);
5310 else
5311 return -EINVAL;
5312 break;
5313 case RES_SOFT_LIMIT:
5314 ret = res_counter_memparse_write_strategy(buffer, &val);
5315 if (ret)
5316 break;
5317 /*
5318 * For memsw, soft limits are hard to implement in terms
5319 * of semantics, for now, we support soft limits for
5320 * control without swap
5321 */
5322 if (type == _MEM)
5323 ret = res_counter_set_soft_limit(&memcg->res, val);
5324 else
5325 ret = -EINVAL;
5326 break;
5327 default:
5328 ret = -EINVAL; /* should be BUG() ? */
5329 break;
5330 }
5331 return ret;
5332 }
5333
5334 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5335 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5336 {
5337 unsigned long long min_limit, min_memsw_limit, tmp;
5338
5339 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5340 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5341 if (!memcg->use_hierarchy)
5342 goto out;
5343
5344 while (css_parent(&memcg->css)) {
5345 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5346 if (!memcg->use_hierarchy)
5347 break;
5348 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5349 min_limit = min(min_limit, tmp);
5350 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5351 min_memsw_limit = min(min_memsw_limit, tmp);
5352 }
5353 out:
5354 *mem_limit = min_limit;
5355 *memsw_limit = min_memsw_limit;
5356 }
5357
5358 static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5359 {
5360 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5361 int name;
5362 enum res_type type;
5363
5364 type = MEMFILE_TYPE(event);
5365 name = MEMFILE_ATTR(event);
5366
5367 switch (name) {
5368 case RES_MAX_USAGE:
5369 if (type == _MEM)
5370 res_counter_reset_max(&memcg->res);
5371 else if (type == _MEMSWAP)
5372 res_counter_reset_max(&memcg->memsw);
5373 else if (type == _KMEM)
5374 res_counter_reset_max(&memcg->kmem);
5375 else
5376 return -EINVAL;
5377 break;
5378 case RES_FAILCNT:
5379 if (type == _MEM)
5380 res_counter_reset_failcnt(&memcg->res);
5381 else if (type == _MEMSWAP)
5382 res_counter_reset_failcnt(&memcg->memsw);
5383 else if (type == _KMEM)
5384 res_counter_reset_failcnt(&memcg->kmem);
5385 else
5386 return -EINVAL;
5387 break;
5388 }
5389
5390 return 0;
5391 }
5392
5393 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5394 struct cftype *cft)
5395 {
5396 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5397 }
5398
5399 #ifdef CONFIG_MMU
5400 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5401 struct cftype *cft, u64 val)
5402 {
5403 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5404
5405 if (val >= (1 << NR_MOVE_TYPE))
5406 return -EINVAL;
5407
5408 /*
5409 * No kind of locking is needed in here, because ->can_attach() will
5410 * check this value once in the beginning of the process, and then carry
5411 * on with stale data. This means that changes to this value will only
5412 * affect task migrations starting after the change.
5413 */
5414 memcg->move_charge_at_immigrate = val;
5415 return 0;
5416 }
5417 #else
5418 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5419 struct cftype *cft, u64 val)
5420 {
5421 return -ENOSYS;
5422 }
5423 #endif
5424
5425 #ifdef CONFIG_NUMA
5426 static int memcg_numa_stat_show(struct seq_file *m, void *v)
5427 {
5428 struct numa_stat {
5429 const char *name;
5430 unsigned int lru_mask;
5431 };
5432
5433 static const struct numa_stat stats[] = {
5434 { "total", LRU_ALL },
5435 { "file", LRU_ALL_FILE },
5436 { "anon", LRU_ALL_ANON },
5437 { "unevictable", BIT(LRU_UNEVICTABLE) },
5438 };
5439 const struct numa_stat *stat;
5440 int nid;
5441 unsigned long nr;
5442 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5443
5444 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5445 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
5446 seq_printf(m, "%s=%lu", stat->name, nr);
5447 for_each_node_state(nid, N_MEMORY) {
5448 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5449 stat->lru_mask);
5450 seq_printf(m, " N%d=%lu", nid, nr);
5451 }
5452 seq_putc(m, '\n');
5453 }
5454
5455 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5456 struct mem_cgroup *iter;
5457
5458 nr = 0;
5459 for_each_mem_cgroup_tree(iter, memcg)
5460 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
5461 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
5462 for_each_node_state(nid, N_MEMORY) {
5463 nr = 0;
5464 for_each_mem_cgroup_tree(iter, memcg)
5465 nr += mem_cgroup_node_nr_lru_pages(
5466 iter, nid, stat->lru_mask);
5467 seq_printf(m, " N%d=%lu", nid, nr);
5468 }
5469 seq_putc(m, '\n');
5470 }
5471
5472 return 0;
5473 }
5474 #endif /* CONFIG_NUMA */
5475
5476 static inline void mem_cgroup_lru_names_not_uptodate(void)
5477 {
5478 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5479 }
5480
5481 static int memcg_stat_show(struct seq_file *m, void *v)
5482 {
5483 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5484 struct mem_cgroup *mi;
5485 unsigned int i;
5486
5487 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5488 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5489 continue;
5490 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5491 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5492 }
5493
5494 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5495 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5496 mem_cgroup_read_events(memcg, i));
5497
5498 for (i = 0; i < NR_LRU_LISTS; i++)
5499 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5500 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5501
5502 /* Hierarchical information */
5503 {
5504 unsigned long long limit, memsw_limit;
5505 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5506 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5507 if (do_swap_account)
5508 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5509 memsw_limit);
5510 }
5511
5512 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5513 long long val = 0;
5514
5515 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5516 continue;
5517 for_each_mem_cgroup_tree(mi, memcg)
5518 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5519 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5520 }
5521
5522 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5523 unsigned long long val = 0;
5524
5525 for_each_mem_cgroup_tree(mi, memcg)
5526 val += mem_cgroup_read_events(mi, i);
5527 seq_printf(m, "total_%s %llu\n",
5528 mem_cgroup_events_names[i], val);
5529 }
5530
5531 for (i = 0; i < NR_LRU_LISTS; i++) {
5532 unsigned long long val = 0;
5533
5534 for_each_mem_cgroup_tree(mi, memcg)
5535 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5536 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5537 }
5538
5539 #ifdef CONFIG_DEBUG_VM
5540 {
5541 int nid, zid;
5542 struct mem_cgroup_per_zone *mz;
5543 struct zone_reclaim_stat *rstat;
5544 unsigned long recent_rotated[2] = {0, 0};
5545 unsigned long recent_scanned[2] = {0, 0};
5546
5547 for_each_online_node(nid)
5548 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5549 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5550 rstat = &mz->lruvec.reclaim_stat;
5551
5552 recent_rotated[0] += rstat->recent_rotated[0];
5553 recent_rotated[1] += rstat->recent_rotated[1];
5554 recent_scanned[0] += rstat->recent_scanned[0];
5555 recent_scanned[1] += rstat->recent_scanned[1];
5556 }
5557 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5558 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5559 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5560 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5561 }
5562 #endif
5563
5564 return 0;
5565 }
5566
5567 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5568 struct cftype *cft)
5569 {
5570 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5571
5572 return mem_cgroup_swappiness(memcg);
5573 }
5574
5575 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5576 struct cftype *cft, u64 val)
5577 {
5578 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5579 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5580
5581 if (val > 100 || !parent)
5582 return -EINVAL;
5583
5584 mutex_lock(&memcg_create_mutex);
5585
5586 /* If under hierarchy, only empty-root can set this value */
5587 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5588 mutex_unlock(&memcg_create_mutex);
5589 return -EINVAL;
5590 }
5591
5592 memcg->swappiness = val;
5593
5594 mutex_unlock(&memcg_create_mutex);
5595
5596 return 0;
5597 }
5598
5599 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5600 {
5601 struct mem_cgroup_threshold_ary *t;
5602 u64 usage;
5603 int i;
5604
5605 rcu_read_lock();
5606 if (!swap)
5607 t = rcu_dereference(memcg->thresholds.primary);
5608 else
5609 t = rcu_dereference(memcg->memsw_thresholds.primary);
5610
5611 if (!t)
5612 goto unlock;
5613
5614 usage = mem_cgroup_usage(memcg, swap);
5615
5616 /*
5617 * current_threshold points to threshold just below or equal to usage.
5618 * If it's not true, a threshold was crossed after last
5619 * call of __mem_cgroup_threshold().
5620 */
5621 i = t->current_threshold;
5622
5623 /*
5624 * Iterate backward over array of thresholds starting from
5625 * current_threshold and check if a threshold is crossed.
5626 * If none of thresholds below usage is crossed, we read
5627 * only one element of the array here.
5628 */
5629 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5630 eventfd_signal(t->entries[i].eventfd, 1);
5631
5632 /* i = current_threshold + 1 */
5633 i++;
5634
5635 /*
5636 * Iterate forward over array of thresholds starting from
5637 * current_threshold+1 and check if a threshold is crossed.
5638 * If none of thresholds above usage is crossed, we read
5639 * only one element of the array here.
5640 */
5641 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5642 eventfd_signal(t->entries[i].eventfd, 1);
5643
5644 /* Update current_threshold */
5645 t->current_threshold = i - 1;
5646 unlock:
5647 rcu_read_unlock();
5648 }
5649
5650 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5651 {
5652 while (memcg) {
5653 __mem_cgroup_threshold(memcg, false);
5654 if (do_swap_account)
5655 __mem_cgroup_threshold(memcg, true);
5656
5657 memcg = parent_mem_cgroup(memcg);
5658 }
5659 }
5660
5661 static int compare_thresholds(const void *a, const void *b)
5662 {
5663 const struct mem_cgroup_threshold *_a = a;
5664 const struct mem_cgroup_threshold *_b = b;
5665
5666 if (_a->threshold > _b->threshold)
5667 return 1;
5668
5669 if (_a->threshold < _b->threshold)
5670 return -1;
5671
5672 return 0;
5673 }
5674
5675 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5676 {
5677 struct mem_cgroup_eventfd_list *ev;
5678
5679 list_for_each_entry(ev, &memcg->oom_notify, list)
5680 eventfd_signal(ev->eventfd, 1);
5681 return 0;
5682 }
5683
5684 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5685 {
5686 struct mem_cgroup *iter;
5687
5688 for_each_mem_cgroup_tree(iter, memcg)
5689 mem_cgroup_oom_notify_cb(iter);
5690 }
5691
5692 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
5693 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
5694 {
5695 struct mem_cgroup_thresholds *thresholds;
5696 struct mem_cgroup_threshold_ary *new;
5697 u64 threshold, usage;
5698 int i, size, ret;
5699
5700 ret = res_counter_memparse_write_strategy(args, &threshold);
5701 if (ret)
5702 return ret;
5703
5704 mutex_lock(&memcg->thresholds_lock);
5705
5706 if (type == _MEM)
5707 thresholds = &memcg->thresholds;
5708 else if (type == _MEMSWAP)
5709 thresholds = &memcg->memsw_thresholds;
5710 else
5711 BUG();
5712
5713 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5714
5715 /* Check if a threshold crossed before adding a new one */
5716 if (thresholds->primary)
5717 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5718
5719 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5720
5721 /* Allocate memory for new array of thresholds */
5722 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5723 GFP_KERNEL);
5724 if (!new) {
5725 ret = -ENOMEM;
5726 goto unlock;
5727 }
5728 new->size = size;
5729
5730 /* Copy thresholds (if any) to new array */
5731 if (thresholds->primary) {
5732 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5733 sizeof(struct mem_cgroup_threshold));
5734 }
5735
5736 /* Add new threshold */
5737 new->entries[size - 1].eventfd = eventfd;
5738 new->entries[size - 1].threshold = threshold;
5739
5740 /* Sort thresholds. Registering of new threshold isn't time-critical */
5741 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5742 compare_thresholds, NULL);
5743
5744 /* Find current threshold */
5745 new->current_threshold = -1;
5746 for (i = 0; i < size; i++) {
5747 if (new->entries[i].threshold <= usage) {
5748 /*
5749 * new->current_threshold will not be used until
5750 * rcu_assign_pointer(), so it's safe to increment
5751 * it here.
5752 */
5753 ++new->current_threshold;
5754 } else
5755 break;
5756 }
5757
5758 /* Free old spare buffer and save old primary buffer as spare */
5759 kfree(thresholds->spare);
5760 thresholds->spare = thresholds->primary;
5761
5762 rcu_assign_pointer(thresholds->primary, new);
5763
5764 /* To be sure that nobody uses thresholds */
5765 synchronize_rcu();
5766
5767 unlock:
5768 mutex_unlock(&memcg->thresholds_lock);
5769
5770 return ret;
5771 }
5772
5773 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
5774 struct eventfd_ctx *eventfd, const char *args)
5775 {
5776 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
5777 }
5778
5779 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
5780 struct eventfd_ctx *eventfd, const char *args)
5781 {
5782 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
5783 }
5784
5785 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5786 struct eventfd_ctx *eventfd, enum res_type type)
5787 {
5788 struct mem_cgroup_thresholds *thresholds;
5789 struct mem_cgroup_threshold_ary *new;
5790 u64 usage;
5791 int i, j, size;
5792
5793 mutex_lock(&memcg->thresholds_lock);
5794 if (type == _MEM)
5795 thresholds = &memcg->thresholds;
5796 else if (type == _MEMSWAP)
5797 thresholds = &memcg->memsw_thresholds;
5798 else
5799 BUG();
5800
5801 if (!thresholds->primary)
5802 goto unlock;
5803
5804 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5805
5806 /* Check if a threshold crossed before removing */
5807 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5808
5809 /* Calculate new number of threshold */
5810 size = 0;
5811 for (i = 0; i < thresholds->primary->size; i++) {
5812 if (thresholds->primary->entries[i].eventfd != eventfd)
5813 size++;
5814 }
5815
5816 new = thresholds->spare;
5817
5818 /* Set thresholds array to NULL if we don't have thresholds */
5819 if (!size) {
5820 kfree(new);
5821 new = NULL;
5822 goto swap_buffers;
5823 }
5824
5825 new->size = size;
5826
5827 /* Copy thresholds and find current threshold */
5828 new->current_threshold = -1;
5829 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5830 if (thresholds->primary->entries[i].eventfd == eventfd)
5831 continue;
5832
5833 new->entries[j] = thresholds->primary->entries[i];
5834 if (new->entries[j].threshold <= usage) {
5835 /*
5836 * new->current_threshold will not be used
5837 * until rcu_assign_pointer(), so it's safe to increment
5838 * it here.
5839 */
5840 ++new->current_threshold;
5841 }
5842 j++;
5843 }
5844
5845 swap_buffers:
5846 /* Swap primary and spare array */
5847 thresholds->spare = thresholds->primary;
5848 /* If all events are unregistered, free the spare array */
5849 if (!new) {
5850 kfree(thresholds->spare);
5851 thresholds->spare = NULL;
5852 }
5853
5854 rcu_assign_pointer(thresholds->primary, new);
5855
5856 /* To be sure that nobody uses thresholds */
5857 synchronize_rcu();
5858 unlock:
5859 mutex_unlock(&memcg->thresholds_lock);
5860 }
5861
5862 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5863 struct eventfd_ctx *eventfd)
5864 {
5865 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
5866 }
5867
5868 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5869 struct eventfd_ctx *eventfd)
5870 {
5871 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
5872 }
5873
5874 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
5875 struct eventfd_ctx *eventfd, const char *args)
5876 {
5877 struct mem_cgroup_eventfd_list *event;
5878
5879 event = kmalloc(sizeof(*event), GFP_KERNEL);
5880 if (!event)
5881 return -ENOMEM;
5882
5883 spin_lock(&memcg_oom_lock);
5884
5885 event->eventfd = eventfd;
5886 list_add(&event->list, &memcg->oom_notify);
5887
5888 /* already in OOM ? */
5889 if (atomic_read(&memcg->under_oom))
5890 eventfd_signal(eventfd, 1);
5891 spin_unlock(&memcg_oom_lock);
5892
5893 return 0;
5894 }
5895
5896 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
5897 struct eventfd_ctx *eventfd)
5898 {
5899 struct mem_cgroup_eventfd_list *ev, *tmp;
5900
5901 spin_lock(&memcg_oom_lock);
5902
5903 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5904 if (ev->eventfd == eventfd) {
5905 list_del(&ev->list);
5906 kfree(ev);
5907 }
5908 }
5909
5910 spin_unlock(&memcg_oom_lock);
5911 }
5912
5913 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
5914 {
5915 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5916
5917 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
5918 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
5919 return 0;
5920 }
5921
5922 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5923 struct cftype *cft, u64 val)
5924 {
5925 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5926 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5927
5928 /* cannot set to root cgroup and only 0 and 1 are allowed */
5929 if (!parent || !((val == 0) || (val == 1)))
5930 return -EINVAL;
5931
5932 mutex_lock(&memcg_create_mutex);
5933 /* oom-kill-disable is a flag for subhierarchy. */
5934 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5935 mutex_unlock(&memcg_create_mutex);
5936 return -EINVAL;
5937 }
5938 memcg->oom_kill_disable = val;
5939 if (!val)
5940 memcg_oom_recover(memcg);
5941 mutex_unlock(&memcg_create_mutex);
5942 return 0;
5943 }
5944
5945 #ifdef CONFIG_MEMCG_KMEM
5946 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5947 {
5948 int ret;
5949
5950 memcg->kmemcg_id = -1;
5951 ret = memcg_propagate_kmem(memcg);
5952 if (ret)
5953 return ret;
5954
5955 return mem_cgroup_sockets_init(memcg, ss);
5956 }
5957
5958 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5959 {
5960 mem_cgroup_sockets_destroy(memcg);
5961 }
5962
5963 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5964 {
5965 if (!memcg_kmem_is_active(memcg))
5966 return;
5967
5968 /*
5969 * kmem charges can outlive the cgroup. In the case of slab
5970 * pages, for instance, a page contain objects from various
5971 * processes. As we prevent from taking a reference for every
5972 * such allocation we have to be careful when doing uncharge
5973 * (see memcg_uncharge_kmem) and here during offlining.
5974 *
5975 * The idea is that that only the _last_ uncharge which sees
5976 * the dead memcg will drop the last reference. An additional
5977 * reference is taken here before the group is marked dead
5978 * which is then paired with css_put during uncharge resp. here.
5979 *
5980 * Although this might sound strange as this path is called from
5981 * css_offline() when the referencemight have dropped down to 0
5982 * and shouldn't be incremented anymore (css_tryget would fail)
5983 * we do not have other options because of the kmem allocations
5984 * lifetime.
5985 */
5986 css_get(&memcg->css);
5987
5988 memcg_kmem_mark_dead(memcg);
5989
5990 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5991 return;
5992
5993 if (memcg_kmem_test_and_clear_dead(memcg))
5994 css_put(&memcg->css);
5995 }
5996 #else
5997 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5998 {
5999 return 0;
6000 }
6001
6002 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
6003 {
6004 }
6005
6006 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
6007 {
6008 }
6009 #endif
6010
6011 /*
6012 * DO NOT USE IN NEW FILES.
6013 *
6014 * "cgroup.event_control" implementation.
6015 *
6016 * This is way over-engineered. It tries to support fully configurable
6017 * events for each user. Such level of flexibility is completely
6018 * unnecessary especially in the light of the planned unified hierarchy.
6019 *
6020 * Please deprecate this and replace with something simpler if at all
6021 * possible.
6022 */
6023
6024 /*
6025 * Unregister event and free resources.
6026 *
6027 * Gets called from workqueue.
6028 */
6029 static void memcg_event_remove(struct work_struct *work)
6030 {
6031 struct mem_cgroup_event *event =
6032 container_of(work, struct mem_cgroup_event, remove);
6033 struct mem_cgroup *memcg = event->memcg;
6034
6035 remove_wait_queue(event->wqh, &event->wait);
6036
6037 event->unregister_event(memcg, event->eventfd);
6038
6039 /* Notify userspace the event is going away. */
6040 eventfd_signal(event->eventfd, 1);
6041
6042 eventfd_ctx_put(event->eventfd);
6043 kfree(event);
6044 css_put(&memcg->css);
6045 }
6046
6047 /*
6048 * Gets called on POLLHUP on eventfd when user closes it.
6049 *
6050 * Called with wqh->lock held and interrupts disabled.
6051 */
6052 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
6053 int sync, void *key)
6054 {
6055 struct mem_cgroup_event *event =
6056 container_of(wait, struct mem_cgroup_event, wait);
6057 struct mem_cgroup *memcg = event->memcg;
6058 unsigned long flags = (unsigned long)key;
6059
6060 if (flags & POLLHUP) {
6061 /*
6062 * If the event has been detached at cgroup removal, we
6063 * can simply return knowing the other side will cleanup
6064 * for us.
6065 *
6066 * We can't race against event freeing since the other
6067 * side will require wqh->lock via remove_wait_queue(),
6068 * which we hold.
6069 */
6070 spin_lock(&memcg->event_list_lock);
6071 if (!list_empty(&event->list)) {
6072 list_del_init(&event->list);
6073 /*
6074 * We are in atomic context, but cgroup_event_remove()
6075 * may sleep, so we have to call it in workqueue.
6076 */
6077 schedule_work(&event->remove);
6078 }
6079 spin_unlock(&memcg->event_list_lock);
6080 }
6081
6082 return 0;
6083 }
6084
6085 static void memcg_event_ptable_queue_proc(struct file *file,
6086 wait_queue_head_t *wqh, poll_table *pt)
6087 {
6088 struct mem_cgroup_event *event =
6089 container_of(pt, struct mem_cgroup_event, pt);
6090
6091 event->wqh = wqh;
6092 add_wait_queue(wqh, &event->wait);
6093 }
6094
6095 /*
6096 * DO NOT USE IN NEW FILES.
6097 *
6098 * Parse input and register new cgroup event handler.
6099 *
6100 * Input must be in format '<event_fd> <control_fd> <args>'.
6101 * Interpretation of args is defined by control file implementation.
6102 */
6103 static int memcg_write_event_control(struct cgroup_subsys_state *css,
6104 struct cftype *cft, const char *buffer)
6105 {
6106 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6107 struct mem_cgroup_event *event;
6108 struct cgroup_subsys_state *cfile_css;
6109 unsigned int efd, cfd;
6110 struct fd efile;
6111 struct fd cfile;
6112 const char *name;
6113 char *endp;
6114 int ret;
6115
6116 efd = simple_strtoul(buffer, &endp, 10);
6117 if (*endp != ' ')
6118 return -EINVAL;
6119 buffer = endp + 1;
6120
6121 cfd = simple_strtoul(buffer, &endp, 10);
6122 if ((*endp != ' ') && (*endp != '\0'))
6123 return -EINVAL;
6124 buffer = endp + 1;
6125
6126 event = kzalloc(sizeof(*event), GFP_KERNEL);
6127 if (!event)
6128 return -ENOMEM;
6129
6130 event->memcg = memcg;
6131 INIT_LIST_HEAD(&event->list);
6132 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
6133 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
6134 INIT_WORK(&event->remove, memcg_event_remove);
6135
6136 efile = fdget(efd);
6137 if (!efile.file) {
6138 ret = -EBADF;
6139 goto out_kfree;
6140 }
6141
6142 event->eventfd = eventfd_ctx_fileget(efile.file);
6143 if (IS_ERR(event->eventfd)) {
6144 ret = PTR_ERR(event->eventfd);
6145 goto out_put_efile;
6146 }
6147
6148 cfile = fdget(cfd);
6149 if (!cfile.file) {
6150 ret = -EBADF;
6151 goto out_put_eventfd;
6152 }
6153
6154 /* the process need read permission on control file */
6155 /* AV: shouldn't we check that it's been opened for read instead? */
6156 ret = inode_permission(file_inode(cfile.file), MAY_READ);
6157 if (ret < 0)
6158 goto out_put_cfile;
6159
6160 /*
6161 * Determine the event callbacks and set them in @event. This used
6162 * to be done via struct cftype but cgroup core no longer knows
6163 * about these events. The following is crude but the whole thing
6164 * is for compatibility anyway.
6165 *
6166 * DO NOT ADD NEW FILES.
6167 */
6168 name = cfile.file->f_dentry->d_name.name;
6169
6170 if (!strcmp(name, "memory.usage_in_bytes")) {
6171 event->register_event = mem_cgroup_usage_register_event;
6172 event->unregister_event = mem_cgroup_usage_unregister_event;
6173 } else if (!strcmp(name, "memory.oom_control")) {
6174 event->register_event = mem_cgroup_oom_register_event;
6175 event->unregister_event = mem_cgroup_oom_unregister_event;
6176 } else if (!strcmp(name, "memory.pressure_level")) {
6177 event->register_event = vmpressure_register_event;
6178 event->unregister_event = vmpressure_unregister_event;
6179 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
6180 event->register_event = memsw_cgroup_usage_register_event;
6181 event->unregister_event = memsw_cgroup_usage_unregister_event;
6182 } else {
6183 ret = -EINVAL;
6184 goto out_put_cfile;
6185 }
6186
6187 /*
6188 * Verify @cfile should belong to @css. Also, remaining events are
6189 * automatically removed on cgroup destruction but the removal is
6190 * asynchronous, so take an extra ref on @css.
6191 */
6192 rcu_read_lock();
6193
6194 ret = -EINVAL;
6195 cfile_css = css_from_dir(cfile.file->f_dentry->d_parent,
6196 &mem_cgroup_subsys);
6197 if (cfile_css == css && css_tryget(css))
6198 ret = 0;
6199
6200 rcu_read_unlock();
6201 if (ret)
6202 goto out_put_cfile;
6203
6204 ret = event->register_event(memcg, event->eventfd, buffer);
6205 if (ret)
6206 goto out_put_css;
6207
6208 efile.file->f_op->poll(efile.file, &event->pt);
6209
6210 spin_lock(&memcg->event_list_lock);
6211 list_add(&event->list, &memcg->event_list);
6212 spin_unlock(&memcg->event_list_lock);
6213
6214 fdput(cfile);
6215 fdput(efile);
6216
6217 return 0;
6218
6219 out_put_css:
6220 css_put(css);
6221 out_put_cfile:
6222 fdput(cfile);
6223 out_put_eventfd:
6224 eventfd_ctx_put(event->eventfd);
6225 out_put_efile:
6226 fdput(efile);
6227 out_kfree:
6228 kfree(event);
6229
6230 return ret;
6231 }
6232
6233 static struct cftype mem_cgroup_files[] = {
6234 {
6235 .name = "usage_in_bytes",
6236 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
6237 .read_u64 = mem_cgroup_read_u64,
6238 },
6239 {
6240 .name = "max_usage_in_bytes",
6241 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6242 .trigger = mem_cgroup_reset,
6243 .read_u64 = mem_cgroup_read_u64,
6244 },
6245 {
6246 .name = "limit_in_bytes",
6247 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
6248 .write_string = mem_cgroup_write,
6249 .read_u64 = mem_cgroup_read_u64,
6250 },
6251 {
6252 .name = "soft_limit_in_bytes",
6253 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
6254 .write_string = mem_cgroup_write,
6255 .read_u64 = mem_cgroup_read_u64,
6256 },
6257 {
6258 .name = "failcnt",
6259 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6260 .trigger = mem_cgroup_reset,
6261 .read_u64 = mem_cgroup_read_u64,
6262 },
6263 {
6264 .name = "stat",
6265 .seq_show = memcg_stat_show,
6266 },
6267 {
6268 .name = "force_empty",
6269 .trigger = mem_cgroup_force_empty_write,
6270 },
6271 {
6272 .name = "use_hierarchy",
6273 .flags = CFTYPE_INSANE,
6274 .write_u64 = mem_cgroup_hierarchy_write,
6275 .read_u64 = mem_cgroup_hierarchy_read,
6276 },
6277 {
6278 .name = "cgroup.event_control", /* XXX: for compat */
6279 .write_string = memcg_write_event_control,
6280 .flags = CFTYPE_NO_PREFIX,
6281 .mode = S_IWUGO,
6282 },
6283 {
6284 .name = "swappiness",
6285 .read_u64 = mem_cgroup_swappiness_read,
6286 .write_u64 = mem_cgroup_swappiness_write,
6287 },
6288 {
6289 .name = "move_charge_at_immigrate",
6290 .read_u64 = mem_cgroup_move_charge_read,
6291 .write_u64 = mem_cgroup_move_charge_write,
6292 },
6293 {
6294 .name = "oom_control",
6295 .seq_show = mem_cgroup_oom_control_read,
6296 .write_u64 = mem_cgroup_oom_control_write,
6297 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6298 },
6299 {
6300 .name = "pressure_level",
6301 },
6302 #ifdef CONFIG_NUMA
6303 {
6304 .name = "numa_stat",
6305 .seq_show = memcg_numa_stat_show,
6306 },
6307 #endif
6308 #ifdef CONFIG_MEMCG_KMEM
6309 {
6310 .name = "kmem.limit_in_bytes",
6311 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6312 .write_string = mem_cgroup_write,
6313 .read_u64 = mem_cgroup_read_u64,
6314 },
6315 {
6316 .name = "kmem.usage_in_bytes",
6317 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6318 .read_u64 = mem_cgroup_read_u64,
6319 },
6320 {
6321 .name = "kmem.failcnt",
6322 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6323 .trigger = mem_cgroup_reset,
6324 .read_u64 = mem_cgroup_read_u64,
6325 },
6326 {
6327 .name = "kmem.max_usage_in_bytes",
6328 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6329 .trigger = mem_cgroup_reset,
6330 .read_u64 = mem_cgroup_read_u64,
6331 },
6332 #ifdef CONFIG_SLABINFO
6333 {
6334 .name = "kmem.slabinfo",
6335 .seq_show = mem_cgroup_slabinfo_read,
6336 },
6337 #endif
6338 #endif
6339 { }, /* terminate */
6340 };
6341
6342 #ifdef CONFIG_MEMCG_SWAP
6343 static struct cftype memsw_cgroup_files[] = {
6344 {
6345 .name = "memsw.usage_in_bytes",
6346 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6347 .read_u64 = mem_cgroup_read_u64,
6348 },
6349 {
6350 .name = "memsw.max_usage_in_bytes",
6351 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6352 .trigger = mem_cgroup_reset,
6353 .read_u64 = mem_cgroup_read_u64,
6354 },
6355 {
6356 .name = "memsw.limit_in_bytes",
6357 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6358 .write_string = mem_cgroup_write,
6359 .read_u64 = mem_cgroup_read_u64,
6360 },
6361 {
6362 .name = "memsw.failcnt",
6363 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6364 .trigger = mem_cgroup_reset,
6365 .read_u64 = mem_cgroup_read_u64,
6366 },
6367 { }, /* terminate */
6368 };
6369 #endif
6370 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6371 {
6372 struct mem_cgroup_per_node *pn;
6373 struct mem_cgroup_per_zone *mz;
6374 int zone, tmp = node;
6375 /*
6376 * This routine is called against possible nodes.
6377 * But it's BUG to call kmalloc() against offline node.
6378 *
6379 * TODO: this routine can waste much memory for nodes which will
6380 * never be onlined. It's better to use memory hotplug callback
6381 * function.
6382 */
6383 if (!node_state(node, N_NORMAL_MEMORY))
6384 tmp = -1;
6385 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6386 if (!pn)
6387 return 1;
6388
6389 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6390 mz = &pn->zoneinfo[zone];
6391 lruvec_init(&mz->lruvec);
6392 mz->usage_in_excess = 0;
6393 mz->on_tree = false;
6394 mz->memcg = memcg;
6395 }
6396 memcg->nodeinfo[node] = pn;
6397 return 0;
6398 }
6399
6400 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6401 {
6402 kfree(memcg->nodeinfo[node]);
6403 }
6404
6405 static struct mem_cgroup *mem_cgroup_alloc(void)
6406 {
6407 struct mem_cgroup *memcg;
6408 size_t size = memcg_size();
6409
6410 /* Can be very big if nr_node_ids is very big */
6411 if (size < PAGE_SIZE)
6412 memcg = kzalloc(size, GFP_KERNEL);
6413 else
6414 memcg = vzalloc(size);
6415
6416 if (!memcg)
6417 return NULL;
6418
6419 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6420 if (!memcg->stat)
6421 goto out_free;
6422 spin_lock_init(&memcg->pcp_counter_lock);
6423 return memcg;
6424
6425 out_free:
6426 if (size < PAGE_SIZE)
6427 kfree(memcg);
6428 else
6429 vfree(memcg);
6430 return NULL;
6431 }
6432
6433 /*
6434 * At destroying mem_cgroup, references from swap_cgroup can remain.
6435 * (scanning all at force_empty is too costly...)
6436 *
6437 * Instead of clearing all references at force_empty, we remember
6438 * the number of reference from swap_cgroup and free mem_cgroup when
6439 * it goes down to 0.
6440 *
6441 * Removal of cgroup itself succeeds regardless of refs from swap.
6442 */
6443
6444 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6445 {
6446 int node;
6447 size_t size = memcg_size();
6448
6449 mem_cgroup_remove_from_trees(memcg);
6450
6451 for_each_node(node)
6452 free_mem_cgroup_per_zone_info(memcg, node);
6453
6454 free_percpu(memcg->stat);
6455
6456 /*
6457 * We need to make sure that (at least for now), the jump label
6458 * destruction code runs outside of the cgroup lock. This is because
6459 * get_online_cpus(), which is called from the static_branch update,
6460 * can't be called inside the cgroup_lock. cpusets are the ones
6461 * enforcing this dependency, so if they ever change, we might as well.
6462 *
6463 * schedule_work() will guarantee this happens. Be careful if you need
6464 * to move this code around, and make sure it is outside
6465 * the cgroup_lock.
6466 */
6467 disarm_static_keys(memcg);
6468 if (size < PAGE_SIZE)
6469 kfree(memcg);
6470 else
6471 vfree(memcg);
6472 }
6473
6474 /*
6475 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6476 */
6477 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6478 {
6479 if (!memcg->res.parent)
6480 return NULL;
6481 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6482 }
6483 EXPORT_SYMBOL(parent_mem_cgroup);
6484
6485 static void __init mem_cgroup_soft_limit_tree_init(void)
6486 {
6487 struct mem_cgroup_tree_per_node *rtpn;
6488 struct mem_cgroup_tree_per_zone *rtpz;
6489 int tmp, node, zone;
6490
6491 for_each_node(node) {
6492 tmp = node;
6493 if (!node_state(node, N_NORMAL_MEMORY))
6494 tmp = -1;
6495 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6496 BUG_ON(!rtpn);
6497
6498 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6499
6500 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6501 rtpz = &rtpn->rb_tree_per_zone[zone];
6502 rtpz->rb_root = RB_ROOT;
6503 spin_lock_init(&rtpz->lock);
6504 }
6505 }
6506 }
6507
6508 static struct cgroup_subsys_state * __ref
6509 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6510 {
6511 struct mem_cgroup *memcg;
6512 long error = -ENOMEM;
6513 int node;
6514
6515 memcg = mem_cgroup_alloc();
6516 if (!memcg)
6517 return ERR_PTR(error);
6518
6519 for_each_node(node)
6520 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6521 goto free_out;
6522
6523 /* root ? */
6524 if (parent_css == NULL) {
6525 root_mem_cgroup = memcg;
6526 res_counter_init(&memcg->res, NULL);
6527 res_counter_init(&memcg->memsw, NULL);
6528 res_counter_init(&memcg->kmem, NULL);
6529 }
6530
6531 memcg->last_scanned_node = MAX_NUMNODES;
6532 INIT_LIST_HEAD(&memcg->oom_notify);
6533 memcg->move_charge_at_immigrate = 0;
6534 mutex_init(&memcg->thresholds_lock);
6535 spin_lock_init(&memcg->move_lock);
6536 vmpressure_init(&memcg->vmpressure);
6537 INIT_LIST_HEAD(&memcg->event_list);
6538 spin_lock_init(&memcg->event_list_lock);
6539
6540 return &memcg->css;
6541
6542 free_out:
6543 __mem_cgroup_free(memcg);
6544 return ERR_PTR(error);
6545 }
6546
6547 static int
6548 mem_cgroup_css_online(struct cgroup_subsys_state *css)
6549 {
6550 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6551 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6552 int error = 0;
6553
6554 if (css->cgroup->id > MEM_CGROUP_ID_MAX)
6555 return -ENOSPC;
6556
6557 if (!parent)
6558 return 0;
6559
6560 mutex_lock(&memcg_create_mutex);
6561
6562 memcg->use_hierarchy = parent->use_hierarchy;
6563 memcg->oom_kill_disable = parent->oom_kill_disable;
6564 memcg->swappiness = mem_cgroup_swappiness(parent);
6565
6566 if (parent->use_hierarchy) {
6567 res_counter_init(&memcg->res, &parent->res);
6568 res_counter_init(&memcg->memsw, &parent->memsw);
6569 res_counter_init(&memcg->kmem, &parent->kmem);
6570
6571 /*
6572 * No need to take a reference to the parent because cgroup
6573 * core guarantees its existence.
6574 */
6575 } else {
6576 res_counter_init(&memcg->res, NULL);
6577 res_counter_init(&memcg->memsw, NULL);
6578 res_counter_init(&memcg->kmem, NULL);
6579 /*
6580 * Deeper hierachy with use_hierarchy == false doesn't make
6581 * much sense so let cgroup subsystem know about this
6582 * unfortunate state in our controller.
6583 */
6584 if (parent != root_mem_cgroup)
6585 mem_cgroup_subsys.broken_hierarchy = true;
6586 }
6587
6588 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6589 mutex_unlock(&memcg_create_mutex);
6590 return error;
6591 }
6592
6593 /*
6594 * Announce all parents that a group from their hierarchy is gone.
6595 */
6596 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6597 {
6598 struct mem_cgroup *parent = memcg;
6599
6600 while ((parent = parent_mem_cgroup(parent)))
6601 mem_cgroup_iter_invalidate(parent);
6602
6603 /*
6604 * if the root memcg is not hierarchical we have to check it
6605 * explicitely.
6606 */
6607 if (!root_mem_cgroup->use_hierarchy)
6608 mem_cgroup_iter_invalidate(root_mem_cgroup);
6609 }
6610
6611 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6612 {
6613 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6614 struct mem_cgroup_event *event, *tmp;
6615
6616 /*
6617 * Unregister events and notify userspace.
6618 * Notify userspace about cgroup removing only after rmdir of cgroup
6619 * directory to avoid race between userspace and kernelspace.
6620 */
6621 spin_lock(&memcg->event_list_lock);
6622 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
6623 list_del_init(&event->list);
6624 schedule_work(&event->remove);
6625 }
6626 spin_unlock(&memcg->event_list_lock);
6627
6628 kmem_cgroup_css_offline(memcg);
6629
6630 mem_cgroup_invalidate_reclaim_iterators(memcg);
6631 mem_cgroup_reparent_charges(memcg);
6632 mem_cgroup_destroy_all_caches(memcg);
6633 vmpressure_cleanup(&memcg->vmpressure);
6634 }
6635
6636 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6637 {
6638 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6639 /*
6640 * XXX: css_offline() would be where we should reparent all
6641 * memory to prepare the cgroup for destruction. However,
6642 * memcg does not do css_tryget() and res_counter charging
6643 * under the same RCU lock region, which means that charging
6644 * could race with offlining. Offlining only happens to
6645 * cgroups with no tasks in them but charges can show up
6646 * without any tasks from the swapin path when the target
6647 * memcg is looked up from the swapout record and not from the
6648 * current task as it usually is. A race like this can leak
6649 * charges and put pages with stale cgroup pointers into
6650 * circulation:
6651 *
6652 * #0 #1
6653 * lookup_swap_cgroup_id()
6654 * rcu_read_lock()
6655 * mem_cgroup_lookup()
6656 * css_tryget()
6657 * rcu_read_unlock()
6658 * disable css_tryget()
6659 * call_rcu()
6660 * offline_css()
6661 * reparent_charges()
6662 * res_counter_charge()
6663 * css_put()
6664 * css_free()
6665 * pc->mem_cgroup = dead memcg
6666 * add page to lru
6667 *
6668 * The bulk of the charges are still moved in offline_css() to
6669 * avoid pinning a lot of pages in case a long-term reference
6670 * like a swapout record is deferring the css_free() to long
6671 * after offlining. But this makes sure we catch any charges
6672 * made after offlining:
6673 */
6674 mem_cgroup_reparent_charges(memcg);
6675
6676 memcg_destroy_kmem(memcg);
6677 __mem_cgroup_free(memcg);
6678 }
6679
6680 #ifdef CONFIG_MMU
6681 /* Handlers for move charge at task migration. */
6682 #define PRECHARGE_COUNT_AT_ONCE 256
6683 static int mem_cgroup_do_precharge(unsigned long count)
6684 {
6685 int ret = 0;
6686 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6687 struct mem_cgroup *memcg = mc.to;
6688
6689 if (mem_cgroup_is_root(memcg)) {
6690 mc.precharge += count;
6691 /* we don't need css_get for root */
6692 return ret;
6693 }
6694 /* try to charge at once */
6695 if (count > 1) {
6696 struct res_counter *dummy;
6697 /*
6698 * "memcg" cannot be under rmdir() because we've already checked
6699 * by cgroup_lock_live_cgroup() that it is not removed and we
6700 * are still under the same cgroup_mutex. So we can postpone
6701 * css_get().
6702 */
6703 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6704 goto one_by_one;
6705 if (do_swap_account && res_counter_charge(&memcg->memsw,
6706 PAGE_SIZE * count, &dummy)) {
6707 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6708 goto one_by_one;
6709 }
6710 mc.precharge += count;
6711 return ret;
6712 }
6713 one_by_one:
6714 /* fall back to one by one charge */
6715 while (count--) {
6716 if (signal_pending(current)) {
6717 ret = -EINTR;
6718 break;
6719 }
6720 if (!batch_count--) {
6721 batch_count = PRECHARGE_COUNT_AT_ONCE;
6722 cond_resched();
6723 }
6724 ret = __mem_cgroup_try_charge(NULL,
6725 GFP_KERNEL, 1, &memcg, false);
6726 if (ret)
6727 /* mem_cgroup_clear_mc() will do uncharge later */
6728 return ret;
6729 mc.precharge++;
6730 }
6731 return ret;
6732 }
6733
6734 /**
6735 * get_mctgt_type - get target type of moving charge
6736 * @vma: the vma the pte to be checked belongs
6737 * @addr: the address corresponding to the pte to be checked
6738 * @ptent: the pte to be checked
6739 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6740 *
6741 * Returns
6742 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6743 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6744 * move charge. if @target is not NULL, the page is stored in target->page
6745 * with extra refcnt got(Callers should handle it).
6746 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6747 * target for charge migration. if @target is not NULL, the entry is stored
6748 * in target->ent.
6749 *
6750 * Called with pte lock held.
6751 */
6752 union mc_target {
6753 struct page *page;
6754 swp_entry_t ent;
6755 };
6756
6757 enum mc_target_type {
6758 MC_TARGET_NONE = 0,
6759 MC_TARGET_PAGE,
6760 MC_TARGET_SWAP,
6761 };
6762
6763 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6764 unsigned long addr, pte_t ptent)
6765 {
6766 struct page *page = vm_normal_page(vma, addr, ptent);
6767
6768 if (!page || !page_mapped(page))
6769 return NULL;
6770 if (PageAnon(page)) {
6771 /* we don't move shared anon */
6772 if (!move_anon())
6773 return NULL;
6774 } else if (!move_file())
6775 /* we ignore mapcount for file pages */
6776 return NULL;
6777 if (!get_page_unless_zero(page))
6778 return NULL;
6779
6780 return page;
6781 }
6782
6783 #ifdef CONFIG_SWAP
6784 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6785 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6786 {
6787 struct page *page = NULL;
6788 swp_entry_t ent = pte_to_swp_entry(ptent);
6789
6790 if (!move_anon() || non_swap_entry(ent))
6791 return NULL;
6792 /*
6793 * Because lookup_swap_cache() updates some statistics counter,
6794 * we call find_get_page() with swapper_space directly.
6795 */
6796 page = find_get_page(swap_address_space(ent), ent.val);
6797 if (do_swap_account)
6798 entry->val = ent.val;
6799
6800 return page;
6801 }
6802 #else
6803 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6804 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6805 {
6806 return NULL;
6807 }
6808 #endif
6809
6810 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6811 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6812 {
6813 struct page *page = NULL;
6814 struct address_space *mapping;
6815 pgoff_t pgoff;
6816
6817 if (!vma->vm_file) /* anonymous vma */
6818 return NULL;
6819 if (!move_file())
6820 return NULL;
6821
6822 mapping = vma->vm_file->f_mapping;
6823 if (pte_none(ptent))
6824 pgoff = linear_page_index(vma, addr);
6825 else /* pte_file(ptent) is true */
6826 pgoff = pte_to_pgoff(ptent);
6827
6828 /* page is moved even if it's not RSS of this task(page-faulted). */
6829 page = find_get_page(mapping, pgoff);
6830
6831 #ifdef CONFIG_SWAP
6832 /* shmem/tmpfs may report page out on swap: account for that too. */
6833 if (radix_tree_exceptional_entry(page)) {
6834 swp_entry_t swap = radix_to_swp_entry(page);
6835 if (do_swap_account)
6836 *entry = swap;
6837 page = find_get_page(swap_address_space(swap), swap.val);
6838 }
6839 #endif
6840 return page;
6841 }
6842
6843 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6844 unsigned long addr, pte_t ptent, union mc_target *target)
6845 {
6846 struct page *page = NULL;
6847 struct page_cgroup *pc;
6848 enum mc_target_type ret = MC_TARGET_NONE;
6849 swp_entry_t ent = { .val = 0 };
6850
6851 if (pte_present(ptent))
6852 page = mc_handle_present_pte(vma, addr, ptent);
6853 else if (is_swap_pte(ptent))
6854 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6855 else if (pte_none(ptent) || pte_file(ptent))
6856 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6857
6858 if (!page && !ent.val)
6859 return ret;
6860 if (page) {
6861 pc = lookup_page_cgroup(page);
6862 /*
6863 * Do only loose check w/o page_cgroup lock.
6864 * mem_cgroup_move_account() checks the pc is valid or not under
6865 * the lock.
6866 */
6867 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6868 ret = MC_TARGET_PAGE;
6869 if (target)
6870 target->page = page;
6871 }
6872 if (!ret || !target)
6873 put_page(page);
6874 }
6875 /* There is a swap entry and a page doesn't exist or isn't charged */
6876 if (ent.val && !ret &&
6877 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6878 ret = MC_TARGET_SWAP;
6879 if (target)
6880 target->ent = ent;
6881 }
6882 return ret;
6883 }
6884
6885 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6886 /*
6887 * We don't consider swapping or file mapped pages because THP does not
6888 * support them for now.
6889 * Caller should make sure that pmd_trans_huge(pmd) is true.
6890 */
6891 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6892 unsigned long addr, pmd_t pmd, union mc_target *target)
6893 {
6894 struct page *page = NULL;
6895 struct page_cgroup *pc;
6896 enum mc_target_type ret = MC_TARGET_NONE;
6897
6898 page = pmd_page(pmd);
6899 VM_BUG_ON(!page || !PageHead(page));
6900 if (!move_anon())
6901 return ret;
6902 pc = lookup_page_cgroup(page);
6903 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6904 ret = MC_TARGET_PAGE;
6905 if (target) {
6906 get_page(page);
6907 target->page = page;
6908 }
6909 }
6910 return ret;
6911 }
6912 #else
6913 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6914 unsigned long addr, pmd_t pmd, union mc_target *target)
6915 {
6916 return MC_TARGET_NONE;
6917 }
6918 #endif
6919
6920 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6921 unsigned long addr, unsigned long end,
6922 struct mm_walk *walk)
6923 {
6924 struct vm_area_struct *vma = walk->private;
6925 pte_t *pte;
6926 spinlock_t *ptl;
6927
6928 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6929 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6930 mc.precharge += HPAGE_PMD_NR;
6931 spin_unlock(ptl);
6932 return 0;
6933 }
6934
6935 if (pmd_trans_unstable(pmd))
6936 return 0;
6937 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6938 for (; addr != end; pte++, addr += PAGE_SIZE)
6939 if (get_mctgt_type(vma, addr, *pte, NULL))
6940 mc.precharge++; /* increment precharge temporarily */
6941 pte_unmap_unlock(pte - 1, ptl);
6942 cond_resched();
6943
6944 return 0;
6945 }
6946
6947 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6948 {
6949 unsigned long precharge;
6950 struct vm_area_struct *vma;
6951
6952 down_read(&mm->mmap_sem);
6953 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6954 struct mm_walk mem_cgroup_count_precharge_walk = {
6955 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6956 .mm = mm,
6957 .private = vma,
6958 };
6959 if (is_vm_hugetlb_page(vma))
6960 continue;
6961 walk_page_range(vma->vm_start, vma->vm_end,
6962 &mem_cgroup_count_precharge_walk);
6963 }
6964 up_read(&mm->mmap_sem);
6965
6966 precharge = mc.precharge;
6967 mc.precharge = 0;
6968
6969 return precharge;
6970 }
6971
6972 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6973 {
6974 unsigned long precharge = mem_cgroup_count_precharge(mm);
6975
6976 VM_BUG_ON(mc.moving_task);
6977 mc.moving_task = current;
6978 return mem_cgroup_do_precharge(precharge);
6979 }
6980
6981 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6982 static void __mem_cgroup_clear_mc(void)
6983 {
6984 struct mem_cgroup *from = mc.from;
6985 struct mem_cgroup *to = mc.to;
6986 int i;
6987
6988 /* we must uncharge all the leftover precharges from mc.to */
6989 if (mc.precharge) {
6990 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6991 mc.precharge = 0;
6992 }
6993 /*
6994 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6995 * we must uncharge here.
6996 */
6997 if (mc.moved_charge) {
6998 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6999 mc.moved_charge = 0;
7000 }
7001 /* we must fixup refcnts and charges */
7002 if (mc.moved_swap) {
7003 /* uncharge swap account from the old cgroup */
7004 if (!mem_cgroup_is_root(mc.from))
7005 res_counter_uncharge(&mc.from->memsw,
7006 PAGE_SIZE * mc.moved_swap);
7007
7008 for (i = 0; i < mc.moved_swap; i++)
7009 css_put(&mc.from->css);
7010
7011 if (!mem_cgroup_is_root(mc.to)) {
7012 /*
7013 * we charged both to->res and to->memsw, so we should
7014 * uncharge to->res.
7015 */
7016 res_counter_uncharge(&mc.to->res,
7017 PAGE_SIZE * mc.moved_swap);
7018 }
7019 /* we've already done css_get(mc.to) */
7020 mc.moved_swap = 0;
7021 }
7022 memcg_oom_recover(from);
7023 memcg_oom_recover(to);
7024 wake_up_all(&mc.waitq);
7025 }
7026
7027 static void mem_cgroup_clear_mc(void)
7028 {
7029 struct mem_cgroup *from = mc.from;
7030
7031 /*
7032 * we must clear moving_task before waking up waiters at the end of
7033 * task migration.
7034 */
7035 mc.moving_task = NULL;
7036 __mem_cgroup_clear_mc();
7037 spin_lock(&mc.lock);
7038 mc.from = NULL;
7039 mc.to = NULL;
7040 spin_unlock(&mc.lock);
7041 mem_cgroup_end_move(from);
7042 }
7043
7044 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
7045 struct cgroup_taskset *tset)
7046 {
7047 struct task_struct *p = cgroup_taskset_first(tset);
7048 int ret = 0;
7049 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7050 unsigned long move_charge_at_immigrate;
7051
7052 /*
7053 * We are now commited to this value whatever it is. Changes in this
7054 * tunable will only affect upcoming migrations, not the current one.
7055 * So we need to save it, and keep it going.
7056 */
7057 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
7058 if (move_charge_at_immigrate) {
7059 struct mm_struct *mm;
7060 struct mem_cgroup *from = mem_cgroup_from_task(p);
7061
7062 VM_BUG_ON(from == memcg);
7063
7064 mm = get_task_mm(p);
7065 if (!mm)
7066 return 0;
7067 /* We move charges only when we move a owner of the mm */
7068 if (mm->owner == p) {
7069 VM_BUG_ON(mc.from);
7070 VM_BUG_ON(mc.to);
7071 VM_BUG_ON(mc.precharge);
7072 VM_BUG_ON(mc.moved_charge);
7073 VM_BUG_ON(mc.moved_swap);
7074 mem_cgroup_start_move(from);
7075 spin_lock(&mc.lock);
7076 mc.from = from;
7077 mc.to = memcg;
7078 mc.immigrate_flags = move_charge_at_immigrate;
7079 spin_unlock(&mc.lock);
7080 /* We set mc.moving_task later */
7081
7082 ret = mem_cgroup_precharge_mc(mm);
7083 if (ret)
7084 mem_cgroup_clear_mc();
7085 }
7086 mmput(mm);
7087 }
7088 return ret;
7089 }
7090
7091 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7092 struct cgroup_taskset *tset)
7093 {
7094 mem_cgroup_clear_mc();
7095 }
7096
7097 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
7098 unsigned long addr, unsigned long end,
7099 struct mm_walk *walk)
7100 {
7101 int ret = 0;
7102 struct vm_area_struct *vma = walk->private;
7103 pte_t *pte;
7104 spinlock_t *ptl;
7105 enum mc_target_type target_type;
7106 union mc_target target;
7107 struct page *page;
7108 struct page_cgroup *pc;
7109
7110 /*
7111 * We don't take compound_lock() here but no race with splitting thp
7112 * happens because:
7113 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
7114 * under splitting, which means there's no concurrent thp split,
7115 * - if another thread runs into split_huge_page() just after we
7116 * entered this if-block, the thread must wait for page table lock
7117 * to be unlocked in __split_huge_page_splitting(), where the main
7118 * part of thp split is not executed yet.
7119 */
7120 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
7121 if (mc.precharge < HPAGE_PMD_NR) {
7122 spin_unlock(ptl);
7123 return 0;
7124 }
7125 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
7126 if (target_type == MC_TARGET_PAGE) {
7127 page = target.page;
7128 if (!isolate_lru_page(page)) {
7129 pc = lookup_page_cgroup(page);
7130 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
7131 pc, mc.from, mc.to)) {
7132 mc.precharge -= HPAGE_PMD_NR;
7133 mc.moved_charge += HPAGE_PMD_NR;
7134 }
7135 putback_lru_page(page);
7136 }
7137 put_page(page);
7138 }
7139 spin_unlock(ptl);
7140 return 0;
7141 }
7142
7143 if (pmd_trans_unstable(pmd))
7144 return 0;
7145 retry:
7146 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
7147 for (; addr != end; addr += PAGE_SIZE) {
7148 pte_t ptent = *(pte++);
7149 swp_entry_t ent;
7150
7151 if (!mc.precharge)
7152 break;
7153
7154 switch (get_mctgt_type(vma, addr, ptent, &target)) {
7155 case MC_TARGET_PAGE:
7156 page = target.page;
7157 if (isolate_lru_page(page))
7158 goto put;
7159 pc = lookup_page_cgroup(page);
7160 if (!mem_cgroup_move_account(page, 1, pc,
7161 mc.from, mc.to)) {
7162 mc.precharge--;
7163 /* we uncharge from mc.from later. */
7164 mc.moved_charge++;
7165 }
7166 putback_lru_page(page);
7167 put: /* get_mctgt_type() gets the page */
7168 put_page(page);
7169 break;
7170 case MC_TARGET_SWAP:
7171 ent = target.ent;
7172 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
7173 mc.precharge--;
7174 /* we fixup refcnts and charges later. */
7175 mc.moved_swap++;
7176 }
7177 break;
7178 default:
7179 break;
7180 }
7181 }
7182 pte_unmap_unlock(pte - 1, ptl);
7183 cond_resched();
7184
7185 if (addr != end) {
7186 /*
7187 * We have consumed all precharges we got in can_attach().
7188 * We try charge one by one, but don't do any additional
7189 * charges to mc.to if we have failed in charge once in attach()
7190 * phase.
7191 */
7192 ret = mem_cgroup_do_precharge(1);
7193 if (!ret)
7194 goto retry;
7195 }
7196
7197 return ret;
7198 }
7199
7200 static void mem_cgroup_move_charge(struct mm_struct *mm)
7201 {
7202 struct vm_area_struct *vma;
7203
7204 lru_add_drain_all();
7205 retry:
7206 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
7207 /*
7208 * Someone who are holding the mmap_sem might be waiting in
7209 * waitq. So we cancel all extra charges, wake up all waiters,
7210 * and retry. Because we cancel precharges, we might not be able
7211 * to move enough charges, but moving charge is a best-effort
7212 * feature anyway, so it wouldn't be a big problem.
7213 */
7214 __mem_cgroup_clear_mc();
7215 cond_resched();
7216 goto retry;
7217 }
7218 for (vma = mm->mmap; vma; vma = vma->vm_next) {
7219 int ret;
7220 struct mm_walk mem_cgroup_move_charge_walk = {
7221 .pmd_entry = mem_cgroup_move_charge_pte_range,
7222 .mm = mm,
7223 .private = vma,
7224 };
7225 if (is_vm_hugetlb_page(vma))
7226 continue;
7227 ret = walk_page_range(vma->vm_start, vma->vm_end,
7228 &mem_cgroup_move_charge_walk);
7229 if (ret)
7230 /*
7231 * means we have consumed all precharges and failed in
7232 * doing additional charge. Just abandon here.
7233 */
7234 break;
7235 }
7236 up_read(&mm->mmap_sem);
7237 }
7238
7239 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7240 struct cgroup_taskset *tset)
7241 {
7242 struct task_struct *p = cgroup_taskset_first(tset);
7243 struct mm_struct *mm = get_task_mm(p);
7244
7245 if (mm) {
7246 if (mc.to)
7247 mem_cgroup_move_charge(mm);
7248 mmput(mm);
7249 }
7250 if (mc.to)
7251 mem_cgroup_clear_mc();
7252 }
7253 #else /* !CONFIG_MMU */
7254 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
7255 struct cgroup_taskset *tset)
7256 {
7257 return 0;
7258 }
7259 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7260 struct cgroup_taskset *tset)
7261 {
7262 }
7263 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7264 struct cgroup_taskset *tset)
7265 {
7266 }
7267 #endif
7268
7269 /*
7270 * Cgroup retains root cgroups across [un]mount cycles making it necessary
7271 * to verify sane_behavior flag on each mount attempt.
7272 */
7273 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
7274 {
7275 /*
7276 * use_hierarchy is forced with sane_behavior. cgroup core
7277 * guarantees that @root doesn't have any children, so turning it
7278 * on for the root memcg is enough.
7279 */
7280 if (cgroup_sane_behavior(root_css->cgroup))
7281 mem_cgroup_from_css(root_css)->use_hierarchy = true;
7282 }
7283
7284 struct cgroup_subsys mem_cgroup_subsys = {
7285 .name = "memory",
7286 .subsys_id = mem_cgroup_subsys_id,
7287 .css_alloc = mem_cgroup_css_alloc,
7288 .css_online = mem_cgroup_css_online,
7289 .css_offline = mem_cgroup_css_offline,
7290 .css_free = mem_cgroup_css_free,
7291 .can_attach = mem_cgroup_can_attach,
7292 .cancel_attach = mem_cgroup_cancel_attach,
7293 .attach = mem_cgroup_move_task,
7294 .bind = mem_cgroup_bind,
7295 .base_cftypes = mem_cgroup_files,
7296 .early_init = 0,
7297 };
7298
7299 #ifdef CONFIG_MEMCG_SWAP
7300 static int __init enable_swap_account(char *s)
7301 {
7302 if (!strcmp(s, "1"))
7303 really_do_swap_account = 1;
7304 else if (!strcmp(s, "0"))
7305 really_do_swap_account = 0;
7306 return 1;
7307 }
7308 __setup("swapaccount=", enable_swap_account);
7309
7310 static void __init memsw_file_init(void)
7311 {
7312 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
7313 }
7314
7315 static void __init enable_swap_cgroup(void)
7316 {
7317 if (!mem_cgroup_disabled() && really_do_swap_account) {
7318 do_swap_account = 1;
7319 memsw_file_init();
7320 }
7321 }
7322
7323 #else
7324 static void __init enable_swap_cgroup(void)
7325 {
7326 }
7327 #endif
7328
7329 /*
7330 * subsys_initcall() for memory controller.
7331 *
7332 * Some parts like hotcpu_notifier() have to be initialized from this context
7333 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7334 * everything that doesn't depend on a specific mem_cgroup structure should
7335 * be initialized from here.
7336 */
7337 static int __init mem_cgroup_init(void)
7338 {
7339 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7340 enable_swap_cgroup();
7341 mem_cgroup_soft_limit_tree_init();
7342 memcg_stock_init();
7343 return 0;
7344 }
7345 subsys_initcall(mem_cgroup_init);
This page took 0.283898 seconds and 6 git commands to generate.