Merge branch 'for-3.19' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/libata
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include "internal.h"
60 #include <net/sock.h>
61 #include <net/ip.h>
62 #include <net/tcp_memcontrol.h>
63 #include "slab.h"
64
65 #include <asm/uaccess.h>
66
67 #include <trace/events/vmscan.h>
68
69 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70 EXPORT_SYMBOL(memory_cgrp_subsys);
71
72 #define MEM_CGROUP_RECLAIM_RETRIES 5
73 static struct mem_cgroup *root_mem_cgroup __read_mostly;
74
75 #ifdef CONFIG_MEMCG_SWAP
76 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77 int do_swap_account __read_mostly;
78
79 /* for remember boot option*/
80 #ifdef CONFIG_MEMCG_SWAP_ENABLED
81 static int really_do_swap_account __initdata = 1;
82 #else
83 static int really_do_swap_account __initdata;
84 #endif
85
86 #else
87 #define do_swap_account 0
88 #endif
89
90
91 static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
94 "rss_huge",
95 "mapped_file",
96 "writeback",
97 "swap",
98 };
99
100 enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
105 MEM_CGROUP_EVENTS_NSTATS,
106 };
107
108 static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113 };
114
115 static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121 };
122
123 /*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129 enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
131 MEM_CGROUP_TARGET_SOFTLIMIT,
132 MEM_CGROUP_TARGET_NUMAINFO,
133 MEM_CGROUP_NTARGETS,
134 };
135 #define THRESHOLDS_EVENTS_TARGET 128
136 #define SOFTLIMIT_EVENTS_TARGET 1024
137 #define NUMAINFO_EVENTS_TARGET 1024
138
139 struct mem_cgroup_stat_cpu {
140 long count[MEM_CGROUP_STAT_NSTATS];
141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142 unsigned long nr_page_events;
143 unsigned long targets[MEM_CGROUP_NTARGETS];
144 };
145
146 struct reclaim_iter {
147 struct mem_cgroup *position;
148 /* scan generation, increased every round-trip */
149 unsigned int generation;
150 };
151
152 /*
153 * per-zone information in memory controller.
154 */
155 struct mem_cgroup_per_zone {
156 struct lruvec lruvec;
157 unsigned long lru_size[NR_LRU_LISTS];
158
159 struct reclaim_iter iter[DEF_PRIORITY + 1];
160
161 struct rb_node tree_node; /* RB tree node */
162 unsigned long usage_in_excess;/* Set to the value by which */
163 /* the soft limit is exceeded*/
164 bool on_tree;
165 struct mem_cgroup *memcg; /* Back pointer, we cannot */
166 /* use container_of */
167 };
168
169 struct mem_cgroup_per_node {
170 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
171 };
172
173 /*
174 * Cgroups above their limits are maintained in a RB-Tree, independent of
175 * their hierarchy representation
176 */
177
178 struct mem_cgroup_tree_per_zone {
179 struct rb_root rb_root;
180 spinlock_t lock;
181 };
182
183 struct mem_cgroup_tree_per_node {
184 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
185 };
186
187 struct mem_cgroup_tree {
188 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
189 };
190
191 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
192
193 struct mem_cgroup_threshold {
194 struct eventfd_ctx *eventfd;
195 unsigned long threshold;
196 };
197
198 /* For threshold */
199 struct mem_cgroup_threshold_ary {
200 /* An array index points to threshold just below or equal to usage. */
201 int current_threshold;
202 /* Size of entries[] */
203 unsigned int size;
204 /* Array of thresholds */
205 struct mem_cgroup_threshold entries[0];
206 };
207
208 struct mem_cgroup_thresholds {
209 /* Primary thresholds array */
210 struct mem_cgroup_threshold_ary *primary;
211 /*
212 * Spare threshold array.
213 * This is needed to make mem_cgroup_unregister_event() "never fail".
214 * It must be able to store at least primary->size - 1 entries.
215 */
216 struct mem_cgroup_threshold_ary *spare;
217 };
218
219 /* for OOM */
220 struct mem_cgroup_eventfd_list {
221 struct list_head list;
222 struct eventfd_ctx *eventfd;
223 };
224
225 /*
226 * cgroup_event represents events which userspace want to receive.
227 */
228 struct mem_cgroup_event {
229 /*
230 * memcg which the event belongs to.
231 */
232 struct mem_cgroup *memcg;
233 /*
234 * eventfd to signal userspace about the event.
235 */
236 struct eventfd_ctx *eventfd;
237 /*
238 * Each of these stored in a list by the cgroup.
239 */
240 struct list_head list;
241 /*
242 * register_event() callback will be used to add new userspace
243 * waiter for changes related to this event. Use eventfd_signal()
244 * on eventfd to send notification to userspace.
245 */
246 int (*register_event)(struct mem_cgroup *memcg,
247 struct eventfd_ctx *eventfd, const char *args);
248 /*
249 * unregister_event() callback will be called when userspace closes
250 * the eventfd or on cgroup removing. This callback must be set,
251 * if you want provide notification functionality.
252 */
253 void (*unregister_event)(struct mem_cgroup *memcg,
254 struct eventfd_ctx *eventfd);
255 /*
256 * All fields below needed to unregister event when
257 * userspace closes eventfd.
258 */
259 poll_table pt;
260 wait_queue_head_t *wqh;
261 wait_queue_t wait;
262 struct work_struct remove;
263 };
264
265 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
266 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
267
268 /*
269 * The memory controller data structure. The memory controller controls both
270 * page cache and RSS per cgroup. We would eventually like to provide
271 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
272 * to help the administrator determine what knobs to tune.
273 *
274 * TODO: Add a water mark for the memory controller. Reclaim will begin when
275 * we hit the water mark. May be even add a low water mark, such that
276 * no reclaim occurs from a cgroup at it's low water mark, this is
277 * a feature that will be implemented much later in the future.
278 */
279 struct mem_cgroup {
280 struct cgroup_subsys_state css;
281
282 /* Accounted resources */
283 struct page_counter memory;
284 struct page_counter memsw;
285 struct page_counter kmem;
286
287 unsigned long soft_limit;
288
289 /* vmpressure notifications */
290 struct vmpressure vmpressure;
291
292 /* css_online() has been completed */
293 int initialized;
294
295 /*
296 * Should the accounting and control be hierarchical, per subtree?
297 */
298 bool use_hierarchy;
299 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
300
301 bool oom_lock;
302 atomic_t under_oom;
303 atomic_t oom_wakeups;
304
305 int swappiness;
306 /* OOM-Killer disable */
307 int oom_kill_disable;
308
309 /* protect arrays of thresholds */
310 struct mutex thresholds_lock;
311
312 /* thresholds for memory usage. RCU-protected */
313 struct mem_cgroup_thresholds thresholds;
314
315 /* thresholds for mem+swap usage. RCU-protected */
316 struct mem_cgroup_thresholds memsw_thresholds;
317
318 /* For oom notifier event fd */
319 struct list_head oom_notify;
320
321 /*
322 * Should we move charges of a task when a task is moved into this
323 * mem_cgroup ? And what type of charges should we move ?
324 */
325 unsigned long move_charge_at_immigrate;
326 /*
327 * set > 0 if pages under this cgroup are moving to other cgroup.
328 */
329 atomic_t moving_account;
330 /* taken only while moving_account > 0 */
331 spinlock_t move_lock;
332 /*
333 * percpu counter.
334 */
335 struct mem_cgroup_stat_cpu __percpu *stat;
336 /*
337 * used when a cpu is offlined or other synchronizations
338 * See mem_cgroup_read_stat().
339 */
340 struct mem_cgroup_stat_cpu nocpu_base;
341 spinlock_t pcp_counter_lock;
342
343 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
344 struct cg_proto tcp_mem;
345 #endif
346 #if defined(CONFIG_MEMCG_KMEM)
347 /* analogous to slab_common's slab_caches list, but per-memcg;
348 * protected by memcg_slab_mutex */
349 struct list_head memcg_slab_caches;
350 /* Index in the kmem_cache->memcg_params->memcg_caches array */
351 int kmemcg_id;
352 #endif
353
354 int last_scanned_node;
355 #if MAX_NUMNODES > 1
356 nodemask_t scan_nodes;
357 atomic_t numainfo_events;
358 atomic_t numainfo_updating;
359 #endif
360
361 /* List of events which userspace want to receive */
362 struct list_head event_list;
363 spinlock_t event_list_lock;
364
365 struct mem_cgroup_per_node *nodeinfo[0];
366 /* WARNING: nodeinfo must be the last member here */
367 };
368
369 /* internal only representation about the status of kmem accounting. */
370 enum {
371 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
372 };
373
374 #ifdef CONFIG_MEMCG_KMEM
375 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
376 {
377 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
378 }
379
380 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
381 {
382 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
383 }
384
385 #endif
386
387 /* Stuffs for move charges at task migration. */
388 /*
389 * Types of charges to be moved. "move_charge_at_immitgrate" and
390 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
391 */
392 enum move_type {
393 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
394 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
395 NR_MOVE_TYPE,
396 };
397
398 /* "mc" and its members are protected by cgroup_mutex */
399 static struct move_charge_struct {
400 spinlock_t lock; /* for from, to */
401 struct mem_cgroup *from;
402 struct mem_cgroup *to;
403 unsigned long immigrate_flags;
404 unsigned long precharge;
405 unsigned long moved_charge;
406 unsigned long moved_swap;
407 struct task_struct *moving_task; /* a task moving charges */
408 wait_queue_head_t waitq; /* a waitq for other context */
409 } mc = {
410 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
411 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
412 };
413
414 static bool move_anon(void)
415 {
416 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
417 }
418
419 static bool move_file(void)
420 {
421 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
422 }
423
424 /*
425 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
426 * limit reclaim to prevent infinite loops, if they ever occur.
427 */
428 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
429 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
430
431 enum charge_type {
432 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
433 MEM_CGROUP_CHARGE_TYPE_ANON,
434 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
435 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
436 NR_CHARGE_TYPE,
437 };
438
439 /* for encoding cft->private value on file */
440 enum res_type {
441 _MEM,
442 _MEMSWAP,
443 _OOM_TYPE,
444 _KMEM,
445 };
446
447 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
448 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
449 #define MEMFILE_ATTR(val) ((val) & 0xffff)
450 /* Used for OOM nofiier */
451 #define OOM_CONTROL (0)
452
453 /*
454 * The memcg_create_mutex will be held whenever a new cgroup is created.
455 * As a consequence, any change that needs to protect against new child cgroups
456 * appearing has to hold it as well.
457 */
458 static DEFINE_MUTEX(memcg_create_mutex);
459
460 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
461 {
462 return s ? container_of(s, struct mem_cgroup, css) : NULL;
463 }
464
465 /* Some nice accessors for the vmpressure. */
466 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
467 {
468 if (!memcg)
469 memcg = root_mem_cgroup;
470 return &memcg->vmpressure;
471 }
472
473 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
474 {
475 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
476 }
477
478 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
479 {
480 return (memcg == root_mem_cgroup);
481 }
482
483 /*
484 * We restrict the id in the range of [1, 65535], so it can fit into
485 * an unsigned short.
486 */
487 #define MEM_CGROUP_ID_MAX USHRT_MAX
488
489 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
490 {
491 return memcg->css.id;
492 }
493
494 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
495 {
496 struct cgroup_subsys_state *css;
497
498 css = css_from_id(id, &memory_cgrp_subsys);
499 return mem_cgroup_from_css(css);
500 }
501
502 /* Writing them here to avoid exposing memcg's inner layout */
503 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
504
505 void sock_update_memcg(struct sock *sk)
506 {
507 if (mem_cgroup_sockets_enabled) {
508 struct mem_cgroup *memcg;
509 struct cg_proto *cg_proto;
510
511 BUG_ON(!sk->sk_prot->proto_cgroup);
512
513 /* Socket cloning can throw us here with sk_cgrp already
514 * filled. It won't however, necessarily happen from
515 * process context. So the test for root memcg given
516 * the current task's memcg won't help us in this case.
517 *
518 * Respecting the original socket's memcg is a better
519 * decision in this case.
520 */
521 if (sk->sk_cgrp) {
522 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
523 css_get(&sk->sk_cgrp->memcg->css);
524 return;
525 }
526
527 rcu_read_lock();
528 memcg = mem_cgroup_from_task(current);
529 cg_proto = sk->sk_prot->proto_cgroup(memcg);
530 if (!mem_cgroup_is_root(memcg) &&
531 memcg_proto_active(cg_proto) &&
532 css_tryget_online(&memcg->css)) {
533 sk->sk_cgrp = cg_proto;
534 }
535 rcu_read_unlock();
536 }
537 }
538 EXPORT_SYMBOL(sock_update_memcg);
539
540 void sock_release_memcg(struct sock *sk)
541 {
542 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
543 struct mem_cgroup *memcg;
544 WARN_ON(!sk->sk_cgrp->memcg);
545 memcg = sk->sk_cgrp->memcg;
546 css_put(&sk->sk_cgrp->memcg->css);
547 }
548 }
549
550 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
551 {
552 if (!memcg || mem_cgroup_is_root(memcg))
553 return NULL;
554
555 return &memcg->tcp_mem;
556 }
557 EXPORT_SYMBOL(tcp_proto_cgroup);
558
559 static void disarm_sock_keys(struct mem_cgroup *memcg)
560 {
561 if (!memcg_proto_activated(&memcg->tcp_mem))
562 return;
563 static_key_slow_dec(&memcg_socket_limit_enabled);
564 }
565 #else
566 static void disarm_sock_keys(struct mem_cgroup *memcg)
567 {
568 }
569 #endif
570
571 #ifdef CONFIG_MEMCG_KMEM
572 /*
573 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
574 * The main reason for not using cgroup id for this:
575 * this works better in sparse environments, where we have a lot of memcgs,
576 * but only a few kmem-limited. Or also, if we have, for instance, 200
577 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
578 * 200 entry array for that.
579 *
580 * The current size of the caches array is stored in
581 * memcg_limited_groups_array_size. It will double each time we have to
582 * increase it.
583 */
584 static DEFINE_IDA(kmem_limited_groups);
585 int memcg_limited_groups_array_size;
586
587 /*
588 * MIN_SIZE is different than 1, because we would like to avoid going through
589 * the alloc/free process all the time. In a small machine, 4 kmem-limited
590 * cgroups is a reasonable guess. In the future, it could be a parameter or
591 * tunable, but that is strictly not necessary.
592 *
593 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
594 * this constant directly from cgroup, but it is understandable that this is
595 * better kept as an internal representation in cgroup.c. In any case, the
596 * cgrp_id space is not getting any smaller, and we don't have to necessarily
597 * increase ours as well if it increases.
598 */
599 #define MEMCG_CACHES_MIN_SIZE 4
600 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
601
602 /*
603 * A lot of the calls to the cache allocation functions are expected to be
604 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
605 * conditional to this static branch, we'll have to allow modules that does
606 * kmem_cache_alloc and the such to see this symbol as well
607 */
608 struct static_key memcg_kmem_enabled_key;
609 EXPORT_SYMBOL(memcg_kmem_enabled_key);
610
611 static void memcg_free_cache_id(int id);
612
613 static void disarm_kmem_keys(struct mem_cgroup *memcg)
614 {
615 if (memcg_kmem_is_active(memcg)) {
616 static_key_slow_dec(&memcg_kmem_enabled_key);
617 memcg_free_cache_id(memcg->kmemcg_id);
618 }
619 /*
620 * This check can't live in kmem destruction function,
621 * since the charges will outlive the cgroup
622 */
623 WARN_ON(page_counter_read(&memcg->kmem));
624 }
625 #else
626 static void disarm_kmem_keys(struct mem_cgroup *memcg)
627 {
628 }
629 #endif /* CONFIG_MEMCG_KMEM */
630
631 static void disarm_static_keys(struct mem_cgroup *memcg)
632 {
633 disarm_sock_keys(memcg);
634 disarm_kmem_keys(memcg);
635 }
636
637 static struct mem_cgroup_per_zone *
638 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
639 {
640 int nid = zone_to_nid(zone);
641 int zid = zone_idx(zone);
642
643 return &memcg->nodeinfo[nid]->zoneinfo[zid];
644 }
645
646 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
647 {
648 return &memcg->css;
649 }
650
651 static struct mem_cgroup_per_zone *
652 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
653 {
654 int nid = page_to_nid(page);
655 int zid = page_zonenum(page);
656
657 return &memcg->nodeinfo[nid]->zoneinfo[zid];
658 }
659
660 static struct mem_cgroup_tree_per_zone *
661 soft_limit_tree_node_zone(int nid, int zid)
662 {
663 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
664 }
665
666 static struct mem_cgroup_tree_per_zone *
667 soft_limit_tree_from_page(struct page *page)
668 {
669 int nid = page_to_nid(page);
670 int zid = page_zonenum(page);
671
672 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
673 }
674
675 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
676 struct mem_cgroup_tree_per_zone *mctz,
677 unsigned long new_usage_in_excess)
678 {
679 struct rb_node **p = &mctz->rb_root.rb_node;
680 struct rb_node *parent = NULL;
681 struct mem_cgroup_per_zone *mz_node;
682
683 if (mz->on_tree)
684 return;
685
686 mz->usage_in_excess = new_usage_in_excess;
687 if (!mz->usage_in_excess)
688 return;
689 while (*p) {
690 parent = *p;
691 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
692 tree_node);
693 if (mz->usage_in_excess < mz_node->usage_in_excess)
694 p = &(*p)->rb_left;
695 /*
696 * We can't avoid mem cgroups that are over their soft
697 * limit by the same amount
698 */
699 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
700 p = &(*p)->rb_right;
701 }
702 rb_link_node(&mz->tree_node, parent, p);
703 rb_insert_color(&mz->tree_node, &mctz->rb_root);
704 mz->on_tree = true;
705 }
706
707 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
708 struct mem_cgroup_tree_per_zone *mctz)
709 {
710 if (!mz->on_tree)
711 return;
712 rb_erase(&mz->tree_node, &mctz->rb_root);
713 mz->on_tree = false;
714 }
715
716 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
717 struct mem_cgroup_tree_per_zone *mctz)
718 {
719 unsigned long flags;
720
721 spin_lock_irqsave(&mctz->lock, flags);
722 __mem_cgroup_remove_exceeded(mz, mctz);
723 spin_unlock_irqrestore(&mctz->lock, flags);
724 }
725
726 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
727 {
728 unsigned long nr_pages = page_counter_read(&memcg->memory);
729 unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
730 unsigned long excess = 0;
731
732 if (nr_pages > soft_limit)
733 excess = nr_pages - soft_limit;
734
735 return excess;
736 }
737
738 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
739 {
740 unsigned long excess;
741 struct mem_cgroup_per_zone *mz;
742 struct mem_cgroup_tree_per_zone *mctz;
743
744 mctz = soft_limit_tree_from_page(page);
745 /*
746 * Necessary to update all ancestors when hierarchy is used.
747 * because their event counter is not touched.
748 */
749 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
750 mz = mem_cgroup_page_zoneinfo(memcg, page);
751 excess = soft_limit_excess(memcg);
752 /*
753 * We have to update the tree if mz is on RB-tree or
754 * mem is over its softlimit.
755 */
756 if (excess || mz->on_tree) {
757 unsigned long flags;
758
759 spin_lock_irqsave(&mctz->lock, flags);
760 /* if on-tree, remove it */
761 if (mz->on_tree)
762 __mem_cgroup_remove_exceeded(mz, mctz);
763 /*
764 * Insert again. mz->usage_in_excess will be updated.
765 * If excess is 0, no tree ops.
766 */
767 __mem_cgroup_insert_exceeded(mz, mctz, excess);
768 spin_unlock_irqrestore(&mctz->lock, flags);
769 }
770 }
771 }
772
773 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
774 {
775 struct mem_cgroup_tree_per_zone *mctz;
776 struct mem_cgroup_per_zone *mz;
777 int nid, zid;
778
779 for_each_node(nid) {
780 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
781 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
782 mctz = soft_limit_tree_node_zone(nid, zid);
783 mem_cgroup_remove_exceeded(mz, mctz);
784 }
785 }
786 }
787
788 static struct mem_cgroup_per_zone *
789 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
790 {
791 struct rb_node *rightmost = NULL;
792 struct mem_cgroup_per_zone *mz;
793
794 retry:
795 mz = NULL;
796 rightmost = rb_last(&mctz->rb_root);
797 if (!rightmost)
798 goto done; /* Nothing to reclaim from */
799
800 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
801 /*
802 * Remove the node now but someone else can add it back,
803 * we will to add it back at the end of reclaim to its correct
804 * position in the tree.
805 */
806 __mem_cgroup_remove_exceeded(mz, mctz);
807 if (!soft_limit_excess(mz->memcg) ||
808 !css_tryget_online(&mz->memcg->css))
809 goto retry;
810 done:
811 return mz;
812 }
813
814 static struct mem_cgroup_per_zone *
815 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
816 {
817 struct mem_cgroup_per_zone *mz;
818
819 spin_lock_irq(&mctz->lock);
820 mz = __mem_cgroup_largest_soft_limit_node(mctz);
821 spin_unlock_irq(&mctz->lock);
822 return mz;
823 }
824
825 /*
826 * Implementation Note: reading percpu statistics for memcg.
827 *
828 * Both of vmstat[] and percpu_counter has threshold and do periodic
829 * synchronization to implement "quick" read. There are trade-off between
830 * reading cost and precision of value. Then, we may have a chance to implement
831 * a periodic synchronizion of counter in memcg's counter.
832 *
833 * But this _read() function is used for user interface now. The user accounts
834 * memory usage by memory cgroup and he _always_ requires exact value because
835 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
836 * have to visit all online cpus and make sum. So, for now, unnecessary
837 * synchronization is not implemented. (just implemented for cpu hotplug)
838 *
839 * If there are kernel internal actions which can make use of some not-exact
840 * value, and reading all cpu value can be performance bottleneck in some
841 * common workload, threashold and synchonization as vmstat[] should be
842 * implemented.
843 */
844 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
845 enum mem_cgroup_stat_index idx)
846 {
847 long val = 0;
848 int cpu;
849
850 get_online_cpus();
851 for_each_online_cpu(cpu)
852 val += per_cpu(memcg->stat->count[idx], cpu);
853 #ifdef CONFIG_HOTPLUG_CPU
854 spin_lock(&memcg->pcp_counter_lock);
855 val += memcg->nocpu_base.count[idx];
856 spin_unlock(&memcg->pcp_counter_lock);
857 #endif
858 put_online_cpus();
859 return val;
860 }
861
862 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
863 enum mem_cgroup_events_index idx)
864 {
865 unsigned long val = 0;
866 int cpu;
867
868 get_online_cpus();
869 for_each_online_cpu(cpu)
870 val += per_cpu(memcg->stat->events[idx], cpu);
871 #ifdef CONFIG_HOTPLUG_CPU
872 spin_lock(&memcg->pcp_counter_lock);
873 val += memcg->nocpu_base.events[idx];
874 spin_unlock(&memcg->pcp_counter_lock);
875 #endif
876 put_online_cpus();
877 return val;
878 }
879
880 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
881 struct page *page,
882 int nr_pages)
883 {
884 /*
885 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
886 * counted as CACHE even if it's on ANON LRU.
887 */
888 if (PageAnon(page))
889 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
890 nr_pages);
891 else
892 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
893 nr_pages);
894
895 if (PageTransHuge(page))
896 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
897 nr_pages);
898
899 /* pagein of a big page is an event. So, ignore page size */
900 if (nr_pages > 0)
901 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
902 else {
903 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
904 nr_pages = -nr_pages; /* for event */
905 }
906
907 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
908 }
909
910 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
911 {
912 struct mem_cgroup_per_zone *mz;
913
914 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
915 return mz->lru_size[lru];
916 }
917
918 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
919 int nid,
920 unsigned int lru_mask)
921 {
922 unsigned long nr = 0;
923 int zid;
924
925 VM_BUG_ON((unsigned)nid >= nr_node_ids);
926
927 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
928 struct mem_cgroup_per_zone *mz;
929 enum lru_list lru;
930
931 for_each_lru(lru) {
932 if (!(BIT(lru) & lru_mask))
933 continue;
934 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
935 nr += mz->lru_size[lru];
936 }
937 }
938 return nr;
939 }
940
941 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
942 unsigned int lru_mask)
943 {
944 unsigned long nr = 0;
945 int nid;
946
947 for_each_node_state(nid, N_MEMORY)
948 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
949 return nr;
950 }
951
952 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
953 enum mem_cgroup_events_target target)
954 {
955 unsigned long val, next;
956
957 val = __this_cpu_read(memcg->stat->nr_page_events);
958 next = __this_cpu_read(memcg->stat->targets[target]);
959 /* from time_after() in jiffies.h */
960 if ((long)next - (long)val < 0) {
961 switch (target) {
962 case MEM_CGROUP_TARGET_THRESH:
963 next = val + THRESHOLDS_EVENTS_TARGET;
964 break;
965 case MEM_CGROUP_TARGET_SOFTLIMIT:
966 next = val + SOFTLIMIT_EVENTS_TARGET;
967 break;
968 case MEM_CGROUP_TARGET_NUMAINFO:
969 next = val + NUMAINFO_EVENTS_TARGET;
970 break;
971 default:
972 break;
973 }
974 __this_cpu_write(memcg->stat->targets[target], next);
975 return true;
976 }
977 return false;
978 }
979
980 /*
981 * Check events in order.
982 *
983 */
984 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
985 {
986 /* threshold event is triggered in finer grain than soft limit */
987 if (unlikely(mem_cgroup_event_ratelimit(memcg,
988 MEM_CGROUP_TARGET_THRESH))) {
989 bool do_softlimit;
990 bool do_numainfo __maybe_unused;
991
992 do_softlimit = mem_cgroup_event_ratelimit(memcg,
993 MEM_CGROUP_TARGET_SOFTLIMIT);
994 #if MAX_NUMNODES > 1
995 do_numainfo = mem_cgroup_event_ratelimit(memcg,
996 MEM_CGROUP_TARGET_NUMAINFO);
997 #endif
998 mem_cgroup_threshold(memcg);
999 if (unlikely(do_softlimit))
1000 mem_cgroup_update_tree(memcg, page);
1001 #if MAX_NUMNODES > 1
1002 if (unlikely(do_numainfo))
1003 atomic_inc(&memcg->numainfo_events);
1004 #endif
1005 }
1006 }
1007
1008 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1009 {
1010 /*
1011 * mm_update_next_owner() may clear mm->owner to NULL
1012 * if it races with swapoff, page migration, etc.
1013 * So this can be called with p == NULL.
1014 */
1015 if (unlikely(!p))
1016 return NULL;
1017
1018 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1019 }
1020
1021 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1022 {
1023 struct mem_cgroup *memcg = NULL;
1024
1025 rcu_read_lock();
1026 do {
1027 /*
1028 * Page cache insertions can happen withou an
1029 * actual mm context, e.g. during disk probing
1030 * on boot, loopback IO, acct() writes etc.
1031 */
1032 if (unlikely(!mm))
1033 memcg = root_mem_cgroup;
1034 else {
1035 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1036 if (unlikely(!memcg))
1037 memcg = root_mem_cgroup;
1038 }
1039 } while (!css_tryget_online(&memcg->css));
1040 rcu_read_unlock();
1041 return memcg;
1042 }
1043
1044 /**
1045 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1046 * @root: hierarchy root
1047 * @prev: previously returned memcg, NULL on first invocation
1048 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1049 *
1050 * Returns references to children of the hierarchy below @root, or
1051 * @root itself, or %NULL after a full round-trip.
1052 *
1053 * Caller must pass the return value in @prev on subsequent
1054 * invocations for reference counting, or use mem_cgroup_iter_break()
1055 * to cancel a hierarchy walk before the round-trip is complete.
1056 *
1057 * Reclaimers can specify a zone and a priority level in @reclaim to
1058 * divide up the memcgs in the hierarchy among all concurrent
1059 * reclaimers operating on the same zone and priority.
1060 */
1061 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1062 struct mem_cgroup *prev,
1063 struct mem_cgroup_reclaim_cookie *reclaim)
1064 {
1065 struct reclaim_iter *uninitialized_var(iter);
1066 struct cgroup_subsys_state *css = NULL;
1067 struct mem_cgroup *memcg = NULL;
1068 struct mem_cgroup *pos = NULL;
1069
1070 if (mem_cgroup_disabled())
1071 return NULL;
1072
1073 if (!root)
1074 root = root_mem_cgroup;
1075
1076 if (prev && !reclaim)
1077 pos = prev;
1078
1079 if (!root->use_hierarchy && root != root_mem_cgroup) {
1080 if (prev)
1081 goto out;
1082 return root;
1083 }
1084
1085 rcu_read_lock();
1086
1087 if (reclaim) {
1088 struct mem_cgroup_per_zone *mz;
1089
1090 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1091 iter = &mz->iter[reclaim->priority];
1092
1093 if (prev && reclaim->generation != iter->generation)
1094 goto out_unlock;
1095
1096 do {
1097 pos = ACCESS_ONCE(iter->position);
1098 /*
1099 * A racing update may change the position and
1100 * put the last reference, hence css_tryget(),
1101 * or retry to see the updated position.
1102 */
1103 } while (pos && !css_tryget(&pos->css));
1104 }
1105
1106 if (pos)
1107 css = &pos->css;
1108
1109 for (;;) {
1110 css = css_next_descendant_pre(css, &root->css);
1111 if (!css) {
1112 /*
1113 * Reclaimers share the hierarchy walk, and a
1114 * new one might jump in right at the end of
1115 * the hierarchy - make sure they see at least
1116 * one group and restart from the beginning.
1117 */
1118 if (!prev)
1119 continue;
1120 break;
1121 }
1122
1123 /*
1124 * Verify the css and acquire a reference. The root
1125 * is provided by the caller, so we know it's alive
1126 * and kicking, and don't take an extra reference.
1127 */
1128 memcg = mem_cgroup_from_css(css);
1129
1130 if (css == &root->css)
1131 break;
1132
1133 if (css_tryget(css)) {
1134 /*
1135 * Make sure the memcg is initialized:
1136 * mem_cgroup_css_online() orders the the
1137 * initialization against setting the flag.
1138 */
1139 if (smp_load_acquire(&memcg->initialized))
1140 break;
1141
1142 css_put(css);
1143 }
1144
1145 memcg = NULL;
1146 }
1147
1148 if (reclaim) {
1149 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1150 if (memcg)
1151 css_get(&memcg->css);
1152 if (pos)
1153 css_put(&pos->css);
1154 }
1155
1156 /*
1157 * pairs with css_tryget when dereferencing iter->position
1158 * above.
1159 */
1160 if (pos)
1161 css_put(&pos->css);
1162
1163 if (!memcg)
1164 iter->generation++;
1165 else if (!prev)
1166 reclaim->generation = iter->generation;
1167 }
1168
1169 out_unlock:
1170 rcu_read_unlock();
1171 out:
1172 if (prev && prev != root)
1173 css_put(&prev->css);
1174
1175 return memcg;
1176 }
1177
1178 /**
1179 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1180 * @root: hierarchy root
1181 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1182 */
1183 void mem_cgroup_iter_break(struct mem_cgroup *root,
1184 struct mem_cgroup *prev)
1185 {
1186 if (!root)
1187 root = root_mem_cgroup;
1188 if (prev && prev != root)
1189 css_put(&prev->css);
1190 }
1191
1192 /*
1193 * Iteration constructs for visiting all cgroups (under a tree). If
1194 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1195 * be used for reference counting.
1196 */
1197 #define for_each_mem_cgroup_tree(iter, root) \
1198 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1199 iter != NULL; \
1200 iter = mem_cgroup_iter(root, iter, NULL))
1201
1202 #define for_each_mem_cgroup(iter) \
1203 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1204 iter != NULL; \
1205 iter = mem_cgroup_iter(NULL, iter, NULL))
1206
1207 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1208 {
1209 struct mem_cgroup *memcg;
1210
1211 rcu_read_lock();
1212 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1213 if (unlikely(!memcg))
1214 goto out;
1215
1216 switch (idx) {
1217 case PGFAULT:
1218 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1219 break;
1220 case PGMAJFAULT:
1221 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1222 break;
1223 default:
1224 BUG();
1225 }
1226 out:
1227 rcu_read_unlock();
1228 }
1229 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1230
1231 /**
1232 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1233 * @zone: zone of the wanted lruvec
1234 * @memcg: memcg of the wanted lruvec
1235 *
1236 * Returns the lru list vector holding pages for the given @zone and
1237 * @mem. This can be the global zone lruvec, if the memory controller
1238 * is disabled.
1239 */
1240 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1241 struct mem_cgroup *memcg)
1242 {
1243 struct mem_cgroup_per_zone *mz;
1244 struct lruvec *lruvec;
1245
1246 if (mem_cgroup_disabled()) {
1247 lruvec = &zone->lruvec;
1248 goto out;
1249 }
1250
1251 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1252 lruvec = &mz->lruvec;
1253 out:
1254 /*
1255 * Since a node can be onlined after the mem_cgroup was created,
1256 * we have to be prepared to initialize lruvec->zone here;
1257 * and if offlined then reonlined, we need to reinitialize it.
1258 */
1259 if (unlikely(lruvec->zone != zone))
1260 lruvec->zone = zone;
1261 return lruvec;
1262 }
1263
1264 /**
1265 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1266 * @page: the page
1267 * @zone: zone of the page
1268 *
1269 * This function is only safe when following the LRU page isolation
1270 * and putback protocol: the LRU lock must be held, and the page must
1271 * either be PageLRU() or the caller must have isolated/allocated it.
1272 */
1273 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1274 {
1275 struct mem_cgroup_per_zone *mz;
1276 struct mem_cgroup *memcg;
1277 struct lruvec *lruvec;
1278
1279 if (mem_cgroup_disabled()) {
1280 lruvec = &zone->lruvec;
1281 goto out;
1282 }
1283
1284 memcg = page->mem_cgroup;
1285 /*
1286 * Swapcache readahead pages are added to the LRU - and
1287 * possibly migrated - before they are charged.
1288 */
1289 if (!memcg)
1290 memcg = root_mem_cgroup;
1291
1292 mz = mem_cgroup_page_zoneinfo(memcg, page);
1293 lruvec = &mz->lruvec;
1294 out:
1295 /*
1296 * Since a node can be onlined after the mem_cgroup was created,
1297 * we have to be prepared to initialize lruvec->zone here;
1298 * and if offlined then reonlined, we need to reinitialize it.
1299 */
1300 if (unlikely(lruvec->zone != zone))
1301 lruvec->zone = zone;
1302 return lruvec;
1303 }
1304
1305 /**
1306 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1307 * @lruvec: mem_cgroup per zone lru vector
1308 * @lru: index of lru list the page is sitting on
1309 * @nr_pages: positive when adding or negative when removing
1310 *
1311 * This function must be called when a page is added to or removed from an
1312 * lru list.
1313 */
1314 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1315 int nr_pages)
1316 {
1317 struct mem_cgroup_per_zone *mz;
1318 unsigned long *lru_size;
1319
1320 if (mem_cgroup_disabled())
1321 return;
1322
1323 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1324 lru_size = mz->lru_size + lru;
1325 *lru_size += nr_pages;
1326 VM_BUG_ON((long)(*lru_size) < 0);
1327 }
1328
1329 bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
1330 {
1331 if (root == memcg)
1332 return true;
1333 if (!root->use_hierarchy)
1334 return false;
1335 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
1336 }
1337
1338 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1339 {
1340 struct mem_cgroup *task_memcg;
1341 struct task_struct *p;
1342 bool ret;
1343
1344 p = find_lock_task_mm(task);
1345 if (p) {
1346 task_memcg = get_mem_cgroup_from_mm(p->mm);
1347 task_unlock(p);
1348 } else {
1349 /*
1350 * All threads may have already detached their mm's, but the oom
1351 * killer still needs to detect if they have already been oom
1352 * killed to prevent needlessly killing additional tasks.
1353 */
1354 rcu_read_lock();
1355 task_memcg = mem_cgroup_from_task(task);
1356 css_get(&task_memcg->css);
1357 rcu_read_unlock();
1358 }
1359 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1360 css_put(&task_memcg->css);
1361 return ret;
1362 }
1363
1364 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1365 {
1366 unsigned long inactive_ratio;
1367 unsigned long inactive;
1368 unsigned long active;
1369 unsigned long gb;
1370
1371 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1372 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1373
1374 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1375 if (gb)
1376 inactive_ratio = int_sqrt(10 * gb);
1377 else
1378 inactive_ratio = 1;
1379
1380 return inactive * inactive_ratio < active;
1381 }
1382
1383 #define mem_cgroup_from_counter(counter, member) \
1384 container_of(counter, struct mem_cgroup, member)
1385
1386 /**
1387 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1388 * @memcg: the memory cgroup
1389 *
1390 * Returns the maximum amount of memory @mem can be charged with, in
1391 * pages.
1392 */
1393 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1394 {
1395 unsigned long margin = 0;
1396 unsigned long count;
1397 unsigned long limit;
1398
1399 count = page_counter_read(&memcg->memory);
1400 limit = ACCESS_ONCE(memcg->memory.limit);
1401 if (count < limit)
1402 margin = limit - count;
1403
1404 if (do_swap_account) {
1405 count = page_counter_read(&memcg->memsw);
1406 limit = ACCESS_ONCE(memcg->memsw.limit);
1407 if (count <= limit)
1408 margin = min(margin, limit - count);
1409 }
1410
1411 return margin;
1412 }
1413
1414 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1415 {
1416 /* root ? */
1417 if (mem_cgroup_disabled() || !memcg->css.parent)
1418 return vm_swappiness;
1419
1420 return memcg->swappiness;
1421 }
1422
1423 /*
1424 * A routine for checking "mem" is under move_account() or not.
1425 *
1426 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1427 * moving cgroups. This is for waiting at high-memory pressure
1428 * caused by "move".
1429 */
1430 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1431 {
1432 struct mem_cgroup *from;
1433 struct mem_cgroup *to;
1434 bool ret = false;
1435 /*
1436 * Unlike task_move routines, we access mc.to, mc.from not under
1437 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1438 */
1439 spin_lock(&mc.lock);
1440 from = mc.from;
1441 to = mc.to;
1442 if (!from)
1443 goto unlock;
1444
1445 ret = mem_cgroup_is_descendant(from, memcg) ||
1446 mem_cgroup_is_descendant(to, memcg);
1447 unlock:
1448 spin_unlock(&mc.lock);
1449 return ret;
1450 }
1451
1452 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1453 {
1454 if (mc.moving_task && current != mc.moving_task) {
1455 if (mem_cgroup_under_move(memcg)) {
1456 DEFINE_WAIT(wait);
1457 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1458 /* moving charge context might have finished. */
1459 if (mc.moving_task)
1460 schedule();
1461 finish_wait(&mc.waitq, &wait);
1462 return true;
1463 }
1464 }
1465 return false;
1466 }
1467
1468 #define K(x) ((x) << (PAGE_SHIFT-10))
1469 /**
1470 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1471 * @memcg: The memory cgroup that went over limit
1472 * @p: Task that is going to be killed
1473 *
1474 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1475 * enabled
1476 */
1477 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1478 {
1479 /* oom_info_lock ensures that parallel ooms do not interleave */
1480 static DEFINE_MUTEX(oom_info_lock);
1481 struct mem_cgroup *iter;
1482 unsigned int i;
1483
1484 if (!p)
1485 return;
1486
1487 mutex_lock(&oom_info_lock);
1488 rcu_read_lock();
1489
1490 pr_info("Task in ");
1491 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1492 pr_info(" killed as a result of limit of ");
1493 pr_cont_cgroup_path(memcg->css.cgroup);
1494 pr_info("\n");
1495
1496 rcu_read_unlock();
1497
1498 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1499 K((u64)page_counter_read(&memcg->memory)),
1500 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1501 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1502 K((u64)page_counter_read(&memcg->memsw)),
1503 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1504 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1505 K((u64)page_counter_read(&memcg->kmem)),
1506 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1507
1508 for_each_mem_cgroup_tree(iter, memcg) {
1509 pr_info("Memory cgroup stats for ");
1510 pr_cont_cgroup_path(iter->css.cgroup);
1511 pr_cont(":");
1512
1513 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1514 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1515 continue;
1516 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1517 K(mem_cgroup_read_stat(iter, i)));
1518 }
1519
1520 for (i = 0; i < NR_LRU_LISTS; i++)
1521 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1522 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1523
1524 pr_cont("\n");
1525 }
1526 mutex_unlock(&oom_info_lock);
1527 }
1528
1529 /*
1530 * This function returns the number of memcg under hierarchy tree. Returns
1531 * 1(self count) if no children.
1532 */
1533 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1534 {
1535 int num = 0;
1536 struct mem_cgroup *iter;
1537
1538 for_each_mem_cgroup_tree(iter, memcg)
1539 num++;
1540 return num;
1541 }
1542
1543 /*
1544 * Return the memory (and swap, if configured) limit for a memcg.
1545 */
1546 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1547 {
1548 unsigned long limit;
1549
1550 limit = memcg->memory.limit;
1551 if (mem_cgroup_swappiness(memcg)) {
1552 unsigned long memsw_limit;
1553
1554 memsw_limit = memcg->memsw.limit;
1555 limit = min(limit + total_swap_pages, memsw_limit);
1556 }
1557 return limit;
1558 }
1559
1560 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1561 int order)
1562 {
1563 struct mem_cgroup *iter;
1564 unsigned long chosen_points = 0;
1565 unsigned long totalpages;
1566 unsigned int points = 0;
1567 struct task_struct *chosen = NULL;
1568
1569 /*
1570 * If current has a pending SIGKILL or is exiting, then automatically
1571 * select it. The goal is to allow it to allocate so that it may
1572 * quickly exit and free its memory.
1573 */
1574 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1575 set_thread_flag(TIF_MEMDIE);
1576 return;
1577 }
1578
1579 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1580 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1581 for_each_mem_cgroup_tree(iter, memcg) {
1582 struct css_task_iter it;
1583 struct task_struct *task;
1584
1585 css_task_iter_start(&iter->css, &it);
1586 while ((task = css_task_iter_next(&it))) {
1587 switch (oom_scan_process_thread(task, totalpages, NULL,
1588 false)) {
1589 case OOM_SCAN_SELECT:
1590 if (chosen)
1591 put_task_struct(chosen);
1592 chosen = task;
1593 chosen_points = ULONG_MAX;
1594 get_task_struct(chosen);
1595 /* fall through */
1596 case OOM_SCAN_CONTINUE:
1597 continue;
1598 case OOM_SCAN_ABORT:
1599 css_task_iter_end(&it);
1600 mem_cgroup_iter_break(memcg, iter);
1601 if (chosen)
1602 put_task_struct(chosen);
1603 return;
1604 case OOM_SCAN_OK:
1605 break;
1606 };
1607 points = oom_badness(task, memcg, NULL, totalpages);
1608 if (!points || points < chosen_points)
1609 continue;
1610 /* Prefer thread group leaders for display purposes */
1611 if (points == chosen_points &&
1612 thread_group_leader(chosen))
1613 continue;
1614
1615 if (chosen)
1616 put_task_struct(chosen);
1617 chosen = task;
1618 chosen_points = points;
1619 get_task_struct(chosen);
1620 }
1621 css_task_iter_end(&it);
1622 }
1623
1624 if (!chosen)
1625 return;
1626 points = chosen_points * 1000 / totalpages;
1627 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1628 NULL, "Memory cgroup out of memory");
1629 }
1630
1631 /**
1632 * test_mem_cgroup_node_reclaimable
1633 * @memcg: the target memcg
1634 * @nid: the node ID to be checked.
1635 * @noswap : specify true here if the user wants flle only information.
1636 *
1637 * This function returns whether the specified memcg contains any
1638 * reclaimable pages on a node. Returns true if there are any reclaimable
1639 * pages in the node.
1640 */
1641 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1642 int nid, bool noswap)
1643 {
1644 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1645 return true;
1646 if (noswap || !total_swap_pages)
1647 return false;
1648 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1649 return true;
1650 return false;
1651
1652 }
1653 #if MAX_NUMNODES > 1
1654
1655 /*
1656 * Always updating the nodemask is not very good - even if we have an empty
1657 * list or the wrong list here, we can start from some node and traverse all
1658 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1659 *
1660 */
1661 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1662 {
1663 int nid;
1664 /*
1665 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1666 * pagein/pageout changes since the last update.
1667 */
1668 if (!atomic_read(&memcg->numainfo_events))
1669 return;
1670 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1671 return;
1672
1673 /* make a nodemask where this memcg uses memory from */
1674 memcg->scan_nodes = node_states[N_MEMORY];
1675
1676 for_each_node_mask(nid, node_states[N_MEMORY]) {
1677
1678 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1679 node_clear(nid, memcg->scan_nodes);
1680 }
1681
1682 atomic_set(&memcg->numainfo_events, 0);
1683 atomic_set(&memcg->numainfo_updating, 0);
1684 }
1685
1686 /*
1687 * Selecting a node where we start reclaim from. Because what we need is just
1688 * reducing usage counter, start from anywhere is O,K. Considering
1689 * memory reclaim from current node, there are pros. and cons.
1690 *
1691 * Freeing memory from current node means freeing memory from a node which
1692 * we'll use or we've used. So, it may make LRU bad. And if several threads
1693 * hit limits, it will see a contention on a node. But freeing from remote
1694 * node means more costs for memory reclaim because of memory latency.
1695 *
1696 * Now, we use round-robin. Better algorithm is welcomed.
1697 */
1698 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1699 {
1700 int node;
1701
1702 mem_cgroup_may_update_nodemask(memcg);
1703 node = memcg->last_scanned_node;
1704
1705 node = next_node(node, memcg->scan_nodes);
1706 if (node == MAX_NUMNODES)
1707 node = first_node(memcg->scan_nodes);
1708 /*
1709 * We call this when we hit limit, not when pages are added to LRU.
1710 * No LRU may hold pages because all pages are UNEVICTABLE or
1711 * memcg is too small and all pages are not on LRU. In that case,
1712 * we use curret node.
1713 */
1714 if (unlikely(node == MAX_NUMNODES))
1715 node = numa_node_id();
1716
1717 memcg->last_scanned_node = node;
1718 return node;
1719 }
1720 #else
1721 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1722 {
1723 return 0;
1724 }
1725 #endif
1726
1727 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1728 struct zone *zone,
1729 gfp_t gfp_mask,
1730 unsigned long *total_scanned)
1731 {
1732 struct mem_cgroup *victim = NULL;
1733 int total = 0;
1734 int loop = 0;
1735 unsigned long excess;
1736 unsigned long nr_scanned;
1737 struct mem_cgroup_reclaim_cookie reclaim = {
1738 .zone = zone,
1739 .priority = 0,
1740 };
1741
1742 excess = soft_limit_excess(root_memcg);
1743
1744 while (1) {
1745 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1746 if (!victim) {
1747 loop++;
1748 if (loop >= 2) {
1749 /*
1750 * If we have not been able to reclaim
1751 * anything, it might because there are
1752 * no reclaimable pages under this hierarchy
1753 */
1754 if (!total)
1755 break;
1756 /*
1757 * We want to do more targeted reclaim.
1758 * excess >> 2 is not to excessive so as to
1759 * reclaim too much, nor too less that we keep
1760 * coming back to reclaim from this cgroup
1761 */
1762 if (total >= (excess >> 2) ||
1763 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1764 break;
1765 }
1766 continue;
1767 }
1768 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1769 zone, &nr_scanned);
1770 *total_scanned += nr_scanned;
1771 if (!soft_limit_excess(root_memcg))
1772 break;
1773 }
1774 mem_cgroup_iter_break(root_memcg, victim);
1775 return total;
1776 }
1777
1778 #ifdef CONFIG_LOCKDEP
1779 static struct lockdep_map memcg_oom_lock_dep_map = {
1780 .name = "memcg_oom_lock",
1781 };
1782 #endif
1783
1784 static DEFINE_SPINLOCK(memcg_oom_lock);
1785
1786 /*
1787 * Check OOM-Killer is already running under our hierarchy.
1788 * If someone is running, return false.
1789 */
1790 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1791 {
1792 struct mem_cgroup *iter, *failed = NULL;
1793
1794 spin_lock(&memcg_oom_lock);
1795
1796 for_each_mem_cgroup_tree(iter, memcg) {
1797 if (iter->oom_lock) {
1798 /*
1799 * this subtree of our hierarchy is already locked
1800 * so we cannot give a lock.
1801 */
1802 failed = iter;
1803 mem_cgroup_iter_break(memcg, iter);
1804 break;
1805 } else
1806 iter->oom_lock = true;
1807 }
1808
1809 if (failed) {
1810 /*
1811 * OK, we failed to lock the whole subtree so we have
1812 * to clean up what we set up to the failing subtree
1813 */
1814 for_each_mem_cgroup_tree(iter, memcg) {
1815 if (iter == failed) {
1816 mem_cgroup_iter_break(memcg, iter);
1817 break;
1818 }
1819 iter->oom_lock = false;
1820 }
1821 } else
1822 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1823
1824 spin_unlock(&memcg_oom_lock);
1825
1826 return !failed;
1827 }
1828
1829 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1830 {
1831 struct mem_cgroup *iter;
1832
1833 spin_lock(&memcg_oom_lock);
1834 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1835 for_each_mem_cgroup_tree(iter, memcg)
1836 iter->oom_lock = false;
1837 spin_unlock(&memcg_oom_lock);
1838 }
1839
1840 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1841 {
1842 struct mem_cgroup *iter;
1843
1844 for_each_mem_cgroup_tree(iter, memcg)
1845 atomic_inc(&iter->under_oom);
1846 }
1847
1848 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1849 {
1850 struct mem_cgroup *iter;
1851
1852 /*
1853 * When a new child is created while the hierarchy is under oom,
1854 * mem_cgroup_oom_lock() may not be called. We have to use
1855 * atomic_add_unless() here.
1856 */
1857 for_each_mem_cgroup_tree(iter, memcg)
1858 atomic_add_unless(&iter->under_oom, -1, 0);
1859 }
1860
1861 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1862
1863 struct oom_wait_info {
1864 struct mem_cgroup *memcg;
1865 wait_queue_t wait;
1866 };
1867
1868 static int memcg_oom_wake_function(wait_queue_t *wait,
1869 unsigned mode, int sync, void *arg)
1870 {
1871 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1872 struct mem_cgroup *oom_wait_memcg;
1873 struct oom_wait_info *oom_wait_info;
1874
1875 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1876 oom_wait_memcg = oom_wait_info->memcg;
1877
1878 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1879 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1880 return 0;
1881 return autoremove_wake_function(wait, mode, sync, arg);
1882 }
1883
1884 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1885 {
1886 atomic_inc(&memcg->oom_wakeups);
1887 /* for filtering, pass "memcg" as argument. */
1888 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1889 }
1890
1891 static void memcg_oom_recover(struct mem_cgroup *memcg)
1892 {
1893 if (memcg && atomic_read(&memcg->under_oom))
1894 memcg_wakeup_oom(memcg);
1895 }
1896
1897 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1898 {
1899 if (!current->memcg_oom.may_oom)
1900 return;
1901 /*
1902 * We are in the middle of the charge context here, so we
1903 * don't want to block when potentially sitting on a callstack
1904 * that holds all kinds of filesystem and mm locks.
1905 *
1906 * Also, the caller may handle a failed allocation gracefully
1907 * (like optional page cache readahead) and so an OOM killer
1908 * invocation might not even be necessary.
1909 *
1910 * That's why we don't do anything here except remember the
1911 * OOM context and then deal with it at the end of the page
1912 * fault when the stack is unwound, the locks are released,
1913 * and when we know whether the fault was overall successful.
1914 */
1915 css_get(&memcg->css);
1916 current->memcg_oom.memcg = memcg;
1917 current->memcg_oom.gfp_mask = mask;
1918 current->memcg_oom.order = order;
1919 }
1920
1921 /**
1922 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1923 * @handle: actually kill/wait or just clean up the OOM state
1924 *
1925 * This has to be called at the end of a page fault if the memcg OOM
1926 * handler was enabled.
1927 *
1928 * Memcg supports userspace OOM handling where failed allocations must
1929 * sleep on a waitqueue until the userspace task resolves the
1930 * situation. Sleeping directly in the charge context with all kinds
1931 * of locks held is not a good idea, instead we remember an OOM state
1932 * in the task and mem_cgroup_oom_synchronize() has to be called at
1933 * the end of the page fault to complete the OOM handling.
1934 *
1935 * Returns %true if an ongoing memcg OOM situation was detected and
1936 * completed, %false otherwise.
1937 */
1938 bool mem_cgroup_oom_synchronize(bool handle)
1939 {
1940 struct mem_cgroup *memcg = current->memcg_oom.memcg;
1941 struct oom_wait_info owait;
1942 bool locked;
1943
1944 /* OOM is global, do not handle */
1945 if (!memcg)
1946 return false;
1947
1948 if (!handle)
1949 goto cleanup;
1950
1951 owait.memcg = memcg;
1952 owait.wait.flags = 0;
1953 owait.wait.func = memcg_oom_wake_function;
1954 owait.wait.private = current;
1955 INIT_LIST_HEAD(&owait.wait.task_list);
1956
1957 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1958 mem_cgroup_mark_under_oom(memcg);
1959
1960 locked = mem_cgroup_oom_trylock(memcg);
1961
1962 if (locked)
1963 mem_cgroup_oom_notify(memcg);
1964
1965 if (locked && !memcg->oom_kill_disable) {
1966 mem_cgroup_unmark_under_oom(memcg);
1967 finish_wait(&memcg_oom_waitq, &owait.wait);
1968 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1969 current->memcg_oom.order);
1970 } else {
1971 schedule();
1972 mem_cgroup_unmark_under_oom(memcg);
1973 finish_wait(&memcg_oom_waitq, &owait.wait);
1974 }
1975
1976 if (locked) {
1977 mem_cgroup_oom_unlock(memcg);
1978 /*
1979 * There is no guarantee that an OOM-lock contender
1980 * sees the wakeups triggered by the OOM kill
1981 * uncharges. Wake any sleepers explicitely.
1982 */
1983 memcg_oom_recover(memcg);
1984 }
1985 cleanup:
1986 current->memcg_oom.memcg = NULL;
1987 css_put(&memcg->css);
1988 return true;
1989 }
1990
1991 /**
1992 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1993 * @page: page that is going to change accounted state
1994 * @locked: &memcg->move_lock slowpath was taken
1995 * @flags: IRQ-state flags for &memcg->move_lock
1996 *
1997 * This function must mark the beginning of an accounted page state
1998 * change to prevent double accounting when the page is concurrently
1999 * being moved to another memcg:
2000 *
2001 * memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
2002 * if (TestClearPageState(page))
2003 * mem_cgroup_update_page_stat(memcg, state, -1);
2004 * mem_cgroup_end_page_stat(memcg, locked, flags);
2005 *
2006 * The RCU lock is held throughout the transaction. The fast path can
2007 * get away without acquiring the memcg->move_lock (@locked is false)
2008 * because page moving starts with an RCU grace period.
2009 *
2010 * The RCU lock also protects the memcg from being freed when the page
2011 * state that is going to change is the only thing preventing the page
2012 * from being uncharged. E.g. end-writeback clearing PageWriteback(),
2013 * which allows migration to go ahead and uncharge the page before the
2014 * account transaction might be complete.
2015 */
2016 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page,
2017 bool *locked,
2018 unsigned long *flags)
2019 {
2020 struct mem_cgroup *memcg;
2021
2022 rcu_read_lock();
2023
2024 if (mem_cgroup_disabled())
2025 return NULL;
2026 again:
2027 memcg = page->mem_cgroup;
2028 if (unlikely(!memcg))
2029 return NULL;
2030
2031 *locked = false;
2032 if (atomic_read(&memcg->moving_account) <= 0)
2033 return memcg;
2034
2035 spin_lock_irqsave(&memcg->move_lock, *flags);
2036 if (memcg != page->mem_cgroup) {
2037 spin_unlock_irqrestore(&memcg->move_lock, *flags);
2038 goto again;
2039 }
2040 *locked = true;
2041
2042 return memcg;
2043 }
2044
2045 /**
2046 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2047 * @memcg: the memcg that was accounted against
2048 * @locked: value received from mem_cgroup_begin_page_stat()
2049 * @flags: value received from mem_cgroup_begin_page_stat()
2050 */
2051 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool *locked,
2052 unsigned long *flags)
2053 {
2054 if (memcg && *locked)
2055 spin_unlock_irqrestore(&memcg->move_lock, *flags);
2056
2057 rcu_read_unlock();
2058 }
2059
2060 /**
2061 * mem_cgroup_update_page_stat - update page state statistics
2062 * @memcg: memcg to account against
2063 * @idx: page state item to account
2064 * @val: number of pages (positive or negative)
2065 *
2066 * See mem_cgroup_begin_page_stat() for locking requirements.
2067 */
2068 void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
2069 enum mem_cgroup_stat_index idx, int val)
2070 {
2071 VM_BUG_ON(!rcu_read_lock_held());
2072
2073 if (memcg)
2074 this_cpu_add(memcg->stat->count[idx], val);
2075 }
2076
2077 /*
2078 * size of first charge trial. "32" comes from vmscan.c's magic value.
2079 * TODO: maybe necessary to use big numbers in big irons.
2080 */
2081 #define CHARGE_BATCH 32U
2082 struct memcg_stock_pcp {
2083 struct mem_cgroup *cached; /* this never be root cgroup */
2084 unsigned int nr_pages;
2085 struct work_struct work;
2086 unsigned long flags;
2087 #define FLUSHING_CACHED_CHARGE 0
2088 };
2089 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2090 static DEFINE_MUTEX(percpu_charge_mutex);
2091
2092 /**
2093 * consume_stock: Try to consume stocked charge on this cpu.
2094 * @memcg: memcg to consume from.
2095 * @nr_pages: how many pages to charge.
2096 *
2097 * The charges will only happen if @memcg matches the current cpu's memcg
2098 * stock, and at least @nr_pages are available in that stock. Failure to
2099 * service an allocation will refill the stock.
2100 *
2101 * returns true if successful, false otherwise.
2102 */
2103 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2104 {
2105 struct memcg_stock_pcp *stock;
2106 bool ret = false;
2107
2108 if (nr_pages > CHARGE_BATCH)
2109 return ret;
2110
2111 stock = &get_cpu_var(memcg_stock);
2112 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2113 stock->nr_pages -= nr_pages;
2114 ret = true;
2115 }
2116 put_cpu_var(memcg_stock);
2117 return ret;
2118 }
2119
2120 /*
2121 * Returns stocks cached in percpu and reset cached information.
2122 */
2123 static void drain_stock(struct memcg_stock_pcp *stock)
2124 {
2125 struct mem_cgroup *old = stock->cached;
2126
2127 if (stock->nr_pages) {
2128 page_counter_uncharge(&old->memory, stock->nr_pages);
2129 if (do_swap_account)
2130 page_counter_uncharge(&old->memsw, stock->nr_pages);
2131 css_put_many(&old->css, stock->nr_pages);
2132 stock->nr_pages = 0;
2133 }
2134 stock->cached = NULL;
2135 }
2136
2137 /*
2138 * This must be called under preempt disabled or must be called by
2139 * a thread which is pinned to local cpu.
2140 */
2141 static void drain_local_stock(struct work_struct *dummy)
2142 {
2143 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2144 drain_stock(stock);
2145 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2146 }
2147
2148 static void __init memcg_stock_init(void)
2149 {
2150 int cpu;
2151
2152 for_each_possible_cpu(cpu) {
2153 struct memcg_stock_pcp *stock =
2154 &per_cpu(memcg_stock, cpu);
2155 INIT_WORK(&stock->work, drain_local_stock);
2156 }
2157 }
2158
2159 /*
2160 * Cache charges(val) to local per_cpu area.
2161 * This will be consumed by consume_stock() function, later.
2162 */
2163 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2164 {
2165 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2166
2167 if (stock->cached != memcg) { /* reset if necessary */
2168 drain_stock(stock);
2169 stock->cached = memcg;
2170 }
2171 stock->nr_pages += nr_pages;
2172 put_cpu_var(memcg_stock);
2173 }
2174
2175 /*
2176 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2177 * of the hierarchy under it.
2178 */
2179 static void drain_all_stock(struct mem_cgroup *root_memcg)
2180 {
2181 int cpu, curcpu;
2182
2183 /* If someone's already draining, avoid adding running more workers. */
2184 if (!mutex_trylock(&percpu_charge_mutex))
2185 return;
2186 /* Notify other cpus that system-wide "drain" is running */
2187 get_online_cpus();
2188 curcpu = get_cpu();
2189 for_each_online_cpu(cpu) {
2190 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2191 struct mem_cgroup *memcg;
2192
2193 memcg = stock->cached;
2194 if (!memcg || !stock->nr_pages)
2195 continue;
2196 if (!mem_cgroup_is_descendant(memcg, root_memcg))
2197 continue;
2198 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2199 if (cpu == curcpu)
2200 drain_local_stock(&stock->work);
2201 else
2202 schedule_work_on(cpu, &stock->work);
2203 }
2204 }
2205 put_cpu();
2206 put_online_cpus();
2207 mutex_unlock(&percpu_charge_mutex);
2208 }
2209
2210 /*
2211 * This function drains percpu counter value from DEAD cpu and
2212 * move it to local cpu. Note that this function can be preempted.
2213 */
2214 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2215 {
2216 int i;
2217
2218 spin_lock(&memcg->pcp_counter_lock);
2219 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2220 long x = per_cpu(memcg->stat->count[i], cpu);
2221
2222 per_cpu(memcg->stat->count[i], cpu) = 0;
2223 memcg->nocpu_base.count[i] += x;
2224 }
2225 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2226 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2227
2228 per_cpu(memcg->stat->events[i], cpu) = 0;
2229 memcg->nocpu_base.events[i] += x;
2230 }
2231 spin_unlock(&memcg->pcp_counter_lock);
2232 }
2233
2234 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2235 unsigned long action,
2236 void *hcpu)
2237 {
2238 int cpu = (unsigned long)hcpu;
2239 struct memcg_stock_pcp *stock;
2240 struct mem_cgroup *iter;
2241
2242 if (action == CPU_ONLINE)
2243 return NOTIFY_OK;
2244
2245 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2246 return NOTIFY_OK;
2247
2248 for_each_mem_cgroup(iter)
2249 mem_cgroup_drain_pcp_counter(iter, cpu);
2250
2251 stock = &per_cpu(memcg_stock, cpu);
2252 drain_stock(stock);
2253 return NOTIFY_OK;
2254 }
2255
2256 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2257 unsigned int nr_pages)
2258 {
2259 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2260 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2261 struct mem_cgroup *mem_over_limit;
2262 struct page_counter *counter;
2263 unsigned long nr_reclaimed;
2264 bool may_swap = true;
2265 bool drained = false;
2266 int ret = 0;
2267
2268 if (mem_cgroup_is_root(memcg))
2269 goto done;
2270 retry:
2271 if (consume_stock(memcg, nr_pages))
2272 goto done;
2273
2274 if (!do_swap_account ||
2275 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2276 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2277 goto done_restock;
2278 if (do_swap_account)
2279 page_counter_uncharge(&memcg->memsw, batch);
2280 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2281 } else {
2282 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2283 may_swap = false;
2284 }
2285
2286 if (batch > nr_pages) {
2287 batch = nr_pages;
2288 goto retry;
2289 }
2290
2291 /*
2292 * Unlike in global OOM situations, memcg is not in a physical
2293 * memory shortage. Allow dying and OOM-killed tasks to
2294 * bypass the last charges so that they can exit quickly and
2295 * free their memory.
2296 */
2297 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2298 fatal_signal_pending(current) ||
2299 current->flags & PF_EXITING))
2300 goto bypass;
2301
2302 if (unlikely(task_in_memcg_oom(current)))
2303 goto nomem;
2304
2305 if (!(gfp_mask & __GFP_WAIT))
2306 goto nomem;
2307
2308 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2309 gfp_mask, may_swap);
2310
2311 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2312 goto retry;
2313
2314 if (!drained) {
2315 drain_all_stock(mem_over_limit);
2316 drained = true;
2317 goto retry;
2318 }
2319
2320 if (gfp_mask & __GFP_NORETRY)
2321 goto nomem;
2322 /*
2323 * Even though the limit is exceeded at this point, reclaim
2324 * may have been able to free some pages. Retry the charge
2325 * before killing the task.
2326 *
2327 * Only for regular pages, though: huge pages are rather
2328 * unlikely to succeed so close to the limit, and we fall back
2329 * to regular pages anyway in case of failure.
2330 */
2331 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2332 goto retry;
2333 /*
2334 * At task move, charge accounts can be doubly counted. So, it's
2335 * better to wait until the end of task_move if something is going on.
2336 */
2337 if (mem_cgroup_wait_acct_move(mem_over_limit))
2338 goto retry;
2339
2340 if (nr_retries--)
2341 goto retry;
2342
2343 if (gfp_mask & __GFP_NOFAIL)
2344 goto bypass;
2345
2346 if (fatal_signal_pending(current))
2347 goto bypass;
2348
2349 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2350 nomem:
2351 if (!(gfp_mask & __GFP_NOFAIL))
2352 return -ENOMEM;
2353 bypass:
2354 return -EINTR;
2355
2356 done_restock:
2357 css_get_many(&memcg->css, batch);
2358 if (batch > nr_pages)
2359 refill_stock(memcg, batch - nr_pages);
2360 done:
2361 return ret;
2362 }
2363
2364 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2365 {
2366 if (mem_cgroup_is_root(memcg))
2367 return;
2368
2369 page_counter_uncharge(&memcg->memory, nr_pages);
2370 if (do_swap_account)
2371 page_counter_uncharge(&memcg->memsw, nr_pages);
2372
2373 css_put_many(&memcg->css, nr_pages);
2374 }
2375
2376 /*
2377 * A helper function to get mem_cgroup from ID. must be called under
2378 * rcu_read_lock(). The caller is responsible for calling
2379 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2380 * refcnt from swap can be called against removed memcg.)
2381 */
2382 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2383 {
2384 /* ID 0 is unused ID */
2385 if (!id)
2386 return NULL;
2387 return mem_cgroup_from_id(id);
2388 }
2389
2390 /*
2391 * try_get_mem_cgroup_from_page - look up page's memcg association
2392 * @page: the page
2393 *
2394 * Look up, get a css reference, and return the memcg that owns @page.
2395 *
2396 * The page must be locked to prevent racing with swap-in and page
2397 * cache charges. If coming from an unlocked page table, the caller
2398 * must ensure the page is on the LRU or this can race with charging.
2399 */
2400 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2401 {
2402 struct mem_cgroup *memcg;
2403 unsigned short id;
2404 swp_entry_t ent;
2405
2406 VM_BUG_ON_PAGE(!PageLocked(page), page);
2407
2408 memcg = page->mem_cgroup;
2409 if (memcg) {
2410 if (!css_tryget_online(&memcg->css))
2411 memcg = NULL;
2412 } else if (PageSwapCache(page)) {
2413 ent.val = page_private(page);
2414 id = lookup_swap_cgroup_id(ent);
2415 rcu_read_lock();
2416 memcg = mem_cgroup_lookup(id);
2417 if (memcg && !css_tryget_online(&memcg->css))
2418 memcg = NULL;
2419 rcu_read_unlock();
2420 }
2421 return memcg;
2422 }
2423
2424 static void lock_page_lru(struct page *page, int *isolated)
2425 {
2426 struct zone *zone = page_zone(page);
2427
2428 spin_lock_irq(&zone->lru_lock);
2429 if (PageLRU(page)) {
2430 struct lruvec *lruvec;
2431
2432 lruvec = mem_cgroup_page_lruvec(page, zone);
2433 ClearPageLRU(page);
2434 del_page_from_lru_list(page, lruvec, page_lru(page));
2435 *isolated = 1;
2436 } else
2437 *isolated = 0;
2438 }
2439
2440 static void unlock_page_lru(struct page *page, int isolated)
2441 {
2442 struct zone *zone = page_zone(page);
2443
2444 if (isolated) {
2445 struct lruvec *lruvec;
2446
2447 lruvec = mem_cgroup_page_lruvec(page, zone);
2448 VM_BUG_ON_PAGE(PageLRU(page), page);
2449 SetPageLRU(page);
2450 add_page_to_lru_list(page, lruvec, page_lru(page));
2451 }
2452 spin_unlock_irq(&zone->lru_lock);
2453 }
2454
2455 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2456 bool lrucare)
2457 {
2458 int isolated;
2459
2460 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2461
2462 /*
2463 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2464 * may already be on some other mem_cgroup's LRU. Take care of it.
2465 */
2466 if (lrucare)
2467 lock_page_lru(page, &isolated);
2468
2469 /*
2470 * Nobody should be changing or seriously looking at
2471 * page->mem_cgroup at this point:
2472 *
2473 * - the page is uncharged
2474 *
2475 * - the page is off-LRU
2476 *
2477 * - an anonymous fault has exclusive page access, except for
2478 * a locked page table
2479 *
2480 * - a page cache insertion, a swapin fault, or a migration
2481 * have the page locked
2482 */
2483 page->mem_cgroup = memcg;
2484
2485 if (lrucare)
2486 unlock_page_lru(page, isolated);
2487 }
2488
2489 #ifdef CONFIG_MEMCG_KMEM
2490 /*
2491 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2492 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2493 */
2494 static DEFINE_MUTEX(memcg_slab_mutex);
2495
2496 /*
2497 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2498 * in the memcg_cache_params struct.
2499 */
2500 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2501 {
2502 struct kmem_cache *cachep;
2503
2504 VM_BUG_ON(p->is_root_cache);
2505 cachep = p->root_cache;
2506 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
2507 }
2508
2509 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2510 unsigned long nr_pages)
2511 {
2512 struct page_counter *counter;
2513 int ret = 0;
2514
2515 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2516 if (ret < 0)
2517 return ret;
2518
2519 ret = try_charge(memcg, gfp, nr_pages);
2520 if (ret == -EINTR) {
2521 /*
2522 * try_charge() chose to bypass to root due to OOM kill or
2523 * fatal signal. Since our only options are to either fail
2524 * the allocation or charge it to this cgroup, do it as a
2525 * temporary condition. But we can't fail. From a kmem/slab
2526 * perspective, the cache has already been selected, by
2527 * mem_cgroup_kmem_get_cache(), so it is too late to change
2528 * our minds.
2529 *
2530 * This condition will only trigger if the task entered
2531 * memcg_charge_kmem in a sane state, but was OOM-killed
2532 * during try_charge() above. Tasks that were already dying
2533 * when the allocation triggers should have been already
2534 * directed to the root cgroup in memcontrol.h
2535 */
2536 page_counter_charge(&memcg->memory, nr_pages);
2537 if (do_swap_account)
2538 page_counter_charge(&memcg->memsw, nr_pages);
2539 css_get_many(&memcg->css, nr_pages);
2540 ret = 0;
2541 } else if (ret)
2542 page_counter_uncharge(&memcg->kmem, nr_pages);
2543
2544 return ret;
2545 }
2546
2547 static void memcg_uncharge_kmem(struct mem_cgroup *memcg,
2548 unsigned long nr_pages)
2549 {
2550 page_counter_uncharge(&memcg->memory, nr_pages);
2551 if (do_swap_account)
2552 page_counter_uncharge(&memcg->memsw, nr_pages);
2553
2554 page_counter_uncharge(&memcg->kmem, nr_pages);
2555
2556 css_put_many(&memcg->css, nr_pages);
2557 }
2558
2559 /*
2560 * helper for acessing a memcg's index. It will be used as an index in the
2561 * child cache array in kmem_cache, and also to derive its name. This function
2562 * will return -1 when this is not a kmem-limited memcg.
2563 */
2564 int memcg_cache_id(struct mem_cgroup *memcg)
2565 {
2566 return memcg ? memcg->kmemcg_id : -1;
2567 }
2568
2569 static int memcg_alloc_cache_id(void)
2570 {
2571 int id, size;
2572 int err;
2573
2574 id = ida_simple_get(&kmem_limited_groups,
2575 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2576 if (id < 0)
2577 return id;
2578
2579 if (id < memcg_limited_groups_array_size)
2580 return id;
2581
2582 /*
2583 * There's no space for the new id in memcg_caches arrays,
2584 * so we have to grow them.
2585 */
2586
2587 size = 2 * (id + 1);
2588 if (size < MEMCG_CACHES_MIN_SIZE)
2589 size = MEMCG_CACHES_MIN_SIZE;
2590 else if (size > MEMCG_CACHES_MAX_SIZE)
2591 size = MEMCG_CACHES_MAX_SIZE;
2592
2593 mutex_lock(&memcg_slab_mutex);
2594 err = memcg_update_all_caches(size);
2595 mutex_unlock(&memcg_slab_mutex);
2596
2597 if (err) {
2598 ida_simple_remove(&kmem_limited_groups, id);
2599 return err;
2600 }
2601 return id;
2602 }
2603
2604 static void memcg_free_cache_id(int id)
2605 {
2606 ida_simple_remove(&kmem_limited_groups, id);
2607 }
2608
2609 /*
2610 * We should update the current array size iff all caches updates succeed. This
2611 * can only be done from the slab side. The slab mutex needs to be held when
2612 * calling this.
2613 */
2614 void memcg_update_array_size(int num)
2615 {
2616 memcg_limited_groups_array_size = num;
2617 }
2618
2619 static void memcg_register_cache(struct mem_cgroup *memcg,
2620 struct kmem_cache *root_cache)
2621 {
2622 static char memcg_name_buf[NAME_MAX + 1]; /* protected by
2623 memcg_slab_mutex */
2624 struct kmem_cache *cachep;
2625 int id;
2626
2627 lockdep_assert_held(&memcg_slab_mutex);
2628
2629 id = memcg_cache_id(memcg);
2630
2631 /*
2632 * Since per-memcg caches are created asynchronously on first
2633 * allocation (see memcg_kmem_get_cache()), several threads can try to
2634 * create the same cache, but only one of them may succeed.
2635 */
2636 if (cache_from_memcg_idx(root_cache, id))
2637 return;
2638
2639 cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
2640 cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2641 /*
2642 * If we could not create a memcg cache, do not complain, because
2643 * that's not critical at all as we can always proceed with the root
2644 * cache.
2645 */
2646 if (!cachep)
2647 return;
2648
2649 css_get(&memcg->css);
2650 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
2651
2652 /*
2653 * Since readers won't lock (see cache_from_memcg_idx()), we need a
2654 * barrier here to ensure nobody will see the kmem_cache partially
2655 * initialized.
2656 */
2657 smp_wmb();
2658
2659 BUG_ON(root_cache->memcg_params->memcg_caches[id]);
2660 root_cache->memcg_params->memcg_caches[id] = cachep;
2661 }
2662
2663 static void memcg_unregister_cache(struct kmem_cache *cachep)
2664 {
2665 struct kmem_cache *root_cache;
2666 struct mem_cgroup *memcg;
2667 int id;
2668
2669 lockdep_assert_held(&memcg_slab_mutex);
2670
2671 BUG_ON(is_root_cache(cachep));
2672
2673 root_cache = cachep->memcg_params->root_cache;
2674 memcg = cachep->memcg_params->memcg;
2675 id = memcg_cache_id(memcg);
2676
2677 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
2678 root_cache->memcg_params->memcg_caches[id] = NULL;
2679
2680 list_del(&cachep->memcg_params->list);
2681
2682 kmem_cache_destroy(cachep);
2683
2684 /* drop the reference taken in memcg_register_cache */
2685 css_put(&memcg->css);
2686 }
2687
2688 /*
2689 * During the creation a new cache, we need to disable our accounting mechanism
2690 * altogether. This is true even if we are not creating, but rather just
2691 * enqueing new caches to be created.
2692 *
2693 * This is because that process will trigger allocations; some visible, like
2694 * explicit kmallocs to auxiliary data structures, name strings and internal
2695 * cache structures; some well concealed, like INIT_WORK() that can allocate
2696 * objects during debug.
2697 *
2698 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
2699 * to it. This may not be a bounded recursion: since the first cache creation
2700 * failed to complete (waiting on the allocation), we'll just try to create the
2701 * cache again, failing at the same point.
2702 *
2703 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
2704 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
2705 * inside the following two functions.
2706 */
2707 static inline void memcg_stop_kmem_account(void)
2708 {
2709 VM_BUG_ON(!current->mm);
2710 current->memcg_kmem_skip_account++;
2711 }
2712
2713 static inline void memcg_resume_kmem_account(void)
2714 {
2715 VM_BUG_ON(!current->mm);
2716 current->memcg_kmem_skip_account--;
2717 }
2718
2719 int __memcg_cleanup_cache_params(struct kmem_cache *s)
2720 {
2721 struct kmem_cache *c;
2722 int i, failed = 0;
2723
2724 mutex_lock(&memcg_slab_mutex);
2725 for_each_memcg_cache_index(i) {
2726 c = cache_from_memcg_idx(s, i);
2727 if (!c)
2728 continue;
2729
2730 memcg_unregister_cache(c);
2731
2732 if (cache_from_memcg_idx(s, i))
2733 failed++;
2734 }
2735 mutex_unlock(&memcg_slab_mutex);
2736 return failed;
2737 }
2738
2739 static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
2740 {
2741 struct kmem_cache *cachep;
2742 struct memcg_cache_params *params, *tmp;
2743
2744 if (!memcg_kmem_is_active(memcg))
2745 return;
2746
2747 mutex_lock(&memcg_slab_mutex);
2748 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
2749 cachep = memcg_params_to_cache(params);
2750 kmem_cache_shrink(cachep);
2751 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
2752 memcg_unregister_cache(cachep);
2753 }
2754 mutex_unlock(&memcg_slab_mutex);
2755 }
2756
2757 struct memcg_register_cache_work {
2758 struct mem_cgroup *memcg;
2759 struct kmem_cache *cachep;
2760 struct work_struct work;
2761 };
2762
2763 static void memcg_register_cache_func(struct work_struct *w)
2764 {
2765 struct memcg_register_cache_work *cw =
2766 container_of(w, struct memcg_register_cache_work, work);
2767 struct mem_cgroup *memcg = cw->memcg;
2768 struct kmem_cache *cachep = cw->cachep;
2769
2770 mutex_lock(&memcg_slab_mutex);
2771 memcg_register_cache(memcg, cachep);
2772 mutex_unlock(&memcg_slab_mutex);
2773
2774 css_put(&memcg->css);
2775 kfree(cw);
2776 }
2777
2778 /*
2779 * Enqueue the creation of a per-memcg kmem_cache.
2780 */
2781 static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
2782 struct kmem_cache *cachep)
2783 {
2784 struct memcg_register_cache_work *cw;
2785
2786 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2787 if (cw == NULL) {
2788 css_put(&memcg->css);
2789 return;
2790 }
2791
2792 cw->memcg = memcg;
2793 cw->cachep = cachep;
2794
2795 INIT_WORK(&cw->work, memcg_register_cache_func);
2796 schedule_work(&cw->work);
2797 }
2798
2799 static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
2800 struct kmem_cache *cachep)
2801 {
2802 /*
2803 * We need to stop accounting when we kmalloc, because if the
2804 * corresponding kmalloc cache is not yet created, the first allocation
2805 * in __memcg_schedule_register_cache will recurse.
2806 *
2807 * However, it is better to enclose the whole function. Depending on
2808 * the debugging options enabled, INIT_WORK(), for instance, can
2809 * trigger an allocation. This too, will make us recurse. Because at
2810 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2811 * the safest choice is to do it like this, wrapping the whole function.
2812 */
2813 memcg_stop_kmem_account();
2814 __memcg_schedule_register_cache(memcg, cachep);
2815 memcg_resume_kmem_account();
2816 }
2817
2818 int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
2819 {
2820 unsigned int nr_pages = 1 << order;
2821 int res;
2822
2823 res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp, nr_pages);
2824 if (!res)
2825 atomic_add(nr_pages, &cachep->memcg_params->nr_pages);
2826 return res;
2827 }
2828
2829 void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
2830 {
2831 unsigned int nr_pages = 1 << order;
2832
2833 memcg_uncharge_kmem(cachep->memcg_params->memcg, nr_pages);
2834 atomic_sub(nr_pages, &cachep->memcg_params->nr_pages);
2835 }
2836
2837 /*
2838 * Return the kmem_cache we're supposed to use for a slab allocation.
2839 * We try to use the current memcg's version of the cache.
2840 *
2841 * If the cache does not exist yet, if we are the first user of it,
2842 * we either create it immediately, if possible, or create it asynchronously
2843 * in a workqueue.
2844 * In the latter case, we will let the current allocation go through with
2845 * the original cache.
2846 *
2847 * Can't be called in interrupt context or from kernel threads.
2848 * This function needs to be called with rcu_read_lock() held.
2849 */
2850 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
2851 gfp_t gfp)
2852 {
2853 struct mem_cgroup *memcg;
2854 struct kmem_cache *memcg_cachep;
2855
2856 VM_BUG_ON(!cachep->memcg_params);
2857 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
2858
2859 if (!current->mm || current->memcg_kmem_skip_account)
2860 return cachep;
2861
2862 rcu_read_lock();
2863 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
2864
2865 if (!memcg_kmem_is_active(memcg))
2866 goto out;
2867
2868 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
2869 if (likely(memcg_cachep)) {
2870 cachep = memcg_cachep;
2871 goto out;
2872 }
2873
2874 /* The corresponding put will be done in the workqueue. */
2875 if (!css_tryget_online(&memcg->css))
2876 goto out;
2877 rcu_read_unlock();
2878
2879 /*
2880 * If we are in a safe context (can wait, and not in interrupt
2881 * context), we could be be predictable and return right away.
2882 * This would guarantee that the allocation being performed
2883 * already belongs in the new cache.
2884 *
2885 * However, there are some clashes that can arrive from locking.
2886 * For instance, because we acquire the slab_mutex while doing
2887 * memcg_create_kmem_cache, this means no further allocation
2888 * could happen with the slab_mutex held. So it's better to
2889 * defer everything.
2890 */
2891 memcg_schedule_register_cache(memcg, cachep);
2892 return cachep;
2893 out:
2894 rcu_read_unlock();
2895 return cachep;
2896 }
2897
2898 /*
2899 * We need to verify if the allocation against current->mm->owner's memcg is
2900 * possible for the given order. But the page is not allocated yet, so we'll
2901 * need a further commit step to do the final arrangements.
2902 *
2903 * It is possible for the task to switch cgroups in this mean time, so at
2904 * commit time, we can't rely on task conversion any longer. We'll then use
2905 * the handle argument to return to the caller which cgroup we should commit
2906 * against. We could also return the memcg directly and avoid the pointer
2907 * passing, but a boolean return value gives better semantics considering
2908 * the compiled-out case as well.
2909 *
2910 * Returning true means the allocation is possible.
2911 */
2912 bool
2913 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2914 {
2915 struct mem_cgroup *memcg;
2916 int ret;
2917
2918 *_memcg = NULL;
2919
2920 /*
2921 * Disabling accounting is only relevant for some specific memcg
2922 * internal allocations. Therefore we would initially not have such
2923 * check here, since direct calls to the page allocator that are
2924 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
2925 * outside memcg core. We are mostly concerned with cache allocations,
2926 * and by having this test at memcg_kmem_get_cache, we are already able
2927 * to relay the allocation to the root cache and bypass the memcg cache
2928 * altogether.
2929 *
2930 * There is one exception, though: the SLUB allocator does not create
2931 * large order caches, but rather service large kmallocs directly from
2932 * the page allocator. Therefore, the following sequence when backed by
2933 * the SLUB allocator:
2934 *
2935 * memcg_stop_kmem_account();
2936 * kmalloc(<large_number>)
2937 * memcg_resume_kmem_account();
2938 *
2939 * would effectively ignore the fact that we should skip accounting,
2940 * since it will drive us directly to this function without passing
2941 * through the cache selector memcg_kmem_get_cache. Such large
2942 * allocations are extremely rare but can happen, for instance, for the
2943 * cache arrays. We bring this test here.
2944 */
2945 if (!current->mm || current->memcg_kmem_skip_account)
2946 return true;
2947
2948 memcg = get_mem_cgroup_from_mm(current->mm);
2949
2950 if (!memcg_kmem_is_active(memcg)) {
2951 css_put(&memcg->css);
2952 return true;
2953 }
2954
2955 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2956 if (!ret)
2957 *_memcg = memcg;
2958
2959 css_put(&memcg->css);
2960 return (ret == 0);
2961 }
2962
2963 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2964 int order)
2965 {
2966 VM_BUG_ON(mem_cgroup_is_root(memcg));
2967
2968 /* The page allocation failed. Revert */
2969 if (!page) {
2970 memcg_uncharge_kmem(memcg, 1 << order);
2971 return;
2972 }
2973 page->mem_cgroup = memcg;
2974 }
2975
2976 void __memcg_kmem_uncharge_pages(struct page *page, int order)
2977 {
2978 struct mem_cgroup *memcg = page->mem_cgroup;
2979
2980 if (!memcg)
2981 return;
2982
2983 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2984
2985 memcg_uncharge_kmem(memcg, 1 << order);
2986 page->mem_cgroup = NULL;
2987 }
2988 #else
2989 static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
2990 {
2991 }
2992 #endif /* CONFIG_MEMCG_KMEM */
2993
2994 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2995
2996 /*
2997 * Because tail pages are not marked as "used", set it. We're under
2998 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2999 * charge/uncharge will be never happen and move_account() is done under
3000 * compound_lock(), so we don't have to take care of races.
3001 */
3002 void mem_cgroup_split_huge_fixup(struct page *head)
3003 {
3004 int i;
3005
3006 if (mem_cgroup_disabled())
3007 return;
3008
3009 for (i = 1; i < HPAGE_PMD_NR; i++)
3010 head[i].mem_cgroup = head->mem_cgroup;
3011
3012 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3013 HPAGE_PMD_NR);
3014 }
3015 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3016
3017 /**
3018 * mem_cgroup_move_account - move account of the page
3019 * @page: the page
3020 * @nr_pages: number of regular pages (>1 for huge pages)
3021 * @from: mem_cgroup which the page is moved from.
3022 * @to: mem_cgroup which the page is moved to. @from != @to.
3023 *
3024 * The caller must confirm following.
3025 * - page is not on LRU (isolate_page() is useful.)
3026 * - compound_lock is held when nr_pages > 1
3027 *
3028 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3029 * from old cgroup.
3030 */
3031 static int mem_cgroup_move_account(struct page *page,
3032 unsigned int nr_pages,
3033 struct mem_cgroup *from,
3034 struct mem_cgroup *to)
3035 {
3036 unsigned long flags;
3037 int ret;
3038
3039 VM_BUG_ON(from == to);
3040 VM_BUG_ON_PAGE(PageLRU(page), page);
3041 /*
3042 * The page is isolated from LRU. So, collapse function
3043 * will not handle this page. But page splitting can happen.
3044 * Do this check under compound_page_lock(). The caller should
3045 * hold it.
3046 */
3047 ret = -EBUSY;
3048 if (nr_pages > 1 && !PageTransHuge(page))
3049 goto out;
3050
3051 /*
3052 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
3053 * of its source page while we change it: page migration takes
3054 * both pages off the LRU, but page cache replacement doesn't.
3055 */
3056 if (!trylock_page(page))
3057 goto out;
3058
3059 ret = -EINVAL;
3060 if (page->mem_cgroup != from)
3061 goto out_unlock;
3062
3063 spin_lock_irqsave(&from->move_lock, flags);
3064
3065 if (!PageAnon(page) && page_mapped(page)) {
3066 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3067 nr_pages);
3068 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3069 nr_pages);
3070 }
3071
3072 if (PageWriteback(page)) {
3073 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3074 nr_pages);
3075 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3076 nr_pages);
3077 }
3078
3079 /*
3080 * It is safe to change page->mem_cgroup here because the page
3081 * is referenced, charged, and isolated - we can't race with
3082 * uncharging, charging, migration, or LRU putback.
3083 */
3084
3085 /* caller should have done css_get */
3086 page->mem_cgroup = to;
3087 spin_unlock_irqrestore(&from->move_lock, flags);
3088
3089 ret = 0;
3090
3091 local_irq_disable();
3092 mem_cgroup_charge_statistics(to, page, nr_pages);
3093 memcg_check_events(to, page);
3094 mem_cgroup_charge_statistics(from, page, -nr_pages);
3095 memcg_check_events(from, page);
3096 local_irq_enable();
3097 out_unlock:
3098 unlock_page(page);
3099 out:
3100 return ret;
3101 }
3102
3103 #ifdef CONFIG_MEMCG_SWAP
3104 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
3105 bool charge)
3106 {
3107 int val = (charge) ? 1 : -1;
3108 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
3109 }
3110
3111 /**
3112 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3113 * @entry: swap entry to be moved
3114 * @from: mem_cgroup which the entry is moved from
3115 * @to: mem_cgroup which the entry is moved to
3116 *
3117 * It succeeds only when the swap_cgroup's record for this entry is the same
3118 * as the mem_cgroup's id of @from.
3119 *
3120 * Returns 0 on success, -EINVAL on failure.
3121 *
3122 * The caller must have charged to @to, IOW, called page_counter_charge() about
3123 * both res and memsw, and called css_get().
3124 */
3125 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3126 struct mem_cgroup *from, struct mem_cgroup *to)
3127 {
3128 unsigned short old_id, new_id;
3129
3130 old_id = mem_cgroup_id(from);
3131 new_id = mem_cgroup_id(to);
3132
3133 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3134 mem_cgroup_swap_statistics(from, false);
3135 mem_cgroup_swap_statistics(to, true);
3136 /*
3137 * This function is only called from task migration context now.
3138 * It postpones page_counter and refcount handling till the end
3139 * of task migration(mem_cgroup_clear_mc()) for performance
3140 * improvement. But we cannot postpone css_get(to) because if
3141 * the process that has been moved to @to does swap-in, the
3142 * refcount of @to might be decreased to 0.
3143 *
3144 * We are in attach() phase, so the cgroup is guaranteed to be
3145 * alive, so we can just call css_get().
3146 */
3147 css_get(&to->css);
3148 return 0;
3149 }
3150 return -EINVAL;
3151 }
3152 #else
3153 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3154 struct mem_cgroup *from, struct mem_cgroup *to)
3155 {
3156 return -EINVAL;
3157 }
3158 #endif
3159
3160 static DEFINE_MUTEX(memcg_limit_mutex);
3161
3162 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3163 unsigned long limit)
3164 {
3165 unsigned long curusage;
3166 unsigned long oldusage;
3167 bool enlarge = false;
3168 int retry_count;
3169 int ret;
3170
3171 /*
3172 * For keeping hierarchical_reclaim simple, how long we should retry
3173 * is depends on callers. We set our retry-count to be function
3174 * of # of children which we should visit in this loop.
3175 */
3176 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3177 mem_cgroup_count_children(memcg);
3178
3179 oldusage = page_counter_read(&memcg->memory);
3180
3181 do {
3182 if (signal_pending(current)) {
3183 ret = -EINTR;
3184 break;
3185 }
3186
3187 mutex_lock(&memcg_limit_mutex);
3188 if (limit > memcg->memsw.limit) {
3189 mutex_unlock(&memcg_limit_mutex);
3190 ret = -EINVAL;
3191 break;
3192 }
3193 if (limit > memcg->memory.limit)
3194 enlarge = true;
3195 ret = page_counter_limit(&memcg->memory, limit);
3196 mutex_unlock(&memcg_limit_mutex);
3197
3198 if (!ret)
3199 break;
3200
3201 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
3202
3203 curusage = page_counter_read(&memcg->memory);
3204 /* Usage is reduced ? */
3205 if (curusage >= oldusage)
3206 retry_count--;
3207 else
3208 oldusage = curusage;
3209 } while (retry_count);
3210
3211 if (!ret && enlarge)
3212 memcg_oom_recover(memcg);
3213
3214 return ret;
3215 }
3216
3217 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3218 unsigned long limit)
3219 {
3220 unsigned long curusage;
3221 unsigned long oldusage;
3222 bool enlarge = false;
3223 int retry_count;
3224 int ret;
3225
3226 /* see mem_cgroup_resize_res_limit */
3227 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3228 mem_cgroup_count_children(memcg);
3229
3230 oldusage = page_counter_read(&memcg->memsw);
3231
3232 do {
3233 if (signal_pending(current)) {
3234 ret = -EINTR;
3235 break;
3236 }
3237
3238 mutex_lock(&memcg_limit_mutex);
3239 if (limit < memcg->memory.limit) {
3240 mutex_unlock(&memcg_limit_mutex);
3241 ret = -EINVAL;
3242 break;
3243 }
3244 if (limit > memcg->memsw.limit)
3245 enlarge = true;
3246 ret = page_counter_limit(&memcg->memsw, limit);
3247 mutex_unlock(&memcg_limit_mutex);
3248
3249 if (!ret)
3250 break;
3251
3252 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
3253
3254 curusage = page_counter_read(&memcg->memsw);
3255 /* Usage is reduced ? */
3256 if (curusage >= oldusage)
3257 retry_count--;
3258 else
3259 oldusage = curusage;
3260 } while (retry_count);
3261
3262 if (!ret && enlarge)
3263 memcg_oom_recover(memcg);
3264
3265 return ret;
3266 }
3267
3268 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3269 gfp_t gfp_mask,
3270 unsigned long *total_scanned)
3271 {
3272 unsigned long nr_reclaimed = 0;
3273 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3274 unsigned long reclaimed;
3275 int loop = 0;
3276 struct mem_cgroup_tree_per_zone *mctz;
3277 unsigned long excess;
3278 unsigned long nr_scanned;
3279
3280 if (order > 0)
3281 return 0;
3282
3283 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3284 /*
3285 * This loop can run a while, specially if mem_cgroup's continuously
3286 * keep exceeding their soft limit and putting the system under
3287 * pressure
3288 */
3289 do {
3290 if (next_mz)
3291 mz = next_mz;
3292 else
3293 mz = mem_cgroup_largest_soft_limit_node(mctz);
3294 if (!mz)
3295 break;
3296
3297 nr_scanned = 0;
3298 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3299 gfp_mask, &nr_scanned);
3300 nr_reclaimed += reclaimed;
3301 *total_scanned += nr_scanned;
3302 spin_lock_irq(&mctz->lock);
3303 __mem_cgroup_remove_exceeded(mz, mctz);
3304
3305 /*
3306 * If we failed to reclaim anything from this memory cgroup
3307 * it is time to move on to the next cgroup
3308 */
3309 next_mz = NULL;
3310 if (!reclaimed)
3311 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3312
3313 excess = soft_limit_excess(mz->memcg);
3314 /*
3315 * One school of thought says that we should not add
3316 * back the node to the tree if reclaim returns 0.
3317 * But our reclaim could return 0, simply because due
3318 * to priority we are exposing a smaller subset of
3319 * memory to reclaim from. Consider this as a longer
3320 * term TODO.
3321 */
3322 /* If excess == 0, no tree ops */
3323 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3324 spin_unlock_irq(&mctz->lock);
3325 css_put(&mz->memcg->css);
3326 loop++;
3327 /*
3328 * Could not reclaim anything and there are no more
3329 * mem cgroups to try or we seem to be looping without
3330 * reclaiming anything.
3331 */
3332 if (!nr_reclaimed &&
3333 (next_mz == NULL ||
3334 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3335 break;
3336 } while (!nr_reclaimed);
3337 if (next_mz)
3338 css_put(&next_mz->memcg->css);
3339 return nr_reclaimed;
3340 }
3341
3342 /*
3343 * Test whether @memcg has children, dead or alive. Note that this
3344 * function doesn't care whether @memcg has use_hierarchy enabled and
3345 * returns %true if there are child csses according to the cgroup
3346 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3347 */
3348 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3349 {
3350 bool ret;
3351
3352 /*
3353 * The lock does not prevent addition or deletion of children, but
3354 * it prevents a new child from being initialized based on this
3355 * parent in css_online(), so it's enough to decide whether
3356 * hierarchically inherited attributes can still be changed or not.
3357 */
3358 lockdep_assert_held(&memcg_create_mutex);
3359
3360 rcu_read_lock();
3361 ret = css_next_child(NULL, &memcg->css);
3362 rcu_read_unlock();
3363 return ret;
3364 }
3365
3366 /*
3367 * Reclaims as many pages from the given memcg as possible and moves
3368 * the rest to the parent.
3369 *
3370 * Caller is responsible for holding css reference for memcg.
3371 */
3372 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3373 {
3374 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3375
3376 /* we call try-to-free pages for make this cgroup empty */
3377 lru_add_drain_all();
3378 /* try to free all pages in this cgroup */
3379 while (nr_retries && page_counter_read(&memcg->memory)) {
3380 int progress;
3381
3382 if (signal_pending(current))
3383 return -EINTR;
3384
3385 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3386 GFP_KERNEL, true);
3387 if (!progress) {
3388 nr_retries--;
3389 /* maybe some writeback is necessary */
3390 congestion_wait(BLK_RW_ASYNC, HZ/10);
3391 }
3392
3393 }
3394
3395 return 0;
3396 }
3397
3398 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3399 char *buf, size_t nbytes,
3400 loff_t off)
3401 {
3402 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3403
3404 if (mem_cgroup_is_root(memcg))
3405 return -EINVAL;
3406 return mem_cgroup_force_empty(memcg) ?: nbytes;
3407 }
3408
3409 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3410 struct cftype *cft)
3411 {
3412 return mem_cgroup_from_css(css)->use_hierarchy;
3413 }
3414
3415 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3416 struct cftype *cft, u64 val)
3417 {
3418 int retval = 0;
3419 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3420 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3421
3422 mutex_lock(&memcg_create_mutex);
3423
3424 if (memcg->use_hierarchy == val)
3425 goto out;
3426
3427 /*
3428 * If parent's use_hierarchy is set, we can't make any modifications
3429 * in the child subtrees. If it is unset, then the change can
3430 * occur, provided the current cgroup has no children.
3431 *
3432 * For the root cgroup, parent_mem is NULL, we allow value to be
3433 * set if there are no children.
3434 */
3435 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3436 (val == 1 || val == 0)) {
3437 if (!memcg_has_children(memcg))
3438 memcg->use_hierarchy = val;
3439 else
3440 retval = -EBUSY;
3441 } else
3442 retval = -EINVAL;
3443
3444 out:
3445 mutex_unlock(&memcg_create_mutex);
3446
3447 return retval;
3448 }
3449
3450 static unsigned long tree_stat(struct mem_cgroup *memcg,
3451 enum mem_cgroup_stat_index idx)
3452 {
3453 struct mem_cgroup *iter;
3454 long val = 0;
3455
3456 /* Per-cpu values can be negative, use a signed accumulator */
3457 for_each_mem_cgroup_tree(iter, memcg)
3458 val += mem_cgroup_read_stat(iter, idx);
3459
3460 if (val < 0) /* race ? */
3461 val = 0;
3462 return val;
3463 }
3464
3465 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3466 {
3467 u64 val;
3468
3469 if (mem_cgroup_is_root(memcg)) {
3470 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3471 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3472 if (swap)
3473 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3474 } else {
3475 if (!swap)
3476 val = page_counter_read(&memcg->memory);
3477 else
3478 val = page_counter_read(&memcg->memsw);
3479 }
3480 return val << PAGE_SHIFT;
3481 }
3482
3483 enum {
3484 RES_USAGE,
3485 RES_LIMIT,
3486 RES_MAX_USAGE,
3487 RES_FAILCNT,
3488 RES_SOFT_LIMIT,
3489 };
3490
3491 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3492 struct cftype *cft)
3493 {
3494 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3495 struct page_counter *counter;
3496
3497 switch (MEMFILE_TYPE(cft->private)) {
3498 case _MEM:
3499 counter = &memcg->memory;
3500 break;
3501 case _MEMSWAP:
3502 counter = &memcg->memsw;
3503 break;
3504 case _KMEM:
3505 counter = &memcg->kmem;
3506 break;
3507 default:
3508 BUG();
3509 }
3510
3511 switch (MEMFILE_ATTR(cft->private)) {
3512 case RES_USAGE:
3513 if (counter == &memcg->memory)
3514 return mem_cgroup_usage(memcg, false);
3515 if (counter == &memcg->memsw)
3516 return mem_cgroup_usage(memcg, true);
3517 return (u64)page_counter_read(counter) * PAGE_SIZE;
3518 case RES_LIMIT:
3519 return (u64)counter->limit * PAGE_SIZE;
3520 case RES_MAX_USAGE:
3521 return (u64)counter->watermark * PAGE_SIZE;
3522 case RES_FAILCNT:
3523 return counter->failcnt;
3524 case RES_SOFT_LIMIT:
3525 return (u64)memcg->soft_limit * PAGE_SIZE;
3526 default:
3527 BUG();
3528 }
3529 }
3530
3531 #ifdef CONFIG_MEMCG_KMEM
3532 static int memcg_activate_kmem(struct mem_cgroup *memcg,
3533 unsigned long nr_pages)
3534 {
3535 int err = 0;
3536 int memcg_id;
3537
3538 if (memcg_kmem_is_active(memcg))
3539 return 0;
3540
3541 /*
3542 * We are going to allocate memory for data shared by all memory
3543 * cgroups so let's stop accounting here.
3544 */
3545 memcg_stop_kmem_account();
3546
3547 /*
3548 * For simplicity, we won't allow this to be disabled. It also can't
3549 * be changed if the cgroup has children already, or if tasks had
3550 * already joined.
3551 *
3552 * If tasks join before we set the limit, a person looking at
3553 * kmem.usage_in_bytes will have no way to determine when it took
3554 * place, which makes the value quite meaningless.
3555 *
3556 * After it first became limited, changes in the value of the limit are
3557 * of course permitted.
3558 */
3559 mutex_lock(&memcg_create_mutex);
3560 if (cgroup_has_tasks(memcg->css.cgroup) ||
3561 (memcg->use_hierarchy && memcg_has_children(memcg)))
3562 err = -EBUSY;
3563 mutex_unlock(&memcg_create_mutex);
3564 if (err)
3565 goto out;
3566
3567 memcg_id = memcg_alloc_cache_id();
3568 if (memcg_id < 0) {
3569 err = memcg_id;
3570 goto out;
3571 }
3572
3573 memcg->kmemcg_id = memcg_id;
3574 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3575
3576 /*
3577 * We couldn't have accounted to this cgroup, because it hasn't got the
3578 * active bit set yet, so this should succeed.
3579 */
3580 err = page_counter_limit(&memcg->kmem, nr_pages);
3581 VM_BUG_ON(err);
3582
3583 static_key_slow_inc(&memcg_kmem_enabled_key);
3584 /*
3585 * Setting the active bit after enabling static branching will
3586 * guarantee no one starts accounting before all call sites are
3587 * patched.
3588 */
3589 memcg_kmem_set_active(memcg);
3590 out:
3591 memcg_resume_kmem_account();
3592 return err;
3593 }
3594
3595 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3596 unsigned long limit)
3597 {
3598 int ret;
3599
3600 mutex_lock(&memcg_limit_mutex);
3601 if (!memcg_kmem_is_active(memcg))
3602 ret = memcg_activate_kmem(memcg, limit);
3603 else
3604 ret = page_counter_limit(&memcg->kmem, limit);
3605 mutex_unlock(&memcg_limit_mutex);
3606 return ret;
3607 }
3608
3609 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3610 {
3611 int ret = 0;
3612 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3613
3614 if (!parent)
3615 return 0;
3616
3617 mutex_lock(&memcg_limit_mutex);
3618 /*
3619 * If the parent cgroup is not kmem-active now, it cannot be activated
3620 * after this point, because it has at least one child already.
3621 */
3622 if (memcg_kmem_is_active(parent))
3623 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3624 mutex_unlock(&memcg_limit_mutex);
3625 return ret;
3626 }
3627 #else
3628 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3629 unsigned long limit)
3630 {
3631 return -EINVAL;
3632 }
3633 #endif /* CONFIG_MEMCG_KMEM */
3634
3635 /*
3636 * The user of this function is...
3637 * RES_LIMIT.
3638 */
3639 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3640 char *buf, size_t nbytes, loff_t off)
3641 {
3642 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3643 unsigned long nr_pages;
3644 int ret;
3645
3646 buf = strstrip(buf);
3647 ret = page_counter_memparse(buf, &nr_pages);
3648 if (ret)
3649 return ret;
3650
3651 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3652 case RES_LIMIT:
3653 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3654 ret = -EINVAL;
3655 break;
3656 }
3657 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3658 case _MEM:
3659 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3660 break;
3661 case _MEMSWAP:
3662 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3663 break;
3664 case _KMEM:
3665 ret = memcg_update_kmem_limit(memcg, nr_pages);
3666 break;
3667 }
3668 break;
3669 case RES_SOFT_LIMIT:
3670 memcg->soft_limit = nr_pages;
3671 ret = 0;
3672 break;
3673 }
3674 return ret ?: nbytes;
3675 }
3676
3677 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3678 size_t nbytes, loff_t off)
3679 {
3680 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3681 struct page_counter *counter;
3682
3683 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3684 case _MEM:
3685 counter = &memcg->memory;
3686 break;
3687 case _MEMSWAP:
3688 counter = &memcg->memsw;
3689 break;
3690 case _KMEM:
3691 counter = &memcg->kmem;
3692 break;
3693 default:
3694 BUG();
3695 }
3696
3697 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3698 case RES_MAX_USAGE:
3699 page_counter_reset_watermark(counter);
3700 break;
3701 case RES_FAILCNT:
3702 counter->failcnt = 0;
3703 break;
3704 default:
3705 BUG();
3706 }
3707
3708 return nbytes;
3709 }
3710
3711 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3712 struct cftype *cft)
3713 {
3714 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3715 }
3716
3717 #ifdef CONFIG_MMU
3718 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3719 struct cftype *cft, u64 val)
3720 {
3721 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3722
3723 if (val >= (1 << NR_MOVE_TYPE))
3724 return -EINVAL;
3725
3726 /*
3727 * No kind of locking is needed in here, because ->can_attach() will
3728 * check this value once in the beginning of the process, and then carry
3729 * on with stale data. This means that changes to this value will only
3730 * affect task migrations starting after the change.
3731 */
3732 memcg->move_charge_at_immigrate = val;
3733 return 0;
3734 }
3735 #else
3736 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3737 struct cftype *cft, u64 val)
3738 {
3739 return -ENOSYS;
3740 }
3741 #endif
3742
3743 #ifdef CONFIG_NUMA
3744 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3745 {
3746 struct numa_stat {
3747 const char *name;
3748 unsigned int lru_mask;
3749 };
3750
3751 static const struct numa_stat stats[] = {
3752 { "total", LRU_ALL },
3753 { "file", LRU_ALL_FILE },
3754 { "anon", LRU_ALL_ANON },
3755 { "unevictable", BIT(LRU_UNEVICTABLE) },
3756 };
3757 const struct numa_stat *stat;
3758 int nid;
3759 unsigned long nr;
3760 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3761
3762 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3763 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3764 seq_printf(m, "%s=%lu", stat->name, nr);
3765 for_each_node_state(nid, N_MEMORY) {
3766 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3767 stat->lru_mask);
3768 seq_printf(m, " N%d=%lu", nid, nr);
3769 }
3770 seq_putc(m, '\n');
3771 }
3772
3773 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3774 struct mem_cgroup *iter;
3775
3776 nr = 0;
3777 for_each_mem_cgroup_tree(iter, memcg)
3778 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3779 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3780 for_each_node_state(nid, N_MEMORY) {
3781 nr = 0;
3782 for_each_mem_cgroup_tree(iter, memcg)
3783 nr += mem_cgroup_node_nr_lru_pages(
3784 iter, nid, stat->lru_mask);
3785 seq_printf(m, " N%d=%lu", nid, nr);
3786 }
3787 seq_putc(m, '\n');
3788 }
3789
3790 return 0;
3791 }
3792 #endif /* CONFIG_NUMA */
3793
3794 static inline void mem_cgroup_lru_names_not_uptodate(void)
3795 {
3796 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3797 }
3798
3799 static int memcg_stat_show(struct seq_file *m, void *v)
3800 {
3801 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3802 unsigned long memory, memsw;
3803 struct mem_cgroup *mi;
3804 unsigned int i;
3805
3806 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3807 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3808 continue;
3809 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3810 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3811 }
3812
3813 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3814 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3815 mem_cgroup_read_events(memcg, i));
3816
3817 for (i = 0; i < NR_LRU_LISTS; i++)
3818 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3819 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3820
3821 /* Hierarchical information */
3822 memory = memsw = PAGE_COUNTER_MAX;
3823 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3824 memory = min(memory, mi->memory.limit);
3825 memsw = min(memsw, mi->memsw.limit);
3826 }
3827 seq_printf(m, "hierarchical_memory_limit %llu\n",
3828 (u64)memory * PAGE_SIZE);
3829 if (do_swap_account)
3830 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3831 (u64)memsw * PAGE_SIZE);
3832
3833 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3834 long long val = 0;
3835
3836 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3837 continue;
3838 for_each_mem_cgroup_tree(mi, memcg)
3839 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3840 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3841 }
3842
3843 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3844 unsigned long long val = 0;
3845
3846 for_each_mem_cgroup_tree(mi, memcg)
3847 val += mem_cgroup_read_events(mi, i);
3848 seq_printf(m, "total_%s %llu\n",
3849 mem_cgroup_events_names[i], val);
3850 }
3851
3852 for (i = 0; i < NR_LRU_LISTS; i++) {
3853 unsigned long long val = 0;
3854
3855 for_each_mem_cgroup_tree(mi, memcg)
3856 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3857 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3858 }
3859
3860 #ifdef CONFIG_DEBUG_VM
3861 {
3862 int nid, zid;
3863 struct mem_cgroup_per_zone *mz;
3864 struct zone_reclaim_stat *rstat;
3865 unsigned long recent_rotated[2] = {0, 0};
3866 unsigned long recent_scanned[2] = {0, 0};
3867
3868 for_each_online_node(nid)
3869 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3870 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3871 rstat = &mz->lruvec.reclaim_stat;
3872
3873 recent_rotated[0] += rstat->recent_rotated[0];
3874 recent_rotated[1] += rstat->recent_rotated[1];
3875 recent_scanned[0] += rstat->recent_scanned[0];
3876 recent_scanned[1] += rstat->recent_scanned[1];
3877 }
3878 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3879 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3880 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3881 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3882 }
3883 #endif
3884
3885 return 0;
3886 }
3887
3888 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3889 struct cftype *cft)
3890 {
3891 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3892
3893 return mem_cgroup_swappiness(memcg);
3894 }
3895
3896 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3897 struct cftype *cft, u64 val)
3898 {
3899 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3900
3901 if (val > 100)
3902 return -EINVAL;
3903
3904 if (css->parent)
3905 memcg->swappiness = val;
3906 else
3907 vm_swappiness = val;
3908
3909 return 0;
3910 }
3911
3912 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3913 {
3914 struct mem_cgroup_threshold_ary *t;
3915 unsigned long usage;
3916 int i;
3917
3918 rcu_read_lock();
3919 if (!swap)
3920 t = rcu_dereference(memcg->thresholds.primary);
3921 else
3922 t = rcu_dereference(memcg->memsw_thresholds.primary);
3923
3924 if (!t)
3925 goto unlock;
3926
3927 usage = mem_cgroup_usage(memcg, swap);
3928
3929 /*
3930 * current_threshold points to threshold just below or equal to usage.
3931 * If it's not true, a threshold was crossed after last
3932 * call of __mem_cgroup_threshold().
3933 */
3934 i = t->current_threshold;
3935
3936 /*
3937 * Iterate backward over array of thresholds starting from
3938 * current_threshold and check if a threshold is crossed.
3939 * If none of thresholds below usage is crossed, we read
3940 * only one element of the array here.
3941 */
3942 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3943 eventfd_signal(t->entries[i].eventfd, 1);
3944
3945 /* i = current_threshold + 1 */
3946 i++;
3947
3948 /*
3949 * Iterate forward over array of thresholds starting from
3950 * current_threshold+1 and check if a threshold is crossed.
3951 * If none of thresholds above usage is crossed, we read
3952 * only one element of the array here.
3953 */
3954 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3955 eventfd_signal(t->entries[i].eventfd, 1);
3956
3957 /* Update current_threshold */
3958 t->current_threshold = i - 1;
3959 unlock:
3960 rcu_read_unlock();
3961 }
3962
3963 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3964 {
3965 while (memcg) {
3966 __mem_cgroup_threshold(memcg, false);
3967 if (do_swap_account)
3968 __mem_cgroup_threshold(memcg, true);
3969
3970 memcg = parent_mem_cgroup(memcg);
3971 }
3972 }
3973
3974 static int compare_thresholds(const void *a, const void *b)
3975 {
3976 const struct mem_cgroup_threshold *_a = a;
3977 const struct mem_cgroup_threshold *_b = b;
3978
3979 if (_a->threshold > _b->threshold)
3980 return 1;
3981
3982 if (_a->threshold < _b->threshold)
3983 return -1;
3984
3985 return 0;
3986 }
3987
3988 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3989 {
3990 struct mem_cgroup_eventfd_list *ev;
3991
3992 spin_lock(&memcg_oom_lock);
3993
3994 list_for_each_entry(ev, &memcg->oom_notify, list)
3995 eventfd_signal(ev->eventfd, 1);
3996
3997 spin_unlock(&memcg_oom_lock);
3998 return 0;
3999 }
4000
4001 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4002 {
4003 struct mem_cgroup *iter;
4004
4005 for_each_mem_cgroup_tree(iter, memcg)
4006 mem_cgroup_oom_notify_cb(iter);
4007 }
4008
4009 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4010 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4011 {
4012 struct mem_cgroup_thresholds *thresholds;
4013 struct mem_cgroup_threshold_ary *new;
4014 unsigned long threshold;
4015 unsigned long usage;
4016 int i, size, ret;
4017
4018 ret = page_counter_memparse(args, &threshold);
4019 if (ret)
4020 return ret;
4021
4022 mutex_lock(&memcg->thresholds_lock);
4023
4024 if (type == _MEM) {
4025 thresholds = &memcg->thresholds;
4026 usage = mem_cgroup_usage(memcg, false);
4027 } else if (type == _MEMSWAP) {
4028 thresholds = &memcg->memsw_thresholds;
4029 usage = mem_cgroup_usage(memcg, true);
4030 } else
4031 BUG();
4032
4033 /* Check if a threshold crossed before adding a new one */
4034 if (thresholds->primary)
4035 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4036
4037 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4038
4039 /* Allocate memory for new array of thresholds */
4040 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4041 GFP_KERNEL);
4042 if (!new) {
4043 ret = -ENOMEM;
4044 goto unlock;
4045 }
4046 new->size = size;
4047
4048 /* Copy thresholds (if any) to new array */
4049 if (thresholds->primary) {
4050 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4051 sizeof(struct mem_cgroup_threshold));
4052 }
4053
4054 /* Add new threshold */
4055 new->entries[size - 1].eventfd = eventfd;
4056 new->entries[size - 1].threshold = threshold;
4057
4058 /* Sort thresholds. Registering of new threshold isn't time-critical */
4059 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4060 compare_thresholds, NULL);
4061
4062 /* Find current threshold */
4063 new->current_threshold = -1;
4064 for (i = 0; i < size; i++) {
4065 if (new->entries[i].threshold <= usage) {
4066 /*
4067 * new->current_threshold will not be used until
4068 * rcu_assign_pointer(), so it's safe to increment
4069 * it here.
4070 */
4071 ++new->current_threshold;
4072 } else
4073 break;
4074 }
4075
4076 /* Free old spare buffer and save old primary buffer as spare */
4077 kfree(thresholds->spare);
4078 thresholds->spare = thresholds->primary;
4079
4080 rcu_assign_pointer(thresholds->primary, new);
4081
4082 /* To be sure that nobody uses thresholds */
4083 synchronize_rcu();
4084
4085 unlock:
4086 mutex_unlock(&memcg->thresholds_lock);
4087
4088 return ret;
4089 }
4090
4091 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4092 struct eventfd_ctx *eventfd, const char *args)
4093 {
4094 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4095 }
4096
4097 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4098 struct eventfd_ctx *eventfd, const char *args)
4099 {
4100 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4101 }
4102
4103 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4104 struct eventfd_ctx *eventfd, enum res_type type)
4105 {
4106 struct mem_cgroup_thresholds *thresholds;
4107 struct mem_cgroup_threshold_ary *new;
4108 unsigned long usage;
4109 int i, j, size;
4110
4111 mutex_lock(&memcg->thresholds_lock);
4112
4113 if (type == _MEM) {
4114 thresholds = &memcg->thresholds;
4115 usage = mem_cgroup_usage(memcg, false);
4116 } else if (type == _MEMSWAP) {
4117 thresholds = &memcg->memsw_thresholds;
4118 usage = mem_cgroup_usage(memcg, true);
4119 } else
4120 BUG();
4121
4122 if (!thresholds->primary)
4123 goto unlock;
4124
4125 /* Check if a threshold crossed before removing */
4126 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4127
4128 /* Calculate new number of threshold */
4129 size = 0;
4130 for (i = 0; i < thresholds->primary->size; i++) {
4131 if (thresholds->primary->entries[i].eventfd != eventfd)
4132 size++;
4133 }
4134
4135 new = thresholds->spare;
4136
4137 /* Set thresholds array to NULL if we don't have thresholds */
4138 if (!size) {
4139 kfree(new);
4140 new = NULL;
4141 goto swap_buffers;
4142 }
4143
4144 new->size = size;
4145
4146 /* Copy thresholds and find current threshold */
4147 new->current_threshold = -1;
4148 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4149 if (thresholds->primary->entries[i].eventfd == eventfd)
4150 continue;
4151
4152 new->entries[j] = thresholds->primary->entries[i];
4153 if (new->entries[j].threshold <= usage) {
4154 /*
4155 * new->current_threshold will not be used
4156 * until rcu_assign_pointer(), so it's safe to increment
4157 * it here.
4158 */
4159 ++new->current_threshold;
4160 }
4161 j++;
4162 }
4163
4164 swap_buffers:
4165 /* Swap primary and spare array */
4166 thresholds->spare = thresholds->primary;
4167 /* If all events are unregistered, free the spare array */
4168 if (!new) {
4169 kfree(thresholds->spare);
4170 thresholds->spare = NULL;
4171 }
4172
4173 rcu_assign_pointer(thresholds->primary, new);
4174
4175 /* To be sure that nobody uses thresholds */
4176 synchronize_rcu();
4177 unlock:
4178 mutex_unlock(&memcg->thresholds_lock);
4179 }
4180
4181 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4182 struct eventfd_ctx *eventfd)
4183 {
4184 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4185 }
4186
4187 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4188 struct eventfd_ctx *eventfd)
4189 {
4190 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4191 }
4192
4193 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4194 struct eventfd_ctx *eventfd, const char *args)
4195 {
4196 struct mem_cgroup_eventfd_list *event;
4197
4198 event = kmalloc(sizeof(*event), GFP_KERNEL);
4199 if (!event)
4200 return -ENOMEM;
4201
4202 spin_lock(&memcg_oom_lock);
4203
4204 event->eventfd = eventfd;
4205 list_add(&event->list, &memcg->oom_notify);
4206
4207 /* already in OOM ? */
4208 if (atomic_read(&memcg->under_oom))
4209 eventfd_signal(eventfd, 1);
4210 spin_unlock(&memcg_oom_lock);
4211
4212 return 0;
4213 }
4214
4215 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4216 struct eventfd_ctx *eventfd)
4217 {
4218 struct mem_cgroup_eventfd_list *ev, *tmp;
4219
4220 spin_lock(&memcg_oom_lock);
4221
4222 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4223 if (ev->eventfd == eventfd) {
4224 list_del(&ev->list);
4225 kfree(ev);
4226 }
4227 }
4228
4229 spin_unlock(&memcg_oom_lock);
4230 }
4231
4232 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4233 {
4234 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4235
4236 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4237 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
4238 return 0;
4239 }
4240
4241 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4242 struct cftype *cft, u64 val)
4243 {
4244 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4245
4246 /* cannot set to root cgroup and only 0 and 1 are allowed */
4247 if (!css->parent || !((val == 0) || (val == 1)))
4248 return -EINVAL;
4249
4250 memcg->oom_kill_disable = val;
4251 if (!val)
4252 memcg_oom_recover(memcg);
4253
4254 return 0;
4255 }
4256
4257 #ifdef CONFIG_MEMCG_KMEM
4258 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4259 {
4260 int ret;
4261
4262 memcg->kmemcg_id = -1;
4263 ret = memcg_propagate_kmem(memcg);
4264 if (ret)
4265 return ret;
4266
4267 return mem_cgroup_sockets_init(memcg, ss);
4268 }
4269
4270 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4271 {
4272 mem_cgroup_sockets_destroy(memcg);
4273 }
4274 #else
4275 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4276 {
4277 return 0;
4278 }
4279
4280 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4281 {
4282 }
4283 #endif
4284
4285 /*
4286 * DO NOT USE IN NEW FILES.
4287 *
4288 * "cgroup.event_control" implementation.
4289 *
4290 * This is way over-engineered. It tries to support fully configurable
4291 * events for each user. Such level of flexibility is completely
4292 * unnecessary especially in the light of the planned unified hierarchy.
4293 *
4294 * Please deprecate this and replace with something simpler if at all
4295 * possible.
4296 */
4297
4298 /*
4299 * Unregister event and free resources.
4300 *
4301 * Gets called from workqueue.
4302 */
4303 static void memcg_event_remove(struct work_struct *work)
4304 {
4305 struct mem_cgroup_event *event =
4306 container_of(work, struct mem_cgroup_event, remove);
4307 struct mem_cgroup *memcg = event->memcg;
4308
4309 remove_wait_queue(event->wqh, &event->wait);
4310
4311 event->unregister_event(memcg, event->eventfd);
4312
4313 /* Notify userspace the event is going away. */
4314 eventfd_signal(event->eventfd, 1);
4315
4316 eventfd_ctx_put(event->eventfd);
4317 kfree(event);
4318 css_put(&memcg->css);
4319 }
4320
4321 /*
4322 * Gets called on POLLHUP on eventfd when user closes it.
4323 *
4324 * Called with wqh->lock held and interrupts disabled.
4325 */
4326 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4327 int sync, void *key)
4328 {
4329 struct mem_cgroup_event *event =
4330 container_of(wait, struct mem_cgroup_event, wait);
4331 struct mem_cgroup *memcg = event->memcg;
4332 unsigned long flags = (unsigned long)key;
4333
4334 if (flags & POLLHUP) {
4335 /*
4336 * If the event has been detached at cgroup removal, we
4337 * can simply return knowing the other side will cleanup
4338 * for us.
4339 *
4340 * We can't race against event freeing since the other
4341 * side will require wqh->lock via remove_wait_queue(),
4342 * which we hold.
4343 */
4344 spin_lock(&memcg->event_list_lock);
4345 if (!list_empty(&event->list)) {
4346 list_del_init(&event->list);
4347 /*
4348 * We are in atomic context, but cgroup_event_remove()
4349 * may sleep, so we have to call it in workqueue.
4350 */
4351 schedule_work(&event->remove);
4352 }
4353 spin_unlock(&memcg->event_list_lock);
4354 }
4355
4356 return 0;
4357 }
4358
4359 static void memcg_event_ptable_queue_proc(struct file *file,
4360 wait_queue_head_t *wqh, poll_table *pt)
4361 {
4362 struct mem_cgroup_event *event =
4363 container_of(pt, struct mem_cgroup_event, pt);
4364
4365 event->wqh = wqh;
4366 add_wait_queue(wqh, &event->wait);
4367 }
4368
4369 /*
4370 * DO NOT USE IN NEW FILES.
4371 *
4372 * Parse input and register new cgroup event handler.
4373 *
4374 * Input must be in format '<event_fd> <control_fd> <args>'.
4375 * Interpretation of args is defined by control file implementation.
4376 */
4377 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4378 char *buf, size_t nbytes, loff_t off)
4379 {
4380 struct cgroup_subsys_state *css = of_css(of);
4381 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4382 struct mem_cgroup_event *event;
4383 struct cgroup_subsys_state *cfile_css;
4384 unsigned int efd, cfd;
4385 struct fd efile;
4386 struct fd cfile;
4387 const char *name;
4388 char *endp;
4389 int ret;
4390
4391 buf = strstrip(buf);
4392
4393 efd = simple_strtoul(buf, &endp, 10);
4394 if (*endp != ' ')
4395 return -EINVAL;
4396 buf = endp + 1;
4397
4398 cfd = simple_strtoul(buf, &endp, 10);
4399 if ((*endp != ' ') && (*endp != '\0'))
4400 return -EINVAL;
4401 buf = endp + 1;
4402
4403 event = kzalloc(sizeof(*event), GFP_KERNEL);
4404 if (!event)
4405 return -ENOMEM;
4406
4407 event->memcg = memcg;
4408 INIT_LIST_HEAD(&event->list);
4409 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4410 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4411 INIT_WORK(&event->remove, memcg_event_remove);
4412
4413 efile = fdget(efd);
4414 if (!efile.file) {
4415 ret = -EBADF;
4416 goto out_kfree;
4417 }
4418
4419 event->eventfd = eventfd_ctx_fileget(efile.file);
4420 if (IS_ERR(event->eventfd)) {
4421 ret = PTR_ERR(event->eventfd);
4422 goto out_put_efile;
4423 }
4424
4425 cfile = fdget(cfd);
4426 if (!cfile.file) {
4427 ret = -EBADF;
4428 goto out_put_eventfd;
4429 }
4430
4431 /* the process need read permission on control file */
4432 /* AV: shouldn't we check that it's been opened for read instead? */
4433 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4434 if (ret < 0)
4435 goto out_put_cfile;
4436
4437 /*
4438 * Determine the event callbacks and set them in @event. This used
4439 * to be done via struct cftype but cgroup core no longer knows
4440 * about these events. The following is crude but the whole thing
4441 * is for compatibility anyway.
4442 *
4443 * DO NOT ADD NEW FILES.
4444 */
4445 name = cfile.file->f_path.dentry->d_name.name;
4446
4447 if (!strcmp(name, "memory.usage_in_bytes")) {
4448 event->register_event = mem_cgroup_usage_register_event;
4449 event->unregister_event = mem_cgroup_usage_unregister_event;
4450 } else if (!strcmp(name, "memory.oom_control")) {
4451 event->register_event = mem_cgroup_oom_register_event;
4452 event->unregister_event = mem_cgroup_oom_unregister_event;
4453 } else if (!strcmp(name, "memory.pressure_level")) {
4454 event->register_event = vmpressure_register_event;
4455 event->unregister_event = vmpressure_unregister_event;
4456 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4457 event->register_event = memsw_cgroup_usage_register_event;
4458 event->unregister_event = memsw_cgroup_usage_unregister_event;
4459 } else {
4460 ret = -EINVAL;
4461 goto out_put_cfile;
4462 }
4463
4464 /*
4465 * Verify @cfile should belong to @css. Also, remaining events are
4466 * automatically removed on cgroup destruction but the removal is
4467 * asynchronous, so take an extra ref on @css.
4468 */
4469 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4470 &memory_cgrp_subsys);
4471 ret = -EINVAL;
4472 if (IS_ERR(cfile_css))
4473 goto out_put_cfile;
4474 if (cfile_css != css) {
4475 css_put(cfile_css);
4476 goto out_put_cfile;
4477 }
4478
4479 ret = event->register_event(memcg, event->eventfd, buf);
4480 if (ret)
4481 goto out_put_css;
4482
4483 efile.file->f_op->poll(efile.file, &event->pt);
4484
4485 spin_lock(&memcg->event_list_lock);
4486 list_add(&event->list, &memcg->event_list);
4487 spin_unlock(&memcg->event_list_lock);
4488
4489 fdput(cfile);
4490 fdput(efile);
4491
4492 return nbytes;
4493
4494 out_put_css:
4495 css_put(css);
4496 out_put_cfile:
4497 fdput(cfile);
4498 out_put_eventfd:
4499 eventfd_ctx_put(event->eventfd);
4500 out_put_efile:
4501 fdput(efile);
4502 out_kfree:
4503 kfree(event);
4504
4505 return ret;
4506 }
4507
4508 static struct cftype mem_cgroup_files[] = {
4509 {
4510 .name = "usage_in_bytes",
4511 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4512 .read_u64 = mem_cgroup_read_u64,
4513 },
4514 {
4515 .name = "max_usage_in_bytes",
4516 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4517 .write = mem_cgroup_reset,
4518 .read_u64 = mem_cgroup_read_u64,
4519 },
4520 {
4521 .name = "limit_in_bytes",
4522 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4523 .write = mem_cgroup_write,
4524 .read_u64 = mem_cgroup_read_u64,
4525 },
4526 {
4527 .name = "soft_limit_in_bytes",
4528 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4529 .write = mem_cgroup_write,
4530 .read_u64 = mem_cgroup_read_u64,
4531 },
4532 {
4533 .name = "failcnt",
4534 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4535 .write = mem_cgroup_reset,
4536 .read_u64 = mem_cgroup_read_u64,
4537 },
4538 {
4539 .name = "stat",
4540 .seq_show = memcg_stat_show,
4541 },
4542 {
4543 .name = "force_empty",
4544 .write = mem_cgroup_force_empty_write,
4545 },
4546 {
4547 .name = "use_hierarchy",
4548 .write_u64 = mem_cgroup_hierarchy_write,
4549 .read_u64 = mem_cgroup_hierarchy_read,
4550 },
4551 {
4552 .name = "cgroup.event_control", /* XXX: for compat */
4553 .write = memcg_write_event_control,
4554 .flags = CFTYPE_NO_PREFIX,
4555 .mode = S_IWUGO,
4556 },
4557 {
4558 .name = "swappiness",
4559 .read_u64 = mem_cgroup_swappiness_read,
4560 .write_u64 = mem_cgroup_swappiness_write,
4561 },
4562 {
4563 .name = "move_charge_at_immigrate",
4564 .read_u64 = mem_cgroup_move_charge_read,
4565 .write_u64 = mem_cgroup_move_charge_write,
4566 },
4567 {
4568 .name = "oom_control",
4569 .seq_show = mem_cgroup_oom_control_read,
4570 .write_u64 = mem_cgroup_oom_control_write,
4571 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4572 },
4573 {
4574 .name = "pressure_level",
4575 },
4576 #ifdef CONFIG_NUMA
4577 {
4578 .name = "numa_stat",
4579 .seq_show = memcg_numa_stat_show,
4580 },
4581 #endif
4582 #ifdef CONFIG_MEMCG_KMEM
4583 {
4584 .name = "kmem.limit_in_bytes",
4585 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4586 .write = mem_cgroup_write,
4587 .read_u64 = mem_cgroup_read_u64,
4588 },
4589 {
4590 .name = "kmem.usage_in_bytes",
4591 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4592 .read_u64 = mem_cgroup_read_u64,
4593 },
4594 {
4595 .name = "kmem.failcnt",
4596 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4597 .write = mem_cgroup_reset,
4598 .read_u64 = mem_cgroup_read_u64,
4599 },
4600 {
4601 .name = "kmem.max_usage_in_bytes",
4602 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4603 .write = mem_cgroup_reset,
4604 .read_u64 = mem_cgroup_read_u64,
4605 },
4606 #ifdef CONFIG_SLABINFO
4607 {
4608 .name = "kmem.slabinfo",
4609 .seq_start = slab_start,
4610 .seq_next = slab_next,
4611 .seq_stop = slab_stop,
4612 .seq_show = memcg_slab_show,
4613 },
4614 #endif
4615 #endif
4616 { }, /* terminate */
4617 };
4618
4619 #ifdef CONFIG_MEMCG_SWAP
4620 static struct cftype memsw_cgroup_files[] = {
4621 {
4622 .name = "memsw.usage_in_bytes",
4623 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4624 .read_u64 = mem_cgroup_read_u64,
4625 },
4626 {
4627 .name = "memsw.max_usage_in_bytes",
4628 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4629 .write = mem_cgroup_reset,
4630 .read_u64 = mem_cgroup_read_u64,
4631 },
4632 {
4633 .name = "memsw.limit_in_bytes",
4634 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4635 .write = mem_cgroup_write,
4636 .read_u64 = mem_cgroup_read_u64,
4637 },
4638 {
4639 .name = "memsw.failcnt",
4640 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4641 .write = mem_cgroup_reset,
4642 .read_u64 = mem_cgroup_read_u64,
4643 },
4644 { }, /* terminate */
4645 };
4646 #endif
4647 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4648 {
4649 struct mem_cgroup_per_node *pn;
4650 struct mem_cgroup_per_zone *mz;
4651 int zone, tmp = node;
4652 /*
4653 * This routine is called against possible nodes.
4654 * But it's BUG to call kmalloc() against offline node.
4655 *
4656 * TODO: this routine can waste much memory for nodes which will
4657 * never be onlined. It's better to use memory hotplug callback
4658 * function.
4659 */
4660 if (!node_state(node, N_NORMAL_MEMORY))
4661 tmp = -1;
4662 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4663 if (!pn)
4664 return 1;
4665
4666 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4667 mz = &pn->zoneinfo[zone];
4668 lruvec_init(&mz->lruvec);
4669 mz->usage_in_excess = 0;
4670 mz->on_tree = false;
4671 mz->memcg = memcg;
4672 }
4673 memcg->nodeinfo[node] = pn;
4674 return 0;
4675 }
4676
4677 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4678 {
4679 kfree(memcg->nodeinfo[node]);
4680 }
4681
4682 static struct mem_cgroup *mem_cgroup_alloc(void)
4683 {
4684 struct mem_cgroup *memcg;
4685 size_t size;
4686
4687 size = sizeof(struct mem_cgroup);
4688 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4689
4690 memcg = kzalloc(size, GFP_KERNEL);
4691 if (!memcg)
4692 return NULL;
4693
4694 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4695 if (!memcg->stat)
4696 goto out_free;
4697 spin_lock_init(&memcg->pcp_counter_lock);
4698 return memcg;
4699
4700 out_free:
4701 kfree(memcg);
4702 return NULL;
4703 }
4704
4705 /*
4706 * At destroying mem_cgroup, references from swap_cgroup can remain.
4707 * (scanning all at force_empty is too costly...)
4708 *
4709 * Instead of clearing all references at force_empty, we remember
4710 * the number of reference from swap_cgroup and free mem_cgroup when
4711 * it goes down to 0.
4712 *
4713 * Removal of cgroup itself succeeds regardless of refs from swap.
4714 */
4715
4716 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4717 {
4718 int node;
4719
4720 mem_cgroup_remove_from_trees(memcg);
4721
4722 for_each_node(node)
4723 free_mem_cgroup_per_zone_info(memcg, node);
4724
4725 free_percpu(memcg->stat);
4726
4727 /*
4728 * We need to make sure that (at least for now), the jump label
4729 * destruction code runs outside of the cgroup lock. This is because
4730 * get_online_cpus(), which is called from the static_branch update,
4731 * can't be called inside the cgroup_lock. cpusets are the ones
4732 * enforcing this dependency, so if they ever change, we might as well.
4733 *
4734 * schedule_work() will guarantee this happens. Be careful if you need
4735 * to move this code around, and make sure it is outside
4736 * the cgroup_lock.
4737 */
4738 disarm_static_keys(memcg);
4739 kfree(memcg);
4740 }
4741
4742 /*
4743 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4744 */
4745 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4746 {
4747 if (!memcg->memory.parent)
4748 return NULL;
4749 return mem_cgroup_from_counter(memcg->memory.parent, memory);
4750 }
4751 EXPORT_SYMBOL(parent_mem_cgroup);
4752
4753 static void __init mem_cgroup_soft_limit_tree_init(void)
4754 {
4755 struct mem_cgroup_tree_per_node *rtpn;
4756 struct mem_cgroup_tree_per_zone *rtpz;
4757 int tmp, node, zone;
4758
4759 for_each_node(node) {
4760 tmp = node;
4761 if (!node_state(node, N_NORMAL_MEMORY))
4762 tmp = -1;
4763 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4764 BUG_ON(!rtpn);
4765
4766 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4767
4768 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4769 rtpz = &rtpn->rb_tree_per_zone[zone];
4770 rtpz->rb_root = RB_ROOT;
4771 spin_lock_init(&rtpz->lock);
4772 }
4773 }
4774 }
4775
4776 static struct cgroup_subsys_state * __ref
4777 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4778 {
4779 struct mem_cgroup *memcg;
4780 long error = -ENOMEM;
4781 int node;
4782
4783 memcg = mem_cgroup_alloc();
4784 if (!memcg)
4785 return ERR_PTR(error);
4786
4787 for_each_node(node)
4788 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4789 goto free_out;
4790
4791 /* root ? */
4792 if (parent_css == NULL) {
4793 root_mem_cgroup = memcg;
4794 page_counter_init(&memcg->memory, NULL);
4795 page_counter_init(&memcg->memsw, NULL);
4796 page_counter_init(&memcg->kmem, NULL);
4797 }
4798
4799 memcg->last_scanned_node = MAX_NUMNODES;
4800 INIT_LIST_HEAD(&memcg->oom_notify);
4801 memcg->move_charge_at_immigrate = 0;
4802 mutex_init(&memcg->thresholds_lock);
4803 spin_lock_init(&memcg->move_lock);
4804 vmpressure_init(&memcg->vmpressure);
4805 INIT_LIST_HEAD(&memcg->event_list);
4806 spin_lock_init(&memcg->event_list_lock);
4807
4808 return &memcg->css;
4809
4810 free_out:
4811 __mem_cgroup_free(memcg);
4812 return ERR_PTR(error);
4813 }
4814
4815 static int
4816 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4817 {
4818 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4819 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4820 int ret;
4821
4822 if (css->id > MEM_CGROUP_ID_MAX)
4823 return -ENOSPC;
4824
4825 if (!parent)
4826 return 0;
4827
4828 mutex_lock(&memcg_create_mutex);
4829
4830 memcg->use_hierarchy = parent->use_hierarchy;
4831 memcg->oom_kill_disable = parent->oom_kill_disable;
4832 memcg->swappiness = mem_cgroup_swappiness(parent);
4833
4834 if (parent->use_hierarchy) {
4835 page_counter_init(&memcg->memory, &parent->memory);
4836 page_counter_init(&memcg->memsw, &parent->memsw);
4837 page_counter_init(&memcg->kmem, &parent->kmem);
4838
4839 /*
4840 * No need to take a reference to the parent because cgroup
4841 * core guarantees its existence.
4842 */
4843 } else {
4844 page_counter_init(&memcg->memory, NULL);
4845 page_counter_init(&memcg->memsw, NULL);
4846 page_counter_init(&memcg->kmem, NULL);
4847 /*
4848 * Deeper hierachy with use_hierarchy == false doesn't make
4849 * much sense so let cgroup subsystem know about this
4850 * unfortunate state in our controller.
4851 */
4852 if (parent != root_mem_cgroup)
4853 memory_cgrp_subsys.broken_hierarchy = true;
4854 }
4855 mutex_unlock(&memcg_create_mutex);
4856
4857 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4858 if (ret)
4859 return ret;
4860
4861 /*
4862 * Make sure the memcg is initialized: mem_cgroup_iter()
4863 * orders reading memcg->initialized against its callers
4864 * reading the memcg members.
4865 */
4866 smp_store_release(&memcg->initialized, 1);
4867
4868 return 0;
4869 }
4870
4871 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4872 {
4873 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4874 struct mem_cgroup_event *event, *tmp;
4875
4876 /*
4877 * Unregister events and notify userspace.
4878 * Notify userspace about cgroup removing only after rmdir of cgroup
4879 * directory to avoid race between userspace and kernelspace.
4880 */
4881 spin_lock(&memcg->event_list_lock);
4882 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4883 list_del_init(&event->list);
4884 schedule_work(&event->remove);
4885 }
4886 spin_unlock(&memcg->event_list_lock);
4887
4888 memcg_unregister_all_caches(memcg);
4889 vmpressure_cleanup(&memcg->vmpressure);
4890 }
4891
4892 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4893 {
4894 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4895
4896 memcg_destroy_kmem(memcg);
4897 __mem_cgroup_free(memcg);
4898 }
4899
4900 /**
4901 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4902 * @css: the target css
4903 *
4904 * Reset the states of the mem_cgroup associated with @css. This is
4905 * invoked when the userland requests disabling on the default hierarchy
4906 * but the memcg is pinned through dependency. The memcg should stop
4907 * applying policies and should revert to the vanilla state as it may be
4908 * made visible again.
4909 *
4910 * The current implementation only resets the essential configurations.
4911 * This needs to be expanded to cover all the visible parts.
4912 */
4913 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4914 {
4915 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4916
4917 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4918 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4919 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4920 memcg->soft_limit = 0;
4921 }
4922
4923 #ifdef CONFIG_MMU
4924 /* Handlers for move charge at task migration. */
4925 static int mem_cgroup_do_precharge(unsigned long count)
4926 {
4927 int ret;
4928
4929 /* Try a single bulk charge without reclaim first */
4930 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4931 if (!ret) {
4932 mc.precharge += count;
4933 return ret;
4934 }
4935 if (ret == -EINTR) {
4936 cancel_charge(root_mem_cgroup, count);
4937 return ret;
4938 }
4939
4940 /* Try charges one by one with reclaim */
4941 while (count--) {
4942 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4943 /*
4944 * In case of failure, any residual charges against
4945 * mc.to will be dropped by mem_cgroup_clear_mc()
4946 * later on. However, cancel any charges that are
4947 * bypassed to root right away or they'll be lost.
4948 */
4949 if (ret == -EINTR)
4950 cancel_charge(root_mem_cgroup, 1);
4951 if (ret)
4952 return ret;
4953 mc.precharge++;
4954 cond_resched();
4955 }
4956 return 0;
4957 }
4958
4959 /**
4960 * get_mctgt_type - get target type of moving charge
4961 * @vma: the vma the pte to be checked belongs
4962 * @addr: the address corresponding to the pte to be checked
4963 * @ptent: the pte to be checked
4964 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4965 *
4966 * Returns
4967 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4968 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4969 * move charge. if @target is not NULL, the page is stored in target->page
4970 * with extra refcnt got(Callers should handle it).
4971 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4972 * target for charge migration. if @target is not NULL, the entry is stored
4973 * in target->ent.
4974 *
4975 * Called with pte lock held.
4976 */
4977 union mc_target {
4978 struct page *page;
4979 swp_entry_t ent;
4980 };
4981
4982 enum mc_target_type {
4983 MC_TARGET_NONE = 0,
4984 MC_TARGET_PAGE,
4985 MC_TARGET_SWAP,
4986 };
4987
4988 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4989 unsigned long addr, pte_t ptent)
4990 {
4991 struct page *page = vm_normal_page(vma, addr, ptent);
4992
4993 if (!page || !page_mapped(page))
4994 return NULL;
4995 if (PageAnon(page)) {
4996 /* we don't move shared anon */
4997 if (!move_anon())
4998 return NULL;
4999 } else if (!move_file())
5000 /* we ignore mapcount for file pages */
5001 return NULL;
5002 if (!get_page_unless_zero(page))
5003 return NULL;
5004
5005 return page;
5006 }
5007
5008 #ifdef CONFIG_SWAP
5009 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5010 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5011 {
5012 struct page *page = NULL;
5013 swp_entry_t ent = pte_to_swp_entry(ptent);
5014
5015 if (!move_anon() || non_swap_entry(ent))
5016 return NULL;
5017 /*
5018 * Because lookup_swap_cache() updates some statistics counter,
5019 * we call find_get_page() with swapper_space directly.
5020 */
5021 page = find_get_page(swap_address_space(ent), ent.val);
5022 if (do_swap_account)
5023 entry->val = ent.val;
5024
5025 return page;
5026 }
5027 #else
5028 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5029 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5030 {
5031 return NULL;
5032 }
5033 #endif
5034
5035 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5036 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5037 {
5038 struct page *page = NULL;
5039 struct address_space *mapping;
5040 pgoff_t pgoff;
5041
5042 if (!vma->vm_file) /* anonymous vma */
5043 return NULL;
5044 if (!move_file())
5045 return NULL;
5046
5047 mapping = vma->vm_file->f_mapping;
5048 if (pte_none(ptent))
5049 pgoff = linear_page_index(vma, addr);
5050 else /* pte_file(ptent) is true */
5051 pgoff = pte_to_pgoff(ptent);
5052
5053 /* page is moved even if it's not RSS of this task(page-faulted). */
5054 #ifdef CONFIG_SWAP
5055 /* shmem/tmpfs may report page out on swap: account for that too. */
5056 if (shmem_mapping(mapping)) {
5057 page = find_get_entry(mapping, pgoff);
5058 if (radix_tree_exceptional_entry(page)) {
5059 swp_entry_t swp = radix_to_swp_entry(page);
5060 if (do_swap_account)
5061 *entry = swp;
5062 page = find_get_page(swap_address_space(swp), swp.val);
5063 }
5064 } else
5065 page = find_get_page(mapping, pgoff);
5066 #else
5067 page = find_get_page(mapping, pgoff);
5068 #endif
5069 return page;
5070 }
5071
5072 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5073 unsigned long addr, pte_t ptent, union mc_target *target)
5074 {
5075 struct page *page = NULL;
5076 enum mc_target_type ret = MC_TARGET_NONE;
5077 swp_entry_t ent = { .val = 0 };
5078
5079 if (pte_present(ptent))
5080 page = mc_handle_present_pte(vma, addr, ptent);
5081 else if (is_swap_pte(ptent))
5082 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5083 else if (pte_none(ptent) || pte_file(ptent))
5084 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5085
5086 if (!page && !ent.val)
5087 return ret;
5088 if (page) {
5089 /*
5090 * Do only loose check w/o serialization.
5091 * mem_cgroup_move_account() checks the page is valid or
5092 * not under LRU exclusion.
5093 */
5094 if (page->mem_cgroup == mc.from) {
5095 ret = MC_TARGET_PAGE;
5096 if (target)
5097 target->page = page;
5098 }
5099 if (!ret || !target)
5100 put_page(page);
5101 }
5102 /* There is a swap entry and a page doesn't exist or isn't charged */
5103 if (ent.val && !ret &&
5104 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5105 ret = MC_TARGET_SWAP;
5106 if (target)
5107 target->ent = ent;
5108 }
5109 return ret;
5110 }
5111
5112 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5113 /*
5114 * We don't consider swapping or file mapped pages because THP does not
5115 * support them for now.
5116 * Caller should make sure that pmd_trans_huge(pmd) is true.
5117 */
5118 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5119 unsigned long addr, pmd_t pmd, union mc_target *target)
5120 {
5121 struct page *page = NULL;
5122 enum mc_target_type ret = MC_TARGET_NONE;
5123
5124 page = pmd_page(pmd);
5125 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5126 if (!move_anon())
5127 return ret;
5128 if (page->mem_cgroup == mc.from) {
5129 ret = MC_TARGET_PAGE;
5130 if (target) {
5131 get_page(page);
5132 target->page = page;
5133 }
5134 }
5135 return ret;
5136 }
5137 #else
5138 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5139 unsigned long addr, pmd_t pmd, union mc_target *target)
5140 {
5141 return MC_TARGET_NONE;
5142 }
5143 #endif
5144
5145 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5146 unsigned long addr, unsigned long end,
5147 struct mm_walk *walk)
5148 {
5149 struct vm_area_struct *vma = walk->private;
5150 pte_t *pte;
5151 spinlock_t *ptl;
5152
5153 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5154 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5155 mc.precharge += HPAGE_PMD_NR;
5156 spin_unlock(ptl);
5157 return 0;
5158 }
5159
5160 if (pmd_trans_unstable(pmd))
5161 return 0;
5162 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5163 for (; addr != end; pte++, addr += PAGE_SIZE)
5164 if (get_mctgt_type(vma, addr, *pte, NULL))
5165 mc.precharge++; /* increment precharge temporarily */
5166 pte_unmap_unlock(pte - 1, ptl);
5167 cond_resched();
5168
5169 return 0;
5170 }
5171
5172 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5173 {
5174 unsigned long precharge;
5175 struct vm_area_struct *vma;
5176
5177 down_read(&mm->mmap_sem);
5178 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5179 struct mm_walk mem_cgroup_count_precharge_walk = {
5180 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5181 .mm = mm,
5182 .private = vma,
5183 };
5184 if (is_vm_hugetlb_page(vma))
5185 continue;
5186 walk_page_range(vma->vm_start, vma->vm_end,
5187 &mem_cgroup_count_precharge_walk);
5188 }
5189 up_read(&mm->mmap_sem);
5190
5191 precharge = mc.precharge;
5192 mc.precharge = 0;
5193
5194 return precharge;
5195 }
5196
5197 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5198 {
5199 unsigned long precharge = mem_cgroup_count_precharge(mm);
5200
5201 VM_BUG_ON(mc.moving_task);
5202 mc.moving_task = current;
5203 return mem_cgroup_do_precharge(precharge);
5204 }
5205
5206 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5207 static void __mem_cgroup_clear_mc(void)
5208 {
5209 struct mem_cgroup *from = mc.from;
5210 struct mem_cgroup *to = mc.to;
5211
5212 /* we must uncharge all the leftover precharges from mc.to */
5213 if (mc.precharge) {
5214 cancel_charge(mc.to, mc.precharge);
5215 mc.precharge = 0;
5216 }
5217 /*
5218 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5219 * we must uncharge here.
5220 */
5221 if (mc.moved_charge) {
5222 cancel_charge(mc.from, mc.moved_charge);
5223 mc.moved_charge = 0;
5224 }
5225 /* we must fixup refcnts and charges */
5226 if (mc.moved_swap) {
5227 /* uncharge swap account from the old cgroup */
5228 if (!mem_cgroup_is_root(mc.from))
5229 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5230
5231 /*
5232 * we charged both to->memory and to->memsw, so we
5233 * should uncharge to->memory.
5234 */
5235 if (!mem_cgroup_is_root(mc.to))
5236 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5237
5238 css_put_many(&mc.from->css, mc.moved_swap);
5239
5240 /* we've already done css_get(mc.to) */
5241 mc.moved_swap = 0;
5242 }
5243 memcg_oom_recover(from);
5244 memcg_oom_recover(to);
5245 wake_up_all(&mc.waitq);
5246 }
5247
5248 static void mem_cgroup_clear_mc(void)
5249 {
5250 /*
5251 * we must clear moving_task before waking up waiters at the end of
5252 * task migration.
5253 */
5254 mc.moving_task = NULL;
5255 __mem_cgroup_clear_mc();
5256 spin_lock(&mc.lock);
5257 mc.from = NULL;
5258 mc.to = NULL;
5259 spin_unlock(&mc.lock);
5260 }
5261
5262 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5263 struct cgroup_taskset *tset)
5264 {
5265 struct task_struct *p = cgroup_taskset_first(tset);
5266 int ret = 0;
5267 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5268 unsigned long move_charge_at_immigrate;
5269
5270 /*
5271 * We are now commited to this value whatever it is. Changes in this
5272 * tunable will only affect upcoming migrations, not the current one.
5273 * So we need to save it, and keep it going.
5274 */
5275 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
5276 if (move_charge_at_immigrate) {
5277 struct mm_struct *mm;
5278 struct mem_cgroup *from = mem_cgroup_from_task(p);
5279
5280 VM_BUG_ON(from == memcg);
5281
5282 mm = get_task_mm(p);
5283 if (!mm)
5284 return 0;
5285 /* We move charges only when we move a owner of the mm */
5286 if (mm->owner == p) {
5287 VM_BUG_ON(mc.from);
5288 VM_BUG_ON(mc.to);
5289 VM_BUG_ON(mc.precharge);
5290 VM_BUG_ON(mc.moved_charge);
5291 VM_BUG_ON(mc.moved_swap);
5292
5293 spin_lock(&mc.lock);
5294 mc.from = from;
5295 mc.to = memcg;
5296 mc.immigrate_flags = move_charge_at_immigrate;
5297 spin_unlock(&mc.lock);
5298 /* We set mc.moving_task later */
5299
5300 ret = mem_cgroup_precharge_mc(mm);
5301 if (ret)
5302 mem_cgroup_clear_mc();
5303 }
5304 mmput(mm);
5305 }
5306 return ret;
5307 }
5308
5309 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5310 struct cgroup_taskset *tset)
5311 {
5312 if (mc.to)
5313 mem_cgroup_clear_mc();
5314 }
5315
5316 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5317 unsigned long addr, unsigned long end,
5318 struct mm_walk *walk)
5319 {
5320 int ret = 0;
5321 struct vm_area_struct *vma = walk->private;
5322 pte_t *pte;
5323 spinlock_t *ptl;
5324 enum mc_target_type target_type;
5325 union mc_target target;
5326 struct page *page;
5327
5328 /*
5329 * We don't take compound_lock() here but no race with splitting thp
5330 * happens because:
5331 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5332 * under splitting, which means there's no concurrent thp split,
5333 * - if another thread runs into split_huge_page() just after we
5334 * entered this if-block, the thread must wait for page table lock
5335 * to be unlocked in __split_huge_page_splitting(), where the main
5336 * part of thp split is not executed yet.
5337 */
5338 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5339 if (mc.precharge < HPAGE_PMD_NR) {
5340 spin_unlock(ptl);
5341 return 0;
5342 }
5343 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5344 if (target_type == MC_TARGET_PAGE) {
5345 page = target.page;
5346 if (!isolate_lru_page(page)) {
5347 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5348 mc.from, mc.to)) {
5349 mc.precharge -= HPAGE_PMD_NR;
5350 mc.moved_charge += HPAGE_PMD_NR;
5351 }
5352 putback_lru_page(page);
5353 }
5354 put_page(page);
5355 }
5356 spin_unlock(ptl);
5357 return 0;
5358 }
5359
5360 if (pmd_trans_unstable(pmd))
5361 return 0;
5362 retry:
5363 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5364 for (; addr != end; addr += PAGE_SIZE) {
5365 pte_t ptent = *(pte++);
5366 swp_entry_t ent;
5367
5368 if (!mc.precharge)
5369 break;
5370
5371 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5372 case MC_TARGET_PAGE:
5373 page = target.page;
5374 if (isolate_lru_page(page))
5375 goto put;
5376 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
5377 mc.precharge--;
5378 /* we uncharge from mc.from later. */
5379 mc.moved_charge++;
5380 }
5381 putback_lru_page(page);
5382 put: /* get_mctgt_type() gets the page */
5383 put_page(page);
5384 break;
5385 case MC_TARGET_SWAP:
5386 ent = target.ent;
5387 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5388 mc.precharge--;
5389 /* we fixup refcnts and charges later. */
5390 mc.moved_swap++;
5391 }
5392 break;
5393 default:
5394 break;
5395 }
5396 }
5397 pte_unmap_unlock(pte - 1, ptl);
5398 cond_resched();
5399
5400 if (addr != end) {
5401 /*
5402 * We have consumed all precharges we got in can_attach().
5403 * We try charge one by one, but don't do any additional
5404 * charges to mc.to if we have failed in charge once in attach()
5405 * phase.
5406 */
5407 ret = mem_cgroup_do_precharge(1);
5408 if (!ret)
5409 goto retry;
5410 }
5411
5412 return ret;
5413 }
5414
5415 static void mem_cgroup_move_charge(struct mm_struct *mm)
5416 {
5417 struct vm_area_struct *vma;
5418
5419 lru_add_drain_all();
5420 /*
5421 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5422 * move_lock while we're moving its pages to another memcg.
5423 * Then wait for already started RCU-only updates to finish.
5424 */
5425 atomic_inc(&mc.from->moving_account);
5426 synchronize_rcu();
5427 retry:
5428 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5429 /*
5430 * Someone who are holding the mmap_sem might be waiting in
5431 * waitq. So we cancel all extra charges, wake up all waiters,
5432 * and retry. Because we cancel precharges, we might not be able
5433 * to move enough charges, but moving charge is a best-effort
5434 * feature anyway, so it wouldn't be a big problem.
5435 */
5436 __mem_cgroup_clear_mc();
5437 cond_resched();
5438 goto retry;
5439 }
5440 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5441 int ret;
5442 struct mm_walk mem_cgroup_move_charge_walk = {
5443 .pmd_entry = mem_cgroup_move_charge_pte_range,
5444 .mm = mm,
5445 .private = vma,
5446 };
5447 if (is_vm_hugetlb_page(vma))
5448 continue;
5449 ret = walk_page_range(vma->vm_start, vma->vm_end,
5450 &mem_cgroup_move_charge_walk);
5451 if (ret)
5452 /*
5453 * means we have consumed all precharges and failed in
5454 * doing additional charge. Just abandon here.
5455 */
5456 break;
5457 }
5458 up_read(&mm->mmap_sem);
5459 atomic_dec(&mc.from->moving_account);
5460 }
5461
5462 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5463 struct cgroup_taskset *tset)
5464 {
5465 struct task_struct *p = cgroup_taskset_first(tset);
5466 struct mm_struct *mm = get_task_mm(p);
5467
5468 if (mm) {
5469 if (mc.to)
5470 mem_cgroup_move_charge(mm);
5471 mmput(mm);
5472 }
5473 if (mc.to)
5474 mem_cgroup_clear_mc();
5475 }
5476 #else /* !CONFIG_MMU */
5477 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5478 struct cgroup_taskset *tset)
5479 {
5480 return 0;
5481 }
5482 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5483 struct cgroup_taskset *tset)
5484 {
5485 }
5486 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5487 struct cgroup_taskset *tset)
5488 {
5489 }
5490 #endif
5491
5492 /*
5493 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5494 * to verify whether we're attached to the default hierarchy on each mount
5495 * attempt.
5496 */
5497 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5498 {
5499 /*
5500 * use_hierarchy is forced on the default hierarchy. cgroup core
5501 * guarantees that @root doesn't have any children, so turning it
5502 * on for the root memcg is enough.
5503 */
5504 if (cgroup_on_dfl(root_css->cgroup))
5505 mem_cgroup_from_css(root_css)->use_hierarchy = true;
5506 }
5507
5508 struct cgroup_subsys memory_cgrp_subsys = {
5509 .css_alloc = mem_cgroup_css_alloc,
5510 .css_online = mem_cgroup_css_online,
5511 .css_offline = mem_cgroup_css_offline,
5512 .css_free = mem_cgroup_css_free,
5513 .css_reset = mem_cgroup_css_reset,
5514 .can_attach = mem_cgroup_can_attach,
5515 .cancel_attach = mem_cgroup_cancel_attach,
5516 .attach = mem_cgroup_move_task,
5517 .bind = mem_cgroup_bind,
5518 .legacy_cftypes = mem_cgroup_files,
5519 .early_init = 0,
5520 };
5521
5522 #ifdef CONFIG_MEMCG_SWAP
5523 static int __init enable_swap_account(char *s)
5524 {
5525 if (!strcmp(s, "1"))
5526 really_do_swap_account = 1;
5527 else if (!strcmp(s, "0"))
5528 really_do_swap_account = 0;
5529 return 1;
5530 }
5531 __setup("swapaccount=", enable_swap_account);
5532
5533 static void __init memsw_file_init(void)
5534 {
5535 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5536 memsw_cgroup_files));
5537 }
5538
5539 static void __init enable_swap_cgroup(void)
5540 {
5541 if (!mem_cgroup_disabled() && really_do_swap_account) {
5542 do_swap_account = 1;
5543 memsw_file_init();
5544 }
5545 }
5546
5547 #else
5548 static void __init enable_swap_cgroup(void)
5549 {
5550 }
5551 #endif
5552
5553 #ifdef CONFIG_MEMCG_SWAP
5554 /**
5555 * mem_cgroup_swapout - transfer a memsw charge to swap
5556 * @page: page whose memsw charge to transfer
5557 * @entry: swap entry to move the charge to
5558 *
5559 * Transfer the memsw charge of @page to @entry.
5560 */
5561 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5562 {
5563 struct mem_cgroup *memcg;
5564 unsigned short oldid;
5565
5566 VM_BUG_ON_PAGE(PageLRU(page), page);
5567 VM_BUG_ON_PAGE(page_count(page), page);
5568
5569 if (!do_swap_account)
5570 return;
5571
5572 memcg = page->mem_cgroup;
5573
5574 /* Readahead page, never charged */
5575 if (!memcg)
5576 return;
5577
5578 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5579 VM_BUG_ON_PAGE(oldid, page);
5580 mem_cgroup_swap_statistics(memcg, true);
5581
5582 page->mem_cgroup = NULL;
5583
5584 if (!mem_cgroup_is_root(memcg))
5585 page_counter_uncharge(&memcg->memory, 1);
5586
5587 /* XXX: caller holds IRQ-safe mapping->tree_lock */
5588 VM_BUG_ON(!irqs_disabled());
5589
5590 mem_cgroup_charge_statistics(memcg, page, -1);
5591 memcg_check_events(memcg, page);
5592 }
5593
5594 /**
5595 * mem_cgroup_uncharge_swap - uncharge a swap entry
5596 * @entry: swap entry to uncharge
5597 *
5598 * Drop the memsw charge associated with @entry.
5599 */
5600 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5601 {
5602 struct mem_cgroup *memcg;
5603 unsigned short id;
5604
5605 if (!do_swap_account)
5606 return;
5607
5608 id = swap_cgroup_record(entry, 0);
5609 rcu_read_lock();
5610 memcg = mem_cgroup_lookup(id);
5611 if (memcg) {
5612 if (!mem_cgroup_is_root(memcg))
5613 page_counter_uncharge(&memcg->memsw, 1);
5614 mem_cgroup_swap_statistics(memcg, false);
5615 css_put(&memcg->css);
5616 }
5617 rcu_read_unlock();
5618 }
5619 #endif
5620
5621 /**
5622 * mem_cgroup_try_charge - try charging a page
5623 * @page: page to charge
5624 * @mm: mm context of the victim
5625 * @gfp_mask: reclaim mode
5626 * @memcgp: charged memcg return
5627 *
5628 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5629 * pages according to @gfp_mask if necessary.
5630 *
5631 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5632 * Otherwise, an error code is returned.
5633 *
5634 * After page->mapping has been set up, the caller must finalize the
5635 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5636 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5637 */
5638 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5639 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5640 {
5641 struct mem_cgroup *memcg = NULL;
5642 unsigned int nr_pages = 1;
5643 int ret = 0;
5644
5645 if (mem_cgroup_disabled())
5646 goto out;
5647
5648 if (PageSwapCache(page)) {
5649 /*
5650 * Every swap fault against a single page tries to charge the
5651 * page, bail as early as possible. shmem_unuse() encounters
5652 * already charged pages, too. The USED bit is protected by
5653 * the page lock, which serializes swap cache removal, which
5654 * in turn serializes uncharging.
5655 */
5656 if (page->mem_cgroup)
5657 goto out;
5658 }
5659
5660 if (PageTransHuge(page)) {
5661 nr_pages <<= compound_order(page);
5662 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5663 }
5664
5665 if (do_swap_account && PageSwapCache(page))
5666 memcg = try_get_mem_cgroup_from_page(page);
5667 if (!memcg)
5668 memcg = get_mem_cgroup_from_mm(mm);
5669
5670 ret = try_charge(memcg, gfp_mask, nr_pages);
5671
5672 css_put(&memcg->css);
5673
5674 if (ret == -EINTR) {
5675 memcg = root_mem_cgroup;
5676 ret = 0;
5677 }
5678 out:
5679 *memcgp = memcg;
5680 return ret;
5681 }
5682
5683 /**
5684 * mem_cgroup_commit_charge - commit a page charge
5685 * @page: page to charge
5686 * @memcg: memcg to charge the page to
5687 * @lrucare: page might be on LRU already
5688 *
5689 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5690 * after page->mapping has been set up. This must happen atomically
5691 * as part of the page instantiation, i.e. under the page table lock
5692 * for anonymous pages, under the page lock for page and swap cache.
5693 *
5694 * In addition, the page must not be on the LRU during the commit, to
5695 * prevent racing with task migration. If it might be, use @lrucare.
5696 *
5697 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5698 */
5699 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5700 bool lrucare)
5701 {
5702 unsigned int nr_pages = 1;
5703
5704 VM_BUG_ON_PAGE(!page->mapping, page);
5705 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5706
5707 if (mem_cgroup_disabled())
5708 return;
5709 /*
5710 * Swap faults will attempt to charge the same page multiple
5711 * times. But reuse_swap_page() might have removed the page
5712 * from swapcache already, so we can't check PageSwapCache().
5713 */
5714 if (!memcg)
5715 return;
5716
5717 commit_charge(page, memcg, lrucare);
5718
5719 if (PageTransHuge(page)) {
5720 nr_pages <<= compound_order(page);
5721 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5722 }
5723
5724 local_irq_disable();
5725 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5726 memcg_check_events(memcg, page);
5727 local_irq_enable();
5728
5729 if (do_swap_account && PageSwapCache(page)) {
5730 swp_entry_t entry = { .val = page_private(page) };
5731 /*
5732 * The swap entry might not get freed for a long time,
5733 * let's not wait for it. The page already received a
5734 * memory+swap charge, drop the swap entry duplicate.
5735 */
5736 mem_cgroup_uncharge_swap(entry);
5737 }
5738 }
5739
5740 /**
5741 * mem_cgroup_cancel_charge - cancel a page charge
5742 * @page: page to charge
5743 * @memcg: memcg to charge the page to
5744 *
5745 * Cancel a charge transaction started by mem_cgroup_try_charge().
5746 */
5747 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5748 {
5749 unsigned int nr_pages = 1;
5750
5751 if (mem_cgroup_disabled())
5752 return;
5753 /*
5754 * Swap faults will attempt to charge the same page multiple
5755 * times. But reuse_swap_page() might have removed the page
5756 * from swapcache already, so we can't check PageSwapCache().
5757 */
5758 if (!memcg)
5759 return;
5760
5761 if (PageTransHuge(page)) {
5762 nr_pages <<= compound_order(page);
5763 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5764 }
5765
5766 cancel_charge(memcg, nr_pages);
5767 }
5768
5769 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5770 unsigned long nr_anon, unsigned long nr_file,
5771 unsigned long nr_huge, struct page *dummy_page)
5772 {
5773 unsigned long nr_pages = nr_anon + nr_file;
5774 unsigned long flags;
5775
5776 if (!mem_cgroup_is_root(memcg)) {
5777 page_counter_uncharge(&memcg->memory, nr_pages);
5778 if (do_swap_account)
5779 page_counter_uncharge(&memcg->memsw, nr_pages);
5780 memcg_oom_recover(memcg);
5781 }
5782
5783 local_irq_save(flags);
5784 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5785 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5786 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5787 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5788 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5789 memcg_check_events(memcg, dummy_page);
5790 local_irq_restore(flags);
5791
5792 if (!mem_cgroup_is_root(memcg))
5793 css_put_many(&memcg->css, nr_pages);
5794 }
5795
5796 static void uncharge_list(struct list_head *page_list)
5797 {
5798 struct mem_cgroup *memcg = NULL;
5799 unsigned long nr_anon = 0;
5800 unsigned long nr_file = 0;
5801 unsigned long nr_huge = 0;
5802 unsigned long pgpgout = 0;
5803 struct list_head *next;
5804 struct page *page;
5805
5806 next = page_list->next;
5807 do {
5808 unsigned int nr_pages = 1;
5809
5810 page = list_entry(next, struct page, lru);
5811 next = page->lru.next;
5812
5813 VM_BUG_ON_PAGE(PageLRU(page), page);
5814 VM_BUG_ON_PAGE(page_count(page), page);
5815
5816 if (!page->mem_cgroup)
5817 continue;
5818
5819 /*
5820 * Nobody should be changing or seriously looking at
5821 * page->mem_cgroup at this point, we have fully
5822 * exclusive access to the page.
5823 */
5824
5825 if (memcg != page->mem_cgroup) {
5826 if (memcg) {
5827 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5828 nr_huge, page);
5829 pgpgout = nr_anon = nr_file = nr_huge = 0;
5830 }
5831 memcg = page->mem_cgroup;
5832 }
5833
5834 if (PageTransHuge(page)) {
5835 nr_pages <<= compound_order(page);
5836 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5837 nr_huge += nr_pages;
5838 }
5839
5840 if (PageAnon(page))
5841 nr_anon += nr_pages;
5842 else
5843 nr_file += nr_pages;
5844
5845 page->mem_cgroup = NULL;
5846
5847 pgpgout++;
5848 } while (next != page_list);
5849
5850 if (memcg)
5851 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5852 nr_huge, page);
5853 }
5854
5855 /**
5856 * mem_cgroup_uncharge - uncharge a page
5857 * @page: page to uncharge
5858 *
5859 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5860 * mem_cgroup_commit_charge().
5861 */
5862 void mem_cgroup_uncharge(struct page *page)
5863 {
5864 if (mem_cgroup_disabled())
5865 return;
5866
5867 /* Don't touch page->lru of any random page, pre-check: */
5868 if (!page->mem_cgroup)
5869 return;
5870
5871 INIT_LIST_HEAD(&page->lru);
5872 uncharge_list(&page->lru);
5873 }
5874
5875 /**
5876 * mem_cgroup_uncharge_list - uncharge a list of page
5877 * @page_list: list of pages to uncharge
5878 *
5879 * Uncharge a list of pages previously charged with
5880 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5881 */
5882 void mem_cgroup_uncharge_list(struct list_head *page_list)
5883 {
5884 if (mem_cgroup_disabled())
5885 return;
5886
5887 if (!list_empty(page_list))
5888 uncharge_list(page_list);
5889 }
5890
5891 /**
5892 * mem_cgroup_migrate - migrate a charge to another page
5893 * @oldpage: currently charged page
5894 * @newpage: page to transfer the charge to
5895 * @lrucare: both pages might be on the LRU already
5896 *
5897 * Migrate the charge from @oldpage to @newpage.
5898 *
5899 * Both pages must be locked, @newpage->mapping must be set up.
5900 */
5901 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5902 bool lrucare)
5903 {
5904 struct mem_cgroup *memcg;
5905 int isolated;
5906
5907 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5908 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5909 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5910 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5911 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5912 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5913 newpage);
5914
5915 if (mem_cgroup_disabled())
5916 return;
5917
5918 /* Page cache replacement: new page already charged? */
5919 if (newpage->mem_cgroup)
5920 return;
5921
5922 /*
5923 * Swapcache readahead pages can get migrated before being
5924 * charged, and migration from compaction can happen to an
5925 * uncharged page when the PFN walker finds a page that
5926 * reclaim just put back on the LRU but has not released yet.
5927 */
5928 memcg = oldpage->mem_cgroup;
5929 if (!memcg)
5930 return;
5931
5932 if (lrucare)
5933 lock_page_lru(oldpage, &isolated);
5934
5935 oldpage->mem_cgroup = NULL;
5936
5937 if (lrucare)
5938 unlock_page_lru(oldpage, isolated);
5939
5940 commit_charge(newpage, memcg, lrucare);
5941 }
5942
5943 /*
5944 * subsys_initcall() for memory controller.
5945 *
5946 * Some parts like hotcpu_notifier() have to be initialized from this context
5947 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5948 * everything that doesn't depend on a specific mem_cgroup structure should
5949 * be initialized from here.
5950 */
5951 static int __init mem_cgroup_init(void)
5952 {
5953 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5954 enable_swap_cgroup();
5955 mem_cgroup_soft_limit_tree_init();
5956 memcg_stock_init();
5957 return 0;
5958 }
5959 subsys_initcall(mem_cgroup_init);
This page took 0.172862 seconds and 6 git commands to generate.