mm/memcg: move reclaim_stat into lruvec
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 #include <net/sock.h>
54 #include <net/tcp_memcontrol.h>
55
56 #include <asm/uaccess.h>
57
58 #include <trace/events/vmscan.h>
59
60 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61 #define MEM_CGROUP_RECLAIM_RETRIES 5
62 struct mem_cgroup *root_mem_cgroup __read_mostly;
63
64 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66 int do_swap_account __read_mostly;
67
68 /* for remember boot option*/
69 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70 static int really_do_swap_account __initdata = 1;
71 #else
72 static int really_do_swap_account __initdata = 0;
73 #endif
74
75 #else
76 #define do_swap_account (0)
77 #endif
78
79
80 /*
81 * Statistics for memory cgroup.
82 */
83 enum mem_cgroup_stat_index {
84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92 MEM_CGROUP_STAT_NSTATS,
93 };
94
95 enum mem_cgroup_events_index {
96 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
97 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
98 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
99 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
100 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
101 MEM_CGROUP_EVENTS_NSTATS,
102 };
103 /*
104 * Per memcg event counter is incremented at every pagein/pageout. With THP,
105 * it will be incremated by the number of pages. This counter is used for
106 * for trigger some periodic events. This is straightforward and better
107 * than using jiffies etc. to handle periodic memcg event.
108 */
109 enum mem_cgroup_events_target {
110 MEM_CGROUP_TARGET_THRESH,
111 MEM_CGROUP_TARGET_SOFTLIMIT,
112 MEM_CGROUP_TARGET_NUMAINFO,
113 MEM_CGROUP_NTARGETS,
114 };
115 #define THRESHOLDS_EVENTS_TARGET (128)
116 #define SOFTLIMIT_EVENTS_TARGET (1024)
117 #define NUMAINFO_EVENTS_TARGET (1024)
118
119 struct mem_cgroup_stat_cpu {
120 long count[MEM_CGROUP_STAT_NSTATS];
121 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
122 unsigned long targets[MEM_CGROUP_NTARGETS];
123 };
124
125 struct mem_cgroup_reclaim_iter {
126 /* css_id of the last scanned hierarchy member */
127 int position;
128 /* scan generation, increased every round-trip */
129 unsigned int generation;
130 };
131
132 /*
133 * per-zone information in memory controller.
134 */
135 struct mem_cgroup_per_zone {
136 struct lruvec lruvec;
137 unsigned long lru_size[NR_LRU_LISTS];
138
139 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
140
141 struct rb_node tree_node; /* RB tree node */
142 unsigned long long usage_in_excess;/* Set to the value by which */
143 /* the soft limit is exceeded*/
144 bool on_tree;
145 struct mem_cgroup *memcg; /* Back pointer, we cannot */
146 /* use container_of */
147 };
148
149 struct mem_cgroup_per_node {
150 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
151 };
152
153 struct mem_cgroup_lru_info {
154 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
155 };
156
157 /*
158 * Cgroups above their limits are maintained in a RB-Tree, independent of
159 * their hierarchy representation
160 */
161
162 struct mem_cgroup_tree_per_zone {
163 struct rb_root rb_root;
164 spinlock_t lock;
165 };
166
167 struct mem_cgroup_tree_per_node {
168 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
169 };
170
171 struct mem_cgroup_tree {
172 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
173 };
174
175 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
176
177 struct mem_cgroup_threshold {
178 struct eventfd_ctx *eventfd;
179 u64 threshold;
180 };
181
182 /* For threshold */
183 struct mem_cgroup_threshold_ary {
184 /* An array index points to threshold just below usage. */
185 int current_threshold;
186 /* Size of entries[] */
187 unsigned int size;
188 /* Array of thresholds */
189 struct mem_cgroup_threshold entries[0];
190 };
191
192 struct mem_cgroup_thresholds {
193 /* Primary thresholds array */
194 struct mem_cgroup_threshold_ary *primary;
195 /*
196 * Spare threshold array.
197 * This is needed to make mem_cgroup_unregister_event() "never fail".
198 * It must be able to store at least primary->size - 1 entries.
199 */
200 struct mem_cgroup_threshold_ary *spare;
201 };
202
203 /* for OOM */
204 struct mem_cgroup_eventfd_list {
205 struct list_head list;
206 struct eventfd_ctx *eventfd;
207 };
208
209 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
210 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
211
212 /*
213 * The memory controller data structure. The memory controller controls both
214 * page cache and RSS per cgroup. We would eventually like to provide
215 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
216 * to help the administrator determine what knobs to tune.
217 *
218 * TODO: Add a water mark for the memory controller. Reclaim will begin when
219 * we hit the water mark. May be even add a low water mark, such that
220 * no reclaim occurs from a cgroup at it's low water mark, this is
221 * a feature that will be implemented much later in the future.
222 */
223 struct mem_cgroup {
224 struct cgroup_subsys_state css;
225 /*
226 * the counter to account for memory usage
227 */
228 struct res_counter res;
229
230 union {
231 /*
232 * the counter to account for mem+swap usage.
233 */
234 struct res_counter memsw;
235
236 /*
237 * rcu_freeing is used only when freeing struct mem_cgroup,
238 * so put it into a union to avoid wasting more memory.
239 * It must be disjoint from the css field. It could be
240 * in a union with the res field, but res plays a much
241 * larger part in mem_cgroup life than memsw, and might
242 * be of interest, even at time of free, when debugging.
243 * So share rcu_head with the less interesting memsw.
244 */
245 struct rcu_head rcu_freeing;
246 /*
247 * But when using vfree(), that cannot be done at
248 * interrupt time, so we must then queue the work.
249 */
250 struct work_struct work_freeing;
251 };
252
253 /*
254 * Per cgroup active and inactive list, similar to the
255 * per zone LRU lists.
256 */
257 struct mem_cgroup_lru_info info;
258 int last_scanned_node;
259 #if MAX_NUMNODES > 1
260 nodemask_t scan_nodes;
261 atomic_t numainfo_events;
262 atomic_t numainfo_updating;
263 #endif
264 /*
265 * Should the accounting and control be hierarchical, per subtree?
266 */
267 bool use_hierarchy;
268
269 bool oom_lock;
270 atomic_t under_oom;
271
272 atomic_t refcnt;
273
274 int swappiness;
275 /* OOM-Killer disable */
276 int oom_kill_disable;
277
278 /* set when res.limit == memsw.limit */
279 bool memsw_is_minimum;
280
281 /* protect arrays of thresholds */
282 struct mutex thresholds_lock;
283
284 /* thresholds for memory usage. RCU-protected */
285 struct mem_cgroup_thresholds thresholds;
286
287 /* thresholds for mem+swap usage. RCU-protected */
288 struct mem_cgroup_thresholds memsw_thresholds;
289
290 /* For oom notifier event fd */
291 struct list_head oom_notify;
292
293 /*
294 * Should we move charges of a task when a task is moved into this
295 * mem_cgroup ? And what type of charges should we move ?
296 */
297 unsigned long move_charge_at_immigrate;
298 /*
299 * set > 0 if pages under this cgroup are moving to other cgroup.
300 */
301 atomic_t moving_account;
302 /* taken only while moving_account > 0 */
303 spinlock_t move_lock;
304 /*
305 * percpu counter.
306 */
307 struct mem_cgroup_stat_cpu *stat;
308 /*
309 * used when a cpu is offlined or other synchronizations
310 * See mem_cgroup_read_stat().
311 */
312 struct mem_cgroup_stat_cpu nocpu_base;
313 spinlock_t pcp_counter_lock;
314
315 #ifdef CONFIG_INET
316 struct tcp_memcontrol tcp_mem;
317 #endif
318 };
319
320 /* Stuffs for move charges at task migration. */
321 /*
322 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
323 * left-shifted bitmap of these types.
324 */
325 enum move_type {
326 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
327 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
328 NR_MOVE_TYPE,
329 };
330
331 /* "mc" and its members are protected by cgroup_mutex */
332 static struct move_charge_struct {
333 spinlock_t lock; /* for from, to */
334 struct mem_cgroup *from;
335 struct mem_cgroup *to;
336 unsigned long precharge;
337 unsigned long moved_charge;
338 unsigned long moved_swap;
339 struct task_struct *moving_task; /* a task moving charges */
340 wait_queue_head_t waitq; /* a waitq for other context */
341 } mc = {
342 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
343 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
344 };
345
346 static bool move_anon(void)
347 {
348 return test_bit(MOVE_CHARGE_TYPE_ANON,
349 &mc.to->move_charge_at_immigrate);
350 }
351
352 static bool move_file(void)
353 {
354 return test_bit(MOVE_CHARGE_TYPE_FILE,
355 &mc.to->move_charge_at_immigrate);
356 }
357
358 /*
359 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
360 * limit reclaim to prevent infinite loops, if they ever occur.
361 */
362 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
363 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
364
365 enum charge_type {
366 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
367 MEM_CGROUP_CHARGE_TYPE_MAPPED,
368 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
369 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
370 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
371 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
372 NR_CHARGE_TYPE,
373 };
374
375 /* for encoding cft->private value on file */
376 #define _MEM (0)
377 #define _MEMSWAP (1)
378 #define _OOM_TYPE (2)
379 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
380 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
381 #define MEMFILE_ATTR(val) ((val) & 0xffff)
382 /* Used for OOM nofiier */
383 #define OOM_CONTROL (0)
384
385 /*
386 * Reclaim flags for mem_cgroup_hierarchical_reclaim
387 */
388 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
389 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
390 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
391 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
392
393 static void mem_cgroup_get(struct mem_cgroup *memcg);
394 static void mem_cgroup_put(struct mem_cgroup *memcg);
395
396 /* Writing them here to avoid exposing memcg's inner layout */
397 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
398 #include <net/sock.h>
399 #include <net/ip.h>
400
401 static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
402 void sock_update_memcg(struct sock *sk)
403 {
404 if (mem_cgroup_sockets_enabled) {
405 struct mem_cgroup *memcg;
406
407 BUG_ON(!sk->sk_prot->proto_cgroup);
408
409 /* Socket cloning can throw us here with sk_cgrp already
410 * filled. It won't however, necessarily happen from
411 * process context. So the test for root memcg given
412 * the current task's memcg won't help us in this case.
413 *
414 * Respecting the original socket's memcg is a better
415 * decision in this case.
416 */
417 if (sk->sk_cgrp) {
418 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
419 mem_cgroup_get(sk->sk_cgrp->memcg);
420 return;
421 }
422
423 rcu_read_lock();
424 memcg = mem_cgroup_from_task(current);
425 if (!mem_cgroup_is_root(memcg)) {
426 mem_cgroup_get(memcg);
427 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
428 }
429 rcu_read_unlock();
430 }
431 }
432 EXPORT_SYMBOL(sock_update_memcg);
433
434 void sock_release_memcg(struct sock *sk)
435 {
436 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
437 struct mem_cgroup *memcg;
438 WARN_ON(!sk->sk_cgrp->memcg);
439 memcg = sk->sk_cgrp->memcg;
440 mem_cgroup_put(memcg);
441 }
442 }
443
444 #ifdef CONFIG_INET
445 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
446 {
447 if (!memcg || mem_cgroup_is_root(memcg))
448 return NULL;
449
450 return &memcg->tcp_mem.cg_proto;
451 }
452 EXPORT_SYMBOL(tcp_proto_cgroup);
453 #endif /* CONFIG_INET */
454 #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
455
456 static void drain_all_stock_async(struct mem_cgroup *memcg);
457
458 static struct mem_cgroup_per_zone *
459 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
460 {
461 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
462 }
463
464 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
465 {
466 return &memcg->css;
467 }
468
469 static struct mem_cgroup_per_zone *
470 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
471 {
472 int nid = page_to_nid(page);
473 int zid = page_zonenum(page);
474
475 return mem_cgroup_zoneinfo(memcg, nid, zid);
476 }
477
478 static struct mem_cgroup_tree_per_zone *
479 soft_limit_tree_node_zone(int nid, int zid)
480 {
481 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
482 }
483
484 static struct mem_cgroup_tree_per_zone *
485 soft_limit_tree_from_page(struct page *page)
486 {
487 int nid = page_to_nid(page);
488 int zid = page_zonenum(page);
489
490 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
491 }
492
493 static void
494 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
495 struct mem_cgroup_per_zone *mz,
496 struct mem_cgroup_tree_per_zone *mctz,
497 unsigned long long new_usage_in_excess)
498 {
499 struct rb_node **p = &mctz->rb_root.rb_node;
500 struct rb_node *parent = NULL;
501 struct mem_cgroup_per_zone *mz_node;
502
503 if (mz->on_tree)
504 return;
505
506 mz->usage_in_excess = new_usage_in_excess;
507 if (!mz->usage_in_excess)
508 return;
509 while (*p) {
510 parent = *p;
511 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
512 tree_node);
513 if (mz->usage_in_excess < mz_node->usage_in_excess)
514 p = &(*p)->rb_left;
515 /*
516 * We can't avoid mem cgroups that are over their soft
517 * limit by the same amount
518 */
519 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
520 p = &(*p)->rb_right;
521 }
522 rb_link_node(&mz->tree_node, parent, p);
523 rb_insert_color(&mz->tree_node, &mctz->rb_root);
524 mz->on_tree = true;
525 }
526
527 static void
528 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
529 struct mem_cgroup_per_zone *mz,
530 struct mem_cgroup_tree_per_zone *mctz)
531 {
532 if (!mz->on_tree)
533 return;
534 rb_erase(&mz->tree_node, &mctz->rb_root);
535 mz->on_tree = false;
536 }
537
538 static void
539 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
540 struct mem_cgroup_per_zone *mz,
541 struct mem_cgroup_tree_per_zone *mctz)
542 {
543 spin_lock(&mctz->lock);
544 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
545 spin_unlock(&mctz->lock);
546 }
547
548
549 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
550 {
551 unsigned long long excess;
552 struct mem_cgroup_per_zone *mz;
553 struct mem_cgroup_tree_per_zone *mctz;
554 int nid = page_to_nid(page);
555 int zid = page_zonenum(page);
556 mctz = soft_limit_tree_from_page(page);
557
558 /*
559 * Necessary to update all ancestors when hierarchy is used.
560 * because their event counter is not touched.
561 */
562 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
563 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
564 excess = res_counter_soft_limit_excess(&memcg->res);
565 /*
566 * We have to update the tree if mz is on RB-tree or
567 * mem is over its softlimit.
568 */
569 if (excess || mz->on_tree) {
570 spin_lock(&mctz->lock);
571 /* if on-tree, remove it */
572 if (mz->on_tree)
573 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
574 /*
575 * Insert again. mz->usage_in_excess will be updated.
576 * If excess is 0, no tree ops.
577 */
578 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
579 spin_unlock(&mctz->lock);
580 }
581 }
582 }
583
584 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
585 {
586 int node, zone;
587 struct mem_cgroup_per_zone *mz;
588 struct mem_cgroup_tree_per_zone *mctz;
589
590 for_each_node(node) {
591 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
592 mz = mem_cgroup_zoneinfo(memcg, node, zone);
593 mctz = soft_limit_tree_node_zone(node, zone);
594 mem_cgroup_remove_exceeded(memcg, mz, mctz);
595 }
596 }
597 }
598
599 static struct mem_cgroup_per_zone *
600 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
601 {
602 struct rb_node *rightmost = NULL;
603 struct mem_cgroup_per_zone *mz;
604
605 retry:
606 mz = NULL;
607 rightmost = rb_last(&mctz->rb_root);
608 if (!rightmost)
609 goto done; /* Nothing to reclaim from */
610
611 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
612 /*
613 * Remove the node now but someone else can add it back,
614 * we will to add it back at the end of reclaim to its correct
615 * position in the tree.
616 */
617 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
618 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
619 !css_tryget(&mz->memcg->css))
620 goto retry;
621 done:
622 return mz;
623 }
624
625 static struct mem_cgroup_per_zone *
626 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
627 {
628 struct mem_cgroup_per_zone *mz;
629
630 spin_lock(&mctz->lock);
631 mz = __mem_cgroup_largest_soft_limit_node(mctz);
632 spin_unlock(&mctz->lock);
633 return mz;
634 }
635
636 /*
637 * Implementation Note: reading percpu statistics for memcg.
638 *
639 * Both of vmstat[] and percpu_counter has threshold and do periodic
640 * synchronization to implement "quick" read. There are trade-off between
641 * reading cost and precision of value. Then, we may have a chance to implement
642 * a periodic synchronizion of counter in memcg's counter.
643 *
644 * But this _read() function is used for user interface now. The user accounts
645 * memory usage by memory cgroup and he _always_ requires exact value because
646 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
647 * have to visit all online cpus and make sum. So, for now, unnecessary
648 * synchronization is not implemented. (just implemented for cpu hotplug)
649 *
650 * If there are kernel internal actions which can make use of some not-exact
651 * value, and reading all cpu value can be performance bottleneck in some
652 * common workload, threashold and synchonization as vmstat[] should be
653 * implemented.
654 */
655 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
656 enum mem_cgroup_stat_index idx)
657 {
658 long val = 0;
659 int cpu;
660
661 get_online_cpus();
662 for_each_online_cpu(cpu)
663 val += per_cpu(memcg->stat->count[idx], cpu);
664 #ifdef CONFIG_HOTPLUG_CPU
665 spin_lock(&memcg->pcp_counter_lock);
666 val += memcg->nocpu_base.count[idx];
667 spin_unlock(&memcg->pcp_counter_lock);
668 #endif
669 put_online_cpus();
670 return val;
671 }
672
673 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
674 bool charge)
675 {
676 int val = (charge) ? 1 : -1;
677 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
678 }
679
680 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
681 enum mem_cgroup_events_index idx)
682 {
683 unsigned long val = 0;
684 int cpu;
685
686 for_each_online_cpu(cpu)
687 val += per_cpu(memcg->stat->events[idx], cpu);
688 #ifdef CONFIG_HOTPLUG_CPU
689 spin_lock(&memcg->pcp_counter_lock);
690 val += memcg->nocpu_base.events[idx];
691 spin_unlock(&memcg->pcp_counter_lock);
692 #endif
693 return val;
694 }
695
696 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
697 bool anon, int nr_pages)
698 {
699 preempt_disable();
700
701 /*
702 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
703 * counted as CACHE even if it's on ANON LRU.
704 */
705 if (anon)
706 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
707 nr_pages);
708 else
709 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
710 nr_pages);
711
712 /* pagein of a big page is an event. So, ignore page size */
713 if (nr_pages > 0)
714 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
715 else {
716 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
717 nr_pages = -nr_pages; /* for event */
718 }
719
720 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
721
722 preempt_enable();
723 }
724
725 unsigned long
726 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
727 unsigned int lru_mask)
728 {
729 struct mem_cgroup_per_zone *mz;
730 enum lru_list lru;
731 unsigned long ret = 0;
732
733 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
734
735 for_each_lru(lru) {
736 if (BIT(lru) & lru_mask)
737 ret += mz->lru_size[lru];
738 }
739 return ret;
740 }
741
742 static unsigned long
743 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
744 int nid, unsigned int lru_mask)
745 {
746 u64 total = 0;
747 int zid;
748
749 for (zid = 0; zid < MAX_NR_ZONES; zid++)
750 total += mem_cgroup_zone_nr_lru_pages(memcg,
751 nid, zid, lru_mask);
752
753 return total;
754 }
755
756 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
757 unsigned int lru_mask)
758 {
759 int nid;
760 u64 total = 0;
761
762 for_each_node_state(nid, N_HIGH_MEMORY)
763 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
764 return total;
765 }
766
767 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
768 enum mem_cgroup_events_target target)
769 {
770 unsigned long val, next;
771
772 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
773 next = __this_cpu_read(memcg->stat->targets[target]);
774 /* from time_after() in jiffies.h */
775 if ((long)next - (long)val < 0) {
776 switch (target) {
777 case MEM_CGROUP_TARGET_THRESH:
778 next = val + THRESHOLDS_EVENTS_TARGET;
779 break;
780 case MEM_CGROUP_TARGET_SOFTLIMIT:
781 next = val + SOFTLIMIT_EVENTS_TARGET;
782 break;
783 case MEM_CGROUP_TARGET_NUMAINFO:
784 next = val + NUMAINFO_EVENTS_TARGET;
785 break;
786 default:
787 break;
788 }
789 __this_cpu_write(memcg->stat->targets[target], next);
790 return true;
791 }
792 return false;
793 }
794
795 /*
796 * Check events in order.
797 *
798 */
799 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
800 {
801 preempt_disable();
802 /* threshold event is triggered in finer grain than soft limit */
803 if (unlikely(mem_cgroup_event_ratelimit(memcg,
804 MEM_CGROUP_TARGET_THRESH))) {
805 bool do_softlimit;
806 bool do_numainfo __maybe_unused;
807
808 do_softlimit = mem_cgroup_event_ratelimit(memcg,
809 MEM_CGROUP_TARGET_SOFTLIMIT);
810 #if MAX_NUMNODES > 1
811 do_numainfo = mem_cgroup_event_ratelimit(memcg,
812 MEM_CGROUP_TARGET_NUMAINFO);
813 #endif
814 preempt_enable();
815
816 mem_cgroup_threshold(memcg);
817 if (unlikely(do_softlimit))
818 mem_cgroup_update_tree(memcg, page);
819 #if MAX_NUMNODES > 1
820 if (unlikely(do_numainfo))
821 atomic_inc(&memcg->numainfo_events);
822 #endif
823 } else
824 preempt_enable();
825 }
826
827 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
828 {
829 return container_of(cgroup_subsys_state(cont,
830 mem_cgroup_subsys_id), struct mem_cgroup,
831 css);
832 }
833
834 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
835 {
836 /*
837 * mm_update_next_owner() may clear mm->owner to NULL
838 * if it races with swapoff, page migration, etc.
839 * So this can be called with p == NULL.
840 */
841 if (unlikely(!p))
842 return NULL;
843
844 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
845 struct mem_cgroup, css);
846 }
847
848 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
849 {
850 struct mem_cgroup *memcg = NULL;
851
852 if (!mm)
853 return NULL;
854 /*
855 * Because we have no locks, mm->owner's may be being moved to other
856 * cgroup. We use css_tryget() here even if this looks
857 * pessimistic (rather than adding locks here).
858 */
859 rcu_read_lock();
860 do {
861 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
862 if (unlikely(!memcg))
863 break;
864 } while (!css_tryget(&memcg->css));
865 rcu_read_unlock();
866 return memcg;
867 }
868
869 /**
870 * mem_cgroup_iter - iterate over memory cgroup hierarchy
871 * @root: hierarchy root
872 * @prev: previously returned memcg, NULL on first invocation
873 * @reclaim: cookie for shared reclaim walks, NULL for full walks
874 *
875 * Returns references to children of the hierarchy below @root, or
876 * @root itself, or %NULL after a full round-trip.
877 *
878 * Caller must pass the return value in @prev on subsequent
879 * invocations for reference counting, or use mem_cgroup_iter_break()
880 * to cancel a hierarchy walk before the round-trip is complete.
881 *
882 * Reclaimers can specify a zone and a priority level in @reclaim to
883 * divide up the memcgs in the hierarchy among all concurrent
884 * reclaimers operating on the same zone and priority.
885 */
886 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
887 struct mem_cgroup *prev,
888 struct mem_cgroup_reclaim_cookie *reclaim)
889 {
890 struct mem_cgroup *memcg = NULL;
891 int id = 0;
892
893 if (mem_cgroup_disabled())
894 return NULL;
895
896 if (!root)
897 root = root_mem_cgroup;
898
899 if (prev && !reclaim)
900 id = css_id(&prev->css);
901
902 if (prev && prev != root)
903 css_put(&prev->css);
904
905 if (!root->use_hierarchy && root != root_mem_cgroup) {
906 if (prev)
907 return NULL;
908 return root;
909 }
910
911 while (!memcg) {
912 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
913 struct cgroup_subsys_state *css;
914
915 if (reclaim) {
916 int nid = zone_to_nid(reclaim->zone);
917 int zid = zone_idx(reclaim->zone);
918 struct mem_cgroup_per_zone *mz;
919
920 mz = mem_cgroup_zoneinfo(root, nid, zid);
921 iter = &mz->reclaim_iter[reclaim->priority];
922 if (prev && reclaim->generation != iter->generation)
923 return NULL;
924 id = iter->position;
925 }
926
927 rcu_read_lock();
928 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
929 if (css) {
930 if (css == &root->css || css_tryget(css))
931 memcg = container_of(css,
932 struct mem_cgroup, css);
933 } else
934 id = 0;
935 rcu_read_unlock();
936
937 if (reclaim) {
938 iter->position = id;
939 if (!css)
940 iter->generation++;
941 else if (!prev && memcg)
942 reclaim->generation = iter->generation;
943 }
944
945 if (prev && !css)
946 return NULL;
947 }
948 return memcg;
949 }
950
951 /**
952 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
953 * @root: hierarchy root
954 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
955 */
956 void mem_cgroup_iter_break(struct mem_cgroup *root,
957 struct mem_cgroup *prev)
958 {
959 if (!root)
960 root = root_mem_cgroup;
961 if (prev && prev != root)
962 css_put(&prev->css);
963 }
964
965 /*
966 * Iteration constructs for visiting all cgroups (under a tree). If
967 * loops are exited prematurely (break), mem_cgroup_iter_break() must
968 * be used for reference counting.
969 */
970 #define for_each_mem_cgroup_tree(iter, root) \
971 for (iter = mem_cgroup_iter(root, NULL, NULL); \
972 iter != NULL; \
973 iter = mem_cgroup_iter(root, iter, NULL))
974
975 #define for_each_mem_cgroup(iter) \
976 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
977 iter != NULL; \
978 iter = mem_cgroup_iter(NULL, iter, NULL))
979
980 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
981 {
982 return (memcg == root_mem_cgroup);
983 }
984
985 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
986 {
987 struct mem_cgroup *memcg;
988
989 if (!mm)
990 return;
991
992 rcu_read_lock();
993 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
994 if (unlikely(!memcg))
995 goto out;
996
997 switch (idx) {
998 case PGFAULT:
999 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1000 break;
1001 case PGMAJFAULT:
1002 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1003 break;
1004 default:
1005 BUG();
1006 }
1007 out:
1008 rcu_read_unlock();
1009 }
1010 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1011
1012 /**
1013 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1014 * @zone: zone of the wanted lruvec
1015 * @mem: memcg of the wanted lruvec
1016 *
1017 * Returns the lru list vector holding pages for the given @zone and
1018 * @mem. This can be the global zone lruvec, if the memory controller
1019 * is disabled.
1020 */
1021 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1022 struct mem_cgroup *memcg)
1023 {
1024 struct mem_cgroup_per_zone *mz;
1025
1026 if (mem_cgroup_disabled())
1027 return &zone->lruvec;
1028
1029 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1030 return &mz->lruvec;
1031 }
1032
1033 /*
1034 * Following LRU functions are allowed to be used without PCG_LOCK.
1035 * Operations are called by routine of global LRU independently from memcg.
1036 * What we have to take care of here is validness of pc->mem_cgroup.
1037 *
1038 * Changes to pc->mem_cgroup happens when
1039 * 1. charge
1040 * 2. moving account
1041 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1042 * It is added to LRU before charge.
1043 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1044 * When moving account, the page is not on LRU. It's isolated.
1045 */
1046
1047 /**
1048 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1049 * @zone: zone of the page
1050 * @page: the page
1051 * @lru: current lru
1052 *
1053 * This function accounts for @page being added to @lru, and returns
1054 * the lruvec for the given @zone and the memcg @page is charged to.
1055 *
1056 * The callsite is then responsible for physically linking the page to
1057 * the returned lruvec->lists[@lru].
1058 */
1059 struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
1060 enum lru_list lru)
1061 {
1062 struct mem_cgroup_per_zone *mz;
1063 struct mem_cgroup *memcg;
1064 struct page_cgroup *pc;
1065
1066 if (mem_cgroup_disabled())
1067 return &zone->lruvec;
1068
1069 pc = lookup_page_cgroup(page);
1070 memcg = pc->mem_cgroup;
1071
1072 /*
1073 * Surreptitiously switch any uncharged page to root:
1074 * an uncharged page off lru does nothing to secure
1075 * its former mem_cgroup from sudden removal.
1076 *
1077 * Our caller holds lru_lock, and PageCgroupUsed is updated
1078 * under page_cgroup lock: between them, they make all uses
1079 * of pc->mem_cgroup safe.
1080 */
1081 if (!PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1082 pc->mem_cgroup = memcg = root_mem_cgroup;
1083
1084 mz = page_cgroup_zoneinfo(memcg, page);
1085 /* compound_order() is stabilized through lru_lock */
1086 mz->lru_size[lru] += 1 << compound_order(page);
1087 return &mz->lruvec;
1088 }
1089
1090 /**
1091 * mem_cgroup_lru_del_list - account for removing an lru page
1092 * @page: the page
1093 * @lru: target lru
1094 *
1095 * This function accounts for @page being removed from @lru.
1096 *
1097 * The callsite is then responsible for physically unlinking
1098 * @page->lru.
1099 */
1100 void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1101 {
1102 struct mem_cgroup_per_zone *mz;
1103 struct mem_cgroup *memcg;
1104 struct page_cgroup *pc;
1105
1106 if (mem_cgroup_disabled())
1107 return;
1108
1109 pc = lookup_page_cgroup(page);
1110 memcg = pc->mem_cgroup;
1111 VM_BUG_ON(!memcg);
1112 mz = page_cgroup_zoneinfo(memcg, page);
1113 /* huge page split is done under lru_lock. so, we have no races. */
1114 VM_BUG_ON(mz->lru_size[lru] < (1 << compound_order(page)));
1115 mz->lru_size[lru] -= 1 << compound_order(page);
1116 }
1117
1118 void mem_cgroup_lru_del(struct page *page)
1119 {
1120 mem_cgroup_lru_del_list(page, page_lru(page));
1121 }
1122
1123 /**
1124 * mem_cgroup_lru_move_lists - account for moving a page between lrus
1125 * @zone: zone of the page
1126 * @page: the page
1127 * @from: current lru
1128 * @to: target lru
1129 *
1130 * This function accounts for @page being moved between the lrus @from
1131 * and @to, and returns the lruvec for the given @zone and the memcg
1132 * @page is charged to.
1133 *
1134 * The callsite is then responsible for physically relinking
1135 * @page->lru to the returned lruvec->lists[@to].
1136 */
1137 struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
1138 struct page *page,
1139 enum lru_list from,
1140 enum lru_list to)
1141 {
1142 /* XXX: Optimize this, especially for @from == @to */
1143 mem_cgroup_lru_del_list(page, from);
1144 return mem_cgroup_lru_add_list(zone, page, to);
1145 }
1146
1147 /*
1148 * Checks whether given mem is same or in the root_mem_cgroup's
1149 * hierarchy subtree
1150 */
1151 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1152 struct mem_cgroup *memcg)
1153 {
1154 if (root_memcg == memcg)
1155 return true;
1156 if (!root_memcg->use_hierarchy)
1157 return false;
1158 return css_is_ancestor(&memcg->css, &root_memcg->css);
1159 }
1160
1161 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1162 struct mem_cgroup *memcg)
1163 {
1164 bool ret;
1165
1166 rcu_read_lock();
1167 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1168 rcu_read_unlock();
1169 return ret;
1170 }
1171
1172 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1173 {
1174 int ret;
1175 struct mem_cgroup *curr = NULL;
1176 struct task_struct *p;
1177
1178 p = find_lock_task_mm(task);
1179 if (p) {
1180 curr = try_get_mem_cgroup_from_mm(p->mm);
1181 task_unlock(p);
1182 } else {
1183 /*
1184 * All threads may have already detached their mm's, but the oom
1185 * killer still needs to detect if they have already been oom
1186 * killed to prevent needlessly killing additional tasks.
1187 */
1188 task_lock(task);
1189 curr = mem_cgroup_from_task(task);
1190 if (curr)
1191 css_get(&curr->css);
1192 task_unlock(task);
1193 }
1194 if (!curr)
1195 return 0;
1196 /*
1197 * We should check use_hierarchy of "memcg" not "curr". Because checking
1198 * use_hierarchy of "curr" here make this function true if hierarchy is
1199 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1200 * hierarchy(even if use_hierarchy is disabled in "memcg").
1201 */
1202 ret = mem_cgroup_same_or_subtree(memcg, curr);
1203 css_put(&curr->css);
1204 return ret;
1205 }
1206
1207 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1208 {
1209 unsigned long inactive_ratio;
1210 int nid = zone_to_nid(zone);
1211 int zid = zone_idx(zone);
1212 unsigned long inactive;
1213 unsigned long active;
1214 unsigned long gb;
1215
1216 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1217 BIT(LRU_INACTIVE_ANON));
1218 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1219 BIT(LRU_ACTIVE_ANON));
1220
1221 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1222 if (gb)
1223 inactive_ratio = int_sqrt(10 * gb);
1224 else
1225 inactive_ratio = 1;
1226
1227 return inactive * inactive_ratio < active;
1228 }
1229
1230 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1231 {
1232 unsigned long active;
1233 unsigned long inactive;
1234 int zid = zone_idx(zone);
1235 int nid = zone_to_nid(zone);
1236
1237 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1238 BIT(LRU_INACTIVE_FILE));
1239 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1240 BIT(LRU_ACTIVE_FILE));
1241
1242 return (active > inactive);
1243 }
1244
1245 struct zone_reclaim_stat *
1246 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1247 {
1248 struct page_cgroup *pc;
1249 struct mem_cgroup_per_zone *mz;
1250
1251 if (mem_cgroup_disabled())
1252 return NULL;
1253
1254 pc = lookup_page_cgroup(page);
1255 if (!PageCgroupUsed(pc))
1256 return NULL;
1257 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1258 smp_rmb();
1259 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1260 return &mz->lruvec.reclaim_stat;
1261 }
1262
1263 #define mem_cgroup_from_res_counter(counter, member) \
1264 container_of(counter, struct mem_cgroup, member)
1265
1266 /**
1267 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1268 * @mem: the memory cgroup
1269 *
1270 * Returns the maximum amount of memory @mem can be charged with, in
1271 * pages.
1272 */
1273 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1274 {
1275 unsigned long long margin;
1276
1277 margin = res_counter_margin(&memcg->res);
1278 if (do_swap_account)
1279 margin = min(margin, res_counter_margin(&memcg->memsw));
1280 return margin >> PAGE_SHIFT;
1281 }
1282
1283 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1284 {
1285 struct cgroup *cgrp = memcg->css.cgroup;
1286
1287 /* root ? */
1288 if (cgrp->parent == NULL)
1289 return vm_swappiness;
1290
1291 return memcg->swappiness;
1292 }
1293
1294 /*
1295 * memcg->moving_account is used for checking possibility that some thread is
1296 * calling move_account(). When a thread on CPU-A starts moving pages under
1297 * a memcg, other threads should check memcg->moving_account under
1298 * rcu_read_lock(), like this:
1299 *
1300 * CPU-A CPU-B
1301 * rcu_read_lock()
1302 * memcg->moving_account+1 if (memcg->mocing_account)
1303 * take heavy locks.
1304 * synchronize_rcu() update something.
1305 * rcu_read_unlock()
1306 * start move here.
1307 */
1308
1309 /* for quick checking without looking up memcg */
1310 atomic_t memcg_moving __read_mostly;
1311
1312 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1313 {
1314 atomic_inc(&memcg_moving);
1315 atomic_inc(&memcg->moving_account);
1316 synchronize_rcu();
1317 }
1318
1319 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1320 {
1321 /*
1322 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1323 * We check NULL in callee rather than caller.
1324 */
1325 if (memcg) {
1326 atomic_dec(&memcg_moving);
1327 atomic_dec(&memcg->moving_account);
1328 }
1329 }
1330
1331 /*
1332 * 2 routines for checking "mem" is under move_account() or not.
1333 *
1334 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1335 * is used for avoiding races in accounting. If true,
1336 * pc->mem_cgroup may be overwritten.
1337 *
1338 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1339 * under hierarchy of moving cgroups. This is for
1340 * waiting at hith-memory prressure caused by "move".
1341 */
1342
1343 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1344 {
1345 VM_BUG_ON(!rcu_read_lock_held());
1346 return atomic_read(&memcg->moving_account) > 0;
1347 }
1348
1349 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1350 {
1351 struct mem_cgroup *from;
1352 struct mem_cgroup *to;
1353 bool ret = false;
1354 /*
1355 * Unlike task_move routines, we access mc.to, mc.from not under
1356 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1357 */
1358 spin_lock(&mc.lock);
1359 from = mc.from;
1360 to = mc.to;
1361 if (!from)
1362 goto unlock;
1363
1364 ret = mem_cgroup_same_or_subtree(memcg, from)
1365 || mem_cgroup_same_or_subtree(memcg, to);
1366 unlock:
1367 spin_unlock(&mc.lock);
1368 return ret;
1369 }
1370
1371 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1372 {
1373 if (mc.moving_task && current != mc.moving_task) {
1374 if (mem_cgroup_under_move(memcg)) {
1375 DEFINE_WAIT(wait);
1376 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1377 /* moving charge context might have finished. */
1378 if (mc.moving_task)
1379 schedule();
1380 finish_wait(&mc.waitq, &wait);
1381 return true;
1382 }
1383 }
1384 return false;
1385 }
1386
1387 /*
1388 * Take this lock when
1389 * - a code tries to modify page's memcg while it's USED.
1390 * - a code tries to modify page state accounting in a memcg.
1391 * see mem_cgroup_stolen(), too.
1392 */
1393 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1394 unsigned long *flags)
1395 {
1396 spin_lock_irqsave(&memcg->move_lock, *flags);
1397 }
1398
1399 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1400 unsigned long *flags)
1401 {
1402 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1403 }
1404
1405 /**
1406 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1407 * @memcg: The memory cgroup that went over limit
1408 * @p: Task that is going to be killed
1409 *
1410 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1411 * enabled
1412 */
1413 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1414 {
1415 struct cgroup *task_cgrp;
1416 struct cgroup *mem_cgrp;
1417 /*
1418 * Need a buffer in BSS, can't rely on allocations. The code relies
1419 * on the assumption that OOM is serialized for memory controller.
1420 * If this assumption is broken, revisit this code.
1421 */
1422 static char memcg_name[PATH_MAX];
1423 int ret;
1424
1425 if (!memcg || !p)
1426 return;
1427
1428 rcu_read_lock();
1429
1430 mem_cgrp = memcg->css.cgroup;
1431 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1432
1433 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1434 if (ret < 0) {
1435 /*
1436 * Unfortunately, we are unable to convert to a useful name
1437 * But we'll still print out the usage information
1438 */
1439 rcu_read_unlock();
1440 goto done;
1441 }
1442 rcu_read_unlock();
1443
1444 printk(KERN_INFO "Task in %s killed", memcg_name);
1445
1446 rcu_read_lock();
1447 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1448 if (ret < 0) {
1449 rcu_read_unlock();
1450 goto done;
1451 }
1452 rcu_read_unlock();
1453
1454 /*
1455 * Continues from above, so we don't need an KERN_ level
1456 */
1457 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1458 done:
1459
1460 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1461 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1462 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1463 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1464 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1465 "failcnt %llu\n",
1466 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1467 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1468 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1469 }
1470
1471 /*
1472 * This function returns the number of memcg under hierarchy tree. Returns
1473 * 1(self count) if no children.
1474 */
1475 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1476 {
1477 int num = 0;
1478 struct mem_cgroup *iter;
1479
1480 for_each_mem_cgroup_tree(iter, memcg)
1481 num++;
1482 return num;
1483 }
1484
1485 /*
1486 * Return the memory (and swap, if configured) limit for a memcg.
1487 */
1488 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1489 {
1490 u64 limit;
1491 u64 memsw;
1492
1493 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1494 limit += total_swap_pages << PAGE_SHIFT;
1495
1496 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1497 /*
1498 * If memsw is finite and limits the amount of swap space available
1499 * to this memcg, return that limit.
1500 */
1501 return min(limit, memsw);
1502 }
1503
1504 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1505 gfp_t gfp_mask,
1506 unsigned long flags)
1507 {
1508 unsigned long total = 0;
1509 bool noswap = false;
1510 int loop;
1511
1512 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1513 noswap = true;
1514 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1515 noswap = true;
1516
1517 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1518 if (loop)
1519 drain_all_stock_async(memcg);
1520 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1521 /*
1522 * Allow limit shrinkers, which are triggered directly
1523 * by userspace, to catch signals and stop reclaim
1524 * after minimal progress, regardless of the margin.
1525 */
1526 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1527 break;
1528 if (mem_cgroup_margin(memcg))
1529 break;
1530 /*
1531 * If nothing was reclaimed after two attempts, there
1532 * may be no reclaimable pages in this hierarchy.
1533 */
1534 if (loop && !total)
1535 break;
1536 }
1537 return total;
1538 }
1539
1540 /**
1541 * test_mem_cgroup_node_reclaimable
1542 * @mem: the target memcg
1543 * @nid: the node ID to be checked.
1544 * @noswap : specify true here if the user wants flle only information.
1545 *
1546 * This function returns whether the specified memcg contains any
1547 * reclaimable pages on a node. Returns true if there are any reclaimable
1548 * pages in the node.
1549 */
1550 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1551 int nid, bool noswap)
1552 {
1553 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1554 return true;
1555 if (noswap || !total_swap_pages)
1556 return false;
1557 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1558 return true;
1559 return false;
1560
1561 }
1562 #if MAX_NUMNODES > 1
1563
1564 /*
1565 * Always updating the nodemask is not very good - even if we have an empty
1566 * list or the wrong list here, we can start from some node and traverse all
1567 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1568 *
1569 */
1570 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1571 {
1572 int nid;
1573 /*
1574 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1575 * pagein/pageout changes since the last update.
1576 */
1577 if (!atomic_read(&memcg->numainfo_events))
1578 return;
1579 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1580 return;
1581
1582 /* make a nodemask where this memcg uses memory from */
1583 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1584
1585 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1586
1587 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1588 node_clear(nid, memcg->scan_nodes);
1589 }
1590
1591 atomic_set(&memcg->numainfo_events, 0);
1592 atomic_set(&memcg->numainfo_updating, 0);
1593 }
1594
1595 /*
1596 * Selecting a node where we start reclaim from. Because what we need is just
1597 * reducing usage counter, start from anywhere is O,K. Considering
1598 * memory reclaim from current node, there are pros. and cons.
1599 *
1600 * Freeing memory from current node means freeing memory from a node which
1601 * we'll use or we've used. So, it may make LRU bad. And if several threads
1602 * hit limits, it will see a contention on a node. But freeing from remote
1603 * node means more costs for memory reclaim because of memory latency.
1604 *
1605 * Now, we use round-robin. Better algorithm is welcomed.
1606 */
1607 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1608 {
1609 int node;
1610
1611 mem_cgroup_may_update_nodemask(memcg);
1612 node = memcg->last_scanned_node;
1613
1614 node = next_node(node, memcg->scan_nodes);
1615 if (node == MAX_NUMNODES)
1616 node = first_node(memcg->scan_nodes);
1617 /*
1618 * We call this when we hit limit, not when pages are added to LRU.
1619 * No LRU may hold pages because all pages are UNEVICTABLE or
1620 * memcg is too small and all pages are not on LRU. In that case,
1621 * we use curret node.
1622 */
1623 if (unlikely(node == MAX_NUMNODES))
1624 node = numa_node_id();
1625
1626 memcg->last_scanned_node = node;
1627 return node;
1628 }
1629
1630 /*
1631 * Check all nodes whether it contains reclaimable pages or not.
1632 * For quick scan, we make use of scan_nodes. This will allow us to skip
1633 * unused nodes. But scan_nodes is lazily updated and may not cotain
1634 * enough new information. We need to do double check.
1635 */
1636 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1637 {
1638 int nid;
1639
1640 /*
1641 * quick check...making use of scan_node.
1642 * We can skip unused nodes.
1643 */
1644 if (!nodes_empty(memcg->scan_nodes)) {
1645 for (nid = first_node(memcg->scan_nodes);
1646 nid < MAX_NUMNODES;
1647 nid = next_node(nid, memcg->scan_nodes)) {
1648
1649 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1650 return true;
1651 }
1652 }
1653 /*
1654 * Check rest of nodes.
1655 */
1656 for_each_node_state(nid, N_HIGH_MEMORY) {
1657 if (node_isset(nid, memcg->scan_nodes))
1658 continue;
1659 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1660 return true;
1661 }
1662 return false;
1663 }
1664
1665 #else
1666 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1667 {
1668 return 0;
1669 }
1670
1671 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1672 {
1673 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1674 }
1675 #endif
1676
1677 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1678 struct zone *zone,
1679 gfp_t gfp_mask,
1680 unsigned long *total_scanned)
1681 {
1682 struct mem_cgroup *victim = NULL;
1683 int total = 0;
1684 int loop = 0;
1685 unsigned long excess;
1686 unsigned long nr_scanned;
1687 struct mem_cgroup_reclaim_cookie reclaim = {
1688 .zone = zone,
1689 .priority = 0,
1690 };
1691
1692 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1693
1694 while (1) {
1695 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1696 if (!victim) {
1697 loop++;
1698 if (loop >= 2) {
1699 /*
1700 * If we have not been able to reclaim
1701 * anything, it might because there are
1702 * no reclaimable pages under this hierarchy
1703 */
1704 if (!total)
1705 break;
1706 /*
1707 * We want to do more targeted reclaim.
1708 * excess >> 2 is not to excessive so as to
1709 * reclaim too much, nor too less that we keep
1710 * coming back to reclaim from this cgroup
1711 */
1712 if (total >= (excess >> 2) ||
1713 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1714 break;
1715 }
1716 continue;
1717 }
1718 if (!mem_cgroup_reclaimable(victim, false))
1719 continue;
1720 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1721 zone, &nr_scanned);
1722 *total_scanned += nr_scanned;
1723 if (!res_counter_soft_limit_excess(&root_memcg->res))
1724 break;
1725 }
1726 mem_cgroup_iter_break(root_memcg, victim);
1727 return total;
1728 }
1729
1730 /*
1731 * Check OOM-Killer is already running under our hierarchy.
1732 * If someone is running, return false.
1733 * Has to be called with memcg_oom_lock
1734 */
1735 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1736 {
1737 struct mem_cgroup *iter, *failed = NULL;
1738
1739 for_each_mem_cgroup_tree(iter, memcg) {
1740 if (iter->oom_lock) {
1741 /*
1742 * this subtree of our hierarchy is already locked
1743 * so we cannot give a lock.
1744 */
1745 failed = iter;
1746 mem_cgroup_iter_break(memcg, iter);
1747 break;
1748 } else
1749 iter->oom_lock = true;
1750 }
1751
1752 if (!failed)
1753 return true;
1754
1755 /*
1756 * OK, we failed to lock the whole subtree so we have to clean up
1757 * what we set up to the failing subtree
1758 */
1759 for_each_mem_cgroup_tree(iter, memcg) {
1760 if (iter == failed) {
1761 mem_cgroup_iter_break(memcg, iter);
1762 break;
1763 }
1764 iter->oom_lock = false;
1765 }
1766 return false;
1767 }
1768
1769 /*
1770 * Has to be called with memcg_oom_lock
1771 */
1772 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1773 {
1774 struct mem_cgroup *iter;
1775
1776 for_each_mem_cgroup_tree(iter, memcg)
1777 iter->oom_lock = false;
1778 return 0;
1779 }
1780
1781 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1782 {
1783 struct mem_cgroup *iter;
1784
1785 for_each_mem_cgroup_tree(iter, memcg)
1786 atomic_inc(&iter->under_oom);
1787 }
1788
1789 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1790 {
1791 struct mem_cgroup *iter;
1792
1793 /*
1794 * When a new child is created while the hierarchy is under oom,
1795 * mem_cgroup_oom_lock() may not be called. We have to use
1796 * atomic_add_unless() here.
1797 */
1798 for_each_mem_cgroup_tree(iter, memcg)
1799 atomic_add_unless(&iter->under_oom, -1, 0);
1800 }
1801
1802 static DEFINE_SPINLOCK(memcg_oom_lock);
1803 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1804
1805 struct oom_wait_info {
1806 struct mem_cgroup *memcg;
1807 wait_queue_t wait;
1808 };
1809
1810 static int memcg_oom_wake_function(wait_queue_t *wait,
1811 unsigned mode, int sync, void *arg)
1812 {
1813 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1814 struct mem_cgroup *oom_wait_memcg;
1815 struct oom_wait_info *oom_wait_info;
1816
1817 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1818 oom_wait_memcg = oom_wait_info->memcg;
1819
1820 /*
1821 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1822 * Then we can use css_is_ancestor without taking care of RCU.
1823 */
1824 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1825 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1826 return 0;
1827 return autoremove_wake_function(wait, mode, sync, arg);
1828 }
1829
1830 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1831 {
1832 /* for filtering, pass "memcg" as argument. */
1833 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1834 }
1835
1836 static void memcg_oom_recover(struct mem_cgroup *memcg)
1837 {
1838 if (memcg && atomic_read(&memcg->under_oom))
1839 memcg_wakeup_oom(memcg);
1840 }
1841
1842 /*
1843 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1844 */
1845 bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1846 {
1847 struct oom_wait_info owait;
1848 bool locked, need_to_kill;
1849
1850 owait.memcg = memcg;
1851 owait.wait.flags = 0;
1852 owait.wait.func = memcg_oom_wake_function;
1853 owait.wait.private = current;
1854 INIT_LIST_HEAD(&owait.wait.task_list);
1855 need_to_kill = true;
1856 mem_cgroup_mark_under_oom(memcg);
1857
1858 /* At first, try to OOM lock hierarchy under memcg.*/
1859 spin_lock(&memcg_oom_lock);
1860 locked = mem_cgroup_oom_lock(memcg);
1861 /*
1862 * Even if signal_pending(), we can't quit charge() loop without
1863 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1864 * under OOM is always welcomed, use TASK_KILLABLE here.
1865 */
1866 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1867 if (!locked || memcg->oom_kill_disable)
1868 need_to_kill = false;
1869 if (locked)
1870 mem_cgroup_oom_notify(memcg);
1871 spin_unlock(&memcg_oom_lock);
1872
1873 if (need_to_kill) {
1874 finish_wait(&memcg_oom_waitq, &owait.wait);
1875 mem_cgroup_out_of_memory(memcg, mask, order);
1876 } else {
1877 schedule();
1878 finish_wait(&memcg_oom_waitq, &owait.wait);
1879 }
1880 spin_lock(&memcg_oom_lock);
1881 if (locked)
1882 mem_cgroup_oom_unlock(memcg);
1883 memcg_wakeup_oom(memcg);
1884 spin_unlock(&memcg_oom_lock);
1885
1886 mem_cgroup_unmark_under_oom(memcg);
1887
1888 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1889 return false;
1890 /* Give chance to dying process */
1891 schedule_timeout_uninterruptible(1);
1892 return true;
1893 }
1894
1895 /*
1896 * Currently used to update mapped file statistics, but the routine can be
1897 * generalized to update other statistics as well.
1898 *
1899 * Notes: Race condition
1900 *
1901 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1902 * it tends to be costly. But considering some conditions, we doesn't need
1903 * to do so _always_.
1904 *
1905 * Considering "charge", lock_page_cgroup() is not required because all
1906 * file-stat operations happen after a page is attached to radix-tree. There
1907 * are no race with "charge".
1908 *
1909 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1910 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1911 * if there are race with "uncharge". Statistics itself is properly handled
1912 * by flags.
1913 *
1914 * Considering "move", this is an only case we see a race. To make the race
1915 * small, we check mm->moving_account and detect there are possibility of race
1916 * If there is, we take a lock.
1917 */
1918
1919 void __mem_cgroup_begin_update_page_stat(struct page *page,
1920 bool *locked, unsigned long *flags)
1921 {
1922 struct mem_cgroup *memcg;
1923 struct page_cgroup *pc;
1924
1925 pc = lookup_page_cgroup(page);
1926 again:
1927 memcg = pc->mem_cgroup;
1928 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1929 return;
1930 /*
1931 * If this memory cgroup is not under account moving, we don't
1932 * need to take move_lock_page_cgroup(). Because we already hold
1933 * rcu_read_lock(), any calls to move_account will be delayed until
1934 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1935 */
1936 if (!mem_cgroup_stolen(memcg))
1937 return;
1938
1939 move_lock_mem_cgroup(memcg, flags);
1940 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1941 move_unlock_mem_cgroup(memcg, flags);
1942 goto again;
1943 }
1944 *locked = true;
1945 }
1946
1947 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1948 {
1949 struct page_cgroup *pc = lookup_page_cgroup(page);
1950
1951 /*
1952 * It's guaranteed that pc->mem_cgroup never changes while
1953 * lock is held because a routine modifies pc->mem_cgroup
1954 * should take move_lock_page_cgroup().
1955 */
1956 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1957 }
1958
1959 void mem_cgroup_update_page_stat(struct page *page,
1960 enum mem_cgroup_page_stat_item idx, int val)
1961 {
1962 struct mem_cgroup *memcg;
1963 struct page_cgroup *pc = lookup_page_cgroup(page);
1964 unsigned long uninitialized_var(flags);
1965
1966 if (mem_cgroup_disabled())
1967 return;
1968
1969 memcg = pc->mem_cgroup;
1970 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1971 return;
1972
1973 switch (idx) {
1974 case MEMCG_NR_FILE_MAPPED:
1975 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1976 break;
1977 default:
1978 BUG();
1979 }
1980
1981 this_cpu_add(memcg->stat->count[idx], val);
1982 }
1983
1984 /*
1985 * size of first charge trial. "32" comes from vmscan.c's magic value.
1986 * TODO: maybe necessary to use big numbers in big irons.
1987 */
1988 #define CHARGE_BATCH 32U
1989 struct memcg_stock_pcp {
1990 struct mem_cgroup *cached; /* this never be root cgroup */
1991 unsigned int nr_pages;
1992 struct work_struct work;
1993 unsigned long flags;
1994 #define FLUSHING_CACHED_CHARGE (0)
1995 };
1996 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1997 static DEFINE_MUTEX(percpu_charge_mutex);
1998
1999 /*
2000 * Try to consume stocked charge on this cpu. If success, one page is consumed
2001 * from local stock and true is returned. If the stock is 0 or charges from a
2002 * cgroup which is not current target, returns false. This stock will be
2003 * refilled.
2004 */
2005 static bool consume_stock(struct mem_cgroup *memcg)
2006 {
2007 struct memcg_stock_pcp *stock;
2008 bool ret = true;
2009
2010 stock = &get_cpu_var(memcg_stock);
2011 if (memcg == stock->cached && stock->nr_pages)
2012 stock->nr_pages--;
2013 else /* need to call res_counter_charge */
2014 ret = false;
2015 put_cpu_var(memcg_stock);
2016 return ret;
2017 }
2018
2019 /*
2020 * Returns stocks cached in percpu to res_counter and reset cached information.
2021 */
2022 static void drain_stock(struct memcg_stock_pcp *stock)
2023 {
2024 struct mem_cgroup *old = stock->cached;
2025
2026 if (stock->nr_pages) {
2027 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2028
2029 res_counter_uncharge(&old->res, bytes);
2030 if (do_swap_account)
2031 res_counter_uncharge(&old->memsw, bytes);
2032 stock->nr_pages = 0;
2033 }
2034 stock->cached = NULL;
2035 }
2036
2037 /*
2038 * This must be called under preempt disabled or must be called by
2039 * a thread which is pinned to local cpu.
2040 */
2041 static void drain_local_stock(struct work_struct *dummy)
2042 {
2043 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2044 drain_stock(stock);
2045 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2046 }
2047
2048 /*
2049 * Cache charges(val) which is from res_counter, to local per_cpu area.
2050 * This will be consumed by consume_stock() function, later.
2051 */
2052 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2053 {
2054 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2055
2056 if (stock->cached != memcg) { /* reset if necessary */
2057 drain_stock(stock);
2058 stock->cached = memcg;
2059 }
2060 stock->nr_pages += nr_pages;
2061 put_cpu_var(memcg_stock);
2062 }
2063
2064 /*
2065 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2066 * of the hierarchy under it. sync flag says whether we should block
2067 * until the work is done.
2068 */
2069 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2070 {
2071 int cpu, curcpu;
2072
2073 /* Notify other cpus that system-wide "drain" is running */
2074 get_online_cpus();
2075 curcpu = get_cpu();
2076 for_each_online_cpu(cpu) {
2077 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2078 struct mem_cgroup *memcg;
2079
2080 memcg = stock->cached;
2081 if (!memcg || !stock->nr_pages)
2082 continue;
2083 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2084 continue;
2085 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2086 if (cpu == curcpu)
2087 drain_local_stock(&stock->work);
2088 else
2089 schedule_work_on(cpu, &stock->work);
2090 }
2091 }
2092 put_cpu();
2093
2094 if (!sync)
2095 goto out;
2096
2097 for_each_online_cpu(cpu) {
2098 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2099 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2100 flush_work(&stock->work);
2101 }
2102 out:
2103 put_online_cpus();
2104 }
2105
2106 /*
2107 * Tries to drain stocked charges in other cpus. This function is asynchronous
2108 * and just put a work per cpu for draining localy on each cpu. Caller can
2109 * expects some charges will be back to res_counter later but cannot wait for
2110 * it.
2111 */
2112 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2113 {
2114 /*
2115 * If someone calls draining, avoid adding more kworker runs.
2116 */
2117 if (!mutex_trylock(&percpu_charge_mutex))
2118 return;
2119 drain_all_stock(root_memcg, false);
2120 mutex_unlock(&percpu_charge_mutex);
2121 }
2122
2123 /* This is a synchronous drain interface. */
2124 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2125 {
2126 /* called when force_empty is called */
2127 mutex_lock(&percpu_charge_mutex);
2128 drain_all_stock(root_memcg, true);
2129 mutex_unlock(&percpu_charge_mutex);
2130 }
2131
2132 /*
2133 * This function drains percpu counter value from DEAD cpu and
2134 * move it to local cpu. Note that this function can be preempted.
2135 */
2136 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2137 {
2138 int i;
2139
2140 spin_lock(&memcg->pcp_counter_lock);
2141 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2142 long x = per_cpu(memcg->stat->count[i], cpu);
2143
2144 per_cpu(memcg->stat->count[i], cpu) = 0;
2145 memcg->nocpu_base.count[i] += x;
2146 }
2147 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2148 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2149
2150 per_cpu(memcg->stat->events[i], cpu) = 0;
2151 memcg->nocpu_base.events[i] += x;
2152 }
2153 spin_unlock(&memcg->pcp_counter_lock);
2154 }
2155
2156 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2157 unsigned long action,
2158 void *hcpu)
2159 {
2160 int cpu = (unsigned long)hcpu;
2161 struct memcg_stock_pcp *stock;
2162 struct mem_cgroup *iter;
2163
2164 if (action == CPU_ONLINE)
2165 return NOTIFY_OK;
2166
2167 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2168 return NOTIFY_OK;
2169
2170 for_each_mem_cgroup(iter)
2171 mem_cgroup_drain_pcp_counter(iter, cpu);
2172
2173 stock = &per_cpu(memcg_stock, cpu);
2174 drain_stock(stock);
2175 return NOTIFY_OK;
2176 }
2177
2178
2179 /* See __mem_cgroup_try_charge() for details */
2180 enum {
2181 CHARGE_OK, /* success */
2182 CHARGE_RETRY, /* need to retry but retry is not bad */
2183 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2184 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2185 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2186 };
2187
2188 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2189 unsigned int nr_pages, bool oom_check)
2190 {
2191 unsigned long csize = nr_pages * PAGE_SIZE;
2192 struct mem_cgroup *mem_over_limit;
2193 struct res_counter *fail_res;
2194 unsigned long flags = 0;
2195 int ret;
2196
2197 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2198
2199 if (likely(!ret)) {
2200 if (!do_swap_account)
2201 return CHARGE_OK;
2202 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2203 if (likely(!ret))
2204 return CHARGE_OK;
2205
2206 res_counter_uncharge(&memcg->res, csize);
2207 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2208 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2209 } else
2210 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2211 /*
2212 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2213 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2214 *
2215 * Never reclaim on behalf of optional batching, retry with a
2216 * single page instead.
2217 */
2218 if (nr_pages == CHARGE_BATCH)
2219 return CHARGE_RETRY;
2220
2221 if (!(gfp_mask & __GFP_WAIT))
2222 return CHARGE_WOULDBLOCK;
2223
2224 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2225 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2226 return CHARGE_RETRY;
2227 /*
2228 * Even though the limit is exceeded at this point, reclaim
2229 * may have been able to free some pages. Retry the charge
2230 * before killing the task.
2231 *
2232 * Only for regular pages, though: huge pages are rather
2233 * unlikely to succeed so close to the limit, and we fall back
2234 * to regular pages anyway in case of failure.
2235 */
2236 if (nr_pages == 1 && ret)
2237 return CHARGE_RETRY;
2238
2239 /*
2240 * At task move, charge accounts can be doubly counted. So, it's
2241 * better to wait until the end of task_move if something is going on.
2242 */
2243 if (mem_cgroup_wait_acct_move(mem_over_limit))
2244 return CHARGE_RETRY;
2245
2246 /* If we don't need to call oom-killer at el, return immediately */
2247 if (!oom_check)
2248 return CHARGE_NOMEM;
2249 /* check OOM */
2250 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2251 return CHARGE_OOM_DIE;
2252
2253 return CHARGE_RETRY;
2254 }
2255
2256 /*
2257 * __mem_cgroup_try_charge() does
2258 * 1. detect memcg to be charged against from passed *mm and *ptr,
2259 * 2. update res_counter
2260 * 3. call memory reclaim if necessary.
2261 *
2262 * In some special case, if the task is fatal, fatal_signal_pending() or
2263 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2264 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2265 * as possible without any hazards. 2: all pages should have a valid
2266 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2267 * pointer, that is treated as a charge to root_mem_cgroup.
2268 *
2269 * So __mem_cgroup_try_charge() will return
2270 * 0 ... on success, filling *ptr with a valid memcg pointer.
2271 * -ENOMEM ... charge failure because of resource limits.
2272 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2273 *
2274 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2275 * the oom-killer can be invoked.
2276 */
2277 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2278 gfp_t gfp_mask,
2279 unsigned int nr_pages,
2280 struct mem_cgroup **ptr,
2281 bool oom)
2282 {
2283 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2284 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2285 struct mem_cgroup *memcg = NULL;
2286 int ret;
2287
2288 /*
2289 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2290 * in system level. So, allow to go ahead dying process in addition to
2291 * MEMDIE process.
2292 */
2293 if (unlikely(test_thread_flag(TIF_MEMDIE)
2294 || fatal_signal_pending(current)))
2295 goto bypass;
2296
2297 /*
2298 * We always charge the cgroup the mm_struct belongs to.
2299 * The mm_struct's mem_cgroup changes on task migration if the
2300 * thread group leader migrates. It's possible that mm is not
2301 * set, if so charge the init_mm (happens for pagecache usage).
2302 */
2303 if (!*ptr && !mm)
2304 *ptr = root_mem_cgroup;
2305 again:
2306 if (*ptr) { /* css should be a valid one */
2307 memcg = *ptr;
2308 VM_BUG_ON(css_is_removed(&memcg->css));
2309 if (mem_cgroup_is_root(memcg))
2310 goto done;
2311 if (nr_pages == 1 && consume_stock(memcg))
2312 goto done;
2313 css_get(&memcg->css);
2314 } else {
2315 struct task_struct *p;
2316
2317 rcu_read_lock();
2318 p = rcu_dereference(mm->owner);
2319 /*
2320 * Because we don't have task_lock(), "p" can exit.
2321 * In that case, "memcg" can point to root or p can be NULL with
2322 * race with swapoff. Then, we have small risk of mis-accouning.
2323 * But such kind of mis-account by race always happens because
2324 * we don't have cgroup_mutex(). It's overkill and we allo that
2325 * small race, here.
2326 * (*) swapoff at el will charge against mm-struct not against
2327 * task-struct. So, mm->owner can be NULL.
2328 */
2329 memcg = mem_cgroup_from_task(p);
2330 if (!memcg)
2331 memcg = root_mem_cgroup;
2332 if (mem_cgroup_is_root(memcg)) {
2333 rcu_read_unlock();
2334 goto done;
2335 }
2336 if (nr_pages == 1 && consume_stock(memcg)) {
2337 /*
2338 * It seems dagerous to access memcg without css_get().
2339 * But considering how consume_stok works, it's not
2340 * necessary. If consume_stock success, some charges
2341 * from this memcg are cached on this cpu. So, we
2342 * don't need to call css_get()/css_tryget() before
2343 * calling consume_stock().
2344 */
2345 rcu_read_unlock();
2346 goto done;
2347 }
2348 /* after here, we may be blocked. we need to get refcnt */
2349 if (!css_tryget(&memcg->css)) {
2350 rcu_read_unlock();
2351 goto again;
2352 }
2353 rcu_read_unlock();
2354 }
2355
2356 do {
2357 bool oom_check;
2358
2359 /* If killed, bypass charge */
2360 if (fatal_signal_pending(current)) {
2361 css_put(&memcg->css);
2362 goto bypass;
2363 }
2364
2365 oom_check = false;
2366 if (oom && !nr_oom_retries) {
2367 oom_check = true;
2368 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2369 }
2370
2371 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2372 switch (ret) {
2373 case CHARGE_OK:
2374 break;
2375 case CHARGE_RETRY: /* not in OOM situation but retry */
2376 batch = nr_pages;
2377 css_put(&memcg->css);
2378 memcg = NULL;
2379 goto again;
2380 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2381 css_put(&memcg->css);
2382 goto nomem;
2383 case CHARGE_NOMEM: /* OOM routine works */
2384 if (!oom) {
2385 css_put(&memcg->css);
2386 goto nomem;
2387 }
2388 /* If oom, we never return -ENOMEM */
2389 nr_oom_retries--;
2390 break;
2391 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2392 css_put(&memcg->css);
2393 goto bypass;
2394 }
2395 } while (ret != CHARGE_OK);
2396
2397 if (batch > nr_pages)
2398 refill_stock(memcg, batch - nr_pages);
2399 css_put(&memcg->css);
2400 done:
2401 *ptr = memcg;
2402 return 0;
2403 nomem:
2404 *ptr = NULL;
2405 return -ENOMEM;
2406 bypass:
2407 *ptr = root_mem_cgroup;
2408 return -EINTR;
2409 }
2410
2411 /*
2412 * Somemtimes we have to undo a charge we got by try_charge().
2413 * This function is for that and do uncharge, put css's refcnt.
2414 * gotten by try_charge().
2415 */
2416 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2417 unsigned int nr_pages)
2418 {
2419 if (!mem_cgroup_is_root(memcg)) {
2420 unsigned long bytes = nr_pages * PAGE_SIZE;
2421
2422 res_counter_uncharge(&memcg->res, bytes);
2423 if (do_swap_account)
2424 res_counter_uncharge(&memcg->memsw, bytes);
2425 }
2426 }
2427
2428 /*
2429 * A helper function to get mem_cgroup from ID. must be called under
2430 * rcu_read_lock(). The caller must check css_is_removed() or some if
2431 * it's concern. (dropping refcnt from swap can be called against removed
2432 * memcg.)
2433 */
2434 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2435 {
2436 struct cgroup_subsys_state *css;
2437
2438 /* ID 0 is unused ID */
2439 if (!id)
2440 return NULL;
2441 css = css_lookup(&mem_cgroup_subsys, id);
2442 if (!css)
2443 return NULL;
2444 return container_of(css, struct mem_cgroup, css);
2445 }
2446
2447 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2448 {
2449 struct mem_cgroup *memcg = NULL;
2450 struct page_cgroup *pc;
2451 unsigned short id;
2452 swp_entry_t ent;
2453
2454 VM_BUG_ON(!PageLocked(page));
2455
2456 pc = lookup_page_cgroup(page);
2457 lock_page_cgroup(pc);
2458 if (PageCgroupUsed(pc)) {
2459 memcg = pc->mem_cgroup;
2460 if (memcg && !css_tryget(&memcg->css))
2461 memcg = NULL;
2462 } else if (PageSwapCache(page)) {
2463 ent.val = page_private(page);
2464 id = lookup_swap_cgroup_id(ent);
2465 rcu_read_lock();
2466 memcg = mem_cgroup_lookup(id);
2467 if (memcg && !css_tryget(&memcg->css))
2468 memcg = NULL;
2469 rcu_read_unlock();
2470 }
2471 unlock_page_cgroup(pc);
2472 return memcg;
2473 }
2474
2475 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2476 struct page *page,
2477 unsigned int nr_pages,
2478 enum charge_type ctype,
2479 bool lrucare)
2480 {
2481 struct page_cgroup *pc = lookup_page_cgroup(page);
2482 struct zone *uninitialized_var(zone);
2483 bool was_on_lru = false;
2484 bool anon;
2485
2486 lock_page_cgroup(pc);
2487 if (unlikely(PageCgroupUsed(pc))) {
2488 unlock_page_cgroup(pc);
2489 __mem_cgroup_cancel_charge(memcg, nr_pages);
2490 return;
2491 }
2492 /*
2493 * we don't need page_cgroup_lock about tail pages, becase they are not
2494 * accessed by any other context at this point.
2495 */
2496
2497 /*
2498 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2499 * may already be on some other mem_cgroup's LRU. Take care of it.
2500 */
2501 if (lrucare) {
2502 zone = page_zone(page);
2503 spin_lock_irq(&zone->lru_lock);
2504 if (PageLRU(page)) {
2505 ClearPageLRU(page);
2506 del_page_from_lru_list(zone, page, page_lru(page));
2507 was_on_lru = true;
2508 }
2509 }
2510
2511 pc->mem_cgroup = memcg;
2512 /*
2513 * We access a page_cgroup asynchronously without lock_page_cgroup().
2514 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2515 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2516 * before USED bit, we need memory barrier here.
2517 * See mem_cgroup_add_lru_list(), etc.
2518 */
2519 smp_wmb();
2520 SetPageCgroupUsed(pc);
2521
2522 if (lrucare) {
2523 if (was_on_lru) {
2524 VM_BUG_ON(PageLRU(page));
2525 SetPageLRU(page);
2526 add_page_to_lru_list(zone, page, page_lru(page));
2527 }
2528 spin_unlock_irq(&zone->lru_lock);
2529 }
2530
2531 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2532 anon = true;
2533 else
2534 anon = false;
2535
2536 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2537 unlock_page_cgroup(pc);
2538
2539 /*
2540 * "charge_statistics" updated event counter. Then, check it.
2541 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2542 * if they exceeds softlimit.
2543 */
2544 memcg_check_events(memcg, page);
2545 }
2546
2547 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2548
2549 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MIGRATION))
2550 /*
2551 * Because tail pages are not marked as "used", set it. We're under
2552 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2553 * charge/uncharge will be never happen and move_account() is done under
2554 * compound_lock(), so we don't have to take care of races.
2555 */
2556 void mem_cgroup_split_huge_fixup(struct page *head)
2557 {
2558 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2559 struct page_cgroup *pc;
2560 int i;
2561
2562 if (mem_cgroup_disabled())
2563 return;
2564 for (i = 1; i < HPAGE_PMD_NR; i++) {
2565 pc = head_pc + i;
2566 pc->mem_cgroup = head_pc->mem_cgroup;
2567 smp_wmb();/* see __commit_charge() */
2568 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2569 }
2570 }
2571 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2572
2573 /**
2574 * mem_cgroup_move_account - move account of the page
2575 * @page: the page
2576 * @nr_pages: number of regular pages (>1 for huge pages)
2577 * @pc: page_cgroup of the page.
2578 * @from: mem_cgroup which the page is moved from.
2579 * @to: mem_cgroup which the page is moved to. @from != @to.
2580 * @uncharge: whether we should call uncharge and css_put against @from.
2581 *
2582 * The caller must confirm following.
2583 * - page is not on LRU (isolate_page() is useful.)
2584 * - compound_lock is held when nr_pages > 1
2585 *
2586 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2587 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2588 * true, this function does "uncharge" from old cgroup, but it doesn't if
2589 * @uncharge is false, so a caller should do "uncharge".
2590 */
2591 static int mem_cgroup_move_account(struct page *page,
2592 unsigned int nr_pages,
2593 struct page_cgroup *pc,
2594 struct mem_cgroup *from,
2595 struct mem_cgroup *to,
2596 bool uncharge)
2597 {
2598 unsigned long flags;
2599 int ret;
2600 bool anon = PageAnon(page);
2601
2602 VM_BUG_ON(from == to);
2603 VM_BUG_ON(PageLRU(page));
2604 /*
2605 * The page is isolated from LRU. So, collapse function
2606 * will not handle this page. But page splitting can happen.
2607 * Do this check under compound_page_lock(). The caller should
2608 * hold it.
2609 */
2610 ret = -EBUSY;
2611 if (nr_pages > 1 && !PageTransHuge(page))
2612 goto out;
2613
2614 lock_page_cgroup(pc);
2615
2616 ret = -EINVAL;
2617 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2618 goto unlock;
2619
2620 move_lock_mem_cgroup(from, &flags);
2621
2622 if (!anon && page_mapped(page)) {
2623 /* Update mapped_file data for mem_cgroup */
2624 preempt_disable();
2625 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2626 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2627 preempt_enable();
2628 }
2629 mem_cgroup_charge_statistics(from, anon, -nr_pages);
2630 if (uncharge)
2631 /* This is not "cancel", but cancel_charge does all we need. */
2632 __mem_cgroup_cancel_charge(from, nr_pages);
2633
2634 /* caller should have done css_get */
2635 pc->mem_cgroup = to;
2636 mem_cgroup_charge_statistics(to, anon, nr_pages);
2637 /*
2638 * We charges against "to" which may not have any tasks. Then, "to"
2639 * can be under rmdir(). But in current implementation, caller of
2640 * this function is just force_empty() and move charge, so it's
2641 * guaranteed that "to" is never removed. So, we don't check rmdir
2642 * status here.
2643 */
2644 move_unlock_mem_cgroup(from, &flags);
2645 ret = 0;
2646 unlock:
2647 unlock_page_cgroup(pc);
2648 /*
2649 * check events
2650 */
2651 memcg_check_events(to, page);
2652 memcg_check_events(from, page);
2653 out:
2654 return ret;
2655 }
2656
2657 /*
2658 * move charges to its parent.
2659 */
2660
2661 static int mem_cgroup_move_parent(struct page *page,
2662 struct page_cgroup *pc,
2663 struct mem_cgroup *child,
2664 gfp_t gfp_mask)
2665 {
2666 struct cgroup *cg = child->css.cgroup;
2667 struct cgroup *pcg = cg->parent;
2668 struct mem_cgroup *parent;
2669 unsigned int nr_pages;
2670 unsigned long uninitialized_var(flags);
2671 int ret;
2672
2673 /* Is ROOT ? */
2674 if (!pcg)
2675 return -EINVAL;
2676
2677 ret = -EBUSY;
2678 if (!get_page_unless_zero(page))
2679 goto out;
2680 if (isolate_lru_page(page))
2681 goto put;
2682
2683 nr_pages = hpage_nr_pages(page);
2684
2685 parent = mem_cgroup_from_cont(pcg);
2686 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2687 if (ret)
2688 goto put_back;
2689
2690 if (nr_pages > 1)
2691 flags = compound_lock_irqsave(page);
2692
2693 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2694 if (ret)
2695 __mem_cgroup_cancel_charge(parent, nr_pages);
2696
2697 if (nr_pages > 1)
2698 compound_unlock_irqrestore(page, flags);
2699 put_back:
2700 putback_lru_page(page);
2701 put:
2702 put_page(page);
2703 out:
2704 return ret;
2705 }
2706
2707 /*
2708 * Charge the memory controller for page usage.
2709 * Return
2710 * 0 if the charge was successful
2711 * < 0 if the cgroup is over its limit
2712 */
2713 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2714 gfp_t gfp_mask, enum charge_type ctype)
2715 {
2716 struct mem_cgroup *memcg = NULL;
2717 unsigned int nr_pages = 1;
2718 bool oom = true;
2719 int ret;
2720
2721 if (PageTransHuge(page)) {
2722 nr_pages <<= compound_order(page);
2723 VM_BUG_ON(!PageTransHuge(page));
2724 /*
2725 * Never OOM-kill a process for a huge page. The
2726 * fault handler will fall back to regular pages.
2727 */
2728 oom = false;
2729 }
2730
2731 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2732 if (ret == -ENOMEM)
2733 return ret;
2734 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2735 return 0;
2736 }
2737
2738 int mem_cgroup_newpage_charge(struct page *page,
2739 struct mm_struct *mm, gfp_t gfp_mask)
2740 {
2741 if (mem_cgroup_disabled())
2742 return 0;
2743 VM_BUG_ON(page_mapped(page));
2744 VM_BUG_ON(page->mapping && !PageAnon(page));
2745 VM_BUG_ON(!mm);
2746 return mem_cgroup_charge_common(page, mm, gfp_mask,
2747 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2748 }
2749
2750 static void
2751 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2752 enum charge_type ctype);
2753
2754 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2755 gfp_t gfp_mask)
2756 {
2757 struct mem_cgroup *memcg = NULL;
2758 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2759 int ret;
2760
2761 if (mem_cgroup_disabled())
2762 return 0;
2763 if (PageCompound(page))
2764 return 0;
2765
2766 if (unlikely(!mm))
2767 mm = &init_mm;
2768 if (!page_is_file_cache(page))
2769 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2770
2771 if (!PageSwapCache(page))
2772 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2773 else { /* page is swapcache/shmem */
2774 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2775 if (!ret)
2776 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2777 }
2778 return ret;
2779 }
2780
2781 /*
2782 * While swap-in, try_charge -> commit or cancel, the page is locked.
2783 * And when try_charge() successfully returns, one refcnt to memcg without
2784 * struct page_cgroup is acquired. This refcnt will be consumed by
2785 * "commit()" or removed by "cancel()"
2786 */
2787 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2788 struct page *page,
2789 gfp_t mask, struct mem_cgroup **memcgp)
2790 {
2791 struct mem_cgroup *memcg;
2792 int ret;
2793
2794 *memcgp = NULL;
2795
2796 if (mem_cgroup_disabled())
2797 return 0;
2798
2799 if (!do_swap_account)
2800 goto charge_cur_mm;
2801 /*
2802 * A racing thread's fault, or swapoff, may have already updated
2803 * the pte, and even removed page from swap cache: in those cases
2804 * do_swap_page()'s pte_same() test will fail; but there's also a
2805 * KSM case which does need to charge the page.
2806 */
2807 if (!PageSwapCache(page))
2808 goto charge_cur_mm;
2809 memcg = try_get_mem_cgroup_from_page(page);
2810 if (!memcg)
2811 goto charge_cur_mm;
2812 *memcgp = memcg;
2813 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2814 css_put(&memcg->css);
2815 if (ret == -EINTR)
2816 ret = 0;
2817 return ret;
2818 charge_cur_mm:
2819 if (unlikely(!mm))
2820 mm = &init_mm;
2821 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2822 if (ret == -EINTR)
2823 ret = 0;
2824 return ret;
2825 }
2826
2827 static void
2828 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2829 enum charge_type ctype)
2830 {
2831 if (mem_cgroup_disabled())
2832 return;
2833 if (!memcg)
2834 return;
2835 cgroup_exclude_rmdir(&memcg->css);
2836
2837 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2838 /*
2839 * Now swap is on-memory. This means this page may be
2840 * counted both as mem and swap....double count.
2841 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2842 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2843 * may call delete_from_swap_cache() before reach here.
2844 */
2845 if (do_swap_account && PageSwapCache(page)) {
2846 swp_entry_t ent = {.val = page_private(page)};
2847 mem_cgroup_uncharge_swap(ent);
2848 }
2849 /*
2850 * At swapin, we may charge account against cgroup which has no tasks.
2851 * So, rmdir()->pre_destroy() can be called while we do this charge.
2852 * In that case, we need to call pre_destroy() again. check it here.
2853 */
2854 cgroup_release_and_wakeup_rmdir(&memcg->css);
2855 }
2856
2857 void mem_cgroup_commit_charge_swapin(struct page *page,
2858 struct mem_cgroup *memcg)
2859 {
2860 __mem_cgroup_commit_charge_swapin(page, memcg,
2861 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2862 }
2863
2864 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2865 {
2866 if (mem_cgroup_disabled())
2867 return;
2868 if (!memcg)
2869 return;
2870 __mem_cgroup_cancel_charge(memcg, 1);
2871 }
2872
2873 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2874 unsigned int nr_pages,
2875 const enum charge_type ctype)
2876 {
2877 struct memcg_batch_info *batch = NULL;
2878 bool uncharge_memsw = true;
2879
2880 /* If swapout, usage of swap doesn't decrease */
2881 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2882 uncharge_memsw = false;
2883
2884 batch = &current->memcg_batch;
2885 /*
2886 * In usual, we do css_get() when we remember memcg pointer.
2887 * But in this case, we keep res->usage until end of a series of
2888 * uncharges. Then, it's ok to ignore memcg's refcnt.
2889 */
2890 if (!batch->memcg)
2891 batch->memcg = memcg;
2892 /*
2893 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2894 * In those cases, all pages freed continuously can be expected to be in
2895 * the same cgroup and we have chance to coalesce uncharges.
2896 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2897 * because we want to do uncharge as soon as possible.
2898 */
2899
2900 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2901 goto direct_uncharge;
2902
2903 if (nr_pages > 1)
2904 goto direct_uncharge;
2905
2906 /*
2907 * In typical case, batch->memcg == mem. This means we can
2908 * merge a series of uncharges to an uncharge of res_counter.
2909 * If not, we uncharge res_counter ony by one.
2910 */
2911 if (batch->memcg != memcg)
2912 goto direct_uncharge;
2913 /* remember freed charge and uncharge it later */
2914 batch->nr_pages++;
2915 if (uncharge_memsw)
2916 batch->memsw_nr_pages++;
2917 return;
2918 direct_uncharge:
2919 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2920 if (uncharge_memsw)
2921 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2922 if (unlikely(batch->memcg != memcg))
2923 memcg_oom_recover(memcg);
2924 }
2925
2926 /*
2927 * uncharge if !page_mapped(page)
2928 */
2929 static struct mem_cgroup *
2930 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2931 {
2932 struct mem_cgroup *memcg = NULL;
2933 unsigned int nr_pages = 1;
2934 struct page_cgroup *pc;
2935 bool anon;
2936
2937 if (mem_cgroup_disabled())
2938 return NULL;
2939
2940 if (PageSwapCache(page))
2941 return NULL;
2942
2943 if (PageTransHuge(page)) {
2944 nr_pages <<= compound_order(page);
2945 VM_BUG_ON(!PageTransHuge(page));
2946 }
2947 /*
2948 * Check if our page_cgroup is valid
2949 */
2950 pc = lookup_page_cgroup(page);
2951 if (unlikely(!PageCgroupUsed(pc)))
2952 return NULL;
2953
2954 lock_page_cgroup(pc);
2955
2956 memcg = pc->mem_cgroup;
2957
2958 if (!PageCgroupUsed(pc))
2959 goto unlock_out;
2960
2961 anon = PageAnon(page);
2962
2963 switch (ctype) {
2964 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2965 /*
2966 * Generally PageAnon tells if it's the anon statistics to be
2967 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
2968 * used before page reached the stage of being marked PageAnon.
2969 */
2970 anon = true;
2971 /* fallthrough */
2972 case MEM_CGROUP_CHARGE_TYPE_DROP:
2973 /* See mem_cgroup_prepare_migration() */
2974 if (page_mapped(page) || PageCgroupMigration(pc))
2975 goto unlock_out;
2976 break;
2977 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2978 if (!PageAnon(page)) { /* Shared memory */
2979 if (page->mapping && !page_is_file_cache(page))
2980 goto unlock_out;
2981 } else if (page_mapped(page)) /* Anon */
2982 goto unlock_out;
2983 break;
2984 default:
2985 break;
2986 }
2987
2988 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
2989
2990 ClearPageCgroupUsed(pc);
2991 /*
2992 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2993 * freed from LRU. This is safe because uncharged page is expected not
2994 * to be reused (freed soon). Exception is SwapCache, it's handled by
2995 * special functions.
2996 */
2997
2998 unlock_page_cgroup(pc);
2999 /*
3000 * even after unlock, we have memcg->res.usage here and this memcg
3001 * will never be freed.
3002 */
3003 memcg_check_events(memcg, page);
3004 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3005 mem_cgroup_swap_statistics(memcg, true);
3006 mem_cgroup_get(memcg);
3007 }
3008 if (!mem_cgroup_is_root(memcg))
3009 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3010
3011 return memcg;
3012
3013 unlock_out:
3014 unlock_page_cgroup(pc);
3015 return NULL;
3016 }
3017
3018 void mem_cgroup_uncharge_page(struct page *page)
3019 {
3020 /* early check. */
3021 if (page_mapped(page))
3022 return;
3023 VM_BUG_ON(page->mapping && !PageAnon(page));
3024 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3025 }
3026
3027 void mem_cgroup_uncharge_cache_page(struct page *page)
3028 {
3029 VM_BUG_ON(page_mapped(page));
3030 VM_BUG_ON(page->mapping);
3031 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3032 }
3033
3034 /*
3035 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3036 * In that cases, pages are freed continuously and we can expect pages
3037 * are in the same memcg. All these calls itself limits the number of
3038 * pages freed at once, then uncharge_start/end() is called properly.
3039 * This may be called prural(2) times in a context,
3040 */
3041
3042 void mem_cgroup_uncharge_start(void)
3043 {
3044 current->memcg_batch.do_batch++;
3045 /* We can do nest. */
3046 if (current->memcg_batch.do_batch == 1) {
3047 current->memcg_batch.memcg = NULL;
3048 current->memcg_batch.nr_pages = 0;
3049 current->memcg_batch.memsw_nr_pages = 0;
3050 }
3051 }
3052
3053 void mem_cgroup_uncharge_end(void)
3054 {
3055 struct memcg_batch_info *batch = &current->memcg_batch;
3056
3057 if (!batch->do_batch)
3058 return;
3059
3060 batch->do_batch--;
3061 if (batch->do_batch) /* If stacked, do nothing. */
3062 return;
3063
3064 if (!batch->memcg)
3065 return;
3066 /*
3067 * This "batch->memcg" is valid without any css_get/put etc...
3068 * bacause we hide charges behind us.
3069 */
3070 if (batch->nr_pages)
3071 res_counter_uncharge(&batch->memcg->res,
3072 batch->nr_pages * PAGE_SIZE);
3073 if (batch->memsw_nr_pages)
3074 res_counter_uncharge(&batch->memcg->memsw,
3075 batch->memsw_nr_pages * PAGE_SIZE);
3076 memcg_oom_recover(batch->memcg);
3077 /* forget this pointer (for sanity check) */
3078 batch->memcg = NULL;
3079 }
3080
3081 #ifdef CONFIG_SWAP
3082 /*
3083 * called after __delete_from_swap_cache() and drop "page" account.
3084 * memcg information is recorded to swap_cgroup of "ent"
3085 */
3086 void
3087 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3088 {
3089 struct mem_cgroup *memcg;
3090 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3091
3092 if (!swapout) /* this was a swap cache but the swap is unused ! */
3093 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3094
3095 memcg = __mem_cgroup_uncharge_common(page, ctype);
3096
3097 /*
3098 * record memcg information, if swapout && memcg != NULL,
3099 * mem_cgroup_get() was called in uncharge().
3100 */
3101 if (do_swap_account && swapout && memcg)
3102 swap_cgroup_record(ent, css_id(&memcg->css));
3103 }
3104 #endif
3105
3106 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3107 /*
3108 * called from swap_entry_free(). remove record in swap_cgroup and
3109 * uncharge "memsw" account.
3110 */
3111 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3112 {
3113 struct mem_cgroup *memcg;
3114 unsigned short id;
3115
3116 if (!do_swap_account)
3117 return;
3118
3119 id = swap_cgroup_record(ent, 0);
3120 rcu_read_lock();
3121 memcg = mem_cgroup_lookup(id);
3122 if (memcg) {
3123 /*
3124 * We uncharge this because swap is freed.
3125 * This memcg can be obsolete one. We avoid calling css_tryget
3126 */
3127 if (!mem_cgroup_is_root(memcg))
3128 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3129 mem_cgroup_swap_statistics(memcg, false);
3130 mem_cgroup_put(memcg);
3131 }
3132 rcu_read_unlock();
3133 }
3134
3135 /**
3136 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3137 * @entry: swap entry to be moved
3138 * @from: mem_cgroup which the entry is moved from
3139 * @to: mem_cgroup which the entry is moved to
3140 *
3141 * It succeeds only when the swap_cgroup's record for this entry is the same
3142 * as the mem_cgroup's id of @from.
3143 *
3144 * Returns 0 on success, -EINVAL on failure.
3145 *
3146 * The caller must have charged to @to, IOW, called res_counter_charge() about
3147 * both res and memsw, and called css_get().
3148 */
3149 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3150 struct mem_cgroup *from, struct mem_cgroup *to)
3151 {
3152 unsigned short old_id, new_id;
3153
3154 old_id = css_id(&from->css);
3155 new_id = css_id(&to->css);
3156
3157 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3158 mem_cgroup_swap_statistics(from, false);
3159 mem_cgroup_swap_statistics(to, true);
3160 /*
3161 * This function is only called from task migration context now.
3162 * It postpones res_counter and refcount handling till the end
3163 * of task migration(mem_cgroup_clear_mc()) for performance
3164 * improvement. But we cannot postpone mem_cgroup_get(to)
3165 * because if the process that has been moved to @to does
3166 * swap-in, the refcount of @to might be decreased to 0.
3167 */
3168 mem_cgroup_get(to);
3169 return 0;
3170 }
3171 return -EINVAL;
3172 }
3173 #else
3174 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3175 struct mem_cgroup *from, struct mem_cgroup *to)
3176 {
3177 return -EINVAL;
3178 }
3179 #endif
3180
3181 /*
3182 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3183 * page belongs to.
3184 */
3185 int mem_cgroup_prepare_migration(struct page *page,
3186 struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3187 {
3188 struct mem_cgroup *memcg = NULL;
3189 struct page_cgroup *pc;
3190 enum charge_type ctype;
3191 int ret = 0;
3192
3193 *memcgp = NULL;
3194
3195 VM_BUG_ON(PageTransHuge(page));
3196 if (mem_cgroup_disabled())
3197 return 0;
3198
3199 pc = lookup_page_cgroup(page);
3200 lock_page_cgroup(pc);
3201 if (PageCgroupUsed(pc)) {
3202 memcg = pc->mem_cgroup;
3203 css_get(&memcg->css);
3204 /*
3205 * At migrating an anonymous page, its mapcount goes down
3206 * to 0 and uncharge() will be called. But, even if it's fully
3207 * unmapped, migration may fail and this page has to be
3208 * charged again. We set MIGRATION flag here and delay uncharge
3209 * until end_migration() is called
3210 *
3211 * Corner Case Thinking
3212 * A)
3213 * When the old page was mapped as Anon and it's unmap-and-freed
3214 * while migration was ongoing.
3215 * If unmap finds the old page, uncharge() of it will be delayed
3216 * until end_migration(). If unmap finds a new page, it's
3217 * uncharged when it make mapcount to be 1->0. If unmap code
3218 * finds swap_migration_entry, the new page will not be mapped
3219 * and end_migration() will find it(mapcount==0).
3220 *
3221 * B)
3222 * When the old page was mapped but migraion fails, the kernel
3223 * remaps it. A charge for it is kept by MIGRATION flag even
3224 * if mapcount goes down to 0. We can do remap successfully
3225 * without charging it again.
3226 *
3227 * C)
3228 * The "old" page is under lock_page() until the end of
3229 * migration, so, the old page itself will not be swapped-out.
3230 * If the new page is swapped out before end_migraton, our
3231 * hook to usual swap-out path will catch the event.
3232 */
3233 if (PageAnon(page))
3234 SetPageCgroupMigration(pc);
3235 }
3236 unlock_page_cgroup(pc);
3237 /*
3238 * If the page is not charged at this point,
3239 * we return here.
3240 */
3241 if (!memcg)
3242 return 0;
3243
3244 *memcgp = memcg;
3245 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3246 css_put(&memcg->css);/* drop extra refcnt */
3247 if (ret) {
3248 if (PageAnon(page)) {
3249 lock_page_cgroup(pc);
3250 ClearPageCgroupMigration(pc);
3251 unlock_page_cgroup(pc);
3252 /*
3253 * The old page may be fully unmapped while we kept it.
3254 */
3255 mem_cgroup_uncharge_page(page);
3256 }
3257 /* we'll need to revisit this error code (we have -EINTR) */
3258 return -ENOMEM;
3259 }
3260 /*
3261 * We charge new page before it's used/mapped. So, even if unlock_page()
3262 * is called before end_migration, we can catch all events on this new
3263 * page. In the case new page is migrated but not remapped, new page's
3264 * mapcount will be finally 0 and we call uncharge in end_migration().
3265 */
3266 if (PageAnon(page))
3267 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3268 else if (page_is_file_cache(page))
3269 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3270 else
3271 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3272 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3273 return ret;
3274 }
3275
3276 /* remove redundant charge if migration failed*/
3277 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3278 struct page *oldpage, struct page *newpage, bool migration_ok)
3279 {
3280 struct page *used, *unused;
3281 struct page_cgroup *pc;
3282 bool anon;
3283
3284 if (!memcg)
3285 return;
3286 /* blocks rmdir() */
3287 cgroup_exclude_rmdir(&memcg->css);
3288 if (!migration_ok) {
3289 used = oldpage;
3290 unused = newpage;
3291 } else {
3292 used = newpage;
3293 unused = oldpage;
3294 }
3295 /*
3296 * We disallowed uncharge of pages under migration because mapcount
3297 * of the page goes down to zero, temporarly.
3298 * Clear the flag and check the page should be charged.
3299 */
3300 pc = lookup_page_cgroup(oldpage);
3301 lock_page_cgroup(pc);
3302 ClearPageCgroupMigration(pc);
3303 unlock_page_cgroup(pc);
3304 anon = PageAnon(used);
3305 __mem_cgroup_uncharge_common(unused,
3306 anon ? MEM_CGROUP_CHARGE_TYPE_MAPPED
3307 : MEM_CGROUP_CHARGE_TYPE_CACHE);
3308
3309 /*
3310 * If a page is a file cache, radix-tree replacement is very atomic
3311 * and we can skip this check. When it was an Anon page, its mapcount
3312 * goes down to 0. But because we added MIGRATION flage, it's not
3313 * uncharged yet. There are several case but page->mapcount check
3314 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3315 * check. (see prepare_charge() also)
3316 */
3317 if (anon)
3318 mem_cgroup_uncharge_page(used);
3319 /*
3320 * At migration, we may charge account against cgroup which has no
3321 * tasks.
3322 * So, rmdir()->pre_destroy() can be called while we do this charge.
3323 * In that case, we need to call pre_destroy() again. check it here.
3324 */
3325 cgroup_release_and_wakeup_rmdir(&memcg->css);
3326 }
3327
3328 /*
3329 * At replace page cache, newpage is not under any memcg but it's on
3330 * LRU. So, this function doesn't touch res_counter but handles LRU
3331 * in correct way. Both pages are locked so we cannot race with uncharge.
3332 */
3333 void mem_cgroup_replace_page_cache(struct page *oldpage,
3334 struct page *newpage)
3335 {
3336 struct mem_cgroup *memcg = NULL;
3337 struct page_cgroup *pc;
3338 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3339
3340 if (mem_cgroup_disabled())
3341 return;
3342
3343 pc = lookup_page_cgroup(oldpage);
3344 /* fix accounting on old pages */
3345 lock_page_cgroup(pc);
3346 if (PageCgroupUsed(pc)) {
3347 memcg = pc->mem_cgroup;
3348 mem_cgroup_charge_statistics(memcg, false, -1);
3349 ClearPageCgroupUsed(pc);
3350 }
3351 unlock_page_cgroup(pc);
3352
3353 /*
3354 * When called from shmem_replace_page(), in some cases the
3355 * oldpage has already been charged, and in some cases not.
3356 */
3357 if (!memcg)
3358 return;
3359
3360 if (PageSwapBacked(oldpage))
3361 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3362
3363 /*
3364 * Even if newpage->mapping was NULL before starting replacement,
3365 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3366 * LRU while we overwrite pc->mem_cgroup.
3367 */
3368 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3369 }
3370
3371 #ifdef CONFIG_DEBUG_VM
3372 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3373 {
3374 struct page_cgroup *pc;
3375
3376 pc = lookup_page_cgroup(page);
3377 /*
3378 * Can be NULL while feeding pages into the page allocator for
3379 * the first time, i.e. during boot or memory hotplug;
3380 * or when mem_cgroup_disabled().
3381 */
3382 if (likely(pc) && PageCgroupUsed(pc))
3383 return pc;
3384 return NULL;
3385 }
3386
3387 bool mem_cgroup_bad_page_check(struct page *page)
3388 {
3389 if (mem_cgroup_disabled())
3390 return false;
3391
3392 return lookup_page_cgroup_used(page) != NULL;
3393 }
3394
3395 void mem_cgroup_print_bad_page(struct page *page)
3396 {
3397 struct page_cgroup *pc;
3398
3399 pc = lookup_page_cgroup_used(page);
3400 if (pc) {
3401 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3402 pc, pc->flags, pc->mem_cgroup);
3403 }
3404 }
3405 #endif
3406
3407 static DEFINE_MUTEX(set_limit_mutex);
3408
3409 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3410 unsigned long long val)
3411 {
3412 int retry_count;
3413 u64 memswlimit, memlimit;
3414 int ret = 0;
3415 int children = mem_cgroup_count_children(memcg);
3416 u64 curusage, oldusage;
3417 int enlarge;
3418
3419 /*
3420 * For keeping hierarchical_reclaim simple, how long we should retry
3421 * is depends on callers. We set our retry-count to be function
3422 * of # of children which we should visit in this loop.
3423 */
3424 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3425
3426 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3427
3428 enlarge = 0;
3429 while (retry_count) {
3430 if (signal_pending(current)) {
3431 ret = -EINTR;
3432 break;
3433 }
3434 /*
3435 * Rather than hide all in some function, I do this in
3436 * open coded manner. You see what this really does.
3437 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3438 */
3439 mutex_lock(&set_limit_mutex);
3440 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3441 if (memswlimit < val) {
3442 ret = -EINVAL;
3443 mutex_unlock(&set_limit_mutex);
3444 break;
3445 }
3446
3447 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3448 if (memlimit < val)
3449 enlarge = 1;
3450
3451 ret = res_counter_set_limit(&memcg->res, val);
3452 if (!ret) {
3453 if (memswlimit == val)
3454 memcg->memsw_is_minimum = true;
3455 else
3456 memcg->memsw_is_minimum = false;
3457 }
3458 mutex_unlock(&set_limit_mutex);
3459
3460 if (!ret)
3461 break;
3462
3463 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3464 MEM_CGROUP_RECLAIM_SHRINK);
3465 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3466 /* Usage is reduced ? */
3467 if (curusage >= oldusage)
3468 retry_count--;
3469 else
3470 oldusage = curusage;
3471 }
3472 if (!ret && enlarge)
3473 memcg_oom_recover(memcg);
3474
3475 return ret;
3476 }
3477
3478 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3479 unsigned long long val)
3480 {
3481 int retry_count;
3482 u64 memlimit, memswlimit, oldusage, curusage;
3483 int children = mem_cgroup_count_children(memcg);
3484 int ret = -EBUSY;
3485 int enlarge = 0;
3486
3487 /* see mem_cgroup_resize_res_limit */
3488 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3489 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3490 while (retry_count) {
3491 if (signal_pending(current)) {
3492 ret = -EINTR;
3493 break;
3494 }
3495 /*
3496 * Rather than hide all in some function, I do this in
3497 * open coded manner. You see what this really does.
3498 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3499 */
3500 mutex_lock(&set_limit_mutex);
3501 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3502 if (memlimit > val) {
3503 ret = -EINVAL;
3504 mutex_unlock(&set_limit_mutex);
3505 break;
3506 }
3507 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3508 if (memswlimit < val)
3509 enlarge = 1;
3510 ret = res_counter_set_limit(&memcg->memsw, val);
3511 if (!ret) {
3512 if (memlimit == val)
3513 memcg->memsw_is_minimum = true;
3514 else
3515 memcg->memsw_is_minimum = false;
3516 }
3517 mutex_unlock(&set_limit_mutex);
3518
3519 if (!ret)
3520 break;
3521
3522 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3523 MEM_CGROUP_RECLAIM_NOSWAP |
3524 MEM_CGROUP_RECLAIM_SHRINK);
3525 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3526 /* Usage is reduced ? */
3527 if (curusage >= oldusage)
3528 retry_count--;
3529 else
3530 oldusage = curusage;
3531 }
3532 if (!ret && enlarge)
3533 memcg_oom_recover(memcg);
3534 return ret;
3535 }
3536
3537 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3538 gfp_t gfp_mask,
3539 unsigned long *total_scanned)
3540 {
3541 unsigned long nr_reclaimed = 0;
3542 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3543 unsigned long reclaimed;
3544 int loop = 0;
3545 struct mem_cgroup_tree_per_zone *mctz;
3546 unsigned long long excess;
3547 unsigned long nr_scanned;
3548
3549 if (order > 0)
3550 return 0;
3551
3552 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3553 /*
3554 * This loop can run a while, specially if mem_cgroup's continuously
3555 * keep exceeding their soft limit and putting the system under
3556 * pressure
3557 */
3558 do {
3559 if (next_mz)
3560 mz = next_mz;
3561 else
3562 mz = mem_cgroup_largest_soft_limit_node(mctz);
3563 if (!mz)
3564 break;
3565
3566 nr_scanned = 0;
3567 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3568 gfp_mask, &nr_scanned);
3569 nr_reclaimed += reclaimed;
3570 *total_scanned += nr_scanned;
3571 spin_lock(&mctz->lock);
3572
3573 /*
3574 * If we failed to reclaim anything from this memory cgroup
3575 * it is time to move on to the next cgroup
3576 */
3577 next_mz = NULL;
3578 if (!reclaimed) {
3579 do {
3580 /*
3581 * Loop until we find yet another one.
3582 *
3583 * By the time we get the soft_limit lock
3584 * again, someone might have aded the
3585 * group back on the RB tree. Iterate to
3586 * make sure we get a different mem.
3587 * mem_cgroup_largest_soft_limit_node returns
3588 * NULL if no other cgroup is present on
3589 * the tree
3590 */
3591 next_mz =
3592 __mem_cgroup_largest_soft_limit_node(mctz);
3593 if (next_mz == mz)
3594 css_put(&next_mz->memcg->css);
3595 else /* next_mz == NULL or other memcg */
3596 break;
3597 } while (1);
3598 }
3599 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3600 excess = res_counter_soft_limit_excess(&mz->memcg->res);
3601 /*
3602 * One school of thought says that we should not add
3603 * back the node to the tree if reclaim returns 0.
3604 * But our reclaim could return 0, simply because due
3605 * to priority we are exposing a smaller subset of
3606 * memory to reclaim from. Consider this as a longer
3607 * term TODO.
3608 */
3609 /* If excess == 0, no tree ops */
3610 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3611 spin_unlock(&mctz->lock);
3612 css_put(&mz->memcg->css);
3613 loop++;
3614 /*
3615 * Could not reclaim anything and there are no more
3616 * mem cgroups to try or we seem to be looping without
3617 * reclaiming anything.
3618 */
3619 if (!nr_reclaimed &&
3620 (next_mz == NULL ||
3621 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3622 break;
3623 } while (!nr_reclaimed);
3624 if (next_mz)
3625 css_put(&next_mz->memcg->css);
3626 return nr_reclaimed;
3627 }
3628
3629 /*
3630 * This routine traverse page_cgroup in given list and drop them all.
3631 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3632 */
3633 static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3634 int node, int zid, enum lru_list lru)
3635 {
3636 struct mem_cgroup_per_zone *mz;
3637 unsigned long flags, loop;
3638 struct list_head *list;
3639 struct page *busy;
3640 struct zone *zone;
3641 int ret = 0;
3642
3643 zone = &NODE_DATA(node)->node_zones[zid];
3644 mz = mem_cgroup_zoneinfo(memcg, node, zid);
3645 list = &mz->lruvec.lists[lru];
3646
3647 loop = mz->lru_size[lru];
3648 /* give some margin against EBUSY etc...*/
3649 loop += 256;
3650 busy = NULL;
3651 while (loop--) {
3652 struct page_cgroup *pc;
3653 struct page *page;
3654
3655 ret = 0;
3656 spin_lock_irqsave(&zone->lru_lock, flags);
3657 if (list_empty(list)) {
3658 spin_unlock_irqrestore(&zone->lru_lock, flags);
3659 break;
3660 }
3661 page = list_entry(list->prev, struct page, lru);
3662 if (busy == page) {
3663 list_move(&page->lru, list);
3664 busy = NULL;
3665 spin_unlock_irqrestore(&zone->lru_lock, flags);
3666 continue;
3667 }
3668 spin_unlock_irqrestore(&zone->lru_lock, flags);
3669
3670 pc = lookup_page_cgroup(page);
3671
3672 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3673 if (ret == -ENOMEM || ret == -EINTR)
3674 break;
3675
3676 if (ret == -EBUSY || ret == -EINVAL) {
3677 /* found lock contention or "pc" is obsolete. */
3678 busy = page;
3679 cond_resched();
3680 } else
3681 busy = NULL;
3682 }
3683
3684 if (!ret && !list_empty(list))
3685 return -EBUSY;
3686 return ret;
3687 }
3688
3689 /*
3690 * make mem_cgroup's charge to be 0 if there is no task.
3691 * This enables deleting this mem_cgroup.
3692 */
3693 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3694 {
3695 int ret;
3696 int node, zid, shrink;
3697 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3698 struct cgroup *cgrp = memcg->css.cgroup;
3699
3700 css_get(&memcg->css);
3701
3702 shrink = 0;
3703 /* should free all ? */
3704 if (free_all)
3705 goto try_to_free;
3706 move_account:
3707 do {
3708 ret = -EBUSY;
3709 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3710 goto out;
3711 ret = -EINTR;
3712 if (signal_pending(current))
3713 goto out;
3714 /* This is for making all *used* pages to be on LRU. */
3715 lru_add_drain_all();
3716 drain_all_stock_sync(memcg);
3717 ret = 0;
3718 mem_cgroup_start_move(memcg);
3719 for_each_node_state(node, N_HIGH_MEMORY) {
3720 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3721 enum lru_list lru;
3722 for_each_lru(lru) {
3723 ret = mem_cgroup_force_empty_list(memcg,
3724 node, zid, lru);
3725 if (ret)
3726 break;
3727 }
3728 }
3729 if (ret)
3730 break;
3731 }
3732 mem_cgroup_end_move(memcg);
3733 memcg_oom_recover(memcg);
3734 /* it seems parent cgroup doesn't have enough mem */
3735 if (ret == -ENOMEM)
3736 goto try_to_free;
3737 cond_resched();
3738 /* "ret" should also be checked to ensure all lists are empty. */
3739 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3740 out:
3741 css_put(&memcg->css);
3742 return ret;
3743
3744 try_to_free:
3745 /* returns EBUSY if there is a task or if we come here twice. */
3746 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3747 ret = -EBUSY;
3748 goto out;
3749 }
3750 /* we call try-to-free pages for make this cgroup empty */
3751 lru_add_drain_all();
3752 /* try to free all pages in this cgroup */
3753 shrink = 1;
3754 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3755 int progress;
3756
3757 if (signal_pending(current)) {
3758 ret = -EINTR;
3759 goto out;
3760 }
3761 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3762 false);
3763 if (!progress) {
3764 nr_retries--;
3765 /* maybe some writeback is necessary */
3766 congestion_wait(BLK_RW_ASYNC, HZ/10);
3767 }
3768
3769 }
3770 lru_add_drain();
3771 /* try move_account...there may be some *locked* pages. */
3772 goto move_account;
3773 }
3774
3775 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3776 {
3777 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3778 }
3779
3780
3781 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3782 {
3783 return mem_cgroup_from_cont(cont)->use_hierarchy;
3784 }
3785
3786 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3787 u64 val)
3788 {
3789 int retval = 0;
3790 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3791 struct cgroup *parent = cont->parent;
3792 struct mem_cgroup *parent_memcg = NULL;
3793
3794 if (parent)
3795 parent_memcg = mem_cgroup_from_cont(parent);
3796
3797 cgroup_lock();
3798 /*
3799 * If parent's use_hierarchy is set, we can't make any modifications
3800 * in the child subtrees. If it is unset, then the change can
3801 * occur, provided the current cgroup has no children.
3802 *
3803 * For the root cgroup, parent_mem is NULL, we allow value to be
3804 * set if there are no children.
3805 */
3806 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3807 (val == 1 || val == 0)) {
3808 if (list_empty(&cont->children))
3809 memcg->use_hierarchy = val;
3810 else
3811 retval = -EBUSY;
3812 } else
3813 retval = -EINVAL;
3814 cgroup_unlock();
3815
3816 return retval;
3817 }
3818
3819
3820 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3821 enum mem_cgroup_stat_index idx)
3822 {
3823 struct mem_cgroup *iter;
3824 long val = 0;
3825
3826 /* Per-cpu values can be negative, use a signed accumulator */
3827 for_each_mem_cgroup_tree(iter, memcg)
3828 val += mem_cgroup_read_stat(iter, idx);
3829
3830 if (val < 0) /* race ? */
3831 val = 0;
3832 return val;
3833 }
3834
3835 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3836 {
3837 u64 val;
3838
3839 if (!mem_cgroup_is_root(memcg)) {
3840 if (!swap)
3841 return res_counter_read_u64(&memcg->res, RES_USAGE);
3842 else
3843 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3844 }
3845
3846 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3847 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3848
3849 if (swap)
3850 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3851
3852 return val << PAGE_SHIFT;
3853 }
3854
3855 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3856 struct file *file, char __user *buf,
3857 size_t nbytes, loff_t *ppos)
3858 {
3859 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3860 char str[64];
3861 u64 val;
3862 int type, name, len;
3863
3864 type = MEMFILE_TYPE(cft->private);
3865 name = MEMFILE_ATTR(cft->private);
3866
3867 if (!do_swap_account && type == _MEMSWAP)
3868 return -EOPNOTSUPP;
3869
3870 switch (type) {
3871 case _MEM:
3872 if (name == RES_USAGE)
3873 val = mem_cgroup_usage(memcg, false);
3874 else
3875 val = res_counter_read_u64(&memcg->res, name);
3876 break;
3877 case _MEMSWAP:
3878 if (name == RES_USAGE)
3879 val = mem_cgroup_usage(memcg, true);
3880 else
3881 val = res_counter_read_u64(&memcg->memsw, name);
3882 break;
3883 default:
3884 BUG();
3885 }
3886
3887 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3888 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
3889 }
3890 /*
3891 * The user of this function is...
3892 * RES_LIMIT.
3893 */
3894 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3895 const char *buffer)
3896 {
3897 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3898 int type, name;
3899 unsigned long long val;
3900 int ret;
3901
3902 type = MEMFILE_TYPE(cft->private);
3903 name = MEMFILE_ATTR(cft->private);
3904
3905 if (!do_swap_account && type == _MEMSWAP)
3906 return -EOPNOTSUPP;
3907
3908 switch (name) {
3909 case RES_LIMIT:
3910 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3911 ret = -EINVAL;
3912 break;
3913 }
3914 /* This function does all necessary parse...reuse it */
3915 ret = res_counter_memparse_write_strategy(buffer, &val);
3916 if (ret)
3917 break;
3918 if (type == _MEM)
3919 ret = mem_cgroup_resize_limit(memcg, val);
3920 else
3921 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3922 break;
3923 case RES_SOFT_LIMIT:
3924 ret = res_counter_memparse_write_strategy(buffer, &val);
3925 if (ret)
3926 break;
3927 /*
3928 * For memsw, soft limits are hard to implement in terms
3929 * of semantics, for now, we support soft limits for
3930 * control without swap
3931 */
3932 if (type == _MEM)
3933 ret = res_counter_set_soft_limit(&memcg->res, val);
3934 else
3935 ret = -EINVAL;
3936 break;
3937 default:
3938 ret = -EINVAL; /* should be BUG() ? */
3939 break;
3940 }
3941 return ret;
3942 }
3943
3944 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3945 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3946 {
3947 struct cgroup *cgroup;
3948 unsigned long long min_limit, min_memsw_limit, tmp;
3949
3950 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3951 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3952 cgroup = memcg->css.cgroup;
3953 if (!memcg->use_hierarchy)
3954 goto out;
3955
3956 while (cgroup->parent) {
3957 cgroup = cgroup->parent;
3958 memcg = mem_cgroup_from_cont(cgroup);
3959 if (!memcg->use_hierarchy)
3960 break;
3961 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3962 min_limit = min(min_limit, tmp);
3963 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3964 min_memsw_limit = min(min_memsw_limit, tmp);
3965 }
3966 out:
3967 *mem_limit = min_limit;
3968 *memsw_limit = min_memsw_limit;
3969 }
3970
3971 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3972 {
3973 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3974 int type, name;
3975
3976 type = MEMFILE_TYPE(event);
3977 name = MEMFILE_ATTR(event);
3978
3979 if (!do_swap_account && type == _MEMSWAP)
3980 return -EOPNOTSUPP;
3981
3982 switch (name) {
3983 case RES_MAX_USAGE:
3984 if (type == _MEM)
3985 res_counter_reset_max(&memcg->res);
3986 else
3987 res_counter_reset_max(&memcg->memsw);
3988 break;
3989 case RES_FAILCNT:
3990 if (type == _MEM)
3991 res_counter_reset_failcnt(&memcg->res);
3992 else
3993 res_counter_reset_failcnt(&memcg->memsw);
3994 break;
3995 }
3996
3997 return 0;
3998 }
3999
4000 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4001 struct cftype *cft)
4002 {
4003 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4004 }
4005
4006 #ifdef CONFIG_MMU
4007 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4008 struct cftype *cft, u64 val)
4009 {
4010 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4011
4012 if (val >= (1 << NR_MOVE_TYPE))
4013 return -EINVAL;
4014 /*
4015 * We check this value several times in both in can_attach() and
4016 * attach(), so we need cgroup lock to prevent this value from being
4017 * inconsistent.
4018 */
4019 cgroup_lock();
4020 memcg->move_charge_at_immigrate = val;
4021 cgroup_unlock();
4022
4023 return 0;
4024 }
4025 #else
4026 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4027 struct cftype *cft, u64 val)
4028 {
4029 return -ENOSYS;
4030 }
4031 #endif
4032
4033
4034 /* For read statistics */
4035 enum {
4036 MCS_CACHE,
4037 MCS_RSS,
4038 MCS_FILE_MAPPED,
4039 MCS_PGPGIN,
4040 MCS_PGPGOUT,
4041 MCS_SWAP,
4042 MCS_PGFAULT,
4043 MCS_PGMAJFAULT,
4044 MCS_INACTIVE_ANON,
4045 MCS_ACTIVE_ANON,
4046 MCS_INACTIVE_FILE,
4047 MCS_ACTIVE_FILE,
4048 MCS_UNEVICTABLE,
4049 NR_MCS_STAT,
4050 };
4051
4052 struct mcs_total_stat {
4053 s64 stat[NR_MCS_STAT];
4054 };
4055
4056 struct {
4057 char *local_name;
4058 char *total_name;
4059 } memcg_stat_strings[NR_MCS_STAT] = {
4060 {"cache", "total_cache"},
4061 {"rss", "total_rss"},
4062 {"mapped_file", "total_mapped_file"},
4063 {"pgpgin", "total_pgpgin"},
4064 {"pgpgout", "total_pgpgout"},
4065 {"swap", "total_swap"},
4066 {"pgfault", "total_pgfault"},
4067 {"pgmajfault", "total_pgmajfault"},
4068 {"inactive_anon", "total_inactive_anon"},
4069 {"active_anon", "total_active_anon"},
4070 {"inactive_file", "total_inactive_file"},
4071 {"active_file", "total_active_file"},
4072 {"unevictable", "total_unevictable"}
4073 };
4074
4075
4076 static void
4077 mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4078 {
4079 s64 val;
4080
4081 /* per cpu stat */
4082 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
4083 s->stat[MCS_CACHE] += val * PAGE_SIZE;
4084 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
4085 s->stat[MCS_RSS] += val * PAGE_SIZE;
4086 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4087 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4088 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
4089 s->stat[MCS_PGPGIN] += val;
4090 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
4091 s->stat[MCS_PGPGOUT] += val;
4092 if (do_swap_account) {
4093 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4094 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4095 }
4096 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4097 s->stat[MCS_PGFAULT] += val;
4098 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4099 s->stat[MCS_PGMAJFAULT] += val;
4100
4101 /* per zone stat */
4102 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
4103 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4104 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
4105 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4106 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
4107 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4108 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
4109 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4110 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4111 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4112 }
4113
4114 static void
4115 mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4116 {
4117 struct mem_cgroup *iter;
4118
4119 for_each_mem_cgroup_tree(iter, memcg)
4120 mem_cgroup_get_local_stat(iter, s);
4121 }
4122
4123 #ifdef CONFIG_NUMA
4124 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4125 {
4126 int nid;
4127 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4128 unsigned long node_nr;
4129 struct cgroup *cont = m->private;
4130 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4131
4132 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4133 seq_printf(m, "total=%lu", total_nr);
4134 for_each_node_state(nid, N_HIGH_MEMORY) {
4135 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4136 seq_printf(m, " N%d=%lu", nid, node_nr);
4137 }
4138 seq_putc(m, '\n');
4139
4140 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4141 seq_printf(m, "file=%lu", file_nr);
4142 for_each_node_state(nid, N_HIGH_MEMORY) {
4143 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4144 LRU_ALL_FILE);
4145 seq_printf(m, " N%d=%lu", nid, node_nr);
4146 }
4147 seq_putc(m, '\n');
4148
4149 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4150 seq_printf(m, "anon=%lu", anon_nr);
4151 for_each_node_state(nid, N_HIGH_MEMORY) {
4152 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4153 LRU_ALL_ANON);
4154 seq_printf(m, " N%d=%lu", nid, node_nr);
4155 }
4156 seq_putc(m, '\n');
4157
4158 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4159 seq_printf(m, "unevictable=%lu", unevictable_nr);
4160 for_each_node_state(nid, N_HIGH_MEMORY) {
4161 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4162 BIT(LRU_UNEVICTABLE));
4163 seq_printf(m, " N%d=%lu", nid, node_nr);
4164 }
4165 seq_putc(m, '\n');
4166 return 0;
4167 }
4168 #endif /* CONFIG_NUMA */
4169
4170 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4171 struct cgroup_map_cb *cb)
4172 {
4173 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4174 struct mcs_total_stat mystat;
4175 int i;
4176
4177 memset(&mystat, 0, sizeof(mystat));
4178 mem_cgroup_get_local_stat(memcg, &mystat);
4179
4180
4181 for (i = 0; i < NR_MCS_STAT; i++) {
4182 if (i == MCS_SWAP && !do_swap_account)
4183 continue;
4184 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4185 }
4186
4187 /* Hierarchical information */
4188 {
4189 unsigned long long limit, memsw_limit;
4190 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4191 cb->fill(cb, "hierarchical_memory_limit", limit);
4192 if (do_swap_account)
4193 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4194 }
4195
4196 memset(&mystat, 0, sizeof(mystat));
4197 mem_cgroup_get_total_stat(memcg, &mystat);
4198 for (i = 0; i < NR_MCS_STAT; i++) {
4199 if (i == MCS_SWAP && !do_swap_account)
4200 continue;
4201 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4202 }
4203
4204 #ifdef CONFIG_DEBUG_VM
4205 {
4206 int nid, zid;
4207 struct mem_cgroup_per_zone *mz;
4208 struct zone_reclaim_stat *rstat;
4209 unsigned long recent_rotated[2] = {0, 0};
4210 unsigned long recent_scanned[2] = {0, 0};
4211
4212 for_each_online_node(nid)
4213 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4214 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4215 rstat = &mz->lruvec.reclaim_stat;
4216
4217 recent_rotated[0] += rstat->recent_rotated[0];
4218 recent_rotated[1] += rstat->recent_rotated[1];
4219 recent_scanned[0] += rstat->recent_scanned[0];
4220 recent_scanned[1] += rstat->recent_scanned[1];
4221 }
4222 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4223 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4224 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4225 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4226 }
4227 #endif
4228
4229 return 0;
4230 }
4231
4232 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4233 {
4234 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4235
4236 return mem_cgroup_swappiness(memcg);
4237 }
4238
4239 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4240 u64 val)
4241 {
4242 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4243 struct mem_cgroup *parent;
4244
4245 if (val > 100)
4246 return -EINVAL;
4247
4248 if (cgrp->parent == NULL)
4249 return -EINVAL;
4250
4251 parent = mem_cgroup_from_cont(cgrp->parent);
4252
4253 cgroup_lock();
4254
4255 /* If under hierarchy, only empty-root can set this value */
4256 if ((parent->use_hierarchy) ||
4257 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4258 cgroup_unlock();
4259 return -EINVAL;
4260 }
4261
4262 memcg->swappiness = val;
4263
4264 cgroup_unlock();
4265
4266 return 0;
4267 }
4268
4269 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4270 {
4271 struct mem_cgroup_threshold_ary *t;
4272 u64 usage;
4273 int i;
4274
4275 rcu_read_lock();
4276 if (!swap)
4277 t = rcu_dereference(memcg->thresholds.primary);
4278 else
4279 t = rcu_dereference(memcg->memsw_thresholds.primary);
4280
4281 if (!t)
4282 goto unlock;
4283
4284 usage = mem_cgroup_usage(memcg, swap);
4285
4286 /*
4287 * current_threshold points to threshold just below usage.
4288 * If it's not true, a threshold was crossed after last
4289 * call of __mem_cgroup_threshold().
4290 */
4291 i = t->current_threshold;
4292
4293 /*
4294 * Iterate backward over array of thresholds starting from
4295 * current_threshold and check if a threshold is crossed.
4296 * If none of thresholds below usage is crossed, we read
4297 * only one element of the array here.
4298 */
4299 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4300 eventfd_signal(t->entries[i].eventfd, 1);
4301
4302 /* i = current_threshold + 1 */
4303 i++;
4304
4305 /*
4306 * Iterate forward over array of thresholds starting from
4307 * current_threshold+1 and check if a threshold is crossed.
4308 * If none of thresholds above usage is crossed, we read
4309 * only one element of the array here.
4310 */
4311 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4312 eventfd_signal(t->entries[i].eventfd, 1);
4313
4314 /* Update current_threshold */
4315 t->current_threshold = i - 1;
4316 unlock:
4317 rcu_read_unlock();
4318 }
4319
4320 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4321 {
4322 while (memcg) {
4323 __mem_cgroup_threshold(memcg, false);
4324 if (do_swap_account)
4325 __mem_cgroup_threshold(memcg, true);
4326
4327 memcg = parent_mem_cgroup(memcg);
4328 }
4329 }
4330
4331 static int compare_thresholds(const void *a, const void *b)
4332 {
4333 const struct mem_cgroup_threshold *_a = a;
4334 const struct mem_cgroup_threshold *_b = b;
4335
4336 return _a->threshold - _b->threshold;
4337 }
4338
4339 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4340 {
4341 struct mem_cgroup_eventfd_list *ev;
4342
4343 list_for_each_entry(ev, &memcg->oom_notify, list)
4344 eventfd_signal(ev->eventfd, 1);
4345 return 0;
4346 }
4347
4348 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4349 {
4350 struct mem_cgroup *iter;
4351
4352 for_each_mem_cgroup_tree(iter, memcg)
4353 mem_cgroup_oom_notify_cb(iter);
4354 }
4355
4356 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4357 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4358 {
4359 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4360 struct mem_cgroup_thresholds *thresholds;
4361 struct mem_cgroup_threshold_ary *new;
4362 int type = MEMFILE_TYPE(cft->private);
4363 u64 threshold, usage;
4364 int i, size, ret;
4365
4366 ret = res_counter_memparse_write_strategy(args, &threshold);
4367 if (ret)
4368 return ret;
4369
4370 mutex_lock(&memcg->thresholds_lock);
4371
4372 if (type == _MEM)
4373 thresholds = &memcg->thresholds;
4374 else if (type == _MEMSWAP)
4375 thresholds = &memcg->memsw_thresholds;
4376 else
4377 BUG();
4378
4379 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4380
4381 /* Check if a threshold crossed before adding a new one */
4382 if (thresholds->primary)
4383 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4384
4385 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4386
4387 /* Allocate memory for new array of thresholds */
4388 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4389 GFP_KERNEL);
4390 if (!new) {
4391 ret = -ENOMEM;
4392 goto unlock;
4393 }
4394 new->size = size;
4395
4396 /* Copy thresholds (if any) to new array */
4397 if (thresholds->primary) {
4398 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4399 sizeof(struct mem_cgroup_threshold));
4400 }
4401
4402 /* Add new threshold */
4403 new->entries[size - 1].eventfd = eventfd;
4404 new->entries[size - 1].threshold = threshold;
4405
4406 /* Sort thresholds. Registering of new threshold isn't time-critical */
4407 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4408 compare_thresholds, NULL);
4409
4410 /* Find current threshold */
4411 new->current_threshold = -1;
4412 for (i = 0; i < size; i++) {
4413 if (new->entries[i].threshold < usage) {
4414 /*
4415 * new->current_threshold will not be used until
4416 * rcu_assign_pointer(), so it's safe to increment
4417 * it here.
4418 */
4419 ++new->current_threshold;
4420 }
4421 }
4422
4423 /* Free old spare buffer and save old primary buffer as spare */
4424 kfree(thresholds->spare);
4425 thresholds->spare = thresholds->primary;
4426
4427 rcu_assign_pointer(thresholds->primary, new);
4428
4429 /* To be sure that nobody uses thresholds */
4430 synchronize_rcu();
4431
4432 unlock:
4433 mutex_unlock(&memcg->thresholds_lock);
4434
4435 return ret;
4436 }
4437
4438 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4439 struct cftype *cft, struct eventfd_ctx *eventfd)
4440 {
4441 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4442 struct mem_cgroup_thresholds *thresholds;
4443 struct mem_cgroup_threshold_ary *new;
4444 int type = MEMFILE_TYPE(cft->private);
4445 u64 usage;
4446 int i, j, size;
4447
4448 mutex_lock(&memcg->thresholds_lock);
4449 if (type == _MEM)
4450 thresholds = &memcg->thresholds;
4451 else if (type == _MEMSWAP)
4452 thresholds = &memcg->memsw_thresholds;
4453 else
4454 BUG();
4455
4456 if (!thresholds->primary)
4457 goto unlock;
4458
4459 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4460
4461 /* Check if a threshold crossed before removing */
4462 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4463
4464 /* Calculate new number of threshold */
4465 size = 0;
4466 for (i = 0; i < thresholds->primary->size; i++) {
4467 if (thresholds->primary->entries[i].eventfd != eventfd)
4468 size++;
4469 }
4470
4471 new = thresholds->spare;
4472
4473 /* Set thresholds array to NULL if we don't have thresholds */
4474 if (!size) {
4475 kfree(new);
4476 new = NULL;
4477 goto swap_buffers;
4478 }
4479
4480 new->size = size;
4481
4482 /* Copy thresholds and find current threshold */
4483 new->current_threshold = -1;
4484 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4485 if (thresholds->primary->entries[i].eventfd == eventfd)
4486 continue;
4487
4488 new->entries[j] = thresholds->primary->entries[i];
4489 if (new->entries[j].threshold < usage) {
4490 /*
4491 * new->current_threshold will not be used
4492 * until rcu_assign_pointer(), so it's safe to increment
4493 * it here.
4494 */
4495 ++new->current_threshold;
4496 }
4497 j++;
4498 }
4499
4500 swap_buffers:
4501 /* Swap primary and spare array */
4502 thresholds->spare = thresholds->primary;
4503 /* If all events are unregistered, free the spare array */
4504 if (!new) {
4505 kfree(thresholds->spare);
4506 thresholds->spare = NULL;
4507 }
4508
4509 rcu_assign_pointer(thresholds->primary, new);
4510
4511 /* To be sure that nobody uses thresholds */
4512 synchronize_rcu();
4513 unlock:
4514 mutex_unlock(&memcg->thresholds_lock);
4515 }
4516
4517 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4518 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4519 {
4520 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4521 struct mem_cgroup_eventfd_list *event;
4522 int type = MEMFILE_TYPE(cft->private);
4523
4524 BUG_ON(type != _OOM_TYPE);
4525 event = kmalloc(sizeof(*event), GFP_KERNEL);
4526 if (!event)
4527 return -ENOMEM;
4528
4529 spin_lock(&memcg_oom_lock);
4530
4531 event->eventfd = eventfd;
4532 list_add(&event->list, &memcg->oom_notify);
4533
4534 /* already in OOM ? */
4535 if (atomic_read(&memcg->under_oom))
4536 eventfd_signal(eventfd, 1);
4537 spin_unlock(&memcg_oom_lock);
4538
4539 return 0;
4540 }
4541
4542 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4543 struct cftype *cft, struct eventfd_ctx *eventfd)
4544 {
4545 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4546 struct mem_cgroup_eventfd_list *ev, *tmp;
4547 int type = MEMFILE_TYPE(cft->private);
4548
4549 BUG_ON(type != _OOM_TYPE);
4550
4551 spin_lock(&memcg_oom_lock);
4552
4553 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4554 if (ev->eventfd == eventfd) {
4555 list_del(&ev->list);
4556 kfree(ev);
4557 }
4558 }
4559
4560 spin_unlock(&memcg_oom_lock);
4561 }
4562
4563 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4564 struct cftype *cft, struct cgroup_map_cb *cb)
4565 {
4566 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4567
4568 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4569
4570 if (atomic_read(&memcg->under_oom))
4571 cb->fill(cb, "under_oom", 1);
4572 else
4573 cb->fill(cb, "under_oom", 0);
4574 return 0;
4575 }
4576
4577 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4578 struct cftype *cft, u64 val)
4579 {
4580 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4581 struct mem_cgroup *parent;
4582
4583 /* cannot set to root cgroup and only 0 and 1 are allowed */
4584 if (!cgrp->parent || !((val == 0) || (val == 1)))
4585 return -EINVAL;
4586
4587 parent = mem_cgroup_from_cont(cgrp->parent);
4588
4589 cgroup_lock();
4590 /* oom-kill-disable is a flag for subhierarchy. */
4591 if ((parent->use_hierarchy) ||
4592 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4593 cgroup_unlock();
4594 return -EINVAL;
4595 }
4596 memcg->oom_kill_disable = val;
4597 if (!val)
4598 memcg_oom_recover(memcg);
4599 cgroup_unlock();
4600 return 0;
4601 }
4602
4603 #ifdef CONFIG_NUMA
4604 static const struct file_operations mem_control_numa_stat_file_operations = {
4605 .read = seq_read,
4606 .llseek = seq_lseek,
4607 .release = single_release,
4608 };
4609
4610 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4611 {
4612 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4613
4614 file->f_op = &mem_control_numa_stat_file_operations;
4615 return single_open(file, mem_control_numa_stat_show, cont);
4616 }
4617 #endif /* CONFIG_NUMA */
4618
4619 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4620 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4621 {
4622 return mem_cgroup_sockets_init(memcg, ss);
4623 };
4624
4625 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4626 {
4627 mem_cgroup_sockets_destroy(memcg);
4628 }
4629 #else
4630 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4631 {
4632 return 0;
4633 }
4634
4635 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4636 {
4637 }
4638 #endif
4639
4640 static struct cftype mem_cgroup_files[] = {
4641 {
4642 .name = "usage_in_bytes",
4643 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4644 .read = mem_cgroup_read,
4645 .register_event = mem_cgroup_usage_register_event,
4646 .unregister_event = mem_cgroup_usage_unregister_event,
4647 },
4648 {
4649 .name = "max_usage_in_bytes",
4650 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4651 .trigger = mem_cgroup_reset,
4652 .read = mem_cgroup_read,
4653 },
4654 {
4655 .name = "limit_in_bytes",
4656 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4657 .write_string = mem_cgroup_write,
4658 .read = mem_cgroup_read,
4659 },
4660 {
4661 .name = "soft_limit_in_bytes",
4662 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4663 .write_string = mem_cgroup_write,
4664 .read = mem_cgroup_read,
4665 },
4666 {
4667 .name = "failcnt",
4668 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4669 .trigger = mem_cgroup_reset,
4670 .read = mem_cgroup_read,
4671 },
4672 {
4673 .name = "stat",
4674 .read_map = mem_control_stat_show,
4675 },
4676 {
4677 .name = "force_empty",
4678 .trigger = mem_cgroup_force_empty_write,
4679 },
4680 {
4681 .name = "use_hierarchy",
4682 .write_u64 = mem_cgroup_hierarchy_write,
4683 .read_u64 = mem_cgroup_hierarchy_read,
4684 },
4685 {
4686 .name = "swappiness",
4687 .read_u64 = mem_cgroup_swappiness_read,
4688 .write_u64 = mem_cgroup_swappiness_write,
4689 },
4690 {
4691 .name = "move_charge_at_immigrate",
4692 .read_u64 = mem_cgroup_move_charge_read,
4693 .write_u64 = mem_cgroup_move_charge_write,
4694 },
4695 {
4696 .name = "oom_control",
4697 .read_map = mem_cgroup_oom_control_read,
4698 .write_u64 = mem_cgroup_oom_control_write,
4699 .register_event = mem_cgroup_oom_register_event,
4700 .unregister_event = mem_cgroup_oom_unregister_event,
4701 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4702 },
4703 #ifdef CONFIG_NUMA
4704 {
4705 .name = "numa_stat",
4706 .open = mem_control_numa_stat_open,
4707 .mode = S_IRUGO,
4708 },
4709 #endif
4710 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4711 {
4712 .name = "memsw.usage_in_bytes",
4713 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4714 .read = mem_cgroup_read,
4715 .register_event = mem_cgroup_usage_register_event,
4716 .unregister_event = mem_cgroup_usage_unregister_event,
4717 },
4718 {
4719 .name = "memsw.max_usage_in_bytes",
4720 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4721 .trigger = mem_cgroup_reset,
4722 .read = mem_cgroup_read,
4723 },
4724 {
4725 .name = "memsw.limit_in_bytes",
4726 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4727 .write_string = mem_cgroup_write,
4728 .read = mem_cgroup_read,
4729 },
4730 {
4731 .name = "memsw.failcnt",
4732 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4733 .trigger = mem_cgroup_reset,
4734 .read = mem_cgroup_read,
4735 },
4736 #endif
4737 { }, /* terminate */
4738 };
4739
4740 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4741 {
4742 struct mem_cgroup_per_node *pn;
4743 struct mem_cgroup_per_zone *mz;
4744 enum lru_list lru;
4745 int zone, tmp = node;
4746 /*
4747 * This routine is called against possible nodes.
4748 * But it's BUG to call kmalloc() against offline node.
4749 *
4750 * TODO: this routine can waste much memory for nodes which will
4751 * never be onlined. It's better to use memory hotplug callback
4752 * function.
4753 */
4754 if (!node_state(node, N_NORMAL_MEMORY))
4755 tmp = -1;
4756 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4757 if (!pn)
4758 return 1;
4759
4760 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4761 mz = &pn->zoneinfo[zone];
4762 for_each_lru(lru)
4763 INIT_LIST_HEAD(&mz->lruvec.lists[lru]);
4764 mz->usage_in_excess = 0;
4765 mz->on_tree = false;
4766 mz->memcg = memcg;
4767 }
4768 memcg->info.nodeinfo[node] = pn;
4769 return 0;
4770 }
4771
4772 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4773 {
4774 kfree(memcg->info.nodeinfo[node]);
4775 }
4776
4777 static struct mem_cgroup *mem_cgroup_alloc(void)
4778 {
4779 struct mem_cgroup *memcg;
4780 int size = sizeof(struct mem_cgroup);
4781
4782 /* Can be very big if MAX_NUMNODES is very big */
4783 if (size < PAGE_SIZE)
4784 memcg = kzalloc(size, GFP_KERNEL);
4785 else
4786 memcg = vzalloc(size);
4787
4788 if (!memcg)
4789 return NULL;
4790
4791 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4792 if (!memcg->stat)
4793 goto out_free;
4794 spin_lock_init(&memcg->pcp_counter_lock);
4795 return memcg;
4796
4797 out_free:
4798 if (size < PAGE_SIZE)
4799 kfree(memcg);
4800 else
4801 vfree(memcg);
4802 return NULL;
4803 }
4804
4805 /*
4806 * Helpers for freeing a vzalloc()ed mem_cgroup by RCU,
4807 * but in process context. The work_freeing structure is overlaid
4808 * on the rcu_freeing structure, which itself is overlaid on memsw.
4809 */
4810 static void vfree_work(struct work_struct *work)
4811 {
4812 struct mem_cgroup *memcg;
4813
4814 memcg = container_of(work, struct mem_cgroup, work_freeing);
4815 vfree(memcg);
4816 }
4817 static void vfree_rcu(struct rcu_head *rcu_head)
4818 {
4819 struct mem_cgroup *memcg;
4820
4821 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4822 INIT_WORK(&memcg->work_freeing, vfree_work);
4823 schedule_work(&memcg->work_freeing);
4824 }
4825
4826 /*
4827 * At destroying mem_cgroup, references from swap_cgroup can remain.
4828 * (scanning all at force_empty is too costly...)
4829 *
4830 * Instead of clearing all references at force_empty, we remember
4831 * the number of reference from swap_cgroup and free mem_cgroup when
4832 * it goes down to 0.
4833 *
4834 * Removal of cgroup itself succeeds regardless of refs from swap.
4835 */
4836
4837 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4838 {
4839 int node;
4840
4841 mem_cgroup_remove_from_trees(memcg);
4842 free_css_id(&mem_cgroup_subsys, &memcg->css);
4843
4844 for_each_node(node)
4845 free_mem_cgroup_per_zone_info(memcg, node);
4846
4847 free_percpu(memcg->stat);
4848 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4849 kfree_rcu(memcg, rcu_freeing);
4850 else
4851 call_rcu(&memcg->rcu_freeing, vfree_rcu);
4852 }
4853
4854 static void mem_cgroup_get(struct mem_cgroup *memcg)
4855 {
4856 atomic_inc(&memcg->refcnt);
4857 }
4858
4859 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4860 {
4861 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4862 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4863 __mem_cgroup_free(memcg);
4864 if (parent)
4865 mem_cgroup_put(parent);
4866 }
4867 }
4868
4869 static void mem_cgroup_put(struct mem_cgroup *memcg)
4870 {
4871 __mem_cgroup_put(memcg, 1);
4872 }
4873
4874 /*
4875 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4876 */
4877 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4878 {
4879 if (!memcg->res.parent)
4880 return NULL;
4881 return mem_cgroup_from_res_counter(memcg->res.parent, res);
4882 }
4883 EXPORT_SYMBOL(parent_mem_cgroup);
4884
4885 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4886 static void __init enable_swap_cgroup(void)
4887 {
4888 if (!mem_cgroup_disabled() && really_do_swap_account)
4889 do_swap_account = 1;
4890 }
4891 #else
4892 static void __init enable_swap_cgroup(void)
4893 {
4894 }
4895 #endif
4896
4897 static int mem_cgroup_soft_limit_tree_init(void)
4898 {
4899 struct mem_cgroup_tree_per_node *rtpn;
4900 struct mem_cgroup_tree_per_zone *rtpz;
4901 int tmp, node, zone;
4902
4903 for_each_node(node) {
4904 tmp = node;
4905 if (!node_state(node, N_NORMAL_MEMORY))
4906 tmp = -1;
4907 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4908 if (!rtpn)
4909 goto err_cleanup;
4910
4911 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4912
4913 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4914 rtpz = &rtpn->rb_tree_per_zone[zone];
4915 rtpz->rb_root = RB_ROOT;
4916 spin_lock_init(&rtpz->lock);
4917 }
4918 }
4919 return 0;
4920
4921 err_cleanup:
4922 for_each_node(node) {
4923 if (!soft_limit_tree.rb_tree_per_node[node])
4924 break;
4925 kfree(soft_limit_tree.rb_tree_per_node[node]);
4926 soft_limit_tree.rb_tree_per_node[node] = NULL;
4927 }
4928 return 1;
4929
4930 }
4931
4932 static struct cgroup_subsys_state * __ref
4933 mem_cgroup_create(struct cgroup *cont)
4934 {
4935 struct mem_cgroup *memcg, *parent;
4936 long error = -ENOMEM;
4937 int node;
4938
4939 memcg = mem_cgroup_alloc();
4940 if (!memcg)
4941 return ERR_PTR(error);
4942
4943 for_each_node(node)
4944 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4945 goto free_out;
4946
4947 /* root ? */
4948 if (cont->parent == NULL) {
4949 int cpu;
4950 enable_swap_cgroup();
4951 parent = NULL;
4952 if (mem_cgroup_soft_limit_tree_init())
4953 goto free_out;
4954 root_mem_cgroup = memcg;
4955 for_each_possible_cpu(cpu) {
4956 struct memcg_stock_pcp *stock =
4957 &per_cpu(memcg_stock, cpu);
4958 INIT_WORK(&stock->work, drain_local_stock);
4959 }
4960 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4961 } else {
4962 parent = mem_cgroup_from_cont(cont->parent);
4963 memcg->use_hierarchy = parent->use_hierarchy;
4964 memcg->oom_kill_disable = parent->oom_kill_disable;
4965 }
4966
4967 if (parent && parent->use_hierarchy) {
4968 res_counter_init(&memcg->res, &parent->res);
4969 res_counter_init(&memcg->memsw, &parent->memsw);
4970 /*
4971 * We increment refcnt of the parent to ensure that we can
4972 * safely access it on res_counter_charge/uncharge.
4973 * This refcnt will be decremented when freeing this
4974 * mem_cgroup(see mem_cgroup_put).
4975 */
4976 mem_cgroup_get(parent);
4977 } else {
4978 res_counter_init(&memcg->res, NULL);
4979 res_counter_init(&memcg->memsw, NULL);
4980 }
4981 memcg->last_scanned_node = MAX_NUMNODES;
4982 INIT_LIST_HEAD(&memcg->oom_notify);
4983
4984 if (parent)
4985 memcg->swappiness = mem_cgroup_swappiness(parent);
4986 atomic_set(&memcg->refcnt, 1);
4987 memcg->move_charge_at_immigrate = 0;
4988 mutex_init(&memcg->thresholds_lock);
4989 spin_lock_init(&memcg->move_lock);
4990
4991 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
4992 if (error) {
4993 /*
4994 * We call put now because our (and parent's) refcnts
4995 * are already in place. mem_cgroup_put() will internally
4996 * call __mem_cgroup_free, so return directly
4997 */
4998 mem_cgroup_put(memcg);
4999 return ERR_PTR(error);
5000 }
5001 return &memcg->css;
5002 free_out:
5003 __mem_cgroup_free(memcg);
5004 return ERR_PTR(error);
5005 }
5006
5007 static int mem_cgroup_pre_destroy(struct cgroup *cont)
5008 {
5009 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5010
5011 return mem_cgroup_force_empty(memcg, false);
5012 }
5013
5014 static void mem_cgroup_destroy(struct cgroup *cont)
5015 {
5016 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5017
5018 kmem_cgroup_destroy(memcg);
5019
5020 mem_cgroup_put(memcg);
5021 }
5022
5023 #ifdef CONFIG_MMU
5024 /* Handlers for move charge at task migration. */
5025 #define PRECHARGE_COUNT_AT_ONCE 256
5026 static int mem_cgroup_do_precharge(unsigned long count)
5027 {
5028 int ret = 0;
5029 int batch_count = PRECHARGE_COUNT_AT_ONCE;
5030 struct mem_cgroup *memcg = mc.to;
5031
5032 if (mem_cgroup_is_root(memcg)) {
5033 mc.precharge += count;
5034 /* we don't need css_get for root */
5035 return ret;
5036 }
5037 /* try to charge at once */
5038 if (count > 1) {
5039 struct res_counter *dummy;
5040 /*
5041 * "memcg" cannot be under rmdir() because we've already checked
5042 * by cgroup_lock_live_cgroup() that it is not removed and we
5043 * are still under the same cgroup_mutex. So we can postpone
5044 * css_get().
5045 */
5046 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5047 goto one_by_one;
5048 if (do_swap_account && res_counter_charge(&memcg->memsw,
5049 PAGE_SIZE * count, &dummy)) {
5050 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5051 goto one_by_one;
5052 }
5053 mc.precharge += count;
5054 return ret;
5055 }
5056 one_by_one:
5057 /* fall back to one by one charge */
5058 while (count--) {
5059 if (signal_pending(current)) {
5060 ret = -EINTR;
5061 break;
5062 }
5063 if (!batch_count--) {
5064 batch_count = PRECHARGE_COUNT_AT_ONCE;
5065 cond_resched();
5066 }
5067 ret = __mem_cgroup_try_charge(NULL,
5068 GFP_KERNEL, 1, &memcg, false);
5069 if (ret)
5070 /* mem_cgroup_clear_mc() will do uncharge later */
5071 return ret;
5072 mc.precharge++;
5073 }
5074 return ret;
5075 }
5076
5077 /**
5078 * get_mctgt_type - get target type of moving charge
5079 * @vma: the vma the pte to be checked belongs
5080 * @addr: the address corresponding to the pte to be checked
5081 * @ptent: the pte to be checked
5082 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5083 *
5084 * Returns
5085 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5086 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5087 * move charge. if @target is not NULL, the page is stored in target->page
5088 * with extra refcnt got(Callers should handle it).
5089 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5090 * target for charge migration. if @target is not NULL, the entry is stored
5091 * in target->ent.
5092 *
5093 * Called with pte lock held.
5094 */
5095 union mc_target {
5096 struct page *page;
5097 swp_entry_t ent;
5098 };
5099
5100 enum mc_target_type {
5101 MC_TARGET_NONE = 0,
5102 MC_TARGET_PAGE,
5103 MC_TARGET_SWAP,
5104 };
5105
5106 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5107 unsigned long addr, pte_t ptent)
5108 {
5109 struct page *page = vm_normal_page(vma, addr, ptent);
5110
5111 if (!page || !page_mapped(page))
5112 return NULL;
5113 if (PageAnon(page)) {
5114 /* we don't move shared anon */
5115 if (!move_anon())
5116 return NULL;
5117 } else if (!move_file())
5118 /* we ignore mapcount for file pages */
5119 return NULL;
5120 if (!get_page_unless_zero(page))
5121 return NULL;
5122
5123 return page;
5124 }
5125
5126 #ifdef CONFIG_SWAP
5127 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5128 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5129 {
5130 struct page *page = NULL;
5131 swp_entry_t ent = pte_to_swp_entry(ptent);
5132
5133 if (!move_anon() || non_swap_entry(ent))
5134 return NULL;
5135 /*
5136 * Because lookup_swap_cache() updates some statistics counter,
5137 * we call find_get_page() with swapper_space directly.
5138 */
5139 page = find_get_page(&swapper_space, ent.val);
5140 if (do_swap_account)
5141 entry->val = ent.val;
5142
5143 return page;
5144 }
5145 #else
5146 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5147 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5148 {
5149 return NULL;
5150 }
5151 #endif
5152
5153 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5154 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5155 {
5156 struct page *page = NULL;
5157 struct inode *inode;
5158 struct address_space *mapping;
5159 pgoff_t pgoff;
5160
5161 if (!vma->vm_file) /* anonymous vma */
5162 return NULL;
5163 if (!move_file())
5164 return NULL;
5165
5166 inode = vma->vm_file->f_path.dentry->d_inode;
5167 mapping = vma->vm_file->f_mapping;
5168 if (pte_none(ptent))
5169 pgoff = linear_page_index(vma, addr);
5170 else /* pte_file(ptent) is true */
5171 pgoff = pte_to_pgoff(ptent);
5172
5173 /* page is moved even if it's not RSS of this task(page-faulted). */
5174 page = find_get_page(mapping, pgoff);
5175
5176 #ifdef CONFIG_SWAP
5177 /* shmem/tmpfs may report page out on swap: account for that too. */
5178 if (radix_tree_exceptional_entry(page)) {
5179 swp_entry_t swap = radix_to_swp_entry(page);
5180 if (do_swap_account)
5181 *entry = swap;
5182 page = find_get_page(&swapper_space, swap.val);
5183 }
5184 #endif
5185 return page;
5186 }
5187
5188 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5189 unsigned long addr, pte_t ptent, union mc_target *target)
5190 {
5191 struct page *page = NULL;
5192 struct page_cgroup *pc;
5193 enum mc_target_type ret = MC_TARGET_NONE;
5194 swp_entry_t ent = { .val = 0 };
5195
5196 if (pte_present(ptent))
5197 page = mc_handle_present_pte(vma, addr, ptent);
5198 else if (is_swap_pte(ptent))
5199 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5200 else if (pte_none(ptent) || pte_file(ptent))
5201 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5202
5203 if (!page && !ent.val)
5204 return ret;
5205 if (page) {
5206 pc = lookup_page_cgroup(page);
5207 /*
5208 * Do only loose check w/o page_cgroup lock.
5209 * mem_cgroup_move_account() checks the pc is valid or not under
5210 * the lock.
5211 */
5212 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5213 ret = MC_TARGET_PAGE;
5214 if (target)
5215 target->page = page;
5216 }
5217 if (!ret || !target)
5218 put_page(page);
5219 }
5220 /* There is a swap entry and a page doesn't exist or isn't charged */
5221 if (ent.val && !ret &&
5222 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5223 ret = MC_TARGET_SWAP;
5224 if (target)
5225 target->ent = ent;
5226 }
5227 return ret;
5228 }
5229
5230 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5231 /*
5232 * We don't consider swapping or file mapped pages because THP does not
5233 * support them for now.
5234 * Caller should make sure that pmd_trans_huge(pmd) is true.
5235 */
5236 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5237 unsigned long addr, pmd_t pmd, union mc_target *target)
5238 {
5239 struct page *page = NULL;
5240 struct page_cgroup *pc;
5241 enum mc_target_type ret = MC_TARGET_NONE;
5242
5243 page = pmd_page(pmd);
5244 VM_BUG_ON(!page || !PageHead(page));
5245 if (!move_anon())
5246 return ret;
5247 pc = lookup_page_cgroup(page);
5248 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5249 ret = MC_TARGET_PAGE;
5250 if (target) {
5251 get_page(page);
5252 target->page = page;
5253 }
5254 }
5255 return ret;
5256 }
5257 #else
5258 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5259 unsigned long addr, pmd_t pmd, union mc_target *target)
5260 {
5261 return MC_TARGET_NONE;
5262 }
5263 #endif
5264
5265 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5266 unsigned long addr, unsigned long end,
5267 struct mm_walk *walk)
5268 {
5269 struct vm_area_struct *vma = walk->private;
5270 pte_t *pte;
5271 spinlock_t *ptl;
5272
5273 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5274 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5275 mc.precharge += HPAGE_PMD_NR;
5276 spin_unlock(&vma->vm_mm->page_table_lock);
5277 return 0;
5278 }
5279
5280 if (pmd_trans_unstable(pmd))
5281 return 0;
5282 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5283 for (; addr != end; pte++, addr += PAGE_SIZE)
5284 if (get_mctgt_type(vma, addr, *pte, NULL))
5285 mc.precharge++; /* increment precharge temporarily */
5286 pte_unmap_unlock(pte - 1, ptl);
5287 cond_resched();
5288
5289 return 0;
5290 }
5291
5292 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5293 {
5294 unsigned long precharge;
5295 struct vm_area_struct *vma;
5296
5297 down_read(&mm->mmap_sem);
5298 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5299 struct mm_walk mem_cgroup_count_precharge_walk = {
5300 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5301 .mm = mm,
5302 .private = vma,
5303 };
5304 if (is_vm_hugetlb_page(vma))
5305 continue;
5306 walk_page_range(vma->vm_start, vma->vm_end,
5307 &mem_cgroup_count_precharge_walk);
5308 }
5309 up_read(&mm->mmap_sem);
5310
5311 precharge = mc.precharge;
5312 mc.precharge = 0;
5313
5314 return precharge;
5315 }
5316
5317 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5318 {
5319 unsigned long precharge = mem_cgroup_count_precharge(mm);
5320
5321 VM_BUG_ON(mc.moving_task);
5322 mc.moving_task = current;
5323 return mem_cgroup_do_precharge(precharge);
5324 }
5325
5326 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5327 static void __mem_cgroup_clear_mc(void)
5328 {
5329 struct mem_cgroup *from = mc.from;
5330 struct mem_cgroup *to = mc.to;
5331
5332 /* we must uncharge all the leftover precharges from mc.to */
5333 if (mc.precharge) {
5334 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5335 mc.precharge = 0;
5336 }
5337 /*
5338 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5339 * we must uncharge here.
5340 */
5341 if (mc.moved_charge) {
5342 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5343 mc.moved_charge = 0;
5344 }
5345 /* we must fixup refcnts and charges */
5346 if (mc.moved_swap) {
5347 /* uncharge swap account from the old cgroup */
5348 if (!mem_cgroup_is_root(mc.from))
5349 res_counter_uncharge(&mc.from->memsw,
5350 PAGE_SIZE * mc.moved_swap);
5351 __mem_cgroup_put(mc.from, mc.moved_swap);
5352
5353 if (!mem_cgroup_is_root(mc.to)) {
5354 /*
5355 * we charged both to->res and to->memsw, so we should
5356 * uncharge to->res.
5357 */
5358 res_counter_uncharge(&mc.to->res,
5359 PAGE_SIZE * mc.moved_swap);
5360 }
5361 /* we've already done mem_cgroup_get(mc.to) */
5362 mc.moved_swap = 0;
5363 }
5364 memcg_oom_recover(from);
5365 memcg_oom_recover(to);
5366 wake_up_all(&mc.waitq);
5367 }
5368
5369 static void mem_cgroup_clear_mc(void)
5370 {
5371 struct mem_cgroup *from = mc.from;
5372
5373 /*
5374 * we must clear moving_task before waking up waiters at the end of
5375 * task migration.
5376 */
5377 mc.moving_task = NULL;
5378 __mem_cgroup_clear_mc();
5379 spin_lock(&mc.lock);
5380 mc.from = NULL;
5381 mc.to = NULL;
5382 spin_unlock(&mc.lock);
5383 mem_cgroup_end_move(from);
5384 }
5385
5386 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5387 struct cgroup_taskset *tset)
5388 {
5389 struct task_struct *p = cgroup_taskset_first(tset);
5390 int ret = 0;
5391 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5392
5393 if (memcg->move_charge_at_immigrate) {
5394 struct mm_struct *mm;
5395 struct mem_cgroup *from = mem_cgroup_from_task(p);
5396
5397 VM_BUG_ON(from == memcg);
5398
5399 mm = get_task_mm(p);
5400 if (!mm)
5401 return 0;
5402 /* We move charges only when we move a owner of the mm */
5403 if (mm->owner == p) {
5404 VM_BUG_ON(mc.from);
5405 VM_BUG_ON(mc.to);
5406 VM_BUG_ON(mc.precharge);
5407 VM_BUG_ON(mc.moved_charge);
5408 VM_BUG_ON(mc.moved_swap);
5409 mem_cgroup_start_move(from);
5410 spin_lock(&mc.lock);
5411 mc.from = from;
5412 mc.to = memcg;
5413 spin_unlock(&mc.lock);
5414 /* We set mc.moving_task later */
5415
5416 ret = mem_cgroup_precharge_mc(mm);
5417 if (ret)
5418 mem_cgroup_clear_mc();
5419 }
5420 mmput(mm);
5421 }
5422 return ret;
5423 }
5424
5425 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5426 struct cgroup_taskset *tset)
5427 {
5428 mem_cgroup_clear_mc();
5429 }
5430
5431 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5432 unsigned long addr, unsigned long end,
5433 struct mm_walk *walk)
5434 {
5435 int ret = 0;
5436 struct vm_area_struct *vma = walk->private;
5437 pte_t *pte;
5438 spinlock_t *ptl;
5439 enum mc_target_type target_type;
5440 union mc_target target;
5441 struct page *page;
5442 struct page_cgroup *pc;
5443
5444 /*
5445 * We don't take compound_lock() here but no race with splitting thp
5446 * happens because:
5447 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5448 * under splitting, which means there's no concurrent thp split,
5449 * - if another thread runs into split_huge_page() just after we
5450 * entered this if-block, the thread must wait for page table lock
5451 * to be unlocked in __split_huge_page_splitting(), where the main
5452 * part of thp split is not executed yet.
5453 */
5454 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5455 if (mc.precharge < HPAGE_PMD_NR) {
5456 spin_unlock(&vma->vm_mm->page_table_lock);
5457 return 0;
5458 }
5459 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5460 if (target_type == MC_TARGET_PAGE) {
5461 page = target.page;
5462 if (!isolate_lru_page(page)) {
5463 pc = lookup_page_cgroup(page);
5464 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5465 pc, mc.from, mc.to,
5466 false)) {
5467 mc.precharge -= HPAGE_PMD_NR;
5468 mc.moved_charge += HPAGE_PMD_NR;
5469 }
5470 putback_lru_page(page);
5471 }
5472 put_page(page);
5473 }
5474 spin_unlock(&vma->vm_mm->page_table_lock);
5475 return 0;
5476 }
5477
5478 if (pmd_trans_unstable(pmd))
5479 return 0;
5480 retry:
5481 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5482 for (; addr != end; addr += PAGE_SIZE) {
5483 pte_t ptent = *(pte++);
5484 swp_entry_t ent;
5485
5486 if (!mc.precharge)
5487 break;
5488
5489 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5490 case MC_TARGET_PAGE:
5491 page = target.page;
5492 if (isolate_lru_page(page))
5493 goto put;
5494 pc = lookup_page_cgroup(page);
5495 if (!mem_cgroup_move_account(page, 1, pc,
5496 mc.from, mc.to, false)) {
5497 mc.precharge--;
5498 /* we uncharge from mc.from later. */
5499 mc.moved_charge++;
5500 }
5501 putback_lru_page(page);
5502 put: /* get_mctgt_type() gets the page */
5503 put_page(page);
5504 break;
5505 case MC_TARGET_SWAP:
5506 ent = target.ent;
5507 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5508 mc.precharge--;
5509 /* we fixup refcnts and charges later. */
5510 mc.moved_swap++;
5511 }
5512 break;
5513 default:
5514 break;
5515 }
5516 }
5517 pte_unmap_unlock(pte - 1, ptl);
5518 cond_resched();
5519
5520 if (addr != end) {
5521 /*
5522 * We have consumed all precharges we got in can_attach().
5523 * We try charge one by one, but don't do any additional
5524 * charges to mc.to if we have failed in charge once in attach()
5525 * phase.
5526 */
5527 ret = mem_cgroup_do_precharge(1);
5528 if (!ret)
5529 goto retry;
5530 }
5531
5532 return ret;
5533 }
5534
5535 static void mem_cgroup_move_charge(struct mm_struct *mm)
5536 {
5537 struct vm_area_struct *vma;
5538
5539 lru_add_drain_all();
5540 retry:
5541 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5542 /*
5543 * Someone who are holding the mmap_sem might be waiting in
5544 * waitq. So we cancel all extra charges, wake up all waiters,
5545 * and retry. Because we cancel precharges, we might not be able
5546 * to move enough charges, but moving charge is a best-effort
5547 * feature anyway, so it wouldn't be a big problem.
5548 */
5549 __mem_cgroup_clear_mc();
5550 cond_resched();
5551 goto retry;
5552 }
5553 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5554 int ret;
5555 struct mm_walk mem_cgroup_move_charge_walk = {
5556 .pmd_entry = mem_cgroup_move_charge_pte_range,
5557 .mm = mm,
5558 .private = vma,
5559 };
5560 if (is_vm_hugetlb_page(vma))
5561 continue;
5562 ret = walk_page_range(vma->vm_start, vma->vm_end,
5563 &mem_cgroup_move_charge_walk);
5564 if (ret)
5565 /*
5566 * means we have consumed all precharges and failed in
5567 * doing additional charge. Just abandon here.
5568 */
5569 break;
5570 }
5571 up_read(&mm->mmap_sem);
5572 }
5573
5574 static void mem_cgroup_move_task(struct cgroup *cont,
5575 struct cgroup_taskset *tset)
5576 {
5577 struct task_struct *p = cgroup_taskset_first(tset);
5578 struct mm_struct *mm = get_task_mm(p);
5579
5580 if (mm) {
5581 if (mc.to)
5582 mem_cgroup_move_charge(mm);
5583 mmput(mm);
5584 }
5585 if (mc.to)
5586 mem_cgroup_clear_mc();
5587 }
5588 #else /* !CONFIG_MMU */
5589 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5590 struct cgroup_taskset *tset)
5591 {
5592 return 0;
5593 }
5594 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5595 struct cgroup_taskset *tset)
5596 {
5597 }
5598 static void mem_cgroup_move_task(struct cgroup *cont,
5599 struct cgroup_taskset *tset)
5600 {
5601 }
5602 #endif
5603
5604 struct cgroup_subsys mem_cgroup_subsys = {
5605 .name = "memory",
5606 .subsys_id = mem_cgroup_subsys_id,
5607 .create = mem_cgroup_create,
5608 .pre_destroy = mem_cgroup_pre_destroy,
5609 .destroy = mem_cgroup_destroy,
5610 .can_attach = mem_cgroup_can_attach,
5611 .cancel_attach = mem_cgroup_cancel_attach,
5612 .attach = mem_cgroup_move_task,
5613 .base_cftypes = mem_cgroup_files,
5614 .early_init = 0,
5615 .use_id = 1,
5616 .__DEPRECATED_clear_css_refs = true,
5617 };
5618
5619 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5620 static int __init enable_swap_account(char *s)
5621 {
5622 /* consider enabled if no parameter or 1 is given */
5623 if (!strcmp(s, "1"))
5624 really_do_swap_account = 1;
5625 else if (!strcmp(s, "0"))
5626 really_do_swap_account = 0;
5627 return 1;
5628 }
5629 __setup("swapaccount=", enable_swap_account);
5630
5631 #endif
This page took 0.134098 seconds and 6 git commands to generate.