memcg: remove activate_kmem_mutex
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include "internal.h"
60 #include <net/sock.h>
61 #include <net/ip.h>
62 #include <net/tcp_memcontrol.h>
63 #include "slab.h"
64
65 #include <asm/uaccess.h>
66
67 #include <trace/events/vmscan.h>
68
69 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70 EXPORT_SYMBOL(memory_cgrp_subsys);
71
72 #define MEM_CGROUP_RECLAIM_RETRIES 5
73 static struct mem_cgroup *root_mem_cgroup __read_mostly;
74
75 #ifdef CONFIG_MEMCG_SWAP
76 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77 int do_swap_account __read_mostly;
78
79 /* for remember boot option*/
80 #ifdef CONFIG_MEMCG_SWAP_ENABLED
81 static int really_do_swap_account __initdata = 1;
82 #else
83 static int really_do_swap_account __initdata;
84 #endif
85
86 #else
87 #define do_swap_account 0
88 #endif
89
90
91 static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
94 "rss_huge",
95 "mapped_file",
96 "writeback",
97 "swap",
98 };
99
100 enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
105 MEM_CGROUP_EVENTS_NSTATS,
106 };
107
108 static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113 };
114
115 static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121 };
122
123 /*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129 enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
131 MEM_CGROUP_TARGET_SOFTLIMIT,
132 MEM_CGROUP_TARGET_NUMAINFO,
133 MEM_CGROUP_NTARGETS,
134 };
135 #define THRESHOLDS_EVENTS_TARGET 128
136 #define SOFTLIMIT_EVENTS_TARGET 1024
137 #define NUMAINFO_EVENTS_TARGET 1024
138
139 struct mem_cgroup_stat_cpu {
140 long count[MEM_CGROUP_STAT_NSTATS];
141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142 unsigned long nr_page_events;
143 unsigned long targets[MEM_CGROUP_NTARGETS];
144 };
145
146 struct reclaim_iter {
147 struct mem_cgroup *position;
148 /* scan generation, increased every round-trip */
149 unsigned int generation;
150 };
151
152 /*
153 * per-zone information in memory controller.
154 */
155 struct mem_cgroup_per_zone {
156 struct lruvec lruvec;
157 unsigned long lru_size[NR_LRU_LISTS];
158
159 struct reclaim_iter iter[DEF_PRIORITY + 1];
160
161 struct rb_node tree_node; /* RB tree node */
162 unsigned long usage_in_excess;/* Set to the value by which */
163 /* the soft limit is exceeded*/
164 bool on_tree;
165 struct mem_cgroup *memcg; /* Back pointer, we cannot */
166 /* use container_of */
167 };
168
169 struct mem_cgroup_per_node {
170 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
171 };
172
173 /*
174 * Cgroups above their limits are maintained in a RB-Tree, independent of
175 * their hierarchy representation
176 */
177
178 struct mem_cgroup_tree_per_zone {
179 struct rb_root rb_root;
180 spinlock_t lock;
181 };
182
183 struct mem_cgroup_tree_per_node {
184 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
185 };
186
187 struct mem_cgroup_tree {
188 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
189 };
190
191 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
192
193 struct mem_cgroup_threshold {
194 struct eventfd_ctx *eventfd;
195 unsigned long threshold;
196 };
197
198 /* For threshold */
199 struct mem_cgroup_threshold_ary {
200 /* An array index points to threshold just below or equal to usage. */
201 int current_threshold;
202 /* Size of entries[] */
203 unsigned int size;
204 /* Array of thresholds */
205 struct mem_cgroup_threshold entries[0];
206 };
207
208 struct mem_cgroup_thresholds {
209 /* Primary thresholds array */
210 struct mem_cgroup_threshold_ary *primary;
211 /*
212 * Spare threshold array.
213 * This is needed to make mem_cgroup_unregister_event() "never fail".
214 * It must be able to store at least primary->size - 1 entries.
215 */
216 struct mem_cgroup_threshold_ary *spare;
217 };
218
219 /* for OOM */
220 struct mem_cgroup_eventfd_list {
221 struct list_head list;
222 struct eventfd_ctx *eventfd;
223 };
224
225 /*
226 * cgroup_event represents events which userspace want to receive.
227 */
228 struct mem_cgroup_event {
229 /*
230 * memcg which the event belongs to.
231 */
232 struct mem_cgroup *memcg;
233 /*
234 * eventfd to signal userspace about the event.
235 */
236 struct eventfd_ctx *eventfd;
237 /*
238 * Each of these stored in a list by the cgroup.
239 */
240 struct list_head list;
241 /*
242 * register_event() callback will be used to add new userspace
243 * waiter for changes related to this event. Use eventfd_signal()
244 * on eventfd to send notification to userspace.
245 */
246 int (*register_event)(struct mem_cgroup *memcg,
247 struct eventfd_ctx *eventfd, const char *args);
248 /*
249 * unregister_event() callback will be called when userspace closes
250 * the eventfd or on cgroup removing. This callback must be set,
251 * if you want provide notification functionality.
252 */
253 void (*unregister_event)(struct mem_cgroup *memcg,
254 struct eventfd_ctx *eventfd);
255 /*
256 * All fields below needed to unregister event when
257 * userspace closes eventfd.
258 */
259 poll_table pt;
260 wait_queue_head_t *wqh;
261 wait_queue_t wait;
262 struct work_struct remove;
263 };
264
265 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
266 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
267
268 /*
269 * The memory controller data structure. The memory controller controls both
270 * page cache and RSS per cgroup. We would eventually like to provide
271 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
272 * to help the administrator determine what knobs to tune.
273 *
274 * TODO: Add a water mark for the memory controller. Reclaim will begin when
275 * we hit the water mark. May be even add a low water mark, such that
276 * no reclaim occurs from a cgroup at it's low water mark, this is
277 * a feature that will be implemented much later in the future.
278 */
279 struct mem_cgroup {
280 struct cgroup_subsys_state css;
281
282 /* Accounted resources */
283 struct page_counter memory;
284 struct page_counter memsw;
285 struct page_counter kmem;
286
287 unsigned long soft_limit;
288
289 /* vmpressure notifications */
290 struct vmpressure vmpressure;
291
292 /* css_online() has been completed */
293 int initialized;
294
295 /*
296 * Should the accounting and control be hierarchical, per subtree?
297 */
298 bool use_hierarchy;
299 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
300
301 bool oom_lock;
302 atomic_t under_oom;
303 atomic_t oom_wakeups;
304
305 int swappiness;
306 /* OOM-Killer disable */
307 int oom_kill_disable;
308
309 /* protect arrays of thresholds */
310 struct mutex thresholds_lock;
311
312 /* thresholds for memory usage. RCU-protected */
313 struct mem_cgroup_thresholds thresholds;
314
315 /* thresholds for mem+swap usage. RCU-protected */
316 struct mem_cgroup_thresholds memsw_thresholds;
317
318 /* For oom notifier event fd */
319 struct list_head oom_notify;
320
321 /*
322 * Should we move charges of a task when a task is moved into this
323 * mem_cgroup ? And what type of charges should we move ?
324 */
325 unsigned long move_charge_at_immigrate;
326 /*
327 * set > 0 if pages under this cgroup are moving to other cgroup.
328 */
329 atomic_t moving_account;
330 /* taken only while moving_account > 0 */
331 spinlock_t move_lock;
332 /*
333 * percpu counter.
334 */
335 struct mem_cgroup_stat_cpu __percpu *stat;
336 /*
337 * used when a cpu is offlined or other synchronizations
338 * See mem_cgroup_read_stat().
339 */
340 struct mem_cgroup_stat_cpu nocpu_base;
341 spinlock_t pcp_counter_lock;
342
343 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
344 struct cg_proto tcp_mem;
345 #endif
346 #if defined(CONFIG_MEMCG_KMEM)
347 /* analogous to slab_common's slab_caches list, but per-memcg;
348 * protected by memcg_slab_mutex */
349 struct list_head memcg_slab_caches;
350 /* Index in the kmem_cache->memcg_params->memcg_caches array */
351 int kmemcg_id;
352 #endif
353
354 int last_scanned_node;
355 #if MAX_NUMNODES > 1
356 nodemask_t scan_nodes;
357 atomic_t numainfo_events;
358 atomic_t numainfo_updating;
359 #endif
360
361 /* List of events which userspace want to receive */
362 struct list_head event_list;
363 spinlock_t event_list_lock;
364
365 struct mem_cgroup_per_node *nodeinfo[0];
366 /* WARNING: nodeinfo must be the last member here */
367 };
368
369 /* internal only representation about the status of kmem accounting. */
370 enum {
371 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
372 };
373
374 #ifdef CONFIG_MEMCG_KMEM
375 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
376 {
377 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
378 }
379
380 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
381 {
382 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
383 }
384
385 #endif
386
387 /* Stuffs for move charges at task migration. */
388 /*
389 * Types of charges to be moved. "move_charge_at_immitgrate" and
390 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
391 */
392 enum move_type {
393 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
394 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
395 NR_MOVE_TYPE,
396 };
397
398 /* "mc" and its members are protected by cgroup_mutex */
399 static struct move_charge_struct {
400 spinlock_t lock; /* for from, to */
401 struct mem_cgroup *from;
402 struct mem_cgroup *to;
403 unsigned long immigrate_flags;
404 unsigned long precharge;
405 unsigned long moved_charge;
406 unsigned long moved_swap;
407 struct task_struct *moving_task; /* a task moving charges */
408 wait_queue_head_t waitq; /* a waitq for other context */
409 } mc = {
410 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
411 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
412 };
413
414 static bool move_anon(void)
415 {
416 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
417 }
418
419 static bool move_file(void)
420 {
421 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
422 }
423
424 /*
425 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
426 * limit reclaim to prevent infinite loops, if they ever occur.
427 */
428 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
429 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
430
431 enum charge_type {
432 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
433 MEM_CGROUP_CHARGE_TYPE_ANON,
434 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
435 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
436 NR_CHARGE_TYPE,
437 };
438
439 /* for encoding cft->private value on file */
440 enum res_type {
441 _MEM,
442 _MEMSWAP,
443 _OOM_TYPE,
444 _KMEM,
445 };
446
447 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
448 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
449 #define MEMFILE_ATTR(val) ((val) & 0xffff)
450 /* Used for OOM nofiier */
451 #define OOM_CONTROL (0)
452
453 /*
454 * The memcg_create_mutex will be held whenever a new cgroup is created.
455 * As a consequence, any change that needs to protect against new child cgroups
456 * appearing has to hold it as well.
457 */
458 static DEFINE_MUTEX(memcg_create_mutex);
459
460 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
461 {
462 return s ? container_of(s, struct mem_cgroup, css) : NULL;
463 }
464
465 /* Some nice accessors for the vmpressure. */
466 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
467 {
468 if (!memcg)
469 memcg = root_mem_cgroup;
470 return &memcg->vmpressure;
471 }
472
473 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
474 {
475 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
476 }
477
478 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
479 {
480 return (memcg == root_mem_cgroup);
481 }
482
483 /*
484 * We restrict the id in the range of [1, 65535], so it can fit into
485 * an unsigned short.
486 */
487 #define MEM_CGROUP_ID_MAX USHRT_MAX
488
489 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
490 {
491 return memcg->css.id;
492 }
493
494 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
495 {
496 struct cgroup_subsys_state *css;
497
498 css = css_from_id(id, &memory_cgrp_subsys);
499 return mem_cgroup_from_css(css);
500 }
501
502 /* Writing them here to avoid exposing memcg's inner layout */
503 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
504
505 void sock_update_memcg(struct sock *sk)
506 {
507 if (mem_cgroup_sockets_enabled) {
508 struct mem_cgroup *memcg;
509 struct cg_proto *cg_proto;
510
511 BUG_ON(!sk->sk_prot->proto_cgroup);
512
513 /* Socket cloning can throw us here with sk_cgrp already
514 * filled. It won't however, necessarily happen from
515 * process context. So the test for root memcg given
516 * the current task's memcg won't help us in this case.
517 *
518 * Respecting the original socket's memcg is a better
519 * decision in this case.
520 */
521 if (sk->sk_cgrp) {
522 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
523 css_get(&sk->sk_cgrp->memcg->css);
524 return;
525 }
526
527 rcu_read_lock();
528 memcg = mem_cgroup_from_task(current);
529 cg_proto = sk->sk_prot->proto_cgroup(memcg);
530 if (!mem_cgroup_is_root(memcg) &&
531 memcg_proto_active(cg_proto) &&
532 css_tryget_online(&memcg->css)) {
533 sk->sk_cgrp = cg_proto;
534 }
535 rcu_read_unlock();
536 }
537 }
538 EXPORT_SYMBOL(sock_update_memcg);
539
540 void sock_release_memcg(struct sock *sk)
541 {
542 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
543 struct mem_cgroup *memcg;
544 WARN_ON(!sk->sk_cgrp->memcg);
545 memcg = sk->sk_cgrp->memcg;
546 css_put(&sk->sk_cgrp->memcg->css);
547 }
548 }
549
550 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
551 {
552 if (!memcg || mem_cgroup_is_root(memcg))
553 return NULL;
554
555 return &memcg->tcp_mem;
556 }
557 EXPORT_SYMBOL(tcp_proto_cgroup);
558
559 static void disarm_sock_keys(struct mem_cgroup *memcg)
560 {
561 if (!memcg_proto_activated(&memcg->tcp_mem))
562 return;
563 static_key_slow_dec(&memcg_socket_limit_enabled);
564 }
565 #else
566 static void disarm_sock_keys(struct mem_cgroup *memcg)
567 {
568 }
569 #endif
570
571 #ifdef CONFIG_MEMCG_KMEM
572 /*
573 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
574 * The main reason for not using cgroup id for this:
575 * this works better in sparse environments, where we have a lot of memcgs,
576 * but only a few kmem-limited. Or also, if we have, for instance, 200
577 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
578 * 200 entry array for that.
579 *
580 * The current size of the caches array is stored in
581 * memcg_limited_groups_array_size. It will double each time we have to
582 * increase it.
583 */
584 static DEFINE_IDA(kmem_limited_groups);
585 int memcg_limited_groups_array_size;
586
587 /*
588 * MIN_SIZE is different than 1, because we would like to avoid going through
589 * the alloc/free process all the time. In a small machine, 4 kmem-limited
590 * cgroups is a reasonable guess. In the future, it could be a parameter or
591 * tunable, but that is strictly not necessary.
592 *
593 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
594 * this constant directly from cgroup, but it is understandable that this is
595 * better kept as an internal representation in cgroup.c. In any case, the
596 * cgrp_id space is not getting any smaller, and we don't have to necessarily
597 * increase ours as well if it increases.
598 */
599 #define MEMCG_CACHES_MIN_SIZE 4
600 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
601
602 /*
603 * A lot of the calls to the cache allocation functions are expected to be
604 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
605 * conditional to this static branch, we'll have to allow modules that does
606 * kmem_cache_alloc and the such to see this symbol as well
607 */
608 struct static_key memcg_kmem_enabled_key;
609 EXPORT_SYMBOL(memcg_kmem_enabled_key);
610
611 static void memcg_free_cache_id(int id);
612
613 static void disarm_kmem_keys(struct mem_cgroup *memcg)
614 {
615 if (memcg_kmem_is_active(memcg)) {
616 static_key_slow_dec(&memcg_kmem_enabled_key);
617 memcg_free_cache_id(memcg->kmemcg_id);
618 }
619 /*
620 * This check can't live in kmem destruction function,
621 * since the charges will outlive the cgroup
622 */
623 WARN_ON(page_counter_read(&memcg->kmem));
624 }
625 #else
626 static void disarm_kmem_keys(struct mem_cgroup *memcg)
627 {
628 }
629 #endif /* CONFIG_MEMCG_KMEM */
630
631 static void disarm_static_keys(struct mem_cgroup *memcg)
632 {
633 disarm_sock_keys(memcg);
634 disarm_kmem_keys(memcg);
635 }
636
637 static struct mem_cgroup_per_zone *
638 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
639 {
640 int nid = zone_to_nid(zone);
641 int zid = zone_idx(zone);
642
643 return &memcg->nodeinfo[nid]->zoneinfo[zid];
644 }
645
646 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
647 {
648 return &memcg->css;
649 }
650
651 static struct mem_cgroup_per_zone *
652 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
653 {
654 int nid = page_to_nid(page);
655 int zid = page_zonenum(page);
656
657 return &memcg->nodeinfo[nid]->zoneinfo[zid];
658 }
659
660 static struct mem_cgroup_tree_per_zone *
661 soft_limit_tree_node_zone(int nid, int zid)
662 {
663 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
664 }
665
666 static struct mem_cgroup_tree_per_zone *
667 soft_limit_tree_from_page(struct page *page)
668 {
669 int nid = page_to_nid(page);
670 int zid = page_zonenum(page);
671
672 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
673 }
674
675 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
676 struct mem_cgroup_tree_per_zone *mctz,
677 unsigned long new_usage_in_excess)
678 {
679 struct rb_node **p = &mctz->rb_root.rb_node;
680 struct rb_node *parent = NULL;
681 struct mem_cgroup_per_zone *mz_node;
682
683 if (mz->on_tree)
684 return;
685
686 mz->usage_in_excess = new_usage_in_excess;
687 if (!mz->usage_in_excess)
688 return;
689 while (*p) {
690 parent = *p;
691 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
692 tree_node);
693 if (mz->usage_in_excess < mz_node->usage_in_excess)
694 p = &(*p)->rb_left;
695 /*
696 * We can't avoid mem cgroups that are over their soft
697 * limit by the same amount
698 */
699 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
700 p = &(*p)->rb_right;
701 }
702 rb_link_node(&mz->tree_node, parent, p);
703 rb_insert_color(&mz->tree_node, &mctz->rb_root);
704 mz->on_tree = true;
705 }
706
707 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
708 struct mem_cgroup_tree_per_zone *mctz)
709 {
710 if (!mz->on_tree)
711 return;
712 rb_erase(&mz->tree_node, &mctz->rb_root);
713 mz->on_tree = false;
714 }
715
716 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
717 struct mem_cgroup_tree_per_zone *mctz)
718 {
719 unsigned long flags;
720
721 spin_lock_irqsave(&mctz->lock, flags);
722 __mem_cgroup_remove_exceeded(mz, mctz);
723 spin_unlock_irqrestore(&mctz->lock, flags);
724 }
725
726 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
727 {
728 unsigned long nr_pages = page_counter_read(&memcg->memory);
729 unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
730 unsigned long excess = 0;
731
732 if (nr_pages > soft_limit)
733 excess = nr_pages - soft_limit;
734
735 return excess;
736 }
737
738 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
739 {
740 unsigned long excess;
741 struct mem_cgroup_per_zone *mz;
742 struct mem_cgroup_tree_per_zone *mctz;
743
744 mctz = soft_limit_tree_from_page(page);
745 /*
746 * Necessary to update all ancestors when hierarchy is used.
747 * because their event counter is not touched.
748 */
749 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
750 mz = mem_cgroup_page_zoneinfo(memcg, page);
751 excess = soft_limit_excess(memcg);
752 /*
753 * We have to update the tree if mz is on RB-tree or
754 * mem is over its softlimit.
755 */
756 if (excess || mz->on_tree) {
757 unsigned long flags;
758
759 spin_lock_irqsave(&mctz->lock, flags);
760 /* if on-tree, remove it */
761 if (mz->on_tree)
762 __mem_cgroup_remove_exceeded(mz, mctz);
763 /*
764 * Insert again. mz->usage_in_excess will be updated.
765 * If excess is 0, no tree ops.
766 */
767 __mem_cgroup_insert_exceeded(mz, mctz, excess);
768 spin_unlock_irqrestore(&mctz->lock, flags);
769 }
770 }
771 }
772
773 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
774 {
775 struct mem_cgroup_tree_per_zone *mctz;
776 struct mem_cgroup_per_zone *mz;
777 int nid, zid;
778
779 for_each_node(nid) {
780 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
781 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
782 mctz = soft_limit_tree_node_zone(nid, zid);
783 mem_cgroup_remove_exceeded(mz, mctz);
784 }
785 }
786 }
787
788 static struct mem_cgroup_per_zone *
789 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
790 {
791 struct rb_node *rightmost = NULL;
792 struct mem_cgroup_per_zone *mz;
793
794 retry:
795 mz = NULL;
796 rightmost = rb_last(&mctz->rb_root);
797 if (!rightmost)
798 goto done; /* Nothing to reclaim from */
799
800 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
801 /*
802 * Remove the node now but someone else can add it back,
803 * we will to add it back at the end of reclaim to its correct
804 * position in the tree.
805 */
806 __mem_cgroup_remove_exceeded(mz, mctz);
807 if (!soft_limit_excess(mz->memcg) ||
808 !css_tryget_online(&mz->memcg->css))
809 goto retry;
810 done:
811 return mz;
812 }
813
814 static struct mem_cgroup_per_zone *
815 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
816 {
817 struct mem_cgroup_per_zone *mz;
818
819 spin_lock_irq(&mctz->lock);
820 mz = __mem_cgroup_largest_soft_limit_node(mctz);
821 spin_unlock_irq(&mctz->lock);
822 return mz;
823 }
824
825 /*
826 * Implementation Note: reading percpu statistics for memcg.
827 *
828 * Both of vmstat[] and percpu_counter has threshold and do periodic
829 * synchronization to implement "quick" read. There are trade-off between
830 * reading cost and precision of value. Then, we may have a chance to implement
831 * a periodic synchronizion of counter in memcg's counter.
832 *
833 * But this _read() function is used for user interface now. The user accounts
834 * memory usage by memory cgroup and he _always_ requires exact value because
835 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
836 * have to visit all online cpus and make sum. So, for now, unnecessary
837 * synchronization is not implemented. (just implemented for cpu hotplug)
838 *
839 * If there are kernel internal actions which can make use of some not-exact
840 * value, and reading all cpu value can be performance bottleneck in some
841 * common workload, threashold and synchonization as vmstat[] should be
842 * implemented.
843 */
844 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
845 enum mem_cgroup_stat_index idx)
846 {
847 long val = 0;
848 int cpu;
849
850 get_online_cpus();
851 for_each_online_cpu(cpu)
852 val += per_cpu(memcg->stat->count[idx], cpu);
853 #ifdef CONFIG_HOTPLUG_CPU
854 spin_lock(&memcg->pcp_counter_lock);
855 val += memcg->nocpu_base.count[idx];
856 spin_unlock(&memcg->pcp_counter_lock);
857 #endif
858 put_online_cpus();
859 return val;
860 }
861
862 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
863 enum mem_cgroup_events_index idx)
864 {
865 unsigned long val = 0;
866 int cpu;
867
868 get_online_cpus();
869 for_each_online_cpu(cpu)
870 val += per_cpu(memcg->stat->events[idx], cpu);
871 #ifdef CONFIG_HOTPLUG_CPU
872 spin_lock(&memcg->pcp_counter_lock);
873 val += memcg->nocpu_base.events[idx];
874 spin_unlock(&memcg->pcp_counter_lock);
875 #endif
876 put_online_cpus();
877 return val;
878 }
879
880 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
881 struct page *page,
882 int nr_pages)
883 {
884 /*
885 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
886 * counted as CACHE even if it's on ANON LRU.
887 */
888 if (PageAnon(page))
889 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
890 nr_pages);
891 else
892 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
893 nr_pages);
894
895 if (PageTransHuge(page))
896 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
897 nr_pages);
898
899 /* pagein of a big page is an event. So, ignore page size */
900 if (nr_pages > 0)
901 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
902 else {
903 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
904 nr_pages = -nr_pages; /* for event */
905 }
906
907 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
908 }
909
910 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
911 {
912 struct mem_cgroup_per_zone *mz;
913
914 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
915 return mz->lru_size[lru];
916 }
917
918 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
919 int nid,
920 unsigned int lru_mask)
921 {
922 unsigned long nr = 0;
923 int zid;
924
925 VM_BUG_ON((unsigned)nid >= nr_node_ids);
926
927 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
928 struct mem_cgroup_per_zone *mz;
929 enum lru_list lru;
930
931 for_each_lru(lru) {
932 if (!(BIT(lru) & lru_mask))
933 continue;
934 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
935 nr += mz->lru_size[lru];
936 }
937 }
938 return nr;
939 }
940
941 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
942 unsigned int lru_mask)
943 {
944 unsigned long nr = 0;
945 int nid;
946
947 for_each_node_state(nid, N_MEMORY)
948 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
949 return nr;
950 }
951
952 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
953 enum mem_cgroup_events_target target)
954 {
955 unsigned long val, next;
956
957 val = __this_cpu_read(memcg->stat->nr_page_events);
958 next = __this_cpu_read(memcg->stat->targets[target]);
959 /* from time_after() in jiffies.h */
960 if ((long)next - (long)val < 0) {
961 switch (target) {
962 case MEM_CGROUP_TARGET_THRESH:
963 next = val + THRESHOLDS_EVENTS_TARGET;
964 break;
965 case MEM_CGROUP_TARGET_SOFTLIMIT:
966 next = val + SOFTLIMIT_EVENTS_TARGET;
967 break;
968 case MEM_CGROUP_TARGET_NUMAINFO:
969 next = val + NUMAINFO_EVENTS_TARGET;
970 break;
971 default:
972 break;
973 }
974 __this_cpu_write(memcg->stat->targets[target], next);
975 return true;
976 }
977 return false;
978 }
979
980 /*
981 * Check events in order.
982 *
983 */
984 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
985 {
986 /* threshold event is triggered in finer grain than soft limit */
987 if (unlikely(mem_cgroup_event_ratelimit(memcg,
988 MEM_CGROUP_TARGET_THRESH))) {
989 bool do_softlimit;
990 bool do_numainfo __maybe_unused;
991
992 do_softlimit = mem_cgroup_event_ratelimit(memcg,
993 MEM_CGROUP_TARGET_SOFTLIMIT);
994 #if MAX_NUMNODES > 1
995 do_numainfo = mem_cgroup_event_ratelimit(memcg,
996 MEM_CGROUP_TARGET_NUMAINFO);
997 #endif
998 mem_cgroup_threshold(memcg);
999 if (unlikely(do_softlimit))
1000 mem_cgroup_update_tree(memcg, page);
1001 #if MAX_NUMNODES > 1
1002 if (unlikely(do_numainfo))
1003 atomic_inc(&memcg->numainfo_events);
1004 #endif
1005 }
1006 }
1007
1008 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1009 {
1010 /*
1011 * mm_update_next_owner() may clear mm->owner to NULL
1012 * if it races with swapoff, page migration, etc.
1013 * So this can be called with p == NULL.
1014 */
1015 if (unlikely(!p))
1016 return NULL;
1017
1018 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1019 }
1020
1021 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1022 {
1023 struct mem_cgroup *memcg = NULL;
1024
1025 rcu_read_lock();
1026 do {
1027 /*
1028 * Page cache insertions can happen withou an
1029 * actual mm context, e.g. during disk probing
1030 * on boot, loopback IO, acct() writes etc.
1031 */
1032 if (unlikely(!mm))
1033 memcg = root_mem_cgroup;
1034 else {
1035 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1036 if (unlikely(!memcg))
1037 memcg = root_mem_cgroup;
1038 }
1039 } while (!css_tryget_online(&memcg->css));
1040 rcu_read_unlock();
1041 return memcg;
1042 }
1043
1044 /**
1045 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1046 * @root: hierarchy root
1047 * @prev: previously returned memcg, NULL on first invocation
1048 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1049 *
1050 * Returns references to children of the hierarchy below @root, or
1051 * @root itself, or %NULL after a full round-trip.
1052 *
1053 * Caller must pass the return value in @prev on subsequent
1054 * invocations for reference counting, or use mem_cgroup_iter_break()
1055 * to cancel a hierarchy walk before the round-trip is complete.
1056 *
1057 * Reclaimers can specify a zone and a priority level in @reclaim to
1058 * divide up the memcgs in the hierarchy among all concurrent
1059 * reclaimers operating on the same zone and priority.
1060 */
1061 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1062 struct mem_cgroup *prev,
1063 struct mem_cgroup_reclaim_cookie *reclaim)
1064 {
1065 struct reclaim_iter *uninitialized_var(iter);
1066 struct cgroup_subsys_state *css = NULL;
1067 struct mem_cgroup *memcg = NULL;
1068 struct mem_cgroup *pos = NULL;
1069
1070 if (mem_cgroup_disabled())
1071 return NULL;
1072
1073 if (!root)
1074 root = root_mem_cgroup;
1075
1076 if (prev && !reclaim)
1077 pos = prev;
1078
1079 if (!root->use_hierarchy && root != root_mem_cgroup) {
1080 if (prev)
1081 goto out;
1082 return root;
1083 }
1084
1085 rcu_read_lock();
1086
1087 if (reclaim) {
1088 struct mem_cgroup_per_zone *mz;
1089
1090 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1091 iter = &mz->iter[reclaim->priority];
1092
1093 if (prev && reclaim->generation != iter->generation)
1094 goto out_unlock;
1095
1096 do {
1097 pos = ACCESS_ONCE(iter->position);
1098 /*
1099 * A racing update may change the position and
1100 * put the last reference, hence css_tryget(),
1101 * or retry to see the updated position.
1102 */
1103 } while (pos && !css_tryget(&pos->css));
1104 }
1105
1106 if (pos)
1107 css = &pos->css;
1108
1109 for (;;) {
1110 css = css_next_descendant_pre(css, &root->css);
1111 if (!css) {
1112 /*
1113 * Reclaimers share the hierarchy walk, and a
1114 * new one might jump in right at the end of
1115 * the hierarchy - make sure they see at least
1116 * one group and restart from the beginning.
1117 */
1118 if (!prev)
1119 continue;
1120 break;
1121 }
1122
1123 /*
1124 * Verify the css and acquire a reference. The root
1125 * is provided by the caller, so we know it's alive
1126 * and kicking, and don't take an extra reference.
1127 */
1128 memcg = mem_cgroup_from_css(css);
1129
1130 if (css == &root->css)
1131 break;
1132
1133 if (css_tryget(css)) {
1134 /*
1135 * Make sure the memcg is initialized:
1136 * mem_cgroup_css_online() orders the the
1137 * initialization against setting the flag.
1138 */
1139 if (smp_load_acquire(&memcg->initialized))
1140 break;
1141
1142 css_put(css);
1143 }
1144
1145 memcg = NULL;
1146 }
1147
1148 if (reclaim) {
1149 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1150 if (memcg)
1151 css_get(&memcg->css);
1152 if (pos)
1153 css_put(&pos->css);
1154 }
1155
1156 /*
1157 * pairs with css_tryget when dereferencing iter->position
1158 * above.
1159 */
1160 if (pos)
1161 css_put(&pos->css);
1162
1163 if (!memcg)
1164 iter->generation++;
1165 else if (!prev)
1166 reclaim->generation = iter->generation;
1167 }
1168
1169 out_unlock:
1170 rcu_read_unlock();
1171 out:
1172 if (prev && prev != root)
1173 css_put(&prev->css);
1174
1175 return memcg;
1176 }
1177
1178 /**
1179 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1180 * @root: hierarchy root
1181 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1182 */
1183 void mem_cgroup_iter_break(struct mem_cgroup *root,
1184 struct mem_cgroup *prev)
1185 {
1186 if (!root)
1187 root = root_mem_cgroup;
1188 if (prev && prev != root)
1189 css_put(&prev->css);
1190 }
1191
1192 /*
1193 * Iteration constructs for visiting all cgroups (under a tree). If
1194 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1195 * be used for reference counting.
1196 */
1197 #define for_each_mem_cgroup_tree(iter, root) \
1198 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1199 iter != NULL; \
1200 iter = mem_cgroup_iter(root, iter, NULL))
1201
1202 #define for_each_mem_cgroup(iter) \
1203 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1204 iter != NULL; \
1205 iter = mem_cgroup_iter(NULL, iter, NULL))
1206
1207 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1208 {
1209 struct mem_cgroup *memcg;
1210
1211 rcu_read_lock();
1212 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1213 if (unlikely(!memcg))
1214 goto out;
1215
1216 switch (idx) {
1217 case PGFAULT:
1218 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1219 break;
1220 case PGMAJFAULT:
1221 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1222 break;
1223 default:
1224 BUG();
1225 }
1226 out:
1227 rcu_read_unlock();
1228 }
1229 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1230
1231 /**
1232 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1233 * @zone: zone of the wanted lruvec
1234 * @memcg: memcg of the wanted lruvec
1235 *
1236 * Returns the lru list vector holding pages for the given @zone and
1237 * @mem. This can be the global zone lruvec, if the memory controller
1238 * is disabled.
1239 */
1240 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1241 struct mem_cgroup *memcg)
1242 {
1243 struct mem_cgroup_per_zone *mz;
1244 struct lruvec *lruvec;
1245
1246 if (mem_cgroup_disabled()) {
1247 lruvec = &zone->lruvec;
1248 goto out;
1249 }
1250
1251 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1252 lruvec = &mz->lruvec;
1253 out:
1254 /*
1255 * Since a node can be onlined after the mem_cgroup was created,
1256 * we have to be prepared to initialize lruvec->zone here;
1257 * and if offlined then reonlined, we need to reinitialize it.
1258 */
1259 if (unlikely(lruvec->zone != zone))
1260 lruvec->zone = zone;
1261 return lruvec;
1262 }
1263
1264 /**
1265 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1266 * @page: the page
1267 * @zone: zone of the page
1268 *
1269 * This function is only safe when following the LRU page isolation
1270 * and putback protocol: the LRU lock must be held, and the page must
1271 * either be PageLRU() or the caller must have isolated/allocated it.
1272 */
1273 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1274 {
1275 struct mem_cgroup_per_zone *mz;
1276 struct mem_cgroup *memcg;
1277 struct page_cgroup *pc;
1278 struct lruvec *lruvec;
1279
1280 if (mem_cgroup_disabled()) {
1281 lruvec = &zone->lruvec;
1282 goto out;
1283 }
1284
1285 pc = lookup_page_cgroup(page);
1286 memcg = pc->mem_cgroup;
1287
1288 /*
1289 * Swapcache readahead pages are added to the LRU - and
1290 * possibly migrated - before they are charged. Ensure
1291 * pc->mem_cgroup is sane.
1292 */
1293 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1294 pc->mem_cgroup = memcg = root_mem_cgroup;
1295
1296 mz = mem_cgroup_page_zoneinfo(memcg, page);
1297 lruvec = &mz->lruvec;
1298 out:
1299 /*
1300 * Since a node can be onlined after the mem_cgroup was created,
1301 * we have to be prepared to initialize lruvec->zone here;
1302 * and if offlined then reonlined, we need to reinitialize it.
1303 */
1304 if (unlikely(lruvec->zone != zone))
1305 lruvec->zone = zone;
1306 return lruvec;
1307 }
1308
1309 /**
1310 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1311 * @lruvec: mem_cgroup per zone lru vector
1312 * @lru: index of lru list the page is sitting on
1313 * @nr_pages: positive when adding or negative when removing
1314 *
1315 * This function must be called when a page is added to or removed from an
1316 * lru list.
1317 */
1318 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1319 int nr_pages)
1320 {
1321 struct mem_cgroup_per_zone *mz;
1322 unsigned long *lru_size;
1323
1324 if (mem_cgroup_disabled())
1325 return;
1326
1327 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1328 lru_size = mz->lru_size + lru;
1329 *lru_size += nr_pages;
1330 VM_BUG_ON((long)(*lru_size) < 0);
1331 }
1332
1333 /*
1334 * Checks whether given mem is same or in the root_mem_cgroup's
1335 * hierarchy subtree
1336 */
1337 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1338 struct mem_cgroup *memcg)
1339 {
1340 if (root_memcg == memcg)
1341 return true;
1342 if (!root_memcg->use_hierarchy || !memcg)
1343 return false;
1344 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1345 }
1346
1347 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1348 struct mem_cgroup *memcg)
1349 {
1350 bool ret;
1351
1352 rcu_read_lock();
1353 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1354 rcu_read_unlock();
1355 return ret;
1356 }
1357
1358 bool task_in_mem_cgroup(struct task_struct *task,
1359 const struct mem_cgroup *memcg)
1360 {
1361 struct mem_cgroup *curr = NULL;
1362 struct task_struct *p;
1363 bool ret;
1364
1365 p = find_lock_task_mm(task);
1366 if (p) {
1367 curr = get_mem_cgroup_from_mm(p->mm);
1368 task_unlock(p);
1369 } else {
1370 /*
1371 * All threads may have already detached their mm's, but the oom
1372 * killer still needs to detect if they have already been oom
1373 * killed to prevent needlessly killing additional tasks.
1374 */
1375 rcu_read_lock();
1376 curr = mem_cgroup_from_task(task);
1377 if (curr)
1378 css_get(&curr->css);
1379 rcu_read_unlock();
1380 }
1381 /*
1382 * We should check use_hierarchy of "memcg" not "curr". Because checking
1383 * use_hierarchy of "curr" here make this function true if hierarchy is
1384 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1385 * hierarchy(even if use_hierarchy is disabled in "memcg").
1386 */
1387 ret = mem_cgroup_same_or_subtree(memcg, curr);
1388 css_put(&curr->css);
1389 return ret;
1390 }
1391
1392 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1393 {
1394 unsigned long inactive_ratio;
1395 unsigned long inactive;
1396 unsigned long active;
1397 unsigned long gb;
1398
1399 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1400 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1401
1402 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1403 if (gb)
1404 inactive_ratio = int_sqrt(10 * gb);
1405 else
1406 inactive_ratio = 1;
1407
1408 return inactive * inactive_ratio < active;
1409 }
1410
1411 #define mem_cgroup_from_counter(counter, member) \
1412 container_of(counter, struct mem_cgroup, member)
1413
1414 /**
1415 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1416 * @memcg: the memory cgroup
1417 *
1418 * Returns the maximum amount of memory @mem can be charged with, in
1419 * pages.
1420 */
1421 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1422 {
1423 unsigned long margin = 0;
1424 unsigned long count;
1425 unsigned long limit;
1426
1427 count = page_counter_read(&memcg->memory);
1428 limit = ACCESS_ONCE(memcg->memory.limit);
1429 if (count < limit)
1430 margin = limit - count;
1431
1432 if (do_swap_account) {
1433 count = page_counter_read(&memcg->memsw);
1434 limit = ACCESS_ONCE(memcg->memsw.limit);
1435 if (count <= limit)
1436 margin = min(margin, limit - count);
1437 }
1438
1439 return margin;
1440 }
1441
1442 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1443 {
1444 /* root ? */
1445 if (mem_cgroup_disabled() || !memcg->css.parent)
1446 return vm_swappiness;
1447
1448 return memcg->swappiness;
1449 }
1450
1451 /*
1452 * memcg->moving_account is used for checking possibility that some thread is
1453 * calling move_account(). When a thread on CPU-A starts moving pages under
1454 * a memcg, other threads should check memcg->moving_account under
1455 * rcu_read_lock(), like this:
1456 *
1457 * CPU-A CPU-B
1458 * rcu_read_lock()
1459 * memcg->moving_account+1 if (memcg->mocing_account)
1460 * take heavy locks.
1461 * synchronize_rcu() update something.
1462 * rcu_read_unlock()
1463 * start move here.
1464 */
1465
1466 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1467 {
1468 atomic_inc(&memcg->moving_account);
1469 synchronize_rcu();
1470 }
1471
1472 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1473 {
1474 /*
1475 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1476 * We check NULL in callee rather than caller.
1477 */
1478 if (memcg)
1479 atomic_dec(&memcg->moving_account);
1480 }
1481
1482 /*
1483 * A routine for checking "mem" is under move_account() or not.
1484 *
1485 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1486 * moving cgroups. This is for waiting at high-memory pressure
1487 * caused by "move".
1488 */
1489 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1490 {
1491 struct mem_cgroup *from;
1492 struct mem_cgroup *to;
1493 bool ret = false;
1494 /*
1495 * Unlike task_move routines, we access mc.to, mc.from not under
1496 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1497 */
1498 spin_lock(&mc.lock);
1499 from = mc.from;
1500 to = mc.to;
1501 if (!from)
1502 goto unlock;
1503
1504 ret = mem_cgroup_same_or_subtree(memcg, from)
1505 || mem_cgroup_same_or_subtree(memcg, to);
1506 unlock:
1507 spin_unlock(&mc.lock);
1508 return ret;
1509 }
1510
1511 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1512 {
1513 if (mc.moving_task && current != mc.moving_task) {
1514 if (mem_cgroup_under_move(memcg)) {
1515 DEFINE_WAIT(wait);
1516 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1517 /* moving charge context might have finished. */
1518 if (mc.moving_task)
1519 schedule();
1520 finish_wait(&mc.waitq, &wait);
1521 return true;
1522 }
1523 }
1524 return false;
1525 }
1526
1527 /*
1528 * Take this lock when
1529 * - a code tries to modify page's memcg while it's USED.
1530 * - a code tries to modify page state accounting in a memcg.
1531 */
1532 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1533 unsigned long *flags)
1534 {
1535 spin_lock_irqsave(&memcg->move_lock, *flags);
1536 }
1537
1538 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1539 unsigned long *flags)
1540 {
1541 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1542 }
1543
1544 #define K(x) ((x) << (PAGE_SHIFT-10))
1545 /**
1546 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1547 * @memcg: The memory cgroup that went over limit
1548 * @p: Task that is going to be killed
1549 *
1550 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1551 * enabled
1552 */
1553 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1554 {
1555 /* oom_info_lock ensures that parallel ooms do not interleave */
1556 static DEFINE_MUTEX(oom_info_lock);
1557 struct mem_cgroup *iter;
1558 unsigned int i;
1559
1560 if (!p)
1561 return;
1562
1563 mutex_lock(&oom_info_lock);
1564 rcu_read_lock();
1565
1566 pr_info("Task in ");
1567 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1568 pr_info(" killed as a result of limit of ");
1569 pr_cont_cgroup_path(memcg->css.cgroup);
1570 pr_info("\n");
1571
1572 rcu_read_unlock();
1573
1574 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1575 K((u64)page_counter_read(&memcg->memory)),
1576 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1577 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1578 K((u64)page_counter_read(&memcg->memsw)),
1579 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1580 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1581 K((u64)page_counter_read(&memcg->kmem)),
1582 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1583
1584 for_each_mem_cgroup_tree(iter, memcg) {
1585 pr_info("Memory cgroup stats for ");
1586 pr_cont_cgroup_path(iter->css.cgroup);
1587 pr_cont(":");
1588
1589 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1590 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1591 continue;
1592 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1593 K(mem_cgroup_read_stat(iter, i)));
1594 }
1595
1596 for (i = 0; i < NR_LRU_LISTS; i++)
1597 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1598 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1599
1600 pr_cont("\n");
1601 }
1602 mutex_unlock(&oom_info_lock);
1603 }
1604
1605 /*
1606 * This function returns the number of memcg under hierarchy tree. Returns
1607 * 1(self count) if no children.
1608 */
1609 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1610 {
1611 int num = 0;
1612 struct mem_cgroup *iter;
1613
1614 for_each_mem_cgroup_tree(iter, memcg)
1615 num++;
1616 return num;
1617 }
1618
1619 /*
1620 * Return the memory (and swap, if configured) limit for a memcg.
1621 */
1622 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1623 {
1624 unsigned long limit;
1625
1626 limit = memcg->memory.limit;
1627 if (mem_cgroup_swappiness(memcg)) {
1628 unsigned long memsw_limit;
1629
1630 memsw_limit = memcg->memsw.limit;
1631 limit = min(limit + total_swap_pages, memsw_limit);
1632 }
1633 return limit;
1634 }
1635
1636 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1637 int order)
1638 {
1639 struct mem_cgroup *iter;
1640 unsigned long chosen_points = 0;
1641 unsigned long totalpages;
1642 unsigned int points = 0;
1643 struct task_struct *chosen = NULL;
1644
1645 /*
1646 * If current has a pending SIGKILL or is exiting, then automatically
1647 * select it. The goal is to allow it to allocate so that it may
1648 * quickly exit and free its memory.
1649 */
1650 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1651 set_thread_flag(TIF_MEMDIE);
1652 return;
1653 }
1654
1655 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1656 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1657 for_each_mem_cgroup_tree(iter, memcg) {
1658 struct css_task_iter it;
1659 struct task_struct *task;
1660
1661 css_task_iter_start(&iter->css, &it);
1662 while ((task = css_task_iter_next(&it))) {
1663 switch (oom_scan_process_thread(task, totalpages, NULL,
1664 false)) {
1665 case OOM_SCAN_SELECT:
1666 if (chosen)
1667 put_task_struct(chosen);
1668 chosen = task;
1669 chosen_points = ULONG_MAX;
1670 get_task_struct(chosen);
1671 /* fall through */
1672 case OOM_SCAN_CONTINUE:
1673 continue;
1674 case OOM_SCAN_ABORT:
1675 css_task_iter_end(&it);
1676 mem_cgroup_iter_break(memcg, iter);
1677 if (chosen)
1678 put_task_struct(chosen);
1679 return;
1680 case OOM_SCAN_OK:
1681 break;
1682 };
1683 points = oom_badness(task, memcg, NULL, totalpages);
1684 if (!points || points < chosen_points)
1685 continue;
1686 /* Prefer thread group leaders for display purposes */
1687 if (points == chosen_points &&
1688 thread_group_leader(chosen))
1689 continue;
1690
1691 if (chosen)
1692 put_task_struct(chosen);
1693 chosen = task;
1694 chosen_points = points;
1695 get_task_struct(chosen);
1696 }
1697 css_task_iter_end(&it);
1698 }
1699
1700 if (!chosen)
1701 return;
1702 points = chosen_points * 1000 / totalpages;
1703 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1704 NULL, "Memory cgroup out of memory");
1705 }
1706
1707 /**
1708 * test_mem_cgroup_node_reclaimable
1709 * @memcg: the target memcg
1710 * @nid: the node ID to be checked.
1711 * @noswap : specify true here if the user wants flle only information.
1712 *
1713 * This function returns whether the specified memcg contains any
1714 * reclaimable pages on a node. Returns true if there are any reclaimable
1715 * pages in the node.
1716 */
1717 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1718 int nid, bool noswap)
1719 {
1720 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1721 return true;
1722 if (noswap || !total_swap_pages)
1723 return false;
1724 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1725 return true;
1726 return false;
1727
1728 }
1729 #if MAX_NUMNODES > 1
1730
1731 /*
1732 * Always updating the nodemask is not very good - even if we have an empty
1733 * list or the wrong list here, we can start from some node and traverse all
1734 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1735 *
1736 */
1737 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1738 {
1739 int nid;
1740 /*
1741 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1742 * pagein/pageout changes since the last update.
1743 */
1744 if (!atomic_read(&memcg->numainfo_events))
1745 return;
1746 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1747 return;
1748
1749 /* make a nodemask where this memcg uses memory from */
1750 memcg->scan_nodes = node_states[N_MEMORY];
1751
1752 for_each_node_mask(nid, node_states[N_MEMORY]) {
1753
1754 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1755 node_clear(nid, memcg->scan_nodes);
1756 }
1757
1758 atomic_set(&memcg->numainfo_events, 0);
1759 atomic_set(&memcg->numainfo_updating, 0);
1760 }
1761
1762 /*
1763 * Selecting a node where we start reclaim from. Because what we need is just
1764 * reducing usage counter, start from anywhere is O,K. Considering
1765 * memory reclaim from current node, there are pros. and cons.
1766 *
1767 * Freeing memory from current node means freeing memory from a node which
1768 * we'll use or we've used. So, it may make LRU bad. And if several threads
1769 * hit limits, it will see a contention on a node. But freeing from remote
1770 * node means more costs for memory reclaim because of memory latency.
1771 *
1772 * Now, we use round-robin. Better algorithm is welcomed.
1773 */
1774 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1775 {
1776 int node;
1777
1778 mem_cgroup_may_update_nodemask(memcg);
1779 node = memcg->last_scanned_node;
1780
1781 node = next_node(node, memcg->scan_nodes);
1782 if (node == MAX_NUMNODES)
1783 node = first_node(memcg->scan_nodes);
1784 /*
1785 * We call this when we hit limit, not when pages are added to LRU.
1786 * No LRU may hold pages because all pages are UNEVICTABLE or
1787 * memcg is too small and all pages are not on LRU. In that case,
1788 * we use curret node.
1789 */
1790 if (unlikely(node == MAX_NUMNODES))
1791 node = numa_node_id();
1792
1793 memcg->last_scanned_node = node;
1794 return node;
1795 }
1796
1797 /*
1798 * Check all nodes whether it contains reclaimable pages or not.
1799 * For quick scan, we make use of scan_nodes. This will allow us to skip
1800 * unused nodes. But scan_nodes is lazily updated and may not cotain
1801 * enough new information. We need to do double check.
1802 */
1803 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1804 {
1805 int nid;
1806
1807 /*
1808 * quick check...making use of scan_node.
1809 * We can skip unused nodes.
1810 */
1811 if (!nodes_empty(memcg->scan_nodes)) {
1812 for (nid = first_node(memcg->scan_nodes);
1813 nid < MAX_NUMNODES;
1814 nid = next_node(nid, memcg->scan_nodes)) {
1815
1816 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1817 return true;
1818 }
1819 }
1820 /*
1821 * Check rest of nodes.
1822 */
1823 for_each_node_state(nid, N_MEMORY) {
1824 if (node_isset(nid, memcg->scan_nodes))
1825 continue;
1826 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1827 return true;
1828 }
1829 return false;
1830 }
1831
1832 #else
1833 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1834 {
1835 return 0;
1836 }
1837
1838 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1839 {
1840 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1841 }
1842 #endif
1843
1844 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1845 struct zone *zone,
1846 gfp_t gfp_mask,
1847 unsigned long *total_scanned)
1848 {
1849 struct mem_cgroup *victim = NULL;
1850 int total = 0;
1851 int loop = 0;
1852 unsigned long excess;
1853 unsigned long nr_scanned;
1854 struct mem_cgroup_reclaim_cookie reclaim = {
1855 .zone = zone,
1856 .priority = 0,
1857 };
1858
1859 excess = soft_limit_excess(root_memcg);
1860
1861 while (1) {
1862 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1863 if (!victim) {
1864 loop++;
1865 if (loop >= 2) {
1866 /*
1867 * If we have not been able to reclaim
1868 * anything, it might because there are
1869 * no reclaimable pages under this hierarchy
1870 */
1871 if (!total)
1872 break;
1873 /*
1874 * We want to do more targeted reclaim.
1875 * excess >> 2 is not to excessive so as to
1876 * reclaim too much, nor too less that we keep
1877 * coming back to reclaim from this cgroup
1878 */
1879 if (total >= (excess >> 2) ||
1880 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1881 break;
1882 }
1883 continue;
1884 }
1885 if (!mem_cgroup_reclaimable(victim, false))
1886 continue;
1887 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1888 zone, &nr_scanned);
1889 *total_scanned += nr_scanned;
1890 if (!soft_limit_excess(root_memcg))
1891 break;
1892 }
1893 mem_cgroup_iter_break(root_memcg, victim);
1894 return total;
1895 }
1896
1897 #ifdef CONFIG_LOCKDEP
1898 static struct lockdep_map memcg_oom_lock_dep_map = {
1899 .name = "memcg_oom_lock",
1900 };
1901 #endif
1902
1903 static DEFINE_SPINLOCK(memcg_oom_lock);
1904
1905 /*
1906 * Check OOM-Killer is already running under our hierarchy.
1907 * If someone is running, return false.
1908 */
1909 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1910 {
1911 struct mem_cgroup *iter, *failed = NULL;
1912
1913 spin_lock(&memcg_oom_lock);
1914
1915 for_each_mem_cgroup_tree(iter, memcg) {
1916 if (iter->oom_lock) {
1917 /*
1918 * this subtree of our hierarchy is already locked
1919 * so we cannot give a lock.
1920 */
1921 failed = iter;
1922 mem_cgroup_iter_break(memcg, iter);
1923 break;
1924 } else
1925 iter->oom_lock = true;
1926 }
1927
1928 if (failed) {
1929 /*
1930 * OK, we failed to lock the whole subtree so we have
1931 * to clean up what we set up to the failing subtree
1932 */
1933 for_each_mem_cgroup_tree(iter, memcg) {
1934 if (iter == failed) {
1935 mem_cgroup_iter_break(memcg, iter);
1936 break;
1937 }
1938 iter->oom_lock = false;
1939 }
1940 } else
1941 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1942
1943 spin_unlock(&memcg_oom_lock);
1944
1945 return !failed;
1946 }
1947
1948 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1949 {
1950 struct mem_cgroup *iter;
1951
1952 spin_lock(&memcg_oom_lock);
1953 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1954 for_each_mem_cgroup_tree(iter, memcg)
1955 iter->oom_lock = false;
1956 spin_unlock(&memcg_oom_lock);
1957 }
1958
1959 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1960 {
1961 struct mem_cgroup *iter;
1962
1963 for_each_mem_cgroup_tree(iter, memcg)
1964 atomic_inc(&iter->under_oom);
1965 }
1966
1967 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1968 {
1969 struct mem_cgroup *iter;
1970
1971 /*
1972 * When a new child is created while the hierarchy is under oom,
1973 * mem_cgroup_oom_lock() may not be called. We have to use
1974 * atomic_add_unless() here.
1975 */
1976 for_each_mem_cgroup_tree(iter, memcg)
1977 atomic_add_unless(&iter->under_oom, -1, 0);
1978 }
1979
1980 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1981
1982 struct oom_wait_info {
1983 struct mem_cgroup *memcg;
1984 wait_queue_t wait;
1985 };
1986
1987 static int memcg_oom_wake_function(wait_queue_t *wait,
1988 unsigned mode, int sync, void *arg)
1989 {
1990 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1991 struct mem_cgroup *oom_wait_memcg;
1992 struct oom_wait_info *oom_wait_info;
1993
1994 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1995 oom_wait_memcg = oom_wait_info->memcg;
1996
1997 /*
1998 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1999 * Then we can use css_is_ancestor without taking care of RCU.
2000 */
2001 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2002 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2003 return 0;
2004 return autoremove_wake_function(wait, mode, sync, arg);
2005 }
2006
2007 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2008 {
2009 atomic_inc(&memcg->oom_wakeups);
2010 /* for filtering, pass "memcg" as argument. */
2011 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2012 }
2013
2014 static void memcg_oom_recover(struct mem_cgroup *memcg)
2015 {
2016 if (memcg && atomic_read(&memcg->under_oom))
2017 memcg_wakeup_oom(memcg);
2018 }
2019
2020 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2021 {
2022 if (!current->memcg_oom.may_oom)
2023 return;
2024 /*
2025 * We are in the middle of the charge context here, so we
2026 * don't want to block when potentially sitting on a callstack
2027 * that holds all kinds of filesystem and mm locks.
2028 *
2029 * Also, the caller may handle a failed allocation gracefully
2030 * (like optional page cache readahead) and so an OOM killer
2031 * invocation might not even be necessary.
2032 *
2033 * That's why we don't do anything here except remember the
2034 * OOM context and then deal with it at the end of the page
2035 * fault when the stack is unwound, the locks are released,
2036 * and when we know whether the fault was overall successful.
2037 */
2038 css_get(&memcg->css);
2039 current->memcg_oom.memcg = memcg;
2040 current->memcg_oom.gfp_mask = mask;
2041 current->memcg_oom.order = order;
2042 }
2043
2044 /**
2045 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2046 * @handle: actually kill/wait or just clean up the OOM state
2047 *
2048 * This has to be called at the end of a page fault if the memcg OOM
2049 * handler was enabled.
2050 *
2051 * Memcg supports userspace OOM handling where failed allocations must
2052 * sleep on a waitqueue until the userspace task resolves the
2053 * situation. Sleeping directly in the charge context with all kinds
2054 * of locks held is not a good idea, instead we remember an OOM state
2055 * in the task and mem_cgroup_oom_synchronize() has to be called at
2056 * the end of the page fault to complete the OOM handling.
2057 *
2058 * Returns %true if an ongoing memcg OOM situation was detected and
2059 * completed, %false otherwise.
2060 */
2061 bool mem_cgroup_oom_synchronize(bool handle)
2062 {
2063 struct mem_cgroup *memcg = current->memcg_oom.memcg;
2064 struct oom_wait_info owait;
2065 bool locked;
2066
2067 /* OOM is global, do not handle */
2068 if (!memcg)
2069 return false;
2070
2071 if (!handle)
2072 goto cleanup;
2073
2074 owait.memcg = memcg;
2075 owait.wait.flags = 0;
2076 owait.wait.func = memcg_oom_wake_function;
2077 owait.wait.private = current;
2078 INIT_LIST_HEAD(&owait.wait.task_list);
2079
2080 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2081 mem_cgroup_mark_under_oom(memcg);
2082
2083 locked = mem_cgroup_oom_trylock(memcg);
2084
2085 if (locked)
2086 mem_cgroup_oom_notify(memcg);
2087
2088 if (locked && !memcg->oom_kill_disable) {
2089 mem_cgroup_unmark_under_oom(memcg);
2090 finish_wait(&memcg_oom_waitq, &owait.wait);
2091 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2092 current->memcg_oom.order);
2093 } else {
2094 schedule();
2095 mem_cgroup_unmark_under_oom(memcg);
2096 finish_wait(&memcg_oom_waitq, &owait.wait);
2097 }
2098
2099 if (locked) {
2100 mem_cgroup_oom_unlock(memcg);
2101 /*
2102 * There is no guarantee that an OOM-lock contender
2103 * sees the wakeups triggered by the OOM kill
2104 * uncharges. Wake any sleepers explicitely.
2105 */
2106 memcg_oom_recover(memcg);
2107 }
2108 cleanup:
2109 current->memcg_oom.memcg = NULL;
2110 css_put(&memcg->css);
2111 return true;
2112 }
2113
2114 /**
2115 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
2116 * @page: page that is going to change accounted state
2117 * @locked: &memcg->move_lock slowpath was taken
2118 * @flags: IRQ-state flags for &memcg->move_lock
2119 *
2120 * This function must mark the beginning of an accounted page state
2121 * change to prevent double accounting when the page is concurrently
2122 * being moved to another memcg:
2123 *
2124 * memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
2125 * if (TestClearPageState(page))
2126 * mem_cgroup_update_page_stat(memcg, state, -1);
2127 * mem_cgroup_end_page_stat(memcg, locked, flags);
2128 *
2129 * The RCU lock is held throughout the transaction. The fast path can
2130 * get away without acquiring the memcg->move_lock (@locked is false)
2131 * because page moving starts with an RCU grace period.
2132 *
2133 * The RCU lock also protects the memcg from being freed when the page
2134 * state that is going to change is the only thing preventing the page
2135 * from being uncharged. E.g. end-writeback clearing PageWriteback(),
2136 * which allows migration to go ahead and uncharge the page before the
2137 * account transaction might be complete.
2138 */
2139 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page,
2140 bool *locked,
2141 unsigned long *flags)
2142 {
2143 struct mem_cgroup *memcg;
2144 struct page_cgroup *pc;
2145
2146 rcu_read_lock();
2147
2148 if (mem_cgroup_disabled())
2149 return NULL;
2150
2151 pc = lookup_page_cgroup(page);
2152 again:
2153 memcg = pc->mem_cgroup;
2154 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2155 return NULL;
2156
2157 *locked = false;
2158 if (atomic_read(&memcg->moving_account) <= 0)
2159 return memcg;
2160
2161 move_lock_mem_cgroup(memcg, flags);
2162 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2163 move_unlock_mem_cgroup(memcg, flags);
2164 goto again;
2165 }
2166 *locked = true;
2167
2168 return memcg;
2169 }
2170
2171 /**
2172 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2173 * @memcg: the memcg that was accounted against
2174 * @locked: value received from mem_cgroup_begin_page_stat()
2175 * @flags: value received from mem_cgroup_begin_page_stat()
2176 */
2177 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool locked,
2178 unsigned long flags)
2179 {
2180 if (memcg && locked)
2181 move_unlock_mem_cgroup(memcg, &flags);
2182
2183 rcu_read_unlock();
2184 }
2185
2186 /**
2187 * mem_cgroup_update_page_stat - update page state statistics
2188 * @memcg: memcg to account against
2189 * @idx: page state item to account
2190 * @val: number of pages (positive or negative)
2191 *
2192 * See mem_cgroup_begin_page_stat() for locking requirements.
2193 */
2194 void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
2195 enum mem_cgroup_stat_index idx, int val)
2196 {
2197 VM_BUG_ON(!rcu_read_lock_held());
2198
2199 if (memcg)
2200 this_cpu_add(memcg->stat->count[idx], val);
2201 }
2202
2203 /*
2204 * size of first charge trial. "32" comes from vmscan.c's magic value.
2205 * TODO: maybe necessary to use big numbers in big irons.
2206 */
2207 #define CHARGE_BATCH 32U
2208 struct memcg_stock_pcp {
2209 struct mem_cgroup *cached; /* this never be root cgroup */
2210 unsigned int nr_pages;
2211 struct work_struct work;
2212 unsigned long flags;
2213 #define FLUSHING_CACHED_CHARGE 0
2214 };
2215 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2216 static DEFINE_MUTEX(percpu_charge_mutex);
2217
2218 /**
2219 * consume_stock: Try to consume stocked charge on this cpu.
2220 * @memcg: memcg to consume from.
2221 * @nr_pages: how many pages to charge.
2222 *
2223 * The charges will only happen if @memcg matches the current cpu's memcg
2224 * stock, and at least @nr_pages are available in that stock. Failure to
2225 * service an allocation will refill the stock.
2226 *
2227 * returns true if successful, false otherwise.
2228 */
2229 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2230 {
2231 struct memcg_stock_pcp *stock;
2232 bool ret = false;
2233
2234 if (nr_pages > CHARGE_BATCH)
2235 return ret;
2236
2237 stock = &get_cpu_var(memcg_stock);
2238 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2239 stock->nr_pages -= nr_pages;
2240 ret = true;
2241 }
2242 put_cpu_var(memcg_stock);
2243 return ret;
2244 }
2245
2246 /*
2247 * Returns stocks cached in percpu and reset cached information.
2248 */
2249 static void drain_stock(struct memcg_stock_pcp *stock)
2250 {
2251 struct mem_cgroup *old = stock->cached;
2252
2253 if (stock->nr_pages) {
2254 page_counter_uncharge(&old->memory, stock->nr_pages);
2255 if (do_swap_account)
2256 page_counter_uncharge(&old->memsw, stock->nr_pages);
2257 css_put_many(&old->css, stock->nr_pages);
2258 stock->nr_pages = 0;
2259 }
2260 stock->cached = NULL;
2261 }
2262
2263 /*
2264 * This must be called under preempt disabled or must be called by
2265 * a thread which is pinned to local cpu.
2266 */
2267 static void drain_local_stock(struct work_struct *dummy)
2268 {
2269 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2270 drain_stock(stock);
2271 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2272 }
2273
2274 static void __init memcg_stock_init(void)
2275 {
2276 int cpu;
2277
2278 for_each_possible_cpu(cpu) {
2279 struct memcg_stock_pcp *stock =
2280 &per_cpu(memcg_stock, cpu);
2281 INIT_WORK(&stock->work, drain_local_stock);
2282 }
2283 }
2284
2285 /*
2286 * Cache charges(val) to local per_cpu area.
2287 * This will be consumed by consume_stock() function, later.
2288 */
2289 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2290 {
2291 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2292
2293 if (stock->cached != memcg) { /* reset if necessary */
2294 drain_stock(stock);
2295 stock->cached = memcg;
2296 }
2297 stock->nr_pages += nr_pages;
2298 put_cpu_var(memcg_stock);
2299 }
2300
2301 /*
2302 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2303 * of the hierarchy under it.
2304 */
2305 static void drain_all_stock(struct mem_cgroup *root_memcg)
2306 {
2307 int cpu, curcpu;
2308
2309 /* If someone's already draining, avoid adding running more workers. */
2310 if (!mutex_trylock(&percpu_charge_mutex))
2311 return;
2312 /* Notify other cpus that system-wide "drain" is running */
2313 get_online_cpus();
2314 curcpu = get_cpu();
2315 for_each_online_cpu(cpu) {
2316 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2317 struct mem_cgroup *memcg;
2318
2319 memcg = stock->cached;
2320 if (!memcg || !stock->nr_pages)
2321 continue;
2322 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2323 continue;
2324 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2325 if (cpu == curcpu)
2326 drain_local_stock(&stock->work);
2327 else
2328 schedule_work_on(cpu, &stock->work);
2329 }
2330 }
2331 put_cpu();
2332 put_online_cpus();
2333 mutex_unlock(&percpu_charge_mutex);
2334 }
2335
2336 /*
2337 * This function drains percpu counter value from DEAD cpu and
2338 * move it to local cpu. Note that this function can be preempted.
2339 */
2340 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2341 {
2342 int i;
2343
2344 spin_lock(&memcg->pcp_counter_lock);
2345 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2346 long x = per_cpu(memcg->stat->count[i], cpu);
2347
2348 per_cpu(memcg->stat->count[i], cpu) = 0;
2349 memcg->nocpu_base.count[i] += x;
2350 }
2351 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2352 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2353
2354 per_cpu(memcg->stat->events[i], cpu) = 0;
2355 memcg->nocpu_base.events[i] += x;
2356 }
2357 spin_unlock(&memcg->pcp_counter_lock);
2358 }
2359
2360 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2361 unsigned long action,
2362 void *hcpu)
2363 {
2364 int cpu = (unsigned long)hcpu;
2365 struct memcg_stock_pcp *stock;
2366 struct mem_cgroup *iter;
2367
2368 if (action == CPU_ONLINE)
2369 return NOTIFY_OK;
2370
2371 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2372 return NOTIFY_OK;
2373
2374 for_each_mem_cgroup(iter)
2375 mem_cgroup_drain_pcp_counter(iter, cpu);
2376
2377 stock = &per_cpu(memcg_stock, cpu);
2378 drain_stock(stock);
2379 return NOTIFY_OK;
2380 }
2381
2382 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2383 unsigned int nr_pages)
2384 {
2385 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2386 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2387 struct mem_cgroup *mem_over_limit;
2388 struct page_counter *counter;
2389 unsigned long nr_reclaimed;
2390 bool may_swap = true;
2391 bool drained = false;
2392 int ret = 0;
2393
2394 if (mem_cgroup_is_root(memcg))
2395 goto done;
2396 retry:
2397 if (consume_stock(memcg, nr_pages))
2398 goto done;
2399
2400 if (!do_swap_account ||
2401 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2402 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2403 goto done_restock;
2404 if (do_swap_account)
2405 page_counter_uncharge(&memcg->memsw, batch);
2406 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2407 } else {
2408 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2409 may_swap = false;
2410 }
2411
2412 if (batch > nr_pages) {
2413 batch = nr_pages;
2414 goto retry;
2415 }
2416
2417 /*
2418 * Unlike in global OOM situations, memcg is not in a physical
2419 * memory shortage. Allow dying and OOM-killed tasks to
2420 * bypass the last charges so that they can exit quickly and
2421 * free their memory.
2422 */
2423 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2424 fatal_signal_pending(current) ||
2425 current->flags & PF_EXITING))
2426 goto bypass;
2427
2428 if (unlikely(task_in_memcg_oom(current)))
2429 goto nomem;
2430
2431 if (!(gfp_mask & __GFP_WAIT))
2432 goto nomem;
2433
2434 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2435 gfp_mask, may_swap);
2436
2437 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2438 goto retry;
2439
2440 if (!drained) {
2441 drain_all_stock(mem_over_limit);
2442 drained = true;
2443 goto retry;
2444 }
2445
2446 if (gfp_mask & __GFP_NORETRY)
2447 goto nomem;
2448 /*
2449 * Even though the limit is exceeded at this point, reclaim
2450 * may have been able to free some pages. Retry the charge
2451 * before killing the task.
2452 *
2453 * Only for regular pages, though: huge pages are rather
2454 * unlikely to succeed so close to the limit, and we fall back
2455 * to regular pages anyway in case of failure.
2456 */
2457 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2458 goto retry;
2459 /*
2460 * At task move, charge accounts can be doubly counted. So, it's
2461 * better to wait until the end of task_move if something is going on.
2462 */
2463 if (mem_cgroup_wait_acct_move(mem_over_limit))
2464 goto retry;
2465
2466 if (nr_retries--)
2467 goto retry;
2468
2469 if (gfp_mask & __GFP_NOFAIL)
2470 goto bypass;
2471
2472 if (fatal_signal_pending(current))
2473 goto bypass;
2474
2475 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2476 nomem:
2477 if (!(gfp_mask & __GFP_NOFAIL))
2478 return -ENOMEM;
2479 bypass:
2480 return -EINTR;
2481
2482 done_restock:
2483 css_get_many(&memcg->css, batch);
2484 if (batch > nr_pages)
2485 refill_stock(memcg, batch - nr_pages);
2486 done:
2487 return ret;
2488 }
2489
2490 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2491 {
2492 if (mem_cgroup_is_root(memcg))
2493 return;
2494
2495 page_counter_uncharge(&memcg->memory, nr_pages);
2496 if (do_swap_account)
2497 page_counter_uncharge(&memcg->memsw, nr_pages);
2498
2499 css_put_many(&memcg->css, nr_pages);
2500 }
2501
2502 /*
2503 * A helper function to get mem_cgroup from ID. must be called under
2504 * rcu_read_lock(). The caller is responsible for calling
2505 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2506 * refcnt from swap can be called against removed memcg.)
2507 */
2508 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2509 {
2510 /* ID 0 is unused ID */
2511 if (!id)
2512 return NULL;
2513 return mem_cgroup_from_id(id);
2514 }
2515
2516 /*
2517 * try_get_mem_cgroup_from_page - look up page's memcg association
2518 * @page: the page
2519 *
2520 * Look up, get a css reference, and return the memcg that owns @page.
2521 *
2522 * The page must be locked to prevent racing with swap-in and page
2523 * cache charges. If coming from an unlocked page table, the caller
2524 * must ensure the page is on the LRU or this can race with charging.
2525 */
2526 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2527 {
2528 struct mem_cgroup *memcg = NULL;
2529 struct page_cgroup *pc;
2530 unsigned short id;
2531 swp_entry_t ent;
2532
2533 VM_BUG_ON_PAGE(!PageLocked(page), page);
2534
2535 pc = lookup_page_cgroup(page);
2536 if (PageCgroupUsed(pc)) {
2537 memcg = pc->mem_cgroup;
2538 if (memcg && !css_tryget_online(&memcg->css))
2539 memcg = NULL;
2540 } else if (PageSwapCache(page)) {
2541 ent.val = page_private(page);
2542 id = lookup_swap_cgroup_id(ent);
2543 rcu_read_lock();
2544 memcg = mem_cgroup_lookup(id);
2545 if (memcg && !css_tryget_online(&memcg->css))
2546 memcg = NULL;
2547 rcu_read_unlock();
2548 }
2549 return memcg;
2550 }
2551
2552 static void lock_page_lru(struct page *page, int *isolated)
2553 {
2554 struct zone *zone = page_zone(page);
2555
2556 spin_lock_irq(&zone->lru_lock);
2557 if (PageLRU(page)) {
2558 struct lruvec *lruvec;
2559
2560 lruvec = mem_cgroup_page_lruvec(page, zone);
2561 ClearPageLRU(page);
2562 del_page_from_lru_list(page, lruvec, page_lru(page));
2563 *isolated = 1;
2564 } else
2565 *isolated = 0;
2566 }
2567
2568 static void unlock_page_lru(struct page *page, int isolated)
2569 {
2570 struct zone *zone = page_zone(page);
2571
2572 if (isolated) {
2573 struct lruvec *lruvec;
2574
2575 lruvec = mem_cgroup_page_lruvec(page, zone);
2576 VM_BUG_ON_PAGE(PageLRU(page), page);
2577 SetPageLRU(page);
2578 add_page_to_lru_list(page, lruvec, page_lru(page));
2579 }
2580 spin_unlock_irq(&zone->lru_lock);
2581 }
2582
2583 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2584 bool lrucare)
2585 {
2586 struct page_cgroup *pc = lookup_page_cgroup(page);
2587 int isolated;
2588
2589 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2590 /*
2591 * we don't need page_cgroup_lock about tail pages, becase they are not
2592 * accessed by any other context at this point.
2593 */
2594
2595 /*
2596 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2597 * may already be on some other mem_cgroup's LRU. Take care of it.
2598 */
2599 if (lrucare)
2600 lock_page_lru(page, &isolated);
2601
2602 /*
2603 * Nobody should be changing or seriously looking at
2604 * pc->mem_cgroup and pc->flags at this point:
2605 *
2606 * - the page is uncharged
2607 *
2608 * - the page is off-LRU
2609 *
2610 * - an anonymous fault has exclusive page access, except for
2611 * a locked page table
2612 *
2613 * - a page cache insertion, a swapin fault, or a migration
2614 * have the page locked
2615 */
2616 pc->mem_cgroup = memcg;
2617 pc->flags = PCG_USED | PCG_MEM | (do_swap_account ? PCG_MEMSW : 0);
2618
2619 if (lrucare)
2620 unlock_page_lru(page, isolated);
2621 }
2622
2623 #ifdef CONFIG_MEMCG_KMEM
2624 /*
2625 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2626 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2627 */
2628 static DEFINE_MUTEX(memcg_slab_mutex);
2629
2630 /*
2631 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2632 * in the memcg_cache_params struct.
2633 */
2634 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2635 {
2636 struct kmem_cache *cachep;
2637
2638 VM_BUG_ON(p->is_root_cache);
2639 cachep = p->root_cache;
2640 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
2641 }
2642
2643 #ifdef CONFIG_SLABINFO
2644 static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
2645 {
2646 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
2647 struct memcg_cache_params *params;
2648
2649 if (!memcg_kmem_is_active(memcg))
2650 return -EIO;
2651
2652 print_slabinfo_header(m);
2653
2654 mutex_lock(&memcg_slab_mutex);
2655 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2656 cache_show(memcg_params_to_cache(params), m);
2657 mutex_unlock(&memcg_slab_mutex);
2658
2659 return 0;
2660 }
2661 #endif
2662
2663 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2664 unsigned long nr_pages)
2665 {
2666 struct page_counter *counter;
2667 int ret = 0;
2668
2669 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2670 if (ret < 0)
2671 return ret;
2672
2673 ret = try_charge(memcg, gfp, nr_pages);
2674 if (ret == -EINTR) {
2675 /*
2676 * try_charge() chose to bypass to root due to OOM kill or
2677 * fatal signal. Since our only options are to either fail
2678 * the allocation or charge it to this cgroup, do it as a
2679 * temporary condition. But we can't fail. From a kmem/slab
2680 * perspective, the cache has already been selected, by
2681 * mem_cgroup_kmem_get_cache(), so it is too late to change
2682 * our minds.
2683 *
2684 * This condition will only trigger if the task entered
2685 * memcg_charge_kmem in a sane state, but was OOM-killed
2686 * during try_charge() above. Tasks that were already dying
2687 * when the allocation triggers should have been already
2688 * directed to the root cgroup in memcontrol.h
2689 */
2690 page_counter_charge(&memcg->memory, nr_pages);
2691 if (do_swap_account)
2692 page_counter_charge(&memcg->memsw, nr_pages);
2693 css_get_many(&memcg->css, nr_pages);
2694 ret = 0;
2695 } else if (ret)
2696 page_counter_uncharge(&memcg->kmem, nr_pages);
2697
2698 return ret;
2699 }
2700
2701 static void memcg_uncharge_kmem(struct mem_cgroup *memcg,
2702 unsigned long nr_pages)
2703 {
2704 page_counter_uncharge(&memcg->memory, nr_pages);
2705 if (do_swap_account)
2706 page_counter_uncharge(&memcg->memsw, nr_pages);
2707
2708 page_counter_uncharge(&memcg->kmem, nr_pages);
2709
2710 css_put_many(&memcg->css, nr_pages);
2711 }
2712
2713 /*
2714 * helper for acessing a memcg's index. It will be used as an index in the
2715 * child cache array in kmem_cache, and also to derive its name. This function
2716 * will return -1 when this is not a kmem-limited memcg.
2717 */
2718 int memcg_cache_id(struct mem_cgroup *memcg)
2719 {
2720 return memcg ? memcg->kmemcg_id : -1;
2721 }
2722
2723 static int memcg_alloc_cache_id(void)
2724 {
2725 int id, size;
2726 int err;
2727
2728 id = ida_simple_get(&kmem_limited_groups,
2729 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2730 if (id < 0)
2731 return id;
2732
2733 if (id < memcg_limited_groups_array_size)
2734 return id;
2735
2736 /*
2737 * There's no space for the new id in memcg_caches arrays,
2738 * so we have to grow them.
2739 */
2740
2741 size = 2 * (id + 1);
2742 if (size < MEMCG_CACHES_MIN_SIZE)
2743 size = MEMCG_CACHES_MIN_SIZE;
2744 else if (size > MEMCG_CACHES_MAX_SIZE)
2745 size = MEMCG_CACHES_MAX_SIZE;
2746
2747 mutex_lock(&memcg_slab_mutex);
2748 err = memcg_update_all_caches(size);
2749 mutex_unlock(&memcg_slab_mutex);
2750
2751 if (err) {
2752 ida_simple_remove(&kmem_limited_groups, id);
2753 return err;
2754 }
2755 return id;
2756 }
2757
2758 static void memcg_free_cache_id(int id)
2759 {
2760 ida_simple_remove(&kmem_limited_groups, id);
2761 }
2762
2763 /*
2764 * We should update the current array size iff all caches updates succeed. This
2765 * can only be done from the slab side. The slab mutex needs to be held when
2766 * calling this.
2767 */
2768 void memcg_update_array_size(int num)
2769 {
2770 memcg_limited_groups_array_size = num;
2771 }
2772
2773 static void memcg_register_cache(struct mem_cgroup *memcg,
2774 struct kmem_cache *root_cache)
2775 {
2776 static char memcg_name_buf[NAME_MAX + 1]; /* protected by
2777 memcg_slab_mutex */
2778 struct kmem_cache *cachep;
2779 int id;
2780
2781 lockdep_assert_held(&memcg_slab_mutex);
2782
2783 id = memcg_cache_id(memcg);
2784
2785 /*
2786 * Since per-memcg caches are created asynchronously on first
2787 * allocation (see memcg_kmem_get_cache()), several threads can try to
2788 * create the same cache, but only one of them may succeed.
2789 */
2790 if (cache_from_memcg_idx(root_cache, id))
2791 return;
2792
2793 cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
2794 cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2795 /*
2796 * If we could not create a memcg cache, do not complain, because
2797 * that's not critical at all as we can always proceed with the root
2798 * cache.
2799 */
2800 if (!cachep)
2801 return;
2802
2803 css_get(&memcg->css);
2804 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
2805
2806 /*
2807 * Since readers won't lock (see cache_from_memcg_idx()), we need a
2808 * barrier here to ensure nobody will see the kmem_cache partially
2809 * initialized.
2810 */
2811 smp_wmb();
2812
2813 BUG_ON(root_cache->memcg_params->memcg_caches[id]);
2814 root_cache->memcg_params->memcg_caches[id] = cachep;
2815 }
2816
2817 static void memcg_unregister_cache(struct kmem_cache *cachep)
2818 {
2819 struct kmem_cache *root_cache;
2820 struct mem_cgroup *memcg;
2821 int id;
2822
2823 lockdep_assert_held(&memcg_slab_mutex);
2824
2825 BUG_ON(is_root_cache(cachep));
2826
2827 root_cache = cachep->memcg_params->root_cache;
2828 memcg = cachep->memcg_params->memcg;
2829 id = memcg_cache_id(memcg);
2830
2831 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
2832 root_cache->memcg_params->memcg_caches[id] = NULL;
2833
2834 list_del(&cachep->memcg_params->list);
2835
2836 kmem_cache_destroy(cachep);
2837
2838 /* drop the reference taken in memcg_register_cache */
2839 css_put(&memcg->css);
2840 }
2841
2842 /*
2843 * During the creation a new cache, we need to disable our accounting mechanism
2844 * altogether. This is true even if we are not creating, but rather just
2845 * enqueing new caches to be created.
2846 *
2847 * This is because that process will trigger allocations; some visible, like
2848 * explicit kmallocs to auxiliary data structures, name strings and internal
2849 * cache structures; some well concealed, like INIT_WORK() that can allocate
2850 * objects during debug.
2851 *
2852 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
2853 * to it. This may not be a bounded recursion: since the first cache creation
2854 * failed to complete (waiting on the allocation), we'll just try to create the
2855 * cache again, failing at the same point.
2856 *
2857 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
2858 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
2859 * inside the following two functions.
2860 */
2861 static inline void memcg_stop_kmem_account(void)
2862 {
2863 VM_BUG_ON(!current->mm);
2864 current->memcg_kmem_skip_account++;
2865 }
2866
2867 static inline void memcg_resume_kmem_account(void)
2868 {
2869 VM_BUG_ON(!current->mm);
2870 current->memcg_kmem_skip_account--;
2871 }
2872
2873 int __memcg_cleanup_cache_params(struct kmem_cache *s)
2874 {
2875 struct kmem_cache *c;
2876 int i, failed = 0;
2877
2878 mutex_lock(&memcg_slab_mutex);
2879 for_each_memcg_cache_index(i) {
2880 c = cache_from_memcg_idx(s, i);
2881 if (!c)
2882 continue;
2883
2884 memcg_unregister_cache(c);
2885
2886 if (cache_from_memcg_idx(s, i))
2887 failed++;
2888 }
2889 mutex_unlock(&memcg_slab_mutex);
2890 return failed;
2891 }
2892
2893 static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
2894 {
2895 struct kmem_cache *cachep;
2896 struct memcg_cache_params *params, *tmp;
2897
2898 if (!memcg_kmem_is_active(memcg))
2899 return;
2900
2901 mutex_lock(&memcg_slab_mutex);
2902 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
2903 cachep = memcg_params_to_cache(params);
2904 kmem_cache_shrink(cachep);
2905 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
2906 memcg_unregister_cache(cachep);
2907 }
2908 mutex_unlock(&memcg_slab_mutex);
2909 }
2910
2911 struct memcg_register_cache_work {
2912 struct mem_cgroup *memcg;
2913 struct kmem_cache *cachep;
2914 struct work_struct work;
2915 };
2916
2917 static void memcg_register_cache_func(struct work_struct *w)
2918 {
2919 struct memcg_register_cache_work *cw =
2920 container_of(w, struct memcg_register_cache_work, work);
2921 struct mem_cgroup *memcg = cw->memcg;
2922 struct kmem_cache *cachep = cw->cachep;
2923
2924 mutex_lock(&memcg_slab_mutex);
2925 memcg_register_cache(memcg, cachep);
2926 mutex_unlock(&memcg_slab_mutex);
2927
2928 css_put(&memcg->css);
2929 kfree(cw);
2930 }
2931
2932 /*
2933 * Enqueue the creation of a per-memcg kmem_cache.
2934 */
2935 static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
2936 struct kmem_cache *cachep)
2937 {
2938 struct memcg_register_cache_work *cw;
2939
2940 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2941 if (cw == NULL) {
2942 css_put(&memcg->css);
2943 return;
2944 }
2945
2946 cw->memcg = memcg;
2947 cw->cachep = cachep;
2948
2949 INIT_WORK(&cw->work, memcg_register_cache_func);
2950 schedule_work(&cw->work);
2951 }
2952
2953 static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
2954 struct kmem_cache *cachep)
2955 {
2956 /*
2957 * We need to stop accounting when we kmalloc, because if the
2958 * corresponding kmalloc cache is not yet created, the first allocation
2959 * in __memcg_schedule_register_cache will recurse.
2960 *
2961 * However, it is better to enclose the whole function. Depending on
2962 * the debugging options enabled, INIT_WORK(), for instance, can
2963 * trigger an allocation. This too, will make us recurse. Because at
2964 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2965 * the safest choice is to do it like this, wrapping the whole function.
2966 */
2967 memcg_stop_kmem_account();
2968 __memcg_schedule_register_cache(memcg, cachep);
2969 memcg_resume_kmem_account();
2970 }
2971
2972 int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
2973 {
2974 unsigned int nr_pages = 1 << order;
2975 int res;
2976
2977 res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp, nr_pages);
2978 if (!res)
2979 atomic_add(nr_pages, &cachep->memcg_params->nr_pages);
2980 return res;
2981 }
2982
2983 void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
2984 {
2985 unsigned int nr_pages = 1 << order;
2986
2987 memcg_uncharge_kmem(cachep->memcg_params->memcg, nr_pages);
2988 atomic_sub(nr_pages, &cachep->memcg_params->nr_pages);
2989 }
2990
2991 /*
2992 * Return the kmem_cache we're supposed to use for a slab allocation.
2993 * We try to use the current memcg's version of the cache.
2994 *
2995 * If the cache does not exist yet, if we are the first user of it,
2996 * we either create it immediately, if possible, or create it asynchronously
2997 * in a workqueue.
2998 * In the latter case, we will let the current allocation go through with
2999 * the original cache.
3000 *
3001 * Can't be called in interrupt context or from kernel threads.
3002 * This function needs to be called with rcu_read_lock() held.
3003 */
3004 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3005 gfp_t gfp)
3006 {
3007 struct mem_cgroup *memcg;
3008 struct kmem_cache *memcg_cachep;
3009
3010 VM_BUG_ON(!cachep->memcg_params);
3011 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3012
3013 if (!current->mm || current->memcg_kmem_skip_account)
3014 return cachep;
3015
3016 rcu_read_lock();
3017 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3018
3019 if (!memcg_kmem_is_active(memcg))
3020 goto out;
3021
3022 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3023 if (likely(memcg_cachep)) {
3024 cachep = memcg_cachep;
3025 goto out;
3026 }
3027
3028 /* The corresponding put will be done in the workqueue. */
3029 if (!css_tryget_online(&memcg->css))
3030 goto out;
3031 rcu_read_unlock();
3032
3033 /*
3034 * If we are in a safe context (can wait, and not in interrupt
3035 * context), we could be be predictable and return right away.
3036 * This would guarantee that the allocation being performed
3037 * already belongs in the new cache.
3038 *
3039 * However, there are some clashes that can arrive from locking.
3040 * For instance, because we acquire the slab_mutex while doing
3041 * memcg_create_kmem_cache, this means no further allocation
3042 * could happen with the slab_mutex held. So it's better to
3043 * defer everything.
3044 */
3045 memcg_schedule_register_cache(memcg, cachep);
3046 return cachep;
3047 out:
3048 rcu_read_unlock();
3049 return cachep;
3050 }
3051
3052 /*
3053 * We need to verify if the allocation against current->mm->owner's memcg is
3054 * possible for the given order. But the page is not allocated yet, so we'll
3055 * need a further commit step to do the final arrangements.
3056 *
3057 * It is possible for the task to switch cgroups in this mean time, so at
3058 * commit time, we can't rely on task conversion any longer. We'll then use
3059 * the handle argument to return to the caller which cgroup we should commit
3060 * against. We could also return the memcg directly and avoid the pointer
3061 * passing, but a boolean return value gives better semantics considering
3062 * the compiled-out case as well.
3063 *
3064 * Returning true means the allocation is possible.
3065 */
3066 bool
3067 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3068 {
3069 struct mem_cgroup *memcg;
3070 int ret;
3071
3072 *_memcg = NULL;
3073
3074 /*
3075 * Disabling accounting is only relevant for some specific memcg
3076 * internal allocations. Therefore we would initially not have such
3077 * check here, since direct calls to the page allocator that are
3078 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
3079 * outside memcg core. We are mostly concerned with cache allocations,
3080 * and by having this test at memcg_kmem_get_cache, we are already able
3081 * to relay the allocation to the root cache and bypass the memcg cache
3082 * altogether.
3083 *
3084 * There is one exception, though: the SLUB allocator does not create
3085 * large order caches, but rather service large kmallocs directly from
3086 * the page allocator. Therefore, the following sequence when backed by
3087 * the SLUB allocator:
3088 *
3089 * memcg_stop_kmem_account();
3090 * kmalloc(<large_number>)
3091 * memcg_resume_kmem_account();
3092 *
3093 * would effectively ignore the fact that we should skip accounting,
3094 * since it will drive us directly to this function without passing
3095 * through the cache selector memcg_kmem_get_cache. Such large
3096 * allocations are extremely rare but can happen, for instance, for the
3097 * cache arrays. We bring this test here.
3098 */
3099 if (!current->mm || current->memcg_kmem_skip_account)
3100 return true;
3101
3102 memcg = get_mem_cgroup_from_mm(current->mm);
3103
3104 if (!memcg_kmem_is_active(memcg)) {
3105 css_put(&memcg->css);
3106 return true;
3107 }
3108
3109 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
3110 if (!ret)
3111 *_memcg = memcg;
3112
3113 css_put(&memcg->css);
3114 return (ret == 0);
3115 }
3116
3117 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3118 int order)
3119 {
3120 struct page_cgroup *pc;
3121
3122 VM_BUG_ON(mem_cgroup_is_root(memcg));
3123
3124 /* The page allocation failed. Revert */
3125 if (!page) {
3126 memcg_uncharge_kmem(memcg, 1 << order);
3127 return;
3128 }
3129 /*
3130 * The page is freshly allocated and not visible to any
3131 * outside callers yet. Set up pc non-atomically.
3132 */
3133 pc = lookup_page_cgroup(page);
3134 pc->mem_cgroup = memcg;
3135 pc->flags = PCG_USED;
3136 }
3137
3138 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3139 {
3140 struct mem_cgroup *memcg = NULL;
3141 struct page_cgroup *pc;
3142
3143
3144 pc = lookup_page_cgroup(page);
3145 if (!PageCgroupUsed(pc))
3146 return;
3147
3148 memcg = pc->mem_cgroup;
3149 pc->flags = 0;
3150
3151 /*
3152 * We trust that only if there is a memcg associated with the page, it
3153 * is a valid allocation
3154 */
3155 if (!memcg)
3156 return;
3157
3158 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3159 memcg_uncharge_kmem(memcg, 1 << order);
3160 }
3161 #else
3162 static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
3163 {
3164 }
3165 #endif /* CONFIG_MEMCG_KMEM */
3166
3167 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3168
3169 /*
3170 * Because tail pages are not marked as "used", set it. We're under
3171 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3172 * charge/uncharge will be never happen and move_account() is done under
3173 * compound_lock(), so we don't have to take care of races.
3174 */
3175 void mem_cgroup_split_huge_fixup(struct page *head)
3176 {
3177 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3178 struct page_cgroup *pc;
3179 struct mem_cgroup *memcg;
3180 int i;
3181
3182 if (mem_cgroup_disabled())
3183 return;
3184
3185 memcg = head_pc->mem_cgroup;
3186 for (i = 1; i < HPAGE_PMD_NR; i++) {
3187 pc = head_pc + i;
3188 pc->mem_cgroup = memcg;
3189 pc->flags = head_pc->flags;
3190 }
3191 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3192 HPAGE_PMD_NR);
3193 }
3194 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3195
3196 /**
3197 * mem_cgroup_move_account - move account of the page
3198 * @page: the page
3199 * @nr_pages: number of regular pages (>1 for huge pages)
3200 * @pc: page_cgroup of the page.
3201 * @from: mem_cgroup which the page is moved from.
3202 * @to: mem_cgroup which the page is moved to. @from != @to.
3203 *
3204 * The caller must confirm following.
3205 * - page is not on LRU (isolate_page() is useful.)
3206 * - compound_lock is held when nr_pages > 1
3207 *
3208 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3209 * from old cgroup.
3210 */
3211 static int mem_cgroup_move_account(struct page *page,
3212 unsigned int nr_pages,
3213 struct page_cgroup *pc,
3214 struct mem_cgroup *from,
3215 struct mem_cgroup *to)
3216 {
3217 unsigned long flags;
3218 int ret;
3219
3220 VM_BUG_ON(from == to);
3221 VM_BUG_ON_PAGE(PageLRU(page), page);
3222 /*
3223 * The page is isolated from LRU. So, collapse function
3224 * will not handle this page. But page splitting can happen.
3225 * Do this check under compound_page_lock(). The caller should
3226 * hold it.
3227 */
3228 ret = -EBUSY;
3229 if (nr_pages > 1 && !PageTransHuge(page))
3230 goto out;
3231
3232 /*
3233 * Prevent mem_cgroup_migrate() from looking at pc->mem_cgroup
3234 * of its source page while we change it: page migration takes
3235 * both pages off the LRU, but page cache replacement doesn't.
3236 */
3237 if (!trylock_page(page))
3238 goto out;
3239
3240 ret = -EINVAL;
3241 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3242 goto out_unlock;
3243
3244 move_lock_mem_cgroup(from, &flags);
3245
3246 if (!PageAnon(page) && page_mapped(page)) {
3247 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3248 nr_pages);
3249 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3250 nr_pages);
3251 }
3252
3253 if (PageWriteback(page)) {
3254 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3255 nr_pages);
3256 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3257 nr_pages);
3258 }
3259
3260 /*
3261 * It is safe to change pc->mem_cgroup here because the page
3262 * is referenced, charged, and isolated - we can't race with
3263 * uncharging, charging, migration, or LRU putback.
3264 */
3265
3266 /* caller should have done css_get */
3267 pc->mem_cgroup = to;
3268 move_unlock_mem_cgroup(from, &flags);
3269 ret = 0;
3270
3271 local_irq_disable();
3272 mem_cgroup_charge_statistics(to, page, nr_pages);
3273 memcg_check_events(to, page);
3274 mem_cgroup_charge_statistics(from, page, -nr_pages);
3275 memcg_check_events(from, page);
3276 local_irq_enable();
3277 out_unlock:
3278 unlock_page(page);
3279 out:
3280 return ret;
3281 }
3282
3283 #ifdef CONFIG_MEMCG_SWAP
3284 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
3285 bool charge)
3286 {
3287 int val = (charge) ? 1 : -1;
3288 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
3289 }
3290
3291 /**
3292 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3293 * @entry: swap entry to be moved
3294 * @from: mem_cgroup which the entry is moved from
3295 * @to: mem_cgroup which the entry is moved to
3296 *
3297 * It succeeds only when the swap_cgroup's record for this entry is the same
3298 * as the mem_cgroup's id of @from.
3299 *
3300 * Returns 0 on success, -EINVAL on failure.
3301 *
3302 * The caller must have charged to @to, IOW, called page_counter_charge() about
3303 * both res and memsw, and called css_get().
3304 */
3305 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3306 struct mem_cgroup *from, struct mem_cgroup *to)
3307 {
3308 unsigned short old_id, new_id;
3309
3310 old_id = mem_cgroup_id(from);
3311 new_id = mem_cgroup_id(to);
3312
3313 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3314 mem_cgroup_swap_statistics(from, false);
3315 mem_cgroup_swap_statistics(to, true);
3316 /*
3317 * This function is only called from task migration context now.
3318 * It postpones page_counter and refcount handling till the end
3319 * of task migration(mem_cgroup_clear_mc()) for performance
3320 * improvement. But we cannot postpone css_get(to) because if
3321 * the process that has been moved to @to does swap-in, the
3322 * refcount of @to might be decreased to 0.
3323 *
3324 * We are in attach() phase, so the cgroup is guaranteed to be
3325 * alive, so we can just call css_get().
3326 */
3327 css_get(&to->css);
3328 return 0;
3329 }
3330 return -EINVAL;
3331 }
3332 #else
3333 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3334 struct mem_cgroup *from, struct mem_cgroup *to)
3335 {
3336 return -EINVAL;
3337 }
3338 #endif
3339
3340 #ifdef CONFIG_DEBUG_VM
3341 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3342 {
3343 struct page_cgroup *pc;
3344
3345 pc = lookup_page_cgroup(page);
3346 /*
3347 * Can be NULL while feeding pages into the page allocator for
3348 * the first time, i.e. during boot or memory hotplug;
3349 * or when mem_cgroup_disabled().
3350 */
3351 if (likely(pc) && PageCgroupUsed(pc))
3352 return pc;
3353 return NULL;
3354 }
3355
3356 bool mem_cgroup_bad_page_check(struct page *page)
3357 {
3358 if (mem_cgroup_disabled())
3359 return false;
3360
3361 return lookup_page_cgroup_used(page) != NULL;
3362 }
3363
3364 void mem_cgroup_print_bad_page(struct page *page)
3365 {
3366 struct page_cgroup *pc;
3367
3368 pc = lookup_page_cgroup_used(page);
3369 if (pc) {
3370 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3371 pc, pc->flags, pc->mem_cgroup);
3372 }
3373 }
3374 #endif
3375
3376 static DEFINE_MUTEX(memcg_limit_mutex);
3377
3378 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3379 unsigned long limit)
3380 {
3381 unsigned long curusage;
3382 unsigned long oldusage;
3383 bool enlarge = false;
3384 int retry_count;
3385 int ret;
3386
3387 /*
3388 * For keeping hierarchical_reclaim simple, how long we should retry
3389 * is depends on callers. We set our retry-count to be function
3390 * of # of children which we should visit in this loop.
3391 */
3392 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3393 mem_cgroup_count_children(memcg);
3394
3395 oldusage = page_counter_read(&memcg->memory);
3396
3397 do {
3398 if (signal_pending(current)) {
3399 ret = -EINTR;
3400 break;
3401 }
3402
3403 mutex_lock(&memcg_limit_mutex);
3404 if (limit > memcg->memsw.limit) {
3405 mutex_unlock(&memcg_limit_mutex);
3406 ret = -EINVAL;
3407 break;
3408 }
3409 if (limit > memcg->memory.limit)
3410 enlarge = true;
3411 ret = page_counter_limit(&memcg->memory, limit);
3412 mutex_unlock(&memcg_limit_mutex);
3413
3414 if (!ret)
3415 break;
3416
3417 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
3418
3419 curusage = page_counter_read(&memcg->memory);
3420 /* Usage is reduced ? */
3421 if (curusage >= oldusage)
3422 retry_count--;
3423 else
3424 oldusage = curusage;
3425 } while (retry_count);
3426
3427 if (!ret && enlarge)
3428 memcg_oom_recover(memcg);
3429
3430 return ret;
3431 }
3432
3433 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3434 unsigned long limit)
3435 {
3436 unsigned long curusage;
3437 unsigned long oldusage;
3438 bool enlarge = false;
3439 int retry_count;
3440 int ret;
3441
3442 /* see mem_cgroup_resize_res_limit */
3443 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3444 mem_cgroup_count_children(memcg);
3445
3446 oldusage = page_counter_read(&memcg->memsw);
3447
3448 do {
3449 if (signal_pending(current)) {
3450 ret = -EINTR;
3451 break;
3452 }
3453
3454 mutex_lock(&memcg_limit_mutex);
3455 if (limit < memcg->memory.limit) {
3456 mutex_unlock(&memcg_limit_mutex);
3457 ret = -EINVAL;
3458 break;
3459 }
3460 if (limit > memcg->memsw.limit)
3461 enlarge = true;
3462 ret = page_counter_limit(&memcg->memsw, limit);
3463 mutex_unlock(&memcg_limit_mutex);
3464
3465 if (!ret)
3466 break;
3467
3468 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
3469
3470 curusage = page_counter_read(&memcg->memsw);
3471 /* Usage is reduced ? */
3472 if (curusage >= oldusage)
3473 retry_count--;
3474 else
3475 oldusage = curusage;
3476 } while (retry_count);
3477
3478 if (!ret && enlarge)
3479 memcg_oom_recover(memcg);
3480
3481 return ret;
3482 }
3483
3484 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3485 gfp_t gfp_mask,
3486 unsigned long *total_scanned)
3487 {
3488 unsigned long nr_reclaimed = 0;
3489 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3490 unsigned long reclaimed;
3491 int loop = 0;
3492 struct mem_cgroup_tree_per_zone *mctz;
3493 unsigned long excess;
3494 unsigned long nr_scanned;
3495
3496 if (order > 0)
3497 return 0;
3498
3499 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3500 /*
3501 * This loop can run a while, specially if mem_cgroup's continuously
3502 * keep exceeding their soft limit and putting the system under
3503 * pressure
3504 */
3505 do {
3506 if (next_mz)
3507 mz = next_mz;
3508 else
3509 mz = mem_cgroup_largest_soft_limit_node(mctz);
3510 if (!mz)
3511 break;
3512
3513 nr_scanned = 0;
3514 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3515 gfp_mask, &nr_scanned);
3516 nr_reclaimed += reclaimed;
3517 *total_scanned += nr_scanned;
3518 spin_lock_irq(&mctz->lock);
3519 __mem_cgroup_remove_exceeded(mz, mctz);
3520
3521 /*
3522 * If we failed to reclaim anything from this memory cgroup
3523 * it is time to move on to the next cgroup
3524 */
3525 next_mz = NULL;
3526 if (!reclaimed)
3527 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3528
3529 excess = soft_limit_excess(mz->memcg);
3530 /*
3531 * One school of thought says that we should not add
3532 * back the node to the tree if reclaim returns 0.
3533 * But our reclaim could return 0, simply because due
3534 * to priority we are exposing a smaller subset of
3535 * memory to reclaim from. Consider this as a longer
3536 * term TODO.
3537 */
3538 /* If excess == 0, no tree ops */
3539 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3540 spin_unlock_irq(&mctz->lock);
3541 css_put(&mz->memcg->css);
3542 loop++;
3543 /*
3544 * Could not reclaim anything and there are no more
3545 * mem cgroups to try or we seem to be looping without
3546 * reclaiming anything.
3547 */
3548 if (!nr_reclaimed &&
3549 (next_mz == NULL ||
3550 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3551 break;
3552 } while (!nr_reclaimed);
3553 if (next_mz)
3554 css_put(&next_mz->memcg->css);
3555 return nr_reclaimed;
3556 }
3557
3558 /*
3559 * Test whether @memcg has children, dead or alive. Note that this
3560 * function doesn't care whether @memcg has use_hierarchy enabled and
3561 * returns %true if there are child csses according to the cgroup
3562 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3563 */
3564 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3565 {
3566 bool ret;
3567
3568 /*
3569 * The lock does not prevent addition or deletion of children, but
3570 * it prevents a new child from being initialized based on this
3571 * parent in css_online(), so it's enough to decide whether
3572 * hierarchically inherited attributes can still be changed or not.
3573 */
3574 lockdep_assert_held(&memcg_create_mutex);
3575
3576 rcu_read_lock();
3577 ret = css_next_child(NULL, &memcg->css);
3578 rcu_read_unlock();
3579 return ret;
3580 }
3581
3582 /*
3583 * Reclaims as many pages from the given memcg as possible and moves
3584 * the rest to the parent.
3585 *
3586 * Caller is responsible for holding css reference for memcg.
3587 */
3588 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3589 {
3590 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3591
3592 /* we call try-to-free pages for make this cgroup empty */
3593 lru_add_drain_all();
3594 /* try to free all pages in this cgroup */
3595 while (nr_retries && page_counter_read(&memcg->memory)) {
3596 int progress;
3597
3598 if (signal_pending(current))
3599 return -EINTR;
3600
3601 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3602 GFP_KERNEL, true);
3603 if (!progress) {
3604 nr_retries--;
3605 /* maybe some writeback is necessary */
3606 congestion_wait(BLK_RW_ASYNC, HZ/10);
3607 }
3608
3609 }
3610
3611 return 0;
3612 }
3613
3614 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3615 char *buf, size_t nbytes,
3616 loff_t off)
3617 {
3618 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3619
3620 if (mem_cgroup_is_root(memcg))
3621 return -EINVAL;
3622 return mem_cgroup_force_empty(memcg) ?: nbytes;
3623 }
3624
3625 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3626 struct cftype *cft)
3627 {
3628 return mem_cgroup_from_css(css)->use_hierarchy;
3629 }
3630
3631 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3632 struct cftype *cft, u64 val)
3633 {
3634 int retval = 0;
3635 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3636 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3637
3638 mutex_lock(&memcg_create_mutex);
3639
3640 if (memcg->use_hierarchy == val)
3641 goto out;
3642
3643 /*
3644 * If parent's use_hierarchy is set, we can't make any modifications
3645 * in the child subtrees. If it is unset, then the change can
3646 * occur, provided the current cgroup has no children.
3647 *
3648 * For the root cgroup, parent_mem is NULL, we allow value to be
3649 * set if there are no children.
3650 */
3651 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3652 (val == 1 || val == 0)) {
3653 if (!memcg_has_children(memcg))
3654 memcg->use_hierarchy = val;
3655 else
3656 retval = -EBUSY;
3657 } else
3658 retval = -EINVAL;
3659
3660 out:
3661 mutex_unlock(&memcg_create_mutex);
3662
3663 return retval;
3664 }
3665
3666 static unsigned long tree_stat(struct mem_cgroup *memcg,
3667 enum mem_cgroup_stat_index idx)
3668 {
3669 struct mem_cgroup *iter;
3670 long val = 0;
3671
3672 /* Per-cpu values can be negative, use a signed accumulator */
3673 for_each_mem_cgroup_tree(iter, memcg)
3674 val += mem_cgroup_read_stat(iter, idx);
3675
3676 if (val < 0) /* race ? */
3677 val = 0;
3678 return val;
3679 }
3680
3681 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3682 {
3683 u64 val;
3684
3685 if (mem_cgroup_is_root(memcg)) {
3686 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3687 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3688 if (swap)
3689 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3690 } else {
3691 if (!swap)
3692 val = page_counter_read(&memcg->memory);
3693 else
3694 val = page_counter_read(&memcg->memsw);
3695 }
3696 return val << PAGE_SHIFT;
3697 }
3698
3699 enum {
3700 RES_USAGE,
3701 RES_LIMIT,
3702 RES_MAX_USAGE,
3703 RES_FAILCNT,
3704 RES_SOFT_LIMIT,
3705 };
3706
3707 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3708 struct cftype *cft)
3709 {
3710 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3711 struct page_counter *counter;
3712
3713 switch (MEMFILE_TYPE(cft->private)) {
3714 case _MEM:
3715 counter = &memcg->memory;
3716 break;
3717 case _MEMSWAP:
3718 counter = &memcg->memsw;
3719 break;
3720 case _KMEM:
3721 counter = &memcg->kmem;
3722 break;
3723 default:
3724 BUG();
3725 }
3726
3727 switch (MEMFILE_ATTR(cft->private)) {
3728 case RES_USAGE:
3729 if (counter == &memcg->memory)
3730 return mem_cgroup_usage(memcg, false);
3731 if (counter == &memcg->memsw)
3732 return mem_cgroup_usage(memcg, true);
3733 return (u64)page_counter_read(counter) * PAGE_SIZE;
3734 case RES_LIMIT:
3735 return (u64)counter->limit * PAGE_SIZE;
3736 case RES_MAX_USAGE:
3737 return (u64)counter->watermark * PAGE_SIZE;
3738 case RES_FAILCNT:
3739 return counter->failcnt;
3740 case RES_SOFT_LIMIT:
3741 return (u64)memcg->soft_limit * PAGE_SIZE;
3742 default:
3743 BUG();
3744 }
3745 }
3746
3747 #ifdef CONFIG_MEMCG_KMEM
3748 static int memcg_activate_kmem(struct mem_cgroup *memcg,
3749 unsigned long nr_pages)
3750 {
3751 int err = 0;
3752 int memcg_id;
3753
3754 if (memcg_kmem_is_active(memcg))
3755 return 0;
3756
3757 /*
3758 * We are going to allocate memory for data shared by all memory
3759 * cgroups so let's stop accounting here.
3760 */
3761 memcg_stop_kmem_account();
3762
3763 /*
3764 * For simplicity, we won't allow this to be disabled. It also can't
3765 * be changed if the cgroup has children already, or if tasks had
3766 * already joined.
3767 *
3768 * If tasks join before we set the limit, a person looking at
3769 * kmem.usage_in_bytes will have no way to determine when it took
3770 * place, which makes the value quite meaningless.
3771 *
3772 * After it first became limited, changes in the value of the limit are
3773 * of course permitted.
3774 */
3775 mutex_lock(&memcg_create_mutex);
3776 if (cgroup_has_tasks(memcg->css.cgroup) ||
3777 (memcg->use_hierarchy && memcg_has_children(memcg)))
3778 err = -EBUSY;
3779 mutex_unlock(&memcg_create_mutex);
3780 if (err)
3781 goto out;
3782
3783 memcg_id = memcg_alloc_cache_id();
3784 if (memcg_id < 0) {
3785 err = memcg_id;
3786 goto out;
3787 }
3788
3789 memcg->kmemcg_id = memcg_id;
3790 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3791
3792 /*
3793 * We couldn't have accounted to this cgroup, because it hasn't got the
3794 * active bit set yet, so this should succeed.
3795 */
3796 err = page_counter_limit(&memcg->kmem, nr_pages);
3797 VM_BUG_ON(err);
3798
3799 static_key_slow_inc(&memcg_kmem_enabled_key);
3800 /*
3801 * Setting the active bit after enabling static branching will
3802 * guarantee no one starts accounting before all call sites are
3803 * patched.
3804 */
3805 memcg_kmem_set_active(memcg);
3806 out:
3807 memcg_resume_kmem_account();
3808 return err;
3809 }
3810
3811 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3812 unsigned long limit)
3813 {
3814 int ret;
3815
3816 mutex_lock(&memcg_limit_mutex);
3817 if (!memcg_kmem_is_active(memcg))
3818 ret = memcg_activate_kmem(memcg, limit);
3819 else
3820 ret = page_counter_limit(&memcg->kmem, limit);
3821 mutex_unlock(&memcg_limit_mutex);
3822 return ret;
3823 }
3824
3825 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3826 {
3827 int ret = 0;
3828 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3829
3830 if (!parent)
3831 return 0;
3832
3833 mutex_lock(&memcg_limit_mutex);
3834 /*
3835 * If the parent cgroup is not kmem-active now, it cannot be activated
3836 * after this point, because it has at least one child already.
3837 */
3838 if (memcg_kmem_is_active(parent))
3839 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3840 mutex_unlock(&memcg_limit_mutex);
3841 return ret;
3842 }
3843 #else
3844 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3845 unsigned long limit)
3846 {
3847 return -EINVAL;
3848 }
3849 #endif /* CONFIG_MEMCG_KMEM */
3850
3851 /*
3852 * The user of this function is...
3853 * RES_LIMIT.
3854 */
3855 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3856 char *buf, size_t nbytes, loff_t off)
3857 {
3858 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3859 unsigned long nr_pages;
3860 int ret;
3861
3862 buf = strstrip(buf);
3863 ret = page_counter_memparse(buf, &nr_pages);
3864 if (ret)
3865 return ret;
3866
3867 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3868 case RES_LIMIT:
3869 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3870 ret = -EINVAL;
3871 break;
3872 }
3873 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3874 case _MEM:
3875 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3876 break;
3877 case _MEMSWAP:
3878 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3879 break;
3880 case _KMEM:
3881 ret = memcg_update_kmem_limit(memcg, nr_pages);
3882 break;
3883 }
3884 break;
3885 case RES_SOFT_LIMIT:
3886 memcg->soft_limit = nr_pages;
3887 ret = 0;
3888 break;
3889 }
3890 return ret ?: nbytes;
3891 }
3892
3893 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3894 size_t nbytes, loff_t off)
3895 {
3896 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3897 struct page_counter *counter;
3898
3899 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3900 case _MEM:
3901 counter = &memcg->memory;
3902 break;
3903 case _MEMSWAP:
3904 counter = &memcg->memsw;
3905 break;
3906 case _KMEM:
3907 counter = &memcg->kmem;
3908 break;
3909 default:
3910 BUG();
3911 }
3912
3913 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3914 case RES_MAX_USAGE:
3915 page_counter_reset_watermark(counter);
3916 break;
3917 case RES_FAILCNT:
3918 counter->failcnt = 0;
3919 break;
3920 default:
3921 BUG();
3922 }
3923
3924 return nbytes;
3925 }
3926
3927 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3928 struct cftype *cft)
3929 {
3930 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3931 }
3932
3933 #ifdef CONFIG_MMU
3934 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3935 struct cftype *cft, u64 val)
3936 {
3937 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3938
3939 if (val >= (1 << NR_MOVE_TYPE))
3940 return -EINVAL;
3941
3942 /*
3943 * No kind of locking is needed in here, because ->can_attach() will
3944 * check this value once in the beginning of the process, and then carry
3945 * on with stale data. This means that changes to this value will only
3946 * affect task migrations starting after the change.
3947 */
3948 memcg->move_charge_at_immigrate = val;
3949 return 0;
3950 }
3951 #else
3952 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3953 struct cftype *cft, u64 val)
3954 {
3955 return -ENOSYS;
3956 }
3957 #endif
3958
3959 #ifdef CONFIG_NUMA
3960 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3961 {
3962 struct numa_stat {
3963 const char *name;
3964 unsigned int lru_mask;
3965 };
3966
3967 static const struct numa_stat stats[] = {
3968 { "total", LRU_ALL },
3969 { "file", LRU_ALL_FILE },
3970 { "anon", LRU_ALL_ANON },
3971 { "unevictable", BIT(LRU_UNEVICTABLE) },
3972 };
3973 const struct numa_stat *stat;
3974 int nid;
3975 unsigned long nr;
3976 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3977
3978 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3979 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3980 seq_printf(m, "%s=%lu", stat->name, nr);
3981 for_each_node_state(nid, N_MEMORY) {
3982 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3983 stat->lru_mask);
3984 seq_printf(m, " N%d=%lu", nid, nr);
3985 }
3986 seq_putc(m, '\n');
3987 }
3988
3989 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3990 struct mem_cgroup *iter;
3991
3992 nr = 0;
3993 for_each_mem_cgroup_tree(iter, memcg)
3994 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3995 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3996 for_each_node_state(nid, N_MEMORY) {
3997 nr = 0;
3998 for_each_mem_cgroup_tree(iter, memcg)
3999 nr += mem_cgroup_node_nr_lru_pages(
4000 iter, nid, stat->lru_mask);
4001 seq_printf(m, " N%d=%lu", nid, nr);
4002 }
4003 seq_putc(m, '\n');
4004 }
4005
4006 return 0;
4007 }
4008 #endif /* CONFIG_NUMA */
4009
4010 static inline void mem_cgroup_lru_names_not_uptodate(void)
4011 {
4012 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4013 }
4014
4015 static int memcg_stat_show(struct seq_file *m, void *v)
4016 {
4017 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4018 unsigned long memory, memsw;
4019 struct mem_cgroup *mi;
4020 unsigned int i;
4021
4022 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4023 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4024 continue;
4025 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4026 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4027 }
4028
4029 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4030 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4031 mem_cgroup_read_events(memcg, i));
4032
4033 for (i = 0; i < NR_LRU_LISTS; i++)
4034 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4035 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4036
4037 /* Hierarchical information */
4038 memory = memsw = PAGE_COUNTER_MAX;
4039 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4040 memory = min(memory, mi->memory.limit);
4041 memsw = min(memsw, mi->memsw.limit);
4042 }
4043 seq_printf(m, "hierarchical_memory_limit %llu\n",
4044 (u64)memory * PAGE_SIZE);
4045 if (do_swap_account)
4046 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4047 (u64)memsw * PAGE_SIZE);
4048
4049 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4050 long long val = 0;
4051
4052 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4053 continue;
4054 for_each_mem_cgroup_tree(mi, memcg)
4055 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4056 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4057 }
4058
4059 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4060 unsigned long long val = 0;
4061
4062 for_each_mem_cgroup_tree(mi, memcg)
4063 val += mem_cgroup_read_events(mi, i);
4064 seq_printf(m, "total_%s %llu\n",
4065 mem_cgroup_events_names[i], val);
4066 }
4067
4068 for (i = 0; i < NR_LRU_LISTS; i++) {
4069 unsigned long long val = 0;
4070
4071 for_each_mem_cgroup_tree(mi, memcg)
4072 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4073 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4074 }
4075
4076 #ifdef CONFIG_DEBUG_VM
4077 {
4078 int nid, zid;
4079 struct mem_cgroup_per_zone *mz;
4080 struct zone_reclaim_stat *rstat;
4081 unsigned long recent_rotated[2] = {0, 0};
4082 unsigned long recent_scanned[2] = {0, 0};
4083
4084 for_each_online_node(nid)
4085 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4086 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
4087 rstat = &mz->lruvec.reclaim_stat;
4088
4089 recent_rotated[0] += rstat->recent_rotated[0];
4090 recent_rotated[1] += rstat->recent_rotated[1];
4091 recent_scanned[0] += rstat->recent_scanned[0];
4092 recent_scanned[1] += rstat->recent_scanned[1];
4093 }
4094 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4095 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4096 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4097 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
4098 }
4099 #endif
4100
4101 return 0;
4102 }
4103
4104 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4105 struct cftype *cft)
4106 {
4107 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4108
4109 return mem_cgroup_swappiness(memcg);
4110 }
4111
4112 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4113 struct cftype *cft, u64 val)
4114 {
4115 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4116
4117 if (val > 100)
4118 return -EINVAL;
4119
4120 if (css->parent)
4121 memcg->swappiness = val;
4122 else
4123 vm_swappiness = val;
4124
4125 return 0;
4126 }
4127
4128 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4129 {
4130 struct mem_cgroup_threshold_ary *t;
4131 unsigned long usage;
4132 int i;
4133
4134 rcu_read_lock();
4135 if (!swap)
4136 t = rcu_dereference(memcg->thresholds.primary);
4137 else
4138 t = rcu_dereference(memcg->memsw_thresholds.primary);
4139
4140 if (!t)
4141 goto unlock;
4142
4143 usage = mem_cgroup_usage(memcg, swap);
4144
4145 /*
4146 * current_threshold points to threshold just below or equal to usage.
4147 * If it's not true, a threshold was crossed after last
4148 * call of __mem_cgroup_threshold().
4149 */
4150 i = t->current_threshold;
4151
4152 /*
4153 * Iterate backward over array of thresholds starting from
4154 * current_threshold and check if a threshold is crossed.
4155 * If none of thresholds below usage is crossed, we read
4156 * only one element of the array here.
4157 */
4158 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4159 eventfd_signal(t->entries[i].eventfd, 1);
4160
4161 /* i = current_threshold + 1 */
4162 i++;
4163
4164 /*
4165 * Iterate forward over array of thresholds starting from
4166 * current_threshold+1 and check if a threshold is crossed.
4167 * If none of thresholds above usage is crossed, we read
4168 * only one element of the array here.
4169 */
4170 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4171 eventfd_signal(t->entries[i].eventfd, 1);
4172
4173 /* Update current_threshold */
4174 t->current_threshold = i - 1;
4175 unlock:
4176 rcu_read_unlock();
4177 }
4178
4179 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4180 {
4181 while (memcg) {
4182 __mem_cgroup_threshold(memcg, false);
4183 if (do_swap_account)
4184 __mem_cgroup_threshold(memcg, true);
4185
4186 memcg = parent_mem_cgroup(memcg);
4187 }
4188 }
4189
4190 static int compare_thresholds(const void *a, const void *b)
4191 {
4192 const struct mem_cgroup_threshold *_a = a;
4193 const struct mem_cgroup_threshold *_b = b;
4194
4195 if (_a->threshold > _b->threshold)
4196 return 1;
4197
4198 if (_a->threshold < _b->threshold)
4199 return -1;
4200
4201 return 0;
4202 }
4203
4204 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4205 {
4206 struct mem_cgroup_eventfd_list *ev;
4207
4208 spin_lock(&memcg_oom_lock);
4209
4210 list_for_each_entry(ev, &memcg->oom_notify, list)
4211 eventfd_signal(ev->eventfd, 1);
4212
4213 spin_unlock(&memcg_oom_lock);
4214 return 0;
4215 }
4216
4217 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4218 {
4219 struct mem_cgroup *iter;
4220
4221 for_each_mem_cgroup_tree(iter, memcg)
4222 mem_cgroup_oom_notify_cb(iter);
4223 }
4224
4225 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4226 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4227 {
4228 struct mem_cgroup_thresholds *thresholds;
4229 struct mem_cgroup_threshold_ary *new;
4230 unsigned long threshold;
4231 unsigned long usage;
4232 int i, size, ret;
4233
4234 ret = page_counter_memparse(args, &threshold);
4235 if (ret)
4236 return ret;
4237
4238 mutex_lock(&memcg->thresholds_lock);
4239
4240 if (type == _MEM) {
4241 thresholds = &memcg->thresholds;
4242 usage = mem_cgroup_usage(memcg, false);
4243 } else if (type == _MEMSWAP) {
4244 thresholds = &memcg->memsw_thresholds;
4245 usage = mem_cgroup_usage(memcg, true);
4246 } else
4247 BUG();
4248
4249 /* Check if a threshold crossed before adding a new one */
4250 if (thresholds->primary)
4251 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4252
4253 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4254
4255 /* Allocate memory for new array of thresholds */
4256 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4257 GFP_KERNEL);
4258 if (!new) {
4259 ret = -ENOMEM;
4260 goto unlock;
4261 }
4262 new->size = size;
4263
4264 /* Copy thresholds (if any) to new array */
4265 if (thresholds->primary) {
4266 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4267 sizeof(struct mem_cgroup_threshold));
4268 }
4269
4270 /* Add new threshold */
4271 new->entries[size - 1].eventfd = eventfd;
4272 new->entries[size - 1].threshold = threshold;
4273
4274 /* Sort thresholds. Registering of new threshold isn't time-critical */
4275 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4276 compare_thresholds, NULL);
4277
4278 /* Find current threshold */
4279 new->current_threshold = -1;
4280 for (i = 0; i < size; i++) {
4281 if (new->entries[i].threshold <= usage) {
4282 /*
4283 * new->current_threshold will not be used until
4284 * rcu_assign_pointer(), so it's safe to increment
4285 * it here.
4286 */
4287 ++new->current_threshold;
4288 } else
4289 break;
4290 }
4291
4292 /* Free old spare buffer and save old primary buffer as spare */
4293 kfree(thresholds->spare);
4294 thresholds->spare = thresholds->primary;
4295
4296 rcu_assign_pointer(thresholds->primary, new);
4297
4298 /* To be sure that nobody uses thresholds */
4299 synchronize_rcu();
4300
4301 unlock:
4302 mutex_unlock(&memcg->thresholds_lock);
4303
4304 return ret;
4305 }
4306
4307 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4308 struct eventfd_ctx *eventfd, const char *args)
4309 {
4310 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4311 }
4312
4313 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4314 struct eventfd_ctx *eventfd, const char *args)
4315 {
4316 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4317 }
4318
4319 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4320 struct eventfd_ctx *eventfd, enum res_type type)
4321 {
4322 struct mem_cgroup_thresholds *thresholds;
4323 struct mem_cgroup_threshold_ary *new;
4324 unsigned long usage;
4325 int i, j, size;
4326
4327 mutex_lock(&memcg->thresholds_lock);
4328
4329 if (type == _MEM) {
4330 thresholds = &memcg->thresholds;
4331 usage = mem_cgroup_usage(memcg, false);
4332 } else if (type == _MEMSWAP) {
4333 thresholds = &memcg->memsw_thresholds;
4334 usage = mem_cgroup_usage(memcg, true);
4335 } else
4336 BUG();
4337
4338 if (!thresholds->primary)
4339 goto unlock;
4340
4341 /* Check if a threshold crossed before removing */
4342 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4343
4344 /* Calculate new number of threshold */
4345 size = 0;
4346 for (i = 0; i < thresholds->primary->size; i++) {
4347 if (thresholds->primary->entries[i].eventfd != eventfd)
4348 size++;
4349 }
4350
4351 new = thresholds->spare;
4352
4353 /* Set thresholds array to NULL if we don't have thresholds */
4354 if (!size) {
4355 kfree(new);
4356 new = NULL;
4357 goto swap_buffers;
4358 }
4359
4360 new->size = size;
4361
4362 /* Copy thresholds and find current threshold */
4363 new->current_threshold = -1;
4364 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4365 if (thresholds->primary->entries[i].eventfd == eventfd)
4366 continue;
4367
4368 new->entries[j] = thresholds->primary->entries[i];
4369 if (new->entries[j].threshold <= usage) {
4370 /*
4371 * new->current_threshold will not be used
4372 * until rcu_assign_pointer(), so it's safe to increment
4373 * it here.
4374 */
4375 ++new->current_threshold;
4376 }
4377 j++;
4378 }
4379
4380 swap_buffers:
4381 /* Swap primary and spare array */
4382 thresholds->spare = thresholds->primary;
4383 /* If all events are unregistered, free the spare array */
4384 if (!new) {
4385 kfree(thresholds->spare);
4386 thresholds->spare = NULL;
4387 }
4388
4389 rcu_assign_pointer(thresholds->primary, new);
4390
4391 /* To be sure that nobody uses thresholds */
4392 synchronize_rcu();
4393 unlock:
4394 mutex_unlock(&memcg->thresholds_lock);
4395 }
4396
4397 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4398 struct eventfd_ctx *eventfd)
4399 {
4400 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4401 }
4402
4403 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4404 struct eventfd_ctx *eventfd)
4405 {
4406 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4407 }
4408
4409 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4410 struct eventfd_ctx *eventfd, const char *args)
4411 {
4412 struct mem_cgroup_eventfd_list *event;
4413
4414 event = kmalloc(sizeof(*event), GFP_KERNEL);
4415 if (!event)
4416 return -ENOMEM;
4417
4418 spin_lock(&memcg_oom_lock);
4419
4420 event->eventfd = eventfd;
4421 list_add(&event->list, &memcg->oom_notify);
4422
4423 /* already in OOM ? */
4424 if (atomic_read(&memcg->under_oom))
4425 eventfd_signal(eventfd, 1);
4426 spin_unlock(&memcg_oom_lock);
4427
4428 return 0;
4429 }
4430
4431 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4432 struct eventfd_ctx *eventfd)
4433 {
4434 struct mem_cgroup_eventfd_list *ev, *tmp;
4435
4436 spin_lock(&memcg_oom_lock);
4437
4438 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4439 if (ev->eventfd == eventfd) {
4440 list_del(&ev->list);
4441 kfree(ev);
4442 }
4443 }
4444
4445 spin_unlock(&memcg_oom_lock);
4446 }
4447
4448 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4449 {
4450 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4451
4452 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4453 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
4454 return 0;
4455 }
4456
4457 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4458 struct cftype *cft, u64 val)
4459 {
4460 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4461
4462 /* cannot set to root cgroup and only 0 and 1 are allowed */
4463 if (!css->parent || !((val == 0) || (val == 1)))
4464 return -EINVAL;
4465
4466 memcg->oom_kill_disable = val;
4467 if (!val)
4468 memcg_oom_recover(memcg);
4469
4470 return 0;
4471 }
4472
4473 #ifdef CONFIG_MEMCG_KMEM
4474 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4475 {
4476 int ret;
4477
4478 memcg->kmemcg_id = -1;
4479 ret = memcg_propagate_kmem(memcg);
4480 if (ret)
4481 return ret;
4482
4483 return mem_cgroup_sockets_init(memcg, ss);
4484 }
4485
4486 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4487 {
4488 mem_cgroup_sockets_destroy(memcg);
4489 }
4490 #else
4491 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4492 {
4493 return 0;
4494 }
4495
4496 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4497 {
4498 }
4499 #endif
4500
4501 /*
4502 * DO NOT USE IN NEW FILES.
4503 *
4504 * "cgroup.event_control" implementation.
4505 *
4506 * This is way over-engineered. It tries to support fully configurable
4507 * events for each user. Such level of flexibility is completely
4508 * unnecessary especially in the light of the planned unified hierarchy.
4509 *
4510 * Please deprecate this and replace with something simpler if at all
4511 * possible.
4512 */
4513
4514 /*
4515 * Unregister event and free resources.
4516 *
4517 * Gets called from workqueue.
4518 */
4519 static void memcg_event_remove(struct work_struct *work)
4520 {
4521 struct mem_cgroup_event *event =
4522 container_of(work, struct mem_cgroup_event, remove);
4523 struct mem_cgroup *memcg = event->memcg;
4524
4525 remove_wait_queue(event->wqh, &event->wait);
4526
4527 event->unregister_event(memcg, event->eventfd);
4528
4529 /* Notify userspace the event is going away. */
4530 eventfd_signal(event->eventfd, 1);
4531
4532 eventfd_ctx_put(event->eventfd);
4533 kfree(event);
4534 css_put(&memcg->css);
4535 }
4536
4537 /*
4538 * Gets called on POLLHUP on eventfd when user closes it.
4539 *
4540 * Called with wqh->lock held and interrupts disabled.
4541 */
4542 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4543 int sync, void *key)
4544 {
4545 struct mem_cgroup_event *event =
4546 container_of(wait, struct mem_cgroup_event, wait);
4547 struct mem_cgroup *memcg = event->memcg;
4548 unsigned long flags = (unsigned long)key;
4549
4550 if (flags & POLLHUP) {
4551 /*
4552 * If the event has been detached at cgroup removal, we
4553 * can simply return knowing the other side will cleanup
4554 * for us.
4555 *
4556 * We can't race against event freeing since the other
4557 * side will require wqh->lock via remove_wait_queue(),
4558 * which we hold.
4559 */
4560 spin_lock(&memcg->event_list_lock);
4561 if (!list_empty(&event->list)) {
4562 list_del_init(&event->list);
4563 /*
4564 * We are in atomic context, but cgroup_event_remove()
4565 * may sleep, so we have to call it in workqueue.
4566 */
4567 schedule_work(&event->remove);
4568 }
4569 spin_unlock(&memcg->event_list_lock);
4570 }
4571
4572 return 0;
4573 }
4574
4575 static void memcg_event_ptable_queue_proc(struct file *file,
4576 wait_queue_head_t *wqh, poll_table *pt)
4577 {
4578 struct mem_cgroup_event *event =
4579 container_of(pt, struct mem_cgroup_event, pt);
4580
4581 event->wqh = wqh;
4582 add_wait_queue(wqh, &event->wait);
4583 }
4584
4585 /*
4586 * DO NOT USE IN NEW FILES.
4587 *
4588 * Parse input and register new cgroup event handler.
4589 *
4590 * Input must be in format '<event_fd> <control_fd> <args>'.
4591 * Interpretation of args is defined by control file implementation.
4592 */
4593 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4594 char *buf, size_t nbytes, loff_t off)
4595 {
4596 struct cgroup_subsys_state *css = of_css(of);
4597 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4598 struct mem_cgroup_event *event;
4599 struct cgroup_subsys_state *cfile_css;
4600 unsigned int efd, cfd;
4601 struct fd efile;
4602 struct fd cfile;
4603 const char *name;
4604 char *endp;
4605 int ret;
4606
4607 buf = strstrip(buf);
4608
4609 efd = simple_strtoul(buf, &endp, 10);
4610 if (*endp != ' ')
4611 return -EINVAL;
4612 buf = endp + 1;
4613
4614 cfd = simple_strtoul(buf, &endp, 10);
4615 if ((*endp != ' ') && (*endp != '\0'))
4616 return -EINVAL;
4617 buf = endp + 1;
4618
4619 event = kzalloc(sizeof(*event), GFP_KERNEL);
4620 if (!event)
4621 return -ENOMEM;
4622
4623 event->memcg = memcg;
4624 INIT_LIST_HEAD(&event->list);
4625 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4626 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4627 INIT_WORK(&event->remove, memcg_event_remove);
4628
4629 efile = fdget(efd);
4630 if (!efile.file) {
4631 ret = -EBADF;
4632 goto out_kfree;
4633 }
4634
4635 event->eventfd = eventfd_ctx_fileget(efile.file);
4636 if (IS_ERR(event->eventfd)) {
4637 ret = PTR_ERR(event->eventfd);
4638 goto out_put_efile;
4639 }
4640
4641 cfile = fdget(cfd);
4642 if (!cfile.file) {
4643 ret = -EBADF;
4644 goto out_put_eventfd;
4645 }
4646
4647 /* the process need read permission on control file */
4648 /* AV: shouldn't we check that it's been opened for read instead? */
4649 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4650 if (ret < 0)
4651 goto out_put_cfile;
4652
4653 /*
4654 * Determine the event callbacks and set them in @event. This used
4655 * to be done via struct cftype but cgroup core no longer knows
4656 * about these events. The following is crude but the whole thing
4657 * is for compatibility anyway.
4658 *
4659 * DO NOT ADD NEW FILES.
4660 */
4661 name = cfile.file->f_dentry->d_name.name;
4662
4663 if (!strcmp(name, "memory.usage_in_bytes")) {
4664 event->register_event = mem_cgroup_usage_register_event;
4665 event->unregister_event = mem_cgroup_usage_unregister_event;
4666 } else if (!strcmp(name, "memory.oom_control")) {
4667 event->register_event = mem_cgroup_oom_register_event;
4668 event->unregister_event = mem_cgroup_oom_unregister_event;
4669 } else if (!strcmp(name, "memory.pressure_level")) {
4670 event->register_event = vmpressure_register_event;
4671 event->unregister_event = vmpressure_unregister_event;
4672 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4673 event->register_event = memsw_cgroup_usage_register_event;
4674 event->unregister_event = memsw_cgroup_usage_unregister_event;
4675 } else {
4676 ret = -EINVAL;
4677 goto out_put_cfile;
4678 }
4679
4680 /*
4681 * Verify @cfile should belong to @css. Also, remaining events are
4682 * automatically removed on cgroup destruction but the removal is
4683 * asynchronous, so take an extra ref on @css.
4684 */
4685 cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
4686 &memory_cgrp_subsys);
4687 ret = -EINVAL;
4688 if (IS_ERR(cfile_css))
4689 goto out_put_cfile;
4690 if (cfile_css != css) {
4691 css_put(cfile_css);
4692 goto out_put_cfile;
4693 }
4694
4695 ret = event->register_event(memcg, event->eventfd, buf);
4696 if (ret)
4697 goto out_put_css;
4698
4699 efile.file->f_op->poll(efile.file, &event->pt);
4700
4701 spin_lock(&memcg->event_list_lock);
4702 list_add(&event->list, &memcg->event_list);
4703 spin_unlock(&memcg->event_list_lock);
4704
4705 fdput(cfile);
4706 fdput(efile);
4707
4708 return nbytes;
4709
4710 out_put_css:
4711 css_put(css);
4712 out_put_cfile:
4713 fdput(cfile);
4714 out_put_eventfd:
4715 eventfd_ctx_put(event->eventfd);
4716 out_put_efile:
4717 fdput(efile);
4718 out_kfree:
4719 kfree(event);
4720
4721 return ret;
4722 }
4723
4724 static struct cftype mem_cgroup_files[] = {
4725 {
4726 .name = "usage_in_bytes",
4727 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4728 .read_u64 = mem_cgroup_read_u64,
4729 },
4730 {
4731 .name = "max_usage_in_bytes",
4732 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4733 .write = mem_cgroup_reset,
4734 .read_u64 = mem_cgroup_read_u64,
4735 },
4736 {
4737 .name = "limit_in_bytes",
4738 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4739 .write = mem_cgroup_write,
4740 .read_u64 = mem_cgroup_read_u64,
4741 },
4742 {
4743 .name = "soft_limit_in_bytes",
4744 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4745 .write = mem_cgroup_write,
4746 .read_u64 = mem_cgroup_read_u64,
4747 },
4748 {
4749 .name = "failcnt",
4750 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4751 .write = mem_cgroup_reset,
4752 .read_u64 = mem_cgroup_read_u64,
4753 },
4754 {
4755 .name = "stat",
4756 .seq_show = memcg_stat_show,
4757 },
4758 {
4759 .name = "force_empty",
4760 .write = mem_cgroup_force_empty_write,
4761 },
4762 {
4763 .name = "use_hierarchy",
4764 .write_u64 = mem_cgroup_hierarchy_write,
4765 .read_u64 = mem_cgroup_hierarchy_read,
4766 },
4767 {
4768 .name = "cgroup.event_control", /* XXX: for compat */
4769 .write = memcg_write_event_control,
4770 .flags = CFTYPE_NO_PREFIX,
4771 .mode = S_IWUGO,
4772 },
4773 {
4774 .name = "swappiness",
4775 .read_u64 = mem_cgroup_swappiness_read,
4776 .write_u64 = mem_cgroup_swappiness_write,
4777 },
4778 {
4779 .name = "move_charge_at_immigrate",
4780 .read_u64 = mem_cgroup_move_charge_read,
4781 .write_u64 = mem_cgroup_move_charge_write,
4782 },
4783 {
4784 .name = "oom_control",
4785 .seq_show = mem_cgroup_oom_control_read,
4786 .write_u64 = mem_cgroup_oom_control_write,
4787 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4788 },
4789 {
4790 .name = "pressure_level",
4791 },
4792 #ifdef CONFIG_NUMA
4793 {
4794 .name = "numa_stat",
4795 .seq_show = memcg_numa_stat_show,
4796 },
4797 #endif
4798 #ifdef CONFIG_MEMCG_KMEM
4799 {
4800 .name = "kmem.limit_in_bytes",
4801 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4802 .write = mem_cgroup_write,
4803 .read_u64 = mem_cgroup_read_u64,
4804 },
4805 {
4806 .name = "kmem.usage_in_bytes",
4807 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4808 .read_u64 = mem_cgroup_read_u64,
4809 },
4810 {
4811 .name = "kmem.failcnt",
4812 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4813 .write = mem_cgroup_reset,
4814 .read_u64 = mem_cgroup_read_u64,
4815 },
4816 {
4817 .name = "kmem.max_usage_in_bytes",
4818 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4819 .write = mem_cgroup_reset,
4820 .read_u64 = mem_cgroup_read_u64,
4821 },
4822 #ifdef CONFIG_SLABINFO
4823 {
4824 .name = "kmem.slabinfo",
4825 .seq_show = mem_cgroup_slabinfo_read,
4826 },
4827 #endif
4828 #endif
4829 { }, /* terminate */
4830 };
4831
4832 #ifdef CONFIG_MEMCG_SWAP
4833 static struct cftype memsw_cgroup_files[] = {
4834 {
4835 .name = "memsw.usage_in_bytes",
4836 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4837 .read_u64 = mem_cgroup_read_u64,
4838 },
4839 {
4840 .name = "memsw.max_usage_in_bytes",
4841 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4842 .write = mem_cgroup_reset,
4843 .read_u64 = mem_cgroup_read_u64,
4844 },
4845 {
4846 .name = "memsw.limit_in_bytes",
4847 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4848 .write = mem_cgroup_write,
4849 .read_u64 = mem_cgroup_read_u64,
4850 },
4851 {
4852 .name = "memsw.failcnt",
4853 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4854 .write = mem_cgroup_reset,
4855 .read_u64 = mem_cgroup_read_u64,
4856 },
4857 { }, /* terminate */
4858 };
4859 #endif
4860 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4861 {
4862 struct mem_cgroup_per_node *pn;
4863 struct mem_cgroup_per_zone *mz;
4864 int zone, tmp = node;
4865 /*
4866 * This routine is called against possible nodes.
4867 * But it's BUG to call kmalloc() against offline node.
4868 *
4869 * TODO: this routine can waste much memory for nodes which will
4870 * never be onlined. It's better to use memory hotplug callback
4871 * function.
4872 */
4873 if (!node_state(node, N_NORMAL_MEMORY))
4874 tmp = -1;
4875 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4876 if (!pn)
4877 return 1;
4878
4879 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4880 mz = &pn->zoneinfo[zone];
4881 lruvec_init(&mz->lruvec);
4882 mz->usage_in_excess = 0;
4883 mz->on_tree = false;
4884 mz->memcg = memcg;
4885 }
4886 memcg->nodeinfo[node] = pn;
4887 return 0;
4888 }
4889
4890 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4891 {
4892 kfree(memcg->nodeinfo[node]);
4893 }
4894
4895 static struct mem_cgroup *mem_cgroup_alloc(void)
4896 {
4897 struct mem_cgroup *memcg;
4898 size_t size;
4899
4900 size = sizeof(struct mem_cgroup);
4901 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4902
4903 memcg = kzalloc(size, GFP_KERNEL);
4904 if (!memcg)
4905 return NULL;
4906
4907 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4908 if (!memcg->stat)
4909 goto out_free;
4910 spin_lock_init(&memcg->pcp_counter_lock);
4911 return memcg;
4912
4913 out_free:
4914 kfree(memcg);
4915 return NULL;
4916 }
4917
4918 /*
4919 * At destroying mem_cgroup, references from swap_cgroup can remain.
4920 * (scanning all at force_empty is too costly...)
4921 *
4922 * Instead of clearing all references at force_empty, we remember
4923 * the number of reference from swap_cgroup and free mem_cgroup when
4924 * it goes down to 0.
4925 *
4926 * Removal of cgroup itself succeeds regardless of refs from swap.
4927 */
4928
4929 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4930 {
4931 int node;
4932
4933 mem_cgroup_remove_from_trees(memcg);
4934
4935 for_each_node(node)
4936 free_mem_cgroup_per_zone_info(memcg, node);
4937
4938 free_percpu(memcg->stat);
4939
4940 /*
4941 * We need to make sure that (at least for now), the jump label
4942 * destruction code runs outside of the cgroup lock. This is because
4943 * get_online_cpus(), which is called from the static_branch update,
4944 * can't be called inside the cgroup_lock. cpusets are the ones
4945 * enforcing this dependency, so if they ever change, we might as well.
4946 *
4947 * schedule_work() will guarantee this happens. Be careful if you need
4948 * to move this code around, and make sure it is outside
4949 * the cgroup_lock.
4950 */
4951 disarm_static_keys(memcg);
4952 kfree(memcg);
4953 }
4954
4955 /*
4956 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4957 */
4958 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4959 {
4960 if (!memcg->memory.parent)
4961 return NULL;
4962 return mem_cgroup_from_counter(memcg->memory.parent, memory);
4963 }
4964 EXPORT_SYMBOL(parent_mem_cgroup);
4965
4966 static void __init mem_cgroup_soft_limit_tree_init(void)
4967 {
4968 struct mem_cgroup_tree_per_node *rtpn;
4969 struct mem_cgroup_tree_per_zone *rtpz;
4970 int tmp, node, zone;
4971
4972 for_each_node(node) {
4973 tmp = node;
4974 if (!node_state(node, N_NORMAL_MEMORY))
4975 tmp = -1;
4976 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4977 BUG_ON(!rtpn);
4978
4979 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4980
4981 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4982 rtpz = &rtpn->rb_tree_per_zone[zone];
4983 rtpz->rb_root = RB_ROOT;
4984 spin_lock_init(&rtpz->lock);
4985 }
4986 }
4987 }
4988
4989 static struct cgroup_subsys_state * __ref
4990 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4991 {
4992 struct mem_cgroup *memcg;
4993 long error = -ENOMEM;
4994 int node;
4995
4996 memcg = mem_cgroup_alloc();
4997 if (!memcg)
4998 return ERR_PTR(error);
4999
5000 for_each_node(node)
5001 if (alloc_mem_cgroup_per_zone_info(memcg, node))
5002 goto free_out;
5003
5004 /* root ? */
5005 if (parent_css == NULL) {
5006 root_mem_cgroup = memcg;
5007 page_counter_init(&memcg->memory, NULL);
5008 page_counter_init(&memcg->memsw, NULL);
5009 page_counter_init(&memcg->kmem, NULL);
5010 }
5011
5012 memcg->last_scanned_node = MAX_NUMNODES;
5013 INIT_LIST_HEAD(&memcg->oom_notify);
5014 memcg->move_charge_at_immigrate = 0;
5015 mutex_init(&memcg->thresholds_lock);
5016 spin_lock_init(&memcg->move_lock);
5017 vmpressure_init(&memcg->vmpressure);
5018 INIT_LIST_HEAD(&memcg->event_list);
5019 spin_lock_init(&memcg->event_list_lock);
5020
5021 return &memcg->css;
5022
5023 free_out:
5024 __mem_cgroup_free(memcg);
5025 return ERR_PTR(error);
5026 }
5027
5028 static int
5029 mem_cgroup_css_online(struct cgroup_subsys_state *css)
5030 {
5031 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5032 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
5033 int ret;
5034
5035 if (css->id > MEM_CGROUP_ID_MAX)
5036 return -ENOSPC;
5037
5038 if (!parent)
5039 return 0;
5040
5041 mutex_lock(&memcg_create_mutex);
5042
5043 memcg->use_hierarchy = parent->use_hierarchy;
5044 memcg->oom_kill_disable = parent->oom_kill_disable;
5045 memcg->swappiness = mem_cgroup_swappiness(parent);
5046
5047 if (parent->use_hierarchy) {
5048 page_counter_init(&memcg->memory, &parent->memory);
5049 page_counter_init(&memcg->memsw, &parent->memsw);
5050 page_counter_init(&memcg->kmem, &parent->kmem);
5051
5052 /*
5053 * No need to take a reference to the parent because cgroup
5054 * core guarantees its existence.
5055 */
5056 } else {
5057 page_counter_init(&memcg->memory, NULL);
5058 page_counter_init(&memcg->memsw, NULL);
5059 page_counter_init(&memcg->kmem, NULL);
5060 /*
5061 * Deeper hierachy with use_hierarchy == false doesn't make
5062 * much sense so let cgroup subsystem know about this
5063 * unfortunate state in our controller.
5064 */
5065 if (parent != root_mem_cgroup)
5066 memory_cgrp_subsys.broken_hierarchy = true;
5067 }
5068 mutex_unlock(&memcg_create_mutex);
5069
5070 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
5071 if (ret)
5072 return ret;
5073
5074 /*
5075 * Make sure the memcg is initialized: mem_cgroup_iter()
5076 * orders reading memcg->initialized against its callers
5077 * reading the memcg members.
5078 */
5079 smp_store_release(&memcg->initialized, 1);
5080
5081 return 0;
5082 }
5083
5084 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5085 {
5086 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5087 struct mem_cgroup_event *event, *tmp;
5088
5089 /*
5090 * Unregister events and notify userspace.
5091 * Notify userspace about cgroup removing only after rmdir of cgroup
5092 * directory to avoid race between userspace and kernelspace.
5093 */
5094 spin_lock(&memcg->event_list_lock);
5095 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5096 list_del_init(&event->list);
5097 schedule_work(&event->remove);
5098 }
5099 spin_unlock(&memcg->event_list_lock);
5100
5101 memcg_unregister_all_caches(memcg);
5102 vmpressure_cleanup(&memcg->vmpressure);
5103 }
5104
5105 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5106 {
5107 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5108
5109 memcg_destroy_kmem(memcg);
5110 __mem_cgroup_free(memcg);
5111 }
5112
5113 /**
5114 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5115 * @css: the target css
5116 *
5117 * Reset the states of the mem_cgroup associated with @css. This is
5118 * invoked when the userland requests disabling on the default hierarchy
5119 * but the memcg is pinned through dependency. The memcg should stop
5120 * applying policies and should revert to the vanilla state as it may be
5121 * made visible again.
5122 *
5123 * The current implementation only resets the essential configurations.
5124 * This needs to be expanded to cover all the visible parts.
5125 */
5126 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5127 {
5128 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5129
5130 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
5131 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
5132 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
5133 memcg->soft_limit = 0;
5134 }
5135
5136 #ifdef CONFIG_MMU
5137 /* Handlers for move charge at task migration. */
5138 static int mem_cgroup_do_precharge(unsigned long count)
5139 {
5140 int ret;
5141
5142 /* Try a single bulk charge without reclaim first */
5143 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
5144 if (!ret) {
5145 mc.precharge += count;
5146 return ret;
5147 }
5148 if (ret == -EINTR) {
5149 cancel_charge(root_mem_cgroup, count);
5150 return ret;
5151 }
5152
5153 /* Try charges one by one with reclaim */
5154 while (count--) {
5155 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
5156 /*
5157 * In case of failure, any residual charges against
5158 * mc.to will be dropped by mem_cgroup_clear_mc()
5159 * later on. However, cancel any charges that are
5160 * bypassed to root right away or they'll be lost.
5161 */
5162 if (ret == -EINTR)
5163 cancel_charge(root_mem_cgroup, 1);
5164 if (ret)
5165 return ret;
5166 mc.precharge++;
5167 cond_resched();
5168 }
5169 return 0;
5170 }
5171
5172 /**
5173 * get_mctgt_type - get target type of moving charge
5174 * @vma: the vma the pte to be checked belongs
5175 * @addr: the address corresponding to the pte to be checked
5176 * @ptent: the pte to be checked
5177 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5178 *
5179 * Returns
5180 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5181 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5182 * move charge. if @target is not NULL, the page is stored in target->page
5183 * with extra refcnt got(Callers should handle it).
5184 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5185 * target for charge migration. if @target is not NULL, the entry is stored
5186 * in target->ent.
5187 *
5188 * Called with pte lock held.
5189 */
5190 union mc_target {
5191 struct page *page;
5192 swp_entry_t ent;
5193 };
5194
5195 enum mc_target_type {
5196 MC_TARGET_NONE = 0,
5197 MC_TARGET_PAGE,
5198 MC_TARGET_SWAP,
5199 };
5200
5201 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5202 unsigned long addr, pte_t ptent)
5203 {
5204 struct page *page = vm_normal_page(vma, addr, ptent);
5205
5206 if (!page || !page_mapped(page))
5207 return NULL;
5208 if (PageAnon(page)) {
5209 /* we don't move shared anon */
5210 if (!move_anon())
5211 return NULL;
5212 } else if (!move_file())
5213 /* we ignore mapcount for file pages */
5214 return NULL;
5215 if (!get_page_unless_zero(page))
5216 return NULL;
5217
5218 return page;
5219 }
5220
5221 #ifdef CONFIG_SWAP
5222 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5223 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5224 {
5225 struct page *page = NULL;
5226 swp_entry_t ent = pte_to_swp_entry(ptent);
5227
5228 if (!move_anon() || non_swap_entry(ent))
5229 return NULL;
5230 /*
5231 * Because lookup_swap_cache() updates some statistics counter,
5232 * we call find_get_page() with swapper_space directly.
5233 */
5234 page = find_get_page(swap_address_space(ent), ent.val);
5235 if (do_swap_account)
5236 entry->val = ent.val;
5237
5238 return page;
5239 }
5240 #else
5241 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5242 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5243 {
5244 return NULL;
5245 }
5246 #endif
5247
5248 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5249 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5250 {
5251 struct page *page = NULL;
5252 struct address_space *mapping;
5253 pgoff_t pgoff;
5254
5255 if (!vma->vm_file) /* anonymous vma */
5256 return NULL;
5257 if (!move_file())
5258 return NULL;
5259
5260 mapping = vma->vm_file->f_mapping;
5261 if (pte_none(ptent))
5262 pgoff = linear_page_index(vma, addr);
5263 else /* pte_file(ptent) is true */
5264 pgoff = pte_to_pgoff(ptent);
5265
5266 /* page is moved even if it's not RSS of this task(page-faulted). */
5267 #ifdef CONFIG_SWAP
5268 /* shmem/tmpfs may report page out on swap: account for that too. */
5269 if (shmem_mapping(mapping)) {
5270 page = find_get_entry(mapping, pgoff);
5271 if (radix_tree_exceptional_entry(page)) {
5272 swp_entry_t swp = radix_to_swp_entry(page);
5273 if (do_swap_account)
5274 *entry = swp;
5275 page = find_get_page(swap_address_space(swp), swp.val);
5276 }
5277 } else
5278 page = find_get_page(mapping, pgoff);
5279 #else
5280 page = find_get_page(mapping, pgoff);
5281 #endif
5282 return page;
5283 }
5284
5285 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5286 unsigned long addr, pte_t ptent, union mc_target *target)
5287 {
5288 struct page *page = NULL;
5289 struct page_cgroup *pc;
5290 enum mc_target_type ret = MC_TARGET_NONE;
5291 swp_entry_t ent = { .val = 0 };
5292
5293 if (pte_present(ptent))
5294 page = mc_handle_present_pte(vma, addr, ptent);
5295 else if (is_swap_pte(ptent))
5296 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5297 else if (pte_none(ptent) || pte_file(ptent))
5298 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5299
5300 if (!page && !ent.val)
5301 return ret;
5302 if (page) {
5303 pc = lookup_page_cgroup(page);
5304 /*
5305 * Do only loose check w/o serialization.
5306 * mem_cgroup_move_account() checks the pc is valid or
5307 * not under LRU exclusion.
5308 */
5309 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5310 ret = MC_TARGET_PAGE;
5311 if (target)
5312 target->page = page;
5313 }
5314 if (!ret || !target)
5315 put_page(page);
5316 }
5317 /* There is a swap entry and a page doesn't exist or isn't charged */
5318 if (ent.val && !ret &&
5319 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5320 ret = MC_TARGET_SWAP;
5321 if (target)
5322 target->ent = ent;
5323 }
5324 return ret;
5325 }
5326
5327 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5328 /*
5329 * We don't consider swapping or file mapped pages because THP does not
5330 * support them for now.
5331 * Caller should make sure that pmd_trans_huge(pmd) is true.
5332 */
5333 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5334 unsigned long addr, pmd_t pmd, union mc_target *target)
5335 {
5336 struct page *page = NULL;
5337 struct page_cgroup *pc;
5338 enum mc_target_type ret = MC_TARGET_NONE;
5339
5340 page = pmd_page(pmd);
5341 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5342 if (!move_anon())
5343 return ret;
5344 pc = lookup_page_cgroup(page);
5345 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5346 ret = MC_TARGET_PAGE;
5347 if (target) {
5348 get_page(page);
5349 target->page = page;
5350 }
5351 }
5352 return ret;
5353 }
5354 #else
5355 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5356 unsigned long addr, pmd_t pmd, union mc_target *target)
5357 {
5358 return MC_TARGET_NONE;
5359 }
5360 #endif
5361
5362 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5363 unsigned long addr, unsigned long end,
5364 struct mm_walk *walk)
5365 {
5366 struct vm_area_struct *vma = walk->private;
5367 pte_t *pte;
5368 spinlock_t *ptl;
5369
5370 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5371 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5372 mc.precharge += HPAGE_PMD_NR;
5373 spin_unlock(ptl);
5374 return 0;
5375 }
5376
5377 if (pmd_trans_unstable(pmd))
5378 return 0;
5379 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5380 for (; addr != end; pte++, addr += PAGE_SIZE)
5381 if (get_mctgt_type(vma, addr, *pte, NULL))
5382 mc.precharge++; /* increment precharge temporarily */
5383 pte_unmap_unlock(pte - 1, ptl);
5384 cond_resched();
5385
5386 return 0;
5387 }
5388
5389 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5390 {
5391 unsigned long precharge;
5392 struct vm_area_struct *vma;
5393
5394 down_read(&mm->mmap_sem);
5395 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5396 struct mm_walk mem_cgroup_count_precharge_walk = {
5397 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5398 .mm = mm,
5399 .private = vma,
5400 };
5401 if (is_vm_hugetlb_page(vma))
5402 continue;
5403 walk_page_range(vma->vm_start, vma->vm_end,
5404 &mem_cgroup_count_precharge_walk);
5405 }
5406 up_read(&mm->mmap_sem);
5407
5408 precharge = mc.precharge;
5409 mc.precharge = 0;
5410
5411 return precharge;
5412 }
5413
5414 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5415 {
5416 unsigned long precharge = mem_cgroup_count_precharge(mm);
5417
5418 VM_BUG_ON(mc.moving_task);
5419 mc.moving_task = current;
5420 return mem_cgroup_do_precharge(precharge);
5421 }
5422
5423 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5424 static void __mem_cgroup_clear_mc(void)
5425 {
5426 struct mem_cgroup *from = mc.from;
5427 struct mem_cgroup *to = mc.to;
5428
5429 /* we must uncharge all the leftover precharges from mc.to */
5430 if (mc.precharge) {
5431 cancel_charge(mc.to, mc.precharge);
5432 mc.precharge = 0;
5433 }
5434 /*
5435 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5436 * we must uncharge here.
5437 */
5438 if (mc.moved_charge) {
5439 cancel_charge(mc.from, mc.moved_charge);
5440 mc.moved_charge = 0;
5441 }
5442 /* we must fixup refcnts and charges */
5443 if (mc.moved_swap) {
5444 /* uncharge swap account from the old cgroup */
5445 if (!mem_cgroup_is_root(mc.from))
5446 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5447
5448 /*
5449 * we charged both to->memory and to->memsw, so we
5450 * should uncharge to->memory.
5451 */
5452 if (!mem_cgroup_is_root(mc.to))
5453 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5454
5455 css_put_many(&mc.from->css, mc.moved_swap);
5456
5457 /* we've already done css_get(mc.to) */
5458 mc.moved_swap = 0;
5459 }
5460 memcg_oom_recover(from);
5461 memcg_oom_recover(to);
5462 wake_up_all(&mc.waitq);
5463 }
5464
5465 static void mem_cgroup_clear_mc(void)
5466 {
5467 struct mem_cgroup *from = mc.from;
5468
5469 /*
5470 * we must clear moving_task before waking up waiters at the end of
5471 * task migration.
5472 */
5473 mc.moving_task = NULL;
5474 __mem_cgroup_clear_mc();
5475 spin_lock(&mc.lock);
5476 mc.from = NULL;
5477 mc.to = NULL;
5478 spin_unlock(&mc.lock);
5479 mem_cgroup_end_move(from);
5480 }
5481
5482 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5483 struct cgroup_taskset *tset)
5484 {
5485 struct task_struct *p = cgroup_taskset_first(tset);
5486 int ret = 0;
5487 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5488 unsigned long move_charge_at_immigrate;
5489
5490 /*
5491 * We are now commited to this value whatever it is. Changes in this
5492 * tunable will only affect upcoming migrations, not the current one.
5493 * So we need to save it, and keep it going.
5494 */
5495 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
5496 if (move_charge_at_immigrate) {
5497 struct mm_struct *mm;
5498 struct mem_cgroup *from = mem_cgroup_from_task(p);
5499
5500 VM_BUG_ON(from == memcg);
5501
5502 mm = get_task_mm(p);
5503 if (!mm)
5504 return 0;
5505 /* We move charges only when we move a owner of the mm */
5506 if (mm->owner == p) {
5507 VM_BUG_ON(mc.from);
5508 VM_BUG_ON(mc.to);
5509 VM_BUG_ON(mc.precharge);
5510 VM_BUG_ON(mc.moved_charge);
5511 VM_BUG_ON(mc.moved_swap);
5512 mem_cgroup_start_move(from);
5513 spin_lock(&mc.lock);
5514 mc.from = from;
5515 mc.to = memcg;
5516 mc.immigrate_flags = move_charge_at_immigrate;
5517 spin_unlock(&mc.lock);
5518 /* We set mc.moving_task later */
5519
5520 ret = mem_cgroup_precharge_mc(mm);
5521 if (ret)
5522 mem_cgroup_clear_mc();
5523 }
5524 mmput(mm);
5525 }
5526 return ret;
5527 }
5528
5529 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5530 struct cgroup_taskset *tset)
5531 {
5532 mem_cgroup_clear_mc();
5533 }
5534
5535 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5536 unsigned long addr, unsigned long end,
5537 struct mm_walk *walk)
5538 {
5539 int ret = 0;
5540 struct vm_area_struct *vma = walk->private;
5541 pte_t *pte;
5542 spinlock_t *ptl;
5543 enum mc_target_type target_type;
5544 union mc_target target;
5545 struct page *page;
5546 struct page_cgroup *pc;
5547
5548 /*
5549 * We don't take compound_lock() here but no race with splitting thp
5550 * happens because:
5551 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5552 * under splitting, which means there's no concurrent thp split,
5553 * - if another thread runs into split_huge_page() just after we
5554 * entered this if-block, the thread must wait for page table lock
5555 * to be unlocked in __split_huge_page_splitting(), where the main
5556 * part of thp split is not executed yet.
5557 */
5558 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5559 if (mc.precharge < HPAGE_PMD_NR) {
5560 spin_unlock(ptl);
5561 return 0;
5562 }
5563 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5564 if (target_type == MC_TARGET_PAGE) {
5565 page = target.page;
5566 if (!isolate_lru_page(page)) {
5567 pc = lookup_page_cgroup(page);
5568 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5569 pc, mc.from, mc.to)) {
5570 mc.precharge -= HPAGE_PMD_NR;
5571 mc.moved_charge += HPAGE_PMD_NR;
5572 }
5573 putback_lru_page(page);
5574 }
5575 put_page(page);
5576 }
5577 spin_unlock(ptl);
5578 return 0;
5579 }
5580
5581 if (pmd_trans_unstable(pmd))
5582 return 0;
5583 retry:
5584 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5585 for (; addr != end; addr += PAGE_SIZE) {
5586 pte_t ptent = *(pte++);
5587 swp_entry_t ent;
5588
5589 if (!mc.precharge)
5590 break;
5591
5592 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5593 case MC_TARGET_PAGE:
5594 page = target.page;
5595 if (isolate_lru_page(page))
5596 goto put;
5597 pc = lookup_page_cgroup(page);
5598 if (!mem_cgroup_move_account(page, 1, pc,
5599 mc.from, mc.to)) {
5600 mc.precharge--;
5601 /* we uncharge from mc.from later. */
5602 mc.moved_charge++;
5603 }
5604 putback_lru_page(page);
5605 put: /* get_mctgt_type() gets the page */
5606 put_page(page);
5607 break;
5608 case MC_TARGET_SWAP:
5609 ent = target.ent;
5610 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5611 mc.precharge--;
5612 /* we fixup refcnts and charges later. */
5613 mc.moved_swap++;
5614 }
5615 break;
5616 default:
5617 break;
5618 }
5619 }
5620 pte_unmap_unlock(pte - 1, ptl);
5621 cond_resched();
5622
5623 if (addr != end) {
5624 /*
5625 * We have consumed all precharges we got in can_attach().
5626 * We try charge one by one, but don't do any additional
5627 * charges to mc.to if we have failed in charge once in attach()
5628 * phase.
5629 */
5630 ret = mem_cgroup_do_precharge(1);
5631 if (!ret)
5632 goto retry;
5633 }
5634
5635 return ret;
5636 }
5637
5638 static void mem_cgroup_move_charge(struct mm_struct *mm)
5639 {
5640 struct vm_area_struct *vma;
5641
5642 lru_add_drain_all();
5643 retry:
5644 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5645 /*
5646 * Someone who are holding the mmap_sem might be waiting in
5647 * waitq. So we cancel all extra charges, wake up all waiters,
5648 * and retry. Because we cancel precharges, we might not be able
5649 * to move enough charges, but moving charge is a best-effort
5650 * feature anyway, so it wouldn't be a big problem.
5651 */
5652 __mem_cgroup_clear_mc();
5653 cond_resched();
5654 goto retry;
5655 }
5656 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5657 int ret;
5658 struct mm_walk mem_cgroup_move_charge_walk = {
5659 .pmd_entry = mem_cgroup_move_charge_pte_range,
5660 .mm = mm,
5661 .private = vma,
5662 };
5663 if (is_vm_hugetlb_page(vma))
5664 continue;
5665 ret = walk_page_range(vma->vm_start, vma->vm_end,
5666 &mem_cgroup_move_charge_walk);
5667 if (ret)
5668 /*
5669 * means we have consumed all precharges and failed in
5670 * doing additional charge. Just abandon here.
5671 */
5672 break;
5673 }
5674 up_read(&mm->mmap_sem);
5675 }
5676
5677 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5678 struct cgroup_taskset *tset)
5679 {
5680 struct task_struct *p = cgroup_taskset_first(tset);
5681 struct mm_struct *mm = get_task_mm(p);
5682
5683 if (mm) {
5684 if (mc.to)
5685 mem_cgroup_move_charge(mm);
5686 mmput(mm);
5687 }
5688 if (mc.to)
5689 mem_cgroup_clear_mc();
5690 }
5691 #else /* !CONFIG_MMU */
5692 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5693 struct cgroup_taskset *tset)
5694 {
5695 return 0;
5696 }
5697 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5698 struct cgroup_taskset *tset)
5699 {
5700 }
5701 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5702 struct cgroup_taskset *tset)
5703 {
5704 }
5705 #endif
5706
5707 /*
5708 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5709 * to verify whether we're attached to the default hierarchy on each mount
5710 * attempt.
5711 */
5712 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5713 {
5714 /*
5715 * use_hierarchy is forced on the default hierarchy. cgroup core
5716 * guarantees that @root doesn't have any children, so turning it
5717 * on for the root memcg is enough.
5718 */
5719 if (cgroup_on_dfl(root_css->cgroup))
5720 mem_cgroup_from_css(root_css)->use_hierarchy = true;
5721 }
5722
5723 struct cgroup_subsys memory_cgrp_subsys = {
5724 .css_alloc = mem_cgroup_css_alloc,
5725 .css_online = mem_cgroup_css_online,
5726 .css_offline = mem_cgroup_css_offline,
5727 .css_free = mem_cgroup_css_free,
5728 .css_reset = mem_cgroup_css_reset,
5729 .can_attach = mem_cgroup_can_attach,
5730 .cancel_attach = mem_cgroup_cancel_attach,
5731 .attach = mem_cgroup_move_task,
5732 .bind = mem_cgroup_bind,
5733 .legacy_cftypes = mem_cgroup_files,
5734 .early_init = 0,
5735 };
5736
5737 #ifdef CONFIG_MEMCG_SWAP
5738 static int __init enable_swap_account(char *s)
5739 {
5740 if (!strcmp(s, "1"))
5741 really_do_swap_account = 1;
5742 else if (!strcmp(s, "0"))
5743 really_do_swap_account = 0;
5744 return 1;
5745 }
5746 __setup("swapaccount=", enable_swap_account);
5747
5748 static void __init memsw_file_init(void)
5749 {
5750 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5751 memsw_cgroup_files));
5752 }
5753
5754 static void __init enable_swap_cgroup(void)
5755 {
5756 if (!mem_cgroup_disabled() && really_do_swap_account) {
5757 do_swap_account = 1;
5758 memsw_file_init();
5759 }
5760 }
5761
5762 #else
5763 static void __init enable_swap_cgroup(void)
5764 {
5765 }
5766 #endif
5767
5768 #ifdef CONFIG_MEMCG_SWAP
5769 /**
5770 * mem_cgroup_swapout - transfer a memsw charge to swap
5771 * @page: page whose memsw charge to transfer
5772 * @entry: swap entry to move the charge to
5773 *
5774 * Transfer the memsw charge of @page to @entry.
5775 */
5776 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5777 {
5778 struct page_cgroup *pc;
5779 unsigned short oldid;
5780
5781 VM_BUG_ON_PAGE(PageLRU(page), page);
5782 VM_BUG_ON_PAGE(page_count(page), page);
5783
5784 if (!do_swap_account)
5785 return;
5786
5787 pc = lookup_page_cgroup(page);
5788
5789 /* Readahead page, never charged */
5790 if (!PageCgroupUsed(pc))
5791 return;
5792
5793 VM_BUG_ON_PAGE(!(pc->flags & PCG_MEMSW), page);
5794
5795 oldid = swap_cgroup_record(entry, mem_cgroup_id(pc->mem_cgroup));
5796 VM_BUG_ON_PAGE(oldid, page);
5797
5798 pc->flags &= ~PCG_MEMSW;
5799 css_get(&pc->mem_cgroup->css);
5800 mem_cgroup_swap_statistics(pc->mem_cgroup, true);
5801 }
5802
5803 /**
5804 * mem_cgroup_uncharge_swap - uncharge a swap entry
5805 * @entry: swap entry to uncharge
5806 *
5807 * Drop the memsw charge associated with @entry.
5808 */
5809 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5810 {
5811 struct mem_cgroup *memcg;
5812 unsigned short id;
5813
5814 if (!do_swap_account)
5815 return;
5816
5817 id = swap_cgroup_record(entry, 0);
5818 rcu_read_lock();
5819 memcg = mem_cgroup_lookup(id);
5820 if (memcg) {
5821 if (!mem_cgroup_is_root(memcg))
5822 page_counter_uncharge(&memcg->memsw, 1);
5823 mem_cgroup_swap_statistics(memcg, false);
5824 css_put(&memcg->css);
5825 }
5826 rcu_read_unlock();
5827 }
5828 #endif
5829
5830 /**
5831 * mem_cgroup_try_charge - try charging a page
5832 * @page: page to charge
5833 * @mm: mm context of the victim
5834 * @gfp_mask: reclaim mode
5835 * @memcgp: charged memcg return
5836 *
5837 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5838 * pages according to @gfp_mask if necessary.
5839 *
5840 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5841 * Otherwise, an error code is returned.
5842 *
5843 * After page->mapping has been set up, the caller must finalize the
5844 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5845 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5846 */
5847 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5848 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5849 {
5850 struct mem_cgroup *memcg = NULL;
5851 unsigned int nr_pages = 1;
5852 int ret = 0;
5853
5854 if (mem_cgroup_disabled())
5855 goto out;
5856
5857 if (PageSwapCache(page)) {
5858 struct page_cgroup *pc = lookup_page_cgroup(page);
5859 /*
5860 * Every swap fault against a single page tries to charge the
5861 * page, bail as early as possible. shmem_unuse() encounters
5862 * already charged pages, too. The USED bit is protected by
5863 * the page lock, which serializes swap cache removal, which
5864 * in turn serializes uncharging.
5865 */
5866 if (PageCgroupUsed(pc))
5867 goto out;
5868 }
5869
5870 if (PageTransHuge(page)) {
5871 nr_pages <<= compound_order(page);
5872 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5873 }
5874
5875 if (do_swap_account && PageSwapCache(page))
5876 memcg = try_get_mem_cgroup_from_page(page);
5877 if (!memcg)
5878 memcg = get_mem_cgroup_from_mm(mm);
5879
5880 ret = try_charge(memcg, gfp_mask, nr_pages);
5881
5882 css_put(&memcg->css);
5883
5884 if (ret == -EINTR) {
5885 memcg = root_mem_cgroup;
5886 ret = 0;
5887 }
5888 out:
5889 *memcgp = memcg;
5890 return ret;
5891 }
5892
5893 /**
5894 * mem_cgroup_commit_charge - commit a page charge
5895 * @page: page to charge
5896 * @memcg: memcg to charge the page to
5897 * @lrucare: page might be on LRU already
5898 *
5899 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5900 * after page->mapping has been set up. This must happen atomically
5901 * as part of the page instantiation, i.e. under the page table lock
5902 * for anonymous pages, under the page lock for page and swap cache.
5903 *
5904 * In addition, the page must not be on the LRU during the commit, to
5905 * prevent racing with task migration. If it might be, use @lrucare.
5906 *
5907 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5908 */
5909 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5910 bool lrucare)
5911 {
5912 unsigned int nr_pages = 1;
5913
5914 VM_BUG_ON_PAGE(!page->mapping, page);
5915 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5916
5917 if (mem_cgroup_disabled())
5918 return;
5919 /*
5920 * Swap faults will attempt to charge the same page multiple
5921 * times. But reuse_swap_page() might have removed the page
5922 * from swapcache already, so we can't check PageSwapCache().
5923 */
5924 if (!memcg)
5925 return;
5926
5927 commit_charge(page, memcg, lrucare);
5928
5929 if (PageTransHuge(page)) {
5930 nr_pages <<= compound_order(page);
5931 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5932 }
5933
5934 local_irq_disable();
5935 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5936 memcg_check_events(memcg, page);
5937 local_irq_enable();
5938
5939 if (do_swap_account && PageSwapCache(page)) {
5940 swp_entry_t entry = { .val = page_private(page) };
5941 /*
5942 * The swap entry might not get freed for a long time,
5943 * let's not wait for it. The page already received a
5944 * memory+swap charge, drop the swap entry duplicate.
5945 */
5946 mem_cgroup_uncharge_swap(entry);
5947 }
5948 }
5949
5950 /**
5951 * mem_cgroup_cancel_charge - cancel a page charge
5952 * @page: page to charge
5953 * @memcg: memcg to charge the page to
5954 *
5955 * Cancel a charge transaction started by mem_cgroup_try_charge().
5956 */
5957 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5958 {
5959 unsigned int nr_pages = 1;
5960
5961 if (mem_cgroup_disabled())
5962 return;
5963 /*
5964 * Swap faults will attempt to charge the same page multiple
5965 * times. But reuse_swap_page() might have removed the page
5966 * from swapcache already, so we can't check PageSwapCache().
5967 */
5968 if (!memcg)
5969 return;
5970
5971 if (PageTransHuge(page)) {
5972 nr_pages <<= compound_order(page);
5973 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5974 }
5975
5976 cancel_charge(memcg, nr_pages);
5977 }
5978
5979 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5980 unsigned long nr_mem, unsigned long nr_memsw,
5981 unsigned long nr_anon, unsigned long nr_file,
5982 unsigned long nr_huge, struct page *dummy_page)
5983 {
5984 unsigned long flags;
5985
5986 if (!mem_cgroup_is_root(memcg)) {
5987 if (nr_mem)
5988 page_counter_uncharge(&memcg->memory, nr_mem);
5989 if (nr_memsw)
5990 page_counter_uncharge(&memcg->memsw, nr_memsw);
5991 memcg_oom_recover(memcg);
5992 }
5993
5994 local_irq_save(flags);
5995 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5996 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5997 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5998 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5999 __this_cpu_add(memcg->stat->nr_page_events, nr_anon + nr_file);
6000 memcg_check_events(memcg, dummy_page);
6001 local_irq_restore(flags);
6002
6003 if (!mem_cgroup_is_root(memcg))
6004 css_put_many(&memcg->css, max(nr_mem, nr_memsw));
6005 }
6006
6007 static void uncharge_list(struct list_head *page_list)
6008 {
6009 struct mem_cgroup *memcg = NULL;
6010 unsigned long nr_memsw = 0;
6011 unsigned long nr_anon = 0;
6012 unsigned long nr_file = 0;
6013 unsigned long nr_huge = 0;
6014 unsigned long pgpgout = 0;
6015 unsigned long nr_mem = 0;
6016 struct list_head *next;
6017 struct page *page;
6018
6019 next = page_list->next;
6020 do {
6021 unsigned int nr_pages = 1;
6022 struct page_cgroup *pc;
6023
6024 page = list_entry(next, struct page, lru);
6025 next = page->lru.next;
6026
6027 VM_BUG_ON_PAGE(PageLRU(page), page);
6028 VM_BUG_ON_PAGE(page_count(page), page);
6029
6030 pc = lookup_page_cgroup(page);
6031 if (!PageCgroupUsed(pc))
6032 continue;
6033
6034 /*
6035 * Nobody should be changing or seriously looking at
6036 * pc->mem_cgroup and pc->flags at this point, we have
6037 * fully exclusive access to the page.
6038 */
6039
6040 if (memcg != pc->mem_cgroup) {
6041 if (memcg) {
6042 uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
6043 nr_anon, nr_file, nr_huge, page);
6044 pgpgout = nr_mem = nr_memsw = 0;
6045 nr_anon = nr_file = nr_huge = 0;
6046 }
6047 memcg = pc->mem_cgroup;
6048 }
6049
6050 if (PageTransHuge(page)) {
6051 nr_pages <<= compound_order(page);
6052 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6053 nr_huge += nr_pages;
6054 }
6055
6056 if (PageAnon(page))
6057 nr_anon += nr_pages;
6058 else
6059 nr_file += nr_pages;
6060
6061 if (pc->flags & PCG_MEM)
6062 nr_mem += nr_pages;
6063 if (pc->flags & PCG_MEMSW)
6064 nr_memsw += nr_pages;
6065 pc->flags = 0;
6066
6067 pgpgout++;
6068 } while (next != page_list);
6069
6070 if (memcg)
6071 uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
6072 nr_anon, nr_file, nr_huge, page);
6073 }
6074
6075 /**
6076 * mem_cgroup_uncharge - uncharge a page
6077 * @page: page to uncharge
6078 *
6079 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6080 * mem_cgroup_commit_charge().
6081 */
6082 void mem_cgroup_uncharge(struct page *page)
6083 {
6084 struct page_cgroup *pc;
6085
6086 if (mem_cgroup_disabled())
6087 return;
6088
6089 /* Don't touch page->lru of any random page, pre-check: */
6090 pc = lookup_page_cgroup(page);
6091 if (!PageCgroupUsed(pc))
6092 return;
6093
6094 INIT_LIST_HEAD(&page->lru);
6095 uncharge_list(&page->lru);
6096 }
6097
6098 /**
6099 * mem_cgroup_uncharge_list - uncharge a list of page
6100 * @page_list: list of pages to uncharge
6101 *
6102 * Uncharge a list of pages previously charged with
6103 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6104 */
6105 void mem_cgroup_uncharge_list(struct list_head *page_list)
6106 {
6107 if (mem_cgroup_disabled())
6108 return;
6109
6110 if (!list_empty(page_list))
6111 uncharge_list(page_list);
6112 }
6113
6114 /**
6115 * mem_cgroup_migrate - migrate a charge to another page
6116 * @oldpage: currently charged page
6117 * @newpage: page to transfer the charge to
6118 * @lrucare: both pages might be on the LRU already
6119 *
6120 * Migrate the charge from @oldpage to @newpage.
6121 *
6122 * Both pages must be locked, @newpage->mapping must be set up.
6123 */
6124 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
6125 bool lrucare)
6126 {
6127 struct page_cgroup *pc;
6128 int isolated;
6129
6130 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6131 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6132 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
6133 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
6134 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6135 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6136 newpage);
6137
6138 if (mem_cgroup_disabled())
6139 return;
6140
6141 /* Page cache replacement: new page already charged? */
6142 pc = lookup_page_cgroup(newpage);
6143 if (PageCgroupUsed(pc))
6144 return;
6145
6146 /*
6147 * Swapcache readahead pages can get migrated before being
6148 * charged, and migration from compaction can happen to an
6149 * uncharged page when the PFN walker finds a page that
6150 * reclaim just put back on the LRU but has not released yet.
6151 */
6152 pc = lookup_page_cgroup(oldpage);
6153 if (!PageCgroupUsed(pc))
6154 return;
6155
6156 VM_BUG_ON_PAGE(!(pc->flags & PCG_MEM), oldpage);
6157 VM_BUG_ON_PAGE(do_swap_account && !(pc->flags & PCG_MEMSW), oldpage);
6158
6159 if (lrucare)
6160 lock_page_lru(oldpage, &isolated);
6161
6162 pc->flags = 0;
6163
6164 if (lrucare)
6165 unlock_page_lru(oldpage, isolated);
6166
6167 commit_charge(newpage, pc->mem_cgroup, lrucare);
6168 }
6169
6170 /*
6171 * subsys_initcall() for memory controller.
6172 *
6173 * Some parts like hotcpu_notifier() have to be initialized from this context
6174 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6175 * everything that doesn't depend on a specific mem_cgroup structure should
6176 * be initialized from here.
6177 */
6178 static int __init mem_cgroup_init(void)
6179 {
6180 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6181 enable_swap_cgroup();
6182 mem_cgroup_soft_limit_tree_init();
6183 memcg_stock_init();
6184 return 0;
6185 }
6186 subsys_initcall(mem_cgroup_init);
This page took 0.155221 seconds and 6 git commands to generate.