memcg: zap kmem_account_flags
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include "internal.h"
60 #include <net/sock.h>
61 #include <net/ip.h>
62 #include <net/tcp_memcontrol.h>
63 #include "slab.h"
64
65 #include <asm/uaccess.h>
66
67 #include <trace/events/vmscan.h>
68
69 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70 EXPORT_SYMBOL(memory_cgrp_subsys);
71
72 #define MEM_CGROUP_RECLAIM_RETRIES 5
73 static struct mem_cgroup *root_mem_cgroup __read_mostly;
74
75 #ifdef CONFIG_MEMCG_SWAP
76 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77 int do_swap_account __read_mostly;
78
79 /* for remember boot option*/
80 #ifdef CONFIG_MEMCG_SWAP_ENABLED
81 static int really_do_swap_account __initdata = 1;
82 #else
83 static int really_do_swap_account __initdata;
84 #endif
85
86 #else
87 #define do_swap_account 0
88 #endif
89
90
91 static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
94 "rss_huge",
95 "mapped_file",
96 "writeback",
97 "swap",
98 };
99
100 enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
105 MEM_CGROUP_EVENTS_NSTATS,
106 };
107
108 static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113 };
114
115 static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121 };
122
123 /*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129 enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
131 MEM_CGROUP_TARGET_SOFTLIMIT,
132 MEM_CGROUP_TARGET_NUMAINFO,
133 MEM_CGROUP_NTARGETS,
134 };
135 #define THRESHOLDS_EVENTS_TARGET 128
136 #define SOFTLIMIT_EVENTS_TARGET 1024
137 #define NUMAINFO_EVENTS_TARGET 1024
138
139 struct mem_cgroup_stat_cpu {
140 long count[MEM_CGROUP_STAT_NSTATS];
141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142 unsigned long nr_page_events;
143 unsigned long targets[MEM_CGROUP_NTARGETS];
144 };
145
146 struct reclaim_iter {
147 struct mem_cgroup *position;
148 /* scan generation, increased every round-trip */
149 unsigned int generation;
150 };
151
152 /*
153 * per-zone information in memory controller.
154 */
155 struct mem_cgroup_per_zone {
156 struct lruvec lruvec;
157 unsigned long lru_size[NR_LRU_LISTS];
158
159 struct reclaim_iter iter[DEF_PRIORITY + 1];
160
161 struct rb_node tree_node; /* RB tree node */
162 unsigned long usage_in_excess;/* Set to the value by which */
163 /* the soft limit is exceeded*/
164 bool on_tree;
165 struct mem_cgroup *memcg; /* Back pointer, we cannot */
166 /* use container_of */
167 };
168
169 struct mem_cgroup_per_node {
170 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
171 };
172
173 /*
174 * Cgroups above their limits are maintained in a RB-Tree, independent of
175 * their hierarchy representation
176 */
177
178 struct mem_cgroup_tree_per_zone {
179 struct rb_root rb_root;
180 spinlock_t lock;
181 };
182
183 struct mem_cgroup_tree_per_node {
184 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
185 };
186
187 struct mem_cgroup_tree {
188 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
189 };
190
191 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
192
193 struct mem_cgroup_threshold {
194 struct eventfd_ctx *eventfd;
195 unsigned long threshold;
196 };
197
198 /* For threshold */
199 struct mem_cgroup_threshold_ary {
200 /* An array index points to threshold just below or equal to usage. */
201 int current_threshold;
202 /* Size of entries[] */
203 unsigned int size;
204 /* Array of thresholds */
205 struct mem_cgroup_threshold entries[0];
206 };
207
208 struct mem_cgroup_thresholds {
209 /* Primary thresholds array */
210 struct mem_cgroup_threshold_ary *primary;
211 /*
212 * Spare threshold array.
213 * This is needed to make mem_cgroup_unregister_event() "never fail".
214 * It must be able to store at least primary->size - 1 entries.
215 */
216 struct mem_cgroup_threshold_ary *spare;
217 };
218
219 /* for OOM */
220 struct mem_cgroup_eventfd_list {
221 struct list_head list;
222 struct eventfd_ctx *eventfd;
223 };
224
225 /*
226 * cgroup_event represents events which userspace want to receive.
227 */
228 struct mem_cgroup_event {
229 /*
230 * memcg which the event belongs to.
231 */
232 struct mem_cgroup *memcg;
233 /*
234 * eventfd to signal userspace about the event.
235 */
236 struct eventfd_ctx *eventfd;
237 /*
238 * Each of these stored in a list by the cgroup.
239 */
240 struct list_head list;
241 /*
242 * register_event() callback will be used to add new userspace
243 * waiter for changes related to this event. Use eventfd_signal()
244 * on eventfd to send notification to userspace.
245 */
246 int (*register_event)(struct mem_cgroup *memcg,
247 struct eventfd_ctx *eventfd, const char *args);
248 /*
249 * unregister_event() callback will be called when userspace closes
250 * the eventfd or on cgroup removing. This callback must be set,
251 * if you want provide notification functionality.
252 */
253 void (*unregister_event)(struct mem_cgroup *memcg,
254 struct eventfd_ctx *eventfd);
255 /*
256 * All fields below needed to unregister event when
257 * userspace closes eventfd.
258 */
259 poll_table pt;
260 wait_queue_head_t *wqh;
261 wait_queue_t wait;
262 struct work_struct remove;
263 };
264
265 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
266 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
267
268 /*
269 * The memory controller data structure. The memory controller controls both
270 * page cache and RSS per cgroup. We would eventually like to provide
271 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
272 * to help the administrator determine what knobs to tune.
273 *
274 * TODO: Add a water mark for the memory controller. Reclaim will begin when
275 * we hit the water mark. May be even add a low water mark, such that
276 * no reclaim occurs from a cgroup at it's low water mark, this is
277 * a feature that will be implemented much later in the future.
278 */
279 struct mem_cgroup {
280 struct cgroup_subsys_state css;
281
282 /* Accounted resources */
283 struct page_counter memory;
284 struct page_counter memsw;
285 struct page_counter kmem;
286
287 unsigned long soft_limit;
288
289 /* vmpressure notifications */
290 struct vmpressure vmpressure;
291
292 /* css_online() has been completed */
293 int initialized;
294
295 /*
296 * Should the accounting and control be hierarchical, per subtree?
297 */
298 bool use_hierarchy;
299
300 bool oom_lock;
301 atomic_t under_oom;
302 atomic_t oom_wakeups;
303
304 int swappiness;
305 /* OOM-Killer disable */
306 int oom_kill_disable;
307
308 /* protect arrays of thresholds */
309 struct mutex thresholds_lock;
310
311 /* thresholds for memory usage. RCU-protected */
312 struct mem_cgroup_thresholds thresholds;
313
314 /* thresholds for mem+swap usage. RCU-protected */
315 struct mem_cgroup_thresholds memsw_thresholds;
316
317 /* For oom notifier event fd */
318 struct list_head oom_notify;
319
320 /*
321 * Should we move charges of a task when a task is moved into this
322 * mem_cgroup ? And what type of charges should we move ?
323 */
324 unsigned long move_charge_at_immigrate;
325 /*
326 * set > 0 if pages under this cgroup are moving to other cgroup.
327 */
328 atomic_t moving_account;
329 /* taken only while moving_account > 0 */
330 spinlock_t move_lock;
331 /*
332 * percpu counter.
333 */
334 struct mem_cgroup_stat_cpu __percpu *stat;
335 /*
336 * used when a cpu is offlined or other synchronizations
337 * See mem_cgroup_read_stat().
338 */
339 struct mem_cgroup_stat_cpu nocpu_base;
340 spinlock_t pcp_counter_lock;
341
342 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
343 struct cg_proto tcp_mem;
344 #endif
345 #if defined(CONFIG_MEMCG_KMEM)
346 /* analogous to slab_common's slab_caches list, but per-memcg;
347 * protected by memcg_slab_mutex */
348 struct list_head memcg_slab_caches;
349 /* Index in the kmem_cache->memcg_params->memcg_caches array */
350 int kmemcg_id;
351 #endif
352
353 int last_scanned_node;
354 #if MAX_NUMNODES > 1
355 nodemask_t scan_nodes;
356 atomic_t numainfo_events;
357 atomic_t numainfo_updating;
358 #endif
359
360 /* List of events which userspace want to receive */
361 struct list_head event_list;
362 spinlock_t event_list_lock;
363
364 struct mem_cgroup_per_node *nodeinfo[0];
365 /* WARNING: nodeinfo must be the last member here */
366 };
367
368 #ifdef CONFIG_MEMCG_KMEM
369 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
370 {
371 return memcg->kmemcg_id >= 0;
372 }
373 #endif
374
375 /* Stuffs for move charges at task migration. */
376 /*
377 * Types of charges to be moved. "move_charge_at_immitgrate" and
378 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
379 */
380 enum move_type {
381 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
382 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
383 NR_MOVE_TYPE,
384 };
385
386 /* "mc" and its members are protected by cgroup_mutex */
387 static struct move_charge_struct {
388 spinlock_t lock; /* for from, to */
389 struct mem_cgroup *from;
390 struct mem_cgroup *to;
391 unsigned long immigrate_flags;
392 unsigned long precharge;
393 unsigned long moved_charge;
394 unsigned long moved_swap;
395 struct task_struct *moving_task; /* a task moving charges */
396 wait_queue_head_t waitq; /* a waitq for other context */
397 } mc = {
398 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
399 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
400 };
401
402 static bool move_anon(void)
403 {
404 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
405 }
406
407 static bool move_file(void)
408 {
409 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
410 }
411
412 /*
413 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
414 * limit reclaim to prevent infinite loops, if they ever occur.
415 */
416 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
417 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
418
419 enum charge_type {
420 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
421 MEM_CGROUP_CHARGE_TYPE_ANON,
422 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
423 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
424 NR_CHARGE_TYPE,
425 };
426
427 /* for encoding cft->private value on file */
428 enum res_type {
429 _MEM,
430 _MEMSWAP,
431 _OOM_TYPE,
432 _KMEM,
433 };
434
435 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
436 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
437 #define MEMFILE_ATTR(val) ((val) & 0xffff)
438 /* Used for OOM nofiier */
439 #define OOM_CONTROL (0)
440
441 /*
442 * The memcg_create_mutex will be held whenever a new cgroup is created.
443 * As a consequence, any change that needs to protect against new child cgroups
444 * appearing has to hold it as well.
445 */
446 static DEFINE_MUTEX(memcg_create_mutex);
447
448 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
449 {
450 return s ? container_of(s, struct mem_cgroup, css) : NULL;
451 }
452
453 /* Some nice accessors for the vmpressure. */
454 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
455 {
456 if (!memcg)
457 memcg = root_mem_cgroup;
458 return &memcg->vmpressure;
459 }
460
461 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
462 {
463 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
464 }
465
466 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
467 {
468 return (memcg == root_mem_cgroup);
469 }
470
471 /*
472 * We restrict the id in the range of [1, 65535], so it can fit into
473 * an unsigned short.
474 */
475 #define MEM_CGROUP_ID_MAX USHRT_MAX
476
477 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
478 {
479 return memcg->css.id;
480 }
481
482 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
483 {
484 struct cgroup_subsys_state *css;
485
486 css = css_from_id(id, &memory_cgrp_subsys);
487 return mem_cgroup_from_css(css);
488 }
489
490 /* Writing them here to avoid exposing memcg's inner layout */
491 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
492
493 void sock_update_memcg(struct sock *sk)
494 {
495 if (mem_cgroup_sockets_enabled) {
496 struct mem_cgroup *memcg;
497 struct cg_proto *cg_proto;
498
499 BUG_ON(!sk->sk_prot->proto_cgroup);
500
501 /* Socket cloning can throw us here with sk_cgrp already
502 * filled. It won't however, necessarily happen from
503 * process context. So the test for root memcg given
504 * the current task's memcg won't help us in this case.
505 *
506 * Respecting the original socket's memcg is a better
507 * decision in this case.
508 */
509 if (sk->sk_cgrp) {
510 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
511 css_get(&sk->sk_cgrp->memcg->css);
512 return;
513 }
514
515 rcu_read_lock();
516 memcg = mem_cgroup_from_task(current);
517 cg_proto = sk->sk_prot->proto_cgroup(memcg);
518 if (!mem_cgroup_is_root(memcg) &&
519 memcg_proto_active(cg_proto) &&
520 css_tryget_online(&memcg->css)) {
521 sk->sk_cgrp = cg_proto;
522 }
523 rcu_read_unlock();
524 }
525 }
526 EXPORT_SYMBOL(sock_update_memcg);
527
528 void sock_release_memcg(struct sock *sk)
529 {
530 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
531 struct mem_cgroup *memcg;
532 WARN_ON(!sk->sk_cgrp->memcg);
533 memcg = sk->sk_cgrp->memcg;
534 css_put(&sk->sk_cgrp->memcg->css);
535 }
536 }
537
538 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
539 {
540 if (!memcg || mem_cgroup_is_root(memcg))
541 return NULL;
542
543 return &memcg->tcp_mem;
544 }
545 EXPORT_SYMBOL(tcp_proto_cgroup);
546
547 static void disarm_sock_keys(struct mem_cgroup *memcg)
548 {
549 if (!memcg_proto_activated(&memcg->tcp_mem))
550 return;
551 static_key_slow_dec(&memcg_socket_limit_enabled);
552 }
553 #else
554 static void disarm_sock_keys(struct mem_cgroup *memcg)
555 {
556 }
557 #endif
558
559 #ifdef CONFIG_MEMCG_KMEM
560 /*
561 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
562 * The main reason for not using cgroup id for this:
563 * this works better in sparse environments, where we have a lot of memcgs,
564 * but only a few kmem-limited. Or also, if we have, for instance, 200
565 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
566 * 200 entry array for that.
567 *
568 * The current size of the caches array is stored in
569 * memcg_limited_groups_array_size. It will double each time we have to
570 * increase it.
571 */
572 static DEFINE_IDA(kmem_limited_groups);
573 int memcg_limited_groups_array_size;
574
575 /*
576 * MIN_SIZE is different than 1, because we would like to avoid going through
577 * the alloc/free process all the time. In a small machine, 4 kmem-limited
578 * cgroups is a reasonable guess. In the future, it could be a parameter or
579 * tunable, but that is strictly not necessary.
580 *
581 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
582 * this constant directly from cgroup, but it is understandable that this is
583 * better kept as an internal representation in cgroup.c. In any case, the
584 * cgrp_id space is not getting any smaller, and we don't have to necessarily
585 * increase ours as well if it increases.
586 */
587 #define MEMCG_CACHES_MIN_SIZE 4
588 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
589
590 /*
591 * A lot of the calls to the cache allocation functions are expected to be
592 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
593 * conditional to this static branch, we'll have to allow modules that does
594 * kmem_cache_alloc and the such to see this symbol as well
595 */
596 struct static_key memcg_kmem_enabled_key;
597 EXPORT_SYMBOL(memcg_kmem_enabled_key);
598
599 static void memcg_free_cache_id(int id);
600
601 static void disarm_kmem_keys(struct mem_cgroup *memcg)
602 {
603 if (memcg_kmem_is_active(memcg)) {
604 static_key_slow_dec(&memcg_kmem_enabled_key);
605 memcg_free_cache_id(memcg->kmemcg_id);
606 }
607 /*
608 * This check can't live in kmem destruction function,
609 * since the charges will outlive the cgroup
610 */
611 WARN_ON(page_counter_read(&memcg->kmem));
612 }
613 #else
614 static void disarm_kmem_keys(struct mem_cgroup *memcg)
615 {
616 }
617 #endif /* CONFIG_MEMCG_KMEM */
618
619 static void disarm_static_keys(struct mem_cgroup *memcg)
620 {
621 disarm_sock_keys(memcg);
622 disarm_kmem_keys(memcg);
623 }
624
625 static struct mem_cgroup_per_zone *
626 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
627 {
628 int nid = zone_to_nid(zone);
629 int zid = zone_idx(zone);
630
631 return &memcg->nodeinfo[nid]->zoneinfo[zid];
632 }
633
634 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
635 {
636 return &memcg->css;
637 }
638
639 static struct mem_cgroup_per_zone *
640 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
641 {
642 int nid = page_to_nid(page);
643 int zid = page_zonenum(page);
644
645 return &memcg->nodeinfo[nid]->zoneinfo[zid];
646 }
647
648 static struct mem_cgroup_tree_per_zone *
649 soft_limit_tree_node_zone(int nid, int zid)
650 {
651 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
652 }
653
654 static struct mem_cgroup_tree_per_zone *
655 soft_limit_tree_from_page(struct page *page)
656 {
657 int nid = page_to_nid(page);
658 int zid = page_zonenum(page);
659
660 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
661 }
662
663 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
664 struct mem_cgroup_tree_per_zone *mctz,
665 unsigned long new_usage_in_excess)
666 {
667 struct rb_node **p = &mctz->rb_root.rb_node;
668 struct rb_node *parent = NULL;
669 struct mem_cgroup_per_zone *mz_node;
670
671 if (mz->on_tree)
672 return;
673
674 mz->usage_in_excess = new_usage_in_excess;
675 if (!mz->usage_in_excess)
676 return;
677 while (*p) {
678 parent = *p;
679 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
680 tree_node);
681 if (mz->usage_in_excess < mz_node->usage_in_excess)
682 p = &(*p)->rb_left;
683 /*
684 * We can't avoid mem cgroups that are over their soft
685 * limit by the same amount
686 */
687 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
688 p = &(*p)->rb_right;
689 }
690 rb_link_node(&mz->tree_node, parent, p);
691 rb_insert_color(&mz->tree_node, &mctz->rb_root);
692 mz->on_tree = true;
693 }
694
695 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
696 struct mem_cgroup_tree_per_zone *mctz)
697 {
698 if (!mz->on_tree)
699 return;
700 rb_erase(&mz->tree_node, &mctz->rb_root);
701 mz->on_tree = false;
702 }
703
704 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
705 struct mem_cgroup_tree_per_zone *mctz)
706 {
707 unsigned long flags;
708
709 spin_lock_irqsave(&mctz->lock, flags);
710 __mem_cgroup_remove_exceeded(mz, mctz);
711 spin_unlock_irqrestore(&mctz->lock, flags);
712 }
713
714 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
715 {
716 unsigned long nr_pages = page_counter_read(&memcg->memory);
717 unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
718 unsigned long excess = 0;
719
720 if (nr_pages > soft_limit)
721 excess = nr_pages - soft_limit;
722
723 return excess;
724 }
725
726 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
727 {
728 unsigned long excess;
729 struct mem_cgroup_per_zone *mz;
730 struct mem_cgroup_tree_per_zone *mctz;
731
732 mctz = soft_limit_tree_from_page(page);
733 /*
734 * Necessary to update all ancestors when hierarchy is used.
735 * because their event counter is not touched.
736 */
737 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
738 mz = mem_cgroup_page_zoneinfo(memcg, page);
739 excess = soft_limit_excess(memcg);
740 /*
741 * We have to update the tree if mz is on RB-tree or
742 * mem is over its softlimit.
743 */
744 if (excess || mz->on_tree) {
745 unsigned long flags;
746
747 spin_lock_irqsave(&mctz->lock, flags);
748 /* if on-tree, remove it */
749 if (mz->on_tree)
750 __mem_cgroup_remove_exceeded(mz, mctz);
751 /*
752 * Insert again. mz->usage_in_excess will be updated.
753 * If excess is 0, no tree ops.
754 */
755 __mem_cgroup_insert_exceeded(mz, mctz, excess);
756 spin_unlock_irqrestore(&mctz->lock, flags);
757 }
758 }
759 }
760
761 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
762 {
763 struct mem_cgroup_tree_per_zone *mctz;
764 struct mem_cgroup_per_zone *mz;
765 int nid, zid;
766
767 for_each_node(nid) {
768 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
769 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
770 mctz = soft_limit_tree_node_zone(nid, zid);
771 mem_cgroup_remove_exceeded(mz, mctz);
772 }
773 }
774 }
775
776 static struct mem_cgroup_per_zone *
777 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
778 {
779 struct rb_node *rightmost = NULL;
780 struct mem_cgroup_per_zone *mz;
781
782 retry:
783 mz = NULL;
784 rightmost = rb_last(&mctz->rb_root);
785 if (!rightmost)
786 goto done; /* Nothing to reclaim from */
787
788 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
789 /*
790 * Remove the node now but someone else can add it back,
791 * we will to add it back at the end of reclaim to its correct
792 * position in the tree.
793 */
794 __mem_cgroup_remove_exceeded(mz, mctz);
795 if (!soft_limit_excess(mz->memcg) ||
796 !css_tryget_online(&mz->memcg->css))
797 goto retry;
798 done:
799 return mz;
800 }
801
802 static struct mem_cgroup_per_zone *
803 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
804 {
805 struct mem_cgroup_per_zone *mz;
806
807 spin_lock_irq(&mctz->lock);
808 mz = __mem_cgroup_largest_soft_limit_node(mctz);
809 spin_unlock_irq(&mctz->lock);
810 return mz;
811 }
812
813 /*
814 * Implementation Note: reading percpu statistics for memcg.
815 *
816 * Both of vmstat[] and percpu_counter has threshold and do periodic
817 * synchronization to implement "quick" read. There are trade-off between
818 * reading cost and precision of value. Then, we may have a chance to implement
819 * a periodic synchronizion of counter in memcg's counter.
820 *
821 * But this _read() function is used for user interface now. The user accounts
822 * memory usage by memory cgroup and he _always_ requires exact value because
823 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
824 * have to visit all online cpus and make sum. So, for now, unnecessary
825 * synchronization is not implemented. (just implemented for cpu hotplug)
826 *
827 * If there are kernel internal actions which can make use of some not-exact
828 * value, and reading all cpu value can be performance bottleneck in some
829 * common workload, threashold and synchonization as vmstat[] should be
830 * implemented.
831 */
832 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
833 enum mem_cgroup_stat_index idx)
834 {
835 long val = 0;
836 int cpu;
837
838 get_online_cpus();
839 for_each_online_cpu(cpu)
840 val += per_cpu(memcg->stat->count[idx], cpu);
841 #ifdef CONFIG_HOTPLUG_CPU
842 spin_lock(&memcg->pcp_counter_lock);
843 val += memcg->nocpu_base.count[idx];
844 spin_unlock(&memcg->pcp_counter_lock);
845 #endif
846 put_online_cpus();
847 return val;
848 }
849
850 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
851 enum mem_cgroup_events_index idx)
852 {
853 unsigned long val = 0;
854 int cpu;
855
856 get_online_cpus();
857 for_each_online_cpu(cpu)
858 val += per_cpu(memcg->stat->events[idx], cpu);
859 #ifdef CONFIG_HOTPLUG_CPU
860 spin_lock(&memcg->pcp_counter_lock);
861 val += memcg->nocpu_base.events[idx];
862 spin_unlock(&memcg->pcp_counter_lock);
863 #endif
864 put_online_cpus();
865 return val;
866 }
867
868 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
869 struct page *page,
870 int nr_pages)
871 {
872 /*
873 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
874 * counted as CACHE even if it's on ANON LRU.
875 */
876 if (PageAnon(page))
877 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
878 nr_pages);
879 else
880 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
881 nr_pages);
882
883 if (PageTransHuge(page))
884 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
885 nr_pages);
886
887 /* pagein of a big page is an event. So, ignore page size */
888 if (nr_pages > 0)
889 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
890 else {
891 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
892 nr_pages = -nr_pages; /* for event */
893 }
894
895 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
896 }
897
898 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
899 {
900 struct mem_cgroup_per_zone *mz;
901
902 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
903 return mz->lru_size[lru];
904 }
905
906 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
907 int nid,
908 unsigned int lru_mask)
909 {
910 unsigned long nr = 0;
911 int zid;
912
913 VM_BUG_ON((unsigned)nid >= nr_node_ids);
914
915 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
916 struct mem_cgroup_per_zone *mz;
917 enum lru_list lru;
918
919 for_each_lru(lru) {
920 if (!(BIT(lru) & lru_mask))
921 continue;
922 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
923 nr += mz->lru_size[lru];
924 }
925 }
926 return nr;
927 }
928
929 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
930 unsigned int lru_mask)
931 {
932 unsigned long nr = 0;
933 int nid;
934
935 for_each_node_state(nid, N_MEMORY)
936 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
937 return nr;
938 }
939
940 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
941 enum mem_cgroup_events_target target)
942 {
943 unsigned long val, next;
944
945 val = __this_cpu_read(memcg->stat->nr_page_events);
946 next = __this_cpu_read(memcg->stat->targets[target]);
947 /* from time_after() in jiffies.h */
948 if ((long)next - (long)val < 0) {
949 switch (target) {
950 case MEM_CGROUP_TARGET_THRESH:
951 next = val + THRESHOLDS_EVENTS_TARGET;
952 break;
953 case MEM_CGROUP_TARGET_SOFTLIMIT:
954 next = val + SOFTLIMIT_EVENTS_TARGET;
955 break;
956 case MEM_CGROUP_TARGET_NUMAINFO:
957 next = val + NUMAINFO_EVENTS_TARGET;
958 break;
959 default:
960 break;
961 }
962 __this_cpu_write(memcg->stat->targets[target], next);
963 return true;
964 }
965 return false;
966 }
967
968 /*
969 * Check events in order.
970 *
971 */
972 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
973 {
974 /* threshold event is triggered in finer grain than soft limit */
975 if (unlikely(mem_cgroup_event_ratelimit(memcg,
976 MEM_CGROUP_TARGET_THRESH))) {
977 bool do_softlimit;
978 bool do_numainfo __maybe_unused;
979
980 do_softlimit = mem_cgroup_event_ratelimit(memcg,
981 MEM_CGROUP_TARGET_SOFTLIMIT);
982 #if MAX_NUMNODES > 1
983 do_numainfo = mem_cgroup_event_ratelimit(memcg,
984 MEM_CGROUP_TARGET_NUMAINFO);
985 #endif
986 mem_cgroup_threshold(memcg);
987 if (unlikely(do_softlimit))
988 mem_cgroup_update_tree(memcg, page);
989 #if MAX_NUMNODES > 1
990 if (unlikely(do_numainfo))
991 atomic_inc(&memcg->numainfo_events);
992 #endif
993 }
994 }
995
996 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
997 {
998 /*
999 * mm_update_next_owner() may clear mm->owner to NULL
1000 * if it races with swapoff, page migration, etc.
1001 * So this can be called with p == NULL.
1002 */
1003 if (unlikely(!p))
1004 return NULL;
1005
1006 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1007 }
1008
1009 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1010 {
1011 struct mem_cgroup *memcg = NULL;
1012
1013 rcu_read_lock();
1014 do {
1015 /*
1016 * Page cache insertions can happen withou an
1017 * actual mm context, e.g. during disk probing
1018 * on boot, loopback IO, acct() writes etc.
1019 */
1020 if (unlikely(!mm))
1021 memcg = root_mem_cgroup;
1022 else {
1023 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1024 if (unlikely(!memcg))
1025 memcg = root_mem_cgroup;
1026 }
1027 } while (!css_tryget_online(&memcg->css));
1028 rcu_read_unlock();
1029 return memcg;
1030 }
1031
1032 /**
1033 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1034 * @root: hierarchy root
1035 * @prev: previously returned memcg, NULL on first invocation
1036 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1037 *
1038 * Returns references to children of the hierarchy below @root, or
1039 * @root itself, or %NULL after a full round-trip.
1040 *
1041 * Caller must pass the return value in @prev on subsequent
1042 * invocations for reference counting, or use mem_cgroup_iter_break()
1043 * to cancel a hierarchy walk before the round-trip is complete.
1044 *
1045 * Reclaimers can specify a zone and a priority level in @reclaim to
1046 * divide up the memcgs in the hierarchy among all concurrent
1047 * reclaimers operating on the same zone and priority.
1048 */
1049 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1050 struct mem_cgroup *prev,
1051 struct mem_cgroup_reclaim_cookie *reclaim)
1052 {
1053 struct reclaim_iter *uninitialized_var(iter);
1054 struct cgroup_subsys_state *css = NULL;
1055 struct mem_cgroup *memcg = NULL;
1056 struct mem_cgroup *pos = NULL;
1057
1058 if (mem_cgroup_disabled())
1059 return NULL;
1060
1061 if (!root)
1062 root = root_mem_cgroup;
1063
1064 if (prev && !reclaim)
1065 pos = prev;
1066
1067 if (!root->use_hierarchy && root != root_mem_cgroup) {
1068 if (prev)
1069 goto out;
1070 return root;
1071 }
1072
1073 rcu_read_lock();
1074
1075 if (reclaim) {
1076 struct mem_cgroup_per_zone *mz;
1077
1078 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1079 iter = &mz->iter[reclaim->priority];
1080
1081 if (prev && reclaim->generation != iter->generation)
1082 goto out_unlock;
1083
1084 do {
1085 pos = ACCESS_ONCE(iter->position);
1086 /*
1087 * A racing update may change the position and
1088 * put the last reference, hence css_tryget(),
1089 * or retry to see the updated position.
1090 */
1091 } while (pos && !css_tryget(&pos->css));
1092 }
1093
1094 if (pos)
1095 css = &pos->css;
1096
1097 for (;;) {
1098 css = css_next_descendant_pre(css, &root->css);
1099 if (!css) {
1100 /*
1101 * Reclaimers share the hierarchy walk, and a
1102 * new one might jump in right at the end of
1103 * the hierarchy - make sure they see at least
1104 * one group and restart from the beginning.
1105 */
1106 if (!prev)
1107 continue;
1108 break;
1109 }
1110
1111 /*
1112 * Verify the css and acquire a reference. The root
1113 * is provided by the caller, so we know it's alive
1114 * and kicking, and don't take an extra reference.
1115 */
1116 memcg = mem_cgroup_from_css(css);
1117
1118 if (css == &root->css)
1119 break;
1120
1121 if (css_tryget(css)) {
1122 /*
1123 * Make sure the memcg is initialized:
1124 * mem_cgroup_css_online() orders the the
1125 * initialization against setting the flag.
1126 */
1127 if (smp_load_acquire(&memcg->initialized))
1128 break;
1129
1130 css_put(css);
1131 }
1132
1133 memcg = NULL;
1134 }
1135
1136 if (reclaim) {
1137 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1138 if (memcg)
1139 css_get(&memcg->css);
1140 if (pos)
1141 css_put(&pos->css);
1142 }
1143
1144 /*
1145 * pairs with css_tryget when dereferencing iter->position
1146 * above.
1147 */
1148 if (pos)
1149 css_put(&pos->css);
1150
1151 if (!memcg)
1152 iter->generation++;
1153 else if (!prev)
1154 reclaim->generation = iter->generation;
1155 }
1156
1157 out_unlock:
1158 rcu_read_unlock();
1159 out:
1160 if (prev && prev != root)
1161 css_put(&prev->css);
1162
1163 return memcg;
1164 }
1165
1166 /**
1167 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1168 * @root: hierarchy root
1169 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1170 */
1171 void mem_cgroup_iter_break(struct mem_cgroup *root,
1172 struct mem_cgroup *prev)
1173 {
1174 if (!root)
1175 root = root_mem_cgroup;
1176 if (prev && prev != root)
1177 css_put(&prev->css);
1178 }
1179
1180 /*
1181 * Iteration constructs for visiting all cgroups (under a tree). If
1182 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1183 * be used for reference counting.
1184 */
1185 #define for_each_mem_cgroup_tree(iter, root) \
1186 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1187 iter != NULL; \
1188 iter = mem_cgroup_iter(root, iter, NULL))
1189
1190 #define for_each_mem_cgroup(iter) \
1191 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1192 iter != NULL; \
1193 iter = mem_cgroup_iter(NULL, iter, NULL))
1194
1195 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1196 {
1197 struct mem_cgroup *memcg;
1198
1199 rcu_read_lock();
1200 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1201 if (unlikely(!memcg))
1202 goto out;
1203
1204 switch (idx) {
1205 case PGFAULT:
1206 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1207 break;
1208 case PGMAJFAULT:
1209 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1210 break;
1211 default:
1212 BUG();
1213 }
1214 out:
1215 rcu_read_unlock();
1216 }
1217 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1218
1219 /**
1220 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1221 * @zone: zone of the wanted lruvec
1222 * @memcg: memcg of the wanted lruvec
1223 *
1224 * Returns the lru list vector holding pages for the given @zone and
1225 * @mem. This can be the global zone lruvec, if the memory controller
1226 * is disabled.
1227 */
1228 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1229 struct mem_cgroup *memcg)
1230 {
1231 struct mem_cgroup_per_zone *mz;
1232 struct lruvec *lruvec;
1233
1234 if (mem_cgroup_disabled()) {
1235 lruvec = &zone->lruvec;
1236 goto out;
1237 }
1238
1239 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1240 lruvec = &mz->lruvec;
1241 out:
1242 /*
1243 * Since a node can be onlined after the mem_cgroup was created,
1244 * we have to be prepared to initialize lruvec->zone here;
1245 * and if offlined then reonlined, we need to reinitialize it.
1246 */
1247 if (unlikely(lruvec->zone != zone))
1248 lruvec->zone = zone;
1249 return lruvec;
1250 }
1251
1252 /**
1253 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1254 * @page: the page
1255 * @zone: zone of the page
1256 *
1257 * This function is only safe when following the LRU page isolation
1258 * and putback protocol: the LRU lock must be held, and the page must
1259 * either be PageLRU() or the caller must have isolated/allocated it.
1260 */
1261 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1262 {
1263 struct mem_cgroup_per_zone *mz;
1264 struct mem_cgroup *memcg;
1265 struct lruvec *lruvec;
1266
1267 if (mem_cgroup_disabled()) {
1268 lruvec = &zone->lruvec;
1269 goto out;
1270 }
1271
1272 memcg = page->mem_cgroup;
1273 /*
1274 * Swapcache readahead pages are added to the LRU - and
1275 * possibly migrated - before they are charged.
1276 */
1277 if (!memcg)
1278 memcg = root_mem_cgroup;
1279
1280 mz = mem_cgroup_page_zoneinfo(memcg, page);
1281 lruvec = &mz->lruvec;
1282 out:
1283 /*
1284 * Since a node can be onlined after the mem_cgroup was created,
1285 * we have to be prepared to initialize lruvec->zone here;
1286 * and if offlined then reonlined, we need to reinitialize it.
1287 */
1288 if (unlikely(lruvec->zone != zone))
1289 lruvec->zone = zone;
1290 return lruvec;
1291 }
1292
1293 /**
1294 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1295 * @lruvec: mem_cgroup per zone lru vector
1296 * @lru: index of lru list the page is sitting on
1297 * @nr_pages: positive when adding or negative when removing
1298 *
1299 * This function must be called when a page is added to or removed from an
1300 * lru list.
1301 */
1302 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1303 int nr_pages)
1304 {
1305 struct mem_cgroup_per_zone *mz;
1306 unsigned long *lru_size;
1307
1308 if (mem_cgroup_disabled())
1309 return;
1310
1311 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1312 lru_size = mz->lru_size + lru;
1313 *lru_size += nr_pages;
1314 VM_BUG_ON((long)(*lru_size) < 0);
1315 }
1316
1317 bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
1318 {
1319 if (root == memcg)
1320 return true;
1321 if (!root->use_hierarchy)
1322 return false;
1323 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
1324 }
1325
1326 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1327 {
1328 struct mem_cgroup *task_memcg;
1329 struct task_struct *p;
1330 bool ret;
1331
1332 p = find_lock_task_mm(task);
1333 if (p) {
1334 task_memcg = get_mem_cgroup_from_mm(p->mm);
1335 task_unlock(p);
1336 } else {
1337 /*
1338 * All threads may have already detached their mm's, but the oom
1339 * killer still needs to detect if they have already been oom
1340 * killed to prevent needlessly killing additional tasks.
1341 */
1342 rcu_read_lock();
1343 task_memcg = mem_cgroup_from_task(task);
1344 css_get(&task_memcg->css);
1345 rcu_read_unlock();
1346 }
1347 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1348 css_put(&task_memcg->css);
1349 return ret;
1350 }
1351
1352 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1353 {
1354 unsigned long inactive_ratio;
1355 unsigned long inactive;
1356 unsigned long active;
1357 unsigned long gb;
1358
1359 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1360 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1361
1362 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1363 if (gb)
1364 inactive_ratio = int_sqrt(10 * gb);
1365 else
1366 inactive_ratio = 1;
1367
1368 return inactive * inactive_ratio < active;
1369 }
1370
1371 #define mem_cgroup_from_counter(counter, member) \
1372 container_of(counter, struct mem_cgroup, member)
1373
1374 /**
1375 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1376 * @memcg: the memory cgroup
1377 *
1378 * Returns the maximum amount of memory @mem can be charged with, in
1379 * pages.
1380 */
1381 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1382 {
1383 unsigned long margin = 0;
1384 unsigned long count;
1385 unsigned long limit;
1386
1387 count = page_counter_read(&memcg->memory);
1388 limit = ACCESS_ONCE(memcg->memory.limit);
1389 if (count < limit)
1390 margin = limit - count;
1391
1392 if (do_swap_account) {
1393 count = page_counter_read(&memcg->memsw);
1394 limit = ACCESS_ONCE(memcg->memsw.limit);
1395 if (count <= limit)
1396 margin = min(margin, limit - count);
1397 }
1398
1399 return margin;
1400 }
1401
1402 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1403 {
1404 /* root ? */
1405 if (mem_cgroup_disabled() || !memcg->css.parent)
1406 return vm_swappiness;
1407
1408 return memcg->swappiness;
1409 }
1410
1411 /*
1412 * A routine for checking "mem" is under move_account() or not.
1413 *
1414 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1415 * moving cgroups. This is for waiting at high-memory pressure
1416 * caused by "move".
1417 */
1418 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1419 {
1420 struct mem_cgroup *from;
1421 struct mem_cgroup *to;
1422 bool ret = false;
1423 /*
1424 * Unlike task_move routines, we access mc.to, mc.from not under
1425 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1426 */
1427 spin_lock(&mc.lock);
1428 from = mc.from;
1429 to = mc.to;
1430 if (!from)
1431 goto unlock;
1432
1433 ret = mem_cgroup_is_descendant(from, memcg) ||
1434 mem_cgroup_is_descendant(to, memcg);
1435 unlock:
1436 spin_unlock(&mc.lock);
1437 return ret;
1438 }
1439
1440 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1441 {
1442 if (mc.moving_task && current != mc.moving_task) {
1443 if (mem_cgroup_under_move(memcg)) {
1444 DEFINE_WAIT(wait);
1445 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1446 /* moving charge context might have finished. */
1447 if (mc.moving_task)
1448 schedule();
1449 finish_wait(&mc.waitq, &wait);
1450 return true;
1451 }
1452 }
1453 return false;
1454 }
1455
1456 #define K(x) ((x) << (PAGE_SHIFT-10))
1457 /**
1458 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1459 * @memcg: The memory cgroup that went over limit
1460 * @p: Task that is going to be killed
1461 *
1462 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1463 * enabled
1464 */
1465 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1466 {
1467 /* oom_info_lock ensures that parallel ooms do not interleave */
1468 static DEFINE_MUTEX(oom_info_lock);
1469 struct mem_cgroup *iter;
1470 unsigned int i;
1471
1472 if (!p)
1473 return;
1474
1475 mutex_lock(&oom_info_lock);
1476 rcu_read_lock();
1477
1478 pr_info("Task in ");
1479 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1480 pr_info(" killed as a result of limit of ");
1481 pr_cont_cgroup_path(memcg->css.cgroup);
1482 pr_info("\n");
1483
1484 rcu_read_unlock();
1485
1486 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1487 K((u64)page_counter_read(&memcg->memory)),
1488 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1489 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1490 K((u64)page_counter_read(&memcg->memsw)),
1491 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1492 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1493 K((u64)page_counter_read(&memcg->kmem)),
1494 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1495
1496 for_each_mem_cgroup_tree(iter, memcg) {
1497 pr_info("Memory cgroup stats for ");
1498 pr_cont_cgroup_path(iter->css.cgroup);
1499 pr_cont(":");
1500
1501 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1502 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1503 continue;
1504 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1505 K(mem_cgroup_read_stat(iter, i)));
1506 }
1507
1508 for (i = 0; i < NR_LRU_LISTS; i++)
1509 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1510 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1511
1512 pr_cont("\n");
1513 }
1514 mutex_unlock(&oom_info_lock);
1515 }
1516
1517 /*
1518 * This function returns the number of memcg under hierarchy tree. Returns
1519 * 1(self count) if no children.
1520 */
1521 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1522 {
1523 int num = 0;
1524 struct mem_cgroup *iter;
1525
1526 for_each_mem_cgroup_tree(iter, memcg)
1527 num++;
1528 return num;
1529 }
1530
1531 /*
1532 * Return the memory (and swap, if configured) limit for a memcg.
1533 */
1534 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1535 {
1536 unsigned long limit;
1537
1538 limit = memcg->memory.limit;
1539 if (mem_cgroup_swappiness(memcg)) {
1540 unsigned long memsw_limit;
1541
1542 memsw_limit = memcg->memsw.limit;
1543 limit = min(limit + total_swap_pages, memsw_limit);
1544 }
1545 return limit;
1546 }
1547
1548 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1549 int order)
1550 {
1551 struct mem_cgroup *iter;
1552 unsigned long chosen_points = 0;
1553 unsigned long totalpages;
1554 unsigned int points = 0;
1555 struct task_struct *chosen = NULL;
1556
1557 /*
1558 * If current has a pending SIGKILL or is exiting, then automatically
1559 * select it. The goal is to allow it to allocate so that it may
1560 * quickly exit and free its memory.
1561 */
1562 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1563 set_thread_flag(TIF_MEMDIE);
1564 return;
1565 }
1566
1567 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1568 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1569 for_each_mem_cgroup_tree(iter, memcg) {
1570 struct css_task_iter it;
1571 struct task_struct *task;
1572
1573 css_task_iter_start(&iter->css, &it);
1574 while ((task = css_task_iter_next(&it))) {
1575 switch (oom_scan_process_thread(task, totalpages, NULL,
1576 false)) {
1577 case OOM_SCAN_SELECT:
1578 if (chosen)
1579 put_task_struct(chosen);
1580 chosen = task;
1581 chosen_points = ULONG_MAX;
1582 get_task_struct(chosen);
1583 /* fall through */
1584 case OOM_SCAN_CONTINUE:
1585 continue;
1586 case OOM_SCAN_ABORT:
1587 css_task_iter_end(&it);
1588 mem_cgroup_iter_break(memcg, iter);
1589 if (chosen)
1590 put_task_struct(chosen);
1591 return;
1592 case OOM_SCAN_OK:
1593 break;
1594 };
1595 points = oom_badness(task, memcg, NULL, totalpages);
1596 if (!points || points < chosen_points)
1597 continue;
1598 /* Prefer thread group leaders for display purposes */
1599 if (points == chosen_points &&
1600 thread_group_leader(chosen))
1601 continue;
1602
1603 if (chosen)
1604 put_task_struct(chosen);
1605 chosen = task;
1606 chosen_points = points;
1607 get_task_struct(chosen);
1608 }
1609 css_task_iter_end(&it);
1610 }
1611
1612 if (!chosen)
1613 return;
1614 points = chosen_points * 1000 / totalpages;
1615 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1616 NULL, "Memory cgroup out of memory");
1617 }
1618
1619 /**
1620 * test_mem_cgroup_node_reclaimable
1621 * @memcg: the target memcg
1622 * @nid: the node ID to be checked.
1623 * @noswap : specify true here if the user wants flle only information.
1624 *
1625 * This function returns whether the specified memcg contains any
1626 * reclaimable pages on a node. Returns true if there are any reclaimable
1627 * pages in the node.
1628 */
1629 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1630 int nid, bool noswap)
1631 {
1632 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1633 return true;
1634 if (noswap || !total_swap_pages)
1635 return false;
1636 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1637 return true;
1638 return false;
1639
1640 }
1641 #if MAX_NUMNODES > 1
1642
1643 /*
1644 * Always updating the nodemask is not very good - even if we have an empty
1645 * list or the wrong list here, we can start from some node and traverse all
1646 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1647 *
1648 */
1649 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1650 {
1651 int nid;
1652 /*
1653 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1654 * pagein/pageout changes since the last update.
1655 */
1656 if (!atomic_read(&memcg->numainfo_events))
1657 return;
1658 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1659 return;
1660
1661 /* make a nodemask where this memcg uses memory from */
1662 memcg->scan_nodes = node_states[N_MEMORY];
1663
1664 for_each_node_mask(nid, node_states[N_MEMORY]) {
1665
1666 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1667 node_clear(nid, memcg->scan_nodes);
1668 }
1669
1670 atomic_set(&memcg->numainfo_events, 0);
1671 atomic_set(&memcg->numainfo_updating, 0);
1672 }
1673
1674 /*
1675 * Selecting a node where we start reclaim from. Because what we need is just
1676 * reducing usage counter, start from anywhere is O,K. Considering
1677 * memory reclaim from current node, there are pros. and cons.
1678 *
1679 * Freeing memory from current node means freeing memory from a node which
1680 * we'll use or we've used. So, it may make LRU bad. And if several threads
1681 * hit limits, it will see a contention on a node. But freeing from remote
1682 * node means more costs for memory reclaim because of memory latency.
1683 *
1684 * Now, we use round-robin. Better algorithm is welcomed.
1685 */
1686 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1687 {
1688 int node;
1689
1690 mem_cgroup_may_update_nodemask(memcg);
1691 node = memcg->last_scanned_node;
1692
1693 node = next_node(node, memcg->scan_nodes);
1694 if (node == MAX_NUMNODES)
1695 node = first_node(memcg->scan_nodes);
1696 /*
1697 * We call this when we hit limit, not when pages are added to LRU.
1698 * No LRU may hold pages because all pages are UNEVICTABLE or
1699 * memcg is too small and all pages are not on LRU. In that case,
1700 * we use curret node.
1701 */
1702 if (unlikely(node == MAX_NUMNODES))
1703 node = numa_node_id();
1704
1705 memcg->last_scanned_node = node;
1706 return node;
1707 }
1708 #else
1709 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1710 {
1711 return 0;
1712 }
1713 #endif
1714
1715 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1716 struct zone *zone,
1717 gfp_t gfp_mask,
1718 unsigned long *total_scanned)
1719 {
1720 struct mem_cgroup *victim = NULL;
1721 int total = 0;
1722 int loop = 0;
1723 unsigned long excess;
1724 unsigned long nr_scanned;
1725 struct mem_cgroup_reclaim_cookie reclaim = {
1726 .zone = zone,
1727 .priority = 0,
1728 };
1729
1730 excess = soft_limit_excess(root_memcg);
1731
1732 while (1) {
1733 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1734 if (!victim) {
1735 loop++;
1736 if (loop >= 2) {
1737 /*
1738 * If we have not been able to reclaim
1739 * anything, it might because there are
1740 * no reclaimable pages under this hierarchy
1741 */
1742 if (!total)
1743 break;
1744 /*
1745 * We want to do more targeted reclaim.
1746 * excess >> 2 is not to excessive so as to
1747 * reclaim too much, nor too less that we keep
1748 * coming back to reclaim from this cgroup
1749 */
1750 if (total >= (excess >> 2) ||
1751 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1752 break;
1753 }
1754 continue;
1755 }
1756 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1757 zone, &nr_scanned);
1758 *total_scanned += nr_scanned;
1759 if (!soft_limit_excess(root_memcg))
1760 break;
1761 }
1762 mem_cgroup_iter_break(root_memcg, victim);
1763 return total;
1764 }
1765
1766 #ifdef CONFIG_LOCKDEP
1767 static struct lockdep_map memcg_oom_lock_dep_map = {
1768 .name = "memcg_oom_lock",
1769 };
1770 #endif
1771
1772 static DEFINE_SPINLOCK(memcg_oom_lock);
1773
1774 /*
1775 * Check OOM-Killer is already running under our hierarchy.
1776 * If someone is running, return false.
1777 */
1778 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1779 {
1780 struct mem_cgroup *iter, *failed = NULL;
1781
1782 spin_lock(&memcg_oom_lock);
1783
1784 for_each_mem_cgroup_tree(iter, memcg) {
1785 if (iter->oom_lock) {
1786 /*
1787 * this subtree of our hierarchy is already locked
1788 * so we cannot give a lock.
1789 */
1790 failed = iter;
1791 mem_cgroup_iter_break(memcg, iter);
1792 break;
1793 } else
1794 iter->oom_lock = true;
1795 }
1796
1797 if (failed) {
1798 /*
1799 * OK, we failed to lock the whole subtree so we have
1800 * to clean up what we set up to the failing subtree
1801 */
1802 for_each_mem_cgroup_tree(iter, memcg) {
1803 if (iter == failed) {
1804 mem_cgroup_iter_break(memcg, iter);
1805 break;
1806 }
1807 iter->oom_lock = false;
1808 }
1809 } else
1810 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1811
1812 spin_unlock(&memcg_oom_lock);
1813
1814 return !failed;
1815 }
1816
1817 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1818 {
1819 struct mem_cgroup *iter;
1820
1821 spin_lock(&memcg_oom_lock);
1822 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1823 for_each_mem_cgroup_tree(iter, memcg)
1824 iter->oom_lock = false;
1825 spin_unlock(&memcg_oom_lock);
1826 }
1827
1828 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1829 {
1830 struct mem_cgroup *iter;
1831
1832 for_each_mem_cgroup_tree(iter, memcg)
1833 atomic_inc(&iter->under_oom);
1834 }
1835
1836 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1837 {
1838 struct mem_cgroup *iter;
1839
1840 /*
1841 * When a new child is created while the hierarchy is under oom,
1842 * mem_cgroup_oom_lock() may not be called. We have to use
1843 * atomic_add_unless() here.
1844 */
1845 for_each_mem_cgroup_tree(iter, memcg)
1846 atomic_add_unless(&iter->under_oom, -1, 0);
1847 }
1848
1849 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1850
1851 struct oom_wait_info {
1852 struct mem_cgroup *memcg;
1853 wait_queue_t wait;
1854 };
1855
1856 static int memcg_oom_wake_function(wait_queue_t *wait,
1857 unsigned mode, int sync, void *arg)
1858 {
1859 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1860 struct mem_cgroup *oom_wait_memcg;
1861 struct oom_wait_info *oom_wait_info;
1862
1863 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1864 oom_wait_memcg = oom_wait_info->memcg;
1865
1866 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1867 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1868 return 0;
1869 return autoremove_wake_function(wait, mode, sync, arg);
1870 }
1871
1872 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1873 {
1874 atomic_inc(&memcg->oom_wakeups);
1875 /* for filtering, pass "memcg" as argument. */
1876 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1877 }
1878
1879 static void memcg_oom_recover(struct mem_cgroup *memcg)
1880 {
1881 if (memcg && atomic_read(&memcg->under_oom))
1882 memcg_wakeup_oom(memcg);
1883 }
1884
1885 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1886 {
1887 if (!current->memcg_oom.may_oom)
1888 return;
1889 /*
1890 * We are in the middle of the charge context here, so we
1891 * don't want to block when potentially sitting on a callstack
1892 * that holds all kinds of filesystem and mm locks.
1893 *
1894 * Also, the caller may handle a failed allocation gracefully
1895 * (like optional page cache readahead) and so an OOM killer
1896 * invocation might not even be necessary.
1897 *
1898 * That's why we don't do anything here except remember the
1899 * OOM context and then deal with it at the end of the page
1900 * fault when the stack is unwound, the locks are released,
1901 * and when we know whether the fault was overall successful.
1902 */
1903 css_get(&memcg->css);
1904 current->memcg_oom.memcg = memcg;
1905 current->memcg_oom.gfp_mask = mask;
1906 current->memcg_oom.order = order;
1907 }
1908
1909 /**
1910 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1911 * @handle: actually kill/wait or just clean up the OOM state
1912 *
1913 * This has to be called at the end of a page fault if the memcg OOM
1914 * handler was enabled.
1915 *
1916 * Memcg supports userspace OOM handling where failed allocations must
1917 * sleep on a waitqueue until the userspace task resolves the
1918 * situation. Sleeping directly in the charge context with all kinds
1919 * of locks held is not a good idea, instead we remember an OOM state
1920 * in the task and mem_cgroup_oom_synchronize() has to be called at
1921 * the end of the page fault to complete the OOM handling.
1922 *
1923 * Returns %true if an ongoing memcg OOM situation was detected and
1924 * completed, %false otherwise.
1925 */
1926 bool mem_cgroup_oom_synchronize(bool handle)
1927 {
1928 struct mem_cgroup *memcg = current->memcg_oom.memcg;
1929 struct oom_wait_info owait;
1930 bool locked;
1931
1932 /* OOM is global, do not handle */
1933 if (!memcg)
1934 return false;
1935
1936 if (!handle)
1937 goto cleanup;
1938
1939 owait.memcg = memcg;
1940 owait.wait.flags = 0;
1941 owait.wait.func = memcg_oom_wake_function;
1942 owait.wait.private = current;
1943 INIT_LIST_HEAD(&owait.wait.task_list);
1944
1945 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1946 mem_cgroup_mark_under_oom(memcg);
1947
1948 locked = mem_cgroup_oom_trylock(memcg);
1949
1950 if (locked)
1951 mem_cgroup_oom_notify(memcg);
1952
1953 if (locked && !memcg->oom_kill_disable) {
1954 mem_cgroup_unmark_under_oom(memcg);
1955 finish_wait(&memcg_oom_waitq, &owait.wait);
1956 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1957 current->memcg_oom.order);
1958 } else {
1959 schedule();
1960 mem_cgroup_unmark_under_oom(memcg);
1961 finish_wait(&memcg_oom_waitq, &owait.wait);
1962 }
1963
1964 if (locked) {
1965 mem_cgroup_oom_unlock(memcg);
1966 /*
1967 * There is no guarantee that an OOM-lock contender
1968 * sees the wakeups triggered by the OOM kill
1969 * uncharges. Wake any sleepers explicitely.
1970 */
1971 memcg_oom_recover(memcg);
1972 }
1973 cleanup:
1974 current->memcg_oom.memcg = NULL;
1975 css_put(&memcg->css);
1976 return true;
1977 }
1978
1979 /**
1980 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1981 * @page: page that is going to change accounted state
1982 * @locked: &memcg->move_lock slowpath was taken
1983 * @flags: IRQ-state flags for &memcg->move_lock
1984 *
1985 * This function must mark the beginning of an accounted page state
1986 * change to prevent double accounting when the page is concurrently
1987 * being moved to another memcg:
1988 *
1989 * memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
1990 * if (TestClearPageState(page))
1991 * mem_cgroup_update_page_stat(memcg, state, -1);
1992 * mem_cgroup_end_page_stat(memcg, locked, flags);
1993 *
1994 * The RCU lock is held throughout the transaction. The fast path can
1995 * get away without acquiring the memcg->move_lock (@locked is false)
1996 * because page moving starts with an RCU grace period.
1997 *
1998 * The RCU lock also protects the memcg from being freed when the page
1999 * state that is going to change is the only thing preventing the page
2000 * from being uncharged. E.g. end-writeback clearing PageWriteback(),
2001 * which allows migration to go ahead and uncharge the page before the
2002 * account transaction might be complete.
2003 */
2004 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page,
2005 bool *locked,
2006 unsigned long *flags)
2007 {
2008 struct mem_cgroup *memcg;
2009
2010 rcu_read_lock();
2011
2012 if (mem_cgroup_disabled())
2013 return NULL;
2014 again:
2015 memcg = page->mem_cgroup;
2016 if (unlikely(!memcg))
2017 return NULL;
2018
2019 *locked = false;
2020 if (atomic_read(&memcg->moving_account) <= 0)
2021 return memcg;
2022
2023 spin_lock_irqsave(&memcg->move_lock, *flags);
2024 if (memcg != page->mem_cgroup) {
2025 spin_unlock_irqrestore(&memcg->move_lock, *flags);
2026 goto again;
2027 }
2028 *locked = true;
2029
2030 return memcg;
2031 }
2032
2033 /**
2034 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2035 * @memcg: the memcg that was accounted against
2036 * @locked: value received from mem_cgroup_begin_page_stat()
2037 * @flags: value received from mem_cgroup_begin_page_stat()
2038 */
2039 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool *locked,
2040 unsigned long *flags)
2041 {
2042 if (memcg && *locked)
2043 spin_unlock_irqrestore(&memcg->move_lock, *flags);
2044
2045 rcu_read_unlock();
2046 }
2047
2048 /**
2049 * mem_cgroup_update_page_stat - update page state statistics
2050 * @memcg: memcg to account against
2051 * @idx: page state item to account
2052 * @val: number of pages (positive or negative)
2053 *
2054 * See mem_cgroup_begin_page_stat() for locking requirements.
2055 */
2056 void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
2057 enum mem_cgroup_stat_index idx, int val)
2058 {
2059 VM_BUG_ON(!rcu_read_lock_held());
2060
2061 if (memcg)
2062 this_cpu_add(memcg->stat->count[idx], val);
2063 }
2064
2065 /*
2066 * size of first charge trial. "32" comes from vmscan.c's magic value.
2067 * TODO: maybe necessary to use big numbers in big irons.
2068 */
2069 #define CHARGE_BATCH 32U
2070 struct memcg_stock_pcp {
2071 struct mem_cgroup *cached; /* this never be root cgroup */
2072 unsigned int nr_pages;
2073 struct work_struct work;
2074 unsigned long flags;
2075 #define FLUSHING_CACHED_CHARGE 0
2076 };
2077 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2078 static DEFINE_MUTEX(percpu_charge_mutex);
2079
2080 /**
2081 * consume_stock: Try to consume stocked charge on this cpu.
2082 * @memcg: memcg to consume from.
2083 * @nr_pages: how many pages to charge.
2084 *
2085 * The charges will only happen if @memcg matches the current cpu's memcg
2086 * stock, and at least @nr_pages are available in that stock. Failure to
2087 * service an allocation will refill the stock.
2088 *
2089 * returns true if successful, false otherwise.
2090 */
2091 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2092 {
2093 struct memcg_stock_pcp *stock;
2094 bool ret = false;
2095
2096 if (nr_pages > CHARGE_BATCH)
2097 return ret;
2098
2099 stock = &get_cpu_var(memcg_stock);
2100 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2101 stock->nr_pages -= nr_pages;
2102 ret = true;
2103 }
2104 put_cpu_var(memcg_stock);
2105 return ret;
2106 }
2107
2108 /*
2109 * Returns stocks cached in percpu and reset cached information.
2110 */
2111 static void drain_stock(struct memcg_stock_pcp *stock)
2112 {
2113 struct mem_cgroup *old = stock->cached;
2114
2115 if (stock->nr_pages) {
2116 page_counter_uncharge(&old->memory, stock->nr_pages);
2117 if (do_swap_account)
2118 page_counter_uncharge(&old->memsw, stock->nr_pages);
2119 css_put_many(&old->css, stock->nr_pages);
2120 stock->nr_pages = 0;
2121 }
2122 stock->cached = NULL;
2123 }
2124
2125 /*
2126 * This must be called under preempt disabled or must be called by
2127 * a thread which is pinned to local cpu.
2128 */
2129 static void drain_local_stock(struct work_struct *dummy)
2130 {
2131 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2132 drain_stock(stock);
2133 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2134 }
2135
2136 static void __init memcg_stock_init(void)
2137 {
2138 int cpu;
2139
2140 for_each_possible_cpu(cpu) {
2141 struct memcg_stock_pcp *stock =
2142 &per_cpu(memcg_stock, cpu);
2143 INIT_WORK(&stock->work, drain_local_stock);
2144 }
2145 }
2146
2147 /*
2148 * Cache charges(val) to local per_cpu area.
2149 * This will be consumed by consume_stock() function, later.
2150 */
2151 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2152 {
2153 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2154
2155 if (stock->cached != memcg) { /* reset if necessary */
2156 drain_stock(stock);
2157 stock->cached = memcg;
2158 }
2159 stock->nr_pages += nr_pages;
2160 put_cpu_var(memcg_stock);
2161 }
2162
2163 /*
2164 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2165 * of the hierarchy under it.
2166 */
2167 static void drain_all_stock(struct mem_cgroup *root_memcg)
2168 {
2169 int cpu, curcpu;
2170
2171 /* If someone's already draining, avoid adding running more workers. */
2172 if (!mutex_trylock(&percpu_charge_mutex))
2173 return;
2174 /* Notify other cpus that system-wide "drain" is running */
2175 get_online_cpus();
2176 curcpu = get_cpu();
2177 for_each_online_cpu(cpu) {
2178 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2179 struct mem_cgroup *memcg;
2180
2181 memcg = stock->cached;
2182 if (!memcg || !stock->nr_pages)
2183 continue;
2184 if (!mem_cgroup_is_descendant(memcg, root_memcg))
2185 continue;
2186 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2187 if (cpu == curcpu)
2188 drain_local_stock(&stock->work);
2189 else
2190 schedule_work_on(cpu, &stock->work);
2191 }
2192 }
2193 put_cpu();
2194 put_online_cpus();
2195 mutex_unlock(&percpu_charge_mutex);
2196 }
2197
2198 /*
2199 * This function drains percpu counter value from DEAD cpu and
2200 * move it to local cpu. Note that this function can be preempted.
2201 */
2202 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2203 {
2204 int i;
2205
2206 spin_lock(&memcg->pcp_counter_lock);
2207 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2208 long x = per_cpu(memcg->stat->count[i], cpu);
2209
2210 per_cpu(memcg->stat->count[i], cpu) = 0;
2211 memcg->nocpu_base.count[i] += x;
2212 }
2213 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2214 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2215
2216 per_cpu(memcg->stat->events[i], cpu) = 0;
2217 memcg->nocpu_base.events[i] += x;
2218 }
2219 spin_unlock(&memcg->pcp_counter_lock);
2220 }
2221
2222 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2223 unsigned long action,
2224 void *hcpu)
2225 {
2226 int cpu = (unsigned long)hcpu;
2227 struct memcg_stock_pcp *stock;
2228 struct mem_cgroup *iter;
2229
2230 if (action == CPU_ONLINE)
2231 return NOTIFY_OK;
2232
2233 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2234 return NOTIFY_OK;
2235
2236 for_each_mem_cgroup(iter)
2237 mem_cgroup_drain_pcp_counter(iter, cpu);
2238
2239 stock = &per_cpu(memcg_stock, cpu);
2240 drain_stock(stock);
2241 return NOTIFY_OK;
2242 }
2243
2244 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2245 unsigned int nr_pages)
2246 {
2247 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2248 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2249 struct mem_cgroup *mem_over_limit;
2250 struct page_counter *counter;
2251 unsigned long nr_reclaimed;
2252 bool may_swap = true;
2253 bool drained = false;
2254 int ret = 0;
2255
2256 if (mem_cgroup_is_root(memcg))
2257 goto done;
2258 retry:
2259 if (consume_stock(memcg, nr_pages))
2260 goto done;
2261
2262 if (!do_swap_account ||
2263 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2264 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2265 goto done_restock;
2266 if (do_swap_account)
2267 page_counter_uncharge(&memcg->memsw, batch);
2268 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2269 } else {
2270 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2271 may_swap = false;
2272 }
2273
2274 if (batch > nr_pages) {
2275 batch = nr_pages;
2276 goto retry;
2277 }
2278
2279 /*
2280 * Unlike in global OOM situations, memcg is not in a physical
2281 * memory shortage. Allow dying and OOM-killed tasks to
2282 * bypass the last charges so that they can exit quickly and
2283 * free their memory.
2284 */
2285 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2286 fatal_signal_pending(current) ||
2287 current->flags & PF_EXITING))
2288 goto bypass;
2289
2290 if (unlikely(task_in_memcg_oom(current)))
2291 goto nomem;
2292
2293 if (!(gfp_mask & __GFP_WAIT))
2294 goto nomem;
2295
2296 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2297 gfp_mask, may_swap);
2298
2299 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2300 goto retry;
2301
2302 if (!drained) {
2303 drain_all_stock(mem_over_limit);
2304 drained = true;
2305 goto retry;
2306 }
2307
2308 if (gfp_mask & __GFP_NORETRY)
2309 goto nomem;
2310 /*
2311 * Even though the limit is exceeded at this point, reclaim
2312 * may have been able to free some pages. Retry the charge
2313 * before killing the task.
2314 *
2315 * Only for regular pages, though: huge pages are rather
2316 * unlikely to succeed so close to the limit, and we fall back
2317 * to regular pages anyway in case of failure.
2318 */
2319 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2320 goto retry;
2321 /*
2322 * At task move, charge accounts can be doubly counted. So, it's
2323 * better to wait until the end of task_move if something is going on.
2324 */
2325 if (mem_cgroup_wait_acct_move(mem_over_limit))
2326 goto retry;
2327
2328 if (nr_retries--)
2329 goto retry;
2330
2331 if (gfp_mask & __GFP_NOFAIL)
2332 goto bypass;
2333
2334 if (fatal_signal_pending(current))
2335 goto bypass;
2336
2337 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2338 nomem:
2339 if (!(gfp_mask & __GFP_NOFAIL))
2340 return -ENOMEM;
2341 bypass:
2342 return -EINTR;
2343
2344 done_restock:
2345 css_get_many(&memcg->css, batch);
2346 if (batch > nr_pages)
2347 refill_stock(memcg, batch - nr_pages);
2348 done:
2349 return ret;
2350 }
2351
2352 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2353 {
2354 if (mem_cgroup_is_root(memcg))
2355 return;
2356
2357 page_counter_uncharge(&memcg->memory, nr_pages);
2358 if (do_swap_account)
2359 page_counter_uncharge(&memcg->memsw, nr_pages);
2360
2361 css_put_many(&memcg->css, nr_pages);
2362 }
2363
2364 /*
2365 * A helper function to get mem_cgroup from ID. must be called under
2366 * rcu_read_lock(). The caller is responsible for calling
2367 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2368 * refcnt from swap can be called against removed memcg.)
2369 */
2370 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2371 {
2372 /* ID 0 is unused ID */
2373 if (!id)
2374 return NULL;
2375 return mem_cgroup_from_id(id);
2376 }
2377
2378 /*
2379 * try_get_mem_cgroup_from_page - look up page's memcg association
2380 * @page: the page
2381 *
2382 * Look up, get a css reference, and return the memcg that owns @page.
2383 *
2384 * The page must be locked to prevent racing with swap-in and page
2385 * cache charges. If coming from an unlocked page table, the caller
2386 * must ensure the page is on the LRU or this can race with charging.
2387 */
2388 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2389 {
2390 struct mem_cgroup *memcg;
2391 unsigned short id;
2392 swp_entry_t ent;
2393
2394 VM_BUG_ON_PAGE(!PageLocked(page), page);
2395
2396 memcg = page->mem_cgroup;
2397 if (memcg) {
2398 if (!css_tryget_online(&memcg->css))
2399 memcg = NULL;
2400 } else if (PageSwapCache(page)) {
2401 ent.val = page_private(page);
2402 id = lookup_swap_cgroup_id(ent);
2403 rcu_read_lock();
2404 memcg = mem_cgroup_lookup(id);
2405 if (memcg && !css_tryget_online(&memcg->css))
2406 memcg = NULL;
2407 rcu_read_unlock();
2408 }
2409 return memcg;
2410 }
2411
2412 static void lock_page_lru(struct page *page, int *isolated)
2413 {
2414 struct zone *zone = page_zone(page);
2415
2416 spin_lock_irq(&zone->lru_lock);
2417 if (PageLRU(page)) {
2418 struct lruvec *lruvec;
2419
2420 lruvec = mem_cgroup_page_lruvec(page, zone);
2421 ClearPageLRU(page);
2422 del_page_from_lru_list(page, lruvec, page_lru(page));
2423 *isolated = 1;
2424 } else
2425 *isolated = 0;
2426 }
2427
2428 static void unlock_page_lru(struct page *page, int isolated)
2429 {
2430 struct zone *zone = page_zone(page);
2431
2432 if (isolated) {
2433 struct lruvec *lruvec;
2434
2435 lruvec = mem_cgroup_page_lruvec(page, zone);
2436 VM_BUG_ON_PAGE(PageLRU(page), page);
2437 SetPageLRU(page);
2438 add_page_to_lru_list(page, lruvec, page_lru(page));
2439 }
2440 spin_unlock_irq(&zone->lru_lock);
2441 }
2442
2443 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2444 bool lrucare)
2445 {
2446 int isolated;
2447
2448 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2449
2450 /*
2451 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2452 * may already be on some other mem_cgroup's LRU. Take care of it.
2453 */
2454 if (lrucare)
2455 lock_page_lru(page, &isolated);
2456
2457 /*
2458 * Nobody should be changing or seriously looking at
2459 * page->mem_cgroup at this point:
2460 *
2461 * - the page is uncharged
2462 *
2463 * - the page is off-LRU
2464 *
2465 * - an anonymous fault has exclusive page access, except for
2466 * a locked page table
2467 *
2468 * - a page cache insertion, a swapin fault, or a migration
2469 * have the page locked
2470 */
2471 page->mem_cgroup = memcg;
2472
2473 if (lrucare)
2474 unlock_page_lru(page, isolated);
2475 }
2476
2477 #ifdef CONFIG_MEMCG_KMEM
2478 /*
2479 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2480 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2481 */
2482 static DEFINE_MUTEX(memcg_slab_mutex);
2483
2484 /*
2485 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2486 * in the memcg_cache_params struct.
2487 */
2488 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2489 {
2490 struct kmem_cache *cachep;
2491
2492 VM_BUG_ON(p->is_root_cache);
2493 cachep = p->root_cache;
2494 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
2495 }
2496
2497 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2498 unsigned long nr_pages)
2499 {
2500 struct page_counter *counter;
2501 int ret = 0;
2502
2503 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2504 if (ret < 0)
2505 return ret;
2506
2507 ret = try_charge(memcg, gfp, nr_pages);
2508 if (ret == -EINTR) {
2509 /*
2510 * try_charge() chose to bypass to root due to OOM kill or
2511 * fatal signal. Since our only options are to either fail
2512 * the allocation or charge it to this cgroup, do it as a
2513 * temporary condition. But we can't fail. From a kmem/slab
2514 * perspective, the cache has already been selected, by
2515 * mem_cgroup_kmem_get_cache(), so it is too late to change
2516 * our minds.
2517 *
2518 * This condition will only trigger if the task entered
2519 * memcg_charge_kmem in a sane state, but was OOM-killed
2520 * during try_charge() above. Tasks that were already dying
2521 * when the allocation triggers should have been already
2522 * directed to the root cgroup in memcontrol.h
2523 */
2524 page_counter_charge(&memcg->memory, nr_pages);
2525 if (do_swap_account)
2526 page_counter_charge(&memcg->memsw, nr_pages);
2527 css_get_many(&memcg->css, nr_pages);
2528 ret = 0;
2529 } else if (ret)
2530 page_counter_uncharge(&memcg->kmem, nr_pages);
2531
2532 return ret;
2533 }
2534
2535 static void memcg_uncharge_kmem(struct mem_cgroup *memcg,
2536 unsigned long nr_pages)
2537 {
2538 page_counter_uncharge(&memcg->memory, nr_pages);
2539 if (do_swap_account)
2540 page_counter_uncharge(&memcg->memsw, nr_pages);
2541
2542 page_counter_uncharge(&memcg->kmem, nr_pages);
2543
2544 css_put_many(&memcg->css, nr_pages);
2545 }
2546
2547 /*
2548 * helper for acessing a memcg's index. It will be used as an index in the
2549 * child cache array in kmem_cache, and also to derive its name. This function
2550 * will return -1 when this is not a kmem-limited memcg.
2551 */
2552 int memcg_cache_id(struct mem_cgroup *memcg)
2553 {
2554 return memcg ? memcg->kmemcg_id : -1;
2555 }
2556
2557 static int memcg_alloc_cache_id(void)
2558 {
2559 int id, size;
2560 int err;
2561
2562 id = ida_simple_get(&kmem_limited_groups,
2563 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2564 if (id < 0)
2565 return id;
2566
2567 if (id < memcg_limited_groups_array_size)
2568 return id;
2569
2570 /*
2571 * There's no space for the new id in memcg_caches arrays,
2572 * so we have to grow them.
2573 */
2574
2575 size = 2 * (id + 1);
2576 if (size < MEMCG_CACHES_MIN_SIZE)
2577 size = MEMCG_CACHES_MIN_SIZE;
2578 else if (size > MEMCG_CACHES_MAX_SIZE)
2579 size = MEMCG_CACHES_MAX_SIZE;
2580
2581 mutex_lock(&memcg_slab_mutex);
2582 err = memcg_update_all_caches(size);
2583 mutex_unlock(&memcg_slab_mutex);
2584
2585 if (err) {
2586 ida_simple_remove(&kmem_limited_groups, id);
2587 return err;
2588 }
2589 return id;
2590 }
2591
2592 static void memcg_free_cache_id(int id)
2593 {
2594 ida_simple_remove(&kmem_limited_groups, id);
2595 }
2596
2597 /*
2598 * We should update the current array size iff all caches updates succeed. This
2599 * can only be done from the slab side. The slab mutex needs to be held when
2600 * calling this.
2601 */
2602 void memcg_update_array_size(int num)
2603 {
2604 memcg_limited_groups_array_size = num;
2605 }
2606
2607 static void memcg_register_cache(struct mem_cgroup *memcg,
2608 struct kmem_cache *root_cache)
2609 {
2610 static char memcg_name_buf[NAME_MAX + 1]; /* protected by
2611 memcg_slab_mutex */
2612 struct kmem_cache *cachep;
2613 int id;
2614
2615 lockdep_assert_held(&memcg_slab_mutex);
2616
2617 id = memcg_cache_id(memcg);
2618
2619 /*
2620 * Since per-memcg caches are created asynchronously on first
2621 * allocation (see memcg_kmem_get_cache()), several threads can try to
2622 * create the same cache, but only one of them may succeed.
2623 */
2624 if (cache_from_memcg_idx(root_cache, id))
2625 return;
2626
2627 cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
2628 cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2629 /*
2630 * If we could not create a memcg cache, do not complain, because
2631 * that's not critical at all as we can always proceed with the root
2632 * cache.
2633 */
2634 if (!cachep)
2635 return;
2636
2637 css_get(&memcg->css);
2638 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
2639
2640 /*
2641 * Since readers won't lock (see cache_from_memcg_idx()), we need a
2642 * barrier here to ensure nobody will see the kmem_cache partially
2643 * initialized.
2644 */
2645 smp_wmb();
2646
2647 BUG_ON(root_cache->memcg_params->memcg_caches[id]);
2648 root_cache->memcg_params->memcg_caches[id] = cachep;
2649 }
2650
2651 static void memcg_unregister_cache(struct kmem_cache *cachep)
2652 {
2653 struct kmem_cache *root_cache;
2654 struct mem_cgroup *memcg;
2655 int id;
2656
2657 lockdep_assert_held(&memcg_slab_mutex);
2658
2659 BUG_ON(is_root_cache(cachep));
2660
2661 root_cache = cachep->memcg_params->root_cache;
2662 memcg = cachep->memcg_params->memcg;
2663 id = memcg_cache_id(memcg);
2664
2665 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
2666 root_cache->memcg_params->memcg_caches[id] = NULL;
2667
2668 list_del(&cachep->memcg_params->list);
2669
2670 kmem_cache_destroy(cachep);
2671
2672 /* drop the reference taken in memcg_register_cache */
2673 css_put(&memcg->css);
2674 }
2675
2676 /*
2677 * During the creation a new cache, we need to disable our accounting mechanism
2678 * altogether. This is true even if we are not creating, but rather just
2679 * enqueing new caches to be created.
2680 *
2681 * This is because that process will trigger allocations; some visible, like
2682 * explicit kmallocs to auxiliary data structures, name strings and internal
2683 * cache structures; some well concealed, like INIT_WORK() that can allocate
2684 * objects during debug.
2685 *
2686 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
2687 * to it. This may not be a bounded recursion: since the first cache creation
2688 * failed to complete (waiting on the allocation), we'll just try to create the
2689 * cache again, failing at the same point.
2690 *
2691 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
2692 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
2693 * inside the following two functions.
2694 */
2695 static inline void memcg_stop_kmem_account(void)
2696 {
2697 VM_BUG_ON(!current->mm);
2698 current->memcg_kmem_skip_account++;
2699 }
2700
2701 static inline void memcg_resume_kmem_account(void)
2702 {
2703 VM_BUG_ON(!current->mm);
2704 current->memcg_kmem_skip_account--;
2705 }
2706
2707 int __memcg_cleanup_cache_params(struct kmem_cache *s)
2708 {
2709 struct kmem_cache *c;
2710 int i, failed = 0;
2711
2712 mutex_lock(&memcg_slab_mutex);
2713 for_each_memcg_cache_index(i) {
2714 c = cache_from_memcg_idx(s, i);
2715 if (!c)
2716 continue;
2717
2718 memcg_unregister_cache(c);
2719
2720 if (cache_from_memcg_idx(s, i))
2721 failed++;
2722 }
2723 mutex_unlock(&memcg_slab_mutex);
2724 return failed;
2725 }
2726
2727 static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
2728 {
2729 struct kmem_cache *cachep;
2730 struct memcg_cache_params *params, *tmp;
2731
2732 if (!memcg_kmem_is_active(memcg))
2733 return;
2734
2735 mutex_lock(&memcg_slab_mutex);
2736 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
2737 cachep = memcg_params_to_cache(params);
2738 kmem_cache_shrink(cachep);
2739 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
2740 memcg_unregister_cache(cachep);
2741 }
2742 mutex_unlock(&memcg_slab_mutex);
2743 }
2744
2745 struct memcg_register_cache_work {
2746 struct mem_cgroup *memcg;
2747 struct kmem_cache *cachep;
2748 struct work_struct work;
2749 };
2750
2751 static void memcg_register_cache_func(struct work_struct *w)
2752 {
2753 struct memcg_register_cache_work *cw =
2754 container_of(w, struct memcg_register_cache_work, work);
2755 struct mem_cgroup *memcg = cw->memcg;
2756 struct kmem_cache *cachep = cw->cachep;
2757
2758 mutex_lock(&memcg_slab_mutex);
2759 memcg_register_cache(memcg, cachep);
2760 mutex_unlock(&memcg_slab_mutex);
2761
2762 css_put(&memcg->css);
2763 kfree(cw);
2764 }
2765
2766 /*
2767 * Enqueue the creation of a per-memcg kmem_cache.
2768 */
2769 static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
2770 struct kmem_cache *cachep)
2771 {
2772 struct memcg_register_cache_work *cw;
2773
2774 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2775 if (cw == NULL) {
2776 css_put(&memcg->css);
2777 return;
2778 }
2779
2780 cw->memcg = memcg;
2781 cw->cachep = cachep;
2782
2783 INIT_WORK(&cw->work, memcg_register_cache_func);
2784 schedule_work(&cw->work);
2785 }
2786
2787 static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
2788 struct kmem_cache *cachep)
2789 {
2790 /*
2791 * We need to stop accounting when we kmalloc, because if the
2792 * corresponding kmalloc cache is not yet created, the first allocation
2793 * in __memcg_schedule_register_cache will recurse.
2794 *
2795 * However, it is better to enclose the whole function. Depending on
2796 * the debugging options enabled, INIT_WORK(), for instance, can
2797 * trigger an allocation. This too, will make us recurse. Because at
2798 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2799 * the safest choice is to do it like this, wrapping the whole function.
2800 */
2801 memcg_stop_kmem_account();
2802 __memcg_schedule_register_cache(memcg, cachep);
2803 memcg_resume_kmem_account();
2804 }
2805
2806 int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
2807 {
2808 unsigned int nr_pages = 1 << order;
2809 int res;
2810
2811 res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp, nr_pages);
2812 if (!res)
2813 atomic_add(nr_pages, &cachep->memcg_params->nr_pages);
2814 return res;
2815 }
2816
2817 void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
2818 {
2819 unsigned int nr_pages = 1 << order;
2820
2821 memcg_uncharge_kmem(cachep->memcg_params->memcg, nr_pages);
2822 atomic_sub(nr_pages, &cachep->memcg_params->nr_pages);
2823 }
2824
2825 /*
2826 * Return the kmem_cache we're supposed to use for a slab allocation.
2827 * We try to use the current memcg's version of the cache.
2828 *
2829 * If the cache does not exist yet, if we are the first user of it,
2830 * we either create it immediately, if possible, or create it asynchronously
2831 * in a workqueue.
2832 * In the latter case, we will let the current allocation go through with
2833 * the original cache.
2834 *
2835 * Can't be called in interrupt context or from kernel threads.
2836 * This function needs to be called with rcu_read_lock() held.
2837 */
2838 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
2839 gfp_t gfp)
2840 {
2841 struct mem_cgroup *memcg;
2842 struct kmem_cache *memcg_cachep;
2843
2844 VM_BUG_ON(!cachep->memcg_params);
2845 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
2846
2847 if (current->memcg_kmem_skip_account)
2848 return cachep;
2849
2850 rcu_read_lock();
2851 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
2852
2853 if (!memcg_kmem_is_active(memcg))
2854 goto out;
2855
2856 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
2857 if (likely(memcg_cachep)) {
2858 cachep = memcg_cachep;
2859 goto out;
2860 }
2861
2862 /* The corresponding put will be done in the workqueue. */
2863 if (!css_tryget_online(&memcg->css))
2864 goto out;
2865 rcu_read_unlock();
2866
2867 /*
2868 * If we are in a safe context (can wait, and not in interrupt
2869 * context), we could be be predictable and return right away.
2870 * This would guarantee that the allocation being performed
2871 * already belongs in the new cache.
2872 *
2873 * However, there are some clashes that can arrive from locking.
2874 * For instance, because we acquire the slab_mutex while doing
2875 * memcg_create_kmem_cache, this means no further allocation
2876 * could happen with the slab_mutex held. So it's better to
2877 * defer everything.
2878 */
2879 memcg_schedule_register_cache(memcg, cachep);
2880 return cachep;
2881 out:
2882 rcu_read_unlock();
2883 return cachep;
2884 }
2885
2886 /*
2887 * We need to verify if the allocation against current->mm->owner's memcg is
2888 * possible for the given order. But the page is not allocated yet, so we'll
2889 * need a further commit step to do the final arrangements.
2890 *
2891 * It is possible for the task to switch cgroups in this mean time, so at
2892 * commit time, we can't rely on task conversion any longer. We'll then use
2893 * the handle argument to return to the caller which cgroup we should commit
2894 * against. We could also return the memcg directly and avoid the pointer
2895 * passing, but a boolean return value gives better semantics considering
2896 * the compiled-out case as well.
2897 *
2898 * Returning true means the allocation is possible.
2899 */
2900 bool
2901 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2902 {
2903 struct mem_cgroup *memcg;
2904 int ret;
2905
2906 *_memcg = NULL;
2907
2908 /*
2909 * Disabling accounting is only relevant for some specific memcg
2910 * internal allocations. Therefore we would initially not have such
2911 * check here, since direct calls to the page allocator that are
2912 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
2913 * outside memcg core. We are mostly concerned with cache allocations,
2914 * and by having this test at memcg_kmem_get_cache, we are already able
2915 * to relay the allocation to the root cache and bypass the memcg cache
2916 * altogether.
2917 *
2918 * There is one exception, though: the SLUB allocator does not create
2919 * large order caches, but rather service large kmallocs directly from
2920 * the page allocator. Therefore, the following sequence when backed by
2921 * the SLUB allocator:
2922 *
2923 * memcg_stop_kmem_account();
2924 * kmalloc(<large_number>)
2925 * memcg_resume_kmem_account();
2926 *
2927 * would effectively ignore the fact that we should skip accounting,
2928 * since it will drive us directly to this function without passing
2929 * through the cache selector memcg_kmem_get_cache. Such large
2930 * allocations are extremely rare but can happen, for instance, for the
2931 * cache arrays. We bring this test here.
2932 */
2933 if (current->memcg_kmem_skip_account)
2934 return true;
2935
2936 memcg = get_mem_cgroup_from_mm(current->mm);
2937
2938 if (!memcg_kmem_is_active(memcg)) {
2939 css_put(&memcg->css);
2940 return true;
2941 }
2942
2943 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2944 if (!ret)
2945 *_memcg = memcg;
2946
2947 css_put(&memcg->css);
2948 return (ret == 0);
2949 }
2950
2951 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2952 int order)
2953 {
2954 VM_BUG_ON(mem_cgroup_is_root(memcg));
2955
2956 /* The page allocation failed. Revert */
2957 if (!page) {
2958 memcg_uncharge_kmem(memcg, 1 << order);
2959 return;
2960 }
2961 page->mem_cgroup = memcg;
2962 }
2963
2964 void __memcg_kmem_uncharge_pages(struct page *page, int order)
2965 {
2966 struct mem_cgroup *memcg = page->mem_cgroup;
2967
2968 if (!memcg)
2969 return;
2970
2971 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2972
2973 memcg_uncharge_kmem(memcg, 1 << order);
2974 page->mem_cgroup = NULL;
2975 }
2976 #else
2977 static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
2978 {
2979 }
2980 #endif /* CONFIG_MEMCG_KMEM */
2981
2982 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2983
2984 /*
2985 * Because tail pages are not marked as "used", set it. We're under
2986 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2987 * charge/uncharge will be never happen and move_account() is done under
2988 * compound_lock(), so we don't have to take care of races.
2989 */
2990 void mem_cgroup_split_huge_fixup(struct page *head)
2991 {
2992 int i;
2993
2994 if (mem_cgroup_disabled())
2995 return;
2996
2997 for (i = 1; i < HPAGE_PMD_NR; i++)
2998 head[i].mem_cgroup = head->mem_cgroup;
2999
3000 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3001 HPAGE_PMD_NR);
3002 }
3003 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3004
3005 /**
3006 * mem_cgroup_move_account - move account of the page
3007 * @page: the page
3008 * @nr_pages: number of regular pages (>1 for huge pages)
3009 * @from: mem_cgroup which the page is moved from.
3010 * @to: mem_cgroup which the page is moved to. @from != @to.
3011 *
3012 * The caller must confirm following.
3013 * - page is not on LRU (isolate_page() is useful.)
3014 * - compound_lock is held when nr_pages > 1
3015 *
3016 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3017 * from old cgroup.
3018 */
3019 static int mem_cgroup_move_account(struct page *page,
3020 unsigned int nr_pages,
3021 struct mem_cgroup *from,
3022 struct mem_cgroup *to)
3023 {
3024 unsigned long flags;
3025 int ret;
3026
3027 VM_BUG_ON(from == to);
3028 VM_BUG_ON_PAGE(PageLRU(page), page);
3029 /*
3030 * The page is isolated from LRU. So, collapse function
3031 * will not handle this page. But page splitting can happen.
3032 * Do this check under compound_page_lock(). The caller should
3033 * hold it.
3034 */
3035 ret = -EBUSY;
3036 if (nr_pages > 1 && !PageTransHuge(page))
3037 goto out;
3038
3039 /*
3040 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
3041 * of its source page while we change it: page migration takes
3042 * both pages off the LRU, but page cache replacement doesn't.
3043 */
3044 if (!trylock_page(page))
3045 goto out;
3046
3047 ret = -EINVAL;
3048 if (page->mem_cgroup != from)
3049 goto out_unlock;
3050
3051 spin_lock_irqsave(&from->move_lock, flags);
3052
3053 if (!PageAnon(page) && page_mapped(page)) {
3054 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3055 nr_pages);
3056 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3057 nr_pages);
3058 }
3059
3060 if (PageWriteback(page)) {
3061 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3062 nr_pages);
3063 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3064 nr_pages);
3065 }
3066
3067 /*
3068 * It is safe to change page->mem_cgroup here because the page
3069 * is referenced, charged, and isolated - we can't race with
3070 * uncharging, charging, migration, or LRU putback.
3071 */
3072
3073 /* caller should have done css_get */
3074 page->mem_cgroup = to;
3075 spin_unlock_irqrestore(&from->move_lock, flags);
3076
3077 ret = 0;
3078
3079 local_irq_disable();
3080 mem_cgroup_charge_statistics(to, page, nr_pages);
3081 memcg_check_events(to, page);
3082 mem_cgroup_charge_statistics(from, page, -nr_pages);
3083 memcg_check_events(from, page);
3084 local_irq_enable();
3085 out_unlock:
3086 unlock_page(page);
3087 out:
3088 return ret;
3089 }
3090
3091 #ifdef CONFIG_MEMCG_SWAP
3092 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
3093 bool charge)
3094 {
3095 int val = (charge) ? 1 : -1;
3096 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
3097 }
3098
3099 /**
3100 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3101 * @entry: swap entry to be moved
3102 * @from: mem_cgroup which the entry is moved from
3103 * @to: mem_cgroup which the entry is moved to
3104 *
3105 * It succeeds only when the swap_cgroup's record for this entry is the same
3106 * as the mem_cgroup's id of @from.
3107 *
3108 * Returns 0 on success, -EINVAL on failure.
3109 *
3110 * The caller must have charged to @to, IOW, called page_counter_charge() about
3111 * both res and memsw, and called css_get().
3112 */
3113 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3114 struct mem_cgroup *from, struct mem_cgroup *to)
3115 {
3116 unsigned short old_id, new_id;
3117
3118 old_id = mem_cgroup_id(from);
3119 new_id = mem_cgroup_id(to);
3120
3121 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3122 mem_cgroup_swap_statistics(from, false);
3123 mem_cgroup_swap_statistics(to, true);
3124 /*
3125 * This function is only called from task migration context now.
3126 * It postpones page_counter and refcount handling till the end
3127 * of task migration(mem_cgroup_clear_mc()) for performance
3128 * improvement. But we cannot postpone css_get(to) because if
3129 * the process that has been moved to @to does swap-in, the
3130 * refcount of @to might be decreased to 0.
3131 *
3132 * We are in attach() phase, so the cgroup is guaranteed to be
3133 * alive, so we can just call css_get().
3134 */
3135 css_get(&to->css);
3136 return 0;
3137 }
3138 return -EINVAL;
3139 }
3140 #else
3141 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3142 struct mem_cgroup *from, struct mem_cgroup *to)
3143 {
3144 return -EINVAL;
3145 }
3146 #endif
3147
3148 static DEFINE_MUTEX(memcg_limit_mutex);
3149
3150 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3151 unsigned long limit)
3152 {
3153 unsigned long curusage;
3154 unsigned long oldusage;
3155 bool enlarge = false;
3156 int retry_count;
3157 int ret;
3158
3159 /*
3160 * For keeping hierarchical_reclaim simple, how long we should retry
3161 * is depends on callers. We set our retry-count to be function
3162 * of # of children which we should visit in this loop.
3163 */
3164 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3165 mem_cgroup_count_children(memcg);
3166
3167 oldusage = page_counter_read(&memcg->memory);
3168
3169 do {
3170 if (signal_pending(current)) {
3171 ret = -EINTR;
3172 break;
3173 }
3174
3175 mutex_lock(&memcg_limit_mutex);
3176 if (limit > memcg->memsw.limit) {
3177 mutex_unlock(&memcg_limit_mutex);
3178 ret = -EINVAL;
3179 break;
3180 }
3181 if (limit > memcg->memory.limit)
3182 enlarge = true;
3183 ret = page_counter_limit(&memcg->memory, limit);
3184 mutex_unlock(&memcg_limit_mutex);
3185
3186 if (!ret)
3187 break;
3188
3189 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
3190
3191 curusage = page_counter_read(&memcg->memory);
3192 /* Usage is reduced ? */
3193 if (curusage >= oldusage)
3194 retry_count--;
3195 else
3196 oldusage = curusage;
3197 } while (retry_count);
3198
3199 if (!ret && enlarge)
3200 memcg_oom_recover(memcg);
3201
3202 return ret;
3203 }
3204
3205 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3206 unsigned long limit)
3207 {
3208 unsigned long curusage;
3209 unsigned long oldusage;
3210 bool enlarge = false;
3211 int retry_count;
3212 int ret;
3213
3214 /* see mem_cgroup_resize_res_limit */
3215 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3216 mem_cgroup_count_children(memcg);
3217
3218 oldusage = page_counter_read(&memcg->memsw);
3219
3220 do {
3221 if (signal_pending(current)) {
3222 ret = -EINTR;
3223 break;
3224 }
3225
3226 mutex_lock(&memcg_limit_mutex);
3227 if (limit < memcg->memory.limit) {
3228 mutex_unlock(&memcg_limit_mutex);
3229 ret = -EINVAL;
3230 break;
3231 }
3232 if (limit > memcg->memsw.limit)
3233 enlarge = true;
3234 ret = page_counter_limit(&memcg->memsw, limit);
3235 mutex_unlock(&memcg_limit_mutex);
3236
3237 if (!ret)
3238 break;
3239
3240 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
3241
3242 curusage = page_counter_read(&memcg->memsw);
3243 /* Usage is reduced ? */
3244 if (curusage >= oldusage)
3245 retry_count--;
3246 else
3247 oldusage = curusage;
3248 } while (retry_count);
3249
3250 if (!ret && enlarge)
3251 memcg_oom_recover(memcg);
3252
3253 return ret;
3254 }
3255
3256 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3257 gfp_t gfp_mask,
3258 unsigned long *total_scanned)
3259 {
3260 unsigned long nr_reclaimed = 0;
3261 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3262 unsigned long reclaimed;
3263 int loop = 0;
3264 struct mem_cgroup_tree_per_zone *mctz;
3265 unsigned long excess;
3266 unsigned long nr_scanned;
3267
3268 if (order > 0)
3269 return 0;
3270
3271 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3272 /*
3273 * This loop can run a while, specially if mem_cgroup's continuously
3274 * keep exceeding their soft limit and putting the system under
3275 * pressure
3276 */
3277 do {
3278 if (next_mz)
3279 mz = next_mz;
3280 else
3281 mz = mem_cgroup_largest_soft_limit_node(mctz);
3282 if (!mz)
3283 break;
3284
3285 nr_scanned = 0;
3286 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3287 gfp_mask, &nr_scanned);
3288 nr_reclaimed += reclaimed;
3289 *total_scanned += nr_scanned;
3290 spin_lock_irq(&mctz->lock);
3291 __mem_cgroup_remove_exceeded(mz, mctz);
3292
3293 /*
3294 * If we failed to reclaim anything from this memory cgroup
3295 * it is time to move on to the next cgroup
3296 */
3297 next_mz = NULL;
3298 if (!reclaimed)
3299 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3300
3301 excess = soft_limit_excess(mz->memcg);
3302 /*
3303 * One school of thought says that we should not add
3304 * back the node to the tree if reclaim returns 0.
3305 * But our reclaim could return 0, simply because due
3306 * to priority we are exposing a smaller subset of
3307 * memory to reclaim from. Consider this as a longer
3308 * term TODO.
3309 */
3310 /* If excess == 0, no tree ops */
3311 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3312 spin_unlock_irq(&mctz->lock);
3313 css_put(&mz->memcg->css);
3314 loop++;
3315 /*
3316 * Could not reclaim anything and there are no more
3317 * mem cgroups to try or we seem to be looping without
3318 * reclaiming anything.
3319 */
3320 if (!nr_reclaimed &&
3321 (next_mz == NULL ||
3322 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3323 break;
3324 } while (!nr_reclaimed);
3325 if (next_mz)
3326 css_put(&next_mz->memcg->css);
3327 return nr_reclaimed;
3328 }
3329
3330 /*
3331 * Test whether @memcg has children, dead or alive. Note that this
3332 * function doesn't care whether @memcg has use_hierarchy enabled and
3333 * returns %true if there are child csses according to the cgroup
3334 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3335 */
3336 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3337 {
3338 bool ret;
3339
3340 /*
3341 * The lock does not prevent addition or deletion of children, but
3342 * it prevents a new child from being initialized based on this
3343 * parent in css_online(), so it's enough to decide whether
3344 * hierarchically inherited attributes can still be changed or not.
3345 */
3346 lockdep_assert_held(&memcg_create_mutex);
3347
3348 rcu_read_lock();
3349 ret = css_next_child(NULL, &memcg->css);
3350 rcu_read_unlock();
3351 return ret;
3352 }
3353
3354 /*
3355 * Reclaims as many pages from the given memcg as possible and moves
3356 * the rest to the parent.
3357 *
3358 * Caller is responsible for holding css reference for memcg.
3359 */
3360 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3361 {
3362 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3363
3364 /* we call try-to-free pages for make this cgroup empty */
3365 lru_add_drain_all();
3366 /* try to free all pages in this cgroup */
3367 while (nr_retries && page_counter_read(&memcg->memory)) {
3368 int progress;
3369
3370 if (signal_pending(current))
3371 return -EINTR;
3372
3373 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3374 GFP_KERNEL, true);
3375 if (!progress) {
3376 nr_retries--;
3377 /* maybe some writeback is necessary */
3378 congestion_wait(BLK_RW_ASYNC, HZ/10);
3379 }
3380
3381 }
3382
3383 return 0;
3384 }
3385
3386 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3387 char *buf, size_t nbytes,
3388 loff_t off)
3389 {
3390 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3391
3392 if (mem_cgroup_is_root(memcg))
3393 return -EINVAL;
3394 return mem_cgroup_force_empty(memcg) ?: nbytes;
3395 }
3396
3397 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3398 struct cftype *cft)
3399 {
3400 return mem_cgroup_from_css(css)->use_hierarchy;
3401 }
3402
3403 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3404 struct cftype *cft, u64 val)
3405 {
3406 int retval = 0;
3407 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3408 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3409
3410 mutex_lock(&memcg_create_mutex);
3411
3412 if (memcg->use_hierarchy == val)
3413 goto out;
3414
3415 /*
3416 * If parent's use_hierarchy is set, we can't make any modifications
3417 * in the child subtrees. If it is unset, then the change can
3418 * occur, provided the current cgroup has no children.
3419 *
3420 * For the root cgroup, parent_mem is NULL, we allow value to be
3421 * set if there are no children.
3422 */
3423 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3424 (val == 1 || val == 0)) {
3425 if (!memcg_has_children(memcg))
3426 memcg->use_hierarchy = val;
3427 else
3428 retval = -EBUSY;
3429 } else
3430 retval = -EINVAL;
3431
3432 out:
3433 mutex_unlock(&memcg_create_mutex);
3434
3435 return retval;
3436 }
3437
3438 static unsigned long tree_stat(struct mem_cgroup *memcg,
3439 enum mem_cgroup_stat_index idx)
3440 {
3441 struct mem_cgroup *iter;
3442 long val = 0;
3443
3444 /* Per-cpu values can be negative, use a signed accumulator */
3445 for_each_mem_cgroup_tree(iter, memcg)
3446 val += mem_cgroup_read_stat(iter, idx);
3447
3448 if (val < 0) /* race ? */
3449 val = 0;
3450 return val;
3451 }
3452
3453 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3454 {
3455 u64 val;
3456
3457 if (mem_cgroup_is_root(memcg)) {
3458 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3459 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3460 if (swap)
3461 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3462 } else {
3463 if (!swap)
3464 val = page_counter_read(&memcg->memory);
3465 else
3466 val = page_counter_read(&memcg->memsw);
3467 }
3468 return val << PAGE_SHIFT;
3469 }
3470
3471 enum {
3472 RES_USAGE,
3473 RES_LIMIT,
3474 RES_MAX_USAGE,
3475 RES_FAILCNT,
3476 RES_SOFT_LIMIT,
3477 };
3478
3479 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3480 struct cftype *cft)
3481 {
3482 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3483 struct page_counter *counter;
3484
3485 switch (MEMFILE_TYPE(cft->private)) {
3486 case _MEM:
3487 counter = &memcg->memory;
3488 break;
3489 case _MEMSWAP:
3490 counter = &memcg->memsw;
3491 break;
3492 case _KMEM:
3493 counter = &memcg->kmem;
3494 break;
3495 default:
3496 BUG();
3497 }
3498
3499 switch (MEMFILE_ATTR(cft->private)) {
3500 case RES_USAGE:
3501 if (counter == &memcg->memory)
3502 return mem_cgroup_usage(memcg, false);
3503 if (counter == &memcg->memsw)
3504 return mem_cgroup_usage(memcg, true);
3505 return (u64)page_counter_read(counter) * PAGE_SIZE;
3506 case RES_LIMIT:
3507 return (u64)counter->limit * PAGE_SIZE;
3508 case RES_MAX_USAGE:
3509 return (u64)counter->watermark * PAGE_SIZE;
3510 case RES_FAILCNT:
3511 return counter->failcnt;
3512 case RES_SOFT_LIMIT:
3513 return (u64)memcg->soft_limit * PAGE_SIZE;
3514 default:
3515 BUG();
3516 }
3517 }
3518
3519 #ifdef CONFIG_MEMCG_KMEM
3520 static int memcg_activate_kmem(struct mem_cgroup *memcg,
3521 unsigned long nr_pages)
3522 {
3523 int err = 0;
3524 int memcg_id;
3525
3526 if (memcg_kmem_is_active(memcg))
3527 return 0;
3528
3529 /*
3530 * For simplicity, we won't allow this to be disabled. It also can't
3531 * be changed if the cgroup has children already, or if tasks had
3532 * already joined.
3533 *
3534 * If tasks join before we set the limit, a person looking at
3535 * kmem.usage_in_bytes will have no way to determine when it took
3536 * place, which makes the value quite meaningless.
3537 *
3538 * After it first became limited, changes in the value of the limit are
3539 * of course permitted.
3540 */
3541 mutex_lock(&memcg_create_mutex);
3542 if (cgroup_has_tasks(memcg->css.cgroup) ||
3543 (memcg->use_hierarchy && memcg_has_children(memcg)))
3544 err = -EBUSY;
3545 mutex_unlock(&memcg_create_mutex);
3546 if (err)
3547 goto out;
3548
3549 memcg_id = memcg_alloc_cache_id();
3550 if (memcg_id < 0) {
3551 err = memcg_id;
3552 goto out;
3553 }
3554
3555 /*
3556 * We couldn't have accounted to this cgroup, because it hasn't got
3557 * activated yet, so this should succeed.
3558 */
3559 err = page_counter_limit(&memcg->kmem, nr_pages);
3560 VM_BUG_ON(err);
3561
3562 static_key_slow_inc(&memcg_kmem_enabled_key);
3563 /*
3564 * A memory cgroup is considered kmem-active as soon as it gets
3565 * kmemcg_id. Setting the id after enabling static branching will
3566 * guarantee no one starts accounting before all call sites are
3567 * patched.
3568 */
3569 memcg->kmemcg_id = memcg_id;
3570 out:
3571 return err;
3572 }
3573
3574 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3575 unsigned long limit)
3576 {
3577 int ret;
3578
3579 mutex_lock(&memcg_limit_mutex);
3580 if (!memcg_kmem_is_active(memcg))
3581 ret = memcg_activate_kmem(memcg, limit);
3582 else
3583 ret = page_counter_limit(&memcg->kmem, limit);
3584 mutex_unlock(&memcg_limit_mutex);
3585 return ret;
3586 }
3587
3588 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3589 {
3590 int ret = 0;
3591 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3592
3593 if (!parent)
3594 return 0;
3595
3596 mutex_lock(&memcg_limit_mutex);
3597 /*
3598 * If the parent cgroup is not kmem-active now, it cannot be activated
3599 * after this point, because it has at least one child already.
3600 */
3601 if (memcg_kmem_is_active(parent))
3602 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3603 mutex_unlock(&memcg_limit_mutex);
3604 return ret;
3605 }
3606 #else
3607 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3608 unsigned long limit)
3609 {
3610 return -EINVAL;
3611 }
3612 #endif /* CONFIG_MEMCG_KMEM */
3613
3614 /*
3615 * The user of this function is...
3616 * RES_LIMIT.
3617 */
3618 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3619 char *buf, size_t nbytes, loff_t off)
3620 {
3621 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3622 unsigned long nr_pages;
3623 int ret;
3624
3625 buf = strstrip(buf);
3626 ret = page_counter_memparse(buf, &nr_pages);
3627 if (ret)
3628 return ret;
3629
3630 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3631 case RES_LIMIT:
3632 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3633 ret = -EINVAL;
3634 break;
3635 }
3636 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3637 case _MEM:
3638 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3639 break;
3640 case _MEMSWAP:
3641 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3642 break;
3643 case _KMEM:
3644 ret = memcg_update_kmem_limit(memcg, nr_pages);
3645 break;
3646 }
3647 break;
3648 case RES_SOFT_LIMIT:
3649 memcg->soft_limit = nr_pages;
3650 ret = 0;
3651 break;
3652 }
3653 return ret ?: nbytes;
3654 }
3655
3656 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3657 size_t nbytes, loff_t off)
3658 {
3659 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3660 struct page_counter *counter;
3661
3662 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3663 case _MEM:
3664 counter = &memcg->memory;
3665 break;
3666 case _MEMSWAP:
3667 counter = &memcg->memsw;
3668 break;
3669 case _KMEM:
3670 counter = &memcg->kmem;
3671 break;
3672 default:
3673 BUG();
3674 }
3675
3676 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3677 case RES_MAX_USAGE:
3678 page_counter_reset_watermark(counter);
3679 break;
3680 case RES_FAILCNT:
3681 counter->failcnt = 0;
3682 break;
3683 default:
3684 BUG();
3685 }
3686
3687 return nbytes;
3688 }
3689
3690 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3691 struct cftype *cft)
3692 {
3693 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3694 }
3695
3696 #ifdef CONFIG_MMU
3697 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3698 struct cftype *cft, u64 val)
3699 {
3700 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3701
3702 if (val >= (1 << NR_MOVE_TYPE))
3703 return -EINVAL;
3704
3705 /*
3706 * No kind of locking is needed in here, because ->can_attach() will
3707 * check this value once in the beginning of the process, and then carry
3708 * on with stale data. This means that changes to this value will only
3709 * affect task migrations starting after the change.
3710 */
3711 memcg->move_charge_at_immigrate = val;
3712 return 0;
3713 }
3714 #else
3715 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3716 struct cftype *cft, u64 val)
3717 {
3718 return -ENOSYS;
3719 }
3720 #endif
3721
3722 #ifdef CONFIG_NUMA
3723 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3724 {
3725 struct numa_stat {
3726 const char *name;
3727 unsigned int lru_mask;
3728 };
3729
3730 static const struct numa_stat stats[] = {
3731 { "total", LRU_ALL },
3732 { "file", LRU_ALL_FILE },
3733 { "anon", LRU_ALL_ANON },
3734 { "unevictable", BIT(LRU_UNEVICTABLE) },
3735 };
3736 const struct numa_stat *stat;
3737 int nid;
3738 unsigned long nr;
3739 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3740
3741 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3742 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3743 seq_printf(m, "%s=%lu", stat->name, nr);
3744 for_each_node_state(nid, N_MEMORY) {
3745 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3746 stat->lru_mask);
3747 seq_printf(m, " N%d=%lu", nid, nr);
3748 }
3749 seq_putc(m, '\n');
3750 }
3751
3752 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3753 struct mem_cgroup *iter;
3754
3755 nr = 0;
3756 for_each_mem_cgroup_tree(iter, memcg)
3757 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3758 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3759 for_each_node_state(nid, N_MEMORY) {
3760 nr = 0;
3761 for_each_mem_cgroup_tree(iter, memcg)
3762 nr += mem_cgroup_node_nr_lru_pages(
3763 iter, nid, stat->lru_mask);
3764 seq_printf(m, " N%d=%lu", nid, nr);
3765 }
3766 seq_putc(m, '\n');
3767 }
3768
3769 return 0;
3770 }
3771 #endif /* CONFIG_NUMA */
3772
3773 static inline void mem_cgroup_lru_names_not_uptodate(void)
3774 {
3775 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3776 }
3777
3778 static int memcg_stat_show(struct seq_file *m, void *v)
3779 {
3780 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3781 unsigned long memory, memsw;
3782 struct mem_cgroup *mi;
3783 unsigned int i;
3784
3785 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3786 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3787 continue;
3788 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3789 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3790 }
3791
3792 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3793 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3794 mem_cgroup_read_events(memcg, i));
3795
3796 for (i = 0; i < NR_LRU_LISTS; i++)
3797 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3798 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3799
3800 /* Hierarchical information */
3801 memory = memsw = PAGE_COUNTER_MAX;
3802 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3803 memory = min(memory, mi->memory.limit);
3804 memsw = min(memsw, mi->memsw.limit);
3805 }
3806 seq_printf(m, "hierarchical_memory_limit %llu\n",
3807 (u64)memory * PAGE_SIZE);
3808 if (do_swap_account)
3809 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3810 (u64)memsw * PAGE_SIZE);
3811
3812 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3813 long long val = 0;
3814
3815 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3816 continue;
3817 for_each_mem_cgroup_tree(mi, memcg)
3818 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3819 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3820 }
3821
3822 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3823 unsigned long long val = 0;
3824
3825 for_each_mem_cgroup_tree(mi, memcg)
3826 val += mem_cgroup_read_events(mi, i);
3827 seq_printf(m, "total_%s %llu\n",
3828 mem_cgroup_events_names[i], val);
3829 }
3830
3831 for (i = 0; i < NR_LRU_LISTS; i++) {
3832 unsigned long long val = 0;
3833
3834 for_each_mem_cgroup_tree(mi, memcg)
3835 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3836 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3837 }
3838
3839 #ifdef CONFIG_DEBUG_VM
3840 {
3841 int nid, zid;
3842 struct mem_cgroup_per_zone *mz;
3843 struct zone_reclaim_stat *rstat;
3844 unsigned long recent_rotated[2] = {0, 0};
3845 unsigned long recent_scanned[2] = {0, 0};
3846
3847 for_each_online_node(nid)
3848 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3849 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3850 rstat = &mz->lruvec.reclaim_stat;
3851
3852 recent_rotated[0] += rstat->recent_rotated[0];
3853 recent_rotated[1] += rstat->recent_rotated[1];
3854 recent_scanned[0] += rstat->recent_scanned[0];
3855 recent_scanned[1] += rstat->recent_scanned[1];
3856 }
3857 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3858 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3859 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3860 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3861 }
3862 #endif
3863
3864 return 0;
3865 }
3866
3867 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3868 struct cftype *cft)
3869 {
3870 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3871
3872 return mem_cgroup_swappiness(memcg);
3873 }
3874
3875 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3876 struct cftype *cft, u64 val)
3877 {
3878 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3879
3880 if (val > 100)
3881 return -EINVAL;
3882
3883 if (css->parent)
3884 memcg->swappiness = val;
3885 else
3886 vm_swappiness = val;
3887
3888 return 0;
3889 }
3890
3891 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3892 {
3893 struct mem_cgroup_threshold_ary *t;
3894 unsigned long usage;
3895 int i;
3896
3897 rcu_read_lock();
3898 if (!swap)
3899 t = rcu_dereference(memcg->thresholds.primary);
3900 else
3901 t = rcu_dereference(memcg->memsw_thresholds.primary);
3902
3903 if (!t)
3904 goto unlock;
3905
3906 usage = mem_cgroup_usage(memcg, swap);
3907
3908 /*
3909 * current_threshold points to threshold just below or equal to usage.
3910 * If it's not true, a threshold was crossed after last
3911 * call of __mem_cgroup_threshold().
3912 */
3913 i = t->current_threshold;
3914
3915 /*
3916 * Iterate backward over array of thresholds starting from
3917 * current_threshold and check if a threshold is crossed.
3918 * If none of thresholds below usage is crossed, we read
3919 * only one element of the array here.
3920 */
3921 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3922 eventfd_signal(t->entries[i].eventfd, 1);
3923
3924 /* i = current_threshold + 1 */
3925 i++;
3926
3927 /*
3928 * Iterate forward over array of thresholds starting from
3929 * current_threshold+1 and check if a threshold is crossed.
3930 * If none of thresholds above usage is crossed, we read
3931 * only one element of the array here.
3932 */
3933 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3934 eventfd_signal(t->entries[i].eventfd, 1);
3935
3936 /* Update current_threshold */
3937 t->current_threshold = i - 1;
3938 unlock:
3939 rcu_read_unlock();
3940 }
3941
3942 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3943 {
3944 while (memcg) {
3945 __mem_cgroup_threshold(memcg, false);
3946 if (do_swap_account)
3947 __mem_cgroup_threshold(memcg, true);
3948
3949 memcg = parent_mem_cgroup(memcg);
3950 }
3951 }
3952
3953 static int compare_thresholds(const void *a, const void *b)
3954 {
3955 const struct mem_cgroup_threshold *_a = a;
3956 const struct mem_cgroup_threshold *_b = b;
3957
3958 if (_a->threshold > _b->threshold)
3959 return 1;
3960
3961 if (_a->threshold < _b->threshold)
3962 return -1;
3963
3964 return 0;
3965 }
3966
3967 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3968 {
3969 struct mem_cgroup_eventfd_list *ev;
3970
3971 spin_lock(&memcg_oom_lock);
3972
3973 list_for_each_entry(ev, &memcg->oom_notify, list)
3974 eventfd_signal(ev->eventfd, 1);
3975
3976 spin_unlock(&memcg_oom_lock);
3977 return 0;
3978 }
3979
3980 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3981 {
3982 struct mem_cgroup *iter;
3983
3984 for_each_mem_cgroup_tree(iter, memcg)
3985 mem_cgroup_oom_notify_cb(iter);
3986 }
3987
3988 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3989 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3990 {
3991 struct mem_cgroup_thresholds *thresholds;
3992 struct mem_cgroup_threshold_ary *new;
3993 unsigned long threshold;
3994 unsigned long usage;
3995 int i, size, ret;
3996
3997 ret = page_counter_memparse(args, &threshold);
3998 if (ret)
3999 return ret;
4000
4001 mutex_lock(&memcg->thresholds_lock);
4002
4003 if (type == _MEM) {
4004 thresholds = &memcg->thresholds;
4005 usage = mem_cgroup_usage(memcg, false);
4006 } else if (type == _MEMSWAP) {
4007 thresholds = &memcg->memsw_thresholds;
4008 usage = mem_cgroup_usage(memcg, true);
4009 } else
4010 BUG();
4011
4012 /* Check if a threshold crossed before adding a new one */
4013 if (thresholds->primary)
4014 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4015
4016 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4017
4018 /* Allocate memory for new array of thresholds */
4019 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4020 GFP_KERNEL);
4021 if (!new) {
4022 ret = -ENOMEM;
4023 goto unlock;
4024 }
4025 new->size = size;
4026
4027 /* Copy thresholds (if any) to new array */
4028 if (thresholds->primary) {
4029 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4030 sizeof(struct mem_cgroup_threshold));
4031 }
4032
4033 /* Add new threshold */
4034 new->entries[size - 1].eventfd = eventfd;
4035 new->entries[size - 1].threshold = threshold;
4036
4037 /* Sort thresholds. Registering of new threshold isn't time-critical */
4038 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4039 compare_thresholds, NULL);
4040
4041 /* Find current threshold */
4042 new->current_threshold = -1;
4043 for (i = 0; i < size; i++) {
4044 if (new->entries[i].threshold <= usage) {
4045 /*
4046 * new->current_threshold will not be used until
4047 * rcu_assign_pointer(), so it's safe to increment
4048 * it here.
4049 */
4050 ++new->current_threshold;
4051 } else
4052 break;
4053 }
4054
4055 /* Free old spare buffer and save old primary buffer as spare */
4056 kfree(thresholds->spare);
4057 thresholds->spare = thresholds->primary;
4058
4059 rcu_assign_pointer(thresholds->primary, new);
4060
4061 /* To be sure that nobody uses thresholds */
4062 synchronize_rcu();
4063
4064 unlock:
4065 mutex_unlock(&memcg->thresholds_lock);
4066
4067 return ret;
4068 }
4069
4070 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4071 struct eventfd_ctx *eventfd, const char *args)
4072 {
4073 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4074 }
4075
4076 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4077 struct eventfd_ctx *eventfd, const char *args)
4078 {
4079 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4080 }
4081
4082 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4083 struct eventfd_ctx *eventfd, enum res_type type)
4084 {
4085 struct mem_cgroup_thresholds *thresholds;
4086 struct mem_cgroup_threshold_ary *new;
4087 unsigned long usage;
4088 int i, j, size;
4089
4090 mutex_lock(&memcg->thresholds_lock);
4091
4092 if (type == _MEM) {
4093 thresholds = &memcg->thresholds;
4094 usage = mem_cgroup_usage(memcg, false);
4095 } else if (type == _MEMSWAP) {
4096 thresholds = &memcg->memsw_thresholds;
4097 usage = mem_cgroup_usage(memcg, true);
4098 } else
4099 BUG();
4100
4101 if (!thresholds->primary)
4102 goto unlock;
4103
4104 /* Check if a threshold crossed before removing */
4105 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4106
4107 /* Calculate new number of threshold */
4108 size = 0;
4109 for (i = 0; i < thresholds->primary->size; i++) {
4110 if (thresholds->primary->entries[i].eventfd != eventfd)
4111 size++;
4112 }
4113
4114 new = thresholds->spare;
4115
4116 /* Set thresholds array to NULL if we don't have thresholds */
4117 if (!size) {
4118 kfree(new);
4119 new = NULL;
4120 goto swap_buffers;
4121 }
4122
4123 new->size = size;
4124
4125 /* Copy thresholds and find current threshold */
4126 new->current_threshold = -1;
4127 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4128 if (thresholds->primary->entries[i].eventfd == eventfd)
4129 continue;
4130
4131 new->entries[j] = thresholds->primary->entries[i];
4132 if (new->entries[j].threshold <= usage) {
4133 /*
4134 * new->current_threshold will not be used
4135 * until rcu_assign_pointer(), so it's safe to increment
4136 * it here.
4137 */
4138 ++new->current_threshold;
4139 }
4140 j++;
4141 }
4142
4143 swap_buffers:
4144 /* Swap primary and spare array */
4145 thresholds->spare = thresholds->primary;
4146 /* If all events are unregistered, free the spare array */
4147 if (!new) {
4148 kfree(thresholds->spare);
4149 thresholds->spare = NULL;
4150 }
4151
4152 rcu_assign_pointer(thresholds->primary, new);
4153
4154 /* To be sure that nobody uses thresholds */
4155 synchronize_rcu();
4156 unlock:
4157 mutex_unlock(&memcg->thresholds_lock);
4158 }
4159
4160 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4161 struct eventfd_ctx *eventfd)
4162 {
4163 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4164 }
4165
4166 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4167 struct eventfd_ctx *eventfd)
4168 {
4169 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4170 }
4171
4172 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4173 struct eventfd_ctx *eventfd, const char *args)
4174 {
4175 struct mem_cgroup_eventfd_list *event;
4176
4177 event = kmalloc(sizeof(*event), GFP_KERNEL);
4178 if (!event)
4179 return -ENOMEM;
4180
4181 spin_lock(&memcg_oom_lock);
4182
4183 event->eventfd = eventfd;
4184 list_add(&event->list, &memcg->oom_notify);
4185
4186 /* already in OOM ? */
4187 if (atomic_read(&memcg->under_oom))
4188 eventfd_signal(eventfd, 1);
4189 spin_unlock(&memcg_oom_lock);
4190
4191 return 0;
4192 }
4193
4194 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4195 struct eventfd_ctx *eventfd)
4196 {
4197 struct mem_cgroup_eventfd_list *ev, *tmp;
4198
4199 spin_lock(&memcg_oom_lock);
4200
4201 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4202 if (ev->eventfd == eventfd) {
4203 list_del(&ev->list);
4204 kfree(ev);
4205 }
4206 }
4207
4208 spin_unlock(&memcg_oom_lock);
4209 }
4210
4211 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4212 {
4213 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4214
4215 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4216 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
4217 return 0;
4218 }
4219
4220 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4221 struct cftype *cft, u64 val)
4222 {
4223 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4224
4225 /* cannot set to root cgroup and only 0 and 1 are allowed */
4226 if (!css->parent || !((val == 0) || (val == 1)))
4227 return -EINVAL;
4228
4229 memcg->oom_kill_disable = val;
4230 if (!val)
4231 memcg_oom_recover(memcg);
4232
4233 return 0;
4234 }
4235
4236 #ifdef CONFIG_MEMCG_KMEM
4237 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4238 {
4239 int ret;
4240
4241 ret = memcg_propagate_kmem(memcg);
4242 if (ret)
4243 return ret;
4244
4245 return mem_cgroup_sockets_init(memcg, ss);
4246 }
4247
4248 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4249 {
4250 mem_cgroup_sockets_destroy(memcg);
4251 }
4252 #else
4253 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4254 {
4255 return 0;
4256 }
4257
4258 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4259 {
4260 }
4261 #endif
4262
4263 /*
4264 * DO NOT USE IN NEW FILES.
4265 *
4266 * "cgroup.event_control" implementation.
4267 *
4268 * This is way over-engineered. It tries to support fully configurable
4269 * events for each user. Such level of flexibility is completely
4270 * unnecessary especially in the light of the planned unified hierarchy.
4271 *
4272 * Please deprecate this and replace with something simpler if at all
4273 * possible.
4274 */
4275
4276 /*
4277 * Unregister event and free resources.
4278 *
4279 * Gets called from workqueue.
4280 */
4281 static void memcg_event_remove(struct work_struct *work)
4282 {
4283 struct mem_cgroup_event *event =
4284 container_of(work, struct mem_cgroup_event, remove);
4285 struct mem_cgroup *memcg = event->memcg;
4286
4287 remove_wait_queue(event->wqh, &event->wait);
4288
4289 event->unregister_event(memcg, event->eventfd);
4290
4291 /* Notify userspace the event is going away. */
4292 eventfd_signal(event->eventfd, 1);
4293
4294 eventfd_ctx_put(event->eventfd);
4295 kfree(event);
4296 css_put(&memcg->css);
4297 }
4298
4299 /*
4300 * Gets called on POLLHUP on eventfd when user closes it.
4301 *
4302 * Called with wqh->lock held and interrupts disabled.
4303 */
4304 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4305 int sync, void *key)
4306 {
4307 struct mem_cgroup_event *event =
4308 container_of(wait, struct mem_cgroup_event, wait);
4309 struct mem_cgroup *memcg = event->memcg;
4310 unsigned long flags = (unsigned long)key;
4311
4312 if (flags & POLLHUP) {
4313 /*
4314 * If the event has been detached at cgroup removal, we
4315 * can simply return knowing the other side will cleanup
4316 * for us.
4317 *
4318 * We can't race against event freeing since the other
4319 * side will require wqh->lock via remove_wait_queue(),
4320 * which we hold.
4321 */
4322 spin_lock(&memcg->event_list_lock);
4323 if (!list_empty(&event->list)) {
4324 list_del_init(&event->list);
4325 /*
4326 * We are in atomic context, but cgroup_event_remove()
4327 * may sleep, so we have to call it in workqueue.
4328 */
4329 schedule_work(&event->remove);
4330 }
4331 spin_unlock(&memcg->event_list_lock);
4332 }
4333
4334 return 0;
4335 }
4336
4337 static void memcg_event_ptable_queue_proc(struct file *file,
4338 wait_queue_head_t *wqh, poll_table *pt)
4339 {
4340 struct mem_cgroup_event *event =
4341 container_of(pt, struct mem_cgroup_event, pt);
4342
4343 event->wqh = wqh;
4344 add_wait_queue(wqh, &event->wait);
4345 }
4346
4347 /*
4348 * DO NOT USE IN NEW FILES.
4349 *
4350 * Parse input and register new cgroup event handler.
4351 *
4352 * Input must be in format '<event_fd> <control_fd> <args>'.
4353 * Interpretation of args is defined by control file implementation.
4354 */
4355 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4356 char *buf, size_t nbytes, loff_t off)
4357 {
4358 struct cgroup_subsys_state *css = of_css(of);
4359 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4360 struct mem_cgroup_event *event;
4361 struct cgroup_subsys_state *cfile_css;
4362 unsigned int efd, cfd;
4363 struct fd efile;
4364 struct fd cfile;
4365 const char *name;
4366 char *endp;
4367 int ret;
4368
4369 buf = strstrip(buf);
4370
4371 efd = simple_strtoul(buf, &endp, 10);
4372 if (*endp != ' ')
4373 return -EINVAL;
4374 buf = endp + 1;
4375
4376 cfd = simple_strtoul(buf, &endp, 10);
4377 if ((*endp != ' ') && (*endp != '\0'))
4378 return -EINVAL;
4379 buf = endp + 1;
4380
4381 event = kzalloc(sizeof(*event), GFP_KERNEL);
4382 if (!event)
4383 return -ENOMEM;
4384
4385 event->memcg = memcg;
4386 INIT_LIST_HEAD(&event->list);
4387 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4388 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4389 INIT_WORK(&event->remove, memcg_event_remove);
4390
4391 efile = fdget(efd);
4392 if (!efile.file) {
4393 ret = -EBADF;
4394 goto out_kfree;
4395 }
4396
4397 event->eventfd = eventfd_ctx_fileget(efile.file);
4398 if (IS_ERR(event->eventfd)) {
4399 ret = PTR_ERR(event->eventfd);
4400 goto out_put_efile;
4401 }
4402
4403 cfile = fdget(cfd);
4404 if (!cfile.file) {
4405 ret = -EBADF;
4406 goto out_put_eventfd;
4407 }
4408
4409 /* the process need read permission on control file */
4410 /* AV: shouldn't we check that it's been opened for read instead? */
4411 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4412 if (ret < 0)
4413 goto out_put_cfile;
4414
4415 /*
4416 * Determine the event callbacks and set them in @event. This used
4417 * to be done via struct cftype but cgroup core no longer knows
4418 * about these events. The following is crude but the whole thing
4419 * is for compatibility anyway.
4420 *
4421 * DO NOT ADD NEW FILES.
4422 */
4423 name = cfile.file->f_path.dentry->d_name.name;
4424
4425 if (!strcmp(name, "memory.usage_in_bytes")) {
4426 event->register_event = mem_cgroup_usage_register_event;
4427 event->unregister_event = mem_cgroup_usage_unregister_event;
4428 } else if (!strcmp(name, "memory.oom_control")) {
4429 event->register_event = mem_cgroup_oom_register_event;
4430 event->unregister_event = mem_cgroup_oom_unregister_event;
4431 } else if (!strcmp(name, "memory.pressure_level")) {
4432 event->register_event = vmpressure_register_event;
4433 event->unregister_event = vmpressure_unregister_event;
4434 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4435 event->register_event = memsw_cgroup_usage_register_event;
4436 event->unregister_event = memsw_cgroup_usage_unregister_event;
4437 } else {
4438 ret = -EINVAL;
4439 goto out_put_cfile;
4440 }
4441
4442 /*
4443 * Verify @cfile should belong to @css. Also, remaining events are
4444 * automatically removed on cgroup destruction but the removal is
4445 * asynchronous, so take an extra ref on @css.
4446 */
4447 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4448 &memory_cgrp_subsys);
4449 ret = -EINVAL;
4450 if (IS_ERR(cfile_css))
4451 goto out_put_cfile;
4452 if (cfile_css != css) {
4453 css_put(cfile_css);
4454 goto out_put_cfile;
4455 }
4456
4457 ret = event->register_event(memcg, event->eventfd, buf);
4458 if (ret)
4459 goto out_put_css;
4460
4461 efile.file->f_op->poll(efile.file, &event->pt);
4462
4463 spin_lock(&memcg->event_list_lock);
4464 list_add(&event->list, &memcg->event_list);
4465 spin_unlock(&memcg->event_list_lock);
4466
4467 fdput(cfile);
4468 fdput(efile);
4469
4470 return nbytes;
4471
4472 out_put_css:
4473 css_put(css);
4474 out_put_cfile:
4475 fdput(cfile);
4476 out_put_eventfd:
4477 eventfd_ctx_put(event->eventfd);
4478 out_put_efile:
4479 fdput(efile);
4480 out_kfree:
4481 kfree(event);
4482
4483 return ret;
4484 }
4485
4486 static struct cftype mem_cgroup_files[] = {
4487 {
4488 .name = "usage_in_bytes",
4489 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4490 .read_u64 = mem_cgroup_read_u64,
4491 },
4492 {
4493 .name = "max_usage_in_bytes",
4494 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4495 .write = mem_cgroup_reset,
4496 .read_u64 = mem_cgroup_read_u64,
4497 },
4498 {
4499 .name = "limit_in_bytes",
4500 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4501 .write = mem_cgroup_write,
4502 .read_u64 = mem_cgroup_read_u64,
4503 },
4504 {
4505 .name = "soft_limit_in_bytes",
4506 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4507 .write = mem_cgroup_write,
4508 .read_u64 = mem_cgroup_read_u64,
4509 },
4510 {
4511 .name = "failcnt",
4512 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4513 .write = mem_cgroup_reset,
4514 .read_u64 = mem_cgroup_read_u64,
4515 },
4516 {
4517 .name = "stat",
4518 .seq_show = memcg_stat_show,
4519 },
4520 {
4521 .name = "force_empty",
4522 .write = mem_cgroup_force_empty_write,
4523 },
4524 {
4525 .name = "use_hierarchy",
4526 .write_u64 = mem_cgroup_hierarchy_write,
4527 .read_u64 = mem_cgroup_hierarchy_read,
4528 },
4529 {
4530 .name = "cgroup.event_control", /* XXX: for compat */
4531 .write = memcg_write_event_control,
4532 .flags = CFTYPE_NO_PREFIX,
4533 .mode = S_IWUGO,
4534 },
4535 {
4536 .name = "swappiness",
4537 .read_u64 = mem_cgroup_swappiness_read,
4538 .write_u64 = mem_cgroup_swappiness_write,
4539 },
4540 {
4541 .name = "move_charge_at_immigrate",
4542 .read_u64 = mem_cgroup_move_charge_read,
4543 .write_u64 = mem_cgroup_move_charge_write,
4544 },
4545 {
4546 .name = "oom_control",
4547 .seq_show = mem_cgroup_oom_control_read,
4548 .write_u64 = mem_cgroup_oom_control_write,
4549 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4550 },
4551 {
4552 .name = "pressure_level",
4553 },
4554 #ifdef CONFIG_NUMA
4555 {
4556 .name = "numa_stat",
4557 .seq_show = memcg_numa_stat_show,
4558 },
4559 #endif
4560 #ifdef CONFIG_MEMCG_KMEM
4561 {
4562 .name = "kmem.limit_in_bytes",
4563 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4564 .write = mem_cgroup_write,
4565 .read_u64 = mem_cgroup_read_u64,
4566 },
4567 {
4568 .name = "kmem.usage_in_bytes",
4569 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4570 .read_u64 = mem_cgroup_read_u64,
4571 },
4572 {
4573 .name = "kmem.failcnt",
4574 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4575 .write = mem_cgroup_reset,
4576 .read_u64 = mem_cgroup_read_u64,
4577 },
4578 {
4579 .name = "kmem.max_usage_in_bytes",
4580 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4581 .write = mem_cgroup_reset,
4582 .read_u64 = mem_cgroup_read_u64,
4583 },
4584 #ifdef CONFIG_SLABINFO
4585 {
4586 .name = "kmem.slabinfo",
4587 .seq_start = slab_start,
4588 .seq_next = slab_next,
4589 .seq_stop = slab_stop,
4590 .seq_show = memcg_slab_show,
4591 },
4592 #endif
4593 #endif
4594 { }, /* terminate */
4595 };
4596
4597 #ifdef CONFIG_MEMCG_SWAP
4598 static struct cftype memsw_cgroup_files[] = {
4599 {
4600 .name = "memsw.usage_in_bytes",
4601 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4602 .read_u64 = mem_cgroup_read_u64,
4603 },
4604 {
4605 .name = "memsw.max_usage_in_bytes",
4606 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4607 .write = mem_cgroup_reset,
4608 .read_u64 = mem_cgroup_read_u64,
4609 },
4610 {
4611 .name = "memsw.limit_in_bytes",
4612 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4613 .write = mem_cgroup_write,
4614 .read_u64 = mem_cgroup_read_u64,
4615 },
4616 {
4617 .name = "memsw.failcnt",
4618 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4619 .write = mem_cgroup_reset,
4620 .read_u64 = mem_cgroup_read_u64,
4621 },
4622 { }, /* terminate */
4623 };
4624 #endif
4625 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4626 {
4627 struct mem_cgroup_per_node *pn;
4628 struct mem_cgroup_per_zone *mz;
4629 int zone, tmp = node;
4630 /*
4631 * This routine is called against possible nodes.
4632 * But it's BUG to call kmalloc() against offline node.
4633 *
4634 * TODO: this routine can waste much memory for nodes which will
4635 * never be onlined. It's better to use memory hotplug callback
4636 * function.
4637 */
4638 if (!node_state(node, N_NORMAL_MEMORY))
4639 tmp = -1;
4640 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4641 if (!pn)
4642 return 1;
4643
4644 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4645 mz = &pn->zoneinfo[zone];
4646 lruvec_init(&mz->lruvec);
4647 mz->usage_in_excess = 0;
4648 mz->on_tree = false;
4649 mz->memcg = memcg;
4650 }
4651 memcg->nodeinfo[node] = pn;
4652 return 0;
4653 }
4654
4655 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4656 {
4657 kfree(memcg->nodeinfo[node]);
4658 }
4659
4660 static struct mem_cgroup *mem_cgroup_alloc(void)
4661 {
4662 struct mem_cgroup *memcg;
4663 size_t size;
4664
4665 size = sizeof(struct mem_cgroup);
4666 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4667
4668 memcg = kzalloc(size, GFP_KERNEL);
4669 if (!memcg)
4670 return NULL;
4671
4672 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4673 if (!memcg->stat)
4674 goto out_free;
4675 spin_lock_init(&memcg->pcp_counter_lock);
4676 return memcg;
4677
4678 out_free:
4679 kfree(memcg);
4680 return NULL;
4681 }
4682
4683 /*
4684 * At destroying mem_cgroup, references from swap_cgroup can remain.
4685 * (scanning all at force_empty is too costly...)
4686 *
4687 * Instead of clearing all references at force_empty, we remember
4688 * the number of reference from swap_cgroup and free mem_cgroup when
4689 * it goes down to 0.
4690 *
4691 * Removal of cgroup itself succeeds regardless of refs from swap.
4692 */
4693
4694 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4695 {
4696 int node;
4697
4698 mem_cgroup_remove_from_trees(memcg);
4699
4700 for_each_node(node)
4701 free_mem_cgroup_per_zone_info(memcg, node);
4702
4703 free_percpu(memcg->stat);
4704
4705 disarm_static_keys(memcg);
4706 kfree(memcg);
4707 }
4708
4709 /*
4710 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4711 */
4712 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4713 {
4714 if (!memcg->memory.parent)
4715 return NULL;
4716 return mem_cgroup_from_counter(memcg->memory.parent, memory);
4717 }
4718 EXPORT_SYMBOL(parent_mem_cgroup);
4719
4720 static void __init mem_cgroup_soft_limit_tree_init(void)
4721 {
4722 struct mem_cgroup_tree_per_node *rtpn;
4723 struct mem_cgroup_tree_per_zone *rtpz;
4724 int tmp, node, zone;
4725
4726 for_each_node(node) {
4727 tmp = node;
4728 if (!node_state(node, N_NORMAL_MEMORY))
4729 tmp = -1;
4730 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4731 BUG_ON(!rtpn);
4732
4733 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4734
4735 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4736 rtpz = &rtpn->rb_tree_per_zone[zone];
4737 rtpz->rb_root = RB_ROOT;
4738 spin_lock_init(&rtpz->lock);
4739 }
4740 }
4741 }
4742
4743 static struct cgroup_subsys_state * __ref
4744 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4745 {
4746 struct mem_cgroup *memcg;
4747 long error = -ENOMEM;
4748 int node;
4749
4750 memcg = mem_cgroup_alloc();
4751 if (!memcg)
4752 return ERR_PTR(error);
4753
4754 for_each_node(node)
4755 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4756 goto free_out;
4757
4758 /* root ? */
4759 if (parent_css == NULL) {
4760 root_mem_cgroup = memcg;
4761 page_counter_init(&memcg->memory, NULL);
4762 page_counter_init(&memcg->memsw, NULL);
4763 page_counter_init(&memcg->kmem, NULL);
4764 }
4765
4766 memcg->last_scanned_node = MAX_NUMNODES;
4767 INIT_LIST_HEAD(&memcg->oom_notify);
4768 memcg->move_charge_at_immigrate = 0;
4769 mutex_init(&memcg->thresholds_lock);
4770 spin_lock_init(&memcg->move_lock);
4771 vmpressure_init(&memcg->vmpressure);
4772 INIT_LIST_HEAD(&memcg->event_list);
4773 spin_lock_init(&memcg->event_list_lock);
4774 #ifdef CONFIG_MEMCG_KMEM
4775 memcg->kmemcg_id = -1;
4776 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
4777 #endif
4778
4779 return &memcg->css;
4780
4781 free_out:
4782 __mem_cgroup_free(memcg);
4783 return ERR_PTR(error);
4784 }
4785
4786 static int
4787 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4788 {
4789 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4790 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4791 int ret;
4792
4793 if (css->id > MEM_CGROUP_ID_MAX)
4794 return -ENOSPC;
4795
4796 if (!parent)
4797 return 0;
4798
4799 mutex_lock(&memcg_create_mutex);
4800
4801 memcg->use_hierarchy = parent->use_hierarchy;
4802 memcg->oom_kill_disable = parent->oom_kill_disable;
4803 memcg->swappiness = mem_cgroup_swappiness(parent);
4804
4805 if (parent->use_hierarchy) {
4806 page_counter_init(&memcg->memory, &parent->memory);
4807 page_counter_init(&memcg->memsw, &parent->memsw);
4808 page_counter_init(&memcg->kmem, &parent->kmem);
4809
4810 /*
4811 * No need to take a reference to the parent because cgroup
4812 * core guarantees its existence.
4813 */
4814 } else {
4815 page_counter_init(&memcg->memory, NULL);
4816 page_counter_init(&memcg->memsw, NULL);
4817 page_counter_init(&memcg->kmem, NULL);
4818 /*
4819 * Deeper hierachy with use_hierarchy == false doesn't make
4820 * much sense so let cgroup subsystem know about this
4821 * unfortunate state in our controller.
4822 */
4823 if (parent != root_mem_cgroup)
4824 memory_cgrp_subsys.broken_hierarchy = true;
4825 }
4826 mutex_unlock(&memcg_create_mutex);
4827
4828 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4829 if (ret)
4830 return ret;
4831
4832 /*
4833 * Make sure the memcg is initialized: mem_cgroup_iter()
4834 * orders reading memcg->initialized against its callers
4835 * reading the memcg members.
4836 */
4837 smp_store_release(&memcg->initialized, 1);
4838
4839 return 0;
4840 }
4841
4842 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4843 {
4844 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4845 struct mem_cgroup_event *event, *tmp;
4846
4847 /*
4848 * Unregister events and notify userspace.
4849 * Notify userspace about cgroup removing only after rmdir of cgroup
4850 * directory to avoid race between userspace and kernelspace.
4851 */
4852 spin_lock(&memcg->event_list_lock);
4853 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4854 list_del_init(&event->list);
4855 schedule_work(&event->remove);
4856 }
4857 spin_unlock(&memcg->event_list_lock);
4858
4859 memcg_unregister_all_caches(memcg);
4860 vmpressure_cleanup(&memcg->vmpressure);
4861 }
4862
4863 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4864 {
4865 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4866
4867 memcg_destroy_kmem(memcg);
4868 __mem_cgroup_free(memcg);
4869 }
4870
4871 /**
4872 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4873 * @css: the target css
4874 *
4875 * Reset the states of the mem_cgroup associated with @css. This is
4876 * invoked when the userland requests disabling on the default hierarchy
4877 * but the memcg is pinned through dependency. The memcg should stop
4878 * applying policies and should revert to the vanilla state as it may be
4879 * made visible again.
4880 *
4881 * The current implementation only resets the essential configurations.
4882 * This needs to be expanded to cover all the visible parts.
4883 */
4884 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4885 {
4886 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4887
4888 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4889 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4890 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4891 memcg->soft_limit = 0;
4892 }
4893
4894 #ifdef CONFIG_MMU
4895 /* Handlers for move charge at task migration. */
4896 static int mem_cgroup_do_precharge(unsigned long count)
4897 {
4898 int ret;
4899
4900 /* Try a single bulk charge without reclaim first */
4901 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4902 if (!ret) {
4903 mc.precharge += count;
4904 return ret;
4905 }
4906 if (ret == -EINTR) {
4907 cancel_charge(root_mem_cgroup, count);
4908 return ret;
4909 }
4910
4911 /* Try charges one by one with reclaim */
4912 while (count--) {
4913 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4914 /*
4915 * In case of failure, any residual charges against
4916 * mc.to will be dropped by mem_cgroup_clear_mc()
4917 * later on. However, cancel any charges that are
4918 * bypassed to root right away or they'll be lost.
4919 */
4920 if (ret == -EINTR)
4921 cancel_charge(root_mem_cgroup, 1);
4922 if (ret)
4923 return ret;
4924 mc.precharge++;
4925 cond_resched();
4926 }
4927 return 0;
4928 }
4929
4930 /**
4931 * get_mctgt_type - get target type of moving charge
4932 * @vma: the vma the pte to be checked belongs
4933 * @addr: the address corresponding to the pte to be checked
4934 * @ptent: the pte to be checked
4935 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4936 *
4937 * Returns
4938 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4939 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4940 * move charge. if @target is not NULL, the page is stored in target->page
4941 * with extra refcnt got(Callers should handle it).
4942 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4943 * target for charge migration. if @target is not NULL, the entry is stored
4944 * in target->ent.
4945 *
4946 * Called with pte lock held.
4947 */
4948 union mc_target {
4949 struct page *page;
4950 swp_entry_t ent;
4951 };
4952
4953 enum mc_target_type {
4954 MC_TARGET_NONE = 0,
4955 MC_TARGET_PAGE,
4956 MC_TARGET_SWAP,
4957 };
4958
4959 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4960 unsigned long addr, pte_t ptent)
4961 {
4962 struct page *page = vm_normal_page(vma, addr, ptent);
4963
4964 if (!page || !page_mapped(page))
4965 return NULL;
4966 if (PageAnon(page)) {
4967 /* we don't move shared anon */
4968 if (!move_anon())
4969 return NULL;
4970 } else if (!move_file())
4971 /* we ignore mapcount for file pages */
4972 return NULL;
4973 if (!get_page_unless_zero(page))
4974 return NULL;
4975
4976 return page;
4977 }
4978
4979 #ifdef CONFIG_SWAP
4980 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4981 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4982 {
4983 struct page *page = NULL;
4984 swp_entry_t ent = pte_to_swp_entry(ptent);
4985
4986 if (!move_anon() || non_swap_entry(ent))
4987 return NULL;
4988 /*
4989 * Because lookup_swap_cache() updates some statistics counter,
4990 * we call find_get_page() with swapper_space directly.
4991 */
4992 page = find_get_page(swap_address_space(ent), ent.val);
4993 if (do_swap_account)
4994 entry->val = ent.val;
4995
4996 return page;
4997 }
4998 #else
4999 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5000 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5001 {
5002 return NULL;
5003 }
5004 #endif
5005
5006 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5007 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5008 {
5009 struct page *page = NULL;
5010 struct address_space *mapping;
5011 pgoff_t pgoff;
5012
5013 if (!vma->vm_file) /* anonymous vma */
5014 return NULL;
5015 if (!move_file())
5016 return NULL;
5017
5018 mapping = vma->vm_file->f_mapping;
5019 if (pte_none(ptent))
5020 pgoff = linear_page_index(vma, addr);
5021 else /* pte_file(ptent) is true */
5022 pgoff = pte_to_pgoff(ptent);
5023
5024 /* page is moved even if it's not RSS of this task(page-faulted). */
5025 #ifdef CONFIG_SWAP
5026 /* shmem/tmpfs may report page out on swap: account for that too. */
5027 if (shmem_mapping(mapping)) {
5028 page = find_get_entry(mapping, pgoff);
5029 if (radix_tree_exceptional_entry(page)) {
5030 swp_entry_t swp = radix_to_swp_entry(page);
5031 if (do_swap_account)
5032 *entry = swp;
5033 page = find_get_page(swap_address_space(swp), swp.val);
5034 }
5035 } else
5036 page = find_get_page(mapping, pgoff);
5037 #else
5038 page = find_get_page(mapping, pgoff);
5039 #endif
5040 return page;
5041 }
5042
5043 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5044 unsigned long addr, pte_t ptent, union mc_target *target)
5045 {
5046 struct page *page = NULL;
5047 enum mc_target_type ret = MC_TARGET_NONE;
5048 swp_entry_t ent = { .val = 0 };
5049
5050 if (pte_present(ptent))
5051 page = mc_handle_present_pte(vma, addr, ptent);
5052 else if (is_swap_pte(ptent))
5053 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5054 else if (pte_none(ptent) || pte_file(ptent))
5055 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5056
5057 if (!page && !ent.val)
5058 return ret;
5059 if (page) {
5060 /*
5061 * Do only loose check w/o serialization.
5062 * mem_cgroup_move_account() checks the page is valid or
5063 * not under LRU exclusion.
5064 */
5065 if (page->mem_cgroup == mc.from) {
5066 ret = MC_TARGET_PAGE;
5067 if (target)
5068 target->page = page;
5069 }
5070 if (!ret || !target)
5071 put_page(page);
5072 }
5073 /* There is a swap entry and a page doesn't exist or isn't charged */
5074 if (ent.val && !ret &&
5075 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5076 ret = MC_TARGET_SWAP;
5077 if (target)
5078 target->ent = ent;
5079 }
5080 return ret;
5081 }
5082
5083 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5084 /*
5085 * We don't consider swapping or file mapped pages because THP does not
5086 * support them for now.
5087 * Caller should make sure that pmd_trans_huge(pmd) is true.
5088 */
5089 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5090 unsigned long addr, pmd_t pmd, union mc_target *target)
5091 {
5092 struct page *page = NULL;
5093 enum mc_target_type ret = MC_TARGET_NONE;
5094
5095 page = pmd_page(pmd);
5096 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5097 if (!move_anon())
5098 return ret;
5099 if (page->mem_cgroup == mc.from) {
5100 ret = MC_TARGET_PAGE;
5101 if (target) {
5102 get_page(page);
5103 target->page = page;
5104 }
5105 }
5106 return ret;
5107 }
5108 #else
5109 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5110 unsigned long addr, pmd_t pmd, union mc_target *target)
5111 {
5112 return MC_TARGET_NONE;
5113 }
5114 #endif
5115
5116 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5117 unsigned long addr, unsigned long end,
5118 struct mm_walk *walk)
5119 {
5120 struct vm_area_struct *vma = walk->private;
5121 pte_t *pte;
5122 spinlock_t *ptl;
5123
5124 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5125 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5126 mc.precharge += HPAGE_PMD_NR;
5127 spin_unlock(ptl);
5128 return 0;
5129 }
5130
5131 if (pmd_trans_unstable(pmd))
5132 return 0;
5133 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5134 for (; addr != end; pte++, addr += PAGE_SIZE)
5135 if (get_mctgt_type(vma, addr, *pte, NULL))
5136 mc.precharge++; /* increment precharge temporarily */
5137 pte_unmap_unlock(pte - 1, ptl);
5138 cond_resched();
5139
5140 return 0;
5141 }
5142
5143 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5144 {
5145 unsigned long precharge;
5146 struct vm_area_struct *vma;
5147
5148 down_read(&mm->mmap_sem);
5149 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5150 struct mm_walk mem_cgroup_count_precharge_walk = {
5151 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5152 .mm = mm,
5153 .private = vma,
5154 };
5155 if (is_vm_hugetlb_page(vma))
5156 continue;
5157 walk_page_range(vma->vm_start, vma->vm_end,
5158 &mem_cgroup_count_precharge_walk);
5159 }
5160 up_read(&mm->mmap_sem);
5161
5162 precharge = mc.precharge;
5163 mc.precharge = 0;
5164
5165 return precharge;
5166 }
5167
5168 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5169 {
5170 unsigned long precharge = mem_cgroup_count_precharge(mm);
5171
5172 VM_BUG_ON(mc.moving_task);
5173 mc.moving_task = current;
5174 return mem_cgroup_do_precharge(precharge);
5175 }
5176
5177 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5178 static void __mem_cgroup_clear_mc(void)
5179 {
5180 struct mem_cgroup *from = mc.from;
5181 struct mem_cgroup *to = mc.to;
5182
5183 /* we must uncharge all the leftover precharges from mc.to */
5184 if (mc.precharge) {
5185 cancel_charge(mc.to, mc.precharge);
5186 mc.precharge = 0;
5187 }
5188 /*
5189 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5190 * we must uncharge here.
5191 */
5192 if (mc.moved_charge) {
5193 cancel_charge(mc.from, mc.moved_charge);
5194 mc.moved_charge = 0;
5195 }
5196 /* we must fixup refcnts and charges */
5197 if (mc.moved_swap) {
5198 /* uncharge swap account from the old cgroup */
5199 if (!mem_cgroup_is_root(mc.from))
5200 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5201
5202 /*
5203 * we charged both to->memory and to->memsw, so we
5204 * should uncharge to->memory.
5205 */
5206 if (!mem_cgroup_is_root(mc.to))
5207 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5208
5209 css_put_many(&mc.from->css, mc.moved_swap);
5210
5211 /* we've already done css_get(mc.to) */
5212 mc.moved_swap = 0;
5213 }
5214 memcg_oom_recover(from);
5215 memcg_oom_recover(to);
5216 wake_up_all(&mc.waitq);
5217 }
5218
5219 static void mem_cgroup_clear_mc(void)
5220 {
5221 /*
5222 * we must clear moving_task before waking up waiters at the end of
5223 * task migration.
5224 */
5225 mc.moving_task = NULL;
5226 __mem_cgroup_clear_mc();
5227 spin_lock(&mc.lock);
5228 mc.from = NULL;
5229 mc.to = NULL;
5230 spin_unlock(&mc.lock);
5231 }
5232
5233 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5234 struct cgroup_taskset *tset)
5235 {
5236 struct task_struct *p = cgroup_taskset_first(tset);
5237 int ret = 0;
5238 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5239 unsigned long move_charge_at_immigrate;
5240
5241 /*
5242 * We are now commited to this value whatever it is. Changes in this
5243 * tunable will only affect upcoming migrations, not the current one.
5244 * So we need to save it, and keep it going.
5245 */
5246 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
5247 if (move_charge_at_immigrate) {
5248 struct mm_struct *mm;
5249 struct mem_cgroup *from = mem_cgroup_from_task(p);
5250
5251 VM_BUG_ON(from == memcg);
5252
5253 mm = get_task_mm(p);
5254 if (!mm)
5255 return 0;
5256 /* We move charges only when we move a owner of the mm */
5257 if (mm->owner == p) {
5258 VM_BUG_ON(mc.from);
5259 VM_BUG_ON(mc.to);
5260 VM_BUG_ON(mc.precharge);
5261 VM_BUG_ON(mc.moved_charge);
5262 VM_BUG_ON(mc.moved_swap);
5263
5264 spin_lock(&mc.lock);
5265 mc.from = from;
5266 mc.to = memcg;
5267 mc.immigrate_flags = move_charge_at_immigrate;
5268 spin_unlock(&mc.lock);
5269 /* We set mc.moving_task later */
5270
5271 ret = mem_cgroup_precharge_mc(mm);
5272 if (ret)
5273 mem_cgroup_clear_mc();
5274 }
5275 mmput(mm);
5276 }
5277 return ret;
5278 }
5279
5280 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5281 struct cgroup_taskset *tset)
5282 {
5283 if (mc.to)
5284 mem_cgroup_clear_mc();
5285 }
5286
5287 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5288 unsigned long addr, unsigned long end,
5289 struct mm_walk *walk)
5290 {
5291 int ret = 0;
5292 struct vm_area_struct *vma = walk->private;
5293 pte_t *pte;
5294 spinlock_t *ptl;
5295 enum mc_target_type target_type;
5296 union mc_target target;
5297 struct page *page;
5298
5299 /*
5300 * We don't take compound_lock() here but no race with splitting thp
5301 * happens because:
5302 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5303 * under splitting, which means there's no concurrent thp split,
5304 * - if another thread runs into split_huge_page() just after we
5305 * entered this if-block, the thread must wait for page table lock
5306 * to be unlocked in __split_huge_page_splitting(), where the main
5307 * part of thp split is not executed yet.
5308 */
5309 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5310 if (mc.precharge < HPAGE_PMD_NR) {
5311 spin_unlock(ptl);
5312 return 0;
5313 }
5314 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5315 if (target_type == MC_TARGET_PAGE) {
5316 page = target.page;
5317 if (!isolate_lru_page(page)) {
5318 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5319 mc.from, mc.to)) {
5320 mc.precharge -= HPAGE_PMD_NR;
5321 mc.moved_charge += HPAGE_PMD_NR;
5322 }
5323 putback_lru_page(page);
5324 }
5325 put_page(page);
5326 }
5327 spin_unlock(ptl);
5328 return 0;
5329 }
5330
5331 if (pmd_trans_unstable(pmd))
5332 return 0;
5333 retry:
5334 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5335 for (; addr != end; addr += PAGE_SIZE) {
5336 pte_t ptent = *(pte++);
5337 swp_entry_t ent;
5338
5339 if (!mc.precharge)
5340 break;
5341
5342 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5343 case MC_TARGET_PAGE:
5344 page = target.page;
5345 if (isolate_lru_page(page))
5346 goto put;
5347 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
5348 mc.precharge--;
5349 /* we uncharge from mc.from later. */
5350 mc.moved_charge++;
5351 }
5352 putback_lru_page(page);
5353 put: /* get_mctgt_type() gets the page */
5354 put_page(page);
5355 break;
5356 case MC_TARGET_SWAP:
5357 ent = target.ent;
5358 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5359 mc.precharge--;
5360 /* we fixup refcnts and charges later. */
5361 mc.moved_swap++;
5362 }
5363 break;
5364 default:
5365 break;
5366 }
5367 }
5368 pte_unmap_unlock(pte - 1, ptl);
5369 cond_resched();
5370
5371 if (addr != end) {
5372 /*
5373 * We have consumed all precharges we got in can_attach().
5374 * We try charge one by one, but don't do any additional
5375 * charges to mc.to if we have failed in charge once in attach()
5376 * phase.
5377 */
5378 ret = mem_cgroup_do_precharge(1);
5379 if (!ret)
5380 goto retry;
5381 }
5382
5383 return ret;
5384 }
5385
5386 static void mem_cgroup_move_charge(struct mm_struct *mm)
5387 {
5388 struct vm_area_struct *vma;
5389
5390 lru_add_drain_all();
5391 /*
5392 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5393 * move_lock while we're moving its pages to another memcg.
5394 * Then wait for already started RCU-only updates to finish.
5395 */
5396 atomic_inc(&mc.from->moving_account);
5397 synchronize_rcu();
5398 retry:
5399 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5400 /*
5401 * Someone who are holding the mmap_sem might be waiting in
5402 * waitq. So we cancel all extra charges, wake up all waiters,
5403 * and retry. Because we cancel precharges, we might not be able
5404 * to move enough charges, but moving charge is a best-effort
5405 * feature anyway, so it wouldn't be a big problem.
5406 */
5407 __mem_cgroup_clear_mc();
5408 cond_resched();
5409 goto retry;
5410 }
5411 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5412 int ret;
5413 struct mm_walk mem_cgroup_move_charge_walk = {
5414 .pmd_entry = mem_cgroup_move_charge_pte_range,
5415 .mm = mm,
5416 .private = vma,
5417 };
5418 if (is_vm_hugetlb_page(vma))
5419 continue;
5420 ret = walk_page_range(vma->vm_start, vma->vm_end,
5421 &mem_cgroup_move_charge_walk);
5422 if (ret)
5423 /*
5424 * means we have consumed all precharges and failed in
5425 * doing additional charge. Just abandon here.
5426 */
5427 break;
5428 }
5429 up_read(&mm->mmap_sem);
5430 atomic_dec(&mc.from->moving_account);
5431 }
5432
5433 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5434 struct cgroup_taskset *tset)
5435 {
5436 struct task_struct *p = cgroup_taskset_first(tset);
5437 struct mm_struct *mm = get_task_mm(p);
5438
5439 if (mm) {
5440 if (mc.to)
5441 mem_cgroup_move_charge(mm);
5442 mmput(mm);
5443 }
5444 if (mc.to)
5445 mem_cgroup_clear_mc();
5446 }
5447 #else /* !CONFIG_MMU */
5448 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5449 struct cgroup_taskset *tset)
5450 {
5451 return 0;
5452 }
5453 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5454 struct cgroup_taskset *tset)
5455 {
5456 }
5457 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5458 struct cgroup_taskset *tset)
5459 {
5460 }
5461 #endif
5462
5463 /*
5464 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5465 * to verify whether we're attached to the default hierarchy on each mount
5466 * attempt.
5467 */
5468 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5469 {
5470 /*
5471 * use_hierarchy is forced on the default hierarchy. cgroup core
5472 * guarantees that @root doesn't have any children, so turning it
5473 * on for the root memcg is enough.
5474 */
5475 if (cgroup_on_dfl(root_css->cgroup))
5476 mem_cgroup_from_css(root_css)->use_hierarchy = true;
5477 }
5478
5479 struct cgroup_subsys memory_cgrp_subsys = {
5480 .css_alloc = mem_cgroup_css_alloc,
5481 .css_online = mem_cgroup_css_online,
5482 .css_offline = mem_cgroup_css_offline,
5483 .css_free = mem_cgroup_css_free,
5484 .css_reset = mem_cgroup_css_reset,
5485 .can_attach = mem_cgroup_can_attach,
5486 .cancel_attach = mem_cgroup_cancel_attach,
5487 .attach = mem_cgroup_move_task,
5488 .bind = mem_cgroup_bind,
5489 .legacy_cftypes = mem_cgroup_files,
5490 .early_init = 0,
5491 };
5492
5493 #ifdef CONFIG_MEMCG_SWAP
5494 static int __init enable_swap_account(char *s)
5495 {
5496 if (!strcmp(s, "1"))
5497 really_do_swap_account = 1;
5498 else if (!strcmp(s, "0"))
5499 really_do_swap_account = 0;
5500 return 1;
5501 }
5502 __setup("swapaccount=", enable_swap_account);
5503
5504 static void __init memsw_file_init(void)
5505 {
5506 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5507 memsw_cgroup_files));
5508 }
5509
5510 static void __init enable_swap_cgroup(void)
5511 {
5512 if (!mem_cgroup_disabled() && really_do_swap_account) {
5513 do_swap_account = 1;
5514 memsw_file_init();
5515 }
5516 }
5517
5518 #else
5519 static void __init enable_swap_cgroup(void)
5520 {
5521 }
5522 #endif
5523
5524 #ifdef CONFIG_MEMCG_SWAP
5525 /**
5526 * mem_cgroup_swapout - transfer a memsw charge to swap
5527 * @page: page whose memsw charge to transfer
5528 * @entry: swap entry to move the charge to
5529 *
5530 * Transfer the memsw charge of @page to @entry.
5531 */
5532 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5533 {
5534 struct mem_cgroup *memcg;
5535 unsigned short oldid;
5536
5537 VM_BUG_ON_PAGE(PageLRU(page), page);
5538 VM_BUG_ON_PAGE(page_count(page), page);
5539
5540 if (!do_swap_account)
5541 return;
5542
5543 memcg = page->mem_cgroup;
5544
5545 /* Readahead page, never charged */
5546 if (!memcg)
5547 return;
5548
5549 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5550 VM_BUG_ON_PAGE(oldid, page);
5551 mem_cgroup_swap_statistics(memcg, true);
5552
5553 page->mem_cgroup = NULL;
5554
5555 if (!mem_cgroup_is_root(memcg))
5556 page_counter_uncharge(&memcg->memory, 1);
5557
5558 /* XXX: caller holds IRQ-safe mapping->tree_lock */
5559 VM_BUG_ON(!irqs_disabled());
5560
5561 mem_cgroup_charge_statistics(memcg, page, -1);
5562 memcg_check_events(memcg, page);
5563 }
5564
5565 /**
5566 * mem_cgroup_uncharge_swap - uncharge a swap entry
5567 * @entry: swap entry to uncharge
5568 *
5569 * Drop the memsw charge associated with @entry.
5570 */
5571 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5572 {
5573 struct mem_cgroup *memcg;
5574 unsigned short id;
5575
5576 if (!do_swap_account)
5577 return;
5578
5579 id = swap_cgroup_record(entry, 0);
5580 rcu_read_lock();
5581 memcg = mem_cgroup_lookup(id);
5582 if (memcg) {
5583 if (!mem_cgroup_is_root(memcg))
5584 page_counter_uncharge(&memcg->memsw, 1);
5585 mem_cgroup_swap_statistics(memcg, false);
5586 css_put(&memcg->css);
5587 }
5588 rcu_read_unlock();
5589 }
5590 #endif
5591
5592 /**
5593 * mem_cgroup_try_charge - try charging a page
5594 * @page: page to charge
5595 * @mm: mm context of the victim
5596 * @gfp_mask: reclaim mode
5597 * @memcgp: charged memcg return
5598 *
5599 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5600 * pages according to @gfp_mask if necessary.
5601 *
5602 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5603 * Otherwise, an error code is returned.
5604 *
5605 * After page->mapping has been set up, the caller must finalize the
5606 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5607 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5608 */
5609 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5610 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5611 {
5612 struct mem_cgroup *memcg = NULL;
5613 unsigned int nr_pages = 1;
5614 int ret = 0;
5615
5616 if (mem_cgroup_disabled())
5617 goto out;
5618
5619 if (PageSwapCache(page)) {
5620 /*
5621 * Every swap fault against a single page tries to charge the
5622 * page, bail as early as possible. shmem_unuse() encounters
5623 * already charged pages, too. The USED bit is protected by
5624 * the page lock, which serializes swap cache removal, which
5625 * in turn serializes uncharging.
5626 */
5627 if (page->mem_cgroup)
5628 goto out;
5629 }
5630
5631 if (PageTransHuge(page)) {
5632 nr_pages <<= compound_order(page);
5633 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5634 }
5635
5636 if (do_swap_account && PageSwapCache(page))
5637 memcg = try_get_mem_cgroup_from_page(page);
5638 if (!memcg)
5639 memcg = get_mem_cgroup_from_mm(mm);
5640
5641 ret = try_charge(memcg, gfp_mask, nr_pages);
5642
5643 css_put(&memcg->css);
5644
5645 if (ret == -EINTR) {
5646 memcg = root_mem_cgroup;
5647 ret = 0;
5648 }
5649 out:
5650 *memcgp = memcg;
5651 return ret;
5652 }
5653
5654 /**
5655 * mem_cgroup_commit_charge - commit a page charge
5656 * @page: page to charge
5657 * @memcg: memcg to charge the page to
5658 * @lrucare: page might be on LRU already
5659 *
5660 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5661 * after page->mapping has been set up. This must happen atomically
5662 * as part of the page instantiation, i.e. under the page table lock
5663 * for anonymous pages, under the page lock for page and swap cache.
5664 *
5665 * In addition, the page must not be on the LRU during the commit, to
5666 * prevent racing with task migration. If it might be, use @lrucare.
5667 *
5668 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5669 */
5670 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5671 bool lrucare)
5672 {
5673 unsigned int nr_pages = 1;
5674
5675 VM_BUG_ON_PAGE(!page->mapping, page);
5676 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5677
5678 if (mem_cgroup_disabled())
5679 return;
5680 /*
5681 * Swap faults will attempt to charge the same page multiple
5682 * times. But reuse_swap_page() might have removed the page
5683 * from swapcache already, so we can't check PageSwapCache().
5684 */
5685 if (!memcg)
5686 return;
5687
5688 commit_charge(page, memcg, lrucare);
5689
5690 if (PageTransHuge(page)) {
5691 nr_pages <<= compound_order(page);
5692 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5693 }
5694
5695 local_irq_disable();
5696 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5697 memcg_check_events(memcg, page);
5698 local_irq_enable();
5699
5700 if (do_swap_account && PageSwapCache(page)) {
5701 swp_entry_t entry = { .val = page_private(page) };
5702 /*
5703 * The swap entry might not get freed for a long time,
5704 * let's not wait for it. The page already received a
5705 * memory+swap charge, drop the swap entry duplicate.
5706 */
5707 mem_cgroup_uncharge_swap(entry);
5708 }
5709 }
5710
5711 /**
5712 * mem_cgroup_cancel_charge - cancel a page charge
5713 * @page: page to charge
5714 * @memcg: memcg to charge the page to
5715 *
5716 * Cancel a charge transaction started by mem_cgroup_try_charge().
5717 */
5718 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5719 {
5720 unsigned int nr_pages = 1;
5721
5722 if (mem_cgroup_disabled())
5723 return;
5724 /*
5725 * Swap faults will attempt to charge the same page multiple
5726 * times. But reuse_swap_page() might have removed the page
5727 * from swapcache already, so we can't check PageSwapCache().
5728 */
5729 if (!memcg)
5730 return;
5731
5732 if (PageTransHuge(page)) {
5733 nr_pages <<= compound_order(page);
5734 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5735 }
5736
5737 cancel_charge(memcg, nr_pages);
5738 }
5739
5740 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5741 unsigned long nr_anon, unsigned long nr_file,
5742 unsigned long nr_huge, struct page *dummy_page)
5743 {
5744 unsigned long nr_pages = nr_anon + nr_file;
5745 unsigned long flags;
5746
5747 if (!mem_cgroup_is_root(memcg)) {
5748 page_counter_uncharge(&memcg->memory, nr_pages);
5749 if (do_swap_account)
5750 page_counter_uncharge(&memcg->memsw, nr_pages);
5751 memcg_oom_recover(memcg);
5752 }
5753
5754 local_irq_save(flags);
5755 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5756 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5757 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5758 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5759 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5760 memcg_check_events(memcg, dummy_page);
5761 local_irq_restore(flags);
5762
5763 if (!mem_cgroup_is_root(memcg))
5764 css_put_many(&memcg->css, nr_pages);
5765 }
5766
5767 static void uncharge_list(struct list_head *page_list)
5768 {
5769 struct mem_cgroup *memcg = NULL;
5770 unsigned long nr_anon = 0;
5771 unsigned long nr_file = 0;
5772 unsigned long nr_huge = 0;
5773 unsigned long pgpgout = 0;
5774 struct list_head *next;
5775 struct page *page;
5776
5777 next = page_list->next;
5778 do {
5779 unsigned int nr_pages = 1;
5780
5781 page = list_entry(next, struct page, lru);
5782 next = page->lru.next;
5783
5784 VM_BUG_ON_PAGE(PageLRU(page), page);
5785 VM_BUG_ON_PAGE(page_count(page), page);
5786
5787 if (!page->mem_cgroup)
5788 continue;
5789
5790 /*
5791 * Nobody should be changing or seriously looking at
5792 * page->mem_cgroup at this point, we have fully
5793 * exclusive access to the page.
5794 */
5795
5796 if (memcg != page->mem_cgroup) {
5797 if (memcg) {
5798 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5799 nr_huge, page);
5800 pgpgout = nr_anon = nr_file = nr_huge = 0;
5801 }
5802 memcg = page->mem_cgroup;
5803 }
5804
5805 if (PageTransHuge(page)) {
5806 nr_pages <<= compound_order(page);
5807 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5808 nr_huge += nr_pages;
5809 }
5810
5811 if (PageAnon(page))
5812 nr_anon += nr_pages;
5813 else
5814 nr_file += nr_pages;
5815
5816 page->mem_cgroup = NULL;
5817
5818 pgpgout++;
5819 } while (next != page_list);
5820
5821 if (memcg)
5822 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5823 nr_huge, page);
5824 }
5825
5826 /**
5827 * mem_cgroup_uncharge - uncharge a page
5828 * @page: page to uncharge
5829 *
5830 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5831 * mem_cgroup_commit_charge().
5832 */
5833 void mem_cgroup_uncharge(struct page *page)
5834 {
5835 if (mem_cgroup_disabled())
5836 return;
5837
5838 /* Don't touch page->lru of any random page, pre-check: */
5839 if (!page->mem_cgroup)
5840 return;
5841
5842 INIT_LIST_HEAD(&page->lru);
5843 uncharge_list(&page->lru);
5844 }
5845
5846 /**
5847 * mem_cgroup_uncharge_list - uncharge a list of page
5848 * @page_list: list of pages to uncharge
5849 *
5850 * Uncharge a list of pages previously charged with
5851 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5852 */
5853 void mem_cgroup_uncharge_list(struct list_head *page_list)
5854 {
5855 if (mem_cgroup_disabled())
5856 return;
5857
5858 if (!list_empty(page_list))
5859 uncharge_list(page_list);
5860 }
5861
5862 /**
5863 * mem_cgroup_migrate - migrate a charge to another page
5864 * @oldpage: currently charged page
5865 * @newpage: page to transfer the charge to
5866 * @lrucare: both pages might be on the LRU already
5867 *
5868 * Migrate the charge from @oldpage to @newpage.
5869 *
5870 * Both pages must be locked, @newpage->mapping must be set up.
5871 */
5872 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5873 bool lrucare)
5874 {
5875 struct mem_cgroup *memcg;
5876 int isolated;
5877
5878 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5879 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5880 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5881 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5882 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5883 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5884 newpage);
5885
5886 if (mem_cgroup_disabled())
5887 return;
5888
5889 /* Page cache replacement: new page already charged? */
5890 if (newpage->mem_cgroup)
5891 return;
5892
5893 /*
5894 * Swapcache readahead pages can get migrated before being
5895 * charged, and migration from compaction can happen to an
5896 * uncharged page when the PFN walker finds a page that
5897 * reclaim just put back on the LRU but has not released yet.
5898 */
5899 memcg = oldpage->mem_cgroup;
5900 if (!memcg)
5901 return;
5902
5903 if (lrucare)
5904 lock_page_lru(oldpage, &isolated);
5905
5906 oldpage->mem_cgroup = NULL;
5907
5908 if (lrucare)
5909 unlock_page_lru(oldpage, isolated);
5910
5911 commit_charge(newpage, memcg, lrucare);
5912 }
5913
5914 /*
5915 * subsys_initcall() for memory controller.
5916 *
5917 * Some parts like hotcpu_notifier() have to be initialized from this context
5918 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5919 * everything that doesn't depend on a specific mem_cgroup structure should
5920 * be initialized from here.
5921 */
5922 static int __init mem_cgroup_init(void)
5923 {
5924 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5925 enable_swap_cgroup();
5926 mem_cgroup_soft_limit_tree_init();
5927 memcg_stock_init();
5928 return 0;
5929 }
5930 subsys_initcall(mem_cgroup_init);
This page took 0.141659 seconds and 6 git commands to generate.