memcg, slab: fix barrier usage when accessing memcg_caches
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include "internal.h"
60 #include <net/sock.h>
61 #include <net/ip.h>
62 #include <net/tcp_memcontrol.h>
63 #include "slab.h"
64
65 #include <asm/uaccess.h>
66
67 #include <trace/events/vmscan.h>
68
69 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
70 EXPORT_SYMBOL(mem_cgroup_subsys);
71
72 #define MEM_CGROUP_RECLAIM_RETRIES 5
73 static struct mem_cgroup *root_mem_cgroup __read_mostly;
74
75 #ifdef CONFIG_MEMCG_SWAP
76 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77 int do_swap_account __read_mostly;
78
79 /* for remember boot option*/
80 #ifdef CONFIG_MEMCG_SWAP_ENABLED
81 static int really_do_swap_account __initdata = 1;
82 #else
83 static int really_do_swap_account __initdata = 0;
84 #endif
85
86 #else
87 #define do_swap_account 0
88 #endif
89
90
91 static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
94 "rss_huge",
95 "mapped_file",
96 "writeback",
97 "swap",
98 };
99
100 enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
105 MEM_CGROUP_EVENTS_NSTATS,
106 };
107
108 static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113 };
114
115 static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121 };
122
123 /*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129 enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
131 MEM_CGROUP_TARGET_SOFTLIMIT,
132 MEM_CGROUP_TARGET_NUMAINFO,
133 MEM_CGROUP_NTARGETS,
134 };
135 #define THRESHOLDS_EVENTS_TARGET 128
136 #define SOFTLIMIT_EVENTS_TARGET 1024
137 #define NUMAINFO_EVENTS_TARGET 1024
138
139 struct mem_cgroup_stat_cpu {
140 long count[MEM_CGROUP_STAT_NSTATS];
141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142 unsigned long nr_page_events;
143 unsigned long targets[MEM_CGROUP_NTARGETS];
144 };
145
146 struct mem_cgroup_reclaim_iter {
147 /*
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
150 */
151 struct mem_cgroup *last_visited;
152 unsigned long last_dead_count;
153
154 /* scan generation, increased every round-trip */
155 unsigned int generation;
156 };
157
158 /*
159 * per-zone information in memory controller.
160 */
161 struct mem_cgroup_per_zone {
162 struct lruvec lruvec;
163 unsigned long lru_size[NR_LRU_LISTS];
164
165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166
167 struct rb_node tree_node; /* RB tree node */
168 unsigned long long usage_in_excess;/* Set to the value by which */
169 /* the soft limit is exceeded*/
170 bool on_tree;
171 struct mem_cgroup *memcg; /* Back pointer, we cannot */
172 /* use container_of */
173 };
174
175 struct mem_cgroup_per_node {
176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177 };
178
179 /*
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
182 */
183
184 struct mem_cgroup_tree_per_zone {
185 struct rb_root rb_root;
186 spinlock_t lock;
187 };
188
189 struct mem_cgroup_tree_per_node {
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191 };
192
193 struct mem_cgroup_tree {
194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195 };
196
197 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198
199 struct mem_cgroup_threshold {
200 struct eventfd_ctx *eventfd;
201 u64 threshold;
202 };
203
204 /* For threshold */
205 struct mem_cgroup_threshold_ary {
206 /* An array index points to threshold just below or equal to usage. */
207 int current_threshold;
208 /* Size of entries[] */
209 unsigned int size;
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries[0];
212 };
213
214 struct mem_cgroup_thresholds {
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary *primary;
217 /*
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
221 */
222 struct mem_cgroup_threshold_ary *spare;
223 };
224
225 /* for OOM */
226 struct mem_cgroup_eventfd_list {
227 struct list_head list;
228 struct eventfd_ctx *eventfd;
229 };
230
231 /*
232 * cgroup_event represents events which userspace want to receive.
233 */
234 struct mem_cgroup_event {
235 /*
236 * memcg which the event belongs to.
237 */
238 struct mem_cgroup *memcg;
239 /*
240 * eventfd to signal userspace about the event.
241 */
242 struct eventfd_ctx *eventfd;
243 /*
244 * Each of these stored in a list by the cgroup.
245 */
246 struct list_head list;
247 /*
248 * register_event() callback will be used to add new userspace
249 * waiter for changes related to this event. Use eventfd_signal()
250 * on eventfd to send notification to userspace.
251 */
252 int (*register_event)(struct mem_cgroup *memcg,
253 struct eventfd_ctx *eventfd, const char *args);
254 /*
255 * unregister_event() callback will be called when userspace closes
256 * the eventfd or on cgroup removing. This callback must be set,
257 * if you want provide notification functionality.
258 */
259 void (*unregister_event)(struct mem_cgroup *memcg,
260 struct eventfd_ctx *eventfd);
261 /*
262 * All fields below needed to unregister event when
263 * userspace closes eventfd.
264 */
265 poll_table pt;
266 wait_queue_head_t *wqh;
267 wait_queue_t wait;
268 struct work_struct remove;
269 };
270
271 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
273
274 /*
275 * The memory controller data structure. The memory controller controls both
276 * page cache and RSS per cgroup. We would eventually like to provide
277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278 * to help the administrator determine what knobs to tune.
279 *
280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
281 * we hit the water mark. May be even add a low water mark, such that
282 * no reclaim occurs from a cgroup at it's low water mark, this is
283 * a feature that will be implemented much later in the future.
284 */
285 struct mem_cgroup {
286 struct cgroup_subsys_state css;
287 /*
288 * the counter to account for memory usage
289 */
290 struct res_counter res;
291
292 /* vmpressure notifications */
293 struct vmpressure vmpressure;
294
295 /*
296 * the counter to account for mem+swap usage.
297 */
298 struct res_counter memsw;
299
300 /*
301 * the counter to account for kernel memory usage.
302 */
303 struct res_counter kmem;
304 /*
305 * Should the accounting and control be hierarchical, per subtree?
306 */
307 bool use_hierarchy;
308 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
309
310 bool oom_lock;
311 atomic_t under_oom;
312 atomic_t oom_wakeups;
313
314 int swappiness;
315 /* OOM-Killer disable */
316 int oom_kill_disable;
317
318 /* set when res.limit == memsw.limit */
319 bool memsw_is_minimum;
320
321 /* protect arrays of thresholds */
322 struct mutex thresholds_lock;
323
324 /* thresholds for memory usage. RCU-protected */
325 struct mem_cgroup_thresholds thresholds;
326
327 /* thresholds for mem+swap usage. RCU-protected */
328 struct mem_cgroup_thresholds memsw_thresholds;
329
330 /* For oom notifier event fd */
331 struct list_head oom_notify;
332
333 /*
334 * Should we move charges of a task when a task is moved into this
335 * mem_cgroup ? And what type of charges should we move ?
336 */
337 unsigned long move_charge_at_immigrate;
338 /*
339 * set > 0 if pages under this cgroup are moving to other cgroup.
340 */
341 atomic_t moving_account;
342 /* taken only while moving_account > 0 */
343 spinlock_t move_lock;
344 /*
345 * percpu counter.
346 */
347 struct mem_cgroup_stat_cpu __percpu *stat;
348 /*
349 * used when a cpu is offlined or other synchronizations
350 * See mem_cgroup_read_stat().
351 */
352 struct mem_cgroup_stat_cpu nocpu_base;
353 spinlock_t pcp_counter_lock;
354
355 atomic_t dead_count;
356 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
357 struct cg_proto tcp_mem;
358 #endif
359 #if defined(CONFIG_MEMCG_KMEM)
360 /* analogous to slab_common's slab_caches list. per-memcg */
361 struct list_head memcg_slab_caches;
362 /* Not a spinlock, we can take a lot of time walking the list */
363 struct mutex slab_caches_mutex;
364 /* Index in the kmem_cache->memcg_params->memcg_caches array */
365 int kmemcg_id;
366 #endif
367
368 int last_scanned_node;
369 #if MAX_NUMNODES > 1
370 nodemask_t scan_nodes;
371 atomic_t numainfo_events;
372 atomic_t numainfo_updating;
373 #endif
374
375 /* List of events which userspace want to receive */
376 struct list_head event_list;
377 spinlock_t event_list_lock;
378
379 struct mem_cgroup_per_node *nodeinfo[0];
380 /* WARNING: nodeinfo must be the last member here */
381 };
382
383 /* internal only representation about the status of kmem accounting. */
384 enum {
385 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
386 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
387 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
388 };
389
390 /* We account when limit is on, but only after call sites are patched */
391 #define KMEM_ACCOUNTED_MASK \
392 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
393
394 #ifdef CONFIG_MEMCG_KMEM
395 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
396 {
397 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
398 }
399
400 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
401 {
402 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
403 }
404
405 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
406 {
407 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
408 }
409
410 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
411 {
412 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
413 }
414
415 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
416 {
417 /*
418 * Our caller must use css_get() first, because memcg_uncharge_kmem()
419 * will call css_put() if it sees the memcg is dead.
420 */
421 smp_wmb();
422 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
423 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
424 }
425
426 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
427 {
428 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
429 &memcg->kmem_account_flags);
430 }
431 #endif
432
433 /* Stuffs for move charges at task migration. */
434 /*
435 * Types of charges to be moved. "move_charge_at_immitgrate" and
436 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
437 */
438 enum move_type {
439 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
440 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
441 NR_MOVE_TYPE,
442 };
443
444 /* "mc" and its members are protected by cgroup_mutex */
445 static struct move_charge_struct {
446 spinlock_t lock; /* for from, to */
447 struct mem_cgroup *from;
448 struct mem_cgroup *to;
449 unsigned long immigrate_flags;
450 unsigned long precharge;
451 unsigned long moved_charge;
452 unsigned long moved_swap;
453 struct task_struct *moving_task; /* a task moving charges */
454 wait_queue_head_t waitq; /* a waitq for other context */
455 } mc = {
456 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
457 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
458 };
459
460 static bool move_anon(void)
461 {
462 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
463 }
464
465 static bool move_file(void)
466 {
467 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
468 }
469
470 /*
471 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
472 * limit reclaim to prevent infinite loops, if they ever occur.
473 */
474 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
475 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
476
477 enum charge_type {
478 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
479 MEM_CGROUP_CHARGE_TYPE_ANON,
480 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
481 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
482 NR_CHARGE_TYPE,
483 };
484
485 /* for encoding cft->private value on file */
486 enum res_type {
487 _MEM,
488 _MEMSWAP,
489 _OOM_TYPE,
490 _KMEM,
491 };
492
493 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
494 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
495 #define MEMFILE_ATTR(val) ((val) & 0xffff)
496 /* Used for OOM nofiier */
497 #define OOM_CONTROL (0)
498
499 /*
500 * Reclaim flags for mem_cgroup_hierarchical_reclaim
501 */
502 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
503 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
504 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
505 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
506
507 /*
508 * The memcg_create_mutex will be held whenever a new cgroup is created.
509 * As a consequence, any change that needs to protect against new child cgroups
510 * appearing has to hold it as well.
511 */
512 static DEFINE_MUTEX(memcg_create_mutex);
513
514 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
515 {
516 return s ? container_of(s, struct mem_cgroup, css) : NULL;
517 }
518
519 /* Some nice accessors for the vmpressure. */
520 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
521 {
522 if (!memcg)
523 memcg = root_mem_cgroup;
524 return &memcg->vmpressure;
525 }
526
527 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
528 {
529 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
530 }
531
532 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
533 {
534 return (memcg == root_mem_cgroup);
535 }
536
537 /*
538 * We restrict the id in the range of [1, 65535], so it can fit into
539 * an unsigned short.
540 */
541 #define MEM_CGROUP_ID_MAX USHRT_MAX
542
543 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
544 {
545 /*
546 * The ID of the root cgroup is 0, but memcg treat 0 as an
547 * invalid ID, so we return (cgroup_id + 1).
548 */
549 return memcg->css.cgroup->id + 1;
550 }
551
552 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
553 {
554 struct cgroup_subsys_state *css;
555
556 css = css_from_id(id - 1, &mem_cgroup_subsys);
557 return mem_cgroup_from_css(css);
558 }
559
560 /* Writing them here to avoid exposing memcg's inner layout */
561 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
562
563 void sock_update_memcg(struct sock *sk)
564 {
565 if (mem_cgroup_sockets_enabled) {
566 struct mem_cgroup *memcg;
567 struct cg_proto *cg_proto;
568
569 BUG_ON(!sk->sk_prot->proto_cgroup);
570
571 /* Socket cloning can throw us here with sk_cgrp already
572 * filled. It won't however, necessarily happen from
573 * process context. So the test for root memcg given
574 * the current task's memcg won't help us in this case.
575 *
576 * Respecting the original socket's memcg is a better
577 * decision in this case.
578 */
579 if (sk->sk_cgrp) {
580 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
581 css_get(&sk->sk_cgrp->memcg->css);
582 return;
583 }
584
585 rcu_read_lock();
586 memcg = mem_cgroup_from_task(current);
587 cg_proto = sk->sk_prot->proto_cgroup(memcg);
588 if (!mem_cgroup_is_root(memcg) &&
589 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
590 sk->sk_cgrp = cg_proto;
591 }
592 rcu_read_unlock();
593 }
594 }
595 EXPORT_SYMBOL(sock_update_memcg);
596
597 void sock_release_memcg(struct sock *sk)
598 {
599 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
600 struct mem_cgroup *memcg;
601 WARN_ON(!sk->sk_cgrp->memcg);
602 memcg = sk->sk_cgrp->memcg;
603 css_put(&sk->sk_cgrp->memcg->css);
604 }
605 }
606
607 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
608 {
609 if (!memcg || mem_cgroup_is_root(memcg))
610 return NULL;
611
612 return &memcg->tcp_mem;
613 }
614 EXPORT_SYMBOL(tcp_proto_cgroup);
615
616 static void disarm_sock_keys(struct mem_cgroup *memcg)
617 {
618 if (!memcg_proto_activated(&memcg->tcp_mem))
619 return;
620 static_key_slow_dec(&memcg_socket_limit_enabled);
621 }
622 #else
623 static void disarm_sock_keys(struct mem_cgroup *memcg)
624 {
625 }
626 #endif
627
628 #ifdef CONFIG_MEMCG_KMEM
629 /*
630 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
631 * The main reason for not using cgroup id for this:
632 * this works better in sparse environments, where we have a lot of memcgs,
633 * but only a few kmem-limited. Or also, if we have, for instance, 200
634 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
635 * 200 entry array for that.
636 *
637 * The current size of the caches array is stored in
638 * memcg_limited_groups_array_size. It will double each time we have to
639 * increase it.
640 */
641 static DEFINE_IDA(kmem_limited_groups);
642 int memcg_limited_groups_array_size;
643
644 /*
645 * MIN_SIZE is different than 1, because we would like to avoid going through
646 * the alloc/free process all the time. In a small machine, 4 kmem-limited
647 * cgroups is a reasonable guess. In the future, it could be a parameter or
648 * tunable, but that is strictly not necessary.
649 *
650 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
651 * this constant directly from cgroup, but it is understandable that this is
652 * better kept as an internal representation in cgroup.c. In any case, the
653 * cgrp_id space is not getting any smaller, and we don't have to necessarily
654 * increase ours as well if it increases.
655 */
656 #define MEMCG_CACHES_MIN_SIZE 4
657 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
658
659 /*
660 * A lot of the calls to the cache allocation functions are expected to be
661 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
662 * conditional to this static branch, we'll have to allow modules that does
663 * kmem_cache_alloc and the such to see this symbol as well
664 */
665 struct static_key memcg_kmem_enabled_key;
666 EXPORT_SYMBOL(memcg_kmem_enabled_key);
667
668 static void disarm_kmem_keys(struct mem_cgroup *memcg)
669 {
670 if (memcg_kmem_is_active(memcg)) {
671 static_key_slow_dec(&memcg_kmem_enabled_key);
672 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
673 }
674 /*
675 * This check can't live in kmem destruction function,
676 * since the charges will outlive the cgroup
677 */
678 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
679 }
680 #else
681 static void disarm_kmem_keys(struct mem_cgroup *memcg)
682 {
683 }
684 #endif /* CONFIG_MEMCG_KMEM */
685
686 static void disarm_static_keys(struct mem_cgroup *memcg)
687 {
688 disarm_sock_keys(memcg);
689 disarm_kmem_keys(memcg);
690 }
691
692 static void drain_all_stock_async(struct mem_cgroup *memcg);
693
694 static struct mem_cgroup_per_zone *
695 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
696 {
697 VM_BUG_ON((unsigned)nid >= nr_node_ids);
698 return &memcg->nodeinfo[nid]->zoneinfo[zid];
699 }
700
701 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
702 {
703 return &memcg->css;
704 }
705
706 static struct mem_cgroup_per_zone *
707 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
708 {
709 int nid = page_to_nid(page);
710 int zid = page_zonenum(page);
711
712 return mem_cgroup_zoneinfo(memcg, nid, zid);
713 }
714
715 static struct mem_cgroup_tree_per_zone *
716 soft_limit_tree_node_zone(int nid, int zid)
717 {
718 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
719 }
720
721 static struct mem_cgroup_tree_per_zone *
722 soft_limit_tree_from_page(struct page *page)
723 {
724 int nid = page_to_nid(page);
725 int zid = page_zonenum(page);
726
727 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
728 }
729
730 static void
731 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
732 struct mem_cgroup_per_zone *mz,
733 struct mem_cgroup_tree_per_zone *mctz,
734 unsigned long long new_usage_in_excess)
735 {
736 struct rb_node **p = &mctz->rb_root.rb_node;
737 struct rb_node *parent = NULL;
738 struct mem_cgroup_per_zone *mz_node;
739
740 if (mz->on_tree)
741 return;
742
743 mz->usage_in_excess = new_usage_in_excess;
744 if (!mz->usage_in_excess)
745 return;
746 while (*p) {
747 parent = *p;
748 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
749 tree_node);
750 if (mz->usage_in_excess < mz_node->usage_in_excess)
751 p = &(*p)->rb_left;
752 /*
753 * We can't avoid mem cgroups that are over their soft
754 * limit by the same amount
755 */
756 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
757 p = &(*p)->rb_right;
758 }
759 rb_link_node(&mz->tree_node, parent, p);
760 rb_insert_color(&mz->tree_node, &mctz->rb_root);
761 mz->on_tree = true;
762 }
763
764 static void
765 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
766 struct mem_cgroup_per_zone *mz,
767 struct mem_cgroup_tree_per_zone *mctz)
768 {
769 if (!mz->on_tree)
770 return;
771 rb_erase(&mz->tree_node, &mctz->rb_root);
772 mz->on_tree = false;
773 }
774
775 static void
776 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
777 struct mem_cgroup_per_zone *mz,
778 struct mem_cgroup_tree_per_zone *mctz)
779 {
780 spin_lock(&mctz->lock);
781 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
782 spin_unlock(&mctz->lock);
783 }
784
785
786 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
787 {
788 unsigned long long excess;
789 struct mem_cgroup_per_zone *mz;
790 struct mem_cgroup_tree_per_zone *mctz;
791 int nid = page_to_nid(page);
792 int zid = page_zonenum(page);
793 mctz = soft_limit_tree_from_page(page);
794
795 /*
796 * Necessary to update all ancestors when hierarchy is used.
797 * because their event counter is not touched.
798 */
799 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
800 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
801 excess = res_counter_soft_limit_excess(&memcg->res);
802 /*
803 * We have to update the tree if mz is on RB-tree or
804 * mem is over its softlimit.
805 */
806 if (excess || mz->on_tree) {
807 spin_lock(&mctz->lock);
808 /* if on-tree, remove it */
809 if (mz->on_tree)
810 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
811 /*
812 * Insert again. mz->usage_in_excess will be updated.
813 * If excess is 0, no tree ops.
814 */
815 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
816 spin_unlock(&mctz->lock);
817 }
818 }
819 }
820
821 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
822 {
823 int node, zone;
824 struct mem_cgroup_per_zone *mz;
825 struct mem_cgroup_tree_per_zone *mctz;
826
827 for_each_node(node) {
828 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
829 mz = mem_cgroup_zoneinfo(memcg, node, zone);
830 mctz = soft_limit_tree_node_zone(node, zone);
831 mem_cgroup_remove_exceeded(memcg, mz, mctz);
832 }
833 }
834 }
835
836 static struct mem_cgroup_per_zone *
837 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
838 {
839 struct rb_node *rightmost = NULL;
840 struct mem_cgroup_per_zone *mz;
841
842 retry:
843 mz = NULL;
844 rightmost = rb_last(&mctz->rb_root);
845 if (!rightmost)
846 goto done; /* Nothing to reclaim from */
847
848 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
849 /*
850 * Remove the node now but someone else can add it back,
851 * we will to add it back at the end of reclaim to its correct
852 * position in the tree.
853 */
854 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
855 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
856 !css_tryget(&mz->memcg->css))
857 goto retry;
858 done:
859 return mz;
860 }
861
862 static struct mem_cgroup_per_zone *
863 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
864 {
865 struct mem_cgroup_per_zone *mz;
866
867 spin_lock(&mctz->lock);
868 mz = __mem_cgroup_largest_soft_limit_node(mctz);
869 spin_unlock(&mctz->lock);
870 return mz;
871 }
872
873 /*
874 * Implementation Note: reading percpu statistics for memcg.
875 *
876 * Both of vmstat[] and percpu_counter has threshold and do periodic
877 * synchronization to implement "quick" read. There are trade-off between
878 * reading cost and precision of value. Then, we may have a chance to implement
879 * a periodic synchronizion of counter in memcg's counter.
880 *
881 * But this _read() function is used for user interface now. The user accounts
882 * memory usage by memory cgroup and he _always_ requires exact value because
883 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
884 * have to visit all online cpus and make sum. So, for now, unnecessary
885 * synchronization is not implemented. (just implemented for cpu hotplug)
886 *
887 * If there are kernel internal actions which can make use of some not-exact
888 * value, and reading all cpu value can be performance bottleneck in some
889 * common workload, threashold and synchonization as vmstat[] should be
890 * implemented.
891 */
892 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
893 enum mem_cgroup_stat_index idx)
894 {
895 long val = 0;
896 int cpu;
897
898 get_online_cpus();
899 for_each_online_cpu(cpu)
900 val += per_cpu(memcg->stat->count[idx], cpu);
901 #ifdef CONFIG_HOTPLUG_CPU
902 spin_lock(&memcg->pcp_counter_lock);
903 val += memcg->nocpu_base.count[idx];
904 spin_unlock(&memcg->pcp_counter_lock);
905 #endif
906 put_online_cpus();
907 return val;
908 }
909
910 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
911 bool charge)
912 {
913 int val = (charge) ? 1 : -1;
914 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
915 }
916
917 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
918 enum mem_cgroup_events_index idx)
919 {
920 unsigned long val = 0;
921 int cpu;
922
923 get_online_cpus();
924 for_each_online_cpu(cpu)
925 val += per_cpu(memcg->stat->events[idx], cpu);
926 #ifdef CONFIG_HOTPLUG_CPU
927 spin_lock(&memcg->pcp_counter_lock);
928 val += memcg->nocpu_base.events[idx];
929 spin_unlock(&memcg->pcp_counter_lock);
930 #endif
931 put_online_cpus();
932 return val;
933 }
934
935 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
936 struct page *page,
937 bool anon, int nr_pages)
938 {
939 preempt_disable();
940
941 /*
942 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
943 * counted as CACHE even if it's on ANON LRU.
944 */
945 if (anon)
946 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
947 nr_pages);
948 else
949 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
950 nr_pages);
951
952 if (PageTransHuge(page))
953 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
954 nr_pages);
955
956 /* pagein of a big page is an event. So, ignore page size */
957 if (nr_pages > 0)
958 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
959 else {
960 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
961 nr_pages = -nr_pages; /* for event */
962 }
963
964 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
965
966 preempt_enable();
967 }
968
969 unsigned long
970 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
971 {
972 struct mem_cgroup_per_zone *mz;
973
974 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
975 return mz->lru_size[lru];
976 }
977
978 static unsigned long
979 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
980 unsigned int lru_mask)
981 {
982 struct mem_cgroup_per_zone *mz;
983 enum lru_list lru;
984 unsigned long ret = 0;
985
986 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
987
988 for_each_lru(lru) {
989 if (BIT(lru) & lru_mask)
990 ret += mz->lru_size[lru];
991 }
992 return ret;
993 }
994
995 static unsigned long
996 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
997 int nid, unsigned int lru_mask)
998 {
999 u64 total = 0;
1000 int zid;
1001
1002 for (zid = 0; zid < MAX_NR_ZONES; zid++)
1003 total += mem_cgroup_zone_nr_lru_pages(memcg,
1004 nid, zid, lru_mask);
1005
1006 return total;
1007 }
1008
1009 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
1010 unsigned int lru_mask)
1011 {
1012 int nid;
1013 u64 total = 0;
1014
1015 for_each_node_state(nid, N_MEMORY)
1016 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
1017 return total;
1018 }
1019
1020 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1021 enum mem_cgroup_events_target target)
1022 {
1023 unsigned long val, next;
1024
1025 val = __this_cpu_read(memcg->stat->nr_page_events);
1026 next = __this_cpu_read(memcg->stat->targets[target]);
1027 /* from time_after() in jiffies.h */
1028 if ((long)next - (long)val < 0) {
1029 switch (target) {
1030 case MEM_CGROUP_TARGET_THRESH:
1031 next = val + THRESHOLDS_EVENTS_TARGET;
1032 break;
1033 case MEM_CGROUP_TARGET_SOFTLIMIT:
1034 next = val + SOFTLIMIT_EVENTS_TARGET;
1035 break;
1036 case MEM_CGROUP_TARGET_NUMAINFO:
1037 next = val + NUMAINFO_EVENTS_TARGET;
1038 break;
1039 default:
1040 break;
1041 }
1042 __this_cpu_write(memcg->stat->targets[target], next);
1043 return true;
1044 }
1045 return false;
1046 }
1047
1048 /*
1049 * Check events in order.
1050 *
1051 */
1052 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1053 {
1054 preempt_disable();
1055 /* threshold event is triggered in finer grain than soft limit */
1056 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1057 MEM_CGROUP_TARGET_THRESH))) {
1058 bool do_softlimit;
1059 bool do_numainfo __maybe_unused;
1060
1061 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1062 MEM_CGROUP_TARGET_SOFTLIMIT);
1063 #if MAX_NUMNODES > 1
1064 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1065 MEM_CGROUP_TARGET_NUMAINFO);
1066 #endif
1067 preempt_enable();
1068
1069 mem_cgroup_threshold(memcg);
1070 if (unlikely(do_softlimit))
1071 mem_cgroup_update_tree(memcg, page);
1072 #if MAX_NUMNODES > 1
1073 if (unlikely(do_numainfo))
1074 atomic_inc(&memcg->numainfo_events);
1075 #endif
1076 } else
1077 preempt_enable();
1078 }
1079
1080 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1081 {
1082 /*
1083 * mm_update_next_owner() may clear mm->owner to NULL
1084 * if it races with swapoff, page migration, etc.
1085 * So this can be called with p == NULL.
1086 */
1087 if (unlikely(!p))
1088 return NULL;
1089
1090 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1091 }
1092
1093 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1094 {
1095 struct mem_cgroup *memcg = NULL;
1096
1097 if (!mm)
1098 return NULL;
1099 /*
1100 * Because we have no locks, mm->owner's may be being moved to other
1101 * cgroup. We use css_tryget() here even if this looks
1102 * pessimistic (rather than adding locks here).
1103 */
1104 rcu_read_lock();
1105 do {
1106 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1107 if (unlikely(!memcg))
1108 break;
1109 } while (!css_tryget(&memcg->css));
1110 rcu_read_unlock();
1111 return memcg;
1112 }
1113
1114 /*
1115 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1116 * ref. count) or NULL if the whole root's subtree has been visited.
1117 *
1118 * helper function to be used by mem_cgroup_iter
1119 */
1120 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1121 struct mem_cgroup *last_visited)
1122 {
1123 struct cgroup_subsys_state *prev_css, *next_css;
1124
1125 prev_css = last_visited ? &last_visited->css : NULL;
1126 skip_node:
1127 next_css = css_next_descendant_pre(prev_css, &root->css);
1128
1129 /*
1130 * Even if we found a group we have to make sure it is
1131 * alive. css && !memcg means that the groups should be
1132 * skipped and we should continue the tree walk.
1133 * last_visited css is safe to use because it is
1134 * protected by css_get and the tree walk is rcu safe.
1135 */
1136 if (next_css) {
1137 struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
1138
1139 if (css_tryget(&mem->css))
1140 return mem;
1141 else {
1142 prev_css = next_css;
1143 goto skip_node;
1144 }
1145 }
1146
1147 return NULL;
1148 }
1149
1150 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1151 {
1152 /*
1153 * When a group in the hierarchy below root is destroyed, the
1154 * hierarchy iterator can no longer be trusted since it might
1155 * have pointed to the destroyed group. Invalidate it.
1156 */
1157 atomic_inc(&root->dead_count);
1158 }
1159
1160 static struct mem_cgroup *
1161 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1162 struct mem_cgroup *root,
1163 int *sequence)
1164 {
1165 struct mem_cgroup *position = NULL;
1166 /*
1167 * A cgroup destruction happens in two stages: offlining and
1168 * release. They are separated by a RCU grace period.
1169 *
1170 * If the iterator is valid, we may still race with an
1171 * offlining. The RCU lock ensures the object won't be
1172 * released, tryget will fail if we lost the race.
1173 */
1174 *sequence = atomic_read(&root->dead_count);
1175 if (iter->last_dead_count == *sequence) {
1176 smp_rmb();
1177 position = iter->last_visited;
1178 if (position && !css_tryget(&position->css))
1179 position = NULL;
1180 }
1181 return position;
1182 }
1183
1184 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1185 struct mem_cgroup *last_visited,
1186 struct mem_cgroup *new_position,
1187 int sequence)
1188 {
1189 if (last_visited)
1190 css_put(&last_visited->css);
1191 /*
1192 * We store the sequence count from the time @last_visited was
1193 * loaded successfully instead of rereading it here so that we
1194 * don't lose destruction events in between. We could have
1195 * raced with the destruction of @new_position after all.
1196 */
1197 iter->last_visited = new_position;
1198 smp_wmb();
1199 iter->last_dead_count = sequence;
1200 }
1201
1202 /**
1203 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1204 * @root: hierarchy root
1205 * @prev: previously returned memcg, NULL on first invocation
1206 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1207 *
1208 * Returns references to children of the hierarchy below @root, or
1209 * @root itself, or %NULL after a full round-trip.
1210 *
1211 * Caller must pass the return value in @prev on subsequent
1212 * invocations for reference counting, or use mem_cgroup_iter_break()
1213 * to cancel a hierarchy walk before the round-trip is complete.
1214 *
1215 * Reclaimers can specify a zone and a priority level in @reclaim to
1216 * divide up the memcgs in the hierarchy among all concurrent
1217 * reclaimers operating on the same zone and priority.
1218 */
1219 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1220 struct mem_cgroup *prev,
1221 struct mem_cgroup_reclaim_cookie *reclaim)
1222 {
1223 struct mem_cgroup *memcg = NULL;
1224 struct mem_cgroup *last_visited = NULL;
1225
1226 if (mem_cgroup_disabled())
1227 return NULL;
1228
1229 if (!root)
1230 root = root_mem_cgroup;
1231
1232 if (prev && !reclaim)
1233 last_visited = prev;
1234
1235 if (!root->use_hierarchy && root != root_mem_cgroup) {
1236 if (prev)
1237 goto out_css_put;
1238 return root;
1239 }
1240
1241 rcu_read_lock();
1242 while (!memcg) {
1243 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1244 int uninitialized_var(seq);
1245
1246 if (reclaim) {
1247 int nid = zone_to_nid(reclaim->zone);
1248 int zid = zone_idx(reclaim->zone);
1249 struct mem_cgroup_per_zone *mz;
1250
1251 mz = mem_cgroup_zoneinfo(root, nid, zid);
1252 iter = &mz->reclaim_iter[reclaim->priority];
1253 if (prev && reclaim->generation != iter->generation) {
1254 iter->last_visited = NULL;
1255 goto out_unlock;
1256 }
1257
1258 last_visited = mem_cgroup_iter_load(iter, root, &seq);
1259 }
1260
1261 memcg = __mem_cgroup_iter_next(root, last_visited);
1262
1263 if (reclaim) {
1264 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1265
1266 if (!memcg)
1267 iter->generation++;
1268 else if (!prev && memcg)
1269 reclaim->generation = iter->generation;
1270 }
1271
1272 if (prev && !memcg)
1273 goto out_unlock;
1274 }
1275 out_unlock:
1276 rcu_read_unlock();
1277 out_css_put:
1278 if (prev && prev != root)
1279 css_put(&prev->css);
1280
1281 return memcg;
1282 }
1283
1284 /**
1285 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1286 * @root: hierarchy root
1287 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1288 */
1289 void mem_cgroup_iter_break(struct mem_cgroup *root,
1290 struct mem_cgroup *prev)
1291 {
1292 if (!root)
1293 root = root_mem_cgroup;
1294 if (prev && prev != root)
1295 css_put(&prev->css);
1296 }
1297
1298 /*
1299 * Iteration constructs for visiting all cgroups (under a tree). If
1300 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1301 * be used for reference counting.
1302 */
1303 #define for_each_mem_cgroup_tree(iter, root) \
1304 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1305 iter != NULL; \
1306 iter = mem_cgroup_iter(root, iter, NULL))
1307
1308 #define for_each_mem_cgroup(iter) \
1309 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1310 iter != NULL; \
1311 iter = mem_cgroup_iter(NULL, iter, NULL))
1312
1313 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1314 {
1315 struct mem_cgroup *memcg;
1316
1317 rcu_read_lock();
1318 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1319 if (unlikely(!memcg))
1320 goto out;
1321
1322 switch (idx) {
1323 case PGFAULT:
1324 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1325 break;
1326 case PGMAJFAULT:
1327 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1328 break;
1329 default:
1330 BUG();
1331 }
1332 out:
1333 rcu_read_unlock();
1334 }
1335 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1336
1337 /**
1338 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1339 * @zone: zone of the wanted lruvec
1340 * @memcg: memcg of the wanted lruvec
1341 *
1342 * Returns the lru list vector holding pages for the given @zone and
1343 * @mem. This can be the global zone lruvec, if the memory controller
1344 * is disabled.
1345 */
1346 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1347 struct mem_cgroup *memcg)
1348 {
1349 struct mem_cgroup_per_zone *mz;
1350 struct lruvec *lruvec;
1351
1352 if (mem_cgroup_disabled()) {
1353 lruvec = &zone->lruvec;
1354 goto out;
1355 }
1356
1357 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1358 lruvec = &mz->lruvec;
1359 out:
1360 /*
1361 * Since a node can be onlined after the mem_cgroup was created,
1362 * we have to be prepared to initialize lruvec->zone here;
1363 * and if offlined then reonlined, we need to reinitialize it.
1364 */
1365 if (unlikely(lruvec->zone != zone))
1366 lruvec->zone = zone;
1367 return lruvec;
1368 }
1369
1370 /*
1371 * Following LRU functions are allowed to be used without PCG_LOCK.
1372 * Operations are called by routine of global LRU independently from memcg.
1373 * What we have to take care of here is validness of pc->mem_cgroup.
1374 *
1375 * Changes to pc->mem_cgroup happens when
1376 * 1. charge
1377 * 2. moving account
1378 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1379 * It is added to LRU before charge.
1380 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1381 * When moving account, the page is not on LRU. It's isolated.
1382 */
1383
1384 /**
1385 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1386 * @page: the page
1387 * @zone: zone of the page
1388 */
1389 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1390 {
1391 struct mem_cgroup_per_zone *mz;
1392 struct mem_cgroup *memcg;
1393 struct page_cgroup *pc;
1394 struct lruvec *lruvec;
1395
1396 if (mem_cgroup_disabled()) {
1397 lruvec = &zone->lruvec;
1398 goto out;
1399 }
1400
1401 pc = lookup_page_cgroup(page);
1402 memcg = pc->mem_cgroup;
1403
1404 /*
1405 * Surreptitiously switch any uncharged offlist page to root:
1406 * an uncharged page off lru does nothing to secure
1407 * its former mem_cgroup from sudden removal.
1408 *
1409 * Our caller holds lru_lock, and PageCgroupUsed is updated
1410 * under page_cgroup lock: between them, they make all uses
1411 * of pc->mem_cgroup safe.
1412 */
1413 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1414 pc->mem_cgroup = memcg = root_mem_cgroup;
1415
1416 mz = page_cgroup_zoneinfo(memcg, page);
1417 lruvec = &mz->lruvec;
1418 out:
1419 /*
1420 * Since a node can be onlined after the mem_cgroup was created,
1421 * we have to be prepared to initialize lruvec->zone here;
1422 * and if offlined then reonlined, we need to reinitialize it.
1423 */
1424 if (unlikely(lruvec->zone != zone))
1425 lruvec->zone = zone;
1426 return lruvec;
1427 }
1428
1429 /**
1430 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1431 * @lruvec: mem_cgroup per zone lru vector
1432 * @lru: index of lru list the page is sitting on
1433 * @nr_pages: positive when adding or negative when removing
1434 *
1435 * This function must be called when a page is added to or removed from an
1436 * lru list.
1437 */
1438 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1439 int nr_pages)
1440 {
1441 struct mem_cgroup_per_zone *mz;
1442 unsigned long *lru_size;
1443
1444 if (mem_cgroup_disabled())
1445 return;
1446
1447 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1448 lru_size = mz->lru_size + lru;
1449 *lru_size += nr_pages;
1450 VM_BUG_ON((long)(*lru_size) < 0);
1451 }
1452
1453 /*
1454 * Checks whether given mem is same or in the root_mem_cgroup's
1455 * hierarchy subtree
1456 */
1457 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1458 struct mem_cgroup *memcg)
1459 {
1460 if (root_memcg == memcg)
1461 return true;
1462 if (!root_memcg->use_hierarchy || !memcg)
1463 return false;
1464 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1465 }
1466
1467 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1468 struct mem_cgroup *memcg)
1469 {
1470 bool ret;
1471
1472 rcu_read_lock();
1473 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1474 rcu_read_unlock();
1475 return ret;
1476 }
1477
1478 bool task_in_mem_cgroup(struct task_struct *task,
1479 const struct mem_cgroup *memcg)
1480 {
1481 struct mem_cgroup *curr = NULL;
1482 struct task_struct *p;
1483 bool ret;
1484
1485 p = find_lock_task_mm(task);
1486 if (p) {
1487 curr = try_get_mem_cgroup_from_mm(p->mm);
1488 task_unlock(p);
1489 } else {
1490 /*
1491 * All threads may have already detached their mm's, but the oom
1492 * killer still needs to detect if they have already been oom
1493 * killed to prevent needlessly killing additional tasks.
1494 */
1495 rcu_read_lock();
1496 curr = mem_cgroup_from_task(task);
1497 if (curr)
1498 css_get(&curr->css);
1499 rcu_read_unlock();
1500 }
1501 if (!curr)
1502 return false;
1503 /*
1504 * We should check use_hierarchy of "memcg" not "curr". Because checking
1505 * use_hierarchy of "curr" here make this function true if hierarchy is
1506 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1507 * hierarchy(even if use_hierarchy is disabled in "memcg").
1508 */
1509 ret = mem_cgroup_same_or_subtree(memcg, curr);
1510 css_put(&curr->css);
1511 return ret;
1512 }
1513
1514 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1515 {
1516 unsigned long inactive_ratio;
1517 unsigned long inactive;
1518 unsigned long active;
1519 unsigned long gb;
1520
1521 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1522 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1523
1524 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1525 if (gb)
1526 inactive_ratio = int_sqrt(10 * gb);
1527 else
1528 inactive_ratio = 1;
1529
1530 return inactive * inactive_ratio < active;
1531 }
1532
1533 #define mem_cgroup_from_res_counter(counter, member) \
1534 container_of(counter, struct mem_cgroup, member)
1535
1536 /**
1537 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1538 * @memcg: the memory cgroup
1539 *
1540 * Returns the maximum amount of memory @mem can be charged with, in
1541 * pages.
1542 */
1543 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1544 {
1545 unsigned long long margin;
1546
1547 margin = res_counter_margin(&memcg->res);
1548 if (do_swap_account)
1549 margin = min(margin, res_counter_margin(&memcg->memsw));
1550 return margin >> PAGE_SHIFT;
1551 }
1552
1553 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1554 {
1555 /* root ? */
1556 if (!css_parent(&memcg->css))
1557 return vm_swappiness;
1558
1559 return memcg->swappiness;
1560 }
1561
1562 /*
1563 * memcg->moving_account is used for checking possibility that some thread is
1564 * calling move_account(). When a thread on CPU-A starts moving pages under
1565 * a memcg, other threads should check memcg->moving_account under
1566 * rcu_read_lock(), like this:
1567 *
1568 * CPU-A CPU-B
1569 * rcu_read_lock()
1570 * memcg->moving_account+1 if (memcg->mocing_account)
1571 * take heavy locks.
1572 * synchronize_rcu() update something.
1573 * rcu_read_unlock()
1574 * start move here.
1575 */
1576
1577 /* for quick checking without looking up memcg */
1578 atomic_t memcg_moving __read_mostly;
1579
1580 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1581 {
1582 atomic_inc(&memcg_moving);
1583 atomic_inc(&memcg->moving_account);
1584 synchronize_rcu();
1585 }
1586
1587 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1588 {
1589 /*
1590 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1591 * We check NULL in callee rather than caller.
1592 */
1593 if (memcg) {
1594 atomic_dec(&memcg_moving);
1595 atomic_dec(&memcg->moving_account);
1596 }
1597 }
1598
1599 /*
1600 * 2 routines for checking "mem" is under move_account() or not.
1601 *
1602 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1603 * is used for avoiding races in accounting. If true,
1604 * pc->mem_cgroup may be overwritten.
1605 *
1606 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1607 * under hierarchy of moving cgroups. This is for
1608 * waiting at hith-memory prressure caused by "move".
1609 */
1610
1611 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1612 {
1613 VM_BUG_ON(!rcu_read_lock_held());
1614 return atomic_read(&memcg->moving_account) > 0;
1615 }
1616
1617 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1618 {
1619 struct mem_cgroup *from;
1620 struct mem_cgroup *to;
1621 bool ret = false;
1622 /*
1623 * Unlike task_move routines, we access mc.to, mc.from not under
1624 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1625 */
1626 spin_lock(&mc.lock);
1627 from = mc.from;
1628 to = mc.to;
1629 if (!from)
1630 goto unlock;
1631
1632 ret = mem_cgroup_same_or_subtree(memcg, from)
1633 || mem_cgroup_same_or_subtree(memcg, to);
1634 unlock:
1635 spin_unlock(&mc.lock);
1636 return ret;
1637 }
1638
1639 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1640 {
1641 if (mc.moving_task && current != mc.moving_task) {
1642 if (mem_cgroup_under_move(memcg)) {
1643 DEFINE_WAIT(wait);
1644 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1645 /* moving charge context might have finished. */
1646 if (mc.moving_task)
1647 schedule();
1648 finish_wait(&mc.waitq, &wait);
1649 return true;
1650 }
1651 }
1652 return false;
1653 }
1654
1655 /*
1656 * Take this lock when
1657 * - a code tries to modify page's memcg while it's USED.
1658 * - a code tries to modify page state accounting in a memcg.
1659 * see mem_cgroup_stolen(), too.
1660 */
1661 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1662 unsigned long *flags)
1663 {
1664 spin_lock_irqsave(&memcg->move_lock, *flags);
1665 }
1666
1667 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1668 unsigned long *flags)
1669 {
1670 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1671 }
1672
1673 #define K(x) ((x) << (PAGE_SHIFT-10))
1674 /**
1675 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1676 * @memcg: The memory cgroup that went over limit
1677 * @p: Task that is going to be killed
1678 *
1679 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1680 * enabled
1681 */
1682 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1683 {
1684 /*
1685 * protects memcg_name and makes sure that parallel ooms do not
1686 * interleave
1687 */
1688 static DEFINE_SPINLOCK(oom_info_lock);
1689 struct cgroup *task_cgrp;
1690 struct cgroup *mem_cgrp;
1691 static char memcg_name[PATH_MAX];
1692 int ret;
1693 struct mem_cgroup *iter;
1694 unsigned int i;
1695
1696 if (!p)
1697 return;
1698
1699 spin_lock(&oom_info_lock);
1700 rcu_read_lock();
1701
1702 mem_cgrp = memcg->css.cgroup;
1703 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1704
1705 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1706 if (ret < 0) {
1707 /*
1708 * Unfortunately, we are unable to convert to a useful name
1709 * But we'll still print out the usage information
1710 */
1711 rcu_read_unlock();
1712 goto done;
1713 }
1714 rcu_read_unlock();
1715
1716 pr_info("Task in %s killed", memcg_name);
1717
1718 rcu_read_lock();
1719 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1720 if (ret < 0) {
1721 rcu_read_unlock();
1722 goto done;
1723 }
1724 rcu_read_unlock();
1725
1726 /*
1727 * Continues from above, so we don't need an KERN_ level
1728 */
1729 pr_cont(" as a result of limit of %s\n", memcg_name);
1730 done:
1731
1732 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1733 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1734 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1735 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1736 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1737 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1738 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1739 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1740 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1741 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1742 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1743 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1744
1745 for_each_mem_cgroup_tree(iter, memcg) {
1746 pr_info("Memory cgroup stats");
1747
1748 rcu_read_lock();
1749 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1750 if (!ret)
1751 pr_cont(" for %s", memcg_name);
1752 rcu_read_unlock();
1753 pr_cont(":");
1754
1755 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1756 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1757 continue;
1758 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1759 K(mem_cgroup_read_stat(iter, i)));
1760 }
1761
1762 for (i = 0; i < NR_LRU_LISTS; i++)
1763 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1764 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1765
1766 pr_cont("\n");
1767 }
1768 spin_unlock(&oom_info_lock);
1769 }
1770
1771 /*
1772 * This function returns the number of memcg under hierarchy tree. Returns
1773 * 1(self count) if no children.
1774 */
1775 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1776 {
1777 int num = 0;
1778 struct mem_cgroup *iter;
1779
1780 for_each_mem_cgroup_tree(iter, memcg)
1781 num++;
1782 return num;
1783 }
1784
1785 /*
1786 * Return the memory (and swap, if configured) limit for a memcg.
1787 */
1788 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1789 {
1790 u64 limit;
1791
1792 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1793
1794 /*
1795 * Do not consider swap space if we cannot swap due to swappiness
1796 */
1797 if (mem_cgroup_swappiness(memcg)) {
1798 u64 memsw;
1799
1800 limit += total_swap_pages << PAGE_SHIFT;
1801 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1802
1803 /*
1804 * If memsw is finite and limits the amount of swap space
1805 * available to this memcg, return that limit.
1806 */
1807 limit = min(limit, memsw);
1808 }
1809
1810 return limit;
1811 }
1812
1813 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1814 int order)
1815 {
1816 struct mem_cgroup *iter;
1817 unsigned long chosen_points = 0;
1818 unsigned long totalpages;
1819 unsigned int points = 0;
1820 struct task_struct *chosen = NULL;
1821
1822 /*
1823 * If current has a pending SIGKILL or is exiting, then automatically
1824 * select it. The goal is to allow it to allocate so that it may
1825 * quickly exit and free its memory.
1826 */
1827 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1828 set_thread_flag(TIF_MEMDIE);
1829 return;
1830 }
1831
1832 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1833 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1834 for_each_mem_cgroup_tree(iter, memcg) {
1835 struct css_task_iter it;
1836 struct task_struct *task;
1837
1838 css_task_iter_start(&iter->css, &it);
1839 while ((task = css_task_iter_next(&it))) {
1840 switch (oom_scan_process_thread(task, totalpages, NULL,
1841 false)) {
1842 case OOM_SCAN_SELECT:
1843 if (chosen)
1844 put_task_struct(chosen);
1845 chosen = task;
1846 chosen_points = ULONG_MAX;
1847 get_task_struct(chosen);
1848 /* fall through */
1849 case OOM_SCAN_CONTINUE:
1850 continue;
1851 case OOM_SCAN_ABORT:
1852 css_task_iter_end(&it);
1853 mem_cgroup_iter_break(memcg, iter);
1854 if (chosen)
1855 put_task_struct(chosen);
1856 return;
1857 case OOM_SCAN_OK:
1858 break;
1859 };
1860 points = oom_badness(task, memcg, NULL, totalpages);
1861 if (points > chosen_points) {
1862 if (chosen)
1863 put_task_struct(chosen);
1864 chosen = task;
1865 chosen_points = points;
1866 get_task_struct(chosen);
1867 }
1868 }
1869 css_task_iter_end(&it);
1870 }
1871
1872 if (!chosen)
1873 return;
1874 points = chosen_points * 1000 / totalpages;
1875 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1876 NULL, "Memory cgroup out of memory");
1877 }
1878
1879 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1880 gfp_t gfp_mask,
1881 unsigned long flags)
1882 {
1883 unsigned long total = 0;
1884 bool noswap = false;
1885 int loop;
1886
1887 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1888 noswap = true;
1889 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1890 noswap = true;
1891
1892 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1893 if (loop)
1894 drain_all_stock_async(memcg);
1895 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1896 /*
1897 * Allow limit shrinkers, which are triggered directly
1898 * by userspace, to catch signals and stop reclaim
1899 * after minimal progress, regardless of the margin.
1900 */
1901 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1902 break;
1903 if (mem_cgroup_margin(memcg))
1904 break;
1905 /*
1906 * If nothing was reclaimed after two attempts, there
1907 * may be no reclaimable pages in this hierarchy.
1908 */
1909 if (loop && !total)
1910 break;
1911 }
1912 return total;
1913 }
1914
1915 /**
1916 * test_mem_cgroup_node_reclaimable
1917 * @memcg: the target memcg
1918 * @nid: the node ID to be checked.
1919 * @noswap : specify true here if the user wants flle only information.
1920 *
1921 * This function returns whether the specified memcg contains any
1922 * reclaimable pages on a node. Returns true if there are any reclaimable
1923 * pages in the node.
1924 */
1925 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1926 int nid, bool noswap)
1927 {
1928 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1929 return true;
1930 if (noswap || !total_swap_pages)
1931 return false;
1932 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1933 return true;
1934 return false;
1935
1936 }
1937 #if MAX_NUMNODES > 1
1938
1939 /*
1940 * Always updating the nodemask is not very good - even if we have an empty
1941 * list or the wrong list here, we can start from some node and traverse all
1942 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1943 *
1944 */
1945 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1946 {
1947 int nid;
1948 /*
1949 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1950 * pagein/pageout changes since the last update.
1951 */
1952 if (!atomic_read(&memcg->numainfo_events))
1953 return;
1954 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1955 return;
1956
1957 /* make a nodemask where this memcg uses memory from */
1958 memcg->scan_nodes = node_states[N_MEMORY];
1959
1960 for_each_node_mask(nid, node_states[N_MEMORY]) {
1961
1962 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1963 node_clear(nid, memcg->scan_nodes);
1964 }
1965
1966 atomic_set(&memcg->numainfo_events, 0);
1967 atomic_set(&memcg->numainfo_updating, 0);
1968 }
1969
1970 /*
1971 * Selecting a node where we start reclaim from. Because what we need is just
1972 * reducing usage counter, start from anywhere is O,K. Considering
1973 * memory reclaim from current node, there are pros. and cons.
1974 *
1975 * Freeing memory from current node means freeing memory from a node which
1976 * we'll use or we've used. So, it may make LRU bad. And if several threads
1977 * hit limits, it will see a contention on a node. But freeing from remote
1978 * node means more costs for memory reclaim because of memory latency.
1979 *
1980 * Now, we use round-robin. Better algorithm is welcomed.
1981 */
1982 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1983 {
1984 int node;
1985
1986 mem_cgroup_may_update_nodemask(memcg);
1987 node = memcg->last_scanned_node;
1988
1989 node = next_node(node, memcg->scan_nodes);
1990 if (node == MAX_NUMNODES)
1991 node = first_node(memcg->scan_nodes);
1992 /*
1993 * We call this when we hit limit, not when pages are added to LRU.
1994 * No LRU may hold pages because all pages are UNEVICTABLE or
1995 * memcg is too small and all pages are not on LRU. In that case,
1996 * we use curret node.
1997 */
1998 if (unlikely(node == MAX_NUMNODES))
1999 node = numa_node_id();
2000
2001 memcg->last_scanned_node = node;
2002 return node;
2003 }
2004
2005 /*
2006 * Check all nodes whether it contains reclaimable pages or not.
2007 * For quick scan, we make use of scan_nodes. This will allow us to skip
2008 * unused nodes. But scan_nodes is lazily updated and may not cotain
2009 * enough new information. We need to do double check.
2010 */
2011 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2012 {
2013 int nid;
2014
2015 /*
2016 * quick check...making use of scan_node.
2017 * We can skip unused nodes.
2018 */
2019 if (!nodes_empty(memcg->scan_nodes)) {
2020 for (nid = first_node(memcg->scan_nodes);
2021 nid < MAX_NUMNODES;
2022 nid = next_node(nid, memcg->scan_nodes)) {
2023
2024 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2025 return true;
2026 }
2027 }
2028 /*
2029 * Check rest of nodes.
2030 */
2031 for_each_node_state(nid, N_MEMORY) {
2032 if (node_isset(nid, memcg->scan_nodes))
2033 continue;
2034 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2035 return true;
2036 }
2037 return false;
2038 }
2039
2040 #else
2041 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2042 {
2043 return 0;
2044 }
2045
2046 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2047 {
2048 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2049 }
2050 #endif
2051
2052 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2053 struct zone *zone,
2054 gfp_t gfp_mask,
2055 unsigned long *total_scanned)
2056 {
2057 struct mem_cgroup *victim = NULL;
2058 int total = 0;
2059 int loop = 0;
2060 unsigned long excess;
2061 unsigned long nr_scanned;
2062 struct mem_cgroup_reclaim_cookie reclaim = {
2063 .zone = zone,
2064 .priority = 0,
2065 };
2066
2067 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2068
2069 while (1) {
2070 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2071 if (!victim) {
2072 loop++;
2073 if (loop >= 2) {
2074 /*
2075 * If we have not been able to reclaim
2076 * anything, it might because there are
2077 * no reclaimable pages under this hierarchy
2078 */
2079 if (!total)
2080 break;
2081 /*
2082 * We want to do more targeted reclaim.
2083 * excess >> 2 is not to excessive so as to
2084 * reclaim too much, nor too less that we keep
2085 * coming back to reclaim from this cgroup
2086 */
2087 if (total >= (excess >> 2) ||
2088 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2089 break;
2090 }
2091 continue;
2092 }
2093 if (!mem_cgroup_reclaimable(victim, false))
2094 continue;
2095 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2096 zone, &nr_scanned);
2097 *total_scanned += nr_scanned;
2098 if (!res_counter_soft_limit_excess(&root_memcg->res))
2099 break;
2100 }
2101 mem_cgroup_iter_break(root_memcg, victim);
2102 return total;
2103 }
2104
2105 #ifdef CONFIG_LOCKDEP
2106 static struct lockdep_map memcg_oom_lock_dep_map = {
2107 .name = "memcg_oom_lock",
2108 };
2109 #endif
2110
2111 static DEFINE_SPINLOCK(memcg_oom_lock);
2112
2113 /*
2114 * Check OOM-Killer is already running under our hierarchy.
2115 * If someone is running, return false.
2116 */
2117 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2118 {
2119 struct mem_cgroup *iter, *failed = NULL;
2120
2121 spin_lock(&memcg_oom_lock);
2122
2123 for_each_mem_cgroup_tree(iter, memcg) {
2124 if (iter->oom_lock) {
2125 /*
2126 * this subtree of our hierarchy is already locked
2127 * so we cannot give a lock.
2128 */
2129 failed = iter;
2130 mem_cgroup_iter_break(memcg, iter);
2131 break;
2132 } else
2133 iter->oom_lock = true;
2134 }
2135
2136 if (failed) {
2137 /*
2138 * OK, we failed to lock the whole subtree so we have
2139 * to clean up what we set up to the failing subtree
2140 */
2141 for_each_mem_cgroup_tree(iter, memcg) {
2142 if (iter == failed) {
2143 mem_cgroup_iter_break(memcg, iter);
2144 break;
2145 }
2146 iter->oom_lock = false;
2147 }
2148 } else
2149 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2150
2151 spin_unlock(&memcg_oom_lock);
2152
2153 return !failed;
2154 }
2155
2156 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2157 {
2158 struct mem_cgroup *iter;
2159
2160 spin_lock(&memcg_oom_lock);
2161 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2162 for_each_mem_cgroup_tree(iter, memcg)
2163 iter->oom_lock = false;
2164 spin_unlock(&memcg_oom_lock);
2165 }
2166
2167 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2168 {
2169 struct mem_cgroup *iter;
2170
2171 for_each_mem_cgroup_tree(iter, memcg)
2172 atomic_inc(&iter->under_oom);
2173 }
2174
2175 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2176 {
2177 struct mem_cgroup *iter;
2178
2179 /*
2180 * When a new child is created while the hierarchy is under oom,
2181 * mem_cgroup_oom_lock() may not be called. We have to use
2182 * atomic_add_unless() here.
2183 */
2184 for_each_mem_cgroup_tree(iter, memcg)
2185 atomic_add_unless(&iter->under_oom, -1, 0);
2186 }
2187
2188 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2189
2190 struct oom_wait_info {
2191 struct mem_cgroup *memcg;
2192 wait_queue_t wait;
2193 };
2194
2195 static int memcg_oom_wake_function(wait_queue_t *wait,
2196 unsigned mode, int sync, void *arg)
2197 {
2198 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2199 struct mem_cgroup *oom_wait_memcg;
2200 struct oom_wait_info *oom_wait_info;
2201
2202 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2203 oom_wait_memcg = oom_wait_info->memcg;
2204
2205 /*
2206 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2207 * Then we can use css_is_ancestor without taking care of RCU.
2208 */
2209 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2210 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2211 return 0;
2212 return autoremove_wake_function(wait, mode, sync, arg);
2213 }
2214
2215 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2216 {
2217 atomic_inc(&memcg->oom_wakeups);
2218 /* for filtering, pass "memcg" as argument. */
2219 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2220 }
2221
2222 static void memcg_oom_recover(struct mem_cgroup *memcg)
2223 {
2224 if (memcg && atomic_read(&memcg->under_oom))
2225 memcg_wakeup_oom(memcg);
2226 }
2227
2228 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2229 {
2230 if (!current->memcg_oom.may_oom)
2231 return;
2232 /*
2233 * We are in the middle of the charge context here, so we
2234 * don't want to block when potentially sitting on a callstack
2235 * that holds all kinds of filesystem and mm locks.
2236 *
2237 * Also, the caller may handle a failed allocation gracefully
2238 * (like optional page cache readahead) and so an OOM killer
2239 * invocation might not even be necessary.
2240 *
2241 * That's why we don't do anything here except remember the
2242 * OOM context and then deal with it at the end of the page
2243 * fault when the stack is unwound, the locks are released,
2244 * and when we know whether the fault was overall successful.
2245 */
2246 css_get(&memcg->css);
2247 current->memcg_oom.memcg = memcg;
2248 current->memcg_oom.gfp_mask = mask;
2249 current->memcg_oom.order = order;
2250 }
2251
2252 /**
2253 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2254 * @handle: actually kill/wait or just clean up the OOM state
2255 *
2256 * This has to be called at the end of a page fault if the memcg OOM
2257 * handler was enabled.
2258 *
2259 * Memcg supports userspace OOM handling where failed allocations must
2260 * sleep on a waitqueue until the userspace task resolves the
2261 * situation. Sleeping directly in the charge context with all kinds
2262 * of locks held is not a good idea, instead we remember an OOM state
2263 * in the task and mem_cgroup_oom_synchronize() has to be called at
2264 * the end of the page fault to complete the OOM handling.
2265 *
2266 * Returns %true if an ongoing memcg OOM situation was detected and
2267 * completed, %false otherwise.
2268 */
2269 bool mem_cgroup_oom_synchronize(bool handle)
2270 {
2271 struct mem_cgroup *memcg = current->memcg_oom.memcg;
2272 struct oom_wait_info owait;
2273 bool locked;
2274
2275 /* OOM is global, do not handle */
2276 if (!memcg)
2277 return false;
2278
2279 if (!handle)
2280 goto cleanup;
2281
2282 owait.memcg = memcg;
2283 owait.wait.flags = 0;
2284 owait.wait.func = memcg_oom_wake_function;
2285 owait.wait.private = current;
2286 INIT_LIST_HEAD(&owait.wait.task_list);
2287
2288 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2289 mem_cgroup_mark_under_oom(memcg);
2290
2291 locked = mem_cgroup_oom_trylock(memcg);
2292
2293 if (locked)
2294 mem_cgroup_oom_notify(memcg);
2295
2296 if (locked && !memcg->oom_kill_disable) {
2297 mem_cgroup_unmark_under_oom(memcg);
2298 finish_wait(&memcg_oom_waitq, &owait.wait);
2299 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2300 current->memcg_oom.order);
2301 } else {
2302 schedule();
2303 mem_cgroup_unmark_under_oom(memcg);
2304 finish_wait(&memcg_oom_waitq, &owait.wait);
2305 }
2306
2307 if (locked) {
2308 mem_cgroup_oom_unlock(memcg);
2309 /*
2310 * There is no guarantee that an OOM-lock contender
2311 * sees the wakeups triggered by the OOM kill
2312 * uncharges. Wake any sleepers explicitely.
2313 */
2314 memcg_oom_recover(memcg);
2315 }
2316 cleanup:
2317 current->memcg_oom.memcg = NULL;
2318 css_put(&memcg->css);
2319 return true;
2320 }
2321
2322 /*
2323 * Currently used to update mapped file statistics, but the routine can be
2324 * generalized to update other statistics as well.
2325 *
2326 * Notes: Race condition
2327 *
2328 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2329 * it tends to be costly. But considering some conditions, we doesn't need
2330 * to do so _always_.
2331 *
2332 * Considering "charge", lock_page_cgroup() is not required because all
2333 * file-stat operations happen after a page is attached to radix-tree. There
2334 * are no race with "charge".
2335 *
2336 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2337 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2338 * if there are race with "uncharge". Statistics itself is properly handled
2339 * by flags.
2340 *
2341 * Considering "move", this is an only case we see a race. To make the race
2342 * small, we check mm->moving_account and detect there are possibility of race
2343 * If there is, we take a lock.
2344 */
2345
2346 void __mem_cgroup_begin_update_page_stat(struct page *page,
2347 bool *locked, unsigned long *flags)
2348 {
2349 struct mem_cgroup *memcg;
2350 struct page_cgroup *pc;
2351
2352 pc = lookup_page_cgroup(page);
2353 again:
2354 memcg = pc->mem_cgroup;
2355 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2356 return;
2357 /*
2358 * If this memory cgroup is not under account moving, we don't
2359 * need to take move_lock_mem_cgroup(). Because we already hold
2360 * rcu_read_lock(), any calls to move_account will be delayed until
2361 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2362 */
2363 if (!mem_cgroup_stolen(memcg))
2364 return;
2365
2366 move_lock_mem_cgroup(memcg, flags);
2367 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2368 move_unlock_mem_cgroup(memcg, flags);
2369 goto again;
2370 }
2371 *locked = true;
2372 }
2373
2374 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2375 {
2376 struct page_cgroup *pc = lookup_page_cgroup(page);
2377
2378 /*
2379 * It's guaranteed that pc->mem_cgroup never changes while
2380 * lock is held because a routine modifies pc->mem_cgroup
2381 * should take move_lock_mem_cgroup().
2382 */
2383 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2384 }
2385
2386 void mem_cgroup_update_page_stat(struct page *page,
2387 enum mem_cgroup_stat_index idx, int val)
2388 {
2389 struct mem_cgroup *memcg;
2390 struct page_cgroup *pc = lookup_page_cgroup(page);
2391 unsigned long uninitialized_var(flags);
2392
2393 if (mem_cgroup_disabled())
2394 return;
2395
2396 VM_BUG_ON(!rcu_read_lock_held());
2397 memcg = pc->mem_cgroup;
2398 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2399 return;
2400
2401 this_cpu_add(memcg->stat->count[idx], val);
2402 }
2403
2404 /*
2405 * size of first charge trial. "32" comes from vmscan.c's magic value.
2406 * TODO: maybe necessary to use big numbers in big irons.
2407 */
2408 #define CHARGE_BATCH 32U
2409 struct memcg_stock_pcp {
2410 struct mem_cgroup *cached; /* this never be root cgroup */
2411 unsigned int nr_pages;
2412 struct work_struct work;
2413 unsigned long flags;
2414 #define FLUSHING_CACHED_CHARGE 0
2415 };
2416 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2417 static DEFINE_MUTEX(percpu_charge_mutex);
2418
2419 /**
2420 * consume_stock: Try to consume stocked charge on this cpu.
2421 * @memcg: memcg to consume from.
2422 * @nr_pages: how many pages to charge.
2423 *
2424 * The charges will only happen if @memcg matches the current cpu's memcg
2425 * stock, and at least @nr_pages are available in that stock. Failure to
2426 * service an allocation will refill the stock.
2427 *
2428 * returns true if successful, false otherwise.
2429 */
2430 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2431 {
2432 struct memcg_stock_pcp *stock;
2433 bool ret = true;
2434
2435 if (nr_pages > CHARGE_BATCH)
2436 return false;
2437
2438 stock = &get_cpu_var(memcg_stock);
2439 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2440 stock->nr_pages -= nr_pages;
2441 else /* need to call res_counter_charge */
2442 ret = false;
2443 put_cpu_var(memcg_stock);
2444 return ret;
2445 }
2446
2447 /*
2448 * Returns stocks cached in percpu to res_counter and reset cached information.
2449 */
2450 static void drain_stock(struct memcg_stock_pcp *stock)
2451 {
2452 struct mem_cgroup *old = stock->cached;
2453
2454 if (stock->nr_pages) {
2455 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2456
2457 res_counter_uncharge(&old->res, bytes);
2458 if (do_swap_account)
2459 res_counter_uncharge(&old->memsw, bytes);
2460 stock->nr_pages = 0;
2461 }
2462 stock->cached = NULL;
2463 }
2464
2465 /*
2466 * This must be called under preempt disabled or must be called by
2467 * a thread which is pinned to local cpu.
2468 */
2469 static void drain_local_stock(struct work_struct *dummy)
2470 {
2471 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2472 drain_stock(stock);
2473 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2474 }
2475
2476 static void __init memcg_stock_init(void)
2477 {
2478 int cpu;
2479
2480 for_each_possible_cpu(cpu) {
2481 struct memcg_stock_pcp *stock =
2482 &per_cpu(memcg_stock, cpu);
2483 INIT_WORK(&stock->work, drain_local_stock);
2484 }
2485 }
2486
2487 /*
2488 * Cache charges(val) which is from res_counter, to local per_cpu area.
2489 * This will be consumed by consume_stock() function, later.
2490 */
2491 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2492 {
2493 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2494
2495 if (stock->cached != memcg) { /* reset if necessary */
2496 drain_stock(stock);
2497 stock->cached = memcg;
2498 }
2499 stock->nr_pages += nr_pages;
2500 put_cpu_var(memcg_stock);
2501 }
2502
2503 /*
2504 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2505 * of the hierarchy under it. sync flag says whether we should block
2506 * until the work is done.
2507 */
2508 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2509 {
2510 int cpu, curcpu;
2511
2512 /* Notify other cpus that system-wide "drain" is running */
2513 get_online_cpus();
2514 curcpu = get_cpu();
2515 for_each_online_cpu(cpu) {
2516 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2517 struct mem_cgroup *memcg;
2518
2519 memcg = stock->cached;
2520 if (!memcg || !stock->nr_pages)
2521 continue;
2522 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2523 continue;
2524 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2525 if (cpu == curcpu)
2526 drain_local_stock(&stock->work);
2527 else
2528 schedule_work_on(cpu, &stock->work);
2529 }
2530 }
2531 put_cpu();
2532
2533 if (!sync)
2534 goto out;
2535
2536 for_each_online_cpu(cpu) {
2537 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2538 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2539 flush_work(&stock->work);
2540 }
2541 out:
2542 put_online_cpus();
2543 }
2544
2545 /*
2546 * Tries to drain stocked charges in other cpus. This function is asynchronous
2547 * and just put a work per cpu for draining localy on each cpu. Caller can
2548 * expects some charges will be back to res_counter later but cannot wait for
2549 * it.
2550 */
2551 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2552 {
2553 /*
2554 * If someone calls draining, avoid adding more kworker runs.
2555 */
2556 if (!mutex_trylock(&percpu_charge_mutex))
2557 return;
2558 drain_all_stock(root_memcg, false);
2559 mutex_unlock(&percpu_charge_mutex);
2560 }
2561
2562 /* This is a synchronous drain interface. */
2563 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2564 {
2565 /* called when force_empty is called */
2566 mutex_lock(&percpu_charge_mutex);
2567 drain_all_stock(root_memcg, true);
2568 mutex_unlock(&percpu_charge_mutex);
2569 }
2570
2571 /*
2572 * This function drains percpu counter value from DEAD cpu and
2573 * move it to local cpu. Note that this function can be preempted.
2574 */
2575 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2576 {
2577 int i;
2578
2579 spin_lock(&memcg->pcp_counter_lock);
2580 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2581 long x = per_cpu(memcg->stat->count[i], cpu);
2582
2583 per_cpu(memcg->stat->count[i], cpu) = 0;
2584 memcg->nocpu_base.count[i] += x;
2585 }
2586 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2587 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2588
2589 per_cpu(memcg->stat->events[i], cpu) = 0;
2590 memcg->nocpu_base.events[i] += x;
2591 }
2592 spin_unlock(&memcg->pcp_counter_lock);
2593 }
2594
2595 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2596 unsigned long action,
2597 void *hcpu)
2598 {
2599 int cpu = (unsigned long)hcpu;
2600 struct memcg_stock_pcp *stock;
2601 struct mem_cgroup *iter;
2602
2603 if (action == CPU_ONLINE)
2604 return NOTIFY_OK;
2605
2606 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2607 return NOTIFY_OK;
2608
2609 for_each_mem_cgroup(iter)
2610 mem_cgroup_drain_pcp_counter(iter, cpu);
2611
2612 stock = &per_cpu(memcg_stock, cpu);
2613 drain_stock(stock);
2614 return NOTIFY_OK;
2615 }
2616
2617
2618 /* See __mem_cgroup_try_charge() for details */
2619 enum {
2620 CHARGE_OK, /* success */
2621 CHARGE_RETRY, /* need to retry but retry is not bad */
2622 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2623 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2624 };
2625
2626 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2627 unsigned int nr_pages, unsigned int min_pages,
2628 bool invoke_oom)
2629 {
2630 unsigned long csize = nr_pages * PAGE_SIZE;
2631 struct mem_cgroup *mem_over_limit;
2632 struct res_counter *fail_res;
2633 unsigned long flags = 0;
2634 int ret;
2635
2636 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2637
2638 if (likely(!ret)) {
2639 if (!do_swap_account)
2640 return CHARGE_OK;
2641 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2642 if (likely(!ret))
2643 return CHARGE_OK;
2644
2645 res_counter_uncharge(&memcg->res, csize);
2646 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2647 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2648 } else
2649 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2650 /*
2651 * Never reclaim on behalf of optional batching, retry with a
2652 * single page instead.
2653 */
2654 if (nr_pages > min_pages)
2655 return CHARGE_RETRY;
2656
2657 if (!(gfp_mask & __GFP_WAIT))
2658 return CHARGE_WOULDBLOCK;
2659
2660 if (gfp_mask & __GFP_NORETRY)
2661 return CHARGE_NOMEM;
2662
2663 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2664 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2665 return CHARGE_RETRY;
2666 /*
2667 * Even though the limit is exceeded at this point, reclaim
2668 * may have been able to free some pages. Retry the charge
2669 * before killing the task.
2670 *
2671 * Only for regular pages, though: huge pages are rather
2672 * unlikely to succeed so close to the limit, and we fall back
2673 * to regular pages anyway in case of failure.
2674 */
2675 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2676 return CHARGE_RETRY;
2677
2678 /*
2679 * At task move, charge accounts can be doubly counted. So, it's
2680 * better to wait until the end of task_move if something is going on.
2681 */
2682 if (mem_cgroup_wait_acct_move(mem_over_limit))
2683 return CHARGE_RETRY;
2684
2685 if (invoke_oom)
2686 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2687
2688 return CHARGE_NOMEM;
2689 }
2690
2691 /*
2692 * __mem_cgroup_try_charge() does
2693 * 1. detect memcg to be charged against from passed *mm and *ptr,
2694 * 2. update res_counter
2695 * 3. call memory reclaim if necessary.
2696 *
2697 * In some special case, if the task is fatal, fatal_signal_pending() or
2698 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2699 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2700 * as possible without any hazards. 2: all pages should have a valid
2701 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2702 * pointer, that is treated as a charge to root_mem_cgroup.
2703 *
2704 * So __mem_cgroup_try_charge() will return
2705 * 0 ... on success, filling *ptr with a valid memcg pointer.
2706 * -ENOMEM ... charge failure because of resource limits.
2707 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2708 *
2709 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2710 * the oom-killer can be invoked.
2711 */
2712 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2713 gfp_t gfp_mask,
2714 unsigned int nr_pages,
2715 struct mem_cgroup **ptr,
2716 bool oom)
2717 {
2718 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2719 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2720 struct mem_cgroup *memcg = NULL;
2721 int ret;
2722
2723 /*
2724 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2725 * in system level. So, allow to go ahead dying process in addition to
2726 * MEMDIE process.
2727 */
2728 if (unlikely(test_thread_flag(TIF_MEMDIE)
2729 || fatal_signal_pending(current)))
2730 goto bypass;
2731
2732 if (unlikely(task_in_memcg_oom(current)))
2733 goto nomem;
2734
2735 if (gfp_mask & __GFP_NOFAIL)
2736 oom = false;
2737
2738 /*
2739 * We always charge the cgroup the mm_struct belongs to.
2740 * The mm_struct's mem_cgroup changes on task migration if the
2741 * thread group leader migrates. It's possible that mm is not
2742 * set, if so charge the root memcg (happens for pagecache usage).
2743 */
2744 if (!*ptr && !mm)
2745 *ptr = root_mem_cgroup;
2746 again:
2747 if (*ptr) { /* css should be a valid one */
2748 memcg = *ptr;
2749 if (mem_cgroup_is_root(memcg))
2750 goto done;
2751 if (consume_stock(memcg, nr_pages))
2752 goto done;
2753 css_get(&memcg->css);
2754 } else {
2755 struct task_struct *p;
2756
2757 rcu_read_lock();
2758 p = rcu_dereference(mm->owner);
2759 /*
2760 * Because we don't have task_lock(), "p" can exit.
2761 * In that case, "memcg" can point to root or p can be NULL with
2762 * race with swapoff. Then, we have small risk of mis-accouning.
2763 * But such kind of mis-account by race always happens because
2764 * we don't have cgroup_mutex(). It's overkill and we allo that
2765 * small race, here.
2766 * (*) swapoff at el will charge against mm-struct not against
2767 * task-struct. So, mm->owner can be NULL.
2768 */
2769 memcg = mem_cgroup_from_task(p);
2770 if (!memcg)
2771 memcg = root_mem_cgroup;
2772 if (mem_cgroup_is_root(memcg)) {
2773 rcu_read_unlock();
2774 goto done;
2775 }
2776 if (consume_stock(memcg, nr_pages)) {
2777 /*
2778 * It seems dagerous to access memcg without css_get().
2779 * But considering how consume_stok works, it's not
2780 * necessary. If consume_stock success, some charges
2781 * from this memcg are cached on this cpu. So, we
2782 * don't need to call css_get()/css_tryget() before
2783 * calling consume_stock().
2784 */
2785 rcu_read_unlock();
2786 goto done;
2787 }
2788 /* after here, we may be blocked. we need to get refcnt */
2789 if (!css_tryget(&memcg->css)) {
2790 rcu_read_unlock();
2791 goto again;
2792 }
2793 rcu_read_unlock();
2794 }
2795
2796 do {
2797 bool invoke_oom = oom && !nr_oom_retries;
2798
2799 /* If killed, bypass charge */
2800 if (fatal_signal_pending(current)) {
2801 css_put(&memcg->css);
2802 goto bypass;
2803 }
2804
2805 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2806 nr_pages, invoke_oom);
2807 switch (ret) {
2808 case CHARGE_OK:
2809 break;
2810 case CHARGE_RETRY: /* not in OOM situation but retry */
2811 batch = nr_pages;
2812 css_put(&memcg->css);
2813 memcg = NULL;
2814 goto again;
2815 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2816 css_put(&memcg->css);
2817 goto nomem;
2818 case CHARGE_NOMEM: /* OOM routine works */
2819 if (!oom || invoke_oom) {
2820 css_put(&memcg->css);
2821 goto nomem;
2822 }
2823 nr_oom_retries--;
2824 break;
2825 }
2826 } while (ret != CHARGE_OK);
2827
2828 if (batch > nr_pages)
2829 refill_stock(memcg, batch - nr_pages);
2830 css_put(&memcg->css);
2831 done:
2832 *ptr = memcg;
2833 return 0;
2834 nomem:
2835 if (!(gfp_mask & __GFP_NOFAIL)) {
2836 *ptr = NULL;
2837 return -ENOMEM;
2838 }
2839 bypass:
2840 *ptr = root_mem_cgroup;
2841 return -EINTR;
2842 }
2843
2844 /*
2845 * Somemtimes we have to undo a charge we got by try_charge().
2846 * This function is for that and do uncharge, put css's refcnt.
2847 * gotten by try_charge().
2848 */
2849 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2850 unsigned int nr_pages)
2851 {
2852 if (!mem_cgroup_is_root(memcg)) {
2853 unsigned long bytes = nr_pages * PAGE_SIZE;
2854
2855 res_counter_uncharge(&memcg->res, bytes);
2856 if (do_swap_account)
2857 res_counter_uncharge(&memcg->memsw, bytes);
2858 }
2859 }
2860
2861 /*
2862 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2863 * This is useful when moving usage to parent cgroup.
2864 */
2865 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2866 unsigned int nr_pages)
2867 {
2868 unsigned long bytes = nr_pages * PAGE_SIZE;
2869
2870 if (mem_cgroup_is_root(memcg))
2871 return;
2872
2873 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2874 if (do_swap_account)
2875 res_counter_uncharge_until(&memcg->memsw,
2876 memcg->memsw.parent, bytes);
2877 }
2878
2879 /*
2880 * A helper function to get mem_cgroup from ID. must be called under
2881 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2882 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2883 * called against removed memcg.)
2884 */
2885 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2886 {
2887 /* ID 0 is unused ID */
2888 if (!id)
2889 return NULL;
2890 return mem_cgroup_from_id(id);
2891 }
2892
2893 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2894 {
2895 struct mem_cgroup *memcg = NULL;
2896 struct page_cgroup *pc;
2897 unsigned short id;
2898 swp_entry_t ent;
2899
2900 VM_BUG_ON_PAGE(!PageLocked(page), page);
2901
2902 pc = lookup_page_cgroup(page);
2903 lock_page_cgroup(pc);
2904 if (PageCgroupUsed(pc)) {
2905 memcg = pc->mem_cgroup;
2906 if (memcg && !css_tryget(&memcg->css))
2907 memcg = NULL;
2908 } else if (PageSwapCache(page)) {
2909 ent.val = page_private(page);
2910 id = lookup_swap_cgroup_id(ent);
2911 rcu_read_lock();
2912 memcg = mem_cgroup_lookup(id);
2913 if (memcg && !css_tryget(&memcg->css))
2914 memcg = NULL;
2915 rcu_read_unlock();
2916 }
2917 unlock_page_cgroup(pc);
2918 return memcg;
2919 }
2920
2921 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2922 struct page *page,
2923 unsigned int nr_pages,
2924 enum charge_type ctype,
2925 bool lrucare)
2926 {
2927 struct page_cgroup *pc = lookup_page_cgroup(page);
2928 struct zone *uninitialized_var(zone);
2929 struct lruvec *lruvec;
2930 bool was_on_lru = false;
2931 bool anon;
2932
2933 lock_page_cgroup(pc);
2934 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2935 /*
2936 * we don't need page_cgroup_lock about tail pages, becase they are not
2937 * accessed by any other context at this point.
2938 */
2939
2940 /*
2941 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2942 * may already be on some other mem_cgroup's LRU. Take care of it.
2943 */
2944 if (lrucare) {
2945 zone = page_zone(page);
2946 spin_lock_irq(&zone->lru_lock);
2947 if (PageLRU(page)) {
2948 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2949 ClearPageLRU(page);
2950 del_page_from_lru_list(page, lruvec, page_lru(page));
2951 was_on_lru = true;
2952 }
2953 }
2954
2955 pc->mem_cgroup = memcg;
2956 /*
2957 * We access a page_cgroup asynchronously without lock_page_cgroup().
2958 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2959 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2960 * before USED bit, we need memory barrier here.
2961 * See mem_cgroup_add_lru_list(), etc.
2962 */
2963 smp_wmb();
2964 SetPageCgroupUsed(pc);
2965
2966 if (lrucare) {
2967 if (was_on_lru) {
2968 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2969 VM_BUG_ON_PAGE(PageLRU(page), page);
2970 SetPageLRU(page);
2971 add_page_to_lru_list(page, lruvec, page_lru(page));
2972 }
2973 spin_unlock_irq(&zone->lru_lock);
2974 }
2975
2976 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2977 anon = true;
2978 else
2979 anon = false;
2980
2981 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2982 unlock_page_cgroup(pc);
2983
2984 /*
2985 * "charge_statistics" updated event counter. Then, check it.
2986 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2987 * if they exceeds softlimit.
2988 */
2989 memcg_check_events(memcg, page);
2990 }
2991
2992 static DEFINE_MUTEX(set_limit_mutex);
2993
2994 #ifdef CONFIG_MEMCG_KMEM
2995 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2996 {
2997 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2998 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK) ==
2999 KMEM_ACCOUNTED_MASK;
3000 }
3001
3002 /*
3003 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
3004 * in the memcg_cache_params struct.
3005 */
3006 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
3007 {
3008 struct kmem_cache *cachep;
3009
3010 VM_BUG_ON(p->is_root_cache);
3011 cachep = p->root_cache;
3012 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
3013 }
3014
3015 #ifdef CONFIG_SLABINFO
3016 static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
3017 {
3018 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3019 struct memcg_cache_params *params;
3020
3021 if (!memcg_can_account_kmem(memcg))
3022 return -EIO;
3023
3024 print_slabinfo_header(m);
3025
3026 mutex_lock(&memcg->slab_caches_mutex);
3027 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
3028 cache_show(memcg_params_to_cache(params), m);
3029 mutex_unlock(&memcg->slab_caches_mutex);
3030
3031 return 0;
3032 }
3033 #endif
3034
3035 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
3036 {
3037 struct res_counter *fail_res;
3038 struct mem_cgroup *_memcg;
3039 int ret = 0;
3040
3041 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
3042 if (ret)
3043 return ret;
3044
3045 _memcg = memcg;
3046 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
3047 &_memcg, oom_gfp_allowed(gfp));
3048
3049 if (ret == -EINTR) {
3050 /*
3051 * __mem_cgroup_try_charge() chosed to bypass to root due to
3052 * OOM kill or fatal signal. Since our only options are to
3053 * either fail the allocation or charge it to this cgroup, do
3054 * it as a temporary condition. But we can't fail. From a
3055 * kmem/slab perspective, the cache has already been selected,
3056 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3057 * our minds.
3058 *
3059 * This condition will only trigger if the task entered
3060 * memcg_charge_kmem in a sane state, but was OOM-killed during
3061 * __mem_cgroup_try_charge() above. Tasks that were already
3062 * dying when the allocation triggers should have been already
3063 * directed to the root cgroup in memcontrol.h
3064 */
3065 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3066 if (do_swap_account)
3067 res_counter_charge_nofail(&memcg->memsw, size,
3068 &fail_res);
3069 ret = 0;
3070 } else if (ret)
3071 res_counter_uncharge(&memcg->kmem, size);
3072
3073 return ret;
3074 }
3075
3076 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3077 {
3078 res_counter_uncharge(&memcg->res, size);
3079 if (do_swap_account)
3080 res_counter_uncharge(&memcg->memsw, size);
3081
3082 /* Not down to 0 */
3083 if (res_counter_uncharge(&memcg->kmem, size))
3084 return;
3085
3086 /*
3087 * Releases a reference taken in kmem_cgroup_css_offline in case
3088 * this last uncharge is racing with the offlining code or it is
3089 * outliving the memcg existence.
3090 *
3091 * The memory barrier imposed by test&clear is paired with the
3092 * explicit one in memcg_kmem_mark_dead().
3093 */
3094 if (memcg_kmem_test_and_clear_dead(memcg))
3095 css_put(&memcg->css);
3096 }
3097
3098 /*
3099 * helper for acessing a memcg's index. It will be used as an index in the
3100 * child cache array in kmem_cache, and also to derive its name. This function
3101 * will return -1 when this is not a kmem-limited memcg.
3102 */
3103 int memcg_cache_id(struct mem_cgroup *memcg)
3104 {
3105 return memcg ? memcg->kmemcg_id : -1;
3106 }
3107
3108 /*
3109 * This ends up being protected by the set_limit mutex, during normal
3110 * operation, because that is its main call site.
3111 *
3112 * But when we create a new cache, we can call this as well if its parent
3113 * is kmem-limited. That will have to hold set_limit_mutex as well.
3114 */
3115 static int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3116 {
3117 int num, ret;
3118
3119 num = ida_simple_get(&kmem_limited_groups,
3120 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3121 if (num < 0)
3122 return num;
3123 /*
3124 * After this point, kmem_accounted (that we test atomically in
3125 * the beginning of this conditional), is no longer 0. This
3126 * guarantees only one process will set the following boolean
3127 * to true. We don't need test_and_set because we're protected
3128 * by the set_limit_mutex anyway.
3129 */
3130 memcg_kmem_set_activated(memcg);
3131
3132 ret = memcg_update_all_caches(num+1);
3133 if (ret) {
3134 ida_simple_remove(&kmem_limited_groups, num);
3135 memcg_kmem_clear_activated(memcg);
3136 return ret;
3137 }
3138
3139 memcg->kmemcg_id = num;
3140 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3141 mutex_init(&memcg->slab_caches_mutex);
3142 return 0;
3143 }
3144
3145 static size_t memcg_caches_array_size(int num_groups)
3146 {
3147 ssize_t size;
3148 if (num_groups <= 0)
3149 return 0;
3150
3151 size = 2 * num_groups;
3152 if (size < MEMCG_CACHES_MIN_SIZE)
3153 size = MEMCG_CACHES_MIN_SIZE;
3154 else if (size > MEMCG_CACHES_MAX_SIZE)
3155 size = MEMCG_CACHES_MAX_SIZE;
3156
3157 return size;
3158 }
3159
3160 /*
3161 * We should update the current array size iff all caches updates succeed. This
3162 * can only be done from the slab side. The slab mutex needs to be held when
3163 * calling this.
3164 */
3165 void memcg_update_array_size(int num)
3166 {
3167 if (num > memcg_limited_groups_array_size)
3168 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3169 }
3170
3171 static void kmem_cache_destroy_work_func(struct work_struct *w);
3172
3173 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3174 {
3175 struct memcg_cache_params *cur_params = s->memcg_params;
3176
3177 VM_BUG_ON(!is_root_cache(s));
3178
3179 if (num_groups > memcg_limited_groups_array_size) {
3180 int i;
3181 ssize_t size = memcg_caches_array_size(num_groups);
3182
3183 size *= sizeof(void *);
3184 size += offsetof(struct memcg_cache_params, memcg_caches);
3185
3186 s->memcg_params = kzalloc(size, GFP_KERNEL);
3187 if (!s->memcg_params) {
3188 s->memcg_params = cur_params;
3189 return -ENOMEM;
3190 }
3191
3192 s->memcg_params->is_root_cache = true;
3193
3194 /*
3195 * There is the chance it will be bigger than
3196 * memcg_limited_groups_array_size, if we failed an allocation
3197 * in a cache, in which case all caches updated before it, will
3198 * have a bigger array.
3199 *
3200 * But if that is the case, the data after
3201 * memcg_limited_groups_array_size is certainly unused
3202 */
3203 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3204 if (!cur_params->memcg_caches[i])
3205 continue;
3206 s->memcg_params->memcg_caches[i] =
3207 cur_params->memcg_caches[i];
3208 }
3209
3210 /*
3211 * Ideally, we would wait until all caches succeed, and only
3212 * then free the old one. But this is not worth the extra
3213 * pointer per-cache we'd have to have for this.
3214 *
3215 * It is not a big deal if some caches are left with a size
3216 * bigger than the others. And all updates will reset this
3217 * anyway.
3218 */
3219 kfree(cur_params);
3220 }
3221 return 0;
3222 }
3223
3224 int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
3225 struct kmem_cache *root_cache)
3226 {
3227 size_t size;
3228
3229 if (!memcg_kmem_enabled())
3230 return 0;
3231
3232 if (!memcg) {
3233 size = offsetof(struct memcg_cache_params, memcg_caches);
3234 size += memcg_limited_groups_array_size * sizeof(void *);
3235 } else
3236 size = sizeof(struct memcg_cache_params);
3237
3238 s->memcg_params = kzalloc(size, GFP_KERNEL);
3239 if (!s->memcg_params)
3240 return -ENOMEM;
3241
3242 if (memcg) {
3243 s->memcg_params->memcg = memcg;
3244 s->memcg_params->root_cache = root_cache;
3245 INIT_WORK(&s->memcg_params->destroy,
3246 kmem_cache_destroy_work_func);
3247 } else
3248 s->memcg_params->is_root_cache = true;
3249
3250 return 0;
3251 }
3252
3253 void memcg_free_cache_params(struct kmem_cache *s)
3254 {
3255 kfree(s->memcg_params);
3256 }
3257
3258 void memcg_register_cache(struct kmem_cache *s)
3259 {
3260 struct kmem_cache *root;
3261 struct mem_cgroup *memcg;
3262 int id;
3263
3264 if (is_root_cache(s))
3265 return;
3266
3267 root = s->memcg_params->root_cache;
3268 memcg = s->memcg_params->memcg;
3269 id = memcg_cache_id(memcg);
3270
3271 css_get(&memcg->css);
3272
3273 mutex_lock(&memcg->slab_caches_mutex);
3274 list_add(&s->memcg_params->list, &memcg->memcg_slab_caches);
3275 mutex_unlock(&memcg->slab_caches_mutex);
3276
3277 /*
3278 * Since readers won't lock (see cache_from_memcg_idx()), we need a
3279 * barrier here to ensure nobody will see the kmem_cache partially
3280 * initialized.
3281 */
3282 smp_wmb();
3283
3284 root->memcg_params->memcg_caches[id] = s;
3285 }
3286
3287 void memcg_unregister_cache(struct kmem_cache *s)
3288 {
3289 struct kmem_cache *root;
3290 struct mem_cgroup *memcg;
3291 int id;
3292
3293 if (is_root_cache(s))
3294 return;
3295
3296 memcg = s->memcg_params->memcg;
3297 id = memcg_cache_id(memcg);
3298
3299 root = s->memcg_params->root_cache;
3300 root->memcg_params->memcg_caches[id] = NULL;
3301
3302 mutex_lock(&memcg->slab_caches_mutex);
3303 list_del(&s->memcg_params->list);
3304 mutex_unlock(&memcg->slab_caches_mutex);
3305
3306 css_put(&memcg->css);
3307 }
3308
3309 /*
3310 * During the creation a new cache, we need to disable our accounting mechanism
3311 * altogether. This is true even if we are not creating, but rather just
3312 * enqueing new caches to be created.
3313 *
3314 * This is because that process will trigger allocations; some visible, like
3315 * explicit kmallocs to auxiliary data structures, name strings and internal
3316 * cache structures; some well concealed, like INIT_WORK() that can allocate
3317 * objects during debug.
3318 *
3319 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3320 * to it. This may not be a bounded recursion: since the first cache creation
3321 * failed to complete (waiting on the allocation), we'll just try to create the
3322 * cache again, failing at the same point.
3323 *
3324 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3325 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3326 * inside the following two functions.
3327 */
3328 static inline void memcg_stop_kmem_account(void)
3329 {
3330 VM_BUG_ON(!current->mm);
3331 current->memcg_kmem_skip_account++;
3332 }
3333
3334 static inline void memcg_resume_kmem_account(void)
3335 {
3336 VM_BUG_ON(!current->mm);
3337 current->memcg_kmem_skip_account--;
3338 }
3339
3340 static void kmem_cache_destroy_work_func(struct work_struct *w)
3341 {
3342 struct kmem_cache *cachep;
3343 struct memcg_cache_params *p;
3344
3345 p = container_of(w, struct memcg_cache_params, destroy);
3346
3347 cachep = memcg_params_to_cache(p);
3348
3349 /*
3350 * If we get down to 0 after shrink, we could delete right away.
3351 * However, memcg_release_pages() already puts us back in the workqueue
3352 * in that case. If we proceed deleting, we'll get a dangling
3353 * reference, and removing the object from the workqueue in that case
3354 * is unnecessary complication. We are not a fast path.
3355 *
3356 * Note that this case is fundamentally different from racing with
3357 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3358 * kmem_cache_shrink, not only we would be reinserting a dead cache
3359 * into the queue, but doing so from inside the worker racing to
3360 * destroy it.
3361 *
3362 * So if we aren't down to zero, we'll just schedule a worker and try
3363 * again
3364 */
3365 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3366 kmem_cache_shrink(cachep);
3367 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3368 return;
3369 } else
3370 kmem_cache_destroy(cachep);
3371 }
3372
3373 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3374 {
3375 if (!cachep->memcg_params->dead)
3376 return;
3377
3378 /*
3379 * There are many ways in which we can get here.
3380 *
3381 * We can get to a memory-pressure situation while the delayed work is
3382 * still pending to run. The vmscan shrinkers can then release all
3383 * cache memory and get us to destruction. If this is the case, we'll
3384 * be executed twice, which is a bug (the second time will execute over
3385 * bogus data). In this case, cancelling the work should be fine.
3386 *
3387 * But we can also get here from the worker itself, if
3388 * kmem_cache_shrink is enough to shake all the remaining objects and
3389 * get the page count to 0. In this case, we'll deadlock if we try to
3390 * cancel the work (the worker runs with an internal lock held, which
3391 * is the same lock we would hold for cancel_work_sync().)
3392 *
3393 * Since we can't possibly know who got us here, just refrain from
3394 * running if there is already work pending
3395 */
3396 if (work_pending(&cachep->memcg_params->destroy))
3397 return;
3398 /*
3399 * We have to defer the actual destroying to a workqueue, because
3400 * we might currently be in a context that cannot sleep.
3401 */
3402 schedule_work(&cachep->memcg_params->destroy);
3403 }
3404
3405 /*
3406 * This lock protects updaters, not readers. We want readers to be as fast as
3407 * they can, and they will either see NULL or a valid cache value. Our model
3408 * allow them to see NULL, in which case the root memcg will be selected.
3409 *
3410 * We need this lock because multiple allocations to the same cache from a non
3411 * will span more than one worker. Only one of them can create the cache.
3412 */
3413 static DEFINE_MUTEX(memcg_cache_mutex);
3414
3415 /*
3416 * Called with memcg_cache_mutex held
3417 */
3418 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3419 struct kmem_cache *s)
3420 {
3421 struct kmem_cache *new;
3422 static char *tmp_name = NULL;
3423
3424 lockdep_assert_held(&memcg_cache_mutex);
3425
3426 /*
3427 * kmem_cache_create_memcg duplicates the given name and
3428 * cgroup_name for this name requires RCU context.
3429 * This static temporary buffer is used to prevent from
3430 * pointless shortliving allocation.
3431 */
3432 if (!tmp_name) {
3433 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3434 if (!tmp_name)
3435 return NULL;
3436 }
3437
3438 rcu_read_lock();
3439 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3440 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3441 rcu_read_unlock();
3442
3443 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3444 (s->flags & ~SLAB_PANIC), s->ctor, s);
3445
3446 if (new)
3447 new->allocflags |= __GFP_KMEMCG;
3448
3449 return new;
3450 }
3451
3452 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3453 struct kmem_cache *cachep)
3454 {
3455 struct kmem_cache *new_cachep;
3456 int idx;
3457
3458 BUG_ON(!memcg_can_account_kmem(memcg));
3459
3460 idx = memcg_cache_id(memcg);
3461
3462 mutex_lock(&memcg_cache_mutex);
3463 new_cachep = cache_from_memcg_idx(cachep, idx);
3464 if (new_cachep)
3465 goto out;
3466
3467 new_cachep = kmem_cache_dup(memcg, cachep);
3468 if (new_cachep == NULL)
3469 new_cachep = cachep;
3470
3471 out:
3472 mutex_unlock(&memcg_cache_mutex);
3473 return new_cachep;
3474 }
3475
3476 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3477 {
3478 struct kmem_cache *c;
3479 int i;
3480
3481 if (!s->memcg_params)
3482 return;
3483 if (!s->memcg_params->is_root_cache)
3484 return;
3485
3486 /*
3487 * If the cache is being destroyed, we trust that there is no one else
3488 * requesting objects from it. Even if there are, the sanity checks in
3489 * kmem_cache_destroy should caught this ill-case.
3490 *
3491 * Still, we don't want anyone else freeing memcg_caches under our
3492 * noses, which can happen if a new memcg comes to life. As usual,
3493 * we'll take the set_limit_mutex to protect ourselves against this.
3494 */
3495 mutex_lock(&set_limit_mutex);
3496 for_each_memcg_cache_index(i) {
3497 c = cache_from_memcg_idx(s, i);
3498 if (!c)
3499 continue;
3500
3501 /*
3502 * We will now manually delete the caches, so to avoid races
3503 * we need to cancel all pending destruction workers and
3504 * proceed with destruction ourselves.
3505 *
3506 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3507 * and that could spawn the workers again: it is likely that
3508 * the cache still have active pages until this very moment.
3509 * This would lead us back to mem_cgroup_destroy_cache.
3510 *
3511 * But that will not execute at all if the "dead" flag is not
3512 * set, so flip it down to guarantee we are in control.
3513 */
3514 c->memcg_params->dead = false;
3515 cancel_work_sync(&c->memcg_params->destroy);
3516 kmem_cache_destroy(c);
3517 }
3518 mutex_unlock(&set_limit_mutex);
3519 }
3520
3521 struct create_work {
3522 struct mem_cgroup *memcg;
3523 struct kmem_cache *cachep;
3524 struct work_struct work;
3525 };
3526
3527 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3528 {
3529 struct kmem_cache *cachep;
3530 struct memcg_cache_params *params;
3531
3532 if (!memcg_kmem_is_active(memcg))
3533 return;
3534
3535 mutex_lock(&memcg->slab_caches_mutex);
3536 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3537 cachep = memcg_params_to_cache(params);
3538 cachep->memcg_params->dead = true;
3539 schedule_work(&cachep->memcg_params->destroy);
3540 }
3541 mutex_unlock(&memcg->slab_caches_mutex);
3542 }
3543
3544 static void memcg_create_cache_work_func(struct work_struct *w)
3545 {
3546 struct create_work *cw;
3547
3548 cw = container_of(w, struct create_work, work);
3549 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3550 css_put(&cw->memcg->css);
3551 kfree(cw);
3552 }
3553
3554 /*
3555 * Enqueue the creation of a per-memcg kmem_cache.
3556 */
3557 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3558 struct kmem_cache *cachep)
3559 {
3560 struct create_work *cw;
3561
3562 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3563 if (cw == NULL) {
3564 css_put(&memcg->css);
3565 return;
3566 }
3567
3568 cw->memcg = memcg;
3569 cw->cachep = cachep;
3570
3571 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3572 schedule_work(&cw->work);
3573 }
3574
3575 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3576 struct kmem_cache *cachep)
3577 {
3578 /*
3579 * We need to stop accounting when we kmalloc, because if the
3580 * corresponding kmalloc cache is not yet created, the first allocation
3581 * in __memcg_create_cache_enqueue will recurse.
3582 *
3583 * However, it is better to enclose the whole function. Depending on
3584 * the debugging options enabled, INIT_WORK(), for instance, can
3585 * trigger an allocation. This too, will make us recurse. Because at
3586 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3587 * the safest choice is to do it like this, wrapping the whole function.
3588 */
3589 memcg_stop_kmem_account();
3590 __memcg_create_cache_enqueue(memcg, cachep);
3591 memcg_resume_kmem_account();
3592 }
3593 /*
3594 * Return the kmem_cache we're supposed to use for a slab allocation.
3595 * We try to use the current memcg's version of the cache.
3596 *
3597 * If the cache does not exist yet, if we are the first user of it,
3598 * we either create it immediately, if possible, or create it asynchronously
3599 * in a workqueue.
3600 * In the latter case, we will let the current allocation go through with
3601 * the original cache.
3602 *
3603 * Can't be called in interrupt context or from kernel threads.
3604 * This function needs to be called with rcu_read_lock() held.
3605 */
3606 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3607 gfp_t gfp)
3608 {
3609 struct mem_cgroup *memcg;
3610 struct kmem_cache *memcg_cachep;
3611
3612 VM_BUG_ON(!cachep->memcg_params);
3613 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3614
3615 if (!current->mm || current->memcg_kmem_skip_account)
3616 return cachep;
3617
3618 rcu_read_lock();
3619 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3620
3621 if (!memcg_can_account_kmem(memcg))
3622 goto out;
3623
3624 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3625 if (likely(memcg_cachep)) {
3626 cachep = memcg_cachep;
3627 goto out;
3628 }
3629
3630 /* The corresponding put will be done in the workqueue. */
3631 if (!css_tryget(&memcg->css))
3632 goto out;
3633 rcu_read_unlock();
3634
3635 /*
3636 * If we are in a safe context (can wait, and not in interrupt
3637 * context), we could be be predictable and return right away.
3638 * This would guarantee that the allocation being performed
3639 * already belongs in the new cache.
3640 *
3641 * However, there are some clashes that can arrive from locking.
3642 * For instance, because we acquire the slab_mutex while doing
3643 * kmem_cache_dup, this means no further allocation could happen
3644 * with the slab_mutex held.
3645 *
3646 * Also, because cache creation issue get_online_cpus(), this
3647 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3648 * that ends up reversed during cpu hotplug. (cpuset allocates
3649 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3650 * better to defer everything.
3651 */
3652 memcg_create_cache_enqueue(memcg, cachep);
3653 return cachep;
3654 out:
3655 rcu_read_unlock();
3656 return cachep;
3657 }
3658 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3659
3660 /*
3661 * We need to verify if the allocation against current->mm->owner's memcg is
3662 * possible for the given order. But the page is not allocated yet, so we'll
3663 * need a further commit step to do the final arrangements.
3664 *
3665 * It is possible for the task to switch cgroups in this mean time, so at
3666 * commit time, we can't rely on task conversion any longer. We'll then use
3667 * the handle argument to return to the caller which cgroup we should commit
3668 * against. We could also return the memcg directly and avoid the pointer
3669 * passing, but a boolean return value gives better semantics considering
3670 * the compiled-out case as well.
3671 *
3672 * Returning true means the allocation is possible.
3673 */
3674 bool
3675 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3676 {
3677 struct mem_cgroup *memcg;
3678 int ret;
3679
3680 *_memcg = NULL;
3681
3682 /*
3683 * Disabling accounting is only relevant for some specific memcg
3684 * internal allocations. Therefore we would initially not have such
3685 * check here, since direct calls to the page allocator that are marked
3686 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3687 * concerned with cache allocations, and by having this test at
3688 * memcg_kmem_get_cache, we are already able to relay the allocation to
3689 * the root cache and bypass the memcg cache altogether.
3690 *
3691 * There is one exception, though: the SLUB allocator does not create
3692 * large order caches, but rather service large kmallocs directly from
3693 * the page allocator. Therefore, the following sequence when backed by
3694 * the SLUB allocator:
3695 *
3696 * memcg_stop_kmem_account();
3697 * kmalloc(<large_number>)
3698 * memcg_resume_kmem_account();
3699 *
3700 * would effectively ignore the fact that we should skip accounting,
3701 * since it will drive us directly to this function without passing
3702 * through the cache selector memcg_kmem_get_cache. Such large
3703 * allocations are extremely rare but can happen, for instance, for the
3704 * cache arrays. We bring this test here.
3705 */
3706 if (!current->mm || current->memcg_kmem_skip_account)
3707 return true;
3708
3709 memcg = try_get_mem_cgroup_from_mm(current->mm);
3710
3711 /*
3712 * very rare case described in mem_cgroup_from_task. Unfortunately there
3713 * isn't much we can do without complicating this too much, and it would
3714 * be gfp-dependent anyway. Just let it go
3715 */
3716 if (unlikely(!memcg))
3717 return true;
3718
3719 if (!memcg_can_account_kmem(memcg)) {
3720 css_put(&memcg->css);
3721 return true;
3722 }
3723
3724 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3725 if (!ret)
3726 *_memcg = memcg;
3727
3728 css_put(&memcg->css);
3729 return (ret == 0);
3730 }
3731
3732 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3733 int order)
3734 {
3735 struct page_cgroup *pc;
3736
3737 VM_BUG_ON(mem_cgroup_is_root(memcg));
3738
3739 /* The page allocation failed. Revert */
3740 if (!page) {
3741 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3742 return;
3743 }
3744
3745 pc = lookup_page_cgroup(page);
3746 lock_page_cgroup(pc);
3747 pc->mem_cgroup = memcg;
3748 SetPageCgroupUsed(pc);
3749 unlock_page_cgroup(pc);
3750 }
3751
3752 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3753 {
3754 struct mem_cgroup *memcg = NULL;
3755 struct page_cgroup *pc;
3756
3757
3758 pc = lookup_page_cgroup(page);
3759 /*
3760 * Fast unlocked return. Theoretically might have changed, have to
3761 * check again after locking.
3762 */
3763 if (!PageCgroupUsed(pc))
3764 return;
3765
3766 lock_page_cgroup(pc);
3767 if (PageCgroupUsed(pc)) {
3768 memcg = pc->mem_cgroup;
3769 ClearPageCgroupUsed(pc);
3770 }
3771 unlock_page_cgroup(pc);
3772
3773 /*
3774 * We trust that only if there is a memcg associated with the page, it
3775 * is a valid allocation
3776 */
3777 if (!memcg)
3778 return;
3779
3780 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3781 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3782 }
3783 #else
3784 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3785 {
3786 }
3787 #endif /* CONFIG_MEMCG_KMEM */
3788
3789 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3790
3791 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3792 /*
3793 * Because tail pages are not marked as "used", set it. We're under
3794 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3795 * charge/uncharge will be never happen and move_account() is done under
3796 * compound_lock(), so we don't have to take care of races.
3797 */
3798 void mem_cgroup_split_huge_fixup(struct page *head)
3799 {
3800 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3801 struct page_cgroup *pc;
3802 struct mem_cgroup *memcg;
3803 int i;
3804
3805 if (mem_cgroup_disabled())
3806 return;
3807
3808 memcg = head_pc->mem_cgroup;
3809 for (i = 1; i < HPAGE_PMD_NR; i++) {
3810 pc = head_pc + i;
3811 pc->mem_cgroup = memcg;
3812 smp_wmb();/* see __commit_charge() */
3813 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3814 }
3815 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3816 HPAGE_PMD_NR);
3817 }
3818 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3819
3820 static inline
3821 void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
3822 struct mem_cgroup *to,
3823 unsigned int nr_pages,
3824 enum mem_cgroup_stat_index idx)
3825 {
3826 /* Update stat data for mem_cgroup */
3827 preempt_disable();
3828 __this_cpu_sub(from->stat->count[idx], nr_pages);
3829 __this_cpu_add(to->stat->count[idx], nr_pages);
3830 preempt_enable();
3831 }
3832
3833 /**
3834 * mem_cgroup_move_account - move account of the page
3835 * @page: the page
3836 * @nr_pages: number of regular pages (>1 for huge pages)
3837 * @pc: page_cgroup of the page.
3838 * @from: mem_cgroup which the page is moved from.
3839 * @to: mem_cgroup which the page is moved to. @from != @to.
3840 *
3841 * The caller must confirm following.
3842 * - page is not on LRU (isolate_page() is useful.)
3843 * - compound_lock is held when nr_pages > 1
3844 *
3845 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3846 * from old cgroup.
3847 */
3848 static int mem_cgroup_move_account(struct page *page,
3849 unsigned int nr_pages,
3850 struct page_cgroup *pc,
3851 struct mem_cgroup *from,
3852 struct mem_cgroup *to)
3853 {
3854 unsigned long flags;
3855 int ret;
3856 bool anon = PageAnon(page);
3857
3858 VM_BUG_ON(from == to);
3859 VM_BUG_ON_PAGE(PageLRU(page), page);
3860 /*
3861 * The page is isolated from LRU. So, collapse function
3862 * will not handle this page. But page splitting can happen.
3863 * Do this check under compound_page_lock(). The caller should
3864 * hold it.
3865 */
3866 ret = -EBUSY;
3867 if (nr_pages > 1 && !PageTransHuge(page))
3868 goto out;
3869
3870 lock_page_cgroup(pc);
3871
3872 ret = -EINVAL;
3873 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3874 goto unlock;
3875
3876 move_lock_mem_cgroup(from, &flags);
3877
3878 if (!anon && page_mapped(page))
3879 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3880 MEM_CGROUP_STAT_FILE_MAPPED);
3881
3882 if (PageWriteback(page))
3883 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3884 MEM_CGROUP_STAT_WRITEBACK);
3885
3886 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3887
3888 /* caller should have done css_get */
3889 pc->mem_cgroup = to;
3890 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3891 move_unlock_mem_cgroup(from, &flags);
3892 ret = 0;
3893 unlock:
3894 unlock_page_cgroup(pc);
3895 /*
3896 * check events
3897 */
3898 memcg_check_events(to, page);
3899 memcg_check_events(from, page);
3900 out:
3901 return ret;
3902 }
3903
3904 /**
3905 * mem_cgroup_move_parent - moves page to the parent group
3906 * @page: the page to move
3907 * @pc: page_cgroup of the page
3908 * @child: page's cgroup
3909 *
3910 * move charges to its parent or the root cgroup if the group has no
3911 * parent (aka use_hierarchy==0).
3912 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3913 * mem_cgroup_move_account fails) the failure is always temporary and
3914 * it signals a race with a page removal/uncharge or migration. In the
3915 * first case the page is on the way out and it will vanish from the LRU
3916 * on the next attempt and the call should be retried later.
3917 * Isolation from the LRU fails only if page has been isolated from
3918 * the LRU since we looked at it and that usually means either global
3919 * reclaim or migration going on. The page will either get back to the
3920 * LRU or vanish.
3921 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3922 * (!PageCgroupUsed) or moved to a different group. The page will
3923 * disappear in the next attempt.
3924 */
3925 static int mem_cgroup_move_parent(struct page *page,
3926 struct page_cgroup *pc,
3927 struct mem_cgroup *child)
3928 {
3929 struct mem_cgroup *parent;
3930 unsigned int nr_pages;
3931 unsigned long uninitialized_var(flags);
3932 int ret;
3933
3934 VM_BUG_ON(mem_cgroup_is_root(child));
3935
3936 ret = -EBUSY;
3937 if (!get_page_unless_zero(page))
3938 goto out;
3939 if (isolate_lru_page(page))
3940 goto put;
3941
3942 nr_pages = hpage_nr_pages(page);
3943
3944 parent = parent_mem_cgroup(child);
3945 /*
3946 * If no parent, move charges to root cgroup.
3947 */
3948 if (!parent)
3949 parent = root_mem_cgroup;
3950
3951 if (nr_pages > 1) {
3952 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3953 flags = compound_lock_irqsave(page);
3954 }
3955
3956 ret = mem_cgroup_move_account(page, nr_pages,
3957 pc, child, parent);
3958 if (!ret)
3959 __mem_cgroup_cancel_local_charge(child, nr_pages);
3960
3961 if (nr_pages > 1)
3962 compound_unlock_irqrestore(page, flags);
3963 putback_lru_page(page);
3964 put:
3965 put_page(page);
3966 out:
3967 return ret;
3968 }
3969
3970 /*
3971 * Charge the memory controller for page usage.
3972 * Return
3973 * 0 if the charge was successful
3974 * < 0 if the cgroup is over its limit
3975 */
3976 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3977 gfp_t gfp_mask, enum charge_type ctype)
3978 {
3979 struct mem_cgroup *memcg = NULL;
3980 unsigned int nr_pages = 1;
3981 bool oom = true;
3982 int ret;
3983
3984 if (PageTransHuge(page)) {
3985 nr_pages <<= compound_order(page);
3986 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3987 /*
3988 * Never OOM-kill a process for a huge page. The
3989 * fault handler will fall back to regular pages.
3990 */
3991 oom = false;
3992 }
3993
3994 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3995 if (ret == -ENOMEM)
3996 return ret;
3997 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3998 return 0;
3999 }
4000
4001 int mem_cgroup_newpage_charge(struct page *page,
4002 struct mm_struct *mm, gfp_t gfp_mask)
4003 {
4004 if (mem_cgroup_disabled())
4005 return 0;
4006 VM_BUG_ON_PAGE(page_mapped(page), page);
4007 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
4008 VM_BUG_ON(!mm);
4009 return mem_cgroup_charge_common(page, mm, gfp_mask,
4010 MEM_CGROUP_CHARGE_TYPE_ANON);
4011 }
4012
4013 /*
4014 * While swap-in, try_charge -> commit or cancel, the page is locked.
4015 * And when try_charge() successfully returns, one refcnt to memcg without
4016 * struct page_cgroup is acquired. This refcnt will be consumed by
4017 * "commit()" or removed by "cancel()"
4018 */
4019 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
4020 struct page *page,
4021 gfp_t mask,
4022 struct mem_cgroup **memcgp)
4023 {
4024 struct mem_cgroup *memcg;
4025 struct page_cgroup *pc;
4026 int ret;
4027
4028 pc = lookup_page_cgroup(page);
4029 /*
4030 * Every swap fault against a single page tries to charge the
4031 * page, bail as early as possible. shmem_unuse() encounters
4032 * already charged pages, too. The USED bit is protected by
4033 * the page lock, which serializes swap cache removal, which
4034 * in turn serializes uncharging.
4035 */
4036 if (PageCgroupUsed(pc))
4037 return 0;
4038 if (!do_swap_account)
4039 goto charge_cur_mm;
4040 memcg = try_get_mem_cgroup_from_page(page);
4041 if (!memcg)
4042 goto charge_cur_mm;
4043 *memcgp = memcg;
4044 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
4045 css_put(&memcg->css);
4046 if (ret == -EINTR)
4047 ret = 0;
4048 return ret;
4049 charge_cur_mm:
4050 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
4051 if (ret == -EINTR)
4052 ret = 0;
4053 return ret;
4054 }
4055
4056 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
4057 gfp_t gfp_mask, struct mem_cgroup **memcgp)
4058 {
4059 *memcgp = NULL;
4060 if (mem_cgroup_disabled())
4061 return 0;
4062 /*
4063 * A racing thread's fault, or swapoff, may have already
4064 * updated the pte, and even removed page from swap cache: in
4065 * those cases unuse_pte()'s pte_same() test will fail; but
4066 * there's also a KSM case which does need to charge the page.
4067 */
4068 if (!PageSwapCache(page)) {
4069 int ret;
4070
4071 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4072 if (ret == -EINTR)
4073 ret = 0;
4074 return ret;
4075 }
4076 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4077 }
4078
4079 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4080 {
4081 if (mem_cgroup_disabled())
4082 return;
4083 if (!memcg)
4084 return;
4085 __mem_cgroup_cancel_charge(memcg, 1);
4086 }
4087
4088 static void
4089 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
4090 enum charge_type ctype)
4091 {
4092 if (mem_cgroup_disabled())
4093 return;
4094 if (!memcg)
4095 return;
4096
4097 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4098 /*
4099 * Now swap is on-memory. This means this page may be
4100 * counted both as mem and swap....double count.
4101 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4102 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4103 * may call delete_from_swap_cache() before reach here.
4104 */
4105 if (do_swap_account && PageSwapCache(page)) {
4106 swp_entry_t ent = {.val = page_private(page)};
4107 mem_cgroup_uncharge_swap(ent);
4108 }
4109 }
4110
4111 void mem_cgroup_commit_charge_swapin(struct page *page,
4112 struct mem_cgroup *memcg)
4113 {
4114 __mem_cgroup_commit_charge_swapin(page, memcg,
4115 MEM_CGROUP_CHARGE_TYPE_ANON);
4116 }
4117
4118 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4119 gfp_t gfp_mask)
4120 {
4121 struct mem_cgroup *memcg = NULL;
4122 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4123 int ret;
4124
4125 if (mem_cgroup_disabled())
4126 return 0;
4127 if (PageCompound(page))
4128 return 0;
4129
4130 if (!PageSwapCache(page))
4131 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4132 else { /* page is swapcache/shmem */
4133 ret = __mem_cgroup_try_charge_swapin(mm, page,
4134 gfp_mask, &memcg);
4135 if (!ret)
4136 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4137 }
4138 return ret;
4139 }
4140
4141 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4142 unsigned int nr_pages,
4143 const enum charge_type ctype)
4144 {
4145 struct memcg_batch_info *batch = NULL;
4146 bool uncharge_memsw = true;
4147
4148 /* If swapout, usage of swap doesn't decrease */
4149 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4150 uncharge_memsw = false;
4151
4152 batch = &current->memcg_batch;
4153 /*
4154 * In usual, we do css_get() when we remember memcg pointer.
4155 * But in this case, we keep res->usage until end of a series of
4156 * uncharges. Then, it's ok to ignore memcg's refcnt.
4157 */
4158 if (!batch->memcg)
4159 batch->memcg = memcg;
4160 /*
4161 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4162 * In those cases, all pages freed continuously can be expected to be in
4163 * the same cgroup and we have chance to coalesce uncharges.
4164 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4165 * because we want to do uncharge as soon as possible.
4166 */
4167
4168 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4169 goto direct_uncharge;
4170
4171 if (nr_pages > 1)
4172 goto direct_uncharge;
4173
4174 /*
4175 * In typical case, batch->memcg == mem. This means we can
4176 * merge a series of uncharges to an uncharge of res_counter.
4177 * If not, we uncharge res_counter ony by one.
4178 */
4179 if (batch->memcg != memcg)
4180 goto direct_uncharge;
4181 /* remember freed charge and uncharge it later */
4182 batch->nr_pages++;
4183 if (uncharge_memsw)
4184 batch->memsw_nr_pages++;
4185 return;
4186 direct_uncharge:
4187 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4188 if (uncharge_memsw)
4189 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4190 if (unlikely(batch->memcg != memcg))
4191 memcg_oom_recover(memcg);
4192 }
4193
4194 /*
4195 * uncharge if !page_mapped(page)
4196 */
4197 static struct mem_cgroup *
4198 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4199 bool end_migration)
4200 {
4201 struct mem_cgroup *memcg = NULL;
4202 unsigned int nr_pages = 1;
4203 struct page_cgroup *pc;
4204 bool anon;
4205
4206 if (mem_cgroup_disabled())
4207 return NULL;
4208
4209 if (PageTransHuge(page)) {
4210 nr_pages <<= compound_order(page);
4211 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
4212 }
4213 /*
4214 * Check if our page_cgroup is valid
4215 */
4216 pc = lookup_page_cgroup(page);
4217 if (unlikely(!PageCgroupUsed(pc)))
4218 return NULL;
4219
4220 lock_page_cgroup(pc);
4221
4222 memcg = pc->mem_cgroup;
4223
4224 if (!PageCgroupUsed(pc))
4225 goto unlock_out;
4226
4227 anon = PageAnon(page);
4228
4229 switch (ctype) {
4230 case MEM_CGROUP_CHARGE_TYPE_ANON:
4231 /*
4232 * Generally PageAnon tells if it's the anon statistics to be
4233 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4234 * used before page reached the stage of being marked PageAnon.
4235 */
4236 anon = true;
4237 /* fallthrough */
4238 case MEM_CGROUP_CHARGE_TYPE_DROP:
4239 /* See mem_cgroup_prepare_migration() */
4240 if (page_mapped(page))
4241 goto unlock_out;
4242 /*
4243 * Pages under migration may not be uncharged. But
4244 * end_migration() /must/ be the one uncharging the
4245 * unused post-migration page and so it has to call
4246 * here with the migration bit still set. See the
4247 * res_counter handling below.
4248 */
4249 if (!end_migration && PageCgroupMigration(pc))
4250 goto unlock_out;
4251 break;
4252 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4253 if (!PageAnon(page)) { /* Shared memory */
4254 if (page->mapping && !page_is_file_cache(page))
4255 goto unlock_out;
4256 } else if (page_mapped(page)) /* Anon */
4257 goto unlock_out;
4258 break;
4259 default:
4260 break;
4261 }
4262
4263 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4264
4265 ClearPageCgroupUsed(pc);
4266 /*
4267 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4268 * freed from LRU. This is safe because uncharged page is expected not
4269 * to be reused (freed soon). Exception is SwapCache, it's handled by
4270 * special functions.
4271 */
4272
4273 unlock_page_cgroup(pc);
4274 /*
4275 * even after unlock, we have memcg->res.usage here and this memcg
4276 * will never be freed, so it's safe to call css_get().
4277 */
4278 memcg_check_events(memcg, page);
4279 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4280 mem_cgroup_swap_statistics(memcg, true);
4281 css_get(&memcg->css);
4282 }
4283 /*
4284 * Migration does not charge the res_counter for the
4285 * replacement page, so leave it alone when phasing out the
4286 * page that is unused after the migration.
4287 */
4288 if (!end_migration && !mem_cgroup_is_root(memcg))
4289 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4290
4291 return memcg;
4292
4293 unlock_out:
4294 unlock_page_cgroup(pc);
4295 return NULL;
4296 }
4297
4298 void mem_cgroup_uncharge_page(struct page *page)
4299 {
4300 /* early check. */
4301 if (page_mapped(page))
4302 return;
4303 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
4304 /*
4305 * If the page is in swap cache, uncharge should be deferred
4306 * to the swap path, which also properly accounts swap usage
4307 * and handles memcg lifetime.
4308 *
4309 * Note that this check is not stable and reclaim may add the
4310 * page to swap cache at any time after this. However, if the
4311 * page is not in swap cache by the time page->mapcount hits
4312 * 0, there won't be any page table references to the swap
4313 * slot, and reclaim will free it and not actually write the
4314 * page to disk.
4315 */
4316 if (PageSwapCache(page))
4317 return;
4318 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4319 }
4320
4321 void mem_cgroup_uncharge_cache_page(struct page *page)
4322 {
4323 VM_BUG_ON_PAGE(page_mapped(page), page);
4324 VM_BUG_ON_PAGE(page->mapping, page);
4325 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4326 }
4327
4328 /*
4329 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4330 * In that cases, pages are freed continuously and we can expect pages
4331 * are in the same memcg. All these calls itself limits the number of
4332 * pages freed at once, then uncharge_start/end() is called properly.
4333 * This may be called prural(2) times in a context,
4334 */
4335
4336 void mem_cgroup_uncharge_start(void)
4337 {
4338 current->memcg_batch.do_batch++;
4339 /* We can do nest. */
4340 if (current->memcg_batch.do_batch == 1) {
4341 current->memcg_batch.memcg = NULL;
4342 current->memcg_batch.nr_pages = 0;
4343 current->memcg_batch.memsw_nr_pages = 0;
4344 }
4345 }
4346
4347 void mem_cgroup_uncharge_end(void)
4348 {
4349 struct memcg_batch_info *batch = &current->memcg_batch;
4350
4351 if (!batch->do_batch)
4352 return;
4353
4354 batch->do_batch--;
4355 if (batch->do_batch) /* If stacked, do nothing. */
4356 return;
4357
4358 if (!batch->memcg)
4359 return;
4360 /*
4361 * This "batch->memcg" is valid without any css_get/put etc...
4362 * bacause we hide charges behind us.
4363 */
4364 if (batch->nr_pages)
4365 res_counter_uncharge(&batch->memcg->res,
4366 batch->nr_pages * PAGE_SIZE);
4367 if (batch->memsw_nr_pages)
4368 res_counter_uncharge(&batch->memcg->memsw,
4369 batch->memsw_nr_pages * PAGE_SIZE);
4370 memcg_oom_recover(batch->memcg);
4371 /* forget this pointer (for sanity check) */
4372 batch->memcg = NULL;
4373 }
4374
4375 #ifdef CONFIG_SWAP
4376 /*
4377 * called after __delete_from_swap_cache() and drop "page" account.
4378 * memcg information is recorded to swap_cgroup of "ent"
4379 */
4380 void
4381 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4382 {
4383 struct mem_cgroup *memcg;
4384 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4385
4386 if (!swapout) /* this was a swap cache but the swap is unused ! */
4387 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4388
4389 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4390
4391 /*
4392 * record memcg information, if swapout && memcg != NULL,
4393 * css_get() was called in uncharge().
4394 */
4395 if (do_swap_account && swapout && memcg)
4396 swap_cgroup_record(ent, mem_cgroup_id(memcg));
4397 }
4398 #endif
4399
4400 #ifdef CONFIG_MEMCG_SWAP
4401 /*
4402 * called from swap_entry_free(). remove record in swap_cgroup and
4403 * uncharge "memsw" account.
4404 */
4405 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4406 {
4407 struct mem_cgroup *memcg;
4408 unsigned short id;
4409
4410 if (!do_swap_account)
4411 return;
4412
4413 id = swap_cgroup_record(ent, 0);
4414 rcu_read_lock();
4415 memcg = mem_cgroup_lookup(id);
4416 if (memcg) {
4417 /*
4418 * We uncharge this because swap is freed.
4419 * This memcg can be obsolete one. We avoid calling css_tryget
4420 */
4421 if (!mem_cgroup_is_root(memcg))
4422 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4423 mem_cgroup_swap_statistics(memcg, false);
4424 css_put(&memcg->css);
4425 }
4426 rcu_read_unlock();
4427 }
4428
4429 /**
4430 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4431 * @entry: swap entry to be moved
4432 * @from: mem_cgroup which the entry is moved from
4433 * @to: mem_cgroup which the entry is moved to
4434 *
4435 * It succeeds only when the swap_cgroup's record for this entry is the same
4436 * as the mem_cgroup's id of @from.
4437 *
4438 * Returns 0 on success, -EINVAL on failure.
4439 *
4440 * The caller must have charged to @to, IOW, called res_counter_charge() about
4441 * both res and memsw, and called css_get().
4442 */
4443 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4444 struct mem_cgroup *from, struct mem_cgroup *to)
4445 {
4446 unsigned short old_id, new_id;
4447
4448 old_id = mem_cgroup_id(from);
4449 new_id = mem_cgroup_id(to);
4450
4451 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4452 mem_cgroup_swap_statistics(from, false);
4453 mem_cgroup_swap_statistics(to, true);
4454 /*
4455 * This function is only called from task migration context now.
4456 * It postpones res_counter and refcount handling till the end
4457 * of task migration(mem_cgroup_clear_mc()) for performance
4458 * improvement. But we cannot postpone css_get(to) because if
4459 * the process that has been moved to @to does swap-in, the
4460 * refcount of @to might be decreased to 0.
4461 *
4462 * We are in attach() phase, so the cgroup is guaranteed to be
4463 * alive, so we can just call css_get().
4464 */
4465 css_get(&to->css);
4466 return 0;
4467 }
4468 return -EINVAL;
4469 }
4470 #else
4471 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4472 struct mem_cgroup *from, struct mem_cgroup *to)
4473 {
4474 return -EINVAL;
4475 }
4476 #endif
4477
4478 /*
4479 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4480 * page belongs to.
4481 */
4482 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4483 struct mem_cgroup **memcgp)
4484 {
4485 struct mem_cgroup *memcg = NULL;
4486 unsigned int nr_pages = 1;
4487 struct page_cgroup *pc;
4488 enum charge_type ctype;
4489
4490 *memcgp = NULL;
4491
4492 if (mem_cgroup_disabled())
4493 return;
4494
4495 if (PageTransHuge(page))
4496 nr_pages <<= compound_order(page);
4497
4498 pc = lookup_page_cgroup(page);
4499 lock_page_cgroup(pc);
4500 if (PageCgroupUsed(pc)) {
4501 memcg = pc->mem_cgroup;
4502 css_get(&memcg->css);
4503 /*
4504 * At migrating an anonymous page, its mapcount goes down
4505 * to 0 and uncharge() will be called. But, even if it's fully
4506 * unmapped, migration may fail and this page has to be
4507 * charged again. We set MIGRATION flag here and delay uncharge
4508 * until end_migration() is called
4509 *
4510 * Corner Case Thinking
4511 * A)
4512 * When the old page was mapped as Anon and it's unmap-and-freed
4513 * while migration was ongoing.
4514 * If unmap finds the old page, uncharge() of it will be delayed
4515 * until end_migration(). If unmap finds a new page, it's
4516 * uncharged when it make mapcount to be 1->0. If unmap code
4517 * finds swap_migration_entry, the new page will not be mapped
4518 * and end_migration() will find it(mapcount==0).
4519 *
4520 * B)
4521 * When the old page was mapped but migraion fails, the kernel
4522 * remaps it. A charge for it is kept by MIGRATION flag even
4523 * if mapcount goes down to 0. We can do remap successfully
4524 * without charging it again.
4525 *
4526 * C)
4527 * The "old" page is under lock_page() until the end of
4528 * migration, so, the old page itself will not be swapped-out.
4529 * If the new page is swapped out before end_migraton, our
4530 * hook to usual swap-out path will catch the event.
4531 */
4532 if (PageAnon(page))
4533 SetPageCgroupMigration(pc);
4534 }
4535 unlock_page_cgroup(pc);
4536 /*
4537 * If the page is not charged at this point,
4538 * we return here.
4539 */
4540 if (!memcg)
4541 return;
4542
4543 *memcgp = memcg;
4544 /*
4545 * We charge new page before it's used/mapped. So, even if unlock_page()
4546 * is called before end_migration, we can catch all events on this new
4547 * page. In the case new page is migrated but not remapped, new page's
4548 * mapcount will be finally 0 and we call uncharge in end_migration().
4549 */
4550 if (PageAnon(page))
4551 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4552 else
4553 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4554 /*
4555 * The page is committed to the memcg, but it's not actually
4556 * charged to the res_counter since we plan on replacing the
4557 * old one and only one page is going to be left afterwards.
4558 */
4559 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4560 }
4561
4562 /* remove redundant charge if migration failed*/
4563 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4564 struct page *oldpage, struct page *newpage, bool migration_ok)
4565 {
4566 struct page *used, *unused;
4567 struct page_cgroup *pc;
4568 bool anon;
4569
4570 if (!memcg)
4571 return;
4572
4573 if (!migration_ok) {
4574 used = oldpage;
4575 unused = newpage;
4576 } else {
4577 used = newpage;
4578 unused = oldpage;
4579 }
4580 anon = PageAnon(used);
4581 __mem_cgroup_uncharge_common(unused,
4582 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4583 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4584 true);
4585 css_put(&memcg->css);
4586 /*
4587 * We disallowed uncharge of pages under migration because mapcount
4588 * of the page goes down to zero, temporarly.
4589 * Clear the flag and check the page should be charged.
4590 */
4591 pc = lookup_page_cgroup(oldpage);
4592 lock_page_cgroup(pc);
4593 ClearPageCgroupMigration(pc);
4594 unlock_page_cgroup(pc);
4595
4596 /*
4597 * If a page is a file cache, radix-tree replacement is very atomic
4598 * and we can skip this check. When it was an Anon page, its mapcount
4599 * goes down to 0. But because we added MIGRATION flage, it's not
4600 * uncharged yet. There are several case but page->mapcount check
4601 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4602 * check. (see prepare_charge() also)
4603 */
4604 if (anon)
4605 mem_cgroup_uncharge_page(used);
4606 }
4607
4608 /*
4609 * At replace page cache, newpage is not under any memcg but it's on
4610 * LRU. So, this function doesn't touch res_counter but handles LRU
4611 * in correct way. Both pages are locked so we cannot race with uncharge.
4612 */
4613 void mem_cgroup_replace_page_cache(struct page *oldpage,
4614 struct page *newpage)
4615 {
4616 struct mem_cgroup *memcg = NULL;
4617 struct page_cgroup *pc;
4618 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4619
4620 if (mem_cgroup_disabled())
4621 return;
4622
4623 pc = lookup_page_cgroup(oldpage);
4624 /* fix accounting on old pages */
4625 lock_page_cgroup(pc);
4626 if (PageCgroupUsed(pc)) {
4627 memcg = pc->mem_cgroup;
4628 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4629 ClearPageCgroupUsed(pc);
4630 }
4631 unlock_page_cgroup(pc);
4632
4633 /*
4634 * When called from shmem_replace_page(), in some cases the
4635 * oldpage has already been charged, and in some cases not.
4636 */
4637 if (!memcg)
4638 return;
4639 /*
4640 * Even if newpage->mapping was NULL before starting replacement,
4641 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4642 * LRU while we overwrite pc->mem_cgroup.
4643 */
4644 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4645 }
4646
4647 #ifdef CONFIG_DEBUG_VM
4648 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4649 {
4650 struct page_cgroup *pc;
4651
4652 pc = lookup_page_cgroup(page);
4653 /*
4654 * Can be NULL while feeding pages into the page allocator for
4655 * the first time, i.e. during boot or memory hotplug;
4656 * or when mem_cgroup_disabled().
4657 */
4658 if (likely(pc) && PageCgroupUsed(pc))
4659 return pc;
4660 return NULL;
4661 }
4662
4663 bool mem_cgroup_bad_page_check(struct page *page)
4664 {
4665 if (mem_cgroup_disabled())
4666 return false;
4667
4668 return lookup_page_cgroup_used(page) != NULL;
4669 }
4670
4671 void mem_cgroup_print_bad_page(struct page *page)
4672 {
4673 struct page_cgroup *pc;
4674
4675 pc = lookup_page_cgroup_used(page);
4676 if (pc) {
4677 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4678 pc, pc->flags, pc->mem_cgroup);
4679 }
4680 }
4681 #endif
4682
4683 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4684 unsigned long long val)
4685 {
4686 int retry_count;
4687 u64 memswlimit, memlimit;
4688 int ret = 0;
4689 int children = mem_cgroup_count_children(memcg);
4690 u64 curusage, oldusage;
4691 int enlarge;
4692
4693 /*
4694 * For keeping hierarchical_reclaim simple, how long we should retry
4695 * is depends on callers. We set our retry-count to be function
4696 * of # of children which we should visit in this loop.
4697 */
4698 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4699
4700 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4701
4702 enlarge = 0;
4703 while (retry_count) {
4704 if (signal_pending(current)) {
4705 ret = -EINTR;
4706 break;
4707 }
4708 /*
4709 * Rather than hide all in some function, I do this in
4710 * open coded manner. You see what this really does.
4711 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4712 */
4713 mutex_lock(&set_limit_mutex);
4714 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4715 if (memswlimit < val) {
4716 ret = -EINVAL;
4717 mutex_unlock(&set_limit_mutex);
4718 break;
4719 }
4720
4721 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4722 if (memlimit < val)
4723 enlarge = 1;
4724
4725 ret = res_counter_set_limit(&memcg->res, val);
4726 if (!ret) {
4727 if (memswlimit == val)
4728 memcg->memsw_is_minimum = true;
4729 else
4730 memcg->memsw_is_minimum = false;
4731 }
4732 mutex_unlock(&set_limit_mutex);
4733
4734 if (!ret)
4735 break;
4736
4737 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4738 MEM_CGROUP_RECLAIM_SHRINK);
4739 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4740 /* Usage is reduced ? */
4741 if (curusage >= oldusage)
4742 retry_count--;
4743 else
4744 oldusage = curusage;
4745 }
4746 if (!ret && enlarge)
4747 memcg_oom_recover(memcg);
4748
4749 return ret;
4750 }
4751
4752 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4753 unsigned long long val)
4754 {
4755 int retry_count;
4756 u64 memlimit, memswlimit, oldusage, curusage;
4757 int children = mem_cgroup_count_children(memcg);
4758 int ret = -EBUSY;
4759 int enlarge = 0;
4760
4761 /* see mem_cgroup_resize_res_limit */
4762 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4763 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4764 while (retry_count) {
4765 if (signal_pending(current)) {
4766 ret = -EINTR;
4767 break;
4768 }
4769 /*
4770 * Rather than hide all in some function, I do this in
4771 * open coded manner. You see what this really does.
4772 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4773 */
4774 mutex_lock(&set_limit_mutex);
4775 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4776 if (memlimit > val) {
4777 ret = -EINVAL;
4778 mutex_unlock(&set_limit_mutex);
4779 break;
4780 }
4781 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4782 if (memswlimit < val)
4783 enlarge = 1;
4784 ret = res_counter_set_limit(&memcg->memsw, val);
4785 if (!ret) {
4786 if (memlimit == val)
4787 memcg->memsw_is_minimum = true;
4788 else
4789 memcg->memsw_is_minimum = false;
4790 }
4791 mutex_unlock(&set_limit_mutex);
4792
4793 if (!ret)
4794 break;
4795
4796 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4797 MEM_CGROUP_RECLAIM_NOSWAP |
4798 MEM_CGROUP_RECLAIM_SHRINK);
4799 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4800 /* Usage is reduced ? */
4801 if (curusage >= oldusage)
4802 retry_count--;
4803 else
4804 oldusage = curusage;
4805 }
4806 if (!ret && enlarge)
4807 memcg_oom_recover(memcg);
4808 return ret;
4809 }
4810
4811 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4812 gfp_t gfp_mask,
4813 unsigned long *total_scanned)
4814 {
4815 unsigned long nr_reclaimed = 0;
4816 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4817 unsigned long reclaimed;
4818 int loop = 0;
4819 struct mem_cgroup_tree_per_zone *mctz;
4820 unsigned long long excess;
4821 unsigned long nr_scanned;
4822
4823 if (order > 0)
4824 return 0;
4825
4826 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4827 /*
4828 * This loop can run a while, specially if mem_cgroup's continuously
4829 * keep exceeding their soft limit and putting the system under
4830 * pressure
4831 */
4832 do {
4833 if (next_mz)
4834 mz = next_mz;
4835 else
4836 mz = mem_cgroup_largest_soft_limit_node(mctz);
4837 if (!mz)
4838 break;
4839
4840 nr_scanned = 0;
4841 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4842 gfp_mask, &nr_scanned);
4843 nr_reclaimed += reclaimed;
4844 *total_scanned += nr_scanned;
4845 spin_lock(&mctz->lock);
4846
4847 /*
4848 * If we failed to reclaim anything from this memory cgroup
4849 * it is time to move on to the next cgroup
4850 */
4851 next_mz = NULL;
4852 if (!reclaimed) {
4853 do {
4854 /*
4855 * Loop until we find yet another one.
4856 *
4857 * By the time we get the soft_limit lock
4858 * again, someone might have aded the
4859 * group back on the RB tree. Iterate to
4860 * make sure we get a different mem.
4861 * mem_cgroup_largest_soft_limit_node returns
4862 * NULL if no other cgroup is present on
4863 * the tree
4864 */
4865 next_mz =
4866 __mem_cgroup_largest_soft_limit_node(mctz);
4867 if (next_mz == mz)
4868 css_put(&next_mz->memcg->css);
4869 else /* next_mz == NULL or other memcg */
4870 break;
4871 } while (1);
4872 }
4873 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4874 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4875 /*
4876 * One school of thought says that we should not add
4877 * back the node to the tree if reclaim returns 0.
4878 * But our reclaim could return 0, simply because due
4879 * to priority we are exposing a smaller subset of
4880 * memory to reclaim from. Consider this as a longer
4881 * term TODO.
4882 */
4883 /* If excess == 0, no tree ops */
4884 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4885 spin_unlock(&mctz->lock);
4886 css_put(&mz->memcg->css);
4887 loop++;
4888 /*
4889 * Could not reclaim anything and there are no more
4890 * mem cgroups to try or we seem to be looping without
4891 * reclaiming anything.
4892 */
4893 if (!nr_reclaimed &&
4894 (next_mz == NULL ||
4895 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4896 break;
4897 } while (!nr_reclaimed);
4898 if (next_mz)
4899 css_put(&next_mz->memcg->css);
4900 return nr_reclaimed;
4901 }
4902
4903 /**
4904 * mem_cgroup_force_empty_list - clears LRU of a group
4905 * @memcg: group to clear
4906 * @node: NUMA node
4907 * @zid: zone id
4908 * @lru: lru to to clear
4909 *
4910 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4911 * reclaim the pages page themselves - pages are moved to the parent (or root)
4912 * group.
4913 */
4914 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4915 int node, int zid, enum lru_list lru)
4916 {
4917 struct lruvec *lruvec;
4918 unsigned long flags;
4919 struct list_head *list;
4920 struct page *busy;
4921 struct zone *zone;
4922
4923 zone = &NODE_DATA(node)->node_zones[zid];
4924 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4925 list = &lruvec->lists[lru];
4926
4927 busy = NULL;
4928 do {
4929 struct page_cgroup *pc;
4930 struct page *page;
4931
4932 spin_lock_irqsave(&zone->lru_lock, flags);
4933 if (list_empty(list)) {
4934 spin_unlock_irqrestore(&zone->lru_lock, flags);
4935 break;
4936 }
4937 page = list_entry(list->prev, struct page, lru);
4938 if (busy == page) {
4939 list_move(&page->lru, list);
4940 busy = NULL;
4941 spin_unlock_irqrestore(&zone->lru_lock, flags);
4942 continue;
4943 }
4944 spin_unlock_irqrestore(&zone->lru_lock, flags);
4945
4946 pc = lookup_page_cgroup(page);
4947
4948 if (mem_cgroup_move_parent(page, pc, memcg)) {
4949 /* found lock contention or "pc" is obsolete. */
4950 busy = page;
4951 cond_resched();
4952 } else
4953 busy = NULL;
4954 } while (!list_empty(list));
4955 }
4956
4957 /*
4958 * make mem_cgroup's charge to be 0 if there is no task by moving
4959 * all the charges and pages to the parent.
4960 * This enables deleting this mem_cgroup.
4961 *
4962 * Caller is responsible for holding css reference on the memcg.
4963 */
4964 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4965 {
4966 int node, zid;
4967 u64 usage;
4968
4969 do {
4970 /* This is for making all *used* pages to be on LRU. */
4971 lru_add_drain_all();
4972 drain_all_stock_sync(memcg);
4973 mem_cgroup_start_move(memcg);
4974 for_each_node_state(node, N_MEMORY) {
4975 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4976 enum lru_list lru;
4977 for_each_lru(lru) {
4978 mem_cgroup_force_empty_list(memcg,
4979 node, zid, lru);
4980 }
4981 }
4982 }
4983 mem_cgroup_end_move(memcg);
4984 memcg_oom_recover(memcg);
4985 cond_resched();
4986
4987 /*
4988 * Kernel memory may not necessarily be trackable to a specific
4989 * process. So they are not migrated, and therefore we can't
4990 * expect their value to drop to 0 here.
4991 * Having res filled up with kmem only is enough.
4992 *
4993 * This is a safety check because mem_cgroup_force_empty_list
4994 * could have raced with mem_cgroup_replace_page_cache callers
4995 * so the lru seemed empty but the page could have been added
4996 * right after the check. RES_USAGE should be safe as we always
4997 * charge before adding to the LRU.
4998 */
4999 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
5000 res_counter_read_u64(&memcg->kmem, RES_USAGE);
5001 } while (usage > 0);
5002 }
5003
5004 static inline bool memcg_has_children(struct mem_cgroup *memcg)
5005 {
5006 lockdep_assert_held(&memcg_create_mutex);
5007 /*
5008 * The lock does not prevent addition or deletion to the list
5009 * of children, but it prevents a new child from being
5010 * initialized based on this parent in css_online(), so it's
5011 * enough to decide whether hierarchically inherited
5012 * attributes can still be changed or not.
5013 */
5014 return memcg->use_hierarchy &&
5015 !list_empty(&memcg->css.cgroup->children);
5016 }
5017
5018 /*
5019 * Reclaims as many pages from the given memcg as possible and moves
5020 * the rest to the parent.
5021 *
5022 * Caller is responsible for holding css reference for memcg.
5023 */
5024 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
5025 {
5026 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
5027 struct cgroup *cgrp = memcg->css.cgroup;
5028
5029 /* returns EBUSY if there is a task or if we come here twice. */
5030 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
5031 return -EBUSY;
5032
5033 /* we call try-to-free pages for make this cgroup empty */
5034 lru_add_drain_all();
5035 /* try to free all pages in this cgroup */
5036 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
5037 int progress;
5038
5039 if (signal_pending(current))
5040 return -EINTR;
5041
5042 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
5043 false);
5044 if (!progress) {
5045 nr_retries--;
5046 /* maybe some writeback is necessary */
5047 congestion_wait(BLK_RW_ASYNC, HZ/10);
5048 }
5049
5050 }
5051 lru_add_drain();
5052 mem_cgroup_reparent_charges(memcg);
5053
5054 return 0;
5055 }
5056
5057 static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
5058 unsigned int event)
5059 {
5060 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5061
5062 if (mem_cgroup_is_root(memcg))
5063 return -EINVAL;
5064 return mem_cgroup_force_empty(memcg);
5065 }
5066
5067 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
5068 struct cftype *cft)
5069 {
5070 return mem_cgroup_from_css(css)->use_hierarchy;
5071 }
5072
5073 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
5074 struct cftype *cft, u64 val)
5075 {
5076 int retval = 0;
5077 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5078 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5079
5080 mutex_lock(&memcg_create_mutex);
5081
5082 if (memcg->use_hierarchy == val)
5083 goto out;
5084
5085 /*
5086 * If parent's use_hierarchy is set, we can't make any modifications
5087 * in the child subtrees. If it is unset, then the change can
5088 * occur, provided the current cgroup has no children.
5089 *
5090 * For the root cgroup, parent_mem is NULL, we allow value to be
5091 * set if there are no children.
5092 */
5093 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5094 (val == 1 || val == 0)) {
5095 if (list_empty(&memcg->css.cgroup->children))
5096 memcg->use_hierarchy = val;
5097 else
5098 retval = -EBUSY;
5099 } else
5100 retval = -EINVAL;
5101
5102 out:
5103 mutex_unlock(&memcg_create_mutex);
5104
5105 return retval;
5106 }
5107
5108
5109 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5110 enum mem_cgroup_stat_index idx)
5111 {
5112 struct mem_cgroup *iter;
5113 long val = 0;
5114
5115 /* Per-cpu values can be negative, use a signed accumulator */
5116 for_each_mem_cgroup_tree(iter, memcg)
5117 val += mem_cgroup_read_stat(iter, idx);
5118
5119 if (val < 0) /* race ? */
5120 val = 0;
5121 return val;
5122 }
5123
5124 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5125 {
5126 u64 val;
5127
5128 if (!mem_cgroup_is_root(memcg)) {
5129 if (!swap)
5130 return res_counter_read_u64(&memcg->res, RES_USAGE);
5131 else
5132 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5133 }
5134
5135 /*
5136 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5137 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5138 */
5139 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5140 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5141
5142 if (swap)
5143 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5144
5145 return val << PAGE_SHIFT;
5146 }
5147
5148 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
5149 struct cftype *cft)
5150 {
5151 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5152 u64 val;
5153 int name;
5154 enum res_type type;
5155
5156 type = MEMFILE_TYPE(cft->private);
5157 name = MEMFILE_ATTR(cft->private);
5158
5159 switch (type) {
5160 case _MEM:
5161 if (name == RES_USAGE)
5162 val = mem_cgroup_usage(memcg, false);
5163 else
5164 val = res_counter_read_u64(&memcg->res, name);
5165 break;
5166 case _MEMSWAP:
5167 if (name == RES_USAGE)
5168 val = mem_cgroup_usage(memcg, true);
5169 else
5170 val = res_counter_read_u64(&memcg->memsw, name);
5171 break;
5172 case _KMEM:
5173 val = res_counter_read_u64(&memcg->kmem, name);
5174 break;
5175 default:
5176 BUG();
5177 }
5178
5179 return val;
5180 }
5181
5182 static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
5183 {
5184 int ret = -EINVAL;
5185 #ifdef CONFIG_MEMCG_KMEM
5186 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5187 /*
5188 * For simplicity, we won't allow this to be disabled. It also can't
5189 * be changed if the cgroup has children already, or if tasks had
5190 * already joined.
5191 *
5192 * If tasks join before we set the limit, a person looking at
5193 * kmem.usage_in_bytes will have no way to determine when it took
5194 * place, which makes the value quite meaningless.
5195 *
5196 * After it first became limited, changes in the value of the limit are
5197 * of course permitted.
5198 */
5199 mutex_lock(&memcg_create_mutex);
5200 mutex_lock(&set_limit_mutex);
5201 if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
5202 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
5203 ret = -EBUSY;
5204 goto out;
5205 }
5206 ret = res_counter_set_limit(&memcg->kmem, val);
5207 VM_BUG_ON(ret);
5208
5209 ret = memcg_update_cache_sizes(memcg);
5210 if (ret) {
5211 res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
5212 goto out;
5213 }
5214 static_key_slow_inc(&memcg_kmem_enabled_key);
5215 /*
5216 * setting the active bit after the inc will guarantee no one
5217 * starts accounting before all call sites are patched
5218 */
5219 memcg_kmem_set_active(memcg);
5220 } else
5221 ret = res_counter_set_limit(&memcg->kmem, val);
5222 out:
5223 mutex_unlock(&set_limit_mutex);
5224 mutex_unlock(&memcg_create_mutex);
5225 #endif
5226 return ret;
5227 }
5228
5229 #ifdef CONFIG_MEMCG_KMEM
5230 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5231 {
5232 int ret = 0;
5233 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5234 if (!parent)
5235 goto out;
5236
5237 memcg->kmem_account_flags = parent->kmem_account_flags;
5238 /*
5239 * When that happen, we need to disable the static branch only on those
5240 * memcgs that enabled it. To achieve this, we would be forced to
5241 * complicate the code by keeping track of which memcgs were the ones
5242 * that actually enabled limits, and which ones got it from its
5243 * parents.
5244 *
5245 * It is a lot simpler just to do static_key_slow_inc() on every child
5246 * that is accounted.
5247 */
5248 if (!memcg_kmem_is_active(memcg))
5249 goto out;
5250
5251 /*
5252 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5253 * memcg is active already. If the later initialization fails then the
5254 * cgroup core triggers the cleanup so we do not have to do it here.
5255 */
5256 static_key_slow_inc(&memcg_kmem_enabled_key);
5257
5258 mutex_lock(&set_limit_mutex);
5259 memcg_stop_kmem_account();
5260 ret = memcg_update_cache_sizes(memcg);
5261 memcg_resume_kmem_account();
5262 mutex_unlock(&set_limit_mutex);
5263 out:
5264 return ret;
5265 }
5266 #endif /* CONFIG_MEMCG_KMEM */
5267
5268 /*
5269 * The user of this function is...
5270 * RES_LIMIT.
5271 */
5272 static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5273 const char *buffer)
5274 {
5275 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5276 enum res_type type;
5277 int name;
5278 unsigned long long val;
5279 int ret;
5280
5281 type = MEMFILE_TYPE(cft->private);
5282 name = MEMFILE_ATTR(cft->private);
5283
5284 switch (name) {
5285 case RES_LIMIT:
5286 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5287 ret = -EINVAL;
5288 break;
5289 }
5290 /* This function does all necessary parse...reuse it */
5291 ret = res_counter_memparse_write_strategy(buffer, &val);
5292 if (ret)
5293 break;
5294 if (type == _MEM)
5295 ret = mem_cgroup_resize_limit(memcg, val);
5296 else if (type == _MEMSWAP)
5297 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5298 else if (type == _KMEM)
5299 ret = memcg_update_kmem_limit(css, val);
5300 else
5301 return -EINVAL;
5302 break;
5303 case RES_SOFT_LIMIT:
5304 ret = res_counter_memparse_write_strategy(buffer, &val);
5305 if (ret)
5306 break;
5307 /*
5308 * For memsw, soft limits are hard to implement in terms
5309 * of semantics, for now, we support soft limits for
5310 * control without swap
5311 */
5312 if (type == _MEM)
5313 ret = res_counter_set_soft_limit(&memcg->res, val);
5314 else
5315 ret = -EINVAL;
5316 break;
5317 default:
5318 ret = -EINVAL; /* should be BUG() ? */
5319 break;
5320 }
5321 return ret;
5322 }
5323
5324 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5325 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5326 {
5327 unsigned long long min_limit, min_memsw_limit, tmp;
5328
5329 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5330 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5331 if (!memcg->use_hierarchy)
5332 goto out;
5333
5334 while (css_parent(&memcg->css)) {
5335 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5336 if (!memcg->use_hierarchy)
5337 break;
5338 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5339 min_limit = min(min_limit, tmp);
5340 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5341 min_memsw_limit = min(min_memsw_limit, tmp);
5342 }
5343 out:
5344 *mem_limit = min_limit;
5345 *memsw_limit = min_memsw_limit;
5346 }
5347
5348 static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5349 {
5350 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5351 int name;
5352 enum res_type type;
5353
5354 type = MEMFILE_TYPE(event);
5355 name = MEMFILE_ATTR(event);
5356
5357 switch (name) {
5358 case RES_MAX_USAGE:
5359 if (type == _MEM)
5360 res_counter_reset_max(&memcg->res);
5361 else if (type == _MEMSWAP)
5362 res_counter_reset_max(&memcg->memsw);
5363 else if (type == _KMEM)
5364 res_counter_reset_max(&memcg->kmem);
5365 else
5366 return -EINVAL;
5367 break;
5368 case RES_FAILCNT:
5369 if (type == _MEM)
5370 res_counter_reset_failcnt(&memcg->res);
5371 else if (type == _MEMSWAP)
5372 res_counter_reset_failcnt(&memcg->memsw);
5373 else if (type == _KMEM)
5374 res_counter_reset_failcnt(&memcg->kmem);
5375 else
5376 return -EINVAL;
5377 break;
5378 }
5379
5380 return 0;
5381 }
5382
5383 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5384 struct cftype *cft)
5385 {
5386 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5387 }
5388
5389 #ifdef CONFIG_MMU
5390 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5391 struct cftype *cft, u64 val)
5392 {
5393 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5394
5395 if (val >= (1 << NR_MOVE_TYPE))
5396 return -EINVAL;
5397
5398 /*
5399 * No kind of locking is needed in here, because ->can_attach() will
5400 * check this value once in the beginning of the process, and then carry
5401 * on with stale data. This means that changes to this value will only
5402 * affect task migrations starting after the change.
5403 */
5404 memcg->move_charge_at_immigrate = val;
5405 return 0;
5406 }
5407 #else
5408 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5409 struct cftype *cft, u64 val)
5410 {
5411 return -ENOSYS;
5412 }
5413 #endif
5414
5415 #ifdef CONFIG_NUMA
5416 static int memcg_numa_stat_show(struct seq_file *m, void *v)
5417 {
5418 struct numa_stat {
5419 const char *name;
5420 unsigned int lru_mask;
5421 };
5422
5423 static const struct numa_stat stats[] = {
5424 { "total", LRU_ALL },
5425 { "file", LRU_ALL_FILE },
5426 { "anon", LRU_ALL_ANON },
5427 { "unevictable", BIT(LRU_UNEVICTABLE) },
5428 };
5429 const struct numa_stat *stat;
5430 int nid;
5431 unsigned long nr;
5432 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5433
5434 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5435 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
5436 seq_printf(m, "%s=%lu", stat->name, nr);
5437 for_each_node_state(nid, N_MEMORY) {
5438 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5439 stat->lru_mask);
5440 seq_printf(m, " N%d=%lu", nid, nr);
5441 }
5442 seq_putc(m, '\n');
5443 }
5444
5445 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5446 struct mem_cgroup *iter;
5447
5448 nr = 0;
5449 for_each_mem_cgroup_tree(iter, memcg)
5450 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
5451 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
5452 for_each_node_state(nid, N_MEMORY) {
5453 nr = 0;
5454 for_each_mem_cgroup_tree(iter, memcg)
5455 nr += mem_cgroup_node_nr_lru_pages(
5456 iter, nid, stat->lru_mask);
5457 seq_printf(m, " N%d=%lu", nid, nr);
5458 }
5459 seq_putc(m, '\n');
5460 }
5461
5462 return 0;
5463 }
5464 #endif /* CONFIG_NUMA */
5465
5466 static inline void mem_cgroup_lru_names_not_uptodate(void)
5467 {
5468 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5469 }
5470
5471 static int memcg_stat_show(struct seq_file *m, void *v)
5472 {
5473 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5474 struct mem_cgroup *mi;
5475 unsigned int i;
5476
5477 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5478 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5479 continue;
5480 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5481 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5482 }
5483
5484 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5485 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5486 mem_cgroup_read_events(memcg, i));
5487
5488 for (i = 0; i < NR_LRU_LISTS; i++)
5489 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5490 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5491
5492 /* Hierarchical information */
5493 {
5494 unsigned long long limit, memsw_limit;
5495 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5496 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5497 if (do_swap_account)
5498 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5499 memsw_limit);
5500 }
5501
5502 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5503 long long val = 0;
5504
5505 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5506 continue;
5507 for_each_mem_cgroup_tree(mi, memcg)
5508 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5509 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5510 }
5511
5512 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5513 unsigned long long val = 0;
5514
5515 for_each_mem_cgroup_tree(mi, memcg)
5516 val += mem_cgroup_read_events(mi, i);
5517 seq_printf(m, "total_%s %llu\n",
5518 mem_cgroup_events_names[i], val);
5519 }
5520
5521 for (i = 0; i < NR_LRU_LISTS; i++) {
5522 unsigned long long val = 0;
5523
5524 for_each_mem_cgroup_tree(mi, memcg)
5525 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5526 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5527 }
5528
5529 #ifdef CONFIG_DEBUG_VM
5530 {
5531 int nid, zid;
5532 struct mem_cgroup_per_zone *mz;
5533 struct zone_reclaim_stat *rstat;
5534 unsigned long recent_rotated[2] = {0, 0};
5535 unsigned long recent_scanned[2] = {0, 0};
5536
5537 for_each_online_node(nid)
5538 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5539 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5540 rstat = &mz->lruvec.reclaim_stat;
5541
5542 recent_rotated[0] += rstat->recent_rotated[0];
5543 recent_rotated[1] += rstat->recent_rotated[1];
5544 recent_scanned[0] += rstat->recent_scanned[0];
5545 recent_scanned[1] += rstat->recent_scanned[1];
5546 }
5547 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5548 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5549 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5550 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5551 }
5552 #endif
5553
5554 return 0;
5555 }
5556
5557 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5558 struct cftype *cft)
5559 {
5560 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5561
5562 return mem_cgroup_swappiness(memcg);
5563 }
5564
5565 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5566 struct cftype *cft, u64 val)
5567 {
5568 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5569 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5570
5571 if (val > 100 || !parent)
5572 return -EINVAL;
5573
5574 mutex_lock(&memcg_create_mutex);
5575
5576 /* If under hierarchy, only empty-root can set this value */
5577 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5578 mutex_unlock(&memcg_create_mutex);
5579 return -EINVAL;
5580 }
5581
5582 memcg->swappiness = val;
5583
5584 mutex_unlock(&memcg_create_mutex);
5585
5586 return 0;
5587 }
5588
5589 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5590 {
5591 struct mem_cgroup_threshold_ary *t;
5592 u64 usage;
5593 int i;
5594
5595 rcu_read_lock();
5596 if (!swap)
5597 t = rcu_dereference(memcg->thresholds.primary);
5598 else
5599 t = rcu_dereference(memcg->memsw_thresholds.primary);
5600
5601 if (!t)
5602 goto unlock;
5603
5604 usage = mem_cgroup_usage(memcg, swap);
5605
5606 /*
5607 * current_threshold points to threshold just below or equal to usage.
5608 * If it's not true, a threshold was crossed after last
5609 * call of __mem_cgroup_threshold().
5610 */
5611 i = t->current_threshold;
5612
5613 /*
5614 * Iterate backward over array of thresholds starting from
5615 * current_threshold and check if a threshold is crossed.
5616 * If none of thresholds below usage is crossed, we read
5617 * only one element of the array here.
5618 */
5619 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5620 eventfd_signal(t->entries[i].eventfd, 1);
5621
5622 /* i = current_threshold + 1 */
5623 i++;
5624
5625 /*
5626 * Iterate forward over array of thresholds starting from
5627 * current_threshold+1 and check if a threshold is crossed.
5628 * If none of thresholds above usage is crossed, we read
5629 * only one element of the array here.
5630 */
5631 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5632 eventfd_signal(t->entries[i].eventfd, 1);
5633
5634 /* Update current_threshold */
5635 t->current_threshold = i - 1;
5636 unlock:
5637 rcu_read_unlock();
5638 }
5639
5640 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5641 {
5642 while (memcg) {
5643 __mem_cgroup_threshold(memcg, false);
5644 if (do_swap_account)
5645 __mem_cgroup_threshold(memcg, true);
5646
5647 memcg = parent_mem_cgroup(memcg);
5648 }
5649 }
5650
5651 static int compare_thresholds(const void *a, const void *b)
5652 {
5653 const struct mem_cgroup_threshold *_a = a;
5654 const struct mem_cgroup_threshold *_b = b;
5655
5656 if (_a->threshold > _b->threshold)
5657 return 1;
5658
5659 if (_a->threshold < _b->threshold)
5660 return -1;
5661
5662 return 0;
5663 }
5664
5665 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5666 {
5667 struct mem_cgroup_eventfd_list *ev;
5668
5669 list_for_each_entry(ev, &memcg->oom_notify, list)
5670 eventfd_signal(ev->eventfd, 1);
5671 return 0;
5672 }
5673
5674 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5675 {
5676 struct mem_cgroup *iter;
5677
5678 for_each_mem_cgroup_tree(iter, memcg)
5679 mem_cgroup_oom_notify_cb(iter);
5680 }
5681
5682 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
5683 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
5684 {
5685 struct mem_cgroup_thresholds *thresholds;
5686 struct mem_cgroup_threshold_ary *new;
5687 u64 threshold, usage;
5688 int i, size, ret;
5689
5690 ret = res_counter_memparse_write_strategy(args, &threshold);
5691 if (ret)
5692 return ret;
5693
5694 mutex_lock(&memcg->thresholds_lock);
5695
5696 if (type == _MEM)
5697 thresholds = &memcg->thresholds;
5698 else if (type == _MEMSWAP)
5699 thresholds = &memcg->memsw_thresholds;
5700 else
5701 BUG();
5702
5703 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5704
5705 /* Check if a threshold crossed before adding a new one */
5706 if (thresholds->primary)
5707 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5708
5709 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5710
5711 /* Allocate memory for new array of thresholds */
5712 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5713 GFP_KERNEL);
5714 if (!new) {
5715 ret = -ENOMEM;
5716 goto unlock;
5717 }
5718 new->size = size;
5719
5720 /* Copy thresholds (if any) to new array */
5721 if (thresholds->primary) {
5722 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5723 sizeof(struct mem_cgroup_threshold));
5724 }
5725
5726 /* Add new threshold */
5727 new->entries[size - 1].eventfd = eventfd;
5728 new->entries[size - 1].threshold = threshold;
5729
5730 /* Sort thresholds. Registering of new threshold isn't time-critical */
5731 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5732 compare_thresholds, NULL);
5733
5734 /* Find current threshold */
5735 new->current_threshold = -1;
5736 for (i = 0; i < size; i++) {
5737 if (new->entries[i].threshold <= usage) {
5738 /*
5739 * new->current_threshold will not be used until
5740 * rcu_assign_pointer(), so it's safe to increment
5741 * it here.
5742 */
5743 ++new->current_threshold;
5744 } else
5745 break;
5746 }
5747
5748 /* Free old spare buffer and save old primary buffer as spare */
5749 kfree(thresholds->spare);
5750 thresholds->spare = thresholds->primary;
5751
5752 rcu_assign_pointer(thresholds->primary, new);
5753
5754 /* To be sure that nobody uses thresholds */
5755 synchronize_rcu();
5756
5757 unlock:
5758 mutex_unlock(&memcg->thresholds_lock);
5759
5760 return ret;
5761 }
5762
5763 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
5764 struct eventfd_ctx *eventfd, const char *args)
5765 {
5766 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
5767 }
5768
5769 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
5770 struct eventfd_ctx *eventfd, const char *args)
5771 {
5772 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
5773 }
5774
5775 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5776 struct eventfd_ctx *eventfd, enum res_type type)
5777 {
5778 struct mem_cgroup_thresholds *thresholds;
5779 struct mem_cgroup_threshold_ary *new;
5780 u64 usage;
5781 int i, j, size;
5782
5783 mutex_lock(&memcg->thresholds_lock);
5784 if (type == _MEM)
5785 thresholds = &memcg->thresholds;
5786 else if (type == _MEMSWAP)
5787 thresholds = &memcg->memsw_thresholds;
5788 else
5789 BUG();
5790
5791 if (!thresholds->primary)
5792 goto unlock;
5793
5794 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5795
5796 /* Check if a threshold crossed before removing */
5797 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5798
5799 /* Calculate new number of threshold */
5800 size = 0;
5801 for (i = 0; i < thresholds->primary->size; i++) {
5802 if (thresholds->primary->entries[i].eventfd != eventfd)
5803 size++;
5804 }
5805
5806 new = thresholds->spare;
5807
5808 /* Set thresholds array to NULL if we don't have thresholds */
5809 if (!size) {
5810 kfree(new);
5811 new = NULL;
5812 goto swap_buffers;
5813 }
5814
5815 new->size = size;
5816
5817 /* Copy thresholds and find current threshold */
5818 new->current_threshold = -1;
5819 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5820 if (thresholds->primary->entries[i].eventfd == eventfd)
5821 continue;
5822
5823 new->entries[j] = thresholds->primary->entries[i];
5824 if (new->entries[j].threshold <= usage) {
5825 /*
5826 * new->current_threshold will not be used
5827 * until rcu_assign_pointer(), so it's safe to increment
5828 * it here.
5829 */
5830 ++new->current_threshold;
5831 }
5832 j++;
5833 }
5834
5835 swap_buffers:
5836 /* Swap primary and spare array */
5837 thresholds->spare = thresholds->primary;
5838 /* If all events are unregistered, free the spare array */
5839 if (!new) {
5840 kfree(thresholds->spare);
5841 thresholds->spare = NULL;
5842 }
5843
5844 rcu_assign_pointer(thresholds->primary, new);
5845
5846 /* To be sure that nobody uses thresholds */
5847 synchronize_rcu();
5848 unlock:
5849 mutex_unlock(&memcg->thresholds_lock);
5850 }
5851
5852 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5853 struct eventfd_ctx *eventfd)
5854 {
5855 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
5856 }
5857
5858 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5859 struct eventfd_ctx *eventfd)
5860 {
5861 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
5862 }
5863
5864 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
5865 struct eventfd_ctx *eventfd, const char *args)
5866 {
5867 struct mem_cgroup_eventfd_list *event;
5868
5869 event = kmalloc(sizeof(*event), GFP_KERNEL);
5870 if (!event)
5871 return -ENOMEM;
5872
5873 spin_lock(&memcg_oom_lock);
5874
5875 event->eventfd = eventfd;
5876 list_add(&event->list, &memcg->oom_notify);
5877
5878 /* already in OOM ? */
5879 if (atomic_read(&memcg->under_oom))
5880 eventfd_signal(eventfd, 1);
5881 spin_unlock(&memcg_oom_lock);
5882
5883 return 0;
5884 }
5885
5886 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
5887 struct eventfd_ctx *eventfd)
5888 {
5889 struct mem_cgroup_eventfd_list *ev, *tmp;
5890
5891 spin_lock(&memcg_oom_lock);
5892
5893 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5894 if (ev->eventfd == eventfd) {
5895 list_del(&ev->list);
5896 kfree(ev);
5897 }
5898 }
5899
5900 spin_unlock(&memcg_oom_lock);
5901 }
5902
5903 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
5904 {
5905 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5906
5907 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
5908 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
5909 return 0;
5910 }
5911
5912 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5913 struct cftype *cft, u64 val)
5914 {
5915 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5916 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5917
5918 /* cannot set to root cgroup and only 0 and 1 are allowed */
5919 if (!parent || !((val == 0) || (val == 1)))
5920 return -EINVAL;
5921
5922 mutex_lock(&memcg_create_mutex);
5923 /* oom-kill-disable is a flag for subhierarchy. */
5924 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5925 mutex_unlock(&memcg_create_mutex);
5926 return -EINVAL;
5927 }
5928 memcg->oom_kill_disable = val;
5929 if (!val)
5930 memcg_oom_recover(memcg);
5931 mutex_unlock(&memcg_create_mutex);
5932 return 0;
5933 }
5934
5935 #ifdef CONFIG_MEMCG_KMEM
5936 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5937 {
5938 int ret;
5939
5940 memcg->kmemcg_id = -1;
5941 ret = memcg_propagate_kmem(memcg);
5942 if (ret)
5943 return ret;
5944
5945 return mem_cgroup_sockets_init(memcg, ss);
5946 }
5947
5948 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5949 {
5950 mem_cgroup_sockets_destroy(memcg);
5951 }
5952
5953 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5954 {
5955 if (!memcg_kmem_is_active(memcg))
5956 return;
5957
5958 /*
5959 * kmem charges can outlive the cgroup. In the case of slab
5960 * pages, for instance, a page contain objects from various
5961 * processes. As we prevent from taking a reference for every
5962 * such allocation we have to be careful when doing uncharge
5963 * (see memcg_uncharge_kmem) and here during offlining.
5964 *
5965 * The idea is that that only the _last_ uncharge which sees
5966 * the dead memcg will drop the last reference. An additional
5967 * reference is taken here before the group is marked dead
5968 * which is then paired with css_put during uncharge resp. here.
5969 *
5970 * Although this might sound strange as this path is called from
5971 * css_offline() when the referencemight have dropped down to 0
5972 * and shouldn't be incremented anymore (css_tryget would fail)
5973 * we do not have other options because of the kmem allocations
5974 * lifetime.
5975 */
5976 css_get(&memcg->css);
5977
5978 memcg_kmem_mark_dead(memcg);
5979
5980 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5981 return;
5982
5983 if (memcg_kmem_test_and_clear_dead(memcg))
5984 css_put(&memcg->css);
5985 }
5986 #else
5987 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5988 {
5989 return 0;
5990 }
5991
5992 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5993 {
5994 }
5995
5996 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5997 {
5998 }
5999 #endif
6000
6001 /*
6002 * DO NOT USE IN NEW FILES.
6003 *
6004 * "cgroup.event_control" implementation.
6005 *
6006 * This is way over-engineered. It tries to support fully configurable
6007 * events for each user. Such level of flexibility is completely
6008 * unnecessary especially in the light of the planned unified hierarchy.
6009 *
6010 * Please deprecate this and replace with something simpler if at all
6011 * possible.
6012 */
6013
6014 /*
6015 * Unregister event and free resources.
6016 *
6017 * Gets called from workqueue.
6018 */
6019 static void memcg_event_remove(struct work_struct *work)
6020 {
6021 struct mem_cgroup_event *event =
6022 container_of(work, struct mem_cgroup_event, remove);
6023 struct mem_cgroup *memcg = event->memcg;
6024
6025 remove_wait_queue(event->wqh, &event->wait);
6026
6027 event->unregister_event(memcg, event->eventfd);
6028
6029 /* Notify userspace the event is going away. */
6030 eventfd_signal(event->eventfd, 1);
6031
6032 eventfd_ctx_put(event->eventfd);
6033 kfree(event);
6034 css_put(&memcg->css);
6035 }
6036
6037 /*
6038 * Gets called on POLLHUP on eventfd when user closes it.
6039 *
6040 * Called with wqh->lock held and interrupts disabled.
6041 */
6042 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
6043 int sync, void *key)
6044 {
6045 struct mem_cgroup_event *event =
6046 container_of(wait, struct mem_cgroup_event, wait);
6047 struct mem_cgroup *memcg = event->memcg;
6048 unsigned long flags = (unsigned long)key;
6049
6050 if (flags & POLLHUP) {
6051 /*
6052 * If the event has been detached at cgroup removal, we
6053 * can simply return knowing the other side will cleanup
6054 * for us.
6055 *
6056 * We can't race against event freeing since the other
6057 * side will require wqh->lock via remove_wait_queue(),
6058 * which we hold.
6059 */
6060 spin_lock(&memcg->event_list_lock);
6061 if (!list_empty(&event->list)) {
6062 list_del_init(&event->list);
6063 /*
6064 * We are in atomic context, but cgroup_event_remove()
6065 * may sleep, so we have to call it in workqueue.
6066 */
6067 schedule_work(&event->remove);
6068 }
6069 spin_unlock(&memcg->event_list_lock);
6070 }
6071
6072 return 0;
6073 }
6074
6075 static void memcg_event_ptable_queue_proc(struct file *file,
6076 wait_queue_head_t *wqh, poll_table *pt)
6077 {
6078 struct mem_cgroup_event *event =
6079 container_of(pt, struct mem_cgroup_event, pt);
6080
6081 event->wqh = wqh;
6082 add_wait_queue(wqh, &event->wait);
6083 }
6084
6085 /*
6086 * DO NOT USE IN NEW FILES.
6087 *
6088 * Parse input and register new cgroup event handler.
6089 *
6090 * Input must be in format '<event_fd> <control_fd> <args>'.
6091 * Interpretation of args is defined by control file implementation.
6092 */
6093 static int memcg_write_event_control(struct cgroup_subsys_state *css,
6094 struct cftype *cft, const char *buffer)
6095 {
6096 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6097 struct mem_cgroup_event *event;
6098 struct cgroup_subsys_state *cfile_css;
6099 unsigned int efd, cfd;
6100 struct fd efile;
6101 struct fd cfile;
6102 const char *name;
6103 char *endp;
6104 int ret;
6105
6106 efd = simple_strtoul(buffer, &endp, 10);
6107 if (*endp != ' ')
6108 return -EINVAL;
6109 buffer = endp + 1;
6110
6111 cfd = simple_strtoul(buffer, &endp, 10);
6112 if ((*endp != ' ') && (*endp != '\0'))
6113 return -EINVAL;
6114 buffer = endp + 1;
6115
6116 event = kzalloc(sizeof(*event), GFP_KERNEL);
6117 if (!event)
6118 return -ENOMEM;
6119
6120 event->memcg = memcg;
6121 INIT_LIST_HEAD(&event->list);
6122 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
6123 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
6124 INIT_WORK(&event->remove, memcg_event_remove);
6125
6126 efile = fdget(efd);
6127 if (!efile.file) {
6128 ret = -EBADF;
6129 goto out_kfree;
6130 }
6131
6132 event->eventfd = eventfd_ctx_fileget(efile.file);
6133 if (IS_ERR(event->eventfd)) {
6134 ret = PTR_ERR(event->eventfd);
6135 goto out_put_efile;
6136 }
6137
6138 cfile = fdget(cfd);
6139 if (!cfile.file) {
6140 ret = -EBADF;
6141 goto out_put_eventfd;
6142 }
6143
6144 /* the process need read permission on control file */
6145 /* AV: shouldn't we check that it's been opened for read instead? */
6146 ret = inode_permission(file_inode(cfile.file), MAY_READ);
6147 if (ret < 0)
6148 goto out_put_cfile;
6149
6150 /*
6151 * Determine the event callbacks and set them in @event. This used
6152 * to be done via struct cftype but cgroup core no longer knows
6153 * about these events. The following is crude but the whole thing
6154 * is for compatibility anyway.
6155 *
6156 * DO NOT ADD NEW FILES.
6157 */
6158 name = cfile.file->f_dentry->d_name.name;
6159
6160 if (!strcmp(name, "memory.usage_in_bytes")) {
6161 event->register_event = mem_cgroup_usage_register_event;
6162 event->unregister_event = mem_cgroup_usage_unregister_event;
6163 } else if (!strcmp(name, "memory.oom_control")) {
6164 event->register_event = mem_cgroup_oom_register_event;
6165 event->unregister_event = mem_cgroup_oom_unregister_event;
6166 } else if (!strcmp(name, "memory.pressure_level")) {
6167 event->register_event = vmpressure_register_event;
6168 event->unregister_event = vmpressure_unregister_event;
6169 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
6170 event->register_event = memsw_cgroup_usage_register_event;
6171 event->unregister_event = memsw_cgroup_usage_unregister_event;
6172 } else {
6173 ret = -EINVAL;
6174 goto out_put_cfile;
6175 }
6176
6177 /*
6178 * Verify @cfile should belong to @css. Also, remaining events are
6179 * automatically removed on cgroup destruction but the removal is
6180 * asynchronous, so take an extra ref on @css.
6181 */
6182 rcu_read_lock();
6183
6184 ret = -EINVAL;
6185 cfile_css = css_from_dir(cfile.file->f_dentry->d_parent,
6186 &mem_cgroup_subsys);
6187 if (cfile_css == css && css_tryget(css))
6188 ret = 0;
6189
6190 rcu_read_unlock();
6191 if (ret)
6192 goto out_put_cfile;
6193
6194 ret = event->register_event(memcg, event->eventfd, buffer);
6195 if (ret)
6196 goto out_put_css;
6197
6198 efile.file->f_op->poll(efile.file, &event->pt);
6199
6200 spin_lock(&memcg->event_list_lock);
6201 list_add(&event->list, &memcg->event_list);
6202 spin_unlock(&memcg->event_list_lock);
6203
6204 fdput(cfile);
6205 fdput(efile);
6206
6207 return 0;
6208
6209 out_put_css:
6210 css_put(css);
6211 out_put_cfile:
6212 fdput(cfile);
6213 out_put_eventfd:
6214 eventfd_ctx_put(event->eventfd);
6215 out_put_efile:
6216 fdput(efile);
6217 out_kfree:
6218 kfree(event);
6219
6220 return ret;
6221 }
6222
6223 static struct cftype mem_cgroup_files[] = {
6224 {
6225 .name = "usage_in_bytes",
6226 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
6227 .read_u64 = mem_cgroup_read_u64,
6228 },
6229 {
6230 .name = "max_usage_in_bytes",
6231 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6232 .trigger = mem_cgroup_reset,
6233 .read_u64 = mem_cgroup_read_u64,
6234 },
6235 {
6236 .name = "limit_in_bytes",
6237 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
6238 .write_string = mem_cgroup_write,
6239 .read_u64 = mem_cgroup_read_u64,
6240 },
6241 {
6242 .name = "soft_limit_in_bytes",
6243 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
6244 .write_string = mem_cgroup_write,
6245 .read_u64 = mem_cgroup_read_u64,
6246 },
6247 {
6248 .name = "failcnt",
6249 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6250 .trigger = mem_cgroup_reset,
6251 .read_u64 = mem_cgroup_read_u64,
6252 },
6253 {
6254 .name = "stat",
6255 .seq_show = memcg_stat_show,
6256 },
6257 {
6258 .name = "force_empty",
6259 .trigger = mem_cgroup_force_empty_write,
6260 },
6261 {
6262 .name = "use_hierarchy",
6263 .flags = CFTYPE_INSANE,
6264 .write_u64 = mem_cgroup_hierarchy_write,
6265 .read_u64 = mem_cgroup_hierarchy_read,
6266 },
6267 {
6268 .name = "cgroup.event_control", /* XXX: for compat */
6269 .write_string = memcg_write_event_control,
6270 .flags = CFTYPE_NO_PREFIX,
6271 .mode = S_IWUGO,
6272 },
6273 {
6274 .name = "swappiness",
6275 .read_u64 = mem_cgroup_swappiness_read,
6276 .write_u64 = mem_cgroup_swappiness_write,
6277 },
6278 {
6279 .name = "move_charge_at_immigrate",
6280 .read_u64 = mem_cgroup_move_charge_read,
6281 .write_u64 = mem_cgroup_move_charge_write,
6282 },
6283 {
6284 .name = "oom_control",
6285 .seq_show = mem_cgroup_oom_control_read,
6286 .write_u64 = mem_cgroup_oom_control_write,
6287 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6288 },
6289 {
6290 .name = "pressure_level",
6291 },
6292 #ifdef CONFIG_NUMA
6293 {
6294 .name = "numa_stat",
6295 .seq_show = memcg_numa_stat_show,
6296 },
6297 #endif
6298 #ifdef CONFIG_MEMCG_KMEM
6299 {
6300 .name = "kmem.limit_in_bytes",
6301 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6302 .write_string = mem_cgroup_write,
6303 .read_u64 = mem_cgroup_read_u64,
6304 },
6305 {
6306 .name = "kmem.usage_in_bytes",
6307 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6308 .read_u64 = mem_cgroup_read_u64,
6309 },
6310 {
6311 .name = "kmem.failcnt",
6312 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6313 .trigger = mem_cgroup_reset,
6314 .read_u64 = mem_cgroup_read_u64,
6315 },
6316 {
6317 .name = "kmem.max_usage_in_bytes",
6318 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6319 .trigger = mem_cgroup_reset,
6320 .read_u64 = mem_cgroup_read_u64,
6321 },
6322 #ifdef CONFIG_SLABINFO
6323 {
6324 .name = "kmem.slabinfo",
6325 .seq_show = mem_cgroup_slabinfo_read,
6326 },
6327 #endif
6328 #endif
6329 { }, /* terminate */
6330 };
6331
6332 #ifdef CONFIG_MEMCG_SWAP
6333 static struct cftype memsw_cgroup_files[] = {
6334 {
6335 .name = "memsw.usage_in_bytes",
6336 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6337 .read_u64 = mem_cgroup_read_u64,
6338 },
6339 {
6340 .name = "memsw.max_usage_in_bytes",
6341 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6342 .trigger = mem_cgroup_reset,
6343 .read_u64 = mem_cgroup_read_u64,
6344 },
6345 {
6346 .name = "memsw.limit_in_bytes",
6347 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6348 .write_string = mem_cgroup_write,
6349 .read_u64 = mem_cgroup_read_u64,
6350 },
6351 {
6352 .name = "memsw.failcnt",
6353 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6354 .trigger = mem_cgroup_reset,
6355 .read_u64 = mem_cgroup_read_u64,
6356 },
6357 { }, /* terminate */
6358 };
6359 #endif
6360 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6361 {
6362 struct mem_cgroup_per_node *pn;
6363 struct mem_cgroup_per_zone *mz;
6364 int zone, tmp = node;
6365 /*
6366 * This routine is called against possible nodes.
6367 * But it's BUG to call kmalloc() against offline node.
6368 *
6369 * TODO: this routine can waste much memory for nodes which will
6370 * never be onlined. It's better to use memory hotplug callback
6371 * function.
6372 */
6373 if (!node_state(node, N_NORMAL_MEMORY))
6374 tmp = -1;
6375 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6376 if (!pn)
6377 return 1;
6378
6379 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6380 mz = &pn->zoneinfo[zone];
6381 lruvec_init(&mz->lruvec);
6382 mz->usage_in_excess = 0;
6383 mz->on_tree = false;
6384 mz->memcg = memcg;
6385 }
6386 memcg->nodeinfo[node] = pn;
6387 return 0;
6388 }
6389
6390 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6391 {
6392 kfree(memcg->nodeinfo[node]);
6393 }
6394
6395 static struct mem_cgroup *mem_cgroup_alloc(void)
6396 {
6397 struct mem_cgroup *memcg;
6398 size_t size;
6399
6400 size = sizeof(struct mem_cgroup);
6401 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
6402
6403 memcg = kzalloc(size, GFP_KERNEL);
6404 if (!memcg)
6405 return NULL;
6406
6407 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6408 if (!memcg->stat)
6409 goto out_free;
6410 spin_lock_init(&memcg->pcp_counter_lock);
6411 return memcg;
6412
6413 out_free:
6414 kfree(memcg);
6415 return NULL;
6416 }
6417
6418 /*
6419 * At destroying mem_cgroup, references from swap_cgroup can remain.
6420 * (scanning all at force_empty is too costly...)
6421 *
6422 * Instead of clearing all references at force_empty, we remember
6423 * the number of reference from swap_cgroup and free mem_cgroup when
6424 * it goes down to 0.
6425 *
6426 * Removal of cgroup itself succeeds regardless of refs from swap.
6427 */
6428
6429 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6430 {
6431 int node;
6432
6433 mem_cgroup_remove_from_trees(memcg);
6434
6435 for_each_node(node)
6436 free_mem_cgroup_per_zone_info(memcg, node);
6437
6438 free_percpu(memcg->stat);
6439
6440 /*
6441 * We need to make sure that (at least for now), the jump label
6442 * destruction code runs outside of the cgroup lock. This is because
6443 * get_online_cpus(), which is called from the static_branch update,
6444 * can't be called inside the cgroup_lock. cpusets are the ones
6445 * enforcing this dependency, so if they ever change, we might as well.
6446 *
6447 * schedule_work() will guarantee this happens. Be careful if you need
6448 * to move this code around, and make sure it is outside
6449 * the cgroup_lock.
6450 */
6451 disarm_static_keys(memcg);
6452 kfree(memcg);
6453 }
6454
6455 /*
6456 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6457 */
6458 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6459 {
6460 if (!memcg->res.parent)
6461 return NULL;
6462 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6463 }
6464 EXPORT_SYMBOL(parent_mem_cgroup);
6465
6466 static void __init mem_cgroup_soft_limit_tree_init(void)
6467 {
6468 struct mem_cgroup_tree_per_node *rtpn;
6469 struct mem_cgroup_tree_per_zone *rtpz;
6470 int tmp, node, zone;
6471
6472 for_each_node(node) {
6473 tmp = node;
6474 if (!node_state(node, N_NORMAL_MEMORY))
6475 tmp = -1;
6476 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6477 BUG_ON(!rtpn);
6478
6479 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6480
6481 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6482 rtpz = &rtpn->rb_tree_per_zone[zone];
6483 rtpz->rb_root = RB_ROOT;
6484 spin_lock_init(&rtpz->lock);
6485 }
6486 }
6487 }
6488
6489 static struct cgroup_subsys_state * __ref
6490 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6491 {
6492 struct mem_cgroup *memcg;
6493 long error = -ENOMEM;
6494 int node;
6495
6496 memcg = mem_cgroup_alloc();
6497 if (!memcg)
6498 return ERR_PTR(error);
6499
6500 for_each_node(node)
6501 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6502 goto free_out;
6503
6504 /* root ? */
6505 if (parent_css == NULL) {
6506 root_mem_cgroup = memcg;
6507 res_counter_init(&memcg->res, NULL);
6508 res_counter_init(&memcg->memsw, NULL);
6509 res_counter_init(&memcg->kmem, NULL);
6510 }
6511
6512 memcg->last_scanned_node = MAX_NUMNODES;
6513 INIT_LIST_HEAD(&memcg->oom_notify);
6514 memcg->move_charge_at_immigrate = 0;
6515 mutex_init(&memcg->thresholds_lock);
6516 spin_lock_init(&memcg->move_lock);
6517 vmpressure_init(&memcg->vmpressure);
6518 INIT_LIST_HEAD(&memcg->event_list);
6519 spin_lock_init(&memcg->event_list_lock);
6520
6521 return &memcg->css;
6522
6523 free_out:
6524 __mem_cgroup_free(memcg);
6525 return ERR_PTR(error);
6526 }
6527
6528 static int
6529 mem_cgroup_css_online(struct cgroup_subsys_state *css)
6530 {
6531 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6532 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6533 int error = 0;
6534
6535 if (css->cgroup->id > MEM_CGROUP_ID_MAX)
6536 return -ENOSPC;
6537
6538 if (!parent)
6539 return 0;
6540
6541 mutex_lock(&memcg_create_mutex);
6542
6543 memcg->use_hierarchy = parent->use_hierarchy;
6544 memcg->oom_kill_disable = parent->oom_kill_disable;
6545 memcg->swappiness = mem_cgroup_swappiness(parent);
6546
6547 if (parent->use_hierarchy) {
6548 res_counter_init(&memcg->res, &parent->res);
6549 res_counter_init(&memcg->memsw, &parent->memsw);
6550 res_counter_init(&memcg->kmem, &parent->kmem);
6551
6552 /*
6553 * No need to take a reference to the parent because cgroup
6554 * core guarantees its existence.
6555 */
6556 } else {
6557 res_counter_init(&memcg->res, NULL);
6558 res_counter_init(&memcg->memsw, NULL);
6559 res_counter_init(&memcg->kmem, NULL);
6560 /*
6561 * Deeper hierachy with use_hierarchy == false doesn't make
6562 * much sense so let cgroup subsystem know about this
6563 * unfortunate state in our controller.
6564 */
6565 if (parent != root_mem_cgroup)
6566 mem_cgroup_subsys.broken_hierarchy = true;
6567 }
6568
6569 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6570 mutex_unlock(&memcg_create_mutex);
6571 return error;
6572 }
6573
6574 /*
6575 * Announce all parents that a group from their hierarchy is gone.
6576 */
6577 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6578 {
6579 struct mem_cgroup *parent = memcg;
6580
6581 while ((parent = parent_mem_cgroup(parent)))
6582 mem_cgroup_iter_invalidate(parent);
6583
6584 /*
6585 * if the root memcg is not hierarchical we have to check it
6586 * explicitely.
6587 */
6588 if (!root_mem_cgroup->use_hierarchy)
6589 mem_cgroup_iter_invalidate(root_mem_cgroup);
6590 }
6591
6592 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6593 {
6594 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6595 struct mem_cgroup_event *event, *tmp;
6596
6597 /*
6598 * Unregister events and notify userspace.
6599 * Notify userspace about cgroup removing only after rmdir of cgroup
6600 * directory to avoid race between userspace and kernelspace.
6601 */
6602 spin_lock(&memcg->event_list_lock);
6603 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
6604 list_del_init(&event->list);
6605 schedule_work(&event->remove);
6606 }
6607 spin_unlock(&memcg->event_list_lock);
6608
6609 kmem_cgroup_css_offline(memcg);
6610
6611 mem_cgroup_invalidate_reclaim_iterators(memcg);
6612 mem_cgroup_reparent_charges(memcg);
6613 mem_cgroup_destroy_all_caches(memcg);
6614 vmpressure_cleanup(&memcg->vmpressure);
6615 }
6616
6617 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6618 {
6619 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6620 /*
6621 * XXX: css_offline() would be where we should reparent all
6622 * memory to prepare the cgroup for destruction. However,
6623 * memcg does not do css_tryget() and res_counter charging
6624 * under the same RCU lock region, which means that charging
6625 * could race with offlining. Offlining only happens to
6626 * cgroups with no tasks in them but charges can show up
6627 * without any tasks from the swapin path when the target
6628 * memcg is looked up from the swapout record and not from the
6629 * current task as it usually is. A race like this can leak
6630 * charges and put pages with stale cgroup pointers into
6631 * circulation:
6632 *
6633 * #0 #1
6634 * lookup_swap_cgroup_id()
6635 * rcu_read_lock()
6636 * mem_cgroup_lookup()
6637 * css_tryget()
6638 * rcu_read_unlock()
6639 * disable css_tryget()
6640 * call_rcu()
6641 * offline_css()
6642 * reparent_charges()
6643 * res_counter_charge()
6644 * css_put()
6645 * css_free()
6646 * pc->mem_cgroup = dead memcg
6647 * add page to lru
6648 *
6649 * The bulk of the charges are still moved in offline_css() to
6650 * avoid pinning a lot of pages in case a long-term reference
6651 * like a swapout record is deferring the css_free() to long
6652 * after offlining. But this makes sure we catch any charges
6653 * made after offlining:
6654 */
6655 mem_cgroup_reparent_charges(memcg);
6656
6657 memcg_destroy_kmem(memcg);
6658 __mem_cgroup_free(memcg);
6659 }
6660
6661 #ifdef CONFIG_MMU
6662 /* Handlers for move charge at task migration. */
6663 #define PRECHARGE_COUNT_AT_ONCE 256
6664 static int mem_cgroup_do_precharge(unsigned long count)
6665 {
6666 int ret = 0;
6667 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6668 struct mem_cgroup *memcg = mc.to;
6669
6670 if (mem_cgroup_is_root(memcg)) {
6671 mc.precharge += count;
6672 /* we don't need css_get for root */
6673 return ret;
6674 }
6675 /* try to charge at once */
6676 if (count > 1) {
6677 struct res_counter *dummy;
6678 /*
6679 * "memcg" cannot be under rmdir() because we've already checked
6680 * by cgroup_lock_live_cgroup() that it is not removed and we
6681 * are still under the same cgroup_mutex. So we can postpone
6682 * css_get().
6683 */
6684 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6685 goto one_by_one;
6686 if (do_swap_account && res_counter_charge(&memcg->memsw,
6687 PAGE_SIZE * count, &dummy)) {
6688 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6689 goto one_by_one;
6690 }
6691 mc.precharge += count;
6692 return ret;
6693 }
6694 one_by_one:
6695 /* fall back to one by one charge */
6696 while (count--) {
6697 if (signal_pending(current)) {
6698 ret = -EINTR;
6699 break;
6700 }
6701 if (!batch_count--) {
6702 batch_count = PRECHARGE_COUNT_AT_ONCE;
6703 cond_resched();
6704 }
6705 ret = __mem_cgroup_try_charge(NULL,
6706 GFP_KERNEL, 1, &memcg, false);
6707 if (ret)
6708 /* mem_cgroup_clear_mc() will do uncharge later */
6709 return ret;
6710 mc.precharge++;
6711 }
6712 return ret;
6713 }
6714
6715 /**
6716 * get_mctgt_type - get target type of moving charge
6717 * @vma: the vma the pte to be checked belongs
6718 * @addr: the address corresponding to the pte to be checked
6719 * @ptent: the pte to be checked
6720 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6721 *
6722 * Returns
6723 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6724 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6725 * move charge. if @target is not NULL, the page is stored in target->page
6726 * with extra refcnt got(Callers should handle it).
6727 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6728 * target for charge migration. if @target is not NULL, the entry is stored
6729 * in target->ent.
6730 *
6731 * Called with pte lock held.
6732 */
6733 union mc_target {
6734 struct page *page;
6735 swp_entry_t ent;
6736 };
6737
6738 enum mc_target_type {
6739 MC_TARGET_NONE = 0,
6740 MC_TARGET_PAGE,
6741 MC_TARGET_SWAP,
6742 };
6743
6744 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6745 unsigned long addr, pte_t ptent)
6746 {
6747 struct page *page = vm_normal_page(vma, addr, ptent);
6748
6749 if (!page || !page_mapped(page))
6750 return NULL;
6751 if (PageAnon(page)) {
6752 /* we don't move shared anon */
6753 if (!move_anon())
6754 return NULL;
6755 } else if (!move_file())
6756 /* we ignore mapcount for file pages */
6757 return NULL;
6758 if (!get_page_unless_zero(page))
6759 return NULL;
6760
6761 return page;
6762 }
6763
6764 #ifdef CONFIG_SWAP
6765 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6766 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6767 {
6768 struct page *page = NULL;
6769 swp_entry_t ent = pte_to_swp_entry(ptent);
6770
6771 if (!move_anon() || non_swap_entry(ent))
6772 return NULL;
6773 /*
6774 * Because lookup_swap_cache() updates some statistics counter,
6775 * we call find_get_page() with swapper_space directly.
6776 */
6777 page = find_get_page(swap_address_space(ent), ent.val);
6778 if (do_swap_account)
6779 entry->val = ent.val;
6780
6781 return page;
6782 }
6783 #else
6784 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6785 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6786 {
6787 return NULL;
6788 }
6789 #endif
6790
6791 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6792 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6793 {
6794 struct page *page = NULL;
6795 struct address_space *mapping;
6796 pgoff_t pgoff;
6797
6798 if (!vma->vm_file) /* anonymous vma */
6799 return NULL;
6800 if (!move_file())
6801 return NULL;
6802
6803 mapping = vma->vm_file->f_mapping;
6804 if (pte_none(ptent))
6805 pgoff = linear_page_index(vma, addr);
6806 else /* pte_file(ptent) is true */
6807 pgoff = pte_to_pgoff(ptent);
6808
6809 /* page is moved even if it's not RSS of this task(page-faulted). */
6810 page = find_get_page(mapping, pgoff);
6811
6812 #ifdef CONFIG_SWAP
6813 /* shmem/tmpfs may report page out on swap: account for that too. */
6814 if (radix_tree_exceptional_entry(page)) {
6815 swp_entry_t swap = radix_to_swp_entry(page);
6816 if (do_swap_account)
6817 *entry = swap;
6818 page = find_get_page(swap_address_space(swap), swap.val);
6819 }
6820 #endif
6821 return page;
6822 }
6823
6824 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6825 unsigned long addr, pte_t ptent, union mc_target *target)
6826 {
6827 struct page *page = NULL;
6828 struct page_cgroup *pc;
6829 enum mc_target_type ret = MC_TARGET_NONE;
6830 swp_entry_t ent = { .val = 0 };
6831
6832 if (pte_present(ptent))
6833 page = mc_handle_present_pte(vma, addr, ptent);
6834 else if (is_swap_pte(ptent))
6835 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6836 else if (pte_none(ptent) || pte_file(ptent))
6837 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6838
6839 if (!page && !ent.val)
6840 return ret;
6841 if (page) {
6842 pc = lookup_page_cgroup(page);
6843 /*
6844 * Do only loose check w/o page_cgroup lock.
6845 * mem_cgroup_move_account() checks the pc is valid or not under
6846 * the lock.
6847 */
6848 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6849 ret = MC_TARGET_PAGE;
6850 if (target)
6851 target->page = page;
6852 }
6853 if (!ret || !target)
6854 put_page(page);
6855 }
6856 /* There is a swap entry and a page doesn't exist or isn't charged */
6857 if (ent.val && !ret &&
6858 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6859 ret = MC_TARGET_SWAP;
6860 if (target)
6861 target->ent = ent;
6862 }
6863 return ret;
6864 }
6865
6866 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6867 /*
6868 * We don't consider swapping or file mapped pages because THP does not
6869 * support them for now.
6870 * Caller should make sure that pmd_trans_huge(pmd) is true.
6871 */
6872 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6873 unsigned long addr, pmd_t pmd, union mc_target *target)
6874 {
6875 struct page *page = NULL;
6876 struct page_cgroup *pc;
6877 enum mc_target_type ret = MC_TARGET_NONE;
6878
6879 page = pmd_page(pmd);
6880 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6881 if (!move_anon())
6882 return ret;
6883 pc = lookup_page_cgroup(page);
6884 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6885 ret = MC_TARGET_PAGE;
6886 if (target) {
6887 get_page(page);
6888 target->page = page;
6889 }
6890 }
6891 return ret;
6892 }
6893 #else
6894 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6895 unsigned long addr, pmd_t pmd, union mc_target *target)
6896 {
6897 return MC_TARGET_NONE;
6898 }
6899 #endif
6900
6901 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6902 unsigned long addr, unsigned long end,
6903 struct mm_walk *walk)
6904 {
6905 struct vm_area_struct *vma = walk->private;
6906 pte_t *pte;
6907 spinlock_t *ptl;
6908
6909 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6910 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6911 mc.precharge += HPAGE_PMD_NR;
6912 spin_unlock(ptl);
6913 return 0;
6914 }
6915
6916 if (pmd_trans_unstable(pmd))
6917 return 0;
6918 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6919 for (; addr != end; pte++, addr += PAGE_SIZE)
6920 if (get_mctgt_type(vma, addr, *pte, NULL))
6921 mc.precharge++; /* increment precharge temporarily */
6922 pte_unmap_unlock(pte - 1, ptl);
6923 cond_resched();
6924
6925 return 0;
6926 }
6927
6928 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6929 {
6930 unsigned long precharge;
6931 struct vm_area_struct *vma;
6932
6933 down_read(&mm->mmap_sem);
6934 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6935 struct mm_walk mem_cgroup_count_precharge_walk = {
6936 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6937 .mm = mm,
6938 .private = vma,
6939 };
6940 if (is_vm_hugetlb_page(vma))
6941 continue;
6942 walk_page_range(vma->vm_start, vma->vm_end,
6943 &mem_cgroup_count_precharge_walk);
6944 }
6945 up_read(&mm->mmap_sem);
6946
6947 precharge = mc.precharge;
6948 mc.precharge = 0;
6949
6950 return precharge;
6951 }
6952
6953 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6954 {
6955 unsigned long precharge = mem_cgroup_count_precharge(mm);
6956
6957 VM_BUG_ON(mc.moving_task);
6958 mc.moving_task = current;
6959 return mem_cgroup_do_precharge(precharge);
6960 }
6961
6962 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6963 static void __mem_cgroup_clear_mc(void)
6964 {
6965 struct mem_cgroup *from = mc.from;
6966 struct mem_cgroup *to = mc.to;
6967 int i;
6968
6969 /* we must uncharge all the leftover precharges from mc.to */
6970 if (mc.precharge) {
6971 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6972 mc.precharge = 0;
6973 }
6974 /*
6975 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6976 * we must uncharge here.
6977 */
6978 if (mc.moved_charge) {
6979 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6980 mc.moved_charge = 0;
6981 }
6982 /* we must fixup refcnts and charges */
6983 if (mc.moved_swap) {
6984 /* uncharge swap account from the old cgroup */
6985 if (!mem_cgroup_is_root(mc.from))
6986 res_counter_uncharge(&mc.from->memsw,
6987 PAGE_SIZE * mc.moved_swap);
6988
6989 for (i = 0; i < mc.moved_swap; i++)
6990 css_put(&mc.from->css);
6991
6992 if (!mem_cgroup_is_root(mc.to)) {
6993 /*
6994 * we charged both to->res and to->memsw, so we should
6995 * uncharge to->res.
6996 */
6997 res_counter_uncharge(&mc.to->res,
6998 PAGE_SIZE * mc.moved_swap);
6999 }
7000 /* we've already done css_get(mc.to) */
7001 mc.moved_swap = 0;
7002 }
7003 memcg_oom_recover(from);
7004 memcg_oom_recover(to);
7005 wake_up_all(&mc.waitq);
7006 }
7007
7008 static void mem_cgroup_clear_mc(void)
7009 {
7010 struct mem_cgroup *from = mc.from;
7011
7012 /*
7013 * we must clear moving_task before waking up waiters at the end of
7014 * task migration.
7015 */
7016 mc.moving_task = NULL;
7017 __mem_cgroup_clear_mc();
7018 spin_lock(&mc.lock);
7019 mc.from = NULL;
7020 mc.to = NULL;
7021 spin_unlock(&mc.lock);
7022 mem_cgroup_end_move(from);
7023 }
7024
7025 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
7026 struct cgroup_taskset *tset)
7027 {
7028 struct task_struct *p = cgroup_taskset_first(tset);
7029 int ret = 0;
7030 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7031 unsigned long move_charge_at_immigrate;
7032
7033 /*
7034 * We are now commited to this value whatever it is. Changes in this
7035 * tunable will only affect upcoming migrations, not the current one.
7036 * So we need to save it, and keep it going.
7037 */
7038 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
7039 if (move_charge_at_immigrate) {
7040 struct mm_struct *mm;
7041 struct mem_cgroup *from = mem_cgroup_from_task(p);
7042
7043 VM_BUG_ON(from == memcg);
7044
7045 mm = get_task_mm(p);
7046 if (!mm)
7047 return 0;
7048 /* We move charges only when we move a owner of the mm */
7049 if (mm->owner == p) {
7050 VM_BUG_ON(mc.from);
7051 VM_BUG_ON(mc.to);
7052 VM_BUG_ON(mc.precharge);
7053 VM_BUG_ON(mc.moved_charge);
7054 VM_BUG_ON(mc.moved_swap);
7055 mem_cgroup_start_move(from);
7056 spin_lock(&mc.lock);
7057 mc.from = from;
7058 mc.to = memcg;
7059 mc.immigrate_flags = move_charge_at_immigrate;
7060 spin_unlock(&mc.lock);
7061 /* We set mc.moving_task later */
7062
7063 ret = mem_cgroup_precharge_mc(mm);
7064 if (ret)
7065 mem_cgroup_clear_mc();
7066 }
7067 mmput(mm);
7068 }
7069 return ret;
7070 }
7071
7072 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7073 struct cgroup_taskset *tset)
7074 {
7075 mem_cgroup_clear_mc();
7076 }
7077
7078 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
7079 unsigned long addr, unsigned long end,
7080 struct mm_walk *walk)
7081 {
7082 int ret = 0;
7083 struct vm_area_struct *vma = walk->private;
7084 pte_t *pte;
7085 spinlock_t *ptl;
7086 enum mc_target_type target_type;
7087 union mc_target target;
7088 struct page *page;
7089 struct page_cgroup *pc;
7090
7091 /*
7092 * We don't take compound_lock() here but no race with splitting thp
7093 * happens because:
7094 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
7095 * under splitting, which means there's no concurrent thp split,
7096 * - if another thread runs into split_huge_page() just after we
7097 * entered this if-block, the thread must wait for page table lock
7098 * to be unlocked in __split_huge_page_splitting(), where the main
7099 * part of thp split is not executed yet.
7100 */
7101 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
7102 if (mc.precharge < HPAGE_PMD_NR) {
7103 spin_unlock(ptl);
7104 return 0;
7105 }
7106 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
7107 if (target_type == MC_TARGET_PAGE) {
7108 page = target.page;
7109 if (!isolate_lru_page(page)) {
7110 pc = lookup_page_cgroup(page);
7111 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
7112 pc, mc.from, mc.to)) {
7113 mc.precharge -= HPAGE_PMD_NR;
7114 mc.moved_charge += HPAGE_PMD_NR;
7115 }
7116 putback_lru_page(page);
7117 }
7118 put_page(page);
7119 }
7120 spin_unlock(ptl);
7121 return 0;
7122 }
7123
7124 if (pmd_trans_unstable(pmd))
7125 return 0;
7126 retry:
7127 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
7128 for (; addr != end; addr += PAGE_SIZE) {
7129 pte_t ptent = *(pte++);
7130 swp_entry_t ent;
7131
7132 if (!mc.precharge)
7133 break;
7134
7135 switch (get_mctgt_type(vma, addr, ptent, &target)) {
7136 case MC_TARGET_PAGE:
7137 page = target.page;
7138 if (isolate_lru_page(page))
7139 goto put;
7140 pc = lookup_page_cgroup(page);
7141 if (!mem_cgroup_move_account(page, 1, pc,
7142 mc.from, mc.to)) {
7143 mc.precharge--;
7144 /* we uncharge from mc.from later. */
7145 mc.moved_charge++;
7146 }
7147 putback_lru_page(page);
7148 put: /* get_mctgt_type() gets the page */
7149 put_page(page);
7150 break;
7151 case MC_TARGET_SWAP:
7152 ent = target.ent;
7153 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
7154 mc.precharge--;
7155 /* we fixup refcnts and charges later. */
7156 mc.moved_swap++;
7157 }
7158 break;
7159 default:
7160 break;
7161 }
7162 }
7163 pte_unmap_unlock(pte - 1, ptl);
7164 cond_resched();
7165
7166 if (addr != end) {
7167 /*
7168 * We have consumed all precharges we got in can_attach().
7169 * We try charge one by one, but don't do any additional
7170 * charges to mc.to if we have failed in charge once in attach()
7171 * phase.
7172 */
7173 ret = mem_cgroup_do_precharge(1);
7174 if (!ret)
7175 goto retry;
7176 }
7177
7178 return ret;
7179 }
7180
7181 static void mem_cgroup_move_charge(struct mm_struct *mm)
7182 {
7183 struct vm_area_struct *vma;
7184
7185 lru_add_drain_all();
7186 retry:
7187 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
7188 /*
7189 * Someone who are holding the mmap_sem might be waiting in
7190 * waitq. So we cancel all extra charges, wake up all waiters,
7191 * and retry. Because we cancel precharges, we might not be able
7192 * to move enough charges, but moving charge is a best-effort
7193 * feature anyway, so it wouldn't be a big problem.
7194 */
7195 __mem_cgroup_clear_mc();
7196 cond_resched();
7197 goto retry;
7198 }
7199 for (vma = mm->mmap; vma; vma = vma->vm_next) {
7200 int ret;
7201 struct mm_walk mem_cgroup_move_charge_walk = {
7202 .pmd_entry = mem_cgroup_move_charge_pte_range,
7203 .mm = mm,
7204 .private = vma,
7205 };
7206 if (is_vm_hugetlb_page(vma))
7207 continue;
7208 ret = walk_page_range(vma->vm_start, vma->vm_end,
7209 &mem_cgroup_move_charge_walk);
7210 if (ret)
7211 /*
7212 * means we have consumed all precharges and failed in
7213 * doing additional charge. Just abandon here.
7214 */
7215 break;
7216 }
7217 up_read(&mm->mmap_sem);
7218 }
7219
7220 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7221 struct cgroup_taskset *tset)
7222 {
7223 struct task_struct *p = cgroup_taskset_first(tset);
7224 struct mm_struct *mm = get_task_mm(p);
7225
7226 if (mm) {
7227 if (mc.to)
7228 mem_cgroup_move_charge(mm);
7229 mmput(mm);
7230 }
7231 if (mc.to)
7232 mem_cgroup_clear_mc();
7233 }
7234 #else /* !CONFIG_MMU */
7235 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
7236 struct cgroup_taskset *tset)
7237 {
7238 return 0;
7239 }
7240 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7241 struct cgroup_taskset *tset)
7242 {
7243 }
7244 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7245 struct cgroup_taskset *tset)
7246 {
7247 }
7248 #endif
7249
7250 /*
7251 * Cgroup retains root cgroups across [un]mount cycles making it necessary
7252 * to verify sane_behavior flag on each mount attempt.
7253 */
7254 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
7255 {
7256 /*
7257 * use_hierarchy is forced with sane_behavior. cgroup core
7258 * guarantees that @root doesn't have any children, so turning it
7259 * on for the root memcg is enough.
7260 */
7261 if (cgroup_sane_behavior(root_css->cgroup))
7262 mem_cgroup_from_css(root_css)->use_hierarchy = true;
7263 }
7264
7265 struct cgroup_subsys mem_cgroup_subsys = {
7266 .name = "memory",
7267 .subsys_id = mem_cgroup_subsys_id,
7268 .css_alloc = mem_cgroup_css_alloc,
7269 .css_online = mem_cgroup_css_online,
7270 .css_offline = mem_cgroup_css_offline,
7271 .css_free = mem_cgroup_css_free,
7272 .can_attach = mem_cgroup_can_attach,
7273 .cancel_attach = mem_cgroup_cancel_attach,
7274 .attach = mem_cgroup_move_task,
7275 .bind = mem_cgroup_bind,
7276 .base_cftypes = mem_cgroup_files,
7277 .early_init = 0,
7278 };
7279
7280 #ifdef CONFIG_MEMCG_SWAP
7281 static int __init enable_swap_account(char *s)
7282 {
7283 if (!strcmp(s, "1"))
7284 really_do_swap_account = 1;
7285 else if (!strcmp(s, "0"))
7286 really_do_swap_account = 0;
7287 return 1;
7288 }
7289 __setup("swapaccount=", enable_swap_account);
7290
7291 static void __init memsw_file_init(void)
7292 {
7293 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
7294 }
7295
7296 static void __init enable_swap_cgroup(void)
7297 {
7298 if (!mem_cgroup_disabled() && really_do_swap_account) {
7299 do_swap_account = 1;
7300 memsw_file_init();
7301 }
7302 }
7303
7304 #else
7305 static void __init enable_swap_cgroup(void)
7306 {
7307 }
7308 #endif
7309
7310 /*
7311 * subsys_initcall() for memory controller.
7312 *
7313 * Some parts like hotcpu_notifier() have to be initialized from this context
7314 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7315 * everything that doesn't depend on a specific mem_cgroup structure should
7316 * be initialized from here.
7317 */
7318 static int __init mem_cgroup_init(void)
7319 {
7320 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7321 enable_swap_cgroup();
7322 mem_cgroup_soft_limit_tree_init();
7323 memcg_stock_init();
7324 return 0;
7325 }
7326 subsys_initcall(mem_cgroup_init);
This page took 0.172988 seconds and 6 git commands to generate.