memcg: fix possible NULL deref while traversing memcg_slab_caches list
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include "internal.h"
60 #include <net/sock.h>
61 #include <net/ip.h>
62 #include <net/tcp_memcontrol.h>
63 #include "slab.h"
64
65 #include <asm/uaccess.h>
66
67 #include <trace/events/vmscan.h>
68
69 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
70 EXPORT_SYMBOL(mem_cgroup_subsys);
71
72 #define MEM_CGROUP_RECLAIM_RETRIES 5
73 static struct mem_cgroup *root_mem_cgroup __read_mostly;
74
75 #ifdef CONFIG_MEMCG_SWAP
76 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77 int do_swap_account __read_mostly;
78
79 /* for remember boot option*/
80 #ifdef CONFIG_MEMCG_SWAP_ENABLED
81 static int really_do_swap_account __initdata = 1;
82 #else
83 static int really_do_swap_account __initdata = 0;
84 #endif
85
86 #else
87 #define do_swap_account 0
88 #endif
89
90
91 static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
94 "rss_huge",
95 "mapped_file",
96 "writeback",
97 "swap",
98 };
99
100 enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
105 MEM_CGROUP_EVENTS_NSTATS,
106 };
107
108 static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113 };
114
115 static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121 };
122
123 /*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129 enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
131 MEM_CGROUP_TARGET_SOFTLIMIT,
132 MEM_CGROUP_TARGET_NUMAINFO,
133 MEM_CGROUP_NTARGETS,
134 };
135 #define THRESHOLDS_EVENTS_TARGET 128
136 #define SOFTLIMIT_EVENTS_TARGET 1024
137 #define NUMAINFO_EVENTS_TARGET 1024
138
139 struct mem_cgroup_stat_cpu {
140 long count[MEM_CGROUP_STAT_NSTATS];
141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142 unsigned long nr_page_events;
143 unsigned long targets[MEM_CGROUP_NTARGETS];
144 };
145
146 struct mem_cgroup_reclaim_iter {
147 /*
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
150 */
151 struct mem_cgroup *last_visited;
152 unsigned long last_dead_count;
153
154 /* scan generation, increased every round-trip */
155 unsigned int generation;
156 };
157
158 /*
159 * per-zone information in memory controller.
160 */
161 struct mem_cgroup_per_zone {
162 struct lruvec lruvec;
163 unsigned long lru_size[NR_LRU_LISTS];
164
165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166
167 struct rb_node tree_node; /* RB tree node */
168 unsigned long long usage_in_excess;/* Set to the value by which */
169 /* the soft limit is exceeded*/
170 bool on_tree;
171 struct mem_cgroup *memcg; /* Back pointer, we cannot */
172 /* use container_of */
173 };
174
175 struct mem_cgroup_per_node {
176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177 };
178
179 /*
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
182 */
183
184 struct mem_cgroup_tree_per_zone {
185 struct rb_root rb_root;
186 spinlock_t lock;
187 };
188
189 struct mem_cgroup_tree_per_node {
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191 };
192
193 struct mem_cgroup_tree {
194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195 };
196
197 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198
199 struct mem_cgroup_threshold {
200 struct eventfd_ctx *eventfd;
201 u64 threshold;
202 };
203
204 /* For threshold */
205 struct mem_cgroup_threshold_ary {
206 /* An array index points to threshold just below or equal to usage. */
207 int current_threshold;
208 /* Size of entries[] */
209 unsigned int size;
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries[0];
212 };
213
214 struct mem_cgroup_thresholds {
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary *primary;
217 /*
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
221 */
222 struct mem_cgroup_threshold_ary *spare;
223 };
224
225 /* for OOM */
226 struct mem_cgroup_eventfd_list {
227 struct list_head list;
228 struct eventfd_ctx *eventfd;
229 };
230
231 /*
232 * cgroup_event represents events which userspace want to receive.
233 */
234 struct mem_cgroup_event {
235 /*
236 * memcg which the event belongs to.
237 */
238 struct mem_cgroup *memcg;
239 /*
240 * eventfd to signal userspace about the event.
241 */
242 struct eventfd_ctx *eventfd;
243 /*
244 * Each of these stored in a list by the cgroup.
245 */
246 struct list_head list;
247 /*
248 * register_event() callback will be used to add new userspace
249 * waiter for changes related to this event. Use eventfd_signal()
250 * on eventfd to send notification to userspace.
251 */
252 int (*register_event)(struct mem_cgroup *memcg,
253 struct eventfd_ctx *eventfd, const char *args);
254 /*
255 * unregister_event() callback will be called when userspace closes
256 * the eventfd or on cgroup removing. This callback must be set,
257 * if you want provide notification functionality.
258 */
259 void (*unregister_event)(struct mem_cgroup *memcg,
260 struct eventfd_ctx *eventfd);
261 /*
262 * All fields below needed to unregister event when
263 * userspace closes eventfd.
264 */
265 poll_table pt;
266 wait_queue_head_t *wqh;
267 wait_queue_t wait;
268 struct work_struct remove;
269 };
270
271 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
273
274 /*
275 * The memory controller data structure. The memory controller controls both
276 * page cache and RSS per cgroup. We would eventually like to provide
277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278 * to help the administrator determine what knobs to tune.
279 *
280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
281 * we hit the water mark. May be even add a low water mark, such that
282 * no reclaim occurs from a cgroup at it's low water mark, this is
283 * a feature that will be implemented much later in the future.
284 */
285 struct mem_cgroup {
286 struct cgroup_subsys_state css;
287 /*
288 * the counter to account for memory usage
289 */
290 struct res_counter res;
291
292 /* vmpressure notifications */
293 struct vmpressure vmpressure;
294
295 /*
296 * the counter to account for mem+swap usage.
297 */
298 struct res_counter memsw;
299
300 /*
301 * the counter to account for kernel memory usage.
302 */
303 struct res_counter kmem;
304 /*
305 * Should the accounting and control be hierarchical, per subtree?
306 */
307 bool use_hierarchy;
308 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
309
310 bool oom_lock;
311 atomic_t under_oom;
312 atomic_t oom_wakeups;
313
314 int swappiness;
315 /* OOM-Killer disable */
316 int oom_kill_disable;
317
318 /* set when res.limit == memsw.limit */
319 bool memsw_is_minimum;
320
321 /* protect arrays of thresholds */
322 struct mutex thresholds_lock;
323
324 /* thresholds for memory usage. RCU-protected */
325 struct mem_cgroup_thresholds thresholds;
326
327 /* thresholds for mem+swap usage. RCU-protected */
328 struct mem_cgroup_thresholds memsw_thresholds;
329
330 /* For oom notifier event fd */
331 struct list_head oom_notify;
332
333 /*
334 * Should we move charges of a task when a task is moved into this
335 * mem_cgroup ? And what type of charges should we move ?
336 */
337 unsigned long move_charge_at_immigrate;
338 /*
339 * set > 0 if pages under this cgroup are moving to other cgroup.
340 */
341 atomic_t moving_account;
342 /* taken only while moving_account > 0 */
343 spinlock_t move_lock;
344 /*
345 * percpu counter.
346 */
347 struct mem_cgroup_stat_cpu __percpu *stat;
348 /*
349 * used when a cpu is offlined or other synchronizations
350 * See mem_cgroup_read_stat().
351 */
352 struct mem_cgroup_stat_cpu nocpu_base;
353 spinlock_t pcp_counter_lock;
354
355 atomic_t dead_count;
356 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
357 struct cg_proto tcp_mem;
358 #endif
359 #if defined(CONFIG_MEMCG_KMEM)
360 /* analogous to slab_common's slab_caches list. per-memcg */
361 struct list_head memcg_slab_caches;
362 /* Not a spinlock, we can take a lot of time walking the list */
363 struct mutex slab_caches_mutex;
364 /* Index in the kmem_cache->memcg_params->memcg_caches array */
365 int kmemcg_id;
366 #endif
367
368 int last_scanned_node;
369 #if MAX_NUMNODES > 1
370 nodemask_t scan_nodes;
371 atomic_t numainfo_events;
372 atomic_t numainfo_updating;
373 #endif
374
375 /* List of events which userspace want to receive */
376 struct list_head event_list;
377 spinlock_t event_list_lock;
378
379 struct mem_cgroup_per_node *nodeinfo[0];
380 /* WARNING: nodeinfo must be the last member here */
381 };
382
383 /* internal only representation about the status of kmem accounting. */
384 enum {
385 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
386 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
387 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
388 };
389
390 /* We account when limit is on, but only after call sites are patched */
391 #define KMEM_ACCOUNTED_MASK \
392 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
393
394 #ifdef CONFIG_MEMCG_KMEM
395 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
396 {
397 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
398 }
399
400 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
401 {
402 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
403 }
404
405 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
406 {
407 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
408 }
409
410 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
411 {
412 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
413 }
414
415 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
416 {
417 /*
418 * Our caller must use css_get() first, because memcg_uncharge_kmem()
419 * will call css_put() if it sees the memcg is dead.
420 */
421 smp_wmb();
422 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
423 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
424 }
425
426 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
427 {
428 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
429 &memcg->kmem_account_flags);
430 }
431 #endif
432
433 /* Stuffs for move charges at task migration. */
434 /*
435 * Types of charges to be moved. "move_charge_at_immitgrate" and
436 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
437 */
438 enum move_type {
439 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
440 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
441 NR_MOVE_TYPE,
442 };
443
444 /* "mc" and its members are protected by cgroup_mutex */
445 static struct move_charge_struct {
446 spinlock_t lock; /* for from, to */
447 struct mem_cgroup *from;
448 struct mem_cgroup *to;
449 unsigned long immigrate_flags;
450 unsigned long precharge;
451 unsigned long moved_charge;
452 unsigned long moved_swap;
453 struct task_struct *moving_task; /* a task moving charges */
454 wait_queue_head_t waitq; /* a waitq for other context */
455 } mc = {
456 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
457 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
458 };
459
460 static bool move_anon(void)
461 {
462 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
463 }
464
465 static bool move_file(void)
466 {
467 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
468 }
469
470 /*
471 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
472 * limit reclaim to prevent infinite loops, if they ever occur.
473 */
474 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
475 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
476
477 enum charge_type {
478 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
479 MEM_CGROUP_CHARGE_TYPE_ANON,
480 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
481 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
482 NR_CHARGE_TYPE,
483 };
484
485 /* for encoding cft->private value on file */
486 enum res_type {
487 _MEM,
488 _MEMSWAP,
489 _OOM_TYPE,
490 _KMEM,
491 };
492
493 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
494 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
495 #define MEMFILE_ATTR(val) ((val) & 0xffff)
496 /* Used for OOM nofiier */
497 #define OOM_CONTROL (0)
498
499 /*
500 * Reclaim flags for mem_cgroup_hierarchical_reclaim
501 */
502 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
503 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
504 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
505 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
506
507 /*
508 * The memcg_create_mutex will be held whenever a new cgroup is created.
509 * As a consequence, any change that needs to protect against new child cgroups
510 * appearing has to hold it as well.
511 */
512 static DEFINE_MUTEX(memcg_create_mutex);
513
514 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
515 {
516 return s ? container_of(s, struct mem_cgroup, css) : NULL;
517 }
518
519 /* Some nice accessors for the vmpressure. */
520 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
521 {
522 if (!memcg)
523 memcg = root_mem_cgroup;
524 return &memcg->vmpressure;
525 }
526
527 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
528 {
529 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
530 }
531
532 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
533 {
534 return (memcg == root_mem_cgroup);
535 }
536
537 /*
538 * We restrict the id in the range of [1, 65535], so it can fit into
539 * an unsigned short.
540 */
541 #define MEM_CGROUP_ID_MAX USHRT_MAX
542
543 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
544 {
545 /*
546 * The ID of the root cgroup is 0, but memcg treat 0 as an
547 * invalid ID, so we return (cgroup_id + 1).
548 */
549 return memcg->css.cgroup->id + 1;
550 }
551
552 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
553 {
554 struct cgroup_subsys_state *css;
555
556 css = css_from_id(id - 1, &mem_cgroup_subsys);
557 return mem_cgroup_from_css(css);
558 }
559
560 /* Writing them here to avoid exposing memcg's inner layout */
561 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
562
563 void sock_update_memcg(struct sock *sk)
564 {
565 if (mem_cgroup_sockets_enabled) {
566 struct mem_cgroup *memcg;
567 struct cg_proto *cg_proto;
568
569 BUG_ON(!sk->sk_prot->proto_cgroup);
570
571 /* Socket cloning can throw us here with sk_cgrp already
572 * filled. It won't however, necessarily happen from
573 * process context. So the test for root memcg given
574 * the current task's memcg won't help us in this case.
575 *
576 * Respecting the original socket's memcg is a better
577 * decision in this case.
578 */
579 if (sk->sk_cgrp) {
580 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
581 css_get(&sk->sk_cgrp->memcg->css);
582 return;
583 }
584
585 rcu_read_lock();
586 memcg = mem_cgroup_from_task(current);
587 cg_proto = sk->sk_prot->proto_cgroup(memcg);
588 if (!mem_cgroup_is_root(memcg) &&
589 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
590 sk->sk_cgrp = cg_proto;
591 }
592 rcu_read_unlock();
593 }
594 }
595 EXPORT_SYMBOL(sock_update_memcg);
596
597 void sock_release_memcg(struct sock *sk)
598 {
599 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
600 struct mem_cgroup *memcg;
601 WARN_ON(!sk->sk_cgrp->memcg);
602 memcg = sk->sk_cgrp->memcg;
603 css_put(&sk->sk_cgrp->memcg->css);
604 }
605 }
606
607 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
608 {
609 if (!memcg || mem_cgroup_is_root(memcg))
610 return NULL;
611
612 return &memcg->tcp_mem;
613 }
614 EXPORT_SYMBOL(tcp_proto_cgroup);
615
616 static void disarm_sock_keys(struct mem_cgroup *memcg)
617 {
618 if (!memcg_proto_activated(&memcg->tcp_mem))
619 return;
620 static_key_slow_dec(&memcg_socket_limit_enabled);
621 }
622 #else
623 static void disarm_sock_keys(struct mem_cgroup *memcg)
624 {
625 }
626 #endif
627
628 #ifdef CONFIG_MEMCG_KMEM
629 /*
630 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
631 * The main reason for not using cgroup id for this:
632 * this works better in sparse environments, where we have a lot of memcgs,
633 * but only a few kmem-limited. Or also, if we have, for instance, 200
634 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
635 * 200 entry array for that.
636 *
637 * The current size of the caches array is stored in
638 * memcg_limited_groups_array_size. It will double each time we have to
639 * increase it.
640 */
641 static DEFINE_IDA(kmem_limited_groups);
642 int memcg_limited_groups_array_size;
643
644 /*
645 * MIN_SIZE is different than 1, because we would like to avoid going through
646 * the alloc/free process all the time. In a small machine, 4 kmem-limited
647 * cgroups is a reasonable guess. In the future, it could be a parameter or
648 * tunable, but that is strictly not necessary.
649 *
650 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
651 * this constant directly from cgroup, but it is understandable that this is
652 * better kept as an internal representation in cgroup.c. In any case, the
653 * cgrp_id space is not getting any smaller, and we don't have to necessarily
654 * increase ours as well if it increases.
655 */
656 #define MEMCG_CACHES_MIN_SIZE 4
657 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
658
659 /*
660 * A lot of the calls to the cache allocation functions are expected to be
661 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
662 * conditional to this static branch, we'll have to allow modules that does
663 * kmem_cache_alloc and the such to see this symbol as well
664 */
665 struct static_key memcg_kmem_enabled_key;
666 EXPORT_SYMBOL(memcg_kmem_enabled_key);
667
668 static void disarm_kmem_keys(struct mem_cgroup *memcg)
669 {
670 if (memcg_kmem_is_active(memcg)) {
671 static_key_slow_dec(&memcg_kmem_enabled_key);
672 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
673 }
674 /*
675 * This check can't live in kmem destruction function,
676 * since the charges will outlive the cgroup
677 */
678 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
679 }
680 #else
681 static void disarm_kmem_keys(struct mem_cgroup *memcg)
682 {
683 }
684 #endif /* CONFIG_MEMCG_KMEM */
685
686 static void disarm_static_keys(struct mem_cgroup *memcg)
687 {
688 disarm_sock_keys(memcg);
689 disarm_kmem_keys(memcg);
690 }
691
692 static void drain_all_stock_async(struct mem_cgroup *memcg);
693
694 static struct mem_cgroup_per_zone *
695 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
696 {
697 VM_BUG_ON((unsigned)nid >= nr_node_ids);
698 return &memcg->nodeinfo[nid]->zoneinfo[zid];
699 }
700
701 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
702 {
703 return &memcg->css;
704 }
705
706 static struct mem_cgroup_per_zone *
707 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
708 {
709 int nid = page_to_nid(page);
710 int zid = page_zonenum(page);
711
712 return mem_cgroup_zoneinfo(memcg, nid, zid);
713 }
714
715 static struct mem_cgroup_tree_per_zone *
716 soft_limit_tree_node_zone(int nid, int zid)
717 {
718 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
719 }
720
721 static struct mem_cgroup_tree_per_zone *
722 soft_limit_tree_from_page(struct page *page)
723 {
724 int nid = page_to_nid(page);
725 int zid = page_zonenum(page);
726
727 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
728 }
729
730 static void
731 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
732 struct mem_cgroup_per_zone *mz,
733 struct mem_cgroup_tree_per_zone *mctz,
734 unsigned long long new_usage_in_excess)
735 {
736 struct rb_node **p = &mctz->rb_root.rb_node;
737 struct rb_node *parent = NULL;
738 struct mem_cgroup_per_zone *mz_node;
739
740 if (mz->on_tree)
741 return;
742
743 mz->usage_in_excess = new_usage_in_excess;
744 if (!mz->usage_in_excess)
745 return;
746 while (*p) {
747 parent = *p;
748 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
749 tree_node);
750 if (mz->usage_in_excess < mz_node->usage_in_excess)
751 p = &(*p)->rb_left;
752 /*
753 * We can't avoid mem cgroups that are over their soft
754 * limit by the same amount
755 */
756 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
757 p = &(*p)->rb_right;
758 }
759 rb_link_node(&mz->tree_node, parent, p);
760 rb_insert_color(&mz->tree_node, &mctz->rb_root);
761 mz->on_tree = true;
762 }
763
764 static void
765 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
766 struct mem_cgroup_per_zone *mz,
767 struct mem_cgroup_tree_per_zone *mctz)
768 {
769 if (!mz->on_tree)
770 return;
771 rb_erase(&mz->tree_node, &mctz->rb_root);
772 mz->on_tree = false;
773 }
774
775 static void
776 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
777 struct mem_cgroup_per_zone *mz,
778 struct mem_cgroup_tree_per_zone *mctz)
779 {
780 spin_lock(&mctz->lock);
781 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
782 spin_unlock(&mctz->lock);
783 }
784
785
786 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
787 {
788 unsigned long long excess;
789 struct mem_cgroup_per_zone *mz;
790 struct mem_cgroup_tree_per_zone *mctz;
791 int nid = page_to_nid(page);
792 int zid = page_zonenum(page);
793 mctz = soft_limit_tree_from_page(page);
794
795 /*
796 * Necessary to update all ancestors when hierarchy is used.
797 * because their event counter is not touched.
798 */
799 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
800 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
801 excess = res_counter_soft_limit_excess(&memcg->res);
802 /*
803 * We have to update the tree if mz is on RB-tree or
804 * mem is over its softlimit.
805 */
806 if (excess || mz->on_tree) {
807 spin_lock(&mctz->lock);
808 /* if on-tree, remove it */
809 if (mz->on_tree)
810 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
811 /*
812 * Insert again. mz->usage_in_excess will be updated.
813 * If excess is 0, no tree ops.
814 */
815 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
816 spin_unlock(&mctz->lock);
817 }
818 }
819 }
820
821 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
822 {
823 int node, zone;
824 struct mem_cgroup_per_zone *mz;
825 struct mem_cgroup_tree_per_zone *mctz;
826
827 for_each_node(node) {
828 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
829 mz = mem_cgroup_zoneinfo(memcg, node, zone);
830 mctz = soft_limit_tree_node_zone(node, zone);
831 mem_cgroup_remove_exceeded(memcg, mz, mctz);
832 }
833 }
834 }
835
836 static struct mem_cgroup_per_zone *
837 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
838 {
839 struct rb_node *rightmost = NULL;
840 struct mem_cgroup_per_zone *mz;
841
842 retry:
843 mz = NULL;
844 rightmost = rb_last(&mctz->rb_root);
845 if (!rightmost)
846 goto done; /* Nothing to reclaim from */
847
848 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
849 /*
850 * Remove the node now but someone else can add it back,
851 * we will to add it back at the end of reclaim to its correct
852 * position in the tree.
853 */
854 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
855 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
856 !css_tryget(&mz->memcg->css))
857 goto retry;
858 done:
859 return mz;
860 }
861
862 static struct mem_cgroup_per_zone *
863 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
864 {
865 struct mem_cgroup_per_zone *mz;
866
867 spin_lock(&mctz->lock);
868 mz = __mem_cgroup_largest_soft_limit_node(mctz);
869 spin_unlock(&mctz->lock);
870 return mz;
871 }
872
873 /*
874 * Implementation Note: reading percpu statistics for memcg.
875 *
876 * Both of vmstat[] and percpu_counter has threshold and do periodic
877 * synchronization to implement "quick" read. There are trade-off between
878 * reading cost and precision of value. Then, we may have a chance to implement
879 * a periodic synchronizion of counter in memcg's counter.
880 *
881 * But this _read() function is used for user interface now. The user accounts
882 * memory usage by memory cgroup and he _always_ requires exact value because
883 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
884 * have to visit all online cpus and make sum. So, for now, unnecessary
885 * synchronization is not implemented. (just implemented for cpu hotplug)
886 *
887 * If there are kernel internal actions which can make use of some not-exact
888 * value, and reading all cpu value can be performance bottleneck in some
889 * common workload, threashold and synchonization as vmstat[] should be
890 * implemented.
891 */
892 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
893 enum mem_cgroup_stat_index idx)
894 {
895 long val = 0;
896 int cpu;
897
898 get_online_cpus();
899 for_each_online_cpu(cpu)
900 val += per_cpu(memcg->stat->count[idx], cpu);
901 #ifdef CONFIG_HOTPLUG_CPU
902 spin_lock(&memcg->pcp_counter_lock);
903 val += memcg->nocpu_base.count[idx];
904 spin_unlock(&memcg->pcp_counter_lock);
905 #endif
906 put_online_cpus();
907 return val;
908 }
909
910 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
911 bool charge)
912 {
913 int val = (charge) ? 1 : -1;
914 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
915 }
916
917 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
918 enum mem_cgroup_events_index idx)
919 {
920 unsigned long val = 0;
921 int cpu;
922
923 get_online_cpus();
924 for_each_online_cpu(cpu)
925 val += per_cpu(memcg->stat->events[idx], cpu);
926 #ifdef CONFIG_HOTPLUG_CPU
927 spin_lock(&memcg->pcp_counter_lock);
928 val += memcg->nocpu_base.events[idx];
929 spin_unlock(&memcg->pcp_counter_lock);
930 #endif
931 put_online_cpus();
932 return val;
933 }
934
935 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
936 struct page *page,
937 bool anon, int nr_pages)
938 {
939 preempt_disable();
940
941 /*
942 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
943 * counted as CACHE even if it's on ANON LRU.
944 */
945 if (anon)
946 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
947 nr_pages);
948 else
949 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
950 nr_pages);
951
952 if (PageTransHuge(page))
953 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
954 nr_pages);
955
956 /* pagein of a big page is an event. So, ignore page size */
957 if (nr_pages > 0)
958 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
959 else {
960 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
961 nr_pages = -nr_pages; /* for event */
962 }
963
964 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
965
966 preempt_enable();
967 }
968
969 unsigned long
970 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
971 {
972 struct mem_cgroup_per_zone *mz;
973
974 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
975 return mz->lru_size[lru];
976 }
977
978 static unsigned long
979 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
980 unsigned int lru_mask)
981 {
982 struct mem_cgroup_per_zone *mz;
983 enum lru_list lru;
984 unsigned long ret = 0;
985
986 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
987
988 for_each_lru(lru) {
989 if (BIT(lru) & lru_mask)
990 ret += mz->lru_size[lru];
991 }
992 return ret;
993 }
994
995 static unsigned long
996 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
997 int nid, unsigned int lru_mask)
998 {
999 u64 total = 0;
1000 int zid;
1001
1002 for (zid = 0; zid < MAX_NR_ZONES; zid++)
1003 total += mem_cgroup_zone_nr_lru_pages(memcg,
1004 nid, zid, lru_mask);
1005
1006 return total;
1007 }
1008
1009 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
1010 unsigned int lru_mask)
1011 {
1012 int nid;
1013 u64 total = 0;
1014
1015 for_each_node_state(nid, N_MEMORY)
1016 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
1017 return total;
1018 }
1019
1020 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1021 enum mem_cgroup_events_target target)
1022 {
1023 unsigned long val, next;
1024
1025 val = __this_cpu_read(memcg->stat->nr_page_events);
1026 next = __this_cpu_read(memcg->stat->targets[target]);
1027 /* from time_after() in jiffies.h */
1028 if ((long)next - (long)val < 0) {
1029 switch (target) {
1030 case MEM_CGROUP_TARGET_THRESH:
1031 next = val + THRESHOLDS_EVENTS_TARGET;
1032 break;
1033 case MEM_CGROUP_TARGET_SOFTLIMIT:
1034 next = val + SOFTLIMIT_EVENTS_TARGET;
1035 break;
1036 case MEM_CGROUP_TARGET_NUMAINFO:
1037 next = val + NUMAINFO_EVENTS_TARGET;
1038 break;
1039 default:
1040 break;
1041 }
1042 __this_cpu_write(memcg->stat->targets[target], next);
1043 return true;
1044 }
1045 return false;
1046 }
1047
1048 /*
1049 * Check events in order.
1050 *
1051 */
1052 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1053 {
1054 preempt_disable();
1055 /* threshold event is triggered in finer grain than soft limit */
1056 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1057 MEM_CGROUP_TARGET_THRESH))) {
1058 bool do_softlimit;
1059 bool do_numainfo __maybe_unused;
1060
1061 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1062 MEM_CGROUP_TARGET_SOFTLIMIT);
1063 #if MAX_NUMNODES > 1
1064 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1065 MEM_CGROUP_TARGET_NUMAINFO);
1066 #endif
1067 preempt_enable();
1068
1069 mem_cgroup_threshold(memcg);
1070 if (unlikely(do_softlimit))
1071 mem_cgroup_update_tree(memcg, page);
1072 #if MAX_NUMNODES > 1
1073 if (unlikely(do_numainfo))
1074 atomic_inc(&memcg->numainfo_events);
1075 #endif
1076 } else
1077 preempt_enable();
1078 }
1079
1080 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1081 {
1082 /*
1083 * mm_update_next_owner() may clear mm->owner to NULL
1084 * if it races with swapoff, page migration, etc.
1085 * So this can be called with p == NULL.
1086 */
1087 if (unlikely(!p))
1088 return NULL;
1089
1090 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1091 }
1092
1093 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1094 {
1095 struct mem_cgroup *memcg = NULL;
1096
1097 if (!mm)
1098 return NULL;
1099 /*
1100 * Because we have no locks, mm->owner's may be being moved to other
1101 * cgroup. We use css_tryget() here even if this looks
1102 * pessimistic (rather than adding locks here).
1103 */
1104 rcu_read_lock();
1105 do {
1106 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1107 if (unlikely(!memcg))
1108 break;
1109 } while (!css_tryget(&memcg->css));
1110 rcu_read_unlock();
1111 return memcg;
1112 }
1113
1114 /*
1115 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1116 * ref. count) or NULL if the whole root's subtree has been visited.
1117 *
1118 * helper function to be used by mem_cgroup_iter
1119 */
1120 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1121 struct mem_cgroup *last_visited)
1122 {
1123 struct cgroup_subsys_state *prev_css, *next_css;
1124
1125 prev_css = last_visited ? &last_visited->css : NULL;
1126 skip_node:
1127 next_css = css_next_descendant_pre(prev_css, &root->css);
1128
1129 /*
1130 * Even if we found a group we have to make sure it is
1131 * alive. css && !memcg means that the groups should be
1132 * skipped and we should continue the tree walk.
1133 * last_visited css is safe to use because it is
1134 * protected by css_get and the tree walk is rcu safe.
1135 */
1136 if (next_css) {
1137 struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
1138
1139 if (css_tryget(&mem->css))
1140 return mem;
1141 else {
1142 prev_css = next_css;
1143 goto skip_node;
1144 }
1145 }
1146
1147 return NULL;
1148 }
1149
1150 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1151 {
1152 /*
1153 * When a group in the hierarchy below root is destroyed, the
1154 * hierarchy iterator can no longer be trusted since it might
1155 * have pointed to the destroyed group. Invalidate it.
1156 */
1157 atomic_inc(&root->dead_count);
1158 }
1159
1160 static struct mem_cgroup *
1161 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1162 struct mem_cgroup *root,
1163 int *sequence)
1164 {
1165 struct mem_cgroup *position = NULL;
1166 /*
1167 * A cgroup destruction happens in two stages: offlining and
1168 * release. They are separated by a RCU grace period.
1169 *
1170 * If the iterator is valid, we may still race with an
1171 * offlining. The RCU lock ensures the object won't be
1172 * released, tryget will fail if we lost the race.
1173 */
1174 *sequence = atomic_read(&root->dead_count);
1175 if (iter->last_dead_count == *sequence) {
1176 smp_rmb();
1177 position = iter->last_visited;
1178 if (position && !css_tryget(&position->css))
1179 position = NULL;
1180 }
1181 return position;
1182 }
1183
1184 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1185 struct mem_cgroup *last_visited,
1186 struct mem_cgroup *new_position,
1187 int sequence)
1188 {
1189 if (last_visited)
1190 css_put(&last_visited->css);
1191 /*
1192 * We store the sequence count from the time @last_visited was
1193 * loaded successfully instead of rereading it here so that we
1194 * don't lose destruction events in between. We could have
1195 * raced with the destruction of @new_position after all.
1196 */
1197 iter->last_visited = new_position;
1198 smp_wmb();
1199 iter->last_dead_count = sequence;
1200 }
1201
1202 /**
1203 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1204 * @root: hierarchy root
1205 * @prev: previously returned memcg, NULL on first invocation
1206 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1207 *
1208 * Returns references to children of the hierarchy below @root, or
1209 * @root itself, or %NULL after a full round-trip.
1210 *
1211 * Caller must pass the return value in @prev on subsequent
1212 * invocations for reference counting, or use mem_cgroup_iter_break()
1213 * to cancel a hierarchy walk before the round-trip is complete.
1214 *
1215 * Reclaimers can specify a zone and a priority level in @reclaim to
1216 * divide up the memcgs in the hierarchy among all concurrent
1217 * reclaimers operating on the same zone and priority.
1218 */
1219 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1220 struct mem_cgroup *prev,
1221 struct mem_cgroup_reclaim_cookie *reclaim)
1222 {
1223 struct mem_cgroup *memcg = NULL;
1224 struct mem_cgroup *last_visited = NULL;
1225
1226 if (mem_cgroup_disabled())
1227 return NULL;
1228
1229 if (!root)
1230 root = root_mem_cgroup;
1231
1232 if (prev && !reclaim)
1233 last_visited = prev;
1234
1235 if (!root->use_hierarchy && root != root_mem_cgroup) {
1236 if (prev)
1237 goto out_css_put;
1238 return root;
1239 }
1240
1241 rcu_read_lock();
1242 while (!memcg) {
1243 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1244 int uninitialized_var(seq);
1245
1246 if (reclaim) {
1247 int nid = zone_to_nid(reclaim->zone);
1248 int zid = zone_idx(reclaim->zone);
1249 struct mem_cgroup_per_zone *mz;
1250
1251 mz = mem_cgroup_zoneinfo(root, nid, zid);
1252 iter = &mz->reclaim_iter[reclaim->priority];
1253 if (prev && reclaim->generation != iter->generation) {
1254 iter->last_visited = NULL;
1255 goto out_unlock;
1256 }
1257
1258 last_visited = mem_cgroup_iter_load(iter, root, &seq);
1259 }
1260
1261 memcg = __mem_cgroup_iter_next(root, last_visited);
1262
1263 if (reclaim) {
1264 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1265
1266 if (!memcg)
1267 iter->generation++;
1268 else if (!prev && memcg)
1269 reclaim->generation = iter->generation;
1270 }
1271
1272 if (prev && !memcg)
1273 goto out_unlock;
1274 }
1275 out_unlock:
1276 rcu_read_unlock();
1277 out_css_put:
1278 if (prev && prev != root)
1279 css_put(&prev->css);
1280
1281 return memcg;
1282 }
1283
1284 /**
1285 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1286 * @root: hierarchy root
1287 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1288 */
1289 void mem_cgroup_iter_break(struct mem_cgroup *root,
1290 struct mem_cgroup *prev)
1291 {
1292 if (!root)
1293 root = root_mem_cgroup;
1294 if (prev && prev != root)
1295 css_put(&prev->css);
1296 }
1297
1298 /*
1299 * Iteration constructs for visiting all cgroups (under a tree). If
1300 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1301 * be used for reference counting.
1302 */
1303 #define for_each_mem_cgroup_tree(iter, root) \
1304 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1305 iter != NULL; \
1306 iter = mem_cgroup_iter(root, iter, NULL))
1307
1308 #define for_each_mem_cgroup(iter) \
1309 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1310 iter != NULL; \
1311 iter = mem_cgroup_iter(NULL, iter, NULL))
1312
1313 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1314 {
1315 struct mem_cgroup *memcg;
1316
1317 rcu_read_lock();
1318 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1319 if (unlikely(!memcg))
1320 goto out;
1321
1322 switch (idx) {
1323 case PGFAULT:
1324 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1325 break;
1326 case PGMAJFAULT:
1327 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1328 break;
1329 default:
1330 BUG();
1331 }
1332 out:
1333 rcu_read_unlock();
1334 }
1335 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1336
1337 /**
1338 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1339 * @zone: zone of the wanted lruvec
1340 * @memcg: memcg of the wanted lruvec
1341 *
1342 * Returns the lru list vector holding pages for the given @zone and
1343 * @mem. This can be the global zone lruvec, if the memory controller
1344 * is disabled.
1345 */
1346 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1347 struct mem_cgroup *memcg)
1348 {
1349 struct mem_cgroup_per_zone *mz;
1350 struct lruvec *lruvec;
1351
1352 if (mem_cgroup_disabled()) {
1353 lruvec = &zone->lruvec;
1354 goto out;
1355 }
1356
1357 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1358 lruvec = &mz->lruvec;
1359 out:
1360 /*
1361 * Since a node can be onlined after the mem_cgroup was created,
1362 * we have to be prepared to initialize lruvec->zone here;
1363 * and if offlined then reonlined, we need to reinitialize it.
1364 */
1365 if (unlikely(lruvec->zone != zone))
1366 lruvec->zone = zone;
1367 return lruvec;
1368 }
1369
1370 /*
1371 * Following LRU functions are allowed to be used without PCG_LOCK.
1372 * Operations are called by routine of global LRU independently from memcg.
1373 * What we have to take care of here is validness of pc->mem_cgroup.
1374 *
1375 * Changes to pc->mem_cgroup happens when
1376 * 1. charge
1377 * 2. moving account
1378 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1379 * It is added to LRU before charge.
1380 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1381 * When moving account, the page is not on LRU. It's isolated.
1382 */
1383
1384 /**
1385 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1386 * @page: the page
1387 * @zone: zone of the page
1388 */
1389 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1390 {
1391 struct mem_cgroup_per_zone *mz;
1392 struct mem_cgroup *memcg;
1393 struct page_cgroup *pc;
1394 struct lruvec *lruvec;
1395
1396 if (mem_cgroup_disabled()) {
1397 lruvec = &zone->lruvec;
1398 goto out;
1399 }
1400
1401 pc = lookup_page_cgroup(page);
1402 memcg = pc->mem_cgroup;
1403
1404 /*
1405 * Surreptitiously switch any uncharged offlist page to root:
1406 * an uncharged page off lru does nothing to secure
1407 * its former mem_cgroup from sudden removal.
1408 *
1409 * Our caller holds lru_lock, and PageCgroupUsed is updated
1410 * under page_cgroup lock: between them, they make all uses
1411 * of pc->mem_cgroup safe.
1412 */
1413 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1414 pc->mem_cgroup = memcg = root_mem_cgroup;
1415
1416 mz = page_cgroup_zoneinfo(memcg, page);
1417 lruvec = &mz->lruvec;
1418 out:
1419 /*
1420 * Since a node can be onlined after the mem_cgroup was created,
1421 * we have to be prepared to initialize lruvec->zone here;
1422 * and if offlined then reonlined, we need to reinitialize it.
1423 */
1424 if (unlikely(lruvec->zone != zone))
1425 lruvec->zone = zone;
1426 return lruvec;
1427 }
1428
1429 /**
1430 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1431 * @lruvec: mem_cgroup per zone lru vector
1432 * @lru: index of lru list the page is sitting on
1433 * @nr_pages: positive when adding or negative when removing
1434 *
1435 * This function must be called when a page is added to or removed from an
1436 * lru list.
1437 */
1438 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1439 int nr_pages)
1440 {
1441 struct mem_cgroup_per_zone *mz;
1442 unsigned long *lru_size;
1443
1444 if (mem_cgroup_disabled())
1445 return;
1446
1447 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1448 lru_size = mz->lru_size + lru;
1449 *lru_size += nr_pages;
1450 VM_BUG_ON((long)(*lru_size) < 0);
1451 }
1452
1453 /*
1454 * Checks whether given mem is same or in the root_mem_cgroup's
1455 * hierarchy subtree
1456 */
1457 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1458 struct mem_cgroup *memcg)
1459 {
1460 if (root_memcg == memcg)
1461 return true;
1462 if (!root_memcg->use_hierarchy || !memcg)
1463 return false;
1464 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1465 }
1466
1467 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1468 struct mem_cgroup *memcg)
1469 {
1470 bool ret;
1471
1472 rcu_read_lock();
1473 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1474 rcu_read_unlock();
1475 return ret;
1476 }
1477
1478 bool task_in_mem_cgroup(struct task_struct *task,
1479 const struct mem_cgroup *memcg)
1480 {
1481 struct mem_cgroup *curr = NULL;
1482 struct task_struct *p;
1483 bool ret;
1484
1485 p = find_lock_task_mm(task);
1486 if (p) {
1487 curr = try_get_mem_cgroup_from_mm(p->mm);
1488 task_unlock(p);
1489 } else {
1490 /*
1491 * All threads may have already detached their mm's, but the oom
1492 * killer still needs to detect if they have already been oom
1493 * killed to prevent needlessly killing additional tasks.
1494 */
1495 rcu_read_lock();
1496 curr = mem_cgroup_from_task(task);
1497 if (curr)
1498 css_get(&curr->css);
1499 rcu_read_unlock();
1500 }
1501 if (!curr)
1502 return false;
1503 /*
1504 * We should check use_hierarchy of "memcg" not "curr". Because checking
1505 * use_hierarchy of "curr" here make this function true if hierarchy is
1506 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1507 * hierarchy(even if use_hierarchy is disabled in "memcg").
1508 */
1509 ret = mem_cgroup_same_or_subtree(memcg, curr);
1510 css_put(&curr->css);
1511 return ret;
1512 }
1513
1514 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1515 {
1516 unsigned long inactive_ratio;
1517 unsigned long inactive;
1518 unsigned long active;
1519 unsigned long gb;
1520
1521 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1522 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1523
1524 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1525 if (gb)
1526 inactive_ratio = int_sqrt(10 * gb);
1527 else
1528 inactive_ratio = 1;
1529
1530 return inactive * inactive_ratio < active;
1531 }
1532
1533 #define mem_cgroup_from_res_counter(counter, member) \
1534 container_of(counter, struct mem_cgroup, member)
1535
1536 /**
1537 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1538 * @memcg: the memory cgroup
1539 *
1540 * Returns the maximum amount of memory @mem can be charged with, in
1541 * pages.
1542 */
1543 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1544 {
1545 unsigned long long margin;
1546
1547 margin = res_counter_margin(&memcg->res);
1548 if (do_swap_account)
1549 margin = min(margin, res_counter_margin(&memcg->memsw));
1550 return margin >> PAGE_SHIFT;
1551 }
1552
1553 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1554 {
1555 /* root ? */
1556 if (!css_parent(&memcg->css))
1557 return vm_swappiness;
1558
1559 return memcg->swappiness;
1560 }
1561
1562 /*
1563 * memcg->moving_account is used for checking possibility that some thread is
1564 * calling move_account(). When a thread on CPU-A starts moving pages under
1565 * a memcg, other threads should check memcg->moving_account under
1566 * rcu_read_lock(), like this:
1567 *
1568 * CPU-A CPU-B
1569 * rcu_read_lock()
1570 * memcg->moving_account+1 if (memcg->mocing_account)
1571 * take heavy locks.
1572 * synchronize_rcu() update something.
1573 * rcu_read_unlock()
1574 * start move here.
1575 */
1576
1577 /* for quick checking without looking up memcg */
1578 atomic_t memcg_moving __read_mostly;
1579
1580 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1581 {
1582 atomic_inc(&memcg_moving);
1583 atomic_inc(&memcg->moving_account);
1584 synchronize_rcu();
1585 }
1586
1587 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1588 {
1589 /*
1590 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1591 * We check NULL in callee rather than caller.
1592 */
1593 if (memcg) {
1594 atomic_dec(&memcg_moving);
1595 atomic_dec(&memcg->moving_account);
1596 }
1597 }
1598
1599 /*
1600 * 2 routines for checking "mem" is under move_account() or not.
1601 *
1602 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1603 * is used for avoiding races in accounting. If true,
1604 * pc->mem_cgroup may be overwritten.
1605 *
1606 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1607 * under hierarchy of moving cgroups. This is for
1608 * waiting at hith-memory prressure caused by "move".
1609 */
1610
1611 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1612 {
1613 VM_BUG_ON(!rcu_read_lock_held());
1614 return atomic_read(&memcg->moving_account) > 0;
1615 }
1616
1617 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1618 {
1619 struct mem_cgroup *from;
1620 struct mem_cgroup *to;
1621 bool ret = false;
1622 /*
1623 * Unlike task_move routines, we access mc.to, mc.from not under
1624 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1625 */
1626 spin_lock(&mc.lock);
1627 from = mc.from;
1628 to = mc.to;
1629 if (!from)
1630 goto unlock;
1631
1632 ret = mem_cgroup_same_or_subtree(memcg, from)
1633 || mem_cgroup_same_or_subtree(memcg, to);
1634 unlock:
1635 spin_unlock(&mc.lock);
1636 return ret;
1637 }
1638
1639 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1640 {
1641 if (mc.moving_task && current != mc.moving_task) {
1642 if (mem_cgroup_under_move(memcg)) {
1643 DEFINE_WAIT(wait);
1644 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1645 /* moving charge context might have finished. */
1646 if (mc.moving_task)
1647 schedule();
1648 finish_wait(&mc.waitq, &wait);
1649 return true;
1650 }
1651 }
1652 return false;
1653 }
1654
1655 /*
1656 * Take this lock when
1657 * - a code tries to modify page's memcg while it's USED.
1658 * - a code tries to modify page state accounting in a memcg.
1659 * see mem_cgroup_stolen(), too.
1660 */
1661 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1662 unsigned long *flags)
1663 {
1664 spin_lock_irqsave(&memcg->move_lock, *flags);
1665 }
1666
1667 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1668 unsigned long *flags)
1669 {
1670 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1671 }
1672
1673 #define K(x) ((x) << (PAGE_SHIFT-10))
1674 /**
1675 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1676 * @memcg: The memory cgroup that went over limit
1677 * @p: Task that is going to be killed
1678 *
1679 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1680 * enabled
1681 */
1682 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1683 {
1684 /*
1685 * protects memcg_name and makes sure that parallel ooms do not
1686 * interleave
1687 */
1688 static DEFINE_SPINLOCK(oom_info_lock);
1689 struct cgroup *task_cgrp;
1690 struct cgroup *mem_cgrp;
1691 static char memcg_name[PATH_MAX];
1692 int ret;
1693 struct mem_cgroup *iter;
1694 unsigned int i;
1695
1696 if (!p)
1697 return;
1698
1699 spin_lock(&oom_info_lock);
1700 rcu_read_lock();
1701
1702 mem_cgrp = memcg->css.cgroup;
1703 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1704
1705 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1706 if (ret < 0) {
1707 /*
1708 * Unfortunately, we are unable to convert to a useful name
1709 * But we'll still print out the usage information
1710 */
1711 rcu_read_unlock();
1712 goto done;
1713 }
1714 rcu_read_unlock();
1715
1716 pr_info("Task in %s killed", memcg_name);
1717
1718 rcu_read_lock();
1719 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1720 if (ret < 0) {
1721 rcu_read_unlock();
1722 goto done;
1723 }
1724 rcu_read_unlock();
1725
1726 /*
1727 * Continues from above, so we don't need an KERN_ level
1728 */
1729 pr_cont(" as a result of limit of %s\n", memcg_name);
1730 done:
1731
1732 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1733 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1734 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1735 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1736 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1737 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1738 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1739 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1740 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1741 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1742 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1743 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1744
1745 for_each_mem_cgroup_tree(iter, memcg) {
1746 pr_info("Memory cgroup stats");
1747
1748 rcu_read_lock();
1749 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1750 if (!ret)
1751 pr_cont(" for %s", memcg_name);
1752 rcu_read_unlock();
1753 pr_cont(":");
1754
1755 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1756 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1757 continue;
1758 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1759 K(mem_cgroup_read_stat(iter, i)));
1760 }
1761
1762 for (i = 0; i < NR_LRU_LISTS; i++)
1763 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1764 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1765
1766 pr_cont("\n");
1767 }
1768 spin_unlock(&oom_info_lock);
1769 }
1770
1771 /*
1772 * This function returns the number of memcg under hierarchy tree. Returns
1773 * 1(self count) if no children.
1774 */
1775 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1776 {
1777 int num = 0;
1778 struct mem_cgroup *iter;
1779
1780 for_each_mem_cgroup_tree(iter, memcg)
1781 num++;
1782 return num;
1783 }
1784
1785 /*
1786 * Return the memory (and swap, if configured) limit for a memcg.
1787 */
1788 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1789 {
1790 u64 limit;
1791
1792 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1793
1794 /*
1795 * Do not consider swap space if we cannot swap due to swappiness
1796 */
1797 if (mem_cgroup_swappiness(memcg)) {
1798 u64 memsw;
1799
1800 limit += total_swap_pages << PAGE_SHIFT;
1801 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1802
1803 /*
1804 * If memsw is finite and limits the amount of swap space
1805 * available to this memcg, return that limit.
1806 */
1807 limit = min(limit, memsw);
1808 }
1809
1810 return limit;
1811 }
1812
1813 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1814 int order)
1815 {
1816 struct mem_cgroup *iter;
1817 unsigned long chosen_points = 0;
1818 unsigned long totalpages;
1819 unsigned int points = 0;
1820 struct task_struct *chosen = NULL;
1821
1822 /*
1823 * If current has a pending SIGKILL or is exiting, then automatically
1824 * select it. The goal is to allow it to allocate so that it may
1825 * quickly exit and free its memory.
1826 */
1827 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1828 set_thread_flag(TIF_MEMDIE);
1829 return;
1830 }
1831
1832 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1833 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1834 for_each_mem_cgroup_tree(iter, memcg) {
1835 struct css_task_iter it;
1836 struct task_struct *task;
1837
1838 css_task_iter_start(&iter->css, &it);
1839 while ((task = css_task_iter_next(&it))) {
1840 switch (oom_scan_process_thread(task, totalpages, NULL,
1841 false)) {
1842 case OOM_SCAN_SELECT:
1843 if (chosen)
1844 put_task_struct(chosen);
1845 chosen = task;
1846 chosen_points = ULONG_MAX;
1847 get_task_struct(chosen);
1848 /* fall through */
1849 case OOM_SCAN_CONTINUE:
1850 continue;
1851 case OOM_SCAN_ABORT:
1852 css_task_iter_end(&it);
1853 mem_cgroup_iter_break(memcg, iter);
1854 if (chosen)
1855 put_task_struct(chosen);
1856 return;
1857 case OOM_SCAN_OK:
1858 break;
1859 };
1860 points = oom_badness(task, memcg, NULL, totalpages);
1861 if (points > chosen_points) {
1862 if (chosen)
1863 put_task_struct(chosen);
1864 chosen = task;
1865 chosen_points = points;
1866 get_task_struct(chosen);
1867 }
1868 }
1869 css_task_iter_end(&it);
1870 }
1871
1872 if (!chosen)
1873 return;
1874 points = chosen_points * 1000 / totalpages;
1875 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1876 NULL, "Memory cgroup out of memory");
1877 }
1878
1879 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1880 gfp_t gfp_mask,
1881 unsigned long flags)
1882 {
1883 unsigned long total = 0;
1884 bool noswap = false;
1885 int loop;
1886
1887 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1888 noswap = true;
1889 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1890 noswap = true;
1891
1892 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1893 if (loop)
1894 drain_all_stock_async(memcg);
1895 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1896 /*
1897 * Allow limit shrinkers, which are triggered directly
1898 * by userspace, to catch signals and stop reclaim
1899 * after minimal progress, regardless of the margin.
1900 */
1901 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1902 break;
1903 if (mem_cgroup_margin(memcg))
1904 break;
1905 /*
1906 * If nothing was reclaimed after two attempts, there
1907 * may be no reclaimable pages in this hierarchy.
1908 */
1909 if (loop && !total)
1910 break;
1911 }
1912 return total;
1913 }
1914
1915 /**
1916 * test_mem_cgroup_node_reclaimable
1917 * @memcg: the target memcg
1918 * @nid: the node ID to be checked.
1919 * @noswap : specify true here if the user wants flle only information.
1920 *
1921 * This function returns whether the specified memcg contains any
1922 * reclaimable pages on a node. Returns true if there are any reclaimable
1923 * pages in the node.
1924 */
1925 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1926 int nid, bool noswap)
1927 {
1928 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1929 return true;
1930 if (noswap || !total_swap_pages)
1931 return false;
1932 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1933 return true;
1934 return false;
1935
1936 }
1937 #if MAX_NUMNODES > 1
1938
1939 /*
1940 * Always updating the nodemask is not very good - even if we have an empty
1941 * list or the wrong list here, we can start from some node and traverse all
1942 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1943 *
1944 */
1945 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1946 {
1947 int nid;
1948 /*
1949 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1950 * pagein/pageout changes since the last update.
1951 */
1952 if (!atomic_read(&memcg->numainfo_events))
1953 return;
1954 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1955 return;
1956
1957 /* make a nodemask where this memcg uses memory from */
1958 memcg->scan_nodes = node_states[N_MEMORY];
1959
1960 for_each_node_mask(nid, node_states[N_MEMORY]) {
1961
1962 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1963 node_clear(nid, memcg->scan_nodes);
1964 }
1965
1966 atomic_set(&memcg->numainfo_events, 0);
1967 atomic_set(&memcg->numainfo_updating, 0);
1968 }
1969
1970 /*
1971 * Selecting a node where we start reclaim from. Because what we need is just
1972 * reducing usage counter, start from anywhere is O,K. Considering
1973 * memory reclaim from current node, there are pros. and cons.
1974 *
1975 * Freeing memory from current node means freeing memory from a node which
1976 * we'll use or we've used. So, it may make LRU bad. And if several threads
1977 * hit limits, it will see a contention on a node. But freeing from remote
1978 * node means more costs for memory reclaim because of memory latency.
1979 *
1980 * Now, we use round-robin. Better algorithm is welcomed.
1981 */
1982 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1983 {
1984 int node;
1985
1986 mem_cgroup_may_update_nodemask(memcg);
1987 node = memcg->last_scanned_node;
1988
1989 node = next_node(node, memcg->scan_nodes);
1990 if (node == MAX_NUMNODES)
1991 node = first_node(memcg->scan_nodes);
1992 /*
1993 * We call this when we hit limit, not when pages are added to LRU.
1994 * No LRU may hold pages because all pages are UNEVICTABLE or
1995 * memcg is too small and all pages are not on LRU. In that case,
1996 * we use curret node.
1997 */
1998 if (unlikely(node == MAX_NUMNODES))
1999 node = numa_node_id();
2000
2001 memcg->last_scanned_node = node;
2002 return node;
2003 }
2004
2005 /*
2006 * Check all nodes whether it contains reclaimable pages or not.
2007 * For quick scan, we make use of scan_nodes. This will allow us to skip
2008 * unused nodes. But scan_nodes is lazily updated and may not cotain
2009 * enough new information. We need to do double check.
2010 */
2011 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2012 {
2013 int nid;
2014
2015 /*
2016 * quick check...making use of scan_node.
2017 * We can skip unused nodes.
2018 */
2019 if (!nodes_empty(memcg->scan_nodes)) {
2020 for (nid = first_node(memcg->scan_nodes);
2021 nid < MAX_NUMNODES;
2022 nid = next_node(nid, memcg->scan_nodes)) {
2023
2024 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2025 return true;
2026 }
2027 }
2028 /*
2029 * Check rest of nodes.
2030 */
2031 for_each_node_state(nid, N_MEMORY) {
2032 if (node_isset(nid, memcg->scan_nodes))
2033 continue;
2034 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2035 return true;
2036 }
2037 return false;
2038 }
2039
2040 #else
2041 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2042 {
2043 return 0;
2044 }
2045
2046 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2047 {
2048 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2049 }
2050 #endif
2051
2052 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2053 struct zone *zone,
2054 gfp_t gfp_mask,
2055 unsigned long *total_scanned)
2056 {
2057 struct mem_cgroup *victim = NULL;
2058 int total = 0;
2059 int loop = 0;
2060 unsigned long excess;
2061 unsigned long nr_scanned;
2062 struct mem_cgroup_reclaim_cookie reclaim = {
2063 .zone = zone,
2064 .priority = 0,
2065 };
2066
2067 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2068
2069 while (1) {
2070 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2071 if (!victim) {
2072 loop++;
2073 if (loop >= 2) {
2074 /*
2075 * If we have not been able to reclaim
2076 * anything, it might because there are
2077 * no reclaimable pages under this hierarchy
2078 */
2079 if (!total)
2080 break;
2081 /*
2082 * We want to do more targeted reclaim.
2083 * excess >> 2 is not to excessive so as to
2084 * reclaim too much, nor too less that we keep
2085 * coming back to reclaim from this cgroup
2086 */
2087 if (total >= (excess >> 2) ||
2088 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2089 break;
2090 }
2091 continue;
2092 }
2093 if (!mem_cgroup_reclaimable(victim, false))
2094 continue;
2095 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2096 zone, &nr_scanned);
2097 *total_scanned += nr_scanned;
2098 if (!res_counter_soft_limit_excess(&root_memcg->res))
2099 break;
2100 }
2101 mem_cgroup_iter_break(root_memcg, victim);
2102 return total;
2103 }
2104
2105 #ifdef CONFIG_LOCKDEP
2106 static struct lockdep_map memcg_oom_lock_dep_map = {
2107 .name = "memcg_oom_lock",
2108 };
2109 #endif
2110
2111 static DEFINE_SPINLOCK(memcg_oom_lock);
2112
2113 /*
2114 * Check OOM-Killer is already running under our hierarchy.
2115 * If someone is running, return false.
2116 */
2117 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2118 {
2119 struct mem_cgroup *iter, *failed = NULL;
2120
2121 spin_lock(&memcg_oom_lock);
2122
2123 for_each_mem_cgroup_tree(iter, memcg) {
2124 if (iter->oom_lock) {
2125 /*
2126 * this subtree of our hierarchy is already locked
2127 * so we cannot give a lock.
2128 */
2129 failed = iter;
2130 mem_cgroup_iter_break(memcg, iter);
2131 break;
2132 } else
2133 iter->oom_lock = true;
2134 }
2135
2136 if (failed) {
2137 /*
2138 * OK, we failed to lock the whole subtree so we have
2139 * to clean up what we set up to the failing subtree
2140 */
2141 for_each_mem_cgroup_tree(iter, memcg) {
2142 if (iter == failed) {
2143 mem_cgroup_iter_break(memcg, iter);
2144 break;
2145 }
2146 iter->oom_lock = false;
2147 }
2148 } else
2149 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2150
2151 spin_unlock(&memcg_oom_lock);
2152
2153 return !failed;
2154 }
2155
2156 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2157 {
2158 struct mem_cgroup *iter;
2159
2160 spin_lock(&memcg_oom_lock);
2161 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2162 for_each_mem_cgroup_tree(iter, memcg)
2163 iter->oom_lock = false;
2164 spin_unlock(&memcg_oom_lock);
2165 }
2166
2167 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2168 {
2169 struct mem_cgroup *iter;
2170
2171 for_each_mem_cgroup_tree(iter, memcg)
2172 atomic_inc(&iter->under_oom);
2173 }
2174
2175 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2176 {
2177 struct mem_cgroup *iter;
2178
2179 /*
2180 * When a new child is created while the hierarchy is under oom,
2181 * mem_cgroup_oom_lock() may not be called. We have to use
2182 * atomic_add_unless() here.
2183 */
2184 for_each_mem_cgroup_tree(iter, memcg)
2185 atomic_add_unless(&iter->under_oom, -1, 0);
2186 }
2187
2188 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2189
2190 struct oom_wait_info {
2191 struct mem_cgroup *memcg;
2192 wait_queue_t wait;
2193 };
2194
2195 static int memcg_oom_wake_function(wait_queue_t *wait,
2196 unsigned mode, int sync, void *arg)
2197 {
2198 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2199 struct mem_cgroup *oom_wait_memcg;
2200 struct oom_wait_info *oom_wait_info;
2201
2202 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2203 oom_wait_memcg = oom_wait_info->memcg;
2204
2205 /*
2206 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2207 * Then we can use css_is_ancestor without taking care of RCU.
2208 */
2209 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2210 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2211 return 0;
2212 return autoremove_wake_function(wait, mode, sync, arg);
2213 }
2214
2215 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2216 {
2217 atomic_inc(&memcg->oom_wakeups);
2218 /* for filtering, pass "memcg" as argument. */
2219 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2220 }
2221
2222 static void memcg_oom_recover(struct mem_cgroup *memcg)
2223 {
2224 if (memcg && atomic_read(&memcg->under_oom))
2225 memcg_wakeup_oom(memcg);
2226 }
2227
2228 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2229 {
2230 if (!current->memcg_oom.may_oom)
2231 return;
2232 /*
2233 * We are in the middle of the charge context here, so we
2234 * don't want to block when potentially sitting on a callstack
2235 * that holds all kinds of filesystem and mm locks.
2236 *
2237 * Also, the caller may handle a failed allocation gracefully
2238 * (like optional page cache readahead) and so an OOM killer
2239 * invocation might not even be necessary.
2240 *
2241 * That's why we don't do anything here except remember the
2242 * OOM context and then deal with it at the end of the page
2243 * fault when the stack is unwound, the locks are released,
2244 * and when we know whether the fault was overall successful.
2245 */
2246 css_get(&memcg->css);
2247 current->memcg_oom.memcg = memcg;
2248 current->memcg_oom.gfp_mask = mask;
2249 current->memcg_oom.order = order;
2250 }
2251
2252 /**
2253 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2254 * @handle: actually kill/wait or just clean up the OOM state
2255 *
2256 * This has to be called at the end of a page fault if the memcg OOM
2257 * handler was enabled.
2258 *
2259 * Memcg supports userspace OOM handling where failed allocations must
2260 * sleep on a waitqueue until the userspace task resolves the
2261 * situation. Sleeping directly in the charge context with all kinds
2262 * of locks held is not a good idea, instead we remember an OOM state
2263 * in the task and mem_cgroup_oom_synchronize() has to be called at
2264 * the end of the page fault to complete the OOM handling.
2265 *
2266 * Returns %true if an ongoing memcg OOM situation was detected and
2267 * completed, %false otherwise.
2268 */
2269 bool mem_cgroup_oom_synchronize(bool handle)
2270 {
2271 struct mem_cgroup *memcg = current->memcg_oom.memcg;
2272 struct oom_wait_info owait;
2273 bool locked;
2274
2275 /* OOM is global, do not handle */
2276 if (!memcg)
2277 return false;
2278
2279 if (!handle)
2280 goto cleanup;
2281
2282 owait.memcg = memcg;
2283 owait.wait.flags = 0;
2284 owait.wait.func = memcg_oom_wake_function;
2285 owait.wait.private = current;
2286 INIT_LIST_HEAD(&owait.wait.task_list);
2287
2288 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2289 mem_cgroup_mark_under_oom(memcg);
2290
2291 locked = mem_cgroup_oom_trylock(memcg);
2292
2293 if (locked)
2294 mem_cgroup_oom_notify(memcg);
2295
2296 if (locked && !memcg->oom_kill_disable) {
2297 mem_cgroup_unmark_under_oom(memcg);
2298 finish_wait(&memcg_oom_waitq, &owait.wait);
2299 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2300 current->memcg_oom.order);
2301 } else {
2302 schedule();
2303 mem_cgroup_unmark_under_oom(memcg);
2304 finish_wait(&memcg_oom_waitq, &owait.wait);
2305 }
2306
2307 if (locked) {
2308 mem_cgroup_oom_unlock(memcg);
2309 /*
2310 * There is no guarantee that an OOM-lock contender
2311 * sees the wakeups triggered by the OOM kill
2312 * uncharges. Wake any sleepers explicitely.
2313 */
2314 memcg_oom_recover(memcg);
2315 }
2316 cleanup:
2317 current->memcg_oom.memcg = NULL;
2318 css_put(&memcg->css);
2319 return true;
2320 }
2321
2322 /*
2323 * Currently used to update mapped file statistics, but the routine can be
2324 * generalized to update other statistics as well.
2325 *
2326 * Notes: Race condition
2327 *
2328 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2329 * it tends to be costly. But considering some conditions, we doesn't need
2330 * to do so _always_.
2331 *
2332 * Considering "charge", lock_page_cgroup() is not required because all
2333 * file-stat operations happen after a page is attached to radix-tree. There
2334 * are no race with "charge".
2335 *
2336 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2337 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2338 * if there are race with "uncharge". Statistics itself is properly handled
2339 * by flags.
2340 *
2341 * Considering "move", this is an only case we see a race. To make the race
2342 * small, we check mm->moving_account and detect there are possibility of race
2343 * If there is, we take a lock.
2344 */
2345
2346 void __mem_cgroup_begin_update_page_stat(struct page *page,
2347 bool *locked, unsigned long *flags)
2348 {
2349 struct mem_cgroup *memcg;
2350 struct page_cgroup *pc;
2351
2352 pc = lookup_page_cgroup(page);
2353 again:
2354 memcg = pc->mem_cgroup;
2355 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2356 return;
2357 /*
2358 * If this memory cgroup is not under account moving, we don't
2359 * need to take move_lock_mem_cgroup(). Because we already hold
2360 * rcu_read_lock(), any calls to move_account will be delayed until
2361 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2362 */
2363 if (!mem_cgroup_stolen(memcg))
2364 return;
2365
2366 move_lock_mem_cgroup(memcg, flags);
2367 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2368 move_unlock_mem_cgroup(memcg, flags);
2369 goto again;
2370 }
2371 *locked = true;
2372 }
2373
2374 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2375 {
2376 struct page_cgroup *pc = lookup_page_cgroup(page);
2377
2378 /*
2379 * It's guaranteed that pc->mem_cgroup never changes while
2380 * lock is held because a routine modifies pc->mem_cgroup
2381 * should take move_lock_mem_cgroup().
2382 */
2383 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2384 }
2385
2386 void mem_cgroup_update_page_stat(struct page *page,
2387 enum mem_cgroup_stat_index idx, int val)
2388 {
2389 struct mem_cgroup *memcg;
2390 struct page_cgroup *pc = lookup_page_cgroup(page);
2391 unsigned long uninitialized_var(flags);
2392
2393 if (mem_cgroup_disabled())
2394 return;
2395
2396 VM_BUG_ON(!rcu_read_lock_held());
2397 memcg = pc->mem_cgroup;
2398 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2399 return;
2400
2401 this_cpu_add(memcg->stat->count[idx], val);
2402 }
2403
2404 /*
2405 * size of first charge trial. "32" comes from vmscan.c's magic value.
2406 * TODO: maybe necessary to use big numbers in big irons.
2407 */
2408 #define CHARGE_BATCH 32U
2409 struct memcg_stock_pcp {
2410 struct mem_cgroup *cached; /* this never be root cgroup */
2411 unsigned int nr_pages;
2412 struct work_struct work;
2413 unsigned long flags;
2414 #define FLUSHING_CACHED_CHARGE 0
2415 };
2416 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2417 static DEFINE_MUTEX(percpu_charge_mutex);
2418
2419 /**
2420 * consume_stock: Try to consume stocked charge on this cpu.
2421 * @memcg: memcg to consume from.
2422 * @nr_pages: how many pages to charge.
2423 *
2424 * The charges will only happen if @memcg matches the current cpu's memcg
2425 * stock, and at least @nr_pages are available in that stock. Failure to
2426 * service an allocation will refill the stock.
2427 *
2428 * returns true if successful, false otherwise.
2429 */
2430 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2431 {
2432 struct memcg_stock_pcp *stock;
2433 bool ret = true;
2434
2435 if (nr_pages > CHARGE_BATCH)
2436 return false;
2437
2438 stock = &get_cpu_var(memcg_stock);
2439 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2440 stock->nr_pages -= nr_pages;
2441 else /* need to call res_counter_charge */
2442 ret = false;
2443 put_cpu_var(memcg_stock);
2444 return ret;
2445 }
2446
2447 /*
2448 * Returns stocks cached in percpu to res_counter and reset cached information.
2449 */
2450 static void drain_stock(struct memcg_stock_pcp *stock)
2451 {
2452 struct mem_cgroup *old = stock->cached;
2453
2454 if (stock->nr_pages) {
2455 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2456
2457 res_counter_uncharge(&old->res, bytes);
2458 if (do_swap_account)
2459 res_counter_uncharge(&old->memsw, bytes);
2460 stock->nr_pages = 0;
2461 }
2462 stock->cached = NULL;
2463 }
2464
2465 /*
2466 * This must be called under preempt disabled or must be called by
2467 * a thread which is pinned to local cpu.
2468 */
2469 static void drain_local_stock(struct work_struct *dummy)
2470 {
2471 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2472 drain_stock(stock);
2473 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2474 }
2475
2476 static void __init memcg_stock_init(void)
2477 {
2478 int cpu;
2479
2480 for_each_possible_cpu(cpu) {
2481 struct memcg_stock_pcp *stock =
2482 &per_cpu(memcg_stock, cpu);
2483 INIT_WORK(&stock->work, drain_local_stock);
2484 }
2485 }
2486
2487 /*
2488 * Cache charges(val) which is from res_counter, to local per_cpu area.
2489 * This will be consumed by consume_stock() function, later.
2490 */
2491 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2492 {
2493 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2494
2495 if (stock->cached != memcg) { /* reset if necessary */
2496 drain_stock(stock);
2497 stock->cached = memcg;
2498 }
2499 stock->nr_pages += nr_pages;
2500 put_cpu_var(memcg_stock);
2501 }
2502
2503 /*
2504 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2505 * of the hierarchy under it. sync flag says whether we should block
2506 * until the work is done.
2507 */
2508 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2509 {
2510 int cpu, curcpu;
2511
2512 /* Notify other cpus that system-wide "drain" is running */
2513 get_online_cpus();
2514 curcpu = get_cpu();
2515 for_each_online_cpu(cpu) {
2516 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2517 struct mem_cgroup *memcg;
2518
2519 memcg = stock->cached;
2520 if (!memcg || !stock->nr_pages)
2521 continue;
2522 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2523 continue;
2524 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2525 if (cpu == curcpu)
2526 drain_local_stock(&stock->work);
2527 else
2528 schedule_work_on(cpu, &stock->work);
2529 }
2530 }
2531 put_cpu();
2532
2533 if (!sync)
2534 goto out;
2535
2536 for_each_online_cpu(cpu) {
2537 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2538 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2539 flush_work(&stock->work);
2540 }
2541 out:
2542 put_online_cpus();
2543 }
2544
2545 /*
2546 * Tries to drain stocked charges in other cpus. This function is asynchronous
2547 * and just put a work per cpu for draining localy on each cpu. Caller can
2548 * expects some charges will be back to res_counter later but cannot wait for
2549 * it.
2550 */
2551 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2552 {
2553 /*
2554 * If someone calls draining, avoid adding more kworker runs.
2555 */
2556 if (!mutex_trylock(&percpu_charge_mutex))
2557 return;
2558 drain_all_stock(root_memcg, false);
2559 mutex_unlock(&percpu_charge_mutex);
2560 }
2561
2562 /* This is a synchronous drain interface. */
2563 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2564 {
2565 /* called when force_empty is called */
2566 mutex_lock(&percpu_charge_mutex);
2567 drain_all_stock(root_memcg, true);
2568 mutex_unlock(&percpu_charge_mutex);
2569 }
2570
2571 /*
2572 * This function drains percpu counter value from DEAD cpu and
2573 * move it to local cpu. Note that this function can be preempted.
2574 */
2575 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2576 {
2577 int i;
2578
2579 spin_lock(&memcg->pcp_counter_lock);
2580 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2581 long x = per_cpu(memcg->stat->count[i], cpu);
2582
2583 per_cpu(memcg->stat->count[i], cpu) = 0;
2584 memcg->nocpu_base.count[i] += x;
2585 }
2586 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2587 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2588
2589 per_cpu(memcg->stat->events[i], cpu) = 0;
2590 memcg->nocpu_base.events[i] += x;
2591 }
2592 spin_unlock(&memcg->pcp_counter_lock);
2593 }
2594
2595 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2596 unsigned long action,
2597 void *hcpu)
2598 {
2599 int cpu = (unsigned long)hcpu;
2600 struct memcg_stock_pcp *stock;
2601 struct mem_cgroup *iter;
2602
2603 if (action == CPU_ONLINE)
2604 return NOTIFY_OK;
2605
2606 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2607 return NOTIFY_OK;
2608
2609 for_each_mem_cgroup(iter)
2610 mem_cgroup_drain_pcp_counter(iter, cpu);
2611
2612 stock = &per_cpu(memcg_stock, cpu);
2613 drain_stock(stock);
2614 return NOTIFY_OK;
2615 }
2616
2617
2618 /* See __mem_cgroup_try_charge() for details */
2619 enum {
2620 CHARGE_OK, /* success */
2621 CHARGE_RETRY, /* need to retry but retry is not bad */
2622 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2623 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2624 };
2625
2626 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2627 unsigned int nr_pages, unsigned int min_pages,
2628 bool invoke_oom)
2629 {
2630 unsigned long csize = nr_pages * PAGE_SIZE;
2631 struct mem_cgroup *mem_over_limit;
2632 struct res_counter *fail_res;
2633 unsigned long flags = 0;
2634 int ret;
2635
2636 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2637
2638 if (likely(!ret)) {
2639 if (!do_swap_account)
2640 return CHARGE_OK;
2641 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2642 if (likely(!ret))
2643 return CHARGE_OK;
2644
2645 res_counter_uncharge(&memcg->res, csize);
2646 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2647 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2648 } else
2649 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2650 /*
2651 * Never reclaim on behalf of optional batching, retry with a
2652 * single page instead.
2653 */
2654 if (nr_pages > min_pages)
2655 return CHARGE_RETRY;
2656
2657 if (!(gfp_mask & __GFP_WAIT))
2658 return CHARGE_WOULDBLOCK;
2659
2660 if (gfp_mask & __GFP_NORETRY)
2661 return CHARGE_NOMEM;
2662
2663 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2664 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2665 return CHARGE_RETRY;
2666 /*
2667 * Even though the limit is exceeded at this point, reclaim
2668 * may have been able to free some pages. Retry the charge
2669 * before killing the task.
2670 *
2671 * Only for regular pages, though: huge pages are rather
2672 * unlikely to succeed so close to the limit, and we fall back
2673 * to regular pages anyway in case of failure.
2674 */
2675 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2676 return CHARGE_RETRY;
2677
2678 /*
2679 * At task move, charge accounts can be doubly counted. So, it's
2680 * better to wait until the end of task_move if something is going on.
2681 */
2682 if (mem_cgroup_wait_acct_move(mem_over_limit))
2683 return CHARGE_RETRY;
2684
2685 if (invoke_oom)
2686 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2687
2688 return CHARGE_NOMEM;
2689 }
2690
2691 /*
2692 * __mem_cgroup_try_charge() does
2693 * 1. detect memcg to be charged against from passed *mm and *ptr,
2694 * 2. update res_counter
2695 * 3. call memory reclaim if necessary.
2696 *
2697 * In some special case, if the task is fatal, fatal_signal_pending() or
2698 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2699 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2700 * as possible without any hazards. 2: all pages should have a valid
2701 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2702 * pointer, that is treated as a charge to root_mem_cgroup.
2703 *
2704 * So __mem_cgroup_try_charge() will return
2705 * 0 ... on success, filling *ptr with a valid memcg pointer.
2706 * -ENOMEM ... charge failure because of resource limits.
2707 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2708 *
2709 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2710 * the oom-killer can be invoked.
2711 */
2712 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2713 gfp_t gfp_mask,
2714 unsigned int nr_pages,
2715 struct mem_cgroup **ptr,
2716 bool oom)
2717 {
2718 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2719 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2720 struct mem_cgroup *memcg = NULL;
2721 int ret;
2722
2723 /*
2724 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2725 * in system level. So, allow to go ahead dying process in addition to
2726 * MEMDIE process.
2727 */
2728 if (unlikely(test_thread_flag(TIF_MEMDIE)
2729 || fatal_signal_pending(current)))
2730 goto bypass;
2731
2732 if (unlikely(task_in_memcg_oom(current)))
2733 goto nomem;
2734
2735 if (gfp_mask & __GFP_NOFAIL)
2736 oom = false;
2737
2738 /*
2739 * We always charge the cgroup the mm_struct belongs to.
2740 * The mm_struct's mem_cgroup changes on task migration if the
2741 * thread group leader migrates. It's possible that mm is not
2742 * set, if so charge the root memcg (happens for pagecache usage).
2743 */
2744 if (!*ptr && !mm)
2745 *ptr = root_mem_cgroup;
2746 again:
2747 if (*ptr) { /* css should be a valid one */
2748 memcg = *ptr;
2749 if (mem_cgroup_is_root(memcg))
2750 goto done;
2751 if (consume_stock(memcg, nr_pages))
2752 goto done;
2753 css_get(&memcg->css);
2754 } else {
2755 struct task_struct *p;
2756
2757 rcu_read_lock();
2758 p = rcu_dereference(mm->owner);
2759 /*
2760 * Because we don't have task_lock(), "p" can exit.
2761 * In that case, "memcg" can point to root or p can be NULL with
2762 * race with swapoff. Then, we have small risk of mis-accouning.
2763 * But such kind of mis-account by race always happens because
2764 * we don't have cgroup_mutex(). It's overkill and we allo that
2765 * small race, here.
2766 * (*) swapoff at el will charge against mm-struct not against
2767 * task-struct. So, mm->owner can be NULL.
2768 */
2769 memcg = mem_cgroup_from_task(p);
2770 if (!memcg)
2771 memcg = root_mem_cgroup;
2772 if (mem_cgroup_is_root(memcg)) {
2773 rcu_read_unlock();
2774 goto done;
2775 }
2776 if (consume_stock(memcg, nr_pages)) {
2777 /*
2778 * It seems dagerous to access memcg without css_get().
2779 * But considering how consume_stok works, it's not
2780 * necessary. If consume_stock success, some charges
2781 * from this memcg are cached on this cpu. So, we
2782 * don't need to call css_get()/css_tryget() before
2783 * calling consume_stock().
2784 */
2785 rcu_read_unlock();
2786 goto done;
2787 }
2788 /* after here, we may be blocked. we need to get refcnt */
2789 if (!css_tryget(&memcg->css)) {
2790 rcu_read_unlock();
2791 goto again;
2792 }
2793 rcu_read_unlock();
2794 }
2795
2796 do {
2797 bool invoke_oom = oom && !nr_oom_retries;
2798
2799 /* If killed, bypass charge */
2800 if (fatal_signal_pending(current)) {
2801 css_put(&memcg->css);
2802 goto bypass;
2803 }
2804
2805 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2806 nr_pages, invoke_oom);
2807 switch (ret) {
2808 case CHARGE_OK:
2809 break;
2810 case CHARGE_RETRY: /* not in OOM situation but retry */
2811 batch = nr_pages;
2812 css_put(&memcg->css);
2813 memcg = NULL;
2814 goto again;
2815 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2816 css_put(&memcg->css);
2817 goto nomem;
2818 case CHARGE_NOMEM: /* OOM routine works */
2819 if (!oom || invoke_oom) {
2820 css_put(&memcg->css);
2821 goto nomem;
2822 }
2823 nr_oom_retries--;
2824 break;
2825 }
2826 } while (ret != CHARGE_OK);
2827
2828 if (batch > nr_pages)
2829 refill_stock(memcg, batch - nr_pages);
2830 css_put(&memcg->css);
2831 done:
2832 *ptr = memcg;
2833 return 0;
2834 nomem:
2835 if (!(gfp_mask & __GFP_NOFAIL)) {
2836 *ptr = NULL;
2837 return -ENOMEM;
2838 }
2839 bypass:
2840 *ptr = root_mem_cgroup;
2841 return -EINTR;
2842 }
2843
2844 /*
2845 * Somemtimes we have to undo a charge we got by try_charge().
2846 * This function is for that and do uncharge, put css's refcnt.
2847 * gotten by try_charge().
2848 */
2849 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2850 unsigned int nr_pages)
2851 {
2852 if (!mem_cgroup_is_root(memcg)) {
2853 unsigned long bytes = nr_pages * PAGE_SIZE;
2854
2855 res_counter_uncharge(&memcg->res, bytes);
2856 if (do_swap_account)
2857 res_counter_uncharge(&memcg->memsw, bytes);
2858 }
2859 }
2860
2861 /*
2862 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2863 * This is useful when moving usage to parent cgroup.
2864 */
2865 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2866 unsigned int nr_pages)
2867 {
2868 unsigned long bytes = nr_pages * PAGE_SIZE;
2869
2870 if (mem_cgroup_is_root(memcg))
2871 return;
2872
2873 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2874 if (do_swap_account)
2875 res_counter_uncharge_until(&memcg->memsw,
2876 memcg->memsw.parent, bytes);
2877 }
2878
2879 /*
2880 * A helper function to get mem_cgroup from ID. must be called under
2881 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2882 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2883 * called against removed memcg.)
2884 */
2885 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2886 {
2887 /* ID 0 is unused ID */
2888 if (!id)
2889 return NULL;
2890 return mem_cgroup_from_id(id);
2891 }
2892
2893 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2894 {
2895 struct mem_cgroup *memcg = NULL;
2896 struct page_cgroup *pc;
2897 unsigned short id;
2898 swp_entry_t ent;
2899
2900 VM_BUG_ON_PAGE(!PageLocked(page), page);
2901
2902 pc = lookup_page_cgroup(page);
2903 lock_page_cgroup(pc);
2904 if (PageCgroupUsed(pc)) {
2905 memcg = pc->mem_cgroup;
2906 if (memcg && !css_tryget(&memcg->css))
2907 memcg = NULL;
2908 } else if (PageSwapCache(page)) {
2909 ent.val = page_private(page);
2910 id = lookup_swap_cgroup_id(ent);
2911 rcu_read_lock();
2912 memcg = mem_cgroup_lookup(id);
2913 if (memcg && !css_tryget(&memcg->css))
2914 memcg = NULL;
2915 rcu_read_unlock();
2916 }
2917 unlock_page_cgroup(pc);
2918 return memcg;
2919 }
2920
2921 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2922 struct page *page,
2923 unsigned int nr_pages,
2924 enum charge_type ctype,
2925 bool lrucare)
2926 {
2927 struct page_cgroup *pc = lookup_page_cgroup(page);
2928 struct zone *uninitialized_var(zone);
2929 struct lruvec *lruvec;
2930 bool was_on_lru = false;
2931 bool anon;
2932
2933 lock_page_cgroup(pc);
2934 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2935 /*
2936 * we don't need page_cgroup_lock about tail pages, becase they are not
2937 * accessed by any other context at this point.
2938 */
2939
2940 /*
2941 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2942 * may already be on some other mem_cgroup's LRU. Take care of it.
2943 */
2944 if (lrucare) {
2945 zone = page_zone(page);
2946 spin_lock_irq(&zone->lru_lock);
2947 if (PageLRU(page)) {
2948 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2949 ClearPageLRU(page);
2950 del_page_from_lru_list(page, lruvec, page_lru(page));
2951 was_on_lru = true;
2952 }
2953 }
2954
2955 pc->mem_cgroup = memcg;
2956 /*
2957 * We access a page_cgroup asynchronously without lock_page_cgroup().
2958 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2959 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2960 * before USED bit, we need memory barrier here.
2961 * See mem_cgroup_add_lru_list(), etc.
2962 */
2963 smp_wmb();
2964 SetPageCgroupUsed(pc);
2965
2966 if (lrucare) {
2967 if (was_on_lru) {
2968 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2969 VM_BUG_ON_PAGE(PageLRU(page), page);
2970 SetPageLRU(page);
2971 add_page_to_lru_list(page, lruvec, page_lru(page));
2972 }
2973 spin_unlock_irq(&zone->lru_lock);
2974 }
2975
2976 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2977 anon = true;
2978 else
2979 anon = false;
2980
2981 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2982 unlock_page_cgroup(pc);
2983
2984 /*
2985 * "charge_statistics" updated event counter. Then, check it.
2986 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2987 * if they exceeds softlimit.
2988 */
2989 memcg_check_events(memcg, page);
2990 }
2991
2992 static DEFINE_MUTEX(set_limit_mutex);
2993
2994 #ifdef CONFIG_MEMCG_KMEM
2995 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2996 {
2997 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2998 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK) ==
2999 KMEM_ACCOUNTED_MASK;
3000 }
3001
3002 /*
3003 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
3004 * in the memcg_cache_params struct.
3005 */
3006 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
3007 {
3008 struct kmem_cache *cachep;
3009
3010 VM_BUG_ON(p->is_root_cache);
3011 cachep = p->root_cache;
3012 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
3013 }
3014
3015 #ifdef CONFIG_SLABINFO
3016 static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
3017 {
3018 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3019 struct memcg_cache_params *params;
3020
3021 if (!memcg_can_account_kmem(memcg))
3022 return -EIO;
3023
3024 print_slabinfo_header(m);
3025
3026 mutex_lock(&memcg->slab_caches_mutex);
3027 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
3028 cache_show(memcg_params_to_cache(params), m);
3029 mutex_unlock(&memcg->slab_caches_mutex);
3030
3031 return 0;
3032 }
3033 #endif
3034
3035 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
3036 {
3037 struct res_counter *fail_res;
3038 struct mem_cgroup *_memcg;
3039 int ret = 0;
3040
3041 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
3042 if (ret)
3043 return ret;
3044
3045 _memcg = memcg;
3046 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
3047 &_memcg, oom_gfp_allowed(gfp));
3048
3049 if (ret == -EINTR) {
3050 /*
3051 * __mem_cgroup_try_charge() chosed to bypass to root due to
3052 * OOM kill or fatal signal. Since our only options are to
3053 * either fail the allocation or charge it to this cgroup, do
3054 * it as a temporary condition. But we can't fail. From a
3055 * kmem/slab perspective, the cache has already been selected,
3056 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3057 * our minds.
3058 *
3059 * This condition will only trigger if the task entered
3060 * memcg_charge_kmem in a sane state, but was OOM-killed during
3061 * __mem_cgroup_try_charge() above. Tasks that were already
3062 * dying when the allocation triggers should have been already
3063 * directed to the root cgroup in memcontrol.h
3064 */
3065 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3066 if (do_swap_account)
3067 res_counter_charge_nofail(&memcg->memsw, size,
3068 &fail_res);
3069 ret = 0;
3070 } else if (ret)
3071 res_counter_uncharge(&memcg->kmem, size);
3072
3073 return ret;
3074 }
3075
3076 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3077 {
3078 res_counter_uncharge(&memcg->res, size);
3079 if (do_swap_account)
3080 res_counter_uncharge(&memcg->memsw, size);
3081
3082 /* Not down to 0 */
3083 if (res_counter_uncharge(&memcg->kmem, size))
3084 return;
3085
3086 /*
3087 * Releases a reference taken in kmem_cgroup_css_offline in case
3088 * this last uncharge is racing with the offlining code or it is
3089 * outliving the memcg existence.
3090 *
3091 * The memory barrier imposed by test&clear is paired with the
3092 * explicit one in memcg_kmem_mark_dead().
3093 */
3094 if (memcg_kmem_test_and_clear_dead(memcg))
3095 css_put(&memcg->css);
3096 }
3097
3098 /*
3099 * helper for acessing a memcg's index. It will be used as an index in the
3100 * child cache array in kmem_cache, and also to derive its name. This function
3101 * will return -1 when this is not a kmem-limited memcg.
3102 */
3103 int memcg_cache_id(struct mem_cgroup *memcg)
3104 {
3105 return memcg ? memcg->kmemcg_id : -1;
3106 }
3107
3108 /*
3109 * This ends up being protected by the set_limit mutex, during normal
3110 * operation, because that is its main call site.
3111 *
3112 * But when we create a new cache, we can call this as well if its parent
3113 * is kmem-limited. That will have to hold set_limit_mutex as well.
3114 */
3115 static int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3116 {
3117 int num, ret;
3118
3119 num = ida_simple_get(&kmem_limited_groups,
3120 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3121 if (num < 0)
3122 return num;
3123 /*
3124 * After this point, kmem_accounted (that we test atomically in
3125 * the beginning of this conditional), is no longer 0. This
3126 * guarantees only one process will set the following boolean
3127 * to true. We don't need test_and_set because we're protected
3128 * by the set_limit_mutex anyway.
3129 */
3130 memcg_kmem_set_activated(memcg);
3131
3132 ret = memcg_update_all_caches(num+1);
3133 if (ret) {
3134 ida_simple_remove(&kmem_limited_groups, num);
3135 memcg_kmem_clear_activated(memcg);
3136 return ret;
3137 }
3138
3139 memcg->kmemcg_id = num;
3140 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3141 mutex_init(&memcg->slab_caches_mutex);
3142 return 0;
3143 }
3144
3145 static size_t memcg_caches_array_size(int num_groups)
3146 {
3147 ssize_t size;
3148 if (num_groups <= 0)
3149 return 0;
3150
3151 size = 2 * num_groups;
3152 if (size < MEMCG_CACHES_MIN_SIZE)
3153 size = MEMCG_CACHES_MIN_SIZE;
3154 else if (size > MEMCG_CACHES_MAX_SIZE)
3155 size = MEMCG_CACHES_MAX_SIZE;
3156
3157 return size;
3158 }
3159
3160 /*
3161 * We should update the current array size iff all caches updates succeed. This
3162 * can only be done from the slab side. The slab mutex needs to be held when
3163 * calling this.
3164 */
3165 void memcg_update_array_size(int num)
3166 {
3167 if (num > memcg_limited_groups_array_size)
3168 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3169 }
3170
3171 static void kmem_cache_destroy_work_func(struct work_struct *w);
3172
3173 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3174 {
3175 struct memcg_cache_params *cur_params = s->memcg_params;
3176
3177 VM_BUG_ON(!is_root_cache(s));
3178
3179 if (num_groups > memcg_limited_groups_array_size) {
3180 int i;
3181 ssize_t size = memcg_caches_array_size(num_groups);
3182
3183 size *= sizeof(void *);
3184 size += offsetof(struct memcg_cache_params, memcg_caches);
3185
3186 s->memcg_params = kzalloc(size, GFP_KERNEL);
3187 if (!s->memcg_params) {
3188 s->memcg_params = cur_params;
3189 return -ENOMEM;
3190 }
3191
3192 s->memcg_params->is_root_cache = true;
3193
3194 /*
3195 * There is the chance it will be bigger than
3196 * memcg_limited_groups_array_size, if we failed an allocation
3197 * in a cache, in which case all caches updated before it, will
3198 * have a bigger array.
3199 *
3200 * But if that is the case, the data after
3201 * memcg_limited_groups_array_size is certainly unused
3202 */
3203 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3204 if (!cur_params->memcg_caches[i])
3205 continue;
3206 s->memcg_params->memcg_caches[i] =
3207 cur_params->memcg_caches[i];
3208 }
3209
3210 /*
3211 * Ideally, we would wait until all caches succeed, and only
3212 * then free the old one. But this is not worth the extra
3213 * pointer per-cache we'd have to have for this.
3214 *
3215 * It is not a big deal if some caches are left with a size
3216 * bigger than the others. And all updates will reset this
3217 * anyway.
3218 */
3219 kfree(cur_params);
3220 }
3221 return 0;
3222 }
3223
3224 int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
3225 struct kmem_cache *root_cache)
3226 {
3227 size_t size;
3228
3229 if (!memcg_kmem_enabled())
3230 return 0;
3231
3232 if (!memcg) {
3233 size = offsetof(struct memcg_cache_params, memcg_caches);
3234 size += memcg_limited_groups_array_size * sizeof(void *);
3235 } else
3236 size = sizeof(struct memcg_cache_params);
3237
3238 s->memcg_params = kzalloc(size, GFP_KERNEL);
3239 if (!s->memcg_params)
3240 return -ENOMEM;
3241
3242 if (memcg) {
3243 s->memcg_params->memcg = memcg;
3244 s->memcg_params->root_cache = root_cache;
3245 INIT_WORK(&s->memcg_params->destroy,
3246 kmem_cache_destroy_work_func);
3247 } else
3248 s->memcg_params->is_root_cache = true;
3249
3250 return 0;
3251 }
3252
3253 void memcg_free_cache_params(struct kmem_cache *s)
3254 {
3255 kfree(s->memcg_params);
3256 }
3257
3258 void memcg_register_cache(struct kmem_cache *s)
3259 {
3260 struct kmem_cache *root;
3261 struct mem_cgroup *memcg;
3262 int id;
3263
3264 if (is_root_cache(s))
3265 return;
3266
3267 root = s->memcg_params->root_cache;
3268 memcg = s->memcg_params->memcg;
3269 id = memcg_cache_id(memcg);
3270
3271 css_get(&memcg->css);
3272
3273
3274 /*
3275 * Since readers won't lock (see cache_from_memcg_idx()), we need a
3276 * barrier here to ensure nobody will see the kmem_cache partially
3277 * initialized.
3278 */
3279 smp_wmb();
3280
3281 /*
3282 * Initialize the pointer to this cache in its parent's memcg_params
3283 * before adding it to the memcg_slab_caches list, otherwise we can
3284 * fail to convert memcg_params_to_cache() while traversing the list.
3285 */
3286 root->memcg_params->memcg_caches[id] = s;
3287
3288 mutex_lock(&memcg->slab_caches_mutex);
3289 list_add(&s->memcg_params->list, &memcg->memcg_slab_caches);
3290 mutex_unlock(&memcg->slab_caches_mutex);
3291 }
3292
3293 void memcg_unregister_cache(struct kmem_cache *s)
3294 {
3295 struct kmem_cache *root;
3296 struct mem_cgroup *memcg;
3297 int id;
3298
3299 if (is_root_cache(s))
3300 return;
3301
3302 root = s->memcg_params->root_cache;
3303 memcg = s->memcg_params->memcg;
3304 id = memcg_cache_id(memcg);
3305
3306 mutex_lock(&memcg->slab_caches_mutex);
3307 list_del(&s->memcg_params->list);
3308 mutex_unlock(&memcg->slab_caches_mutex);
3309
3310 /*
3311 * Clear the pointer to this cache in its parent's memcg_params only
3312 * after removing it from the memcg_slab_caches list, otherwise we can
3313 * fail to convert memcg_params_to_cache() while traversing the list.
3314 */
3315 root->memcg_params->memcg_caches[id] = NULL;
3316
3317 css_put(&memcg->css);
3318 }
3319
3320 /*
3321 * During the creation a new cache, we need to disable our accounting mechanism
3322 * altogether. This is true even if we are not creating, but rather just
3323 * enqueing new caches to be created.
3324 *
3325 * This is because that process will trigger allocations; some visible, like
3326 * explicit kmallocs to auxiliary data structures, name strings and internal
3327 * cache structures; some well concealed, like INIT_WORK() that can allocate
3328 * objects during debug.
3329 *
3330 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3331 * to it. This may not be a bounded recursion: since the first cache creation
3332 * failed to complete (waiting on the allocation), we'll just try to create the
3333 * cache again, failing at the same point.
3334 *
3335 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3336 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3337 * inside the following two functions.
3338 */
3339 static inline void memcg_stop_kmem_account(void)
3340 {
3341 VM_BUG_ON(!current->mm);
3342 current->memcg_kmem_skip_account++;
3343 }
3344
3345 static inline void memcg_resume_kmem_account(void)
3346 {
3347 VM_BUG_ON(!current->mm);
3348 current->memcg_kmem_skip_account--;
3349 }
3350
3351 static void kmem_cache_destroy_work_func(struct work_struct *w)
3352 {
3353 struct kmem_cache *cachep;
3354 struct memcg_cache_params *p;
3355
3356 p = container_of(w, struct memcg_cache_params, destroy);
3357
3358 cachep = memcg_params_to_cache(p);
3359
3360 /*
3361 * If we get down to 0 after shrink, we could delete right away.
3362 * However, memcg_release_pages() already puts us back in the workqueue
3363 * in that case. If we proceed deleting, we'll get a dangling
3364 * reference, and removing the object from the workqueue in that case
3365 * is unnecessary complication. We are not a fast path.
3366 *
3367 * Note that this case is fundamentally different from racing with
3368 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3369 * kmem_cache_shrink, not only we would be reinserting a dead cache
3370 * into the queue, but doing so from inside the worker racing to
3371 * destroy it.
3372 *
3373 * So if we aren't down to zero, we'll just schedule a worker and try
3374 * again
3375 */
3376 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3377 kmem_cache_shrink(cachep);
3378 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3379 return;
3380 } else
3381 kmem_cache_destroy(cachep);
3382 }
3383
3384 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3385 {
3386 if (!cachep->memcg_params->dead)
3387 return;
3388
3389 /*
3390 * There are many ways in which we can get here.
3391 *
3392 * We can get to a memory-pressure situation while the delayed work is
3393 * still pending to run. The vmscan shrinkers can then release all
3394 * cache memory and get us to destruction. If this is the case, we'll
3395 * be executed twice, which is a bug (the second time will execute over
3396 * bogus data). In this case, cancelling the work should be fine.
3397 *
3398 * But we can also get here from the worker itself, if
3399 * kmem_cache_shrink is enough to shake all the remaining objects and
3400 * get the page count to 0. In this case, we'll deadlock if we try to
3401 * cancel the work (the worker runs with an internal lock held, which
3402 * is the same lock we would hold for cancel_work_sync().)
3403 *
3404 * Since we can't possibly know who got us here, just refrain from
3405 * running if there is already work pending
3406 */
3407 if (work_pending(&cachep->memcg_params->destroy))
3408 return;
3409 /*
3410 * We have to defer the actual destroying to a workqueue, because
3411 * we might currently be in a context that cannot sleep.
3412 */
3413 schedule_work(&cachep->memcg_params->destroy);
3414 }
3415
3416 /*
3417 * This lock protects updaters, not readers. We want readers to be as fast as
3418 * they can, and they will either see NULL or a valid cache value. Our model
3419 * allow them to see NULL, in which case the root memcg will be selected.
3420 *
3421 * We need this lock because multiple allocations to the same cache from a non
3422 * will span more than one worker. Only one of them can create the cache.
3423 */
3424 static DEFINE_MUTEX(memcg_cache_mutex);
3425
3426 /*
3427 * Called with memcg_cache_mutex held
3428 */
3429 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3430 struct kmem_cache *s)
3431 {
3432 struct kmem_cache *new;
3433 static char *tmp_name = NULL;
3434
3435 lockdep_assert_held(&memcg_cache_mutex);
3436
3437 /*
3438 * kmem_cache_create_memcg duplicates the given name and
3439 * cgroup_name for this name requires RCU context.
3440 * This static temporary buffer is used to prevent from
3441 * pointless shortliving allocation.
3442 */
3443 if (!tmp_name) {
3444 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3445 if (!tmp_name)
3446 return NULL;
3447 }
3448
3449 rcu_read_lock();
3450 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3451 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3452 rcu_read_unlock();
3453
3454 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3455 (s->flags & ~SLAB_PANIC), s->ctor, s);
3456
3457 if (new)
3458 new->allocflags |= __GFP_KMEMCG;
3459
3460 return new;
3461 }
3462
3463 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3464 struct kmem_cache *cachep)
3465 {
3466 struct kmem_cache *new_cachep;
3467 int idx;
3468
3469 BUG_ON(!memcg_can_account_kmem(memcg));
3470
3471 idx = memcg_cache_id(memcg);
3472
3473 mutex_lock(&memcg_cache_mutex);
3474 new_cachep = cache_from_memcg_idx(cachep, idx);
3475 if (new_cachep)
3476 goto out;
3477
3478 new_cachep = kmem_cache_dup(memcg, cachep);
3479 if (new_cachep == NULL)
3480 new_cachep = cachep;
3481
3482 out:
3483 mutex_unlock(&memcg_cache_mutex);
3484 return new_cachep;
3485 }
3486
3487 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3488 {
3489 struct kmem_cache *c;
3490 int i;
3491
3492 if (!s->memcg_params)
3493 return;
3494 if (!s->memcg_params->is_root_cache)
3495 return;
3496
3497 /*
3498 * If the cache is being destroyed, we trust that there is no one else
3499 * requesting objects from it. Even if there are, the sanity checks in
3500 * kmem_cache_destroy should caught this ill-case.
3501 *
3502 * Still, we don't want anyone else freeing memcg_caches under our
3503 * noses, which can happen if a new memcg comes to life. As usual,
3504 * we'll take the set_limit_mutex to protect ourselves against this.
3505 */
3506 mutex_lock(&set_limit_mutex);
3507 for_each_memcg_cache_index(i) {
3508 c = cache_from_memcg_idx(s, i);
3509 if (!c)
3510 continue;
3511
3512 /*
3513 * We will now manually delete the caches, so to avoid races
3514 * we need to cancel all pending destruction workers and
3515 * proceed with destruction ourselves.
3516 *
3517 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3518 * and that could spawn the workers again: it is likely that
3519 * the cache still have active pages until this very moment.
3520 * This would lead us back to mem_cgroup_destroy_cache.
3521 *
3522 * But that will not execute at all if the "dead" flag is not
3523 * set, so flip it down to guarantee we are in control.
3524 */
3525 c->memcg_params->dead = false;
3526 cancel_work_sync(&c->memcg_params->destroy);
3527 kmem_cache_destroy(c);
3528 }
3529 mutex_unlock(&set_limit_mutex);
3530 }
3531
3532 struct create_work {
3533 struct mem_cgroup *memcg;
3534 struct kmem_cache *cachep;
3535 struct work_struct work;
3536 };
3537
3538 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3539 {
3540 struct kmem_cache *cachep;
3541 struct memcg_cache_params *params;
3542
3543 if (!memcg_kmem_is_active(memcg))
3544 return;
3545
3546 mutex_lock(&memcg->slab_caches_mutex);
3547 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3548 cachep = memcg_params_to_cache(params);
3549 cachep->memcg_params->dead = true;
3550 schedule_work(&cachep->memcg_params->destroy);
3551 }
3552 mutex_unlock(&memcg->slab_caches_mutex);
3553 }
3554
3555 static void memcg_create_cache_work_func(struct work_struct *w)
3556 {
3557 struct create_work *cw;
3558
3559 cw = container_of(w, struct create_work, work);
3560 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3561 css_put(&cw->memcg->css);
3562 kfree(cw);
3563 }
3564
3565 /*
3566 * Enqueue the creation of a per-memcg kmem_cache.
3567 */
3568 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3569 struct kmem_cache *cachep)
3570 {
3571 struct create_work *cw;
3572
3573 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3574 if (cw == NULL) {
3575 css_put(&memcg->css);
3576 return;
3577 }
3578
3579 cw->memcg = memcg;
3580 cw->cachep = cachep;
3581
3582 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3583 schedule_work(&cw->work);
3584 }
3585
3586 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3587 struct kmem_cache *cachep)
3588 {
3589 /*
3590 * We need to stop accounting when we kmalloc, because if the
3591 * corresponding kmalloc cache is not yet created, the first allocation
3592 * in __memcg_create_cache_enqueue will recurse.
3593 *
3594 * However, it is better to enclose the whole function. Depending on
3595 * the debugging options enabled, INIT_WORK(), for instance, can
3596 * trigger an allocation. This too, will make us recurse. Because at
3597 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3598 * the safest choice is to do it like this, wrapping the whole function.
3599 */
3600 memcg_stop_kmem_account();
3601 __memcg_create_cache_enqueue(memcg, cachep);
3602 memcg_resume_kmem_account();
3603 }
3604 /*
3605 * Return the kmem_cache we're supposed to use for a slab allocation.
3606 * We try to use the current memcg's version of the cache.
3607 *
3608 * If the cache does not exist yet, if we are the first user of it,
3609 * we either create it immediately, if possible, or create it asynchronously
3610 * in a workqueue.
3611 * In the latter case, we will let the current allocation go through with
3612 * the original cache.
3613 *
3614 * Can't be called in interrupt context or from kernel threads.
3615 * This function needs to be called with rcu_read_lock() held.
3616 */
3617 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3618 gfp_t gfp)
3619 {
3620 struct mem_cgroup *memcg;
3621 struct kmem_cache *memcg_cachep;
3622
3623 VM_BUG_ON(!cachep->memcg_params);
3624 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3625
3626 if (!current->mm || current->memcg_kmem_skip_account)
3627 return cachep;
3628
3629 rcu_read_lock();
3630 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3631
3632 if (!memcg_can_account_kmem(memcg))
3633 goto out;
3634
3635 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3636 if (likely(memcg_cachep)) {
3637 cachep = memcg_cachep;
3638 goto out;
3639 }
3640
3641 /* The corresponding put will be done in the workqueue. */
3642 if (!css_tryget(&memcg->css))
3643 goto out;
3644 rcu_read_unlock();
3645
3646 /*
3647 * If we are in a safe context (can wait, and not in interrupt
3648 * context), we could be be predictable and return right away.
3649 * This would guarantee that the allocation being performed
3650 * already belongs in the new cache.
3651 *
3652 * However, there are some clashes that can arrive from locking.
3653 * For instance, because we acquire the slab_mutex while doing
3654 * kmem_cache_dup, this means no further allocation could happen
3655 * with the slab_mutex held.
3656 *
3657 * Also, because cache creation issue get_online_cpus(), this
3658 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3659 * that ends up reversed during cpu hotplug. (cpuset allocates
3660 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3661 * better to defer everything.
3662 */
3663 memcg_create_cache_enqueue(memcg, cachep);
3664 return cachep;
3665 out:
3666 rcu_read_unlock();
3667 return cachep;
3668 }
3669 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3670
3671 /*
3672 * We need to verify if the allocation against current->mm->owner's memcg is
3673 * possible for the given order. But the page is not allocated yet, so we'll
3674 * need a further commit step to do the final arrangements.
3675 *
3676 * It is possible for the task to switch cgroups in this mean time, so at
3677 * commit time, we can't rely on task conversion any longer. We'll then use
3678 * the handle argument to return to the caller which cgroup we should commit
3679 * against. We could also return the memcg directly and avoid the pointer
3680 * passing, but a boolean return value gives better semantics considering
3681 * the compiled-out case as well.
3682 *
3683 * Returning true means the allocation is possible.
3684 */
3685 bool
3686 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3687 {
3688 struct mem_cgroup *memcg;
3689 int ret;
3690
3691 *_memcg = NULL;
3692
3693 /*
3694 * Disabling accounting is only relevant for some specific memcg
3695 * internal allocations. Therefore we would initially not have such
3696 * check here, since direct calls to the page allocator that are marked
3697 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3698 * concerned with cache allocations, and by having this test at
3699 * memcg_kmem_get_cache, we are already able to relay the allocation to
3700 * the root cache and bypass the memcg cache altogether.
3701 *
3702 * There is one exception, though: the SLUB allocator does not create
3703 * large order caches, but rather service large kmallocs directly from
3704 * the page allocator. Therefore, the following sequence when backed by
3705 * the SLUB allocator:
3706 *
3707 * memcg_stop_kmem_account();
3708 * kmalloc(<large_number>)
3709 * memcg_resume_kmem_account();
3710 *
3711 * would effectively ignore the fact that we should skip accounting,
3712 * since it will drive us directly to this function without passing
3713 * through the cache selector memcg_kmem_get_cache. Such large
3714 * allocations are extremely rare but can happen, for instance, for the
3715 * cache arrays. We bring this test here.
3716 */
3717 if (!current->mm || current->memcg_kmem_skip_account)
3718 return true;
3719
3720 memcg = try_get_mem_cgroup_from_mm(current->mm);
3721
3722 /*
3723 * very rare case described in mem_cgroup_from_task. Unfortunately there
3724 * isn't much we can do without complicating this too much, and it would
3725 * be gfp-dependent anyway. Just let it go
3726 */
3727 if (unlikely(!memcg))
3728 return true;
3729
3730 if (!memcg_can_account_kmem(memcg)) {
3731 css_put(&memcg->css);
3732 return true;
3733 }
3734
3735 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3736 if (!ret)
3737 *_memcg = memcg;
3738
3739 css_put(&memcg->css);
3740 return (ret == 0);
3741 }
3742
3743 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3744 int order)
3745 {
3746 struct page_cgroup *pc;
3747
3748 VM_BUG_ON(mem_cgroup_is_root(memcg));
3749
3750 /* The page allocation failed. Revert */
3751 if (!page) {
3752 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3753 return;
3754 }
3755
3756 pc = lookup_page_cgroup(page);
3757 lock_page_cgroup(pc);
3758 pc->mem_cgroup = memcg;
3759 SetPageCgroupUsed(pc);
3760 unlock_page_cgroup(pc);
3761 }
3762
3763 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3764 {
3765 struct mem_cgroup *memcg = NULL;
3766 struct page_cgroup *pc;
3767
3768
3769 pc = lookup_page_cgroup(page);
3770 /*
3771 * Fast unlocked return. Theoretically might have changed, have to
3772 * check again after locking.
3773 */
3774 if (!PageCgroupUsed(pc))
3775 return;
3776
3777 lock_page_cgroup(pc);
3778 if (PageCgroupUsed(pc)) {
3779 memcg = pc->mem_cgroup;
3780 ClearPageCgroupUsed(pc);
3781 }
3782 unlock_page_cgroup(pc);
3783
3784 /*
3785 * We trust that only if there is a memcg associated with the page, it
3786 * is a valid allocation
3787 */
3788 if (!memcg)
3789 return;
3790
3791 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3792 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3793 }
3794 #else
3795 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3796 {
3797 }
3798 #endif /* CONFIG_MEMCG_KMEM */
3799
3800 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3801
3802 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3803 /*
3804 * Because tail pages are not marked as "used", set it. We're under
3805 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3806 * charge/uncharge will be never happen and move_account() is done under
3807 * compound_lock(), so we don't have to take care of races.
3808 */
3809 void mem_cgroup_split_huge_fixup(struct page *head)
3810 {
3811 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3812 struct page_cgroup *pc;
3813 struct mem_cgroup *memcg;
3814 int i;
3815
3816 if (mem_cgroup_disabled())
3817 return;
3818
3819 memcg = head_pc->mem_cgroup;
3820 for (i = 1; i < HPAGE_PMD_NR; i++) {
3821 pc = head_pc + i;
3822 pc->mem_cgroup = memcg;
3823 smp_wmb();/* see __commit_charge() */
3824 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3825 }
3826 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3827 HPAGE_PMD_NR);
3828 }
3829 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3830
3831 static inline
3832 void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
3833 struct mem_cgroup *to,
3834 unsigned int nr_pages,
3835 enum mem_cgroup_stat_index idx)
3836 {
3837 /* Update stat data for mem_cgroup */
3838 preempt_disable();
3839 __this_cpu_sub(from->stat->count[idx], nr_pages);
3840 __this_cpu_add(to->stat->count[idx], nr_pages);
3841 preempt_enable();
3842 }
3843
3844 /**
3845 * mem_cgroup_move_account - move account of the page
3846 * @page: the page
3847 * @nr_pages: number of regular pages (>1 for huge pages)
3848 * @pc: page_cgroup of the page.
3849 * @from: mem_cgroup which the page is moved from.
3850 * @to: mem_cgroup which the page is moved to. @from != @to.
3851 *
3852 * The caller must confirm following.
3853 * - page is not on LRU (isolate_page() is useful.)
3854 * - compound_lock is held when nr_pages > 1
3855 *
3856 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3857 * from old cgroup.
3858 */
3859 static int mem_cgroup_move_account(struct page *page,
3860 unsigned int nr_pages,
3861 struct page_cgroup *pc,
3862 struct mem_cgroup *from,
3863 struct mem_cgroup *to)
3864 {
3865 unsigned long flags;
3866 int ret;
3867 bool anon = PageAnon(page);
3868
3869 VM_BUG_ON(from == to);
3870 VM_BUG_ON_PAGE(PageLRU(page), page);
3871 /*
3872 * The page is isolated from LRU. So, collapse function
3873 * will not handle this page. But page splitting can happen.
3874 * Do this check under compound_page_lock(). The caller should
3875 * hold it.
3876 */
3877 ret = -EBUSY;
3878 if (nr_pages > 1 && !PageTransHuge(page))
3879 goto out;
3880
3881 lock_page_cgroup(pc);
3882
3883 ret = -EINVAL;
3884 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3885 goto unlock;
3886
3887 move_lock_mem_cgroup(from, &flags);
3888
3889 if (!anon && page_mapped(page))
3890 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3891 MEM_CGROUP_STAT_FILE_MAPPED);
3892
3893 if (PageWriteback(page))
3894 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3895 MEM_CGROUP_STAT_WRITEBACK);
3896
3897 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3898
3899 /* caller should have done css_get */
3900 pc->mem_cgroup = to;
3901 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3902 move_unlock_mem_cgroup(from, &flags);
3903 ret = 0;
3904 unlock:
3905 unlock_page_cgroup(pc);
3906 /*
3907 * check events
3908 */
3909 memcg_check_events(to, page);
3910 memcg_check_events(from, page);
3911 out:
3912 return ret;
3913 }
3914
3915 /**
3916 * mem_cgroup_move_parent - moves page to the parent group
3917 * @page: the page to move
3918 * @pc: page_cgroup of the page
3919 * @child: page's cgroup
3920 *
3921 * move charges to its parent or the root cgroup if the group has no
3922 * parent (aka use_hierarchy==0).
3923 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3924 * mem_cgroup_move_account fails) the failure is always temporary and
3925 * it signals a race with a page removal/uncharge or migration. In the
3926 * first case the page is on the way out and it will vanish from the LRU
3927 * on the next attempt and the call should be retried later.
3928 * Isolation from the LRU fails only if page has been isolated from
3929 * the LRU since we looked at it and that usually means either global
3930 * reclaim or migration going on. The page will either get back to the
3931 * LRU or vanish.
3932 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3933 * (!PageCgroupUsed) or moved to a different group. The page will
3934 * disappear in the next attempt.
3935 */
3936 static int mem_cgroup_move_parent(struct page *page,
3937 struct page_cgroup *pc,
3938 struct mem_cgroup *child)
3939 {
3940 struct mem_cgroup *parent;
3941 unsigned int nr_pages;
3942 unsigned long uninitialized_var(flags);
3943 int ret;
3944
3945 VM_BUG_ON(mem_cgroup_is_root(child));
3946
3947 ret = -EBUSY;
3948 if (!get_page_unless_zero(page))
3949 goto out;
3950 if (isolate_lru_page(page))
3951 goto put;
3952
3953 nr_pages = hpage_nr_pages(page);
3954
3955 parent = parent_mem_cgroup(child);
3956 /*
3957 * If no parent, move charges to root cgroup.
3958 */
3959 if (!parent)
3960 parent = root_mem_cgroup;
3961
3962 if (nr_pages > 1) {
3963 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3964 flags = compound_lock_irqsave(page);
3965 }
3966
3967 ret = mem_cgroup_move_account(page, nr_pages,
3968 pc, child, parent);
3969 if (!ret)
3970 __mem_cgroup_cancel_local_charge(child, nr_pages);
3971
3972 if (nr_pages > 1)
3973 compound_unlock_irqrestore(page, flags);
3974 putback_lru_page(page);
3975 put:
3976 put_page(page);
3977 out:
3978 return ret;
3979 }
3980
3981 /*
3982 * Charge the memory controller for page usage.
3983 * Return
3984 * 0 if the charge was successful
3985 * < 0 if the cgroup is over its limit
3986 */
3987 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3988 gfp_t gfp_mask, enum charge_type ctype)
3989 {
3990 struct mem_cgroup *memcg = NULL;
3991 unsigned int nr_pages = 1;
3992 bool oom = true;
3993 int ret;
3994
3995 if (PageTransHuge(page)) {
3996 nr_pages <<= compound_order(page);
3997 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3998 /*
3999 * Never OOM-kill a process for a huge page. The
4000 * fault handler will fall back to regular pages.
4001 */
4002 oom = false;
4003 }
4004
4005 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
4006 if (ret == -ENOMEM)
4007 return ret;
4008 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
4009 return 0;
4010 }
4011
4012 int mem_cgroup_newpage_charge(struct page *page,
4013 struct mm_struct *mm, gfp_t gfp_mask)
4014 {
4015 if (mem_cgroup_disabled())
4016 return 0;
4017 VM_BUG_ON_PAGE(page_mapped(page), page);
4018 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
4019 VM_BUG_ON(!mm);
4020 return mem_cgroup_charge_common(page, mm, gfp_mask,
4021 MEM_CGROUP_CHARGE_TYPE_ANON);
4022 }
4023
4024 /*
4025 * While swap-in, try_charge -> commit or cancel, the page is locked.
4026 * And when try_charge() successfully returns, one refcnt to memcg without
4027 * struct page_cgroup is acquired. This refcnt will be consumed by
4028 * "commit()" or removed by "cancel()"
4029 */
4030 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
4031 struct page *page,
4032 gfp_t mask,
4033 struct mem_cgroup **memcgp)
4034 {
4035 struct mem_cgroup *memcg;
4036 struct page_cgroup *pc;
4037 int ret;
4038
4039 pc = lookup_page_cgroup(page);
4040 /*
4041 * Every swap fault against a single page tries to charge the
4042 * page, bail as early as possible. shmem_unuse() encounters
4043 * already charged pages, too. The USED bit is protected by
4044 * the page lock, which serializes swap cache removal, which
4045 * in turn serializes uncharging.
4046 */
4047 if (PageCgroupUsed(pc))
4048 return 0;
4049 if (!do_swap_account)
4050 goto charge_cur_mm;
4051 memcg = try_get_mem_cgroup_from_page(page);
4052 if (!memcg)
4053 goto charge_cur_mm;
4054 *memcgp = memcg;
4055 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
4056 css_put(&memcg->css);
4057 if (ret == -EINTR)
4058 ret = 0;
4059 return ret;
4060 charge_cur_mm:
4061 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
4062 if (ret == -EINTR)
4063 ret = 0;
4064 return ret;
4065 }
4066
4067 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
4068 gfp_t gfp_mask, struct mem_cgroup **memcgp)
4069 {
4070 *memcgp = NULL;
4071 if (mem_cgroup_disabled())
4072 return 0;
4073 /*
4074 * A racing thread's fault, or swapoff, may have already
4075 * updated the pte, and even removed page from swap cache: in
4076 * those cases unuse_pte()'s pte_same() test will fail; but
4077 * there's also a KSM case which does need to charge the page.
4078 */
4079 if (!PageSwapCache(page)) {
4080 int ret;
4081
4082 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4083 if (ret == -EINTR)
4084 ret = 0;
4085 return ret;
4086 }
4087 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4088 }
4089
4090 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4091 {
4092 if (mem_cgroup_disabled())
4093 return;
4094 if (!memcg)
4095 return;
4096 __mem_cgroup_cancel_charge(memcg, 1);
4097 }
4098
4099 static void
4100 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
4101 enum charge_type ctype)
4102 {
4103 if (mem_cgroup_disabled())
4104 return;
4105 if (!memcg)
4106 return;
4107
4108 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4109 /*
4110 * Now swap is on-memory. This means this page may be
4111 * counted both as mem and swap....double count.
4112 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4113 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4114 * may call delete_from_swap_cache() before reach here.
4115 */
4116 if (do_swap_account && PageSwapCache(page)) {
4117 swp_entry_t ent = {.val = page_private(page)};
4118 mem_cgroup_uncharge_swap(ent);
4119 }
4120 }
4121
4122 void mem_cgroup_commit_charge_swapin(struct page *page,
4123 struct mem_cgroup *memcg)
4124 {
4125 __mem_cgroup_commit_charge_swapin(page, memcg,
4126 MEM_CGROUP_CHARGE_TYPE_ANON);
4127 }
4128
4129 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4130 gfp_t gfp_mask)
4131 {
4132 struct mem_cgroup *memcg = NULL;
4133 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4134 int ret;
4135
4136 if (mem_cgroup_disabled())
4137 return 0;
4138 if (PageCompound(page))
4139 return 0;
4140
4141 if (!PageSwapCache(page))
4142 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4143 else { /* page is swapcache/shmem */
4144 ret = __mem_cgroup_try_charge_swapin(mm, page,
4145 gfp_mask, &memcg);
4146 if (!ret)
4147 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4148 }
4149 return ret;
4150 }
4151
4152 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4153 unsigned int nr_pages,
4154 const enum charge_type ctype)
4155 {
4156 struct memcg_batch_info *batch = NULL;
4157 bool uncharge_memsw = true;
4158
4159 /* If swapout, usage of swap doesn't decrease */
4160 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4161 uncharge_memsw = false;
4162
4163 batch = &current->memcg_batch;
4164 /*
4165 * In usual, we do css_get() when we remember memcg pointer.
4166 * But in this case, we keep res->usage until end of a series of
4167 * uncharges. Then, it's ok to ignore memcg's refcnt.
4168 */
4169 if (!batch->memcg)
4170 batch->memcg = memcg;
4171 /*
4172 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4173 * In those cases, all pages freed continuously can be expected to be in
4174 * the same cgroup and we have chance to coalesce uncharges.
4175 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4176 * because we want to do uncharge as soon as possible.
4177 */
4178
4179 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4180 goto direct_uncharge;
4181
4182 if (nr_pages > 1)
4183 goto direct_uncharge;
4184
4185 /*
4186 * In typical case, batch->memcg == mem. This means we can
4187 * merge a series of uncharges to an uncharge of res_counter.
4188 * If not, we uncharge res_counter ony by one.
4189 */
4190 if (batch->memcg != memcg)
4191 goto direct_uncharge;
4192 /* remember freed charge and uncharge it later */
4193 batch->nr_pages++;
4194 if (uncharge_memsw)
4195 batch->memsw_nr_pages++;
4196 return;
4197 direct_uncharge:
4198 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4199 if (uncharge_memsw)
4200 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4201 if (unlikely(batch->memcg != memcg))
4202 memcg_oom_recover(memcg);
4203 }
4204
4205 /*
4206 * uncharge if !page_mapped(page)
4207 */
4208 static struct mem_cgroup *
4209 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4210 bool end_migration)
4211 {
4212 struct mem_cgroup *memcg = NULL;
4213 unsigned int nr_pages = 1;
4214 struct page_cgroup *pc;
4215 bool anon;
4216
4217 if (mem_cgroup_disabled())
4218 return NULL;
4219
4220 if (PageTransHuge(page)) {
4221 nr_pages <<= compound_order(page);
4222 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
4223 }
4224 /*
4225 * Check if our page_cgroup is valid
4226 */
4227 pc = lookup_page_cgroup(page);
4228 if (unlikely(!PageCgroupUsed(pc)))
4229 return NULL;
4230
4231 lock_page_cgroup(pc);
4232
4233 memcg = pc->mem_cgroup;
4234
4235 if (!PageCgroupUsed(pc))
4236 goto unlock_out;
4237
4238 anon = PageAnon(page);
4239
4240 switch (ctype) {
4241 case MEM_CGROUP_CHARGE_TYPE_ANON:
4242 /*
4243 * Generally PageAnon tells if it's the anon statistics to be
4244 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4245 * used before page reached the stage of being marked PageAnon.
4246 */
4247 anon = true;
4248 /* fallthrough */
4249 case MEM_CGROUP_CHARGE_TYPE_DROP:
4250 /* See mem_cgroup_prepare_migration() */
4251 if (page_mapped(page))
4252 goto unlock_out;
4253 /*
4254 * Pages under migration may not be uncharged. But
4255 * end_migration() /must/ be the one uncharging the
4256 * unused post-migration page and so it has to call
4257 * here with the migration bit still set. See the
4258 * res_counter handling below.
4259 */
4260 if (!end_migration && PageCgroupMigration(pc))
4261 goto unlock_out;
4262 break;
4263 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4264 if (!PageAnon(page)) { /* Shared memory */
4265 if (page->mapping && !page_is_file_cache(page))
4266 goto unlock_out;
4267 } else if (page_mapped(page)) /* Anon */
4268 goto unlock_out;
4269 break;
4270 default:
4271 break;
4272 }
4273
4274 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4275
4276 ClearPageCgroupUsed(pc);
4277 /*
4278 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4279 * freed from LRU. This is safe because uncharged page is expected not
4280 * to be reused (freed soon). Exception is SwapCache, it's handled by
4281 * special functions.
4282 */
4283
4284 unlock_page_cgroup(pc);
4285 /*
4286 * even after unlock, we have memcg->res.usage here and this memcg
4287 * will never be freed, so it's safe to call css_get().
4288 */
4289 memcg_check_events(memcg, page);
4290 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4291 mem_cgroup_swap_statistics(memcg, true);
4292 css_get(&memcg->css);
4293 }
4294 /*
4295 * Migration does not charge the res_counter for the
4296 * replacement page, so leave it alone when phasing out the
4297 * page that is unused after the migration.
4298 */
4299 if (!end_migration && !mem_cgroup_is_root(memcg))
4300 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4301
4302 return memcg;
4303
4304 unlock_out:
4305 unlock_page_cgroup(pc);
4306 return NULL;
4307 }
4308
4309 void mem_cgroup_uncharge_page(struct page *page)
4310 {
4311 /* early check. */
4312 if (page_mapped(page))
4313 return;
4314 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
4315 /*
4316 * If the page is in swap cache, uncharge should be deferred
4317 * to the swap path, which also properly accounts swap usage
4318 * and handles memcg lifetime.
4319 *
4320 * Note that this check is not stable and reclaim may add the
4321 * page to swap cache at any time after this. However, if the
4322 * page is not in swap cache by the time page->mapcount hits
4323 * 0, there won't be any page table references to the swap
4324 * slot, and reclaim will free it and not actually write the
4325 * page to disk.
4326 */
4327 if (PageSwapCache(page))
4328 return;
4329 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4330 }
4331
4332 void mem_cgroup_uncharge_cache_page(struct page *page)
4333 {
4334 VM_BUG_ON_PAGE(page_mapped(page), page);
4335 VM_BUG_ON_PAGE(page->mapping, page);
4336 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4337 }
4338
4339 /*
4340 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4341 * In that cases, pages are freed continuously and we can expect pages
4342 * are in the same memcg. All these calls itself limits the number of
4343 * pages freed at once, then uncharge_start/end() is called properly.
4344 * This may be called prural(2) times in a context,
4345 */
4346
4347 void mem_cgroup_uncharge_start(void)
4348 {
4349 current->memcg_batch.do_batch++;
4350 /* We can do nest. */
4351 if (current->memcg_batch.do_batch == 1) {
4352 current->memcg_batch.memcg = NULL;
4353 current->memcg_batch.nr_pages = 0;
4354 current->memcg_batch.memsw_nr_pages = 0;
4355 }
4356 }
4357
4358 void mem_cgroup_uncharge_end(void)
4359 {
4360 struct memcg_batch_info *batch = &current->memcg_batch;
4361
4362 if (!batch->do_batch)
4363 return;
4364
4365 batch->do_batch--;
4366 if (batch->do_batch) /* If stacked, do nothing. */
4367 return;
4368
4369 if (!batch->memcg)
4370 return;
4371 /*
4372 * This "batch->memcg" is valid without any css_get/put etc...
4373 * bacause we hide charges behind us.
4374 */
4375 if (batch->nr_pages)
4376 res_counter_uncharge(&batch->memcg->res,
4377 batch->nr_pages * PAGE_SIZE);
4378 if (batch->memsw_nr_pages)
4379 res_counter_uncharge(&batch->memcg->memsw,
4380 batch->memsw_nr_pages * PAGE_SIZE);
4381 memcg_oom_recover(batch->memcg);
4382 /* forget this pointer (for sanity check) */
4383 batch->memcg = NULL;
4384 }
4385
4386 #ifdef CONFIG_SWAP
4387 /*
4388 * called after __delete_from_swap_cache() and drop "page" account.
4389 * memcg information is recorded to swap_cgroup of "ent"
4390 */
4391 void
4392 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4393 {
4394 struct mem_cgroup *memcg;
4395 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4396
4397 if (!swapout) /* this was a swap cache but the swap is unused ! */
4398 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4399
4400 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4401
4402 /*
4403 * record memcg information, if swapout && memcg != NULL,
4404 * css_get() was called in uncharge().
4405 */
4406 if (do_swap_account && swapout && memcg)
4407 swap_cgroup_record(ent, mem_cgroup_id(memcg));
4408 }
4409 #endif
4410
4411 #ifdef CONFIG_MEMCG_SWAP
4412 /*
4413 * called from swap_entry_free(). remove record in swap_cgroup and
4414 * uncharge "memsw" account.
4415 */
4416 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4417 {
4418 struct mem_cgroup *memcg;
4419 unsigned short id;
4420
4421 if (!do_swap_account)
4422 return;
4423
4424 id = swap_cgroup_record(ent, 0);
4425 rcu_read_lock();
4426 memcg = mem_cgroup_lookup(id);
4427 if (memcg) {
4428 /*
4429 * We uncharge this because swap is freed.
4430 * This memcg can be obsolete one. We avoid calling css_tryget
4431 */
4432 if (!mem_cgroup_is_root(memcg))
4433 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4434 mem_cgroup_swap_statistics(memcg, false);
4435 css_put(&memcg->css);
4436 }
4437 rcu_read_unlock();
4438 }
4439
4440 /**
4441 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4442 * @entry: swap entry to be moved
4443 * @from: mem_cgroup which the entry is moved from
4444 * @to: mem_cgroup which the entry is moved to
4445 *
4446 * It succeeds only when the swap_cgroup's record for this entry is the same
4447 * as the mem_cgroup's id of @from.
4448 *
4449 * Returns 0 on success, -EINVAL on failure.
4450 *
4451 * The caller must have charged to @to, IOW, called res_counter_charge() about
4452 * both res and memsw, and called css_get().
4453 */
4454 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4455 struct mem_cgroup *from, struct mem_cgroup *to)
4456 {
4457 unsigned short old_id, new_id;
4458
4459 old_id = mem_cgroup_id(from);
4460 new_id = mem_cgroup_id(to);
4461
4462 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4463 mem_cgroup_swap_statistics(from, false);
4464 mem_cgroup_swap_statistics(to, true);
4465 /*
4466 * This function is only called from task migration context now.
4467 * It postpones res_counter and refcount handling till the end
4468 * of task migration(mem_cgroup_clear_mc()) for performance
4469 * improvement. But we cannot postpone css_get(to) because if
4470 * the process that has been moved to @to does swap-in, the
4471 * refcount of @to might be decreased to 0.
4472 *
4473 * We are in attach() phase, so the cgroup is guaranteed to be
4474 * alive, so we can just call css_get().
4475 */
4476 css_get(&to->css);
4477 return 0;
4478 }
4479 return -EINVAL;
4480 }
4481 #else
4482 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4483 struct mem_cgroup *from, struct mem_cgroup *to)
4484 {
4485 return -EINVAL;
4486 }
4487 #endif
4488
4489 /*
4490 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4491 * page belongs to.
4492 */
4493 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4494 struct mem_cgroup **memcgp)
4495 {
4496 struct mem_cgroup *memcg = NULL;
4497 unsigned int nr_pages = 1;
4498 struct page_cgroup *pc;
4499 enum charge_type ctype;
4500
4501 *memcgp = NULL;
4502
4503 if (mem_cgroup_disabled())
4504 return;
4505
4506 if (PageTransHuge(page))
4507 nr_pages <<= compound_order(page);
4508
4509 pc = lookup_page_cgroup(page);
4510 lock_page_cgroup(pc);
4511 if (PageCgroupUsed(pc)) {
4512 memcg = pc->mem_cgroup;
4513 css_get(&memcg->css);
4514 /*
4515 * At migrating an anonymous page, its mapcount goes down
4516 * to 0 and uncharge() will be called. But, even if it's fully
4517 * unmapped, migration may fail and this page has to be
4518 * charged again. We set MIGRATION flag here and delay uncharge
4519 * until end_migration() is called
4520 *
4521 * Corner Case Thinking
4522 * A)
4523 * When the old page was mapped as Anon and it's unmap-and-freed
4524 * while migration was ongoing.
4525 * If unmap finds the old page, uncharge() of it will be delayed
4526 * until end_migration(). If unmap finds a new page, it's
4527 * uncharged when it make mapcount to be 1->0. If unmap code
4528 * finds swap_migration_entry, the new page will not be mapped
4529 * and end_migration() will find it(mapcount==0).
4530 *
4531 * B)
4532 * When the old page was mapped but migraion fails, the kernel
4533 * remaps it. A charge for it is kept by MIGRATION flag even
4534 * if mapcount goes down to 0. We can do remap successfully
4535 * without charging it again.
4536 *
4537 * C)
4538 * The "old" page is under lock_page() until the end of
4539 * migration, so, the old page itself will not be swapped-out.
4540 * If the new page is swapped out before end_migraton, our
4541 * hook to usual swap-out path will catch the event.
4542 */
4543 if (PageAnon(page))
4544 SetPageCgroupMigration(pc);
4545 }
4546 unlock_page_cgroup(pc);
4547 /*
4548 * If the page is not charged at this point,
4549 * we return here.
4550 */
4551 if (!memcg)
4552 return;
4553
4554 *memcgp = memcg;
4555 /*
4556 * We charge new page before it's used/mapped. So, even if unlock_page()
4557 * is called before end_migration, we can catch all events on this new
4558 * page. In the case new page is migrated but not remapped, new page's
4559 * mapcount will be finally 0 and we call uncharge in end_migration().
4560 */
4561 if (PageAnon(page))
4562 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4563 else
4564 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4565 /*
4566 * The page is committed to the memcg, but it's not actually
4567 * charged to the res_counter since we plan on replacing the
4568 * old one and only one page is going to be left afterwards.
4569 */
4570 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4571 }
4572
4573 /* remove redundant charge if migration failed*/
4574 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4575 struct page *oldpage, struct page *newpage, bool migration_ok)
4576 {
4577 struct page *used, *unused;
4578 struct page_cgroup *pc;
4579 bool anon;
4580
4581 if (!memcg)
4582 return;
4583
4584 if (!migration_ok) {
4585 used = oldpage;
4586 unused = newpage;
4587 } else {
4588 used = newpage;
4589 unused = oldpage;
4590 }
4591 anon = PageAnon(used);
4592 __mem_cgroup_uncharge_common(unused,
4593 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4594 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4595 true);
4596 css_put(&memcg->css);
4597 /*
4598 * We disallowed uncharge of pages under migration because mapcount
4599 * of the page goes down to zero, temporarly.
4600 * Clear the flag and check the page should be charged.
4601 */
4602 pc = lookup_page_cgroup(oldpage);
4603 lock_page_cgroup(pc);
4604 ClearPageCgroupMigration(pc);
4605 unlock_page_cgroup(pc);
4606
4607 /*
4608 * If a page is a file cache, radix-tree replacement is very atomic
4609 * and we can skip this check. When it was an Anon page, its mapcount
4610 * goes down to 0. But because we added MIGRATION flage, it's not
4611 * uncharged yet. There are several case but page->mapcount check
4612 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4613 * check. (see prepare_charge() also)
4614 */
4615 if (anon)
4616 mem_cgroup_uncharge_page(used);
4617 }
4618
4619 /*
4620 * At replace page cache, newpage is not under any memcg but it's on
4621 * LRU. So, this function doesn't touch res_counter but handles LRU
4622 * in correct way. Both pages are locked so we cannot race with uncharge.
4623 */
4624 void mem_cgroup_replace_page_cache(struct page *oldpage,
4625 struct page *newpage)
4626 {
4627 struct mem_cgroup *memcg = NULL;
4628 struct page_cgroup *pc;
4629 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4630
4631 if (mem_cgroup_disabled())
4632 return;
4633
4634 pc = lookup_page_cgroup(oldpage);
4635 /* fix accounting on old pages */
4636 lock_page_cgroup(pc);
4637 if (PageCgroupUsed(pc)) {
4638 memcg = pc->mem_cgroup;
4639 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4640 ClearPageCgroupUsed(pc);
4641 }
4642 unlock_page_cgroup(pc);
4643
4644 /*
4645 * When called from shmem_replace_page(), in some cases the
4646 * oldpage has already been charged, and in some cases not.
4647 */
4648 if (!memcg)
4649 return;
4650 /*
4651 * Even if newpage->mapping was NULL before starting replacement,
4652 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4653 * LRU while we overwrite pc->mem_cgroup.
4654 */
4655 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4656 }
4657
4658 #ifdef CONFIG_DEBUG_VM
4659 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4660 {
4661 struct page_cgroup *pc;
4662
4663 pc = lookup_page_cgroup(page);
4664 /*
4665 * Can be NULL while feeding pages into the page allocator for
4666 * the first time, i.e. during boot or memory hotplug;
4667 * or when mem_cgroup_disabled().
4668 */
4669 if (likely(pc) && PageCgroupUsed(pc))
4670 return pc;
4671 return NULL;
4672 }
4673
4674 bool mem_cgroup_bad_page_check(struct page *page)
4675 {
4676 if (mem_cgroup_disabled())
4677 return false;
4678
4679 return lookup_page_cgroup_used(page) != NULL;
4680 }
4681
4682 void mem_cgroup_print_bad_page(struct page *page)
4683 {
4684 struct page_cgroup *pc;
4685
4686 pc = lookup_page_cgroup_used(page);
4687 if (pc) {
4688 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4689 pc, pc->flags, pc->mem_cgroup);
4690 }
4691 }
4692 #endif
4693
4694 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4695 unsigned long long val)
4696 {
4697 int retry_count;
4698 u64 memswlimit, memlimit;
4699 int ret = 0;
4700 int children = mem_cgroup_count_children(memcg);
4701 u64 curusage, oldusage;
4702 int enlarge;
4703
4704 /*
4705 * For keeping hierarchical_reclaim simple, how long we should retry
4706 * is depends on callers. We set our retry-count to be function
4707 * of # of children which we should visit in this loop.
4708 */
4709 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4710
4711 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4712
4713 enlarge = 0;
4714 while (retry_count) {
4715 if (signal_pending(current)) {
4716 ret = -EINTR;
4717 break;
4718 }
4719 /*
4720 * Rather than hide all in some function, I do this in
4721 * open coded manner. You see what this really does.
4722 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4723 */
4724 mutex_lock(&set_limit_mutex);
4725 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4726 if (memswlimit < val) {
4727 ret = -EINVAL;
4728 mutex_unlock(&set_limit_mutex);
4729 break;
4730 }
4731
4732 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4733 if (memlimit < val)
4734 enlarge = 1;
4735
4736 ret = res_counter_set_limit(&memcg->res, val);
4737 if (!ret) {
4738 if (memswlimit == val)
4739 memcg->memsw_is_minimum = true;
4740 else
4741 memcg->memsw_is_minimum = false;
4742 }
4743 mutex_unlock(&set_limit_mutex);
4744
4745 if (!ret)
4746 break;
4747
4748 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4749 MEM_CGROUP_RECLAIM_SHRINK);
4750 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4751 /* Usage is reduced ? */
4752 if (curusage >= oldusage)
4753 retry_count--;
4754 else
4755 oldusage = curusage;
4756 }
4757 if (!ret && enlarge)
4758 memcg_oom_recover(memcg);
4759
4760 return ret;
4761 }
4762
4763 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4764 unsigned long long val)
4765 {
4766 int retry_count;
4767 u64 memlimit, memswlimit, oldusage, curusage;
4768 int children = mem_cgroup_count_children(memcg);
4769 int ret = -EBUSY;
4770 int enlarge = 0;
4771
4772 /* see mem_cgroup_resize_res_limit */
4773 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4774 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4775 while (retry_count) {
4776 if (signal_pending(current)) {
4777 ret = -EINTR;
4778 break;
4779 }
4780 /*
4781 * Rather than hide all in some function, I do this in
4782 * open coded manner. You see what this really does.
4783 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4784 */
4785 mutex_lock(&set_limit_mutex);
4786 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4787 if (memlimit > val) {
4788 ret = -EINVAL;
4789 mutex_unlock(&set_limit_mutex);
4790 break;
4791 }
4792 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4793 if (memswlimit < val)
4794 enlarge = 1;
4795 ret = res_counter_set_limit(&memcg->memsw, val);
4796 if (!ret) {
4797 if (memlimit == val)
4798 memcg->memsw_is_minimum = true;
4799 else
4800 memcg->memsw_is_minimum = false;
4801 }
4802 mutex_unlock(&set_limit_mutex);
4803
4804 if (!ret)
4805 break;
4806
4807 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4808 MEM_CGROUP_RECLAIM_NOSWAP |
4809 MEM_CGROUP_RECLAIM_SHRINK);
4810 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4811 /* Usage is reduced ? */
4812 if (curusage >= oldusage)
4813 retry_count--;
4814 else
4815 oldusage = curusage;
4816 }
4817 if (!ret && enlarge)
4818 memcg_oom_recover(memcg);
4819 return ret;
4820 }
4821
4822 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4823 gfp_t gfp_mask,
4824 unsigned long *total_scanned)
4825 {
4826 unsigned long nr_reclaimed = 0;
4827 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4828 unsigned long reclaimed;
4829 int loop = 0;
4830 struct mem_cgroup_tree_per_zone *mctz;
4831 unsigned long long excess;
4832 unsigned long nr_scanned;
4833
4834 if (order > 0)
4835 return 0;
4836
4837 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4838 /*
4839 * This loop can run a while, specially if mem_cgroup's continuously
4840 * keep exceeding their soft limit and putting the system under
4841 * pressure
4842 */
4843 do {
4844 if (next_mz)
4845 mz = next_mz;
4846 else
4847 mz = mem_cgroup_largest_soft_limit_node(mctz);
4848 if (!mz)
4849 break;
4850
4851 nr_scanned = 0;
4852 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4853 gfp_mask, &nr_scanned);
4854 nr_reclaimed += reclaimed;
4855 *total_scanned += nr_scanned;
4856 spin_lock(&mctz->lock);
4857
4858 /*
4859 * If we failed to reclaim anything from this memory cgroup
4860 * it is time to move on to the next cgroup
4861 */
4862 next_mz = NULL;
4863 if (!reclaimed) {
4864 do {
4865 /*
4866 * Loop until we find yet another one.
4867 *
4868 * By the time we get the soft_limit lock
4869 * again, someone might have aded the
4870 * group back on the RB tree. Iterate to
4871 * make sure we get a different mem.
4872 * mem_cgroup_largest_soft_limit_node returns
4873 * NULL if no other cgroup is present on
4874 * the tree
4875 */
4876 next_mz =
4877 __mem_cgroup_largest_soft_limit_node(mctz);
4878 if (next_mz == mz)
4879 css_put(&next_mz->memcg->css);
4880 else /* next_mz == NULL or other memcg */
4881 break;
4882 } while (1);
4883 }
4884 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4885 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4886 /*
4887 * One school of thought says that we should not add
4888 * back the node to the tree if reclaim returns 0.
4889 * But our reclaim could return 0, simply because due
4890 * to priority we are exposing a smaller subset of
4891 * memory to reclaim from. Consider this as a longer
4892 * term TODO.
4893 */
4894 /* If excess == 0, no tree ops */
4895 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4896 spin_unlock(&mctz->lock);
4897 css_put(&mz->memcg->css);
4898 loop++;
4899 /*
4900 * Could not reclaim anything and there are no more
4901 * mem cgroups to try or we seem to be looping without
4902 * reclaiming anything.
4903 */
4904 if (!nr_reclaimed &&
4905 (next_mz == NULL ||
4906 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4907 break;
4908 } while (!nr_reclaimed);
4909 if (next_mz)
4910 css_put(&next_mz->memcg->css);
4911 return nr_reclaimed;
4912 }
4913
4914 /**
4915 * mem_cgroup_force_empty_list - clears LRU of a group
4916 * @memcg: group to clear
4917 * @node: NUMA node
4918 * @zid: zone id
4919 * @lru: lru to to clear
4920 *
4921 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4922 * reclaim the pages page themselves - pages are moved to the parent (or root)
4923 * group.
4924 */
4925 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4926 int node, int zid, enum lru_list lru)
4927 {
4928 struct lruvec *lruvec;
4929 unsigned long flags;
4930 struct list_head *list;
4931 struct page *busy;
4932 struct zone *zone;
4933
4934 zone = &NODE_DATA(node)->node_zones[zid];
4935 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4936 list = &lruvec->lists[lru];
4937
4938 busy = NULL;
4939 do {
4940 struct page_cgroup *pc;
4941 struct page *page;
4942
4943 spin_lock_irqsave(&zone->lru_lock, flags);
4944 if (list_empty(list)) {
4945 spin_unlock_irqrestore(&zone->lru_lock, flags);
4946 break;
4947 }
4948 page = list_entry(list->prev, struct page, lru);
4949 if (busy == page) {
4950 list_move(&page->lru, list);
4951 busy = NULL;
4952 spin_unlock_irqrestore(&zone->lru_lock, flags);
4953 continue;
4954 }
4955 spin_unlock_irqrestore(&zone->lru_lock, flags);
4956
4957 pc = lookup_page_cgroup(page);
4958
4959 if (mem_cgroup_move_parent(page, pc, memcg)) {
4960 /* found lock contention or "pc" is obsolete. */
4961 busy = page;
4962 cond_resched();
4963 } else
4964 busy = NULL;
4965 } while (!list_empty(list));
4966 }
4967
4968 /*
4969 * make mem_cgroup's charge to be 0 if there is no task by moving
4970 * all the charges and pages to the parent.
4971 * This enables deleting this mem_cgroup.
4972 *
4973 * Caller is responsible for holding css reference on the memcg.
4974 */
4975 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4976 {
4977 int node, zid;
4978 u64 usage;
4979
4980 do {
4981 /* This is for making all *used* pages to be on LRU. */
4982 lru_add_drain_all();
4983 drain_all_stock_sync(memcg);
4984 mem_cgroup_start_move(memcg);
4985 for_each_node_state(node, N_MEMORY) {
4986 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4987 enum lru_list lru;
4988 for_each_lru(lru) {
4989 mem_cgroup_force_empty_list(memcg,
4990 node, zid, lru);
4991 }
4992 }
4993 }
4994 mem_cgroup_end_move(memcg);
4995 memcg_oom_recover(memcg);
4996 cond_resched();
4997
4998 /*
4999 * Kernel memory may not necessarily be trackable to a specific
5000 * process. So they are not migrated, and therefore we can't
5001 * expect their value to drop to 0 here.
5002 * Having res filled up with kmem only is enough.
5003 *
5004 * This is a safety check because mem_cgroup_force_empty_list
5005 * could have raced with mem_cgroup_replace_page_cache callers
5006 * so the lru seemed empty but the page could have been added
5007 * right after the check. RES_USAGE should be safe as we always
5008 * charge before adding to the LRU.
5009 */
5010 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
5011 res_counter_read_u64(&memcg->kmem, RES_USAGE);
5012 } while (usage > 0);
5013 }
5014
5015 static inline bool memcg_has_children(struct mem_cgroup *memcg)
5016 {
5017 lockdep_assert_held(&memcg_create_mutex);
5018 /*
5019 * The lock does not prevent addition or deletion to the list
5020 * of children, but it prevents a new child from being
5021 * initialized based on this parent in css_online(), so it's
5022 * enough to decide whether hierarchically inherited
5023 * attributes can still be changed or not.
5024 */
5025 return memcg->use_hierarchy &&
5026 !list_empty(&memcg->css.cgroup->children);
5027 }
5028
5029 /*
5030 * Reclaims as many pages from the given memcg as possible and moves
5031 * the rest to the parent.
5032 *
5033 * Caller is responsible for holding css reference for memcg.
5034 */
5035 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
5036 {
5037 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
5038 struct cgroup *cgrp = memcg->css.cgroup;
5039
5040 /* returns EBUSY if there is a task or if we come here twice. */
5041 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
5042 return -EBUSY;
5043
5044 /* we call try-to-free pages for make this cgroup empty */
5045 lru_add_drain_all();
5046 /* try to free all pages in this cgroup */
5047 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
5048 int progress;
5049
5050 if (signal_pending(current))
5051 return -EINTR;
5052
5053 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
5054 false);
5055 if (!progress) {
5056 nr_retries--;
5057 /* maybe some writeback is necessary */
5058 congestion_wait(BLK_RW_ASYNC, HZ/10);
5059 }
5060
5061 }
5062 lru_add_drain();
5063 mem_cgroup_reparent_charges(memcg);
5064
5065 return 0;
5066 }
5067
5068 static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
5069 unsigned int event)
5070 {
5071 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5072
5073 if (mem_cgroup_is_root(memcg))
5074 return -EINVAL;
5075 return mem_cgroup_force_empty(memcg);
5076 }
5077
5078 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
5079 struct cftype *cft)
5080 {
5081 return mem_cgroup_from_css(css)->use_hierarchy;
5082 }
5083
5084 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
5085 struct cftype *cft, u64 val)
5086 {
5087 int retval = 0;
5088 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5089 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5090
5091 mutex_lock(&memcg_create_mutex);
5092
5093 if (memcg->use_hierarchy == val)
5094 goto out;
5095
5096 /*
5097 * If parent's use_hierarchy is set, we can't make any modifications
5098 * in the child subtrees. If it is unset, then the change can
5099 * occur, provided the current cgroup has no children.
5100 *
5101 * For the root cgroup, parent_mem is NULL, we allow value to be
5102 * set if there are no children.
5103 */
5104 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5105 (val == 1 || val == 0)) {
5106 if (list_empty(&memcg->css.cgroup->children))
5107 memcg->use_hierarchy = val;
5108 else
5109 retval = -EBUSY;
5110 } else
5111 retval = -EINVAL;
5112
5113 out:
5114 mutex_unlock(&memcg_create_mutex);
5115
5116 return retval;
5117 }
5118
5119
5120 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5121 enum mem_cgroup_stat_index idx)
5122 {
5123 struct mem_cgroup *iter;
5124 long val = 0;
5125
5126 /* Per-cpu values can be negative, use a signed accumulator */
5127 for_each_mem_cgroup_tree(iter, memcg)
5128 val += mem_cgroup_read_stat(iter, idx);
5129
5130 if (val < 0) /* race ? */
5131 val = 0;
5132 return val;
5133 }
5134
5135 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5136 {
5137 u64 val;
5138
5139 if (!mem_cgroup_is_root(memcg)) {
5140 if (!swap)
5141 return res_counter_read_u64(&memcg->res, RES_USAGE);
5142 else
5143 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5144 }
5145
5146 /*
5147 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5148 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5149 */
5150 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5151 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5152
5153 if (swap)
5154 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5155
5156 return val << PAGE_SHIFT;
5157 }
5158
5159 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
5160 struct cftype *cft)
5161 {
5162 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5163 u64 val;
5164 int name;
5165 enum res_type type;
5166
5167 type = MEMFILE_TYPE(cft->private);
5168 name = MEMFILE_ATTR(cft->private);
5169
5170 switch (type) {
5171 case _MEM:
5172 if (name == RES_USAGE)
5173 val = mem_cgroup_usage(memcg, false);
5174 else
5175 val = res_counter_read_u64(&memcg->res, name);
5176 break;
5177 case _MEMSWAP:
5178 if (name == RES_USAGE)
5179 val = mem_cgroup_usage(memcg, true);
5180 else
5181 val = res_counter_read_u64(&memcg->memsw, name);
5182 break;
5183 case _KMEM:
5184 val = res_counter_read_u64(&memcg->kmem, name);
5185 break;
5186 default:
5187 BUG();
5188 }
5189
5190 return val;
5191 }
5192
5193 static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
5194 {
5195 int ret = -EINVAL;
5196 #ifdef CONFIG_MEMCG_KMEM
5197 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5198 /*
5199 * For simplicity, we won't allow this to be disabled. It also can't
5200 * be changed if the cgroup has children already, or if tasks had
5201 * already joined.
5202 *
5203 * If tasks join before we set the limit, a person looking at
5204 * kmem.usage_in_bytes will have no way to determine when it took
5205 * place, which makes the value quite meaningless.
5206 *
5207 * After it first became limited, changes in the value of the limit are
5208 * of course permitted.
5209 */
5210 mutex_lock(&memcg_create_mutex);
5211 mutex_lock(&set_limit_mutex);
5212 if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
5213 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
5214 ret = -EBUSY;
5215 goto out;
5216 }
5217 ret = res_counter_set_limit(&memcg->kmem, val);
5218 VM_BUG_ON(ret);
5219
5220 ret = memcg_update_cache_sizes(memcg);
5221 if (ret) {
5222 res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
5223 goto out;
5224 }
5225 static_key_slow_inc(&memcg_kmem_enabled_key);
5226 /*
5227 * setting the active bit after the inc will guarantee no one
5228 * starts accounting before all call sites are patched
5229 */
5230 memcg_kmem_set_active(memcg);
5231 } else
5232 ret = res_counter_set_limit(&memcg->kmem, val);
5233 out:
5234 mutex_unlock(&set_limit_mutex);
5235 mutex_unlock(&memcg_create_mutex);
5236 #endif
5237 return ret;
5238 }
5239
5240 #ifdef CONFIG_MEMCG_KMEM
5241 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5242 {
5243 int ret = 0;
5244 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5245 if (!parent)
5246 goto out;
5247
5248 memcg->kmem_account_flags = parent->kmem_account_flags;
5249 /*
5250 * When that happen, we need to disable the static branch only on those
5251 * memcgs that enabled it. To achieve this, we would be forced to
5252 * complicate the code by keeping track of which memcgs were the ones
5253 * that actually enabled limits, and which ones got it from its
5254 * parents.
5255 *
5256 * It is a lot simpler just to do static_key_slow_inc() on every child
5257 * that is accounted.
5258 */
5259 if (!memcg_kmem_is_active(memcg))
5260 goto out;
5261
5262 /*
5263 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5264 * memcg is active already. If the later initialization fails then the
5265 * cgroup core triggers the cleanup so we do not have to do it here.
5266 */
5267 static_key_slow_inc(&memcg_kmem_enabled_key);
5268
5269 mutex_lock(&set_limit_mutex);
5270 memcg_stop_kmem_account();
5271 ret = memcg_update_cache_sizes(memcg);
5272 memcg_resume_kmem_account();
5273 mutex_unlock(&set_limit_mutex);
5274 out:
5275 return ret;
5276 }
5277 #endif /* CONFIG_MEMCG_KMEM */
5278
5279 /*
5280 * The user of this function is...
5281 * RES_LIMIT.
5282 */
5283 static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5284 const char *buffer)
5285 {
5286 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5287 enum res_type type;
5288 int name;
5289 unsigned long long val;
5290 int ret;
5291
5292 type = MEMFILE_TYPE(cft->private);
5293 name = MEMFILE_ATTR(cft->private);
5294
5295 switch (name) {
5296 case RES_LIMIT:
5297 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5298 ret = -EINVAL;
5299 break;
5300 }
5301 /* This function does all necessary parse...reuse it */
5302 ret = res_counter_memparse_write_strategy(buffer, &val);
5303 if (ret)
5304 break;
5305 if (type == _MEM)
5306 ret = mem_cgroup_resize_limit(memcg, val);
5307 else if (type == _MEMSWAP)
5308 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5309 else if (type == _KMEM)
5310 ret = memcg_update_kmem_limit(css, val);
5311 else
5312 return -EINVAL;
5313 break;
5314 case RES_SOFT_LIMIT:
5315 ret = res_counter_memparse_write_strategy(buffer, &val);
5316 if (ret)
5317 break;
5318 /*
5319 * For memsw, soft limits are hard to implement in terms
5320 * of semantics, for now, we support soft limits for
5321 * control without swap
5322 */
5323 if (type == _MEM)
5324 ret = res_counter_set_soft_limit(&memcg->res, val);
5325 else
5326 ret = -EINVAL;
5327 break;
5328 default:
5329 ret = -EINVAL; /* should be BUG() ? */
5330 break;
5331 }
5332 return ret;
5333 }
5334
5335 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5336 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5337 {
5338 unsigned long long min_limit, min_memsw_limit, tmp;
5339
5340 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5341 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5342 if (!memcg->use_hierarchy)
5343 goto out;
5344
5345 while (css_parent(&memcg->css)) {
5346 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5347 if (!memcg->use_hierarchy)
5348 break;
5349 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5350 min_limit = min(min_limit, tmp);
5351 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5352 min_memsw_limit = min(min_memsw_limit, tmp);
5353 }
5354 out:
5355 *mem_limit = min_limit;
5356 *memsw_limit = min_memsw_limit;
5357 }
5358
5359 static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5360 {
5361 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5362 int name;
5363 enum res_type type;
5364
5365 type = MEMFILE_TYPE(event);
5366 name = MEMFILE_ATTR(event);
5367
5368 switch (name) {
5369 case RES_MAX_USAGE:
5370 if (type == _MEM)
5371 res_counter_reset_max(&memcg->res);
5372 else if (type == _MEMSWAP)
5373 res_counter_reset_max(&memcg->memsw);
5374 else if (type == _KMEM)
5375 res_counter_reset_max(&memcg->kmem);
5376 else
5377 return -EINVAL;
5378 break;
5379 case RES_FAILCNT:
5380 if (type == _MEM)
5381 res_counter_reset_failcnt(&memcg->res);
5382 else if (type == _MEMSWAP)
5383 res_counter_reset_failcnt(&memcg->memsw);
5384 else if (type == _KMEM)
5385 res_counter_reset_failcnt(&memcg->kmem);
5386 else
5387 return -EINVAL;
5388 break;
5389 }
5390
5391 return 0;
5392 }
5393
5394 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5395 struct cftype *cft)
5396 {
5397 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5398 }
5399
5400 #ifdef CONFIG_MMU
5401 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5402 struct cftype *cft, u64 val)
5403 {
5404 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5405
5406 if (val >= (1 << NR_MOVE_TYPE))
5407 return -EINVAL;
5408
5409 /*
5410 * No kind of locking is needed in here, because ->can_attach() will
5411 * check this value once in the beginning of the process, and then carry
5412 * on with stale data. This means that changes to this value will only
5413 * affect task migrations starting after the change.
5414 */
5415 memcg->move_charge_at_immigrate = val;
5416 return 0;
5417 }
5418 #else
5419 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5420 struct cftype *cft, u64 val)
5421 {
5422 return -ENOSYS;
5423 }
5424 #endif
5425
5426 #ifdef CONFIG_NUMA
5427 static int memcg_numa_stat_show(struct seq_file *m, void *v)
5428 {
5429 struct numa_stat {
5430 const char *name;
5431 unsigned int lru_mask;
5432 };
5433
5434 static const struct numa_stat stats[] = {
5435 { "total", LRU_ALL },
5436 { "file", LRU_ALL_FILE },
5437 { "anon", LRU_ALL_ANON },
5438 { "unevictable", BIT(LRU_UNEVICTABLE) },
5439 };
5440 const struct numa_stat *stat;
5441 int nid;
5442 unsigned long nr;
5443 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5444
5445 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5446 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
5447 seq_printf(m, "%s=%lu", stat->name, nr);
5448 for_each_node_state(nid, N_MEMORY) {
5449 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5450 stat->lru_mask);
5451 seq_printf(m, " N%d=%lu", nid, nr);
5452 }
5453 seq_putc(m, '\n');
5454 }
5455
5456 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5457 struct mem_cgroup *iter;
5458
5459 nr = 0;
5460 for_each_mem_cgroup_tree(iter, memcg)
5461 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
5462 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
5463 for_each_node_state(nid, N_MEMORY) {
5464 nr = 0;
5465 for_each_mem_cgroup_tree(iter, memcg)
5466 nr += mem_cgroup_node_nr_lru_pages(
5467 iter, nid, stat->lru_mask);
5468 seq_printf(m, " N%d=%lu", nid, nr);
5469 }
5470 seq_putc(m, '\n');
5471 }
5472
5473 return 0;
5474 }
5475 #endif /* CONFIG_NUMA */
5476
5477 static inline void mem_cgroup_lru_names_not_uptodate(void)
5478 {
5479 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5480 }
5481
5482 static int memcg_stat_show(struct seq_file *m, void *v)
5483 {
5484 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5485 struct mem_cgroup *mi;
5486 unsigned int i;
5487
5488 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5489 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5490 continue;
5491 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5492 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5493 }
5494
5495 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5496 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5497 mem_cgroup_read_events(memcg, i));
5498
5499 for (i = 0; i < NR_LRU_LISTS; i++)
5500 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5501 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5502
5503 /* Hierarchical information */
5504 {
5505 unsigned long long limit, memsw_limit;
5506 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5507 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5508 if (do_swap_account)
5509 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5510 memsw_limit);
5511 }
5512
5513 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5514 long long val = 0;
5515
5516 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5517 continue;
5518 for_each_mem_cgroup_tree(mi, memcg)
5519 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5520 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5521 }
5522
5523 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5524 unsigned long long val = 0;
5525
5526 for_each_mem_cgroup_tree(mi, memcg)
5527 val += mem_cgroup_read_events(mi, i);
5528 seq_printf(m, "total_%s %llu\n",
5529 mem_cgroup_events_names[i], val);
5530 }
5531
5532 for (i = 0; i < NR_LRU_LISTS; i++) {
5533 unsigned long long val = 0;
5534
5535 for_each_mem_cgroup_tree(mi, memcg)
5536 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5537 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5538 }
5539
5540 #ifdef CONFIG_DEBUG_VM
5541 {
5542 int nid, zid;
5543 struct mem_cgroup_per_zone *mz;
5544 struct zone_reclaim_stat *rstat;
5545 unsigned long recent_rotated[2] = {0, 0};
5546 unsigned long recent_scanned[2] = {0, 0};
5547
5548 for_each_online_node(nid)
5549 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5550 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5551 rstat = &mz->lruvec.reclaim_stat;
5552
5553 recent_rotated[0] += rstat->recent_rotated[0];
5554 recent_rotated[1] += rstat->recent_rotated[1];
5555 recent_scanned[0] += rstat->recent_scanned[0];
5556 recent_scanned[1] += rstat->recent_scanned[1];
5557 }
5558 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5559 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5560 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5561 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5562 }
5563 #endif
5564
5565 return 0;
5566 }
5567
5568 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5569 struct cftype *cft)
5570 {
5571 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5572
5573 return mem_cgroup_swappiness(memcg);
5574 }
5575
5576 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5577 struct cftype *cft, u64 val)
5578 {
5579 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5580 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5581
5582 if (val > 100 || !parent)
5583 return -EINVAL;
5584
5585 mutex_lock(&memcg_create_mutex);
5586
5587 /* If under hierarchy, only empty-root can set this value */
5588 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5589 mutex_unlock(&memcg_create_mutex);
5590 return -EINVAL;
5591 }
5592
5593 memcg->swappiness = val;
5594
5595 mutex_unlock(&memcg_create_mutex);
5596
5597 return 0;
5598 }
5599
5600 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5601 {
5602 struct mem_cgroup_threshold_ary *t;
5603 u64 usage;
5604 int i;
5605
5606 rcu_read_lock();
5607 if (!swap)
5608 t = rcu_dereference(memcg->thresholds.primary);
5609 else
5610 t = rcu_dereference(memcg->memsw_thresholds.primary);
5611
5612 if (!t)
5613 goto unlock;
5614
5615 usage = mem_cgroup_usage(memcg, swap);
5616
5617 /*
5618 * current_threshold points to threshold just below or equal to usage.
5619 * If it's not true, a threshold was crossed after last
5620 * call of __mem_cgroup_threshold().
5621 */
5622 i = t->current_threshold;
5623
5624 /*
5625 * Iterate backward over array of thresholds starting from
5626 * current_threshold and check if a threshold is crossed.
5627 * If none of thresholds below usage is crossed, we read
5628 * only one element of the array here.
5629 */
5630 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5631 eventfd_signal(t->entries[i].eventfd, 1);
5632
5633 /* i = current_threshold + 1 */
5634 i++;
5635
5636 /*
5637 * Iterate forward over array of thresholds starting from
5638 * current_threshold+1 and check if a threshold is crossed.
5639 * If none of thresholds above usage is crossed, we read
5640 * only one element of the array here.
5641 */
5642 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5643 eventfd_signal(t->entries[i].eventfd, 1);
5644
5645 /* Update current_threshold */
5646 t->current_threshold = i - 1;
5647 unlock:
5648 rcu_read_unlock();
5649 }
5650
5651 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5652 {
5653 while (memcg) {
5654 __mem_cgroup_threshold(memcg, false);
5655 if (do_swap_account)
5656 __mem_cgroup_threshold(memcg, true);
5657
5658 memcg = parent_mem_cgroup(memcg);
5659 }
5660 }
5661
5662 static int compare_thresholds(const void *a, const void *b)
5663 {
5664 const struct mem_cgroup_threshold *_a = a;
5665 const struct mem_cgroup_threshold *_b = b;
5666
5667 if (_a->threshold > _b->threshold)
5668 return 1;
5669
5670 if (_a->threshold < _b->threshold)
5671 return -1;
5672
5673 return 0;
5674 }
5675
5676 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5677 {
5678 struct mem_cgroup_eventfd_list *ev;
5679
5680 list_for_each_entry(ev, &memcg->oom_notify, list)
5681 eventfd_signal(ev->eventfd, 1);
5682 return 0;
5683 }
5684
5685 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5686 {
5687 struct mem_cgroup *iter;
5688
5689 for_each_mem_cgroup_tree(iter, memcg)
5690 mem_cgroup_oom_notify_cb(iter);
5691 }
5692
5693 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
5694 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
5695 {
5696 struct mem_cgroup_thresholds *thresholds;
5697 struct mem_cgroup_threshold_ary *new;
5698 u64 threshold, usage;
5699 int i, size, ret;
5700
5701 ret = res_counter_memparse_write_strategy(args, &threshold);
5702 if (ret)
5703 return ret;
5704
5705 mutex_lock(&memcg->thresholds_lock);
5706
5707 if (type == _MEM)
5708 thresholds = &memcg->thresholds;
5709 else if (type == _MEMSWAP)
5710 thresholds = &memcg->memsw_thresholds;
5711 else
5712 BUG();
5713
5714 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5715
5716 /* Check if a threshold crossed before adding a new one */
5717 if (thresholds->primary)
5718 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5719
5720 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5721
5722 /* Allocate memory for new array of thresholds */
5723 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5724 GFP_KERNEL);
5725 if (!new) {
5726 ret = -ENOMEM;
5727 goto unlock;
5728 }
5729 new->size = size;
5730
5731 /* Copy thresholds (if any) to new array */
5732 if (thresholds->primary) {
5733 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5734 sizeof(struct mem_cgroup_threshold));
5735 }
5736
5737 /* Add new threshold */
5738 new->entries[size - 1].eventfd = eventfd;
5739 new->entries[size - 1].threshold = threshold;
5740
5741 /* Sort thresholds. Registering of new threshold isn't time-critical */
5742 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5743 compare_thresholds, NULL);
5744
5745 /* Find current threshold */
5746 new->current_threshold = -1;
5747 for (i = 0; i < size; i++) {
5748 if (new->entries[i].threshold <= usage) {
5749 /*
5750 * new->current_threshold will not be used until
5751 * rcu_assign_pointer(), so it's safe to increment
5752 * it here.
5753 */
5754 ++new->current_threshold;
5755 } else
5756 break;
5757 }
5758
5759 /* Free old spare buffer and save old primary buffer as spare */
5760 kfree(thresholds->spare);
5761 thresholds->spare = thresholds->primary;
5762
5763 rcu_assign_pointer(thresholds->primary, new);
5764
5765 /* To be sure that nobody uses thresholds */
5766 synchronize_rcu();
5767
5768 unlock:
5769 mutex_unlock(&memcg->thresholds_lock);
5770
5771 return ret;
5772 }
5773
5774 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
5775 struct eventfd_ctx *eventfd, const char *args)
5776 {
5777 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
5778 }
5779
5780 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
5781 struct eventfd_ctx *eventfd, const char *args)
5782 {
5783 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
5784 }
5785
5786 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5787 struct eventfd_ctx *eventfd, enum res_type type)
5788 {
5789 struct mem_cgroup_thresholds *thresholds;
5790 struct mem_cgroup_threshold_ary *new;
5791 u64 usage;
5792 int i, j, size;
5793
5794 mutex_lock(&memcg->thresholds_lock);
5795 if (type == _MEM)
5796 thresholds = &memcg->thresholds;
5797 else if (type == _MEMSWAP)
5798 thresholds = &memcg->memsw_thresholds;
5799 else
5800 BUG();
5801
5802 if (!thresholds->primary)
5803 goto unlock;
5804
5805 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5806
5807 /* Check if a threshold crossed before removing */
5808 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5809
5810 /* Calculate new number of threshold */
5811 size = 0;
5812 for (i = 0; i < thresholds->primary->size; i++) {
5813 if (thresholds->primary->entries[i].eventfd != eventfd)
5814 size++;
5815 }
5816
5817 new = thresholds->spare;
5818
5819 /* Set thresholds array to NULL if we don't have thresholds */
5820 if (!size) {
5821 kfree(new);
5822 new = NULL;
5823 goto swap_buffers;
5824 }
5825
5826 new->size = size;
5827
5828 /* Copy thresholds and find current threshold */
5829 new->current_threshold = -1;
5830 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5831 if (thresholds->primary->entries[i].eventfd == eventfd)
5832 continue;
5833
5834 new->entries[j] = thresholds->primary->entries[i];
5835 if (new->entries[j].threshold <= usage) {
5836 /*
5837 * new->current_threshold will not be used
5838 * until rcu_assign_pointer(), so it's safe to increment
5839 * it here.
5840 */
5841 ++new->current_threshold;
5842 }
5843 j++;
5844 }
5845
5846 swap_buffers:
5847 /* Swap primary and spare array */
5848 thresholds->spare = thresholds->primary;
5849 /* If all events are unregistered, free the spare array */
5850 if (!new) {
5851 kfree(thresholds->spare);
5852 thresholds->spare = NULL;
5853 }
5854
5855 rcu_assign_pointer(thresholds->primary, new);
5856
5857 /* To be sure that nobody uses thresholds */
5858 synchronize_rcu();
5859 unlock:
5860 mutex_unlock(&memcg->thresholds_lock);
5861 }
5862
5863 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5864 struct eventfd_ctx *eventfd)
5865 {
5866 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
5867 }
5868
5869 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5870 struct eventfd_ctx *eventfd)
5871 {
5872 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
5873 }
5874
5875 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
5876 struct eventfd_ctx *eventfd, const char *args)
5877 {
5878 struct mem_cgroup_eventfd_list *event;
5879
5880 event = kmalloc(sizeof(*event), GFP_KERNEL);
5881 if (!event)
5882 return -ENOMEM;
5883
5884 spin_lock(&memcg_oom_lock);
5885
5886 event->eventfd = eventfd;
5887 list_add(&event->list, &memcg->oom_notify);
5888
5889 /* already in OOM ? */
5890 if (atomic_read(&memcg->under_oom))
5891 eventfd_signal(eventfd, 1);
5892 spin_unlock(&memcg_oom_lock);
5893
5894 return 0;
5895 }
5896
5897 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
5898 struct eventfd_ctx *eventfd)
5899 {
5900 struct mem_cgroup_eventfd_list *ev, *tmp;
5901
5902 spin_lock(&memcg_oom_lock);
5903
5904 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5905 if (ev->eventfd == eventfd) {
5906 list_del(&ev->list);
5907 kfree(ev);
5908 }
5909 }
5910
5911 spin_unlock(&memcg_oom_lock);
5912 }
5913
5914 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
5915 {
5916 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5917
5918 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
5919 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
5920 return 0;
5921 }
5922
5923 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5924 struct cftype *cft, u64 val)
5925 {
5926 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5927 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5928
5929 /* cannot set to root cgroup and only 0 and 1 are allowed */
5930 if (!parent || !((val == 0) || (val == 1)))
5931 return -EINVAL;
5932
5933 mutex_lock(&memcg_create_mutex);
5934 /* oom-kill-disable is a flag for subhierarchy. */
5935 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5936 mutex_unlock(&memcg_create_mutex);
5937 return -EINVAL;
5938 }
5939 memcg->oom_kill_disable = val;
5940 if (!val)
5941 memcg_oom_recover(memcg);
5942 mutex_unlock(&memcg_create_mutex);
5943 return 0;
5944 }
5945
5946 #ifdef CONFIG_MEMCG_KMEM
5947 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5948 {
5949 int ret;
5950
5951 memcg->kmemcg_id = -1;
5952 ret = memcg_propagate_kmem(memcg);
5953 if (ret)
5954 return ret;
5955
5956 return mem_cgroup_sockets_init(memcg, ss);
5957 }
5958
5959 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5960 {
5961 mem_cgroup_sockets_destroy(memcg);
5962 }
5963
5964 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5965 {
5966 if (!memcg_kmem_is_active(memcg))
5967 return;
5968
5969 /*
5970 * kmem charges can outlive the cgroup. In the case of slab
5971 * pages, for instance, a page contain objects from various
5972 * processes. As we prevent from taking a reference for every
5973 * such allocation we have to be careful when doing uncharge
5974 * (see memcg_uncharge_kmem) and here during offlining.
5975 *
5976 * The idea is that that only the _last_ uncharge which sees
5977 * the dead memcg will drop the last reference. An additional
5978 * reference is taken here before the group is marked dead
5979 * which is then paired with css_put during uncharge resp. here.
5980 *
5981 * Although this might sound strange as this path is called from
5982 * css_offline() when the referencemight have dropped down to 0
5983 * and shouldn't be incremented anymore (css_tryget would fail)
5984 * we do not have other options because of the kmem allocations
5985 * lifetime.
5986 */
5987 css_get(&memcg->css);
5988
5989 memcg_kmem_mark_dead(memcg);
5990
5991 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5992 return;
5993
5994 if (memcg_kmem_test_and_clear_dead(memcg))
5995 css_put(&memcg->css);
5996 }
5997 #else
5998 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5999 {
6000 return 0;
6001 }
6002
6003 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
6004 {
6005 }
6006
6007 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
6008 {
6009 }
6010 #endif
6011
6012 /*
6013 * DO NOT USE IN NEW FILES.
6014 *
6015 * "cgroup.event_control" implementation.
6016 *
6017 * This is way over-engineered. It tries to support fully configurable
6018 * events for each user. Such level of flexibility is completely
6019 * unnecessary especially in the light of the planned unified hierarchy.
6020 *
6021 * Please deprecate this and replace with something simpler if at all
6022 * possible.
6023 */
6024
6025 /*
6026 * Unregister event and free resources.
6027 *
6028 * Gets called from workqueue.
6029 */
6030 static void memcg_event_remove(struct work_struct *work)
6031 {
6032 struct mem_cgroup_event *event =
6033 container_of(work, struct mem_cgroup_event, remove);
6034 struct mem_cgroup *memcg = event->memcg;
6035
6036 remove_wait_queue(event->wqh, &event->wait);
6037
6038 event->unregister_event(memcg, event->eventfd);
6039
6040 /* Notify userspace the event is going away. */
6041 eventfd_signal(event->eventfd, 1);
6042
6043 eventfd_ctx_put(event->eventfd);
6044 kfree(event);
6045 css_put(&memcg->css);
6046 }
6047
6048 /*
6049 * Gets called on POLLHUP on eventfd when user closes it.
6050 *
6051 * Called with wqh->lock held and interrupts disabled.
6052 */
6053 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
6054 int sync, void *key)
6055 {
6056 struct mem_cgroup_event *event =
6057 container_of(wait, struct mem_cgroup_event, wait);
6058 struct mem_cgroup *memcg = event->memcg;
6059 unsigned long flags = (unsigned long)key;
6060
6061 if (flags & POLLHUP) {
6062 /*
6063 * If the event has been detached at cgroup removal, we
6064 * can simply return knowing the other side will cleanup
6065 * for us.
6066 *
6067 * We can't race against event freeing since the other
6068 * side will require wqh->lock via remove_wait_queue(),
6069 * which we hold.
6070 */
6071 spin_lock(&memcg->event_list_lock);
6072 if (!list_empty(&event->list)) {
6073 list_del_init(&event->list);
6074 /*
6075 * We are in atomic context, but cgroup_event_remove()
6076 * may sleep, so we have to call it in workqueue.
6077 */
6078 schedule_work(&event->remove);
6079 }
6080 spin_unlock(&memcg->event_list_lock);
6081 }
6082
6083 return 0;
6084 }
6085
6086 static void memcg_event_ptable_queue_proc(struct file *file,
6087 wait_queue_head_t *wqh, poll_table *pt)
6088 {
6089 struct mem_cgroup_event *event =
6090 container_of(pt, struct mem_cgroup_event, pt);
6091
6092 event->wqh = wqh;
6093 add_wait_queue(wqh, &event->wait);
6094 }
6095
6096 /*
6097 * DO NOT USE IN NEW FILES.
6098 *
6099 * Parse input and register new cgroup event handler.
6100 *
6101 * Input must be in format '<event_fd> <control_fd> <args>'.
6102 * Interpretation of args is defined by control file implementation.
6103 */
6104 static int memcg_write_event_control(struct cgroup_subsys_state *css,
6105 struct cftype *cft, const char *buffer)
6106 {
6107 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6108 struct mem_cgroup_event *event;
6109 struct cgroup_subsys_state *cfile_css;
6110 unsigned int efd, cfd;
6111 struct fd efile;
6112 struct fd cfile;
6113 const char *name;
6114 char *endp;
6115 int ret;
6116
6117 efd = simple_strtoul(buffer, &endp, 10);
6118 if (*endp != ' ')
6119 return -EINVAL;
6120 buffer = endp + 1;
6121
6122 cfd = simple_strtoul(buffer, &endp, 10);
6123 if ((*endp != ' ') && (*endp != '\0'))
6124 return -EINVAL;
6125 buffer = endp + 1;
6126
6127 event = kzalloc(sizeof(*event), GFP_KERNEL);
6128 if (!event)
6129 return -ENOMEM;
6130
6131 event->memcg = memcg;
6132 INIT_LIST_HEAD(&event->list);
6133 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
6134 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
6135 INIT_WORK(&event->remove, memcg_event_remove);
6136
6137 efile = fdget(efd);
6138 if (!efile.file) {
6139 ret = -EBADF;
6140 goto out_kfree;
6141 }
6142
6143 event->eventfd = eventfd_ctx_fileget(efile.file);
6144 if (IS_ERR(event->eventfd)) {
6145 ret = PTR_ERR(event->eventfd);
6146 goto out_put_efile;
6147 }
6148
6149 cfile = fdget(cfd);
6150 if (!cfile.file) {
6151 ret = -EBADF;
6152 goto out_put_eventfd;
6153 }
6154
6155 /* the process need read permission on control file */
6156 /* AV: shouldn't we check that it's been opened for read instead? */
6157 ret = inode_permission(file_inode(cfile.file), MAY_READ);
6158 if (ret < 0)
6159 goto out_put_cfile;
6160
6161 /*
6162 * Determine the event callbacks and set them in @event. This used
6163 * to be done via struct cftype but cgroup core no longer knows
6164 * about these events. The following is crude but the whole thing
6165 * is for compatibility anyway.
6166 *
6167 * DO NOT ADD NEW FILES.
6168 */
6169 name = cfile.file->f_dentry->d_name.name;
6170
6171 if (!strcmp(name, "memory.usage_in_bytes")) {
6172 event->register_event = mem_cgroup_usage_register_event;
6173 event->unregister_event = mem_cgroup_usage_unregister_event;
6174 } else if (!strcmp(name, "memory.oom_control")) {
6175 event->register_event = mem_cgroup_oom_register_event;
6176 event->unregister_event = mem_cgroup_oom_unregister_event;
6177 } else if (!strcmp(name, "memory.pressure_level")) {
6178 event->register_event = vmpressure_register_event;
6179 event->unregister_event = vmpressure_unregister_event;
6180 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
6181 event->register_event = memsw_cgroup_usage_register_event;
6182 event->unregister_event = memsw_cgroup_usage_unregister_event;
6183 } else {
6184 ret = -EINVAL;
6185 goto out_put_cfile;
6186 }
6187
6188 /*
6189 * Verify @cfile should belong to @css. Also, remaining events are
6190 * automatically removed on cgroup destruction but the removal is
6191 * asynchronous, so take an extra ref on @css.
6192 */
6193 rcu_read_lock();
6194
6195 ret = -EINVAL;
6196 cfile_css = css_from_dir(cfile.file->f_dentry->d_parent,
6197 &mem_cgroup_subsys);
6198 if (cfile_css == css && css_tryget(css))
6199 ret = 0;
6200
6201 rcu_read_unlock();
6202 if (ret)
6203 goto out_put_cfile;
6204
6205 ret = event->register_event(memcg, event->eventfd, buffer);
6206 if (ret)
6207 goto out_put_css;
6208
6209 efile.file->f_op->poll(efile.file, &event->pt);
6210
6211 spin_lock(&memcg->event_list_lock);
6212 list_add(&event->list, &memcg->event_list);
6213 spin_unlock(&memcg->event_list_lock);
6214
6215 fdput(cfile);
6216 fdput(efile);
6217
6218 return 0;
6219
6220 out_put_css:
6221 css_put(css);
6222 out_put_cfile:
6223 fdput(cfile);
6224 out_put_eventfd:
6225 eventfd_ctx_put(event->eventfd);
6226 out_put_efile:
6227 fdput(efile);
6228 out_kfree:
6229 kfree(event);
6230
6231 return ret;
6232 }
6233
6234 static struct cftype mem_cgroup_files[] = {
6235 {
6236 .name = "usage_in_bytes",
6237 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
6238 .read_u64 = mem_cgroup_read_u64,
6239 },
6240 {
6241 .name = "max_usage_in_bytes",
6242 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6243 .trigger = mem_cgroup_reset,
6244 .read_u64 = mem_cgroup_read_u64,
6245 },
6246 {
6247 .name = "limit_in_bytes",
6248 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
6249 .write_string = mem_cgroup_write,
6250 .read_u64 = mem_cgroup_read_u64,
6251 },
6252 {
6253 .name = "soft_limit_in_bytes",
6254 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
6255 .write_string = mem_cgroup_write,
6256 .read_u64 = mem_cgroup_read_u64,
6257 },
6258 {
6259 .name = "failcnt",
6260 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6261 .trigger = mem_cgroup_reset,
6262 .read_u64 = mem_cgroup_read_u64,
6263 },
6264 {
6265 .name = "stat",
6266 .seq_show = memcg_stat_show,
6267 },
6268 {
6269 .name = "force_empty",
6270 .trigger = mem_cgroup_force_empty_write,
6271 },
6272 {
6273 .name = "use_hierarchy",
6274 .flags = CFTYPE_INSANE,
6275 .write_u64 = mem_cgroup_hierarchy_write,
6276 .read_u64 = mem_cgroup_hierarchy_read,
6277 },
6278 {
6279 .name = "cgroup.event_control", /* XXX: for compat */
6280 .write_string = memcg_write_event_control,
6281 .flags = CFTYPE_NO_PREFIX,
6282 .mode = S_IWUGO,
6283 },
6284 {
6285 .name = "swappiness",
6286 .read_u64 = mem_cgroup_swappiness_read,
6287 .write_u64 = mem_cgroup_swappiness_write,
6288 },
6289 {
6290 .name = "move_charge_at_immigrate",
6291 .read_u64 = mem_cgroup_move_charge_read,
6292 .write_u64 = mem_cgroup_move_charge_write,
6293 },
6294 {
6295 .name = "oom_control",
6296 .seq_show = mem_cgroup_oom_control_read,
6297 .write_u64 = mem_cgroup_oom_control_write,
6298 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6299 },
6300 {
6301 .name = "pressure_level",
6302 },
6303 #ifdef CONFIG_NUMA
6304 {
6305 .name = "numa_stat",
6306 .seq_show = memcg_numa_stat_show,
6307 },
6308 #endif
6309 #ifdef CONFIG_MEMCG_KMEM
6310 {
6311 .name = "kmem.limit_in_bytes",
6312 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6313 .write_string = mem_cgroup_write,
6314 .read_u64 = mem_cgroup_read_u64,
6315 },
6316 {
6317 .name = "kmem.usage_in_bytes",
6318 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6319 .read_u64 = mem_cgroup_read_u64,
6320 },
6321 {
6322 .name = "kmem.failcnt",
6323 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6324 .trigger = mem_cgroup_reset,
6325 .read_u64 = mem_cgroup_read_u64,
6326 },
6327 {
6328 .name = "kmem.max_usage_in_bytes",
6329 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6330 .trigger = mem_cgroup_reset,
6331 .read_u64 = mem_cgroup_read_u64,
6332 },
6333 #ifdef CONFIG_SLABINFO
6334 {
6335 .name = "kmem.slabinfo",
6336 .seq_show = mem_cgroup_slabinfo_read,
6337 },
6338 #endif
6339 #endif
6340 { }, /* terminate */
6341 };
6342
6343 #ifdef CONFIG_MEMCG_SWAP
6344 static struct cftype memsw_cgroup_files[] = {
6345 {
6346 .name = "memsw.usage_in_bytes",
6347 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6348 .read_u64 = mem_cgroup_read_u64,
6349 },
6350 {
6351 .name = "memsw.max_usage_in_bytes",
6352 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6353 .trigger = mem_cgroup_reset,
6354 .read_u64 = mem_cgroup_read_u64,
6355 },
6356 {
6357 .name = "memsw.limit_in_bytes",
6358 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6359 .write_string = mem_cgroup_write,
6360 .read_u64 = mem_cgroup_read_u64,
6361 },
6362 {
6363 .name = "memsw.failcnt",
6364 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6365 .trigger = mem_cgroup_reset,
6366 .read_u64 = mem_cgroup_read_u64,
6367 },
6368 { }, /* terminate */
6369 };
6370 #endif
6371 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6372 {
6373 struct mem_cgroup_per_node *pn;
6374 struct mem_cgroup_per_zone *mz;
6375 int zone, tmp = node;
6376 /*
6377 * This routine is called against possible nodes.
6378 * But it's BUG to call kmalloc() against offline node.
6379 *
6380 * TODO: this routine can waste much memory for nodes which will
6381 * never be onlined. It's better to use memory hotplug callback
6382 * function.
6383 */
6384 if (!node_state(node, N_NORMAL_MEMORY))
6385 tmp = -1;
6386 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6387 if (!pn)
6388 return 1;
6389
6390 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6391 mz = &pn->zoneinfo[zone];
6392 lruvec_init(&mz->lruvec);
6393 mz->usage_in_excess = 0;
6394 mz->on_tree = false;
6395 mz->memcg = memcg;
6396 }
6397 memcg->nodeinfo[node] = pn;
6398 return 0;
6399 }
6400
6401 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6402 {
6403 kfree(memcg->nodeinfo[node]);
6404 }
6405
6406 static struct mem_cgroup *mem_cgroup_alloc(void)
6407 {
6408 struct mem_cgroup *memcg;
6409 size_t size;
6410
6411 size = sizeof(struct mem_cgroup);
6412 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
6413
6414 memcg = kzalloc(size, GFP_KERNEL);
6415 if (!memcg)
6416 return NULL;
6417
6418 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6419 if (!memcg->stat)
6420 goto out_free;
6421 spin_lock_init(&memcg->pcp_counter_lock);
6422 return memcg;
6423
6424 out_free:
6425 kfree(memcg);
6426 return NULL;
6427 }
6428
6429 /*
6430 * At destroying mem_cgroup, references from swap_cgroup can remain.
6431 * (scanning all at force_empty is too costly...)
6432 *
6433 * Instead of clearing all references at force_empty, we remember
6434 * the number of reference from swap_cgroup and free mem_cgroup when
6435 * it goes down to 0.
6436 *
6437 * Removal of cgroup itself succeeds regardless of refs from swap.
6438 */
6439
6440 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6441 {
6442 int node;
6443
6444 mem_cgroup_remove_from_trees(memcg);
6445
6446 for_each_node(node)
6447 free_mem_cgroup_per_zone_info(memcg, node);
6448
6449 free_percpu(memcg->stat);
6450
6451 /*
6452 * We need to make sure that (at least for now), the jump label
6453 * destruction code runs outside of the cgroup lock. This is because
6454 * get_online_cpus(), which is called from the static_branch update,
6455 * can't be called inside the cgroup_lock. cpusets are the ones
6456 * enforcing this dependency, so if they ever change, we might as well.
6457 *
6458 * schedule_work() will guarantee this happens. Be careful if you need
6459 * to move this code around, and make sure it is outside
6460 * the cgroup_lock.
6461 */
6462 disarm_static_keys(memcg);
6463 kfree(memcg);
6464 }
6465
6466 /*
6467 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6468 */
6469 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6470 {
6471 if (!memcg->res.parent)
6472 return NULL;
6473 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6474 }
6475 EXPORT_SYMBOL(parent_mem_cgroup);
6476
6477 static void __init mem_cgroup_soft_limit_tree_init(void)
6478 {
6479 struct mem_cgroup_tree_per_node *rtpn;
6480 struct mem_cgroup_tree_per_zone *rtpz;
6481 int tmp, node, zone;
6482
6483 for_each_node(node) {
6484 tmp = node;
6485 if (!node_state(node, N_NORMAL_MEMORY))
6486 tmp = -1;
6487 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6488 BUG_ON(!rtpn);
6489
6490 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6491
6492 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6493 rtpz = &rtpn->rb_tree_per_zone[zone];
6494 rtpz->rb_root = RB_ROOT;
6495 spin_lock_init(&rtpz->lock);
6496 }
6497 }
6498 }
6499
6500 static struct cgroup_subsys_state * __ref
6501 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6502 {
6503 struct mem_cgroup *memcg;
6504 long error = -ENOMEM;
6505 int node;
6506
6507 memcg = mem_cgroup_alloc();
6508 if (!memcg)
6509 return ERR_PTR(error);
6510
6511 for_each_node(node)
6512 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6513 goto free_out;
6514
6515 /* root ? */
6516 if (parent_css == NULL) {
6517 root_mem_cgroup = memcg;
6518 res_counter_init(&memcg->res, NULL);
6519 res_counter_init(&memcg->memsw, NULL);
6520 res_counter_init(&memcg->kmem, NULL);
6521 }
6522
6523 memcg->last_scanned_node = MAX_NUMNODES;
6524 INIT_LIST_HEAD(&memcg->oom_notify);
6525 memcg->move_charge_at_immigrate = 0;
6526 mutex_init(&memcg->thresholds_lock);
6527 spin_lock_init(&memcg->move_lock);
6528 vmpressure_init(&memcg->vmpressure);
6529 INIT_LIST_HEAD(&memcg->event_list);
6530 spin_lock_init(&memcg->event_list_lock);
6531
6532 return &memcg->css;
6533
6534 free_out:
6535 __mem_cgroup_free(memcg);
6536 return ERR_PTR(error);
6537 }
6538
6539 static int
6540 mem_cgroup_css_online(struct cgroup_subsys_state *css)
6541 {
6542 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6543 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6544 int error = 0;
6545
6546 if (css->cgroup->id > MEM_CGROUP_ID_MAX)
6547 return -ENOSPC;
6548
6549 if (!parent)
6550 return 0;
6551
6552 mutex_lock(&memcg_create_mutex);
6553
6554 memcg->use_hierarchy = parent->use_hierarchy;
6555 memcg->oom_kill_disable = parent->oom_kill_disable;
6556 memcg->swappiness = mem_cgroup_swappiness(parent);
6557
6558 if (parent->use_hierarchy) {
6559 res_counter_init(&memcg->res, &parent->res);
6560 res_counter_init(&memcg->memsw, &parent->memsw);
6561 res_counter_init(&memcg->kmem, &parent->kmem);
6562
6563 /*
6564 * No need to take a reference to the parent because cgroup
6565 * core guarantees its existence.
6566 */
6567 } else {
6568 res_counter_init(&memcg->res, NULL);
6569 res_counter_init(&memcg->memsw, NULL);
6570 res_counter_init(&memcg->kmem, NULL);
6571 /*
6572 * Deeper hierachy with use_hierarchy == false doesn't make
6573 * much sense so let cgroup subsystem know about this
6574 * unfortunate state in our controller.
6575 */
6576 if (parent != root_mem_cgroup)
6577 mem_cgroup_subsys.broken_hierarchy = true;
6578 }
6579
6580 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6581 mutex_unlock(&memcg_create_mutex);
6582 return error;
6583 }
6584
6585 /*
6586 * Announce all parents that a group from their hierarchy is gone.
6587 */
6588 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6589 {
6590 struct mem_cgroup *parent = memcg;
6591
6592 while ((parent = parent_mem_cgroup(parent)))
6593 mem_cgroup_iter_invalidate(parent);
6594
6595 /*
6596 * if the root memcg is not hierarchical we have to check it
6597 * explicitely.
6598 */
6599 if (!root_mem_cgroup->use_hierarchy)
6600 mem_cgroup_iter_invalidate(root_mem_cgroup);
6601 }
6602
6603 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6604 {
6605 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6606 struct mem_cgroup_event *event, *tmp;
6607
6608 /*
6609 * Unregister events and notify userspace.
6610 * Notify userspace about cgroup removing only after rmdir of cgroup
6611 * directory to avoid race between userspace and kernelspace.
6612 */
6613 spin_lock(&memcg->event_list_lock);
6614 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
6615 list_del_init(&event->list);
6616 schedule_work(&event->remove);
6617 }
6618 spin_unlock(&memcg->event_list_lock);
6619
6620 kmem_cgroup_css_offline(memcg);
6621
6622 mem_cgroup_invalidate_reclaim_iterators(memcg);
6623 mem_cgroup_reparent_charges(memcg);
6624 mem_cgroup_destroy_all_caches(memcg);
6625 vmpressure_cleanup(&memcg->vmpressure);
6626 }
6627
6628 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6629 {
6630 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6631 /*
6632 * XXX: css_offline() would be where we should reparent all
6633 * memory to prepare the cgroup for destruction. However,
6634 * memcg does not do css_tryget() and res_counter charging
6635 * under the same RCU lock region, which means that charging
6636 * could race with offlining. Offlining only happens to
6637 * cgroups with no tasks in them but charges can show up
6638 * without any tasks from the swapin path when the target
6639 * memcg is looked up from the swapout record and not from the
6640 * current task as it usually is. A race like this can leak
6641 * charges and put pages with stale cgroup pointers into
6642 * circulation:
6643 *
6644 * #0 #1
6645 * lookup_swap_cgroup_id()
6646 * rcu_read_lock()
6647 * mem_cgroup_lookup()
6648 * css_tryget()
6649 * rcu_read_unlock()
6650 * disable css_tryget()
6651 * call_rcu()
6652 * offline_css()
6653 * reparent_charges()
6654 * res_counter_charge()
6655 * css_put()
6656 * css_free()
6657 * pc->mem_cgroup = dead memcg
6658 * add page to lru
6659 *
6660 * The bulk of the charges are still moved in offline_css() to
6661 * avoid pinning a lot of pages in case a long-term reference
6662 * like a swapout record is deferring the css_free() to long
6663 * after offlining. But this makes sure we catch any charges
6664 * made after offlining:
6665 */
6666 mem_cgroup_reparent_charges(memcg);
6667
6668 memcg_destroy_kmem(memcg);
6669 __mem_cgroup_free(memcg);
6670 }
6671
6672 #ifdef CONFIG_MMU
6673 /* Handlers for move charge at task migration. */
6674 #define PRECHARGE_COUNT_AT_ONCE 256
6675 static int mem_cgroup_do_precharge(unsigned long count)
6676 {
6677 int ret = 0;
6678 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6679 struct mem_cgroup *memcg = mc.to;
6680
6681 if (mem_cgroup_is_root(memcg)) {
6682 mc.precharge += count;
6683 /* we don't need css_get for root */
6684 return ret;
6685 }
6686 /* try to charge at once */
6687 if (count > 1) {
6688 struct res_counter *dummy;
6689 /*
6690 * "memcg" cannot be under rmdir() because we've already checked
6691 * by cgroup_lock_live_cgroup() that it is not removed and we
6692 * are still under the same cgroup_mutex. So we can postpone
6693 * css_get().
6694 */
6695 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6696 goto one_by_one;
6697 if (do_swap_account && res_counter_charge(&memcg->memsw,
6698 PAGE_SIZE * count, &dummy)) {
6699 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6700 goto one_by_one;
6701 }
6702 mc.precharge += count;
6703 return ret;
6704 }
6705 one_by_one:
6706 /* fall back to one by one charge */
6707 while (count--) {
6708 if (signal_pending(current)) {
6709 ret = -EINTR;
6710 break;
6711 }
6712 if (!batch_count--) {
6713 batch_count = PRECHARGE_COUNT_AT_ONCE;
6714 cond_resched();
6715 }
6716 ret = __mem_cgroup_try_charge(NULL,
6717 GFP_KERNEL, 1, &memcg, false);
6718 if (ret)
6719 /* mem_cgroup_clear_mc() will do uncharge later */
6720 return ret;
6721 mc.precharge++;
6722 }
6723 return ret;
6724 }
6725
6726 /**
6727 * get_mctgt_type - get target type of moving charge
6728 * @vma: the vma the pte to be checked belongs
6729 * @addr: the address corresponding to the pte to be checked
6730 * @ptent: the pte to be checked
6731 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6732 *
6733 * Returns
6734 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6735 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6736 * move charge. if @target is not NULL, the page is stored in target->page
6737 * with extra refcnt got(Callers should handle it).
6738 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6739 * target for charge migration. if @target is not NULL, the entry is stored
6740 * in target->ent.
6741 *
6742 * Called with pte lock held.
6743 */
6744 union mc_target {
6745 struct page *page;
6746 swp_entry_t ent;
6747 };
6748
6749 enum mc_target_type {
6750 MC_TARGET_NONE = 0,
6751 MC_TARGET_PAGE,
6752 MC_TARGET_SWAP,
6753 };
6754
6755 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6756 unsigned long addr, pte_t ptent)
6757 {
6758 struct page *page = vm_normal_page(vma, addr, ptent);
6759
6760 if (!page || !page_mapped(page))
6761 return NULL;
6762 if (PageAnon(page)) {
6763 /* we don't move shared anon */
6764 if (!move_anon())
6765 return NULL;
6766 } else if (!move_file())
6767 /* we ignore mapcount for file pages */
6768 return NULL;
6769 if (!get_page_unless_zero(page))
6770 return NULL;
6771
6772 return page;
6773 }
6774
6775 #ifdef CONFIG_SWAP
6776 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6777 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6778 {
6779 struct page *page = NULL;
6780 swp_entry_t ent = pte_to_swp_entry(ptent);
6781
6782 if (!move_anon() || non_swap_entry(ent))
6783 return NULL;
6784 /*
6785 * Because lookup_swap_cache() updates some statistics counter,
6786 * we call find_get_page() with swapper_space directly.
6787 */
6788 page = find_get_page(swap_address_space(ent), ent.val);
6789 if (do_swap_account)
6790 entry->val = ent.val;
6791
6792 return page;
6793 }
6794 #else
6795 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6796 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6797 {
6798 return NULL;
6799 }
6800 #endif
6801
6802 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6803 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6804 {
6805 struct page *page = NULL;
6806 struct address_space *mapping;
6807 pgoff_t pgoff;
6808
6809 if (!vma->vm_file) /* anonymous vma */
6810 return NULL;
6811 if (!move_file())
6812 return NULL;
6813
6814 mapping = vma->vm_file->f_mapping;
6815 if (pte_none(ptent))
6816 pgoff = linear_page_index(vma, addr);
6817 else /* pte_file(ptent) is true */
6818 pgoff = pte_to_pgoff(ptent);
6819
6820 /* page is moved even if it's not RSS of this task(page-faulted). */
6821 page = find_get_page(mapping, pgoff);
6822
6823 #ifdef CONFIG_SWAP
6824 /* shmem/tmpfs may report page out on swap: account for that too. */
6825 if (radix_tree_exceptional_entry(page)) {
6826 swp_entry_t swap = radix_to_swp_entry(page);
6827 if (do_swap_account)
6828 *entry = swap;
6829 page = find_get_page(swap_address_space(swap), swap.val);
6830 }
6831 #endif
6832 return page;
6833 }
6834
6835 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6836 unsigned long addr, pte_t ptent, union mc_target *target)
6837 {
6838 struct page *page = NULL;
6839 struct page_cgroup *pc;
6840 enum mc_target_type ret = MC_TARGET_NONE;
6841 swp_entry_t ent = { .val = 0 };
6842
6843 if (pte_present(ptent))
6844 page = mc_handle_present_pte(vma, addr, ptent);
6845 else if (is_swap_pte(ptent))
6846 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6847 else if (pte_none(ptent) || pte_file(ptent))
6848 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6849
6850 if (!page && !ent.val)
6851 return ret;
6852 if (page) {
6853 pc = lookup_page_cgroup(page);
6854 /*
6855 * Do only loose check w/o page_cgroup lock.
6856 * mem_cgroup_move_account() checks the pc is valid or not under
6857 * the lock.
6858 */
6859 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6860 ret = MC_TARGET_PAGE;
6861 if (target)
6862 target->page = page;
6863 }
6864 if (!ret || !target)
6865 put_page(page);
6866 }
6867 /* There is a swap entry and a page doesn't exist or isn't charged */
6868 if (ent.val && !ret &&
6869 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6870 ret = MC_TARGET_SWAP;
6871 if (target)
6872 target->ent = ent;
6873 }
6874 return ret;
6875 }
6876
6877 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6878 /*
6879 * We don't consider swapping or file mapped pages because THP does not
6880 * support them for now.
6881 * Caller should make sure that pmd_trans_huge(pmd) is true.
6882 */
6883 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6884 unsigned long addr, pmd_t pmd, union mc_target *target)
6885 {
6886 struct page *page = NULL;
6887 struct page_cgroup *pc;
6888 enum mc_target_type ret = MC_TARGET_NONE;
6889
6890 page = pmd_page(pmd);
6891 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6892 if (!move_anon())
6893 return ret;
6894 pc = lookup_page_cgroup(page);
6895 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6896 ret = MC_TARGET_PAGE;
6897 if (target) {
6898 get_page(page);
6899 target->page = page;
6900 }
6901 }
6902 return ret;
6903 }
6904 #else
6905 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6906 unsigned long addr, pmd_t pmd, union mc_target *target)
6907 {
6908 return MC_TARGET_NONE;
6909 }
6910 #endif
6911
6912 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6913 unsigned long addr, unsigned long end,
6914 struct mm_walk *walk)
6915 {
6916 struct vm_area_struct *vma = walk->private;
6917 pte_t *pte;
6918 spinlock_t *ptl;
6919
6920 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6921 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6922 mc.precharge += HPAGE_PMD_NR;
6923 spin_unlock(ptl);
6924 return 0;
6925 }
6926
6927 if (pmd_trans_unstable(pmd))
6928 return 0;
6929 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6930 for (; addr != end; pte++, addr += PAGE_SIZE)
6931 if (get_mctgt_type(vma, addr, *pte, NULL))
6932 mc.precharge++; /* increment precharge temporarily */
6933 pte_unmap_unlock(pte - 1, ptl);
6934 cond_resched();
6935
6936 return 0;
6937 }
6938
6939 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6940 {
6941 unsigned long precharge;
6942 struct vm_area_struct *vma;
6943
6944 down_read(&mm->mmap_sem);
6945 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6946 struct mm_walk mem_cgroup_count_precharge_walk = {
6947 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6948 .mm = mm,
6949 .private = vma,
6950 };
6951 if (is_vm_hugetlb_page(vma))
6952 continue;
6953 walk_page_range(vma->vm_start, vma->vm_end,
6954 &mem_cgroup_count_precharge_walk);
6955 }
6956 up_read(&mm->mmap_sem);
6957
6958 precharge = mc.precharge;
6959 mc.precharge = 0;
6960
6961 return precharge;
6962 }
6963
6964 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6965 {
6966 unsigned long precharge = mem_cgroup_count_precharge(mm);
6967
6968 VM_BUG_ON(mc.moving_task);
6969 mc.moving_task = current;
6970 return mem_cgroup_do_precharge(precharge);
6971 }
6972
6973 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6974 static void __mem_cgroup_clear_mc(void)
6975 {
6976 struct mem_cgroup *from = mc.from;
6977 struct mem_cgroup *to = mc.to;
6978 int i;
6979
6980 /* we must uncharge all the leftover precharges from mc.to */
6981 if (mc.precharge) {
6982 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6983 mc.precharge = 0;
6984 }
6985 /*
6986 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6987 * we must uncharge here.
6988 */
6989 if (mc.moved_charge) {
6990 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6991 mc.moved_charge = 0;
6992 }
6993 /* we must fixup refcnts and charges */
6994 if (mc.moved_swap) {
6995 /* uncharge swap account from the old cgroup */
6996 if (!mem_cgroup_is_root(mc.from))
6997 res_counter_uncharge(&mc.from->memsw,
6998 PAGE_SIZE * mc.moved_swap);
6999
7000 for (i = 0; i < mc.moved_swap; i++)
7001 css_put(&mc.from->css);
7002
7003 if (!mem_cgroup_is_root(mc.to)) {
7004 /*
7005 * we charged both to->res and to->memsw, so we should
7006 * uncharge to->res.
7007 */
7008 res_counter_uncharge(&mc.to->res,
7009 PAGE_SIZE * mc.moved_swap);
7010 }
7011 /* we've already done css_get(mc.to) */
7012 mc.moved_swap = 0;
7013 }
7014 memcg_oom_recover(from);
7015 memcg_oom_recover(to);
7016 wake_up_all(&mc.waitq);
7017 }
7018
7019 static void mem_cgroup_clear_mc(void)
7020 {
7021 struct mem_cgroup *from = mc.from;
7022
7023 /*
7024 * we must clear moving_task before waking up waiters at the end of
7025 * task migration.
7026 */
7027 mc.moving_task = NULL;
7028 __mem_cgroup_clear_mc();
7029 spin_lock(&mc.lock);
7030 mc.from = NULL;
7031 mc.to = NULL;
7032 spin_unlock(&mc.lock);
7033 mem_cgroup_end_move(from);
7034 }
7035
7036 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
7037 struct cgroup_taskset *tset)
7038 {
7039 struct task_struct *p = cgroup_taskset_first(tset);
7040 int ret = 0;
7041 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7042 unsigned long move_charge_at_immigrate;
7043
7044 /*
7045 * We are now commited to this value whatever it is. Changes in this
7046 * tunable will only affect upcoming migrations, not the current one.
7047 * So we need to save it, and keep it going.
7048 */
7049 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
7050 if (move_charge_at_immigrate) {
7051 struct mm_struct *mm;
7052 struct mem_cgroup *from = mem_cgroup_from_task(p);
7053
7054 VM_BUG_ON(from == memcg);
7055
7056 mm = get_task_mm(p);
7057 if (!mm)
7058 return 0;
7059 /* We move charges only when we move a owner of the mm */
7060 if (mm->owner == p) {
7061 VM_BUG_ON(mc.from);
7062 VM_BUG_ON(mc.to);
7063 VM_BUG_ON(mc.precharge);
7064 VM_BUG_ON(mc.moved_charge);
7065 VM_BUG_ON(mc.moved_swap);
7066 mem_cgroup_start_move(from);
7067 spin_lock(&mc.lock);
7068 mc.from = from;
7069 mc.to = memcg;
7070 mc.immigrate_flags = move_charge_at_immigrate;
7071 spin_unlock(&mc.lock);
7072 /* We set mc.moving_task later */
7073
7074 ret = mem_cgroup_precharge_mc(mm);
7075 if (ret)
7076 mem_cgroup_clear_mc();
7077 }
7078 mmput(mm);
7079 }
7080 return ret;
7081 }
7082
7083 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7084 struct cgroup_taskset *tset)
7085 {
7086 mem_cgroup_clear_mc();
7087 }
7088
7089 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
7090 unsigned long addr, unsigned long end,
7091 struct mm_walk *walk)
7092 {
7093 int ret = 0;
7094 struct vm_area_struct *vma = walk->private;
7095 pte_t *pte;
7096 spinlock_t *ptl;
7097 enum mc_target_type target_type;
7098 union mc_target target;
7099 struct page *page;
7100 struct page_cgroup *pc;
7101
7102 /*
7103 * We don't take compound_lock() here but no race with splitting thp
7104 * happens because:
7105 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
7106 * under splitting, which means there's no concurrent thp split,
7107 * - if another thread runs into split_huge_page() just after we
7108 * entered this if-block, the thread must wait for page table lock
7109 * to be unlocked in __split_huge_page_splitting(), where the main
7110 * part of thp split is not executed yet.
7111 */
7112 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
7113 if (mc.precharge < HPAGE_PMD_NR) {
7114 spin_unlock(ptl);
7115 return 0;
7116 }
7117 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
7118 if (target_type == MC_TARGET_PAGE) {
7119 page = target.page;
7120 if (!isolate_lru_page(page)) {
7121 pc = lookup_page_cgroup(page);
7122 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
7123 pc, mc.from, mc.to)) {
7124 mc.precharge -= HPAGE_PMD_NR;
7125 mc.moved_charge += HPAGE_PMD_NR;
7126 }
7127 putback_lru_page(page);
7128 }
7129 put_page(page);
7130 }
7131 spin_unlock(ptl);
7132 return 0;
7133 }
7134
7135 if (pmd_trans_unstable(pmd))
7136 return 0;
7137 retry:
7138 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
7139 for (; addr != end; addr += PAGE_SIZE) {
7140 pte_t ptent = *(pte++);
7141 swp_entry_t ent;
7142
7143 if (!mc.precharge)
7144 break;
7145
7146 switch (get_mctgt_type(vma, addr, ptent, &target)) {
7147 case MC_TARGET_PAGE:
7148 page = target.page;
7149 if (isolate_lru_page(page))
7150 goto put;
7151 pc = lookup_page_cgroup(page);
7152 if (!mem_cgroup_move_account(page, 1, pc,
7153 mc.from, mc.to)) {
7154 mc.precharge--;
7155 /* we uncharge from mc.from later. */
7156 mc.moved_charge++;
7157 }
7158 putback_lru_page(page);
7159 put: /* get_mctgt_type() gets the page */
7160 put_page(page);
7161 break;
7162 case MC_TARGET_SWAP:
7163 ent = target.ent;
7164 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
7165 mc.precharge--;
7166 /* we fixup refcnts and charges later. */
7167 mc.moved_swap++;
7168 }
7169 break;
7170 default:
7171 break;
7172 }
7173 }
7174 pte_unmap_unlock(pte - 1, ptl);
7175 cond_resched();
7176
7177 if (addr != end) {
7178 /*
7179 * We have consumed all precharges we got in can_attach().
7180 * We try charge one by one, but don't do any additional
7181 * charges to mc.to if we have failed in charge once in attach()
7182 * phase.
7183 */
7184 ret = mem_cgroup_do_precharge(1);
7185 if (!ret)
7186 goto retry;
7187 }
7188
7189 return ret;
7190 }
7191
7192 static void mem_cgroup_move_charge(struct mm_struct *mm)
7193 {
7194 struct vm_area_struct *vma;
7195
7196 lru_add_drain_all();
7197 retry:
7198 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
7199 /*
7200 * Someone who are holding the mmap_sem might be waiting in
7201 * waitq. So we cancel all extra charges, wake up all waiters,
7202 * and retry. Because we cancel precharges, we might not be able
7203 * to move enough charges, but moving charge is a best-effort
7204 * feature anyway, so it wouldn't be a big problem.
7205 */
7206 __mem_cgroup_clear_mc();
7207 cond_resched();
7208 goto retry;
7209 }
7210 for (vma = mm->mmap; vma; vma = vma->vm_next) {
7211 int ret;
7212 struct mm_walk mem_cgroup_move_charge_walk = {
7213 .pmd_entry = mem_cgroup_move_charge_pte_range,
7214 .mm = mm,
7215 .private = vma,
7216 };
7217 if (is_vm_hugetlb_page(vma))
7218 continue;
7219 ret = walk_page_range(vma->vm_start, vma->vm_end,
7220 &mem_cgroup_move_charge_walk);
7221 if (ret)
7222 /*
7223 * means we have consumed all precharges and failed in
7224 * doing additional charge. Just abandon here.
7225 */
7226 break;
7227 }
7228 up_read(&mm->mmap_sem);
7229 }
7230
7231 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7232 struct cgroup_taskset *tset)
7233 {
7234 struct task_struct *p = cgroup_taskset_first(tset);
7235 struct mm_struct *mm = get_task_mm(p);
7236
7237 if (mm) {
7238 if (mc.to)
7239 mem_cgroup_move_charge(mm);
7240 mmput(mm);
7241 }
7242 if (mc.to)
7243 mem_cgroup_clear_mc();
7244 }
7245 #else /* !CONFIG_MMU */
7246 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
7247 struct cgroup_taskset *tset)
7248 {
7249 return 0;
7250 }
7251 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7252 struct cgroup_taskset *tset)
7253 {
7254 }
7255 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7256 struct cgroup_taskset *tset)
7257 {
7258 }
7259 #endif
7260
7261 /*
7262 * Cgroup retains root cgroups across [un]mount cycles making it necessary
7263 * to verify sane_behavior flag on each mount attempt.
7264 */
7265 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
7266 {
7267 /*
7268 * use_hierarchy is forced with sane_behavior. cgroup core
7269 * guarantees that @root doesn't have any children, so turning it
7270 * on for the root memcg is enough.
7271 */
7272 if (cgroup_sane_behavior(root_css->cgroup))
7273 mem_cgroup_from_css(root_css)->use_hierarchy = true;
7274 }
7275
7276 struct cgroup_subsys mem_cgroup_subsys = {
7277 .name = "memory",
7278 .subsys_id = mem_cgroup_subsys_id,
7279 .css_alloc = mem_cgroup_css_alloc,
7280 .css_online = mem_cgroup_css_online,
7281 .css_offline = mem_cgroup_css_offline,
7282 .css_free = mem_cgroup_css_free,
7283 .can_attach = mem_cgroup_can_attach,
7284 .cancel_attach = mem_cgroup_cancel_attach,
7285 .attach = mem_cgroup_move_task,
7286 .bind = mem_cgroup_bind,
7287 .base_cftypes = mem_cgroup_files,
7288 .early_init = 0,
7289 };
7290
7291 #ifdef CONFIG_MEMCG_SWAP
7292 static int __init enable_swap_account(char *s)
7293 {
7294 if (!strcmp(s, "1"))
7295 really_do_swap_account = 1;
7296 else if (!strcmp(s, "0"))
7297 really_do_swap_account = 0;
7298 return 1;
7299 }
7300 __setup("swapaccount=", enable_swap_account);
7301
7302 static void __init memsw_file_init(void)
7303 {
7304 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
7305 }
7306
7307 static void __init enable_swap_cgroup(void)
7308 {
7309 if (!mem_cgroup_disabled() && really_do_swap_account) {
7310 do_swap_account = 1;
7311 memsw_file_init();
7312 }
7313 }
7314
7315 #else
7316 static void __init enable_swap_cgroup(void)
7317 {
7318 }
7319 #endif
7320
7321 /*
7322 * subsys_initcall() for memory controller.
7323 *
7324 * Some parts like hotcpu_notifier() have to be initialized from this context
7325 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7326 * everything that doesn't depend on a specific mem_cgroup structure should
7327 * be initialized from here.
7328 */
7329 static int __init mem_cgroup_init(void)
7330 {
7331 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7332 enable_swap_cgroup();
7333 mem_cgroup_soft_limit_tree_init();
7334 memcg_stock_init();
7335 return 0;
7336 }
7337 subsys_initcall(mem_cgroup_init);
This page took 0.194107 seconds and 6 git commands to generate.