memcg: oom: fix totalpages calculation for memory.swappiness==0
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 #include <net/sock.h>
54 #include <net/ip.h>
55 #include <net/tcp_memcontrol.h>
56
57 #include <asm/uaccess.h>
58
59 #include <trace/events/vmscan.h>
60
61 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
62 #define MEM_CGROUP_RECLAIM_RETRIES 5
63 static struct mem_cgroup *root_mem_cgroup __read_mostly;
64
65 #ifdef CONFIG_MEMCG_SWAP
66 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
67 int do_swap_account __read_mostly;
68
69 /* for remember boot option*/
70 #ifdef CONFIG_MEMCG_SWAP_ENABLED
71 static int really_do_swap_account __initdata = 1;
72 #else
73 static int really_do_swap_account __initdata = 0;
74 #endif
75
76 #else
77 #define do_swap_account 0
78 #endif
79
80
81 /*
82 * Statistics for memory cgroup.
83 */
84 enum mem_cgroup_stat_index {
85 /*
86 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
87 */
88 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
89 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
90 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
91 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
92 MEM_CGROUP_STAT_NSTATS,
93 };
94
95 static const char * const mem_cgroup_stat_names[] = {
96 "cache",
97 "rss",
98 "mapped_file",
99 "swap",
100 };
101
102 enum mem_cgroup_events_index {
103 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
104 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
105 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
106 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
107 MEM_CGROUP_EVENTS_NSTATS,
108 };
109
110 static const char * const mem_cgroup_events_names[] = {
111 "pgpgin",
112 "pgpgout",
113 "pgfault",
114 "pgmajfault",
115 };
116
117 /*
118 * Per memcg event counter is incremented at every pagein/pageout. With THP,
119 * it will be incremated by the number of pages. This counter is used for
120 * for trigger some periodic events. This is straightforward and better
121 * than using jiffies etc. to handle periodic memcg event.
122 */
123 enum mem_cgroup_events_target {
124 MEM_CGROUP_TARGET_THRESH,
125 MEM_CGROUP_TARGET_SOFTLIMIT,
126 MEM_CGROUP_TARGET_NUMAINFO,
127 MEM_CGROUP_NTARGETS,
128 };
129 #define THRESHOLDS_EVENTS_TARGET 128
130 #define SOFTLIMIT_EVENTS_TARGET 1024
131 #define NUMAINFO_EVENTS_TARGET 1024
132
133 struct mem_cgroup_stat_cpu {
134 long count[MEM_CGROUP_STAT_NSTATS];
135 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
136 unsigned long nr_page_events;
137 unsigned long targets[MEM_CGROUP_NTARGETS];
138 };
139
140 struct mem_cgroup_reclaim_iter {
141 /* css_id of the last scanned hierarchy member */
142 int position;
143 /* scan generation, increased every round-trip */
144 unsigned int generation;
145 };
146
147 /*
148 * per-zone information in memory controller.
149 */
150 struct mem_cgroup_per_zone {
151 struct lruvec lruvec;
152 unsigned long lru_size[NR_LRU_LISTS];
153
154 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
155
156 struct rb_node tree_node; /* RB tree node */
157 unsigned long long usage_in_excess;/* Set to the value by which */
158 /* the soft limit is exceeded*/
159 bool on_tree;
160 struct mem_cgroup *memcg; /* Back pointer, we cannot */
161 /* use container_of */
162 };
163
164 struct mem_cgroup_per_node {
165 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
166 };
167
168 struct mem_cgroup_lru_info {
169 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
170 };
171
172 /*
173 * Cgroups above their limits are maintained in a RB-Tree, independent of
174 * their hierarchy representation
175 */
176
177 struct mem_cgroup_tree_per_zone {
178 struct rb_root rb_root;
179 spinlock_t lock;
180 };
181
182 struct mem_cgroup_tree_per_node {
183 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
184 };
185
186 struct mem_cgroup_tree {
187 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
188 };
189
190 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
191
192 struct mem_cgroup_threshold {
193 struct eventfd_ctx *eventfd;
194 u64 threshold;
195 };
196
197 /* For threshold */
198 struct mem_cgroup_threshold_ary {
199 /* An array index points to threshold just below or equal to usage. */
200 int current_threshold;
201 /* Size of entries[] */
202 unsigned int size;
203 /* Array of thresholds */
204 struct mem_cgroup_threshold entries[0];
205 };
206
207 struct mem_cgroup_thresholds {
208 /* Primary thresholds array */
209 struct mem_cgroup_threshold_ary *primary;
210 /*
211 * Spare threshold array.
212 * This is needed to make mem_cgroup_unregister_event() "never fail".
213 * It must be able to store at least primary->size - 1 entries.
214 */
215 struct mem_cgroup_threshold_ary *spare;
216 };
217
218 /* for OOM */
219 struct mem_cgroup_eventfd_list {
220 struct list_head list;
221 struct eventfd_ctx *eventfd;
222 };
223
224 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
225 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
226
227 /*
228 * The memory controller data structure. The memory controller controls both
229 * page cache and RSS per cgroup. We would eventually like to provide
230 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
231 * to help the administrator determine what knobs to tune.
232 *
233 * TODO: Add a water mark for the memory controller. Reclaim will begin when
234 * we hit the water mark. May be even add a low water mark, such that
235 * no reclaim occurs from a cgroup at it's low water mark, this is
236 * a feature that will be implemented much later in the future.
237 */
238 struct mem_cgroup {
239 struct cgroup_subsys_state css;
240 /*
241 * the counter to account for memory usage
242 */
243 struct res_counter res;
244
245 union {
246 /*
247 * the counter to account for mem+swap usage.
248 */
249 struct res_counter memsw;
250
251 /*
252 * rcu_freeing is used only when freeing struct mem_cgroup,
253 * so put it into a union to avoid wasting more memory.
254 * It must be disjoint from the css field. It could be
255 * in a union with the res field, but res plays a much
256 * larger part in mem_cgroup life than memsw, and might
257 * be of interest, even at time of free, when debugging.
258 * So share rcu_head with the less interesting memsw.
259 */
260 struct rcu_head rcu_freeing;
261 /*
262 * We also need some space for a worker in deferred freeing.
263 * By the time we call it, rcu_freeing is no longer in use.
264 */
265 struct work_struct work_freeing;
266 };
267
268 /*
269 * Per cgroup active and inactive list, similar to the
270 * per zone LRU lists.
271 */
272 struct mem_cgroup_lru_info info;
273 int last_scanned_node;
274 #if MAX_NUMNODES > 1
275 nodemask_t scan_nodes;
276 atomic_t numainfo_events;
277 atomic_t numainfo_updating;
278 #endif
279 /*
280 * Should the accounting and control be hierarchical, per subtree?
281 */
282 bool use_hierarchy;
283
284 bool oom_lock;
285 atomic_t under_oom;
286
287 atomic_t refcnt;
288
289 int swappiness;
290 /* OOM-Killer disable */
291 int oom_kill_disable;
292
293 /* set when res.limit == memsw.limit */
294 bool memsw_is_minimum;
295
296 /* protect arrays of thresholds */
297 struct mutex thresholds_lock;
298
299 /* thresholds for memory usage. RCU-protected */
300 struct mem_cgroup_thresholds thresholds;
301
302 /* thresholds for mem+swap usage. RCU-protected */
303 struct mem_cgroup_thresholds memsw_thresholds;
304
305 /* For oom notifier event fd */
306 struct list_head oom_notify;
307
308 /*
309 * Should we move charges of a task when a task is moved into this
310 * mem_cgroup ? And what type of charges should we move ?
311 */
312 unsigned long move_charge_at_immigrate;
313 /*
314 * set > 0 if pages under this cgroup are moving to other cgroup.
315 */
316 atomic_t moving_account;
317 /* taken only while moving_account > 0 */
318 spinlock_t move_lock;
319 /*
320 * percpu counter.
321 */
322 struct mem_cgroup_stat_cpu __percpu *stat;
323 /*
324 * used when a cpu is offlined or other synchronizations
325 * See mem_cgroup_read_stat().
326 */
327 struct mem_cgroup_stat_cpu nocpu_base;
328 spinlock_t pcp_counter_lock;
329
330 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
331 struct tcp_memcontrol tcp_mem;
332 #endif
333 };
334
335 /* Stuffs for move charges at task migration. */
336 /*
337 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
338 * left-shifted bitmap of these types.
339 */
340 enum move_type {
341 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
342 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
343 NR_MOVE_TYPE,
344 };
345
346 /* "mc" and its members are protected by cgroup_mutex */
347 static struct move_charge_struct {
348 spinlock_t lock; /* for from, to */
349 struct mem_cgroup *from;
350 struct mem_cgroup *to;
351 unsigned long precharge;
352 unsigned long moved_charge;
353 unsigned long moved_swap;
354 struct task_struct *moving_task; /* a task moving charges */
355 wait_queue_head_t waitq; /* a waitq for other context */
356 } mc = {
357 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
358 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
359 };
360
361 static bool move_anon(void)
362 {
363 return test_bit(MOVE_CHARGE_TYPE_ANON,
364 &mc.to->move_charge_at_immigrate);
365 }
366
367 static bool move_file(void)
368 {
369 return test_bit(MOVE_CHARGE_TYPE_FILE,
370 &mc.to->move_charge_at_immigrate);
371 }
372
373 /*
374 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
375 * limit reclaim to prevent infinite loops, if they ever occur.
376 */
377 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
378 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
379
380 enum charge_type {
381 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
382 MEM_CGROUP_CHARGE_TYPE_ANON,
383 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
384 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
385 NR_CHARGE_TYPE,
386 };
387
388 /* for encoding cft->private value on file */
389 #define _MEM (0)
390 #define _MEMSWAP (1)
391 #define _OOM_TYPE (2)
392 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
393 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
394 #define MEMFILE_ATTR(val) ((val) & 0xffff)
395 /* Used for OOM nofiier */
396 #define OOM_CONTROL (0)
397
398 /*
399 * Reclaim flags for mem_cgroup_hierarchical_reclaim
400 */
401 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
402 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
403 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
404 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
405
406 static void mem_cgroup_get(struct mem_cgroup *memcg);
407 static void mem_cgroup_put(struct mem_cgroup *memcg);
408
409 static inline
410 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
411 {
412 return container_of(s, struct mem_cgroup, css);
413 }
414
415 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
416 {
417 return (memcg == root_mem_cgroup);
418 }
419
420 /* Writing them here to avoid exposing memcg's inner layout */
421 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
422
423 void sock_update_memcg(struct sock *sk)
424 {
425 if (mem_cgroup_sockets_enabled) {
426 struct mem_cgroup *memcg;
427 struct cg_proto *cg_proto;
428
429 BUG_ON(!sk->sk_prot->proto_cgroup);
430
431 /* Socket cloning can throw us here with sk_cgrp already
432 * filled. It won't however, necessarily happen from
433 * process context. So the test for root memcg given
434 * the current task's memcg won't help us in this case.
435 *
436 * Respecting the original socket's memcg is a better
437 * decision in this case.
438 */
439 if (sk->sk_cgrp) {
440 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
441 mem_cgroup_get(sk->sk_cgrp->memcg);
442 return;
443 }
444
445 rcu_read_lock();
446 memcg = mem_cgroup_from_task(current);
447 cg_proto = sk->sk_prot->proto_cgroup(memcg);
448 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
449 mem_cgroup_get(memcg);
450 sk->sk_cgrp = cg_proto;
451 }
452 rcu_read_unlock();
453 }
454 }
455 EXPORT_SYMBOL(sock_update_memcg);
456
457 void sock_release_memcg(struct sock *sk)
458 {
459 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
460 struct mem_cgroup *memcg;
461 WARN_ON(!sk->sk_cgrp->memcg);
462 memcg = sk->sk_cgrp->memcg;
463 mem_cgroup_put(memcg);
464 }
465 }
466
467 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
468 {
469 if (!memcg || mem_cgroup_is_root(memcg))
470 return NULL;
471
472 return &memcg->tcp_mem.cg_proto;
473 }
474 EXPORT_SYMBOL(tcp_proto_cgroup);
475
476 static void disarm_sock_keys(struct mem_cgroup *memcg)
477 {
478 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
479 return;
480 static_key_slow_dec(&memcg_socket_limit_enabled);
481 }
482 #else
483 static void disarm_sock_keys(struct mem_cgroup *memcg)
484 {
485 }
486 #endif
487
488 static void drain_all_stock_async(struct mem_cgroup *memcg);
489
490 static struct mem_cgroup_per_zone *
491 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
492 {
493 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
494 }
495
496 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
497 {
498 return &memcg->css;
499 }
500
501 static struct mem_cgroup_per_zone *
502 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
503 {
504 int nid = page_to_nid(page);
505 int zid = page_zonenum(page);
506
507 return mem_cgroup_zoneinfo(memcg, nid, zid);
508 }
509
510 static struct mem_cgroup_tree_per_zone *
511 soft_limit_tree_node_zone(int nid, int zid)
512 {
513 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
514 }
515
516 static struct mem_cgroup_tree_per_zone *
517 soft_limit_tree_from_page(struct page *page)
518 {
519 int nid = page_to_nid(page);
520 int zid = page_zonenum(page);
521
522 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
523 }
524
525 static void
526 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
527 struct mem_cgroup_per_zone *mz,
528 struct mem_cgroup_tree_per_zone *mctz,
529 unsigned long long new_usage_in_excess)
530 {
531 struct rb_node **p = &mctz->rb_root.rb_node;
532 struct rb_node *parent = NULL;
533 struct mem_cgroup_per_zone *mz_node;
534
535 if (mz->on_tree)
536 return;
537
538 mz->usage_in_excess = new_usage_in_excess;
539 if (!mz->usage_in_excess)
540 return;
541 while (*p) {
542 parent = *p;
543 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
544 tree_node);
545 if (mz->usage_in_excess < mz_node->usage_in_excess)
546 p = &(*p)->rb_left;
547 /*
548 * We can't avoid mem cgroups that are over their soft
549 * limit by the same amount
550 */
551 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
552 p = &(*p)->rb_right;
553 }
554 rb_link_node(&mz->tree_node, parent, p);
555 rb_insert_color(&mz->tree_node, &mctz->rb_root);
556 mz->on_tree = true;
557 }
558
559 static void
560 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
561 struct mem_cgroup_per_zone *mz,
562 struct mem_cgroup_tree_per_zone *mctz)
563 {
564 if (!mz->on_tree)
565 return;
566 rb_erase(&mz->tree_node, &mctz->rb_root);
567 mz->on_tree = false;
568 }
569
570 static void
571 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
572 struct mem_cgroup_per_zone *mz,
573 struct mem_cgroup_tree_per_zone *mctz)
574 {
575 spin_lock(&mctz->lock);
576 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
577 spin_unlock(&mctz->lock);
578 }
579
580
581 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
582 {
583 unsigned long long excess;
584 struct mem_cgroup_per_zone *mz;
585 struct mem_cgroup_tree_per_zone *mctz;
586 int nid = page_to_nid(page);
587 int zid = page_zonenum(page);
588 mctz = soft_limit_tree_from_page(page);
589
590 /*
591 * Necessary to update all ancestors when hierarchy is used.
592 * because their event counter is not touched.
593 */
594 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
595 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
596 excess = res_counter_soft_limit_excess(&memcg->res);
597 /*
598 * We have to update the tree if mz is on RB-tree or
599 * mem is over its softlimit.
600 */
601 if (excess || mz->on_tree) {
602 spin_lock(&mctz->lock);
603 /* if on-tree, remove it */
604 if (mz->on_tree)
605 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
606 /*
607 * Insert again. mz->usage_in_excess will be updated.
608 * If excess is 0, no tree ops.
609 */
610 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
611 spin_unlock(&mctz->lock);
612 }
613 }
614 }
615
616 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
617 {
618 int node, zone;
619 struct mem_cgroup_per_zone *mz;
620 struct mem_cgroup_tree_per_zone *mctz;
621
622 for_each_node(node) {
623 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
624 mz = mem_cgroup_zoneinfo(memcg, node, zone);
625 mctz = soft_limit_tree_node_zone(node, zone);
626 mem_cgroup_remove_exceeded(memcg, mz, mctz);
627 }
628 }
629 }
630
631 static struct mem_cgroup_per_zone *
632 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
633 {
634 struct rb_node *rightmost = NULL;
635 struct mem_cgroup_per_zone *mz;
636
637 retry:
638 mz = NULL;
639 rightmost = rb_last(&mctz->rb_root);
640 if (!rightmost)
641 goto done; /* Nothing to reclaim from */
642
643 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
644 /*
645 * Remove the node now but someone else can add it back,
646 * we will to add it back at the end of reclaim to its correct
647 * position in the tree.
648 */
649 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
650 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
651 !css_tryget(&mz->memcg->css))
652 goto retry;
653 done:
654 return mz;
655 }
656
657 static struct mem_cgroup_per_zone *
658 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
659 {
660 struct mem_cgroup_per_zone *mz;
661
662 spin_lock(&mctz->lock);
663 mz = __mem_cgroup_largest_soft_limit_node(mctz);
664 spin_unlock(&mctz->lock);
665 return mz;
666 }
667
668 /*
669 * Implementation Note: reading percpu statistics for memcg.
670 *
671 * Both of vmstat[] and percpu_counter has threshold and do periodic
672 * synchronization to implement "quick" read. There are trade-off between
673 * reading cost and precision of value. Then, we may have a chance to implement
674 * a periodic synchronizion of counter in memcg's counter.
675 *
676 * But this _read() function is used for user interface now. The user accounts
677 * memory usage by memory cgroup and he _always_ requires exact value because
678 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
679 * have to visit all online cpus and make sum. So, for now, unnecessary
680 * synchronization is not implemented. (just implemented for cpu hotplug)
681 *
682 * If there are kernel internal actions which can make use of some not-exact
683 * value, and reading all cpu value can be performance bottleneck in some
684 * common workload, threashold and synchonization as vmstat[] should be
685 * implemented.
686 */
687 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
688 enum mem_cgroup_stat_index idx)
689 {
690 long val = 0;
691 int cpu;
692
693 get_online_cpus();
694 for_each_online_cpu(cpu)
695 val += per_cpu(memcg->stat->count[idx], cpu);
696 #ifdef CONFIG_HOTPLUG_CPU
697 spin_lock(&memcg->pcp_counter_lock);
698 val += memcg->nocpu_base.count[idx];
699 spin_unlock(&memcg->pcp_counter_lock);
700 #endif
701 put_online_cpus();
702 return val;
703 }
704
705 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
706 bool charge)
707 {
708 int val = (charge) ? 1 : -1;
709 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
710 }
711
712 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
713 enum mem_cgroup_events_index idx)
714 {
715 unsigned long val = 0;
716 int cpu;
717
718 for_each_online_cpu(cpu)
719 val += per_cpu(memcg->stat->events[idx], cpu);
720 #ifdef CONFIG_HOTPLUG_CPU
721 spin_lock(&memcg->pcp_counter_lock);
722 val += memcg->nocpu_base.events[idx];
723 spin_unlock(&memcg->pcp_counter_lock);
724 #endif
725 return val;
726 }
727
728 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
729 bool anon, int nr_pages)
730 {
731 preempt_disable();
732
733 /*
734 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
735 * counted as CACHE even if it's on ANON LRU.
736 */
737 if (anon)
738 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
739 nr_pages);
740 else
741 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
742 nr_pages);
743
744 /* pagein of a big page is an event. So, ignore page size */
745 if (nr_pages > 0)
746 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
747 else {
748 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
749 nr_pages = -nr_pages; /* for event */
750 }
751
752 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
753
754 preempt_enable();
755 }
756
757 unsigned long
758 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
759 {
760 struct mem_cgroup_per_zone *mz;
761
762 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
763 return mz->lru_size[lru];
764 }
765
766 static unsigned long
767 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
768 unsigned int lru_mask)
769 {
770 struct mem_cgroup_per_zone *mz;
771 enum lru_list lru;
772 unsigned long ret = 0;
773
774 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
775
776 for_each_lru(lru) {
777 if (BIT(lru) & lru_mask)
778 ret += mz->lru_size[lru];
779 }
780 return ret;
781 }
782
783 static unsigned long
784 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
785 int nid, unsigned int lru_mask)
786 {
787 u64 total = 0;
788 int zid;
789
790 for (zid = 0; zid < MAX_NR_ZONES; zid++)
791 total += mem_cgroup_zone_nr_lru_pages(memcg,
792 nid, zid, lru_mask);
793
794 return total;
795 }
796
797 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
798 unsigned int lru_mask)
799 {
800 int nid;
801 u64 total = 0;
802
803 for_each_node_state(nid, N_HIGH_MEMORY)
804 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
805 return total;
806 }
807
808 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
809 enum mem_cgroup_events_target target)
810 {
811 unsigned long val, next;
812
813 val = __this_cpu_read(memcg->stat->nr_page_events);
814 next = __this_cpu_read(memcg->stat->targets[target]);
815 /* from time_after() in jiffies.h */
816 if ((long)next - (long)val < 0) {
817 switch (target) {
818 case MEM_CGROUP_TARGET_THRESH:
819 next = val + THRESHOLDS_EVENTS_TARGET;
820 break;
821 case MEM_CGROUP_TARGET_SOFTLIMIT:
822 next = val + SOFTLIMIT_EVENTS_TARGET;
823 break;
824 case MEM_CGROUP_TARGET_NUMAINFO:
825 next = val + NUMAINFO_EVENTS_TARGET;
826 break;
827 default:
828 break;
829 }
830 __this_cpu_write(memcg->stat->targets[target], next);
831 return true;
832 }
833 return false;
834 }
835
836 /*
837 * Check events in order.
838 *
839 */
840 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
841 {
842 preempt_disable();
843 /* threshold event is triggered in finer grain than soft limit */
844 if (unlikely(mem_cgroup_event_ratelimit(memcg,
845 MEM_CGROUP_TARGET_THRESH))) {
846 bool do_softlimit;
847 bool do_numainfo __maybe_unused;
848
849 do_softlimit = mem_cgroup_event_ratelimit(memcg,
850 MEM_CGROUP_TARGET_SOFTLIMIT);
851 #if MAX_NUMNODES > 1
852 do_numainfo = mem_cgroup_event_ratelimit(memcg,
853 MEM_CGROUP_TARGET_NUMAINFO);
854 #endif
855 preempt_enable();
856
857 mem_cgroup_threshold(memcg);
858 if (unlikely(do_softlimit))
859 mem_cgroup_update_tree(memcg, page);
860 #if MAX_NUMNODES > 1
861 if (unlikely(do_numainfo))
862 atomic_inc(&memcg->numainfo_events);
863 #endif
864 } else
865 preempt_enable();
866 }
867
868 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
869 {
870 return mem_cgroup_from_css(
871 cgroup_subsys_state(cont, mem_cgroup_subsys_id));
872 }
873
874 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
875 {
876 /*
877 * mm_update_next_owner() may clear mm->owner to NULL
878 * if it races with swapoff, page migration, etc.
879 * So this can be called with p == NULL.
880 */
881 if (unlikely(!p))
882 return NULL;
883
884 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
885 }
886
887 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
888 {
889 struct mem_cgroup *memcg = NULL;
890
891 if (!mm)
892 return NULL;
893 /*
894 * Because we have no locks, mm->owner's may be being moved to other
895 * cgroup. We use css_tryget() here even if this looks
896 * pessimistic (rather than adding locks here).
897 */
898 rcu_read_lock();
899 do {
900 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
901 if (unlikely(!memcg))
902 break;
903 } while (!css_tryget(&memcg->css));
904 rcu_read_unlock();
905 return memcg;
906 }
907
908 /**
909 * mem_cgroup_iter - iterate over memory cgroup hierarchy
910 * @root: hierarchy root
911 * @prev: previously returned memcg, NULL on first invocation
912 * @reclaim: cookie for shared reclaim walks, NULL for full walks
913 *
914 * Returns references to children of the hierarchy below @root, or
915 * @root itself, or %NULL after a full round-trip.
916 *
917 * Caller must pass the return value in @prev on subsequent
918 * invocations for reference counting, or use mem_cgroup_iter_break()
919 * to cancel a hierarchy walk before the round-trip is complete.
920 *
921 * Reclaimers can specify a zone and a priority level in @reclaim to
922 * divide up the memcgs in the hierarchy among all concurrent
923 * reclaimers operating on the same zone and priority.
924 */
925 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
926 struct mem_cgroup *prev,
927 struct mem_cgroup_reclaim_cookie *reclaim)
928 {
929 struct mem_cgroup *memcg = NULL;
930 int id = 0;
931
932 if (mem_cgroup_disabled())
933 return NULL;
934
935 if (!root)
936 root = root_mem_cgroup;
937
938 if (prev && !reclaim)
939 id = css_id(&prev->css);
940
941 if (prev && prev != root)
942 css_put(&prev->css);
943
944 if (!root->use_hierarchy && root != root_mem_cgroup) {
945 if (prev)
946 return NULL;
947 return root;
948 }
949
950 while (!memcg) {
951 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
952 struct cgroup_subsys_state *css;
953
954 if (reclaim) {
955 int nid = zone_to_nid(reclaim->zone);
956 int zid = zone_idx(reclaim->zone);
957 struct mem_cgroup_per_zone *mz;
958
959 mz = mem_cgroup_zoneinfo(root, nid, zid);
960 iter = &mz->reclaim_iter[reclaim->priority];
961 if (prev && reclaim->generation != iter->generation)
962 return NULL;
963 id = iter->position;
964 }
965
966 rcu_read_lock();
967 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
968 if (css) {
969 if (css == &root->css || css_tryget(css))
970 memcg = mem_cgroup_from_css(css);
971 } else
972 id = 0;
973 rcu_read_unlock();
974
975 if (reclaim) {
976 iter->position = id;
977 if (!css)
978 iter->generation++;
979 else if (!prev && memcg)
980 reclaim->generation = iter->generation;
981 }
982
983 if (prev && !css)
984 return NULL;
985 }
986 return memcg;
987 }
988
989 /**
990 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
991 * @root: hierarchy root
992 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
993 */
994 void mem_cgroup_iter_break(struct mem_cgroup *root,
995 struct mem_cgroup *prev)
996 {
997 if (!root)
998 root = root_mem_cgroup;
999 if (prev && prev != root)
1000 css_put(&prev->css);
1001 }
1002
1003 /*
1004 * Iteration constructs for visiting all cgroups (under a tree). If
1005 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1006 * be used for reference counting.
1007 */
1008 #define for_each_mem_cgroup_tree(iter, root) \
1009 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1010 iter != NULL; \
1011 iter = mem_cgroup_iter(root, iter, NULL))
1012
1013 #define for_each_mem_cgroup(iter) \
1014 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1015 iter != NULL; \
1016 iter = mem_cgroup_iter(NULL, iter, NULL))
1017
1018 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1019 {
1020 struct mem_cgroup *memcg;
1021
1022 if (!mm)
1023 return;
1024
1025 rcu_read_lock();
1026 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1027 if (unlikely(!memcg))
1028 goto out;
1029
1030 switch (idx) {
1031 case PGFAULT:
1032 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1033 break;
1034 case PGMAJFAULT:
1035 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1036 break;
1037 default:
1038 BUG();
1039 }
1040 out:
1041 rcu_read_unlock();
1042 }
1043 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1044
1045 /**
1046 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1047 * @zone: zone of the wanted lruvec
1048 * @memcg: memcg of the wanted lruvec
1049 *
1050 * Returns the lru list vector holding pages for the given @zone and
1051 * @mem. This can be the global zone lruvec, if the memory controller
1052 * is disabled.
1053 */
1054 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1055 struct mem_cgroup *memcg)
1056 {
1057 struct mem_cgroup_per_zone *mz;
1058
1059 if (mem_cgroup_disabled())
1060 return &zone->lruvec;
1061
1062 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1063 return &mz->lruvec;
1064 }
1065
1066 /*
1067 * Following LRU functions are allowed to be used without PCG_LOCK.
1068 * Operations are called by routine of global LRU independently from memcg.
1069 * What we have to take care of here is validness of pc->mem_cgroup.
1070 *
1071 * Changes to pc->mem_cgroup happens when
1072 * 1. charge
1073 * 2. moving account
1074 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1075 * It is added to LRU before charge.
1076 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1077 * When moving account, the page is not on LRU. It's isolated.
1078 */
1079
1080 /**
1081 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1082 * @page: the page
1083 * @zone: zone of the page
1084 */
1085 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1086 {
1087 struct mem_cgroup_per_zone *mz;
1088 struct mem_cgroup *memcg;
1089 struct page_cgroup *pc;
1090
1091 if (mem_cgroup_disabled())
1092 return &zone->lruvec;
1093
1094 pc = lookup_page_cgroup(page);
1095 memcg = pc->mem_cgroup;
1096
1097 /*
1098 * Surreptitiously switch any uncharged offlist page to root:
1099 * an uncharged page off lru does nothing to secure
1100 * its former mem_cgroup from sudden removal.
1101 *
1102 * Our caller holds lru_lock, and PageCgroupUsed is updated
1103 * under page_cgroup lock: between them, they make all uses
1104 * of pc->mem_cgroup safe.
1105 */
1106 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1107 pc->mem_cgroup = memcg = root_mem_cgroup;
1108
1109 mz = page_cgroup_zoneinfo(memcg, page);
1110 return &mz->lruvec;
1111 }
1112
1113 /**
1114 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1115 * @lruvec: mem_cgroup per zone lru vector
1116 * @lru: index of lru list the page is sitting on
1117 * @nr_pages: positive when adding or negative when removing
1118 *
1119 * This function must be called when a page is added to or removed from an
1120 * lru list.
1121 */
1122 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1123 int nr_pages)
1124 {
1125 struct mem_cgroup_per_zone *mz;
1126 unsigned long *lru_size;
1127
1128 if (mem_cgroup_disabled())
1129 return;
1130
1131 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1132 lru_size = mz->lru_size + lru;
1133 *lru_size += nr_pages;
1134 VM_BUG_ON((long)(*lru_size) < 0);
1135 }
1136
1137 /*
1138 * Checks whether given mem is same or in the root_mem_cgroup's
1139 * hierarchy subtree
1140 */
1141 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1142 struct mem_cgroup *memcg)
1143 {
1144 if (root_memcg == memcg)
1145 return true;
1146 if (!root_memcg->use_hierarchy || !memcg)
1147 return false;
1148 return css_is_ancestor(&memcg->css, &root_memcg->css);
1149 }
1150
1151 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1152 struct mem_cgroup *memcg)
1153 {
1154 bool ret;
1155
1156 rcu_read_lock();
1157 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1158 rcu_read_unlock();
1159 return ret;
1160 }
1161
1162 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1163 {
1164 int ret;
1165 struct mem_cgroup *curr = NULL;
1166 struct task_struct *p;
1167
1168 p = find_lock_task_mm(task);
1169 if (p) {
1170 curr = try_get_mem_cgroup_from_mm(p->mm);
1171 task_unlock(p);
1172 } else {
1173 /*
1174 * All threads may have already detached their mm's, but the oom
1175 * killer still needs to detect if they have already been oom
1176 * killed to prevent needlessly killing additional tasks.
1177 */
1178 task_lock(task);
1179 curr = mem_cgroup_from_task(task);
1180 if (curr)
1181 css_get(&curr->css);
1182 task_unlock(task);
1183 }
1184 if (!curr)
1185 return 0;
1186 /*
1187 * We should check use_hierarchy of "memcg" not "curr". Because checking
1188 * use_hierarchy of "curr" here make this function true if hierarchy is
1189 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1190 * hierarchy(even if use_hierarchy is disabled in "memcg").
1191 */
1192 ret = mem_cgroup_same_or_subtree(memcg, curr);
1193 css_put(&curr->css);
1194 return ret;
1195 }
1196
1197 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1198 {
1199 unsigned long inactive_ratio;
1200 unsigned long inactive;
1201 unsigned long active;
1202 unsigned long gb;
1203
1204 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1205 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1206
1207 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1208 if (gb)
1209 inactive_ratio = int_sqrt(10 * gb);
1210 else
1211 inactive_ratio = 1;
1212
1213 return inactive * inactive_ratio < active;
1214 }
1215
1216 int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1217 {
1218 unsigned long active;
1219 unsigned long inactive;
1220
1221 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1222 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1223
1224 return (active > inactive);
1225 }
1226
1227 #define mem_cgroup_from_res_counter(counter, member) \
1228 container_of(counter, struct mem_cgroup, member)
1229
1230 /**
1231 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1232 * @memcg: the memory cgroup
1233 *
1234 * Returns the maximum amount of memory @mem can be charged with, in
1235 * pages.
1236 */
1237 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1238 {
1239 unsigned long long margin;
1240
1241 margin = res_counter_margin(&memcg->res);
1242 if (do_swap_account)
1243 margin = min(margin, res_counter_margin(&memcg->memsw));
1244 return margin >> PAGE_SHIFT;
1245 }
1246
1247 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1248 {
1249 struct cgroup *cgrp = memcg->css.cgroup;
1250
1251 /* root ? */
1252 if (cgrp->parent == NULL)
1253 return vm_swappiness;
1254
1255 return memcg->swappiness;
1256 }
1257
1258 /*
1259 * memcg->moving_account is used for checking possibility that some thread is
1260 * calling move_account(). When a thread on CPU-A starts moving pages under
1261 * a memcg, other threads should check memcg->moving_account under
1262 * rcu_read_lock(), like this:
1263 *
1264 * CPU-A CPU-B
1265 * rcu_read_lock()
1266 * memcg->moving_account+1 if (memcg->mocing_account)
1267 * take heavy locks.
1268 * synchronize_rcu() update something.
1269 * rcu_read_unlock()
1270 * start move here.
1271 */
1272
1273 /* for quick checking without looking up memcg */
1274 atomic_t memcg_moving __read_mostly;
1275
1276 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1277 {
1278 atomic_inc(&memcg_moving);
1279 atomic_inc(&memcg->moving_account);
1280 synchronize_rcu();
1281 }
1282
1283 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1284 {
1285 /*
1286 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1287 * We check NULL in callee rather than caller.
1288 */
1289 if (memcg) {
1290 atomic_dec(&memcg_moving);
1291 atomic_dec(&memcg->moving_account);
1292 }
1293 }
1294
1295 /*
1296 * 2 routines for checking "mem" is under move_account() or not.
1297 *
1298 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1299 * is used for avoiding races in accounting. If true,
1300 * pc->mem_cgroup may be overwritten.
1301 *
1302 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1303 * under hierarchy of moving cgroups. This is for
1304 * waiting at hith-memory prressure caused by "move".
1305 */
1306
1307 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1308 {
1309 VM_BUG_ON(!rcu_read_lock_held());
1310 return atomic_read(&memcg->moving_account) > 0;
1311 }
1312
1313 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1314 {
1315 struct mem_cgroup *from;
1316 struct mem_cgroup *to;
1317 bool ret = false;
1318 /*
1319 * Unlike task_move routines, we access mc.to, mc.from not under
1320 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1321 */
1322 spin_lock(&mc.lock);
1323 from = mc.from;
1324 to = mc.to;
1325 if (!from)
1326 goto unlock;
1327
1328 ret = mem_cgroup_same_or_subtree(memcg, from)
1329 || mem_cgroup_same_or_subtree(memcg, to);
1330 unlock:
1331 spin_unlock(&mc.lock);
1332 return ret;
1333 }
1334
1335 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1336 {
1337 if (mc.moving_task && current != mc.moving_task) {
1338 if (mem_cgroup_under_move(memcg)) {
1339 DEFINE_WAIT(wait);
1340 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1341 /* moving charge context might have finished. */
1342 if (mc.moving_task)
1343 schedule();
1344 finish_wait(&mc.waitq, &wait);
1345 return true;
1346 }
1347 }
1348 return false;
1349 }
1350
1351 /*
1352 * Take this lock when
1353 * - a code tries to modify page's memcg while it's USED.
1354 * - a code tries to modify page state accounting in a memcg.
1355 * see mem_cgroup_stolen(), too.
1356 */
1357 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1358 unsigned long *flags)
1359 {
1360 spin_lock_irqsave(&memcg->move_lock, *flags);
1361 }
1362
1363 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1364 unsigned long *flags)
1365 {
1366 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1367 }
1368
1369 /**
1370 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1371 * @memcg: The memory cgroup that went over limit
1372 * @p: Task that is going to be killed
1373 *
1374 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1375 * enabled
1376 */
1377 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1378 {
1379 struct cgroup *task_cgrp;
1380 struct cgroup *mem_cgrp;
1381 /*
1382 * Need a buffer in BSS, can't rely on allocations. The code relies
1383 * on the assumption that OOM is serialized for memory controller.
1384 * If this assumption is broken, revisit this code.
1385 */
1386 static char memcg_name[PATH_MAX];
1387 int ret;
1388
1389 if (!memcg || !p)
1390 return;
1391
1392 rcu_read_lock();
1393
1394 mem_cgrp = memcg->css.cgroup;
1395 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1396
1397 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1398 if (ret < 0) {
1399 /*
1400 * Unfortunately, we are unable to convert to a useful name
1401 * But we'll still print out the usage information
1402 */
1403 rcu_read_unlock();
1404 goto done;
1405 }
1406 rcu_read_unlock();
1407
1408 printk(KERN_INFO "Task in %s killed", memcg_name);
1409
1410 rcu_read_lock();
1411 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1412 if (ret < 0) {
1413 rcu_read_unlock();
1414 goto done;
1415 }
1416 rcu_read_unlock();
1417
1418 /*
1419 * Continues from above, so we don't need an KERN_ level
1420 */
1421 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1422 done:
1423
1424 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1425 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1426 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1427 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1428 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1429 "failcnt %llu\n",
1430 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1431 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1432 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1433 }
1434
1435 /*
1436 * This function returns the number of memcg under hierarchy tree. Returns
1437 * 1(self count) if no children.
1438 */
1439 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1440 {
1441 int num = 0;
1442 struct mem_cgroup *iter;
1443
1444 for_each_mem_cgroup_tree(iter, memcg)
1445 num++;
1446 return num;
1447 }
1448
1449 /*
1450 * Return the memory (and swap, if configured) limit for a memcg.
1451 */
1452 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1453 {
1454 u64 limit;
1455
1456 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1457
1458 /*
1459 * Do not consider swap space if we cannot swap due to swappiness
1460 */
1461 if (mem_cgroup_swappiness(memcg)) {
1462 u64 memsw;
1463
1464 limit += total_swap_pages << PAGE_SHIFT;
1465 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1466
1467 /*
1468 * If memsw is finite and limits the amount of swap space
1469 * available to this memcg, return that limit.
1470 */
1471 limit = min(limit, memsw);
1472 }
1473
1474 return limit;
1475 }
1476
1477 void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1478 int order)
1479 {
1480 struct mem_cgroup *iter;
1481 unsigned long chosen_points = 0;
1482 unsigned long totalpages;
1483 unsigned int points = 0;
1484 struct task_struct *chosen = NULL;
1485
1486 /*
1487 * If current has a pending SIGKILL, then automatically select it. The
1488 * goal is to allow it to allocate so that it may quickly exit and free
1489 * its memory.
1490 */
1491 if (fatal_signal_pending(current)) {
1492 set_thread_flag(TIF_MEMDIE);
1493 return;
1494 }
1495
1496 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1497 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1498 for_each_mem_cgroup_tree(iter, memcg) {
1499 struct cgroup *cgroup = iter->css.cgroup;
1500 struct cgroup_iter it;
1501 struct task_struct *task;
1502
1503 cgroup_iter_start(cgroup, &it);
1504 while ((task = cgroup_iter_next(cgroup, &it))) {
1505 switch (oom_scan_process_thread(task, totalpages, NULL,
1506 false)) {
1507 case OOM_SCAN_SELECT:
1508 if (chosen)
1509 put_task_struct(chosen);
1510 chosen = task;
1511 chosen_points = ULONG_MAX;
1512 get_task_struct(chosen);
1513 /* fall through */
1514 case OOM_SCAN_CONTINUE:
1515 continue;
1516 case OOM_SCAN_ABORT:
1517 cgroup_iter_end(cgroup, &it);
1518 mem_cgroup_iter_break(memcg, iter);
1519 if (chosen)
1520 put_task_struct(chosen);
1521 return;
1522 case OOM_SCAN_OK:
1523 break;
1524 };
1525 points = oom_badness(task, memcg, NULL, totalpages);
1526 if (points > chosen_points) {
1527 if (chosen)
1528 put_task_struct(chosen);
1529 chosen = task;
1530 chosen_points = points;
1531 get_task_struct(chosen);
1532 }
1533 }
1534 cgroup_iter_end(cgroup, &it);
1535 }
1536
1537 if (!chosen)
1538 return;
1539 points = chosen_points * 1000 / totalpages;
1540 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1541 NULL, "Memory cgroup out of memory");
1542 }
1543
1544 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1545 gfp_t gfp_mask,
1546 unsigned long flags)
1547 {
1548 unsigned long total = 0;
1549 bool noswap = false;
1550 int loop;
1551
1552 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1553 noswap = true;
1554 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1555 noswap = true;
1556
1557 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1558 if (loop)
1559 drain_all_stock_async(memcg);
1560 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1561 /*
1562 * Allow limit shrinkers, which are triggered directly
1563 * by userspace, to catch signals and stop reclaim
1564 * after minimal progress, regardless of the margin.
1565 */
1566 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1567 break;
1568 if (mem_cgroup_margin(memcg))
1569 break;
1570 /*
1571 * If nothing was reclaimed after two attempts, there
1572 * may be no reclaimable pages in this hierarchy.
1573 */
1574 if (loop && !total)
1575 break;
1576 }
1577 return total;
1578 }
1579
1580 /**
1581 * test_mem_cgroup_node_reclaimable
1582 * @memcg: the target memcg
1583 * @nid: the node ID to be checked.
1584 * @noswap : specify true here if the user wants flle only information.
1585 *
1586 * This function returns whether the specified memcg contains any
1587 * reclaimable pages on a node. Returns true if there are any reclaimable
1588 * pages in the node.
1589 */
1590 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1591 int nid, bool noswap)
1592 {
1593 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1594 return true;
1595 if (noswap || !total_swap_pages)
1596 return false;
1597 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1598 return true;
1599 return false;
1600
1601 }
1602 #if MAX_NUMNODES > 1
1603
1604 /*
1605 * Always updating the nodemask is not very good - even if we have an empty
1606 * list or the wrong list here, we can start from some node and traverse all
1607 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1608 *
1609 */
1610 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1611 {
1612 int nid;
1613 /*
1614 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1615 * pagein/pageout changes since the last update.
1616 */
1617 if (!atomic_read(&memcg->numainfo_events))
1618 return;
1619 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1620 return;
1621
1622 /* make a nodemask where this memcg uses memory from */
1623 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1624
1625 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1626
1627 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1628 node_clear(nid, memcg->scan_nodes);
1629 }
1630
1631 atomic_set(&memcg->numainfo_events, 0);
1632 atomic_set(&memcg->numainfo_updating, 0);
1633 }
1634
1635 /*
1636 * Selecting a node where we start reclaim from. Because what we need is just
1637 * reducing usage counter, start from anywhere is O,K. Considering
1638 * memory reclaim from current node, there are pros. and cons.
1639 *
1640 * Freeing memory from current node means freeing memory from a node which
1641 * we'll use or we've used. So, it may make LRU bad. And if several threads
1642 * hit limits, it will see a contention on a node. But freeing from remote
1643 * node means more costs for memory reclaim because of memory latency.
1644 *
1645 * Now, we use round-robin. Better algorithm is welcomed.
1646 */
1647 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1648 {
1649 int node;
1650
1651 mem_cgroup_may_update_nodemask(memcg);
1652 node = memcg->last_scanned_node;
1653
1654 node = next_node(node, memcg->scan_nodes);
1655 if (node == MAX_NUMNODES)
1656 node = first_node(memcg->scan_nodes);
1657 /*
1658 * We call this when we hit limit, not when pages are added to LRU.
1659 * No LRU may hold pages because all pages are UNEVICTABLE or
1660 * memcg is too small and all pages are not on LRU. In that case,
1661 * we use curret node.
1662 */
1663 if (unlikely(node == MAX_NUMNODES))
1664 node = numa_node_id();
1665
1666 memcg->last_scanned_node = node;
1667 return node;
1668 }
1669
1670 /*
1671 * Check all nodes whether it contains reclaimable pages or not.
1672 * For quick scan, we make use of scan_nodes. This will allow us to skip
1673 * unused nodes. But scan_nodes is lazily updated and may not cotain
1674 * enough new information. We need to do double check.
1675 */
1676 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1677 {
1678 int nid;
1679
1680 /*
1681 * quick check...making use of scan_node.
1682 * We can skip unused nodes.
1683 */
1684 if (!nodes_empty(memcg->scan_nodes)) {
1685 for (nid = first_node(memcg->scan_nodes);
1686 nid < MAX_NUMNODES;
1687 nid = next_node(nid, memcg->scan_nodes)) {
1688
1689 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1690 return true;
1691 }
1692 }
1693 /*
1694 * Check rest of nodes.
1695 */
1696 for_each_node_state(nid, N_HIGH_MEMORY) {
1697 if (node_isset(nid, memcg->scan_nodes))
1698 continue;
1699 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1700 return true;
1701 }
1702 return false;
1703 }
1704
1705 #else
1706 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1707 {
1708 return 0;
1709 }
1710
1711 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1712 {
1713 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1714 }
1715 #endif
1716
1717 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1718 struct zone *zone,
1719 gfp_t gfp_mask,
1720 unsigned long *total_scanned)
1721 {
1722 struct mem_cgroup *victim = NULL;
1723 int total = 0;
1724 int loop = 0;
1725 unsigned long excess;
1726 unsigned long nr_scanned;
1727 struct mem_cgroup_reclaim_cookie reclaim = {
1728 .zone = zone,
1729 .priority = 0,
1730 };
1731
1732 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1733
1734 while (1) {
1735 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1736 if (!victim) {
1737 loop++;
1738 if (loop >= 2) {
1739 /*
1740 * If we have not been able to reclaim
1741 * anything, it might because there are
1742 * no reclaimable pages under this hierarchy
1743 */
1744 if (!total)
1745 break;
1746 /*
1747 * We want to do more targeted reclaim.
1748 * excess >> 2 is not to excessive so as to
1749 * reclaim too much, nor too less that we keep
1750 * coming back to reclaim from this cgroup
1751 */
1752 if (total >= (excess >> 2) ||
1753 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1754 break;
1755 }
1756 continue;
1757 }
1758 if (!mem_cgroup_reclaimable(victim, false))
1759 continue;
1760 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1761 zone, &nr_scanned);
1762 *total_scanned += nr_scanned;
1763 if (!res_counter_soft_limit_excess(&root_memcg->res))
1764 break;
1765 }
1766 mem_cgroup_iter_break(root_memcg, victim);
1767 return total;
1768 }
1769
1770 /*
1771 * Check OOM-Killer is already running under our hierarchy.
1772 * If someone is running, return false.
1773 * Has to be called with memcg_oom_lock
1774 */
1775 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1776 {
1777 struct mem_cgroup *iter, *failed = NULL;
1778
1779 for_each_mem_cgroup_tree(iter, memcg) {
1780 if (iter->oom_lock) {
1781 /*
1782 * this subtree of our hierarchy is already locked
1783 * so we cannot give a lock.
1784 */
1785 failed = iter;
1786 mem_cgroup_iter_break(memcg, iter);
1787 break;
1788 } else
1789 iter->oom_lock = true;
1790 }
1791
1792 if (!failed)
1793 return true;
1794
1795 /*
1796 * OK, we failed to lock the whole subtree so we have to clean up
1797 * what we set up to the failing subtree
1798 */
1799 for_each_mem_cgroup_tree(iter, memcg) {
1800 if (iter == failed) {
1801 mem_cgroup_iter_break(memcg, iter);
1802 break;
1803 }
1804 iter->oom_lock = false;
1805 }
1806 return false;
1807 }
1808
1809 /*
1810 * Has to be called with memcg_oom_lock
1811 */
1812 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1813 {
1814 struct mem_cgroup *iter;
1815
1816 for_each_mem_cgroup_tree(iter, memcg)
1817 iter->oom_lock = false;
1818 return 0;
1819 }
1820
1821 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1822 {
1823 struct mem_cgroup *iter;
1824
1825 for_each_mem_cgroup_tree(iter, memcg)
1826 atomic_inc(&iter->under_oom);
1827 }
1828
1829 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1830 {
1831 struct mem_cgroup *iter;
1832
1833 /*
1834 * When a new child is created while the hierarchy is under oom,
1835 * mem_cgroup_oom_lock() may not be called. We have to use
1836 * atomic_add_unless() here.
1837 */
1838 for_each_mem_cgroup_tree(iter, memcg)
1839 atomic_add_unless(&iter->under_oom, -1, 0);
1840 }
1841
1842 static DEFINE_SPINLOCK(memcg_oom_lock);
1843 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1844
1845 struct oom_wait_info {
1846 struct mem_cgroup *memcg;
1847 wait_queue_t wait;
1848 };
1849
1850 static int memcg_oom_wake_function(wait_queue_t *wait,
1851 unsigned mode, int sync, void *arg)
1852 {
1853 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1854 struct mem_cgroup *oom_wait_memcg;
1855 struct oom_wait_info *oom_wait_info;
1856
1857 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1858 oom_wait_memcg = oom_wait_info->memcg;
1859
1860 /*
1861 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1862 * Then we can use css_is_ancestor without taking care of RCU.
1863 */
1864 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1865 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1866 return 0;
1867 return autoremove_wake_function(wait, mode, sync, arg);
1868 }
1869
1870 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1871 {
1872 /* for filtering, pass "memcg" as argument. */
1873 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1874 }
1875
1876 static void memcg_oom_recover(struct mem_cgroup *memcg)
1877 {
1878 if (memcg && atomic_read(&memcg->under_oom))
1879 memcg_wakeup_oom(memcg);
1880 }
1881
1882 /*
1883 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1884 */
1885 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1886 int order)
1887 {
1888 struct oom_wait_info owait;
1889 bool locked, need_to_kill;
1890
1891 owait.memcg = memcg;
1892 owait.wait.flags = 0;
1893 owait.wait.func = memcg_oom_wake_function;
1894 owait.wait.private = current;
1895 INIT_LIST_HEAD(&owait.wait.task_list);
1896 need_to_kill = true;
1897 mem_cgroup_mark_under_oom(memcg);
1898
1899 /* At first, try to OOM lock hierarchy under memcg.*/
1900 spin_lock(&memcg_oom_lock);
1901 locked = mem_cgroup_oom_lock(memcg);
1902 /*
1903 * Even if signal_pending(), we can't quit charge() loop without
1904 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1905 * under OOM is always welcomed, use TASK_KILLABLE here.
1906 */
1907 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1908 if (!locked || memcg->oom_kill_disable)
1909 need_to_kill = false;
1910 if (locked)
1911 mem_cgroup_oom_notify(memcg);
1912 spin_unlock(&memcg_oom_lock);
1913
1914 if (need_to_kill) {
1915 finish_wait(&memcg_oom_waitq, &owait.wait);
1916 mem_cgroup_out_of_memory(memcg, mask, order);
1917 } else {
1918 schedule();
1919 finish_wait(&memcg_oom_waitq, &owait.wait);
1920 }
1921 spin_lock(&memcg_oom_lock);
1922 if (locked)
1923 mem_cgroup_oom_unlock(memcg);
1924 memcg_wakeup_oom(memcg);
1925 spin_unlock(&memcg_oom_lock);
1926
1927 mem_cgroup_unmark_under_oom(memcg);
1928
1929 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1930 return false;
1931 /* Give chance to dying process */
1932 schedule_timeout_uninterruptible(1);
1933 return true;
1934 }
1935
1936 /*
1937 * Currently used to update mapped file statistics, but the routine can be
1938 * generalized to update other statistics as well.
1939 *
1940 * Notes: Race condition
1941 *
1942 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1943 * it tends to be costly. But considering some conditions, we doesn't need
1944 * to do so _always_.
1945 *
1946 * Considering "charge", lock_page_cgroup() is not required because all
1947 * file-stat operations happen after a page is attached to radix-tree. There
1948 * are no race with "charge".
1949 *
1950 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1951 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1952 * if there are race with "uncharge". Statistics itself is properly handled
1953 * by flags.
1954 *
1955 * Considering "move", this is an only case we see a race. To make the race
1956 * small, we check mm->moving_account and detect there are possibility of race
1957 * If there is, we take a lock.
1958 */
1959
1960 void __mem_cgroup_begin_update_page_stat(struct page *page,
1961 bool *locked, unsigned long *flags)
1962 {
1963 struct mem_cgroup *memcg;
1964 struct page_cgroup *pc;
1965
1966 pc = lookup_page_cgroup(page);
1967 again:
1968 memcg = pc->mem_cgroup;
1969 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1970 return;
1971 /*
1972 * If this memory cgroup is not under account moving, we don't
1973 * need to take move_lock_mem_cgroup(). Because we already hold
1974 * rcu_read_lock(), any calls to move_account will be delayed until
1975 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1976 */
1977 if (!mem_cgroup_stolen(memcg))
1978 return;
1979
1980 move_lock_mem_cgroup(memcg, flags);
1981 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1982 move_unlock_mem_cgroup(memcg, flags);
1983 goto again;
1984 }
1985 *locked = true;
1986 }
1987
1988 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1989 {
1990 struct page_cgroup *pc = lookup_page_cgroup(page);
1991
1992 /*
1993 * It's guaranteed that pc->mem_cgroup never changes while
1994 * lock is held because a routine modifies pc->mem_cgroup
1995 * should take move_lock_mem_cgroup().
1996 */
1997 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1998 }
1999
2000 void mem_cgroup_update_page_stat(struct page *page,
2001 enum mem_cgroup_page_stat_item idx, int val)
2002 {
2003 struct mem_cgroup *memcg;
2004 struct page_cgroup *pc = lookup_page_cgroup(page);
2005 unsigned long uninitialized_var(flags);
2006
2007 if (mem_cgroup_disabled())
2008 return;
2009
2010 memcg = pc->mem_cgroup;
2011 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2012 return;
2013
2014 switch (idx) {
2015 case MEMCG_NR_FILE_MAPPED:
2016 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2017 break;
2018 default:
2019 BUG();
2020 }
2021
2022 this_cpu_add(memcg->stat->count[idx], val);
2023 }
2024
2025 /*
2026 * size of first charge trial. "32" comes from vmscan.c's magic value.
2027 * TODO: maybe necessary to use big numbers in big irons.
2028 */
2029 #define CHARGE_BATCH 32U
2030 struct memcg_stock_pcp {
2031 struct mem_cgroup *cached; /* this never be root cgroup */
2032 unsigned int nr_pages;
2033 struct work_struct work;
2034 unsigned long flags;
2035 #define FLUSHING_CACHED_CHARGE 0
2036 };
2037 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2038 static DEFINE_MUTEX(percpu_charge_mutex);
2039
2040 /*
2041 * Try to consume stocked charge on this cpu. If success, one page is consumed
2042 * from local stock and true is returned. If the stock is 0 or charges from a
2043 * cgroup which is not current target, returns false. This stock will be
2044 * refilled.
2045 */
2046 static bool consume_stock(struct mem_cgroup *memcg)
2047 {
2048 struct memcg_stock_pcp *stock;
2049 bool ret = true;
2050
2051 stock = &get_cpu_var(memcg_stock);
2052 if (memcg == stock->cached && stock->nr_pages)
2053 stock->nr_pages--;
2054 else /* need to call res_counter_charge */
2055 ret = false;
2056 put_cpu_var(memcg_stock);
2057 return ret;
2058 }
2059
2060 /*
2061 * Returns stocks cached in percpu to res_counter and reset cached information.
2062 */
2063 static void drain_stock(struct memcg_stock_pcp *stock)
2064 {
2065 struct mem_cgroup *old = stock->cached;
2066
2067 if (stock->nr_pages) {
2068 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2069
2070 res_counter_uncharge(&old->res, bytes);
2071 if (do_swap_account)
2072 res_counter_uncharge(&old->memsw, bytes);
2073 stock->nr_pages = 0;
2074 }
2075 stock->cached = NULL;
2076 }
2077
2078 /*
2079 * This must be called under preempt disabled or must be called by
2080 * a thread which is pinned to local cpu.
2081 */
2082 static void drain_local_stock(struct work_struct *dummy)
2083 {
2084 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2085 drain_stock(stock);
2086 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2087 }
2088
2089 /*
2090 * Cache charges(val) which is from res_counter, to local per_cpu area.
2091 * This will be consumed by consume_stock() function, later.
2092 */
2093 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2094 {
2095 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2096
2097 if (stock->cached != memcg) { /* reset if necessary */
2098 drain_stock(stock);
2099 stock->cached = memcg;
2100 }
2101 stock->nr_pages += nr_pages;
2102 put_cpu_var(memcg_stock);
2103 }
2104
2105 /*
2106 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2107 * of the hierarchy under it. sync flag says whether we should block
2108 * until the work is done.
2109 */
2110 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2111 {
2112 int cpu, curcpu;
2113
2114 /* Notify other cpus that system-wide "drain" is running */
2115 get_online_cpus();
2116 curcpu = get_cpu();
2117 for_each_online_cpu(cpu) {
2118 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2119 struct mem_cgroup *memcg;
2120
2121 memcg = stock->cached;
2122 if (!memcg || !stock->nr_pages)
2123 continue;
2124 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2125 continue;
2126 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2127 if (cpu == curcpu)
2128 drain_local_stock(&stock->work);
2129 else
2130 schedule_work_on(cpu, &stock->work);
2131 }
2132 }
2133 put_cpu();
2134
2135 if (!sync)
2136 goto out;
2137
2138 for_each_online_cpu(cpu) {
2139 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2140 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2141 flush_work(&stock->work);
2142 }
2143 out:
2144 put_online_cpus();
2145 }
2146
2147 /*
2148 * Tries to drain stocked charges in other cpus. This function is asynchronous
2149 * and just put a work per cpu for draining localy on each cpu. Caller can
2150 * expects some charges will be back to res_counter later but cannot wait for
2151 * it.
2152 */
2153 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2154 {
2155 /*
2156 * If someone calls draining, avoid adding more kworker runs.
2157 */
2158 if (!mutex_trylock(&percpu_charge_mutex))
2159 return;
2160 drain_all_stock(root_memcg, false);
2161 mutex_unlock(&percpu_charge_mutex);
2162 }
2163
2164 /* This is a synchronous drain interface. */
2165 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2166 {
2167 /* called when force_empty is called */
2168 mutex_lock(&percpu_charge_mutex);
2169 drain_all_stock(root_memcg, true);
2170 mutex_unlock(&percpu_charge_mutex);
2171 }
2172
2173 /*
2174 * This function drains percpu counter value from DEAD cpu and
2175 * move it to local cpu. Note that this function can be preempted.
2176 */
2177 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2178 {
2179 int i;
2180
2181 spin_lock(&memcg->pcp_counter_lock);
2182 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2183 long x = per_cpu(memcg->stat->count[i], cpu);
2184
2185 per_cpu(memcg->stat->count[i], cpu) = 0;
2186 memcg->nocpu_base.count[i] += x;
2187 }
2188 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2189 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2190
2191 per_cpu(memcg->stat->events[i], cpu) = 0;
2192 memcg->nocpu_base.events[i] += x;
2193 }
2194 spin_unlock(&memcg->pcp_counter_lock);
2195 }
2196
2197 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2198 unsigned long action,
2199 void *hcpu)
2200 {
2201 int cpu = (unsigned long)hcpu;
2202 struct memcg_stock_pcp *stock;
2203 struct mem_cgroup *iter;
2204
2205 if (action == CPU_ONLINE)
2206 return NOTIFY_OK;
2207
2208 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2209 return NOTIFY_OK;
2210
2211 for_each_mem_cgroup(iter)
2212 mem_cgroup_drain_pcp_counter(iter, cpu);
2213
2214 stock = &per_cpu(memcg_stock, cpu);
2215 drain_stock(stock);
2216 return NOTIFY_OK;
2217 }
2218
2219
2220 /* See __mem_cgroup_try_charge() for details */
2221 enum {
2222 CHARGE_OK, /* success */
2223 CHARGE_RETRY, /* need to retry but retry is not bad */
2224 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2225 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2226 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2227 };
2228
2229 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2230 unsigned int nr_pages, bool oom_check)
2231 {
2232 unsigned long csize = nr_pages * PAGE_SIZE;
2233 struct mem_cgroup *mem_over_limit;
2234 struct res_counter *fail_res;
2235 unsigned long flags = 0;
2236 int ret;
2237
2238 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2239
2240 if (likely(!ret)) {
2241 if (!do_swap_account)
2242 return CHARGE_OK;
2243 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2244 if (likely(!ret))
2245 return CHARGE_OK;
2246
2247 res_counter_uncharge(&memcg->res, csize);
2248 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2249 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2250 } else
2251 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2252 /*
2253 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2254 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2255 *
2256 * Never reclaim on behalf of optional batching, retry with a
2257 * single page instead.
2258 */
2259 if (nr_pages == CHARGE_BATCH)
2260 return CHARGE_RETRY;
2261
2262 if (!(gfp_mask & __GFP_WAIT))
2263 return CHARGE_WOULDBLOCK;
2264
2265 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2266 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2267 return CHARGE_RETRY;
2268 /*
2269 * Even though the limit is exceeded at this point, reclaim
2270 * may have been able to free some pages. Retry the charge
2271 * before killing the task.
2272 *
2273 * Only for regular pages, though: huge pages are rather
2274 * unlikely to succeed so close to the limit, and we fall back
2275 * to regular pages anyway in case of failure.
2276 */
2277 if (nr_pages == 1 && ret)
2278 return CHARGE_RETRY;
2279
2280 /*
2281 * At task move, charge accounts can be doubly counted. So, it's
2282 * better to wait until the end of task_move if something is going on.
2283 */
2284 if (mem_cgroup_wait_acct_move(mem_over_limit))
2285 return CHARGE_RETRY;
2286
2287 /* If we don't need to call oom-killer at el, return immediately */
2288 if (!oom_check)
2289 return CHARGE_NOMEM;
2290 /* check OOM */
2291 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2292 return CHARGE_OOM_DIE;
2293
2294 return CHARGE_RETRY;
2295 }
2296
2297 /*
2298 * __mem_cgroup_try_charge() does
2299 * 1. detect memcg to be charged against from passed *mm and *ptr,
2300 * 2. update res_counter
2301 * 3. call memory reclaim if necessary.
2302 *
2303 * In some special case, if the task is fatal, fatal_signal_pending() or
2304 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2305 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2306 * as possible without any hazards. 2: all pages should have a valid
2307 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2308 * pointer, that is treated as a charge to root_mem_cgroup.
2309 *
2310 * So __mem_cgroup_try_charge() will return
2311 * 0 ... on success, filling *ptr with a valid memcg pointer.
2312 * -ENOMEM ... charge failure because of resource limits.
2313 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2314 *
2315 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2316 * the oom-killer can be invoked.
2317 */
2318 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2319 gfp_t gfp_mask,
2320 unsigned int nr_pages,
2321 struct mem_cgroup **ptr,
2322 bool oom)
2323 {
2324 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2325 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2326 struct mem_cgroup *memcg = NULL;
2327 int ret;
2328
2329 /*
2330 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2331 * in system level. So, allow to go ahead dying process in addition to
2332 * MEMDIE process.
2333 */
2334 if (unlikely(test_thread_flag(TIF_MEMDIE)
2335 || fatal_signal_pending(current)))
2336 goto bypass;
2337
2338 /*
2339 * We always charge the cgroup the mm_struct belongs to.
2340 * The mm_struct's mem_cgroup changes on task migration if the
2341 * thread group leader migrates. It's possible that mm is not
2342 * set, if so charge the root memcg (happens for pagecache usage).
2343 */
2344 if (!*ptr && !mm)
2345 *ptr = root_mem_cgroup;
2346 again:
2347 if (*ptr) { /* css should be a valid one */
2348 memcg = *ptr;
2349 VM_BUG_ON(css_is_removed(&memcg->css));
2350 if (mem_cgroup_is_root(memcg))
2351 goto done;
2352 if (nr_pages == 1 && consume_stock(memcg))
2353 goto done;
2354 css_get(&memcg->css);
2355 } else {
2356 struct task_struct *p;
2357
2358 rcu_read_lock();
2359 p = rcu_dereference(mm->owner);
2360 /*
2361 * Because we don't have task_lock(), "p" can exit.
2362 * In that case, "memcg" can point to root or p can be NULL with
2363 * race with swapoff. Then, we have small risk of mis-accouning.
2364 * But such kind of mis-account by race always happens because
2365 * we don't have cgroup_mutex(). It's overkill and we allo that
2366 * small race, here.
2367 * (*) swapoff at el will charge against mm-struct not against
2368 * task-struct. So, mm->owner can be NULL.
2369 */
2370 memcg = mem_cgroup_from_task(p);
2371 if (!memcg)
2372 memcg = root_mem_cgroup;
2373 if (mem_cgroup_is_root(memcg)) {
2374 rcu_read_unlock();
2375 goto done;
2376 }
2377 if (nr_pages == 1 && consume_stock(memcg)) {
2378 /*
2379 * It seems dagerous to access memcg without css_get().
2380 * But considering how consume_stok works, it's not
2381 * necessary. If consume_stock success, some charges
2382 * from this memcg are cached on this cpu. So, we
2383 * don't need to call css_get()/css_tryget() before
2384 * calling consume_stock().
2385 */
2386 rcu_read_unlock();
2387 goto done;
2388 }
2389 /* after here, we may be blocked. we need to get refcnt */
2390 if (!css_tryget(&memcg->css)) {
2391 rcu_read_unlock();
2392 goto again;
2393 }
2394 rcu_read_unlock();
2395 }
2396
2397 do {
2398 bool oom_check;
2399
2400 /* If killed, bypass charge */
2401 if (fatal_signal_pending(current)) {
2402 css_put(&memcg->css);
2403 goto bypass;
2404 }
2405
2406 oom_check = false;
2407 if (oom && !nr_oom_retries) {
2408 oom_check = true;
2409 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2410 }
2411
2412 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2413 switch (ret) {
2414 case CHARGE_OK:
2415 break;
2416 case CHARGE_RETRY: /* not in OOM situation but retry */
2417 batch = nr_pages;
2418 css_put(&memcg->css);
2419 memcg = NULL;
2420 goto again;
2421 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2422 css_put(&memcg->css);
2423 goto nomem;
2424 case CHARGE_NOMEM: /* OOM routine works */
2425 if (!oom) {
2426 css_put(&memcg->css);
2427 goto nomem;
2428 }
2429 /* If oom, we never return -ENOMEM */
2430 nr_oom_retries--;
2431 break;
2432 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2433 css_put(&memcg->css);
2434 goto bypass;
2435 }
2436 } while (ret != CHARGE_OK);
2437
2438 if (batch > nr_pages)
2439 refill_stock(memcg, batch - nr_pages);
2440 css_put(&memcg->css);
2441 done:
2442 *ptr = memcg;
2443 return 0;
2444 nomem:
2445 *ptr = NULL;
2446 return -ENOMEM;
2447 bypass:
2448 *ptr = root_mem_cgroup;
2449 return -EINTR;
2450 }
2451
2452 /*
2453 * Somemtimes we have to undo a charge we got by try_charge().
2454 * This function is for that and do uncharge, put css's refcnt.
2455 * gotten by try_charge().
2456 */
2457 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2458 unsigned int nr_pages)
2459 {
2460 if (!mem_cgroup_is_root(memcg)) {
2461 unsigned long bytes = nr_pages * PAGE_SIZE;
2462
2463 res_counter_uncharge(&memcg->res, bytes);
2464 if (do_swap_account)
2465 res_counter_uncharge(&memcg->memsw, bytes);
2466 }
2467 }
2468
2469 /*
2470 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2471 * This is useful when moving usage to parent cgroup.
2472 */
2473 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2474 unsigned int nr_pages)
2475 {
2476 unsigned long bytes = nr_pages * PAGE_SIZE;
2477
2478 if (mem_cgroup_is_root(memcg))
2479 return;
2480
2481 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2482 if (do_swap_account)
2483 res_counter_uncharge_until(&memcg->memsw,
2484 memcg->memsw.parent, bytes);
2485 }
2486
2487 /*
2488 * A helper function to get mem_cgroup from ID. must be called under
2489 * rcu_read_lock(). The caller must check css_is_removed() or some if
2490 * it's concern. (dropping refcnt from swap can be called against removed
2491 * memcg.)
2492 */
2493 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2494 {
2495 struct cgroup_subsys_state *css;
2496
2497 /* ID 0 is unused ID */
2498 if (!id)
2499 return NULL;
2500 css = css_lookup(&mem_cgroup_subsys, id);
2501 if (!css)
2502 return NULL;
2503 return mem_cgroup_from_css(css);
2504 }
2505
2506 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2507 {
2508 struct mem_cgroup *memcg = NULL;
2509 struct page_cgroup *pc;
2510 unsigned short id;
2511 swp_entry_t ent;
2512
2513 VM_BUG_ON(!PageLocked(page));
2514
2515 pc = lookup_page_cgroup(page);
2516 lock_page_cgroup(pc);
2517 if (PageCgroupUsed(pc)) {
2518 memcg = pc->mem_cgroup;
2519 if (memcg && !css_tryget(&memcg->css))
2520 memcg = NULL;
2521 } else if (PageSwapCache(page)) {
2522 ent.val = page_private(page);
2523 id = lookup_swap_cgroup_id(ent);
2524 rcu_read_lock();
2525 memcg = mem_cgroup_lookup(id);
2526 if (memcg && !css_tryget(&memcg->css))
2527 memcg = NULL;
2528 rcu_read_unlock();
2529 }
2530 unlock_page_cgroup(pc);
2531 return memcg;
2532 }
2533
2534 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2535 struct page *page,
2536 unsigned int nr_pages,
2537 enum charge_type ctype,
2538 bool lrucare)
2539 {
2540 struct page_cgroup *pc = lookup_page_cgroup(page);
2541 struct zone *uninitialized_var(zone);
2542 struct lruvec *lruvec;
2543 bool was_on_lru = false;
2544 bool anon;
2545
2546 lock_page_cgroup(pc);
2547 VM_BUG_ON(PageCgroupUsed(pc));
2548 /*
2549 * we don't need page_cgroup_lock about tail pages, becase they are not
2550 * accessed by any other context at this point.
2551 */
2552
2553 /*
2554 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2555 * may already be on some other mem_cgroup's LRU. Take care of it.
2556 */
2557 if (lrucare) {
2558 zone = page_zone(page);
2559 spin_lock_irq(&zone->lru_lock);
2560 if (PageLRU(page)) {
2561 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2562 ClearPageLRU(page);
2563 del_page_from_lru_list(page, lruvec, page_lru(page));
2564 was_on_lru = true;
2565 }
2566 }
2567
2568 pc->mem_cgroup = memcg;
2569 /*
2570 * We access a page_cgroup asynchronously without lock_page_cgroup().
2571 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2572 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2573 * before USED bit, we need memory barrier here.
2574 * See mem_cgroup_add_lru_list(), etc.
2575 */
2576 smp_wmb();
2577 SetPageCgroupUsed(pc);
2578
2579 if (lrucare) {
2580 if (was_on_lru) {
2581 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2582 VM_BUG_ON(PageLRU(page));
2583 SetPageLRU(page);
2584 add_page_to_lru_list(page, lruvec, page_lru(page));
2585 }
2586 spin_unlock_irq(&zone->lru_lock);
2587 }
2588
2589 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2590 anon = true;
2591 else
2592 anon = false;
2593
2594 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2595 unlock_page_cgroup(pc);
2596
2597 /*
2598 * "charge_statistics" updated event counter. Then, check it.
2599 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2600 * if they exceeds softlimit.
2601 */
2602 memcg_check_events(memcg, page);
2603 }
2604
2605 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2606
2607 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2608 /*
2609 * Because tail pages are not marked as "used", set it. We're under
2610 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2611 * charge/uncharge will be never happen and move_account() is done under
2612 * compound_lock(), so we don't have to take care of races.
2613 */
2614 void mem_cgroup_split_huge_fixup(struct page *head)
2615 {
2616 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2617 struct page_cgroup *pc;
2618 int i;
2619
2620 if (mem_cgroup_disabled())
2621 return;
2622 for (i = 1; i < HPAGE_PMD_NR; i++) {
2623 pc = head_pc + i;
2624 pc->mem_cgroup = head_pc->mem_cgroup;
2625 smp_wmb();/* see __commit_charge() */
2626 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2627 }
2628 }
2629 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2630
2631 /**
2632 * mem_cgroup_move_account - move account of the page
2633 * @page: the page
2634 * @nr_pages: number of regular pages (>1 for huge pages)
2635 * @pc: page_cgroup of the page.
2636 * @from: mem_cgroup which the page is moved from.
2637 * @to: mem_cgroup which the page is moved to. @from != @to.
2638 *
2639 * The caller must confirm following.
2640 * - page is not on LRU (isolate_page() is useful.)
2641 * - compound_lock is held when nr_pages > 1
2642 *
2643 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2644 * from old cgroup.
2645 */
2646 static int mem_cgroup_move_account(struct page *page,
2647 unsigned int nr_pages,
2648 struct page_cgroup *pc,
2649 struct mem_cgroup *from,
2650 struct mem_cgroup *to)
2651 {
2652 unsigned long flags;
2653 int ret;
2654 bool anon = PageAnon(page);
2655
2656 VM_BUG_ON(from == to);
2657 VM_BUG_ON(PageLRU(page));
2658 /*
2659 * The page is isolated from LRU. So, collapse function
2660 * will not handle this page. But page splitting can happen.
2661 * Do this check under compound_page_lock(). The caller should
2662 * hold it.
2663 */
2664 ret = -EBUSY;
2665 if (nr_pages > 1 && !PageTransHuge(page))
2666 goto out;
2667
2668 lock_page_cgroup(pc);
2669
2670 ret = -EINVAL;
2671 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2672 goto unlock;
2673
2674 move_lock_mem_cgroup(from, &flags);
2675
2676 if (!anon && page_mapped(page)) {
2677 /* Update mapped_file data for mem_cgroup */
2678 preempt_disable();
2679 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2680 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2681 preempt_enable();
2682 }
2683 mem_cgroup_charge_statistics(from, anon, -nr_pages);
2684
2685 /* caller should have done css_get */
2686 pc->mem_cgroup = to;
2687 mem_cgroup_charge_statistics(to, anon, nr_pages);
2688 /*
2689 * We charges against "to" which may not have any tasks. Then, "to"
2690 * can be under rmdir(). But in current implementation, caller of
2691 * this function is just force_empty() and move charge, so it's
2692 * guaranteed that "to" is never removed. So, we don't check rmdir
2693 * status here.
2694 */
2695 move_unlock_mem_cgroup(from, &flags);
2696 ret = 0;
2697 unlock:
2698 unlock_page_cgroup(pc);
2699 /*
2700 * check events
2701 */
2702 memcg_check_events(to, page);
2703 memcg_check_events(from, page);
2704 out:
2705 return ret;
2706 }
2707
2708 /*
2709 * move charges to its parent.
2710 */
2711
2712 static int mem_cgroup_move_parent(struct page *page,
2713 struct page_cgroup *pc,
2714 struct mem_cgroup *child)
2715 {
2716 struct mem_cgroup *parent;
2717 unsigned int nr_pages;
2718 unsigned long uninitialized_var(flags);
2719 int ret;
2720
2721 /* Is ROOT ? */
2722 if (mem_cgroup_is_root(child))
2723 return -EINVAL;
2724
2725 ret = -EBUSY;
2726 if (!get_page_unless_zero(page))
2727 goto out;
2728 if (isolate_lru_page(page))
2729 goto put;
2730
2731 nr_pages = hpage_nr_pages(page);
2732
2733 parent = parent_mem_cgroup(child);
2734 /*
2735 * If no parent, move charges to root cgroup.
2736 */
2737 if (!parent)
2738 parent = root_mem_cgroup;
2739
2740 if (nr_pages > 1)
2741 flags = compound_lock_irqsave(page);
2742
2743 ret = mem_cgroup_move_account(page, nr_pages,
2744 pc, child, parent);
2745 if (!ret)
2746 __mem_cgroup_cancel_local_charge(child, nr_pages);
2747
2748 if (nr_pages > 1)
2749 compound_unlock_irqrestore(page, flags);
2750 putback_lru_page(page);
2751 put:
2752 put_page(page);
2753 out:
2754 return ret;
2755 }
2756
2757 /*
2758 * Charge the memory controller for page usage.
2759 * Return
2760 * 0 if the charge was successful
2761 * < 0 if the cgroup is over its limit
2762 */
2763 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2764 gfp_t gfp_mask, enum charge_type ctype)
2765 {
2766 struct mem_cgroup *memcg = NULL;
2767 unsigned int nr_pages = 1;
2768 bool oom = true;
2769 int ret;
2770
2771 if (PageTransHuge(page)) {
2772 nr_pages <<= compound_order(page);
2773 VM_BUG_ON(!PageTransHuge(page));
2774 /*
2775 * Never OOM-kill a process for a huge page. The
2776 * fault handler will fall back to regular pages.
2777 */
2778 oom = false;
2779 }
2780
2781 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2782 if (ret == -ENOMEM)
2783 return ret;
2784 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2785 return 0;
2786 }
2787
2788 int mem_cgroup_newpage_charge(struct page *page,
2789 struct mm_struct *mm, gfp_t gfp_mask)
2790 {
2791 if (mem_cgroup_disabled())
2792 return 0;
2793 VM_BUG_ON(page_mapped(page));
2794 VM_BUG_ON(page->mapping && !PageAnon(page));
2795 VM_BUG_ON(!mm);
2796 return mem_cgroup_charge_common(page, mm, gfp_mask,
2797 MEM_CGROUP_CHARGE_TYPE_ANON);
2798 }
2799
2800 /*
2801 * While swap-in, try_charge -> commit or cancel, the page is locked.
2802 * And when try_charge() successfully returns, one refcnt to memcg without
2803 * struct page_cgroup is acquired. This refcnt will be consumed by
2804 * "commit()" or removed by "cancel()"
2805 */
2806 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2807 struct page *page,
2808 gfp_t mask,
2809 struct mem_cgroup **memcgp)
2810 {
2811 struct mem_cgroup *memcg;
2812 struct page_cgroup *pc;
2813 int ret;
2814
2815 pc = lookup_page_cgroup(page);
2816 /*
2817 * Every swap fault against a single page tries to charge the
2818 * page, bail as early as possible. shmem_unuse() encounters
2819 * already charged pages, too. The USED bit is protected by
2820 * the page lock, which serializes swap cache removal, which
2821 * in turn serializes uncharging.
2822 */
2823 if (PageCgroupUsed(pc))
2824 return 0;
2825 if (!do_swap_account)
2826 goto charge_cur_mm;
2827 memcg = try_get_mem_cgroup_from_page(page);
2828 if (!memcg)
2829 goto charge_cur_mm;
2830 *memcgp = memcg;
2831 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2832 css_put(&memcg->css);
2833 if (ret == -EINTR)
2834 ret = 0;
2835 return ret;
2836 charge_cur_mm:
2837 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2838 if (ret == -EINTR)
2839 ret = 0;
2840 return ret;
2841 }
2842
2843 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
2844 gfp_t gfp_mask, struct mem_cgroup **memcgp)
2845 {
2846 *memcgp = NULL;
2847 if (mem_cgroup_disabled())
2848 return 0;
2849 /*
2850 * A racing thread's fault, or swapoff, may have already
2851 * updated the pte, and even removed page from swap cache: in
2852 * those cases unuse_pte()'s pte_same() test will fail; but
2853 * there's also a KSM case which does need to charge the page.
2854 */
2855 if (!PageSwapCache(page)) {
2856 int ret;
2857
2858 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
2859 if (ret == -EINTR)
2860 ret = 0;
2861 return ret;
2862 }
2863 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
2864 }
2865
2866 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2867 {
2868 if (mem_cgroup_disabled())
2869 return;
2870 if (!memcg)
2871 return;
2872 __mem_cgroup_cancel_charge(memcg, 1);
2873 }
2874
2875 static void
2876 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2877 enum charge_type ctype)
2878 {
2879 if (mem_cgroup_disabled())
2880 return;
2881 if (!memcg)
2882 return;
2883 cgroup_exclude_rmdir(&memcg->css);
2884
2885 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2886 /*
2887 * Now swap is on-memory. This means this page may be
2888 * counted both as mem and swap....double count.
2889 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2890 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2891 * may call delete_from_swap_cache() before reach here.
2892 */
2893 if (do_swap_account && PageSwapCache(page)) {
2894 swp_entry_t ent = {.val = page_private(page)};
2895 mem_cgroup_uncharge_swap(ent);
2896 }
2897 /*
2898 * At swapin, we may charge account against cgroup which has no tasks.
2899 * So, rmdir()->pre_destroy() can be called while we do this charge.
2900 * In that case, we need to call pre_destroy() again. check it here.
2901 */
2902 cgroup_release_and_wakeup_rmdir(&memcg->css);
2903 }
2904
2905 void mem_cgroup_commit_charge_swapin(struct page *page,
2906 struct mem_cgroup *memcg)
2907 {
2908 __mem_cgroup_commit_charge_swapin(page, memcg,
2909 MEM_CGROUP_CHARGE_TYPE_ANON);
2910 }
2911
2912 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2913 gfp_t gfp_mask)
2914 {
2915 struct mem_cgroup *memcg = NULL;
2916 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2917 int ret;
2918
2919 if (mem_cgroup_disabled())
2920 return 0;
2921 if (PageCompound(page))
2922 return 0;
2923
2924 if (!PageSwapCache(page))
2925 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2926 else { /* page is swapcache/shmem */
2927 ret = __mem_cgroup_try_charge_swapin(mm, page,
2928 gfp_mask, &memcg);
2929 if (!ret)
2930 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2931 }
2932 return ret;
2933 }
2934
2935 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2936 unsigned int nr_pages,
2937 const enum charge_type ctype)
2938 {
2939 struct memcg_batch_info *batch = NULL;
2940 bool uncharge_memsw = true;
2941
2942 /* If swapout, usage of swap doesn't decrease */
2943 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2944 uncharge_memsw = false;
2945
2946 batch = &current->memcg_batch;
2947 /*
2948 * In usual, we do css_get() when we remember memcg pointer.
2949 * But in this case, we keep res->usage until end of a series of
2950 * uncharges. Then, it's ok to ignore memcg's refcnt.
2951 */
2952 if (!batch->memcg)
2953 batch->memcg = memcg;
2954 /*
2955 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2956 * In those cases, all pages freed continuously can be expected to be in
2957 * the same cgroup and we have chance to coalesce uncharges.
2958 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2959 * because we want to do uncharge as soon as possible.
2960 */
2961
2962 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2963 goto direct_uncharge;
2964
2965 if (nr_pages > 1)
2966 goto direct_uncharge;
2967
2968 /*
2969 * In typical case, batch->memcg == mem. This means we can
2970 * merge a series of uncharges to an uncharge of res_counter.
2971 * If not, we uncharge res_counter ony by one.
2972 */
2973 if (batch->memcg != memcg)
2974 goto direct_uncharge;
2975 /* remember freed charge and uncharge it later */
2976 batch->nr_pages++;
2977 if (uncharge_memsw)
2978 batch->memsw_nr_pages++;
2979 return;
2980 direct_uncharge:
2981 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2982 if (uncharge_memsw)
2983 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2984 if (unlikely(batch->memcg != memcg))
2985 memcg_oom_recover(memcg);
2986 }
2987
2988 /*
2989 * uncharge if !page_mapped(page)
2990 */
2991 static struct mem_cgroup *
2992 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
2993 bool end_migration)
2994 {
2995 struct mem_cgroup *memcg = NULL;
2996 unsigned int nr_pages = 1;
2997 struct page_cgroup *pc;
2998 bool anon;
2999
3000 if (mem_cgroup_disabled())
3001 return NULL;
3002
3003 VM_BUG_ON(PageSwapCache(page));
3004
3005 if (PageTransHuge(page)) {
3006 nr_pages <<= compound_order(page);
3007 VM_BUG_ON(!PageTransHuge(page));
3008 }
3009 /*
3010 * Check if our page_cgroup is valid
3011 */
3012 pc = lookup_page_cgroup(page);
3013 if (unlikely(!PageCgroupUsed(pc)))
3014 return NULL;
3015
3016 lock_page_cgroup(pc);
3017
3018 memcg = pc->mem_cgroup;
3019
3020 if (!PageCgroupUsed(pc))
3021 goto unlock_out;
3022
3023 anon = PageAnon(page);
3024
3025 switch (ctype) {
3026 case MEM_CGROUP_CHARGE_TYPE_ANON:
3027 /*
3028 * Generally PageAnon tells if it's the anon statistics to be
3029 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3030 * used before page reached the stage of being marked PageAnon.
3031 */
3032 anon = true;
3033 /* fallthrough */
3034 case MEM_CGROUP_CHARGE_TYPE_DROP:
3035 /* See mem_cgroup_prepare_migration() */
3036 if (page_mapped(page))
3037 goto unlock_out;
3038 /*
3039 * Pages under migration may not be uncharged. But
3040 * end_migration() /must/ be the one uncharging the
3041 * unused post-migration page and so it has to call
3042 * here with the migration bit still set. See the
3043 * res_counter handling below.
3044 */
3045 if (!end_migration && PageCgroupMigration(pc))
3046 goto unlock_out;
3047 break;
3048 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3049 if (!PageAnon(page)) { /* Shared memory */
3050 if (page->mapping && !page_is_file_cache(page))
3051 goto unlock_out;
3052 } else if (page_mapped(page)) /* Anon */
3053 goto unlock_out;
3054 break;
3055 default:
3056 break;
3057 }
3058
3059 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
3060
3061 ClearPageCgroupUsed(pc);
3062 /*
3063 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3064 * freed from LRU. This is safe because uncharged page is expected not
3065 * to be reused (freed soon). Exception is SwapCache, it's handled by
3066 * special functions.
3067 */
3068
3069 unlock_page_cgroup(pc);
3070 /*
3071 * even after unlock, we have memcg->res.usage here and this memcg
3072 * will never be freed.
3073 */
3074 memcg_check_events(memcg, page);
3075 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3076 mem_cgroup_swap_statistics(memcg, true);
3077 mem_cgroup_get(memcg);
3078 }
3079 /*
3080 * Migration does not charge the res_counter for the
3081 * replacement page, so leave it alone when phasing out the
3082 * page that is unused after the migration.
3083 */
3084 if (!end_migration && !mem_cgroup_is_root(memcg))
3085 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3086
3087 return memcg;
3088
3089 unlock_out:
3090 unlock_page_cgroup(pc);
3091 return NULL;
3092 }
3093
3094 void mem_cgroup_uncharge_page(struct page *page)
3095 {
3096 /* early check. */
3097 if (page_mapped(page))
3098 return;
3099 VM_BUG_ON(page->mapping && !PageAnon(page));
3100 if (PageSwapCache(page))
3101 return;
3102 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
3103 }
3104
3105 void mem_cgroup_uncharge_cache_page(struct page *page)
3106 {
3107 VM_BUG_ON(page_mapped(page));
3108 VM_BUG_ON(page->mapping);
3109 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
3110 }
3111
3112 /*
3113 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3114 * In that cases, pages are freed continuously and we can expect pages
3115 * are in the same memcg. All these calls itself limits the number of
3116 * pages freed at once, then uncharge_start/end() is called properly.
3117 * This may be called prural(2) times in a context,
3118 */
3119
3120 void mem_cgroup_uncharge_start(void)
3121 {
3122 current->memcg_batch.do_batch++;
3123 /* We can do nest. */
3124 if (current->memcg_batch.do_batch == 1) {
3125 current->memcg_batch.memcg = NULL;
3126 current->memcg_batch.nr_pages = 0;
3127 current->memcg_batch.memsw_nr_pages = 0;
3128 }
3129 }
3130
3131 void mem_cgroup_uncharge_end(void)
3132 {
3133 struct memcg_batch_info *batch = &current->memcg_batch;
3134
3135 if (!batch->do_batch)
3136 return;
3137
3138 batch->do_batch--;
3139 if (batch->do_batch) /* If stacked, do nothing. */
3140 return;
3141
3142 if (!batch->memcg)
3143 return;
3144 /*
3145 * This "batch->memcg" is valid without any css_get/put etc...
3146 * bacause we hide charges behind us.
3147 */
3148 if (batch->nr_pages)
3149 res_counter_uncharge(&batch->memcg->res,
3150 batch->nr_pages * PAGE_SIZE);
3151 if (batch->memsw_nr_pages)
3152 res_counter_uncharge(&batch->memcg->memsw,
3153 batch->memsw_nr_pages * PAGE_SIZE);
3154 memcg_oom_recover(batch->memcg);
3155 /* forget this pointer (for sanity check) */
3156 batch->memcg = NULL;
3157 }
3158
3159 #ifdef CONFIG_SWAP
3160 /*
3161 * called after __delete_from_swap_cache() and drop "page" account.
3162 * memcg information is recorded to swap_cgroup of "ent"
3163 */
3164 void
3165 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3166 {
3167 struct mem_cgroup *memcg;
3168 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3169
3170 if (!swapout) /* this was a swap cache but the swap is unused ! */
3171 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3172
3173 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
3174
3175 /*
3176 * record memcg information, if swapout && memcg != NULL,
3177 * mem_cgroup_get() was called in uncharge().
3178 */
3179 if (do_swap_account && swapout && memcg)
3180 swap_cgroup_record(ent, css_id(&memcg->css));
3181 }
3182 #endif
3183
3184 #ifdef CONFIG_MEMCG_SWAP
3185 /*
3186 * called from swap_entry_free(). remove record in swap_cgroup and
3187 * uncharge "memsw" account.
3188 */
3189 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3190 {
3191 struct mem_cgroup *memcg;
3192 unsigned short id;
3193
3194 if (!do_swap_account)
3195 return;
3196
3197 id = swap_cgroup_record(ent, 0);
3198 rcu_read_lock();
3199 memcg = mem_cgroup_lookup(id);
3200 if (memcg) {
3201 /*
3202 * We uncharge this because swap is freed.
3203 * This memcg can be obsolete one. We avoid calling css_tryget
3204 */
3205 if (!mem_cgroup_is_root(memcg))
3206 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3207 mem_cgroup_swap_statistics(memcg, false);
3208 mem_cgroup_put(memcg);
3209 }
3210 rcu_read_unlock();
3211 }
3212
3213 /**
3214 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3215 * @entry: swap entry to be moved
3216 * @from: mem_cgroup which the entry is moved from
3217 * @to: mem_cgroup which the entry is moved to
3218 *
3219 * It succeeds only when the swap_cgroup's record for this entry is the same
3220 * as the mem_cgroup's id of @from.
3221 *
3222 * Returns 0 on success, -EINVAL on failure.
3223 *
3224 * The caller must have charged to @to, IOW, called res_counter_charge() about
3225 * both res and memsw, and called css_get().
3226 */
3227 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3228 struct mem_cgroup *from, struct mem_cgroup *to)
3229 {
3230 unsigned short old_id, new_id;
3231
3232 old_id = css_id(&from->css);
3233 new_id = css_id(&to->css);
3234
3235 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3236 mem_cgroup_swap_statistics(from, false);
3237 mem_cgroup_swap_statistics(to, true);
3238 /*
3239 * This function is only called from task migration context now.
3240 * It postpones res_counter and refcount handling till the end
3241 * of task migration(mem_cgroup_clear_mc()) for performance
3242 * improvement. But we cannot postpone mem_cgroup_get(to)
3243 * because if the process that has been moved to @to does
3244 * swap-in, the refcount of @to might be decreased to 0.
3245 */
3246 mem_cgroup_get(to);
3247 return 0;
3248 }
3249 return -EINVAL;
3250 }
3251 #else
3252 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3253 struct mem_cgroup *from, struct mem_cgroup *to)
3254 {
3255 return -EINVAL;
3256 }
3257 #endif
3258
3259 /*
3260 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3261 * page belongs to.
3262 */
3263 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
3264 struct mem_cgroup **memcgp)
3265 {
3266 struct mem_cgroup *memcg = NULL;
3267 struct page_cgroup *pc;
3268 enum charge_type ctype;
3269
3270 *memcgp = NULL;
3271
3272 VM_BUG_ON(PageTransHuge(page));
3273 if (mem_cgroup_disabled())
3274 return;
3275
3276 pc = lookup_page_cgroup(page);
3277 lock_page_cgroup(pc);
3278 if (PageCgroupUsed(pc)) {
3279 memcg = pc->mem_cgroup;
3280 css_get(&memcg->css);
3281 /*
3282 * At migrating an anonymous page, its mapcount goes down
3283 * to 0 and uncharge() will be called. But, even if it's fully
3284 * unmapped, migration may fail and this page has to be
3285 * charged again. We set MIGRATION flag here and delay uncharge
3286 * until end_migration() is called
3287 *
3288 * Corner Case Thinking
3289 * A)
3290 * When the old page was mapped as Anon and it's unmap-and-freed
3291 * while migration was ongoing.
3292 * If unmap finds the old page, uncharge() of it will be delayed
3293 * until end_migration(). If unmap finds a new page, it's
3294 * uncharged when it make mapcount to be 1->0. If unmap code
3295 * finds swap_migration_entry, the new page will not be mapped
3296 * and end_migration() will find it(mapcount==0).
3297 *
3298 * B)
3299 * When the old page was mapped but migraion fails, the kernel
3300 * remaps it. A charge for it is kept by MIGRATION flag even
3301 * if mapcount goes down to 0. We can do remap successfully
3302 * without charging it again.
3303 *
3304 * C)
3305 * The "old" page is under lock_page() until the end of
3306 * migration, so, the old page itself will not be swapped-out.
3307 * If the new page is swapped out before end_migraton, our
3308 * hook to usual swap-out path will catch the event.
3309 */
3310 if (PageAnon(page))
3311 SetPageCgroupMigration(pc);
3312 }
3313 unlock_page_cgroup(pc);
3314 /*
3315 * If the page is not charged at this point,
3316 * we return here.
3317 */
3318 if (!memcg)
3319 return;
3320
3321 *memcgp = memcg;
3322 /*
3323 * We charge new page before it's used/mapped. So, even if unlock_page()
3324 * is called before end_migration, we can catch all events on this new
3325 * page. In the case new page is migrated but not remapped, new page's
3326 * mapcount will be finally 0 and we call uncharge in end_migration().
3327 */
3328 if (PageAnon(page))
3329 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
3330 else
3331 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3332 /*
3333 * The page is committed to the memcg, but it's not actually
3334 * charged to the res_counter since we plan on replacing the
3335 * old one and only one page is going to be left afterwards.
3336 */
3337 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3338 }
3339
3340 /* remove redundant charge if migration failed*/
3341 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3342 struct page *oldpage, struct page *newpage, bool migration_ok)
3343 {
3344 struct page *used, *unused;
3345 struct page_cgroup *pc;
3346 bool anon;
3347
3348 if (!memcg)
3349 return;
3350 /* blocks rmdir() */
3351 cgroup_exclude_rmdir(&memcg->css);
3352 if (!migration_ok) {
3353 used = oldpage;
3354 unused = newpage;
3355 } else {
3356 used = newpage;
3357 unused = oldpage;
3358 }
3359 anon = PageAnon(used);
3360 __mem_cgroup_uncharge_common(unused,
3361 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
3362 : MEM_CGROUP_CHARGE_TYPE_CACHE,
3363 true);
3364 css_put(&memcg->css);
3365 /*
3366 * We disallowed uncharge of pages under migration because mapcount
3367 * of the page goes down to zero, temporarly.
3368 * Clear the flag and check the page should be charged.
3369 */
3370 pc = lookup_page_cgroup(oldpage);
3371 lock_page_cgroup(pc);
3372 ClearPageCgroupMigration(pc);
3373 unlock_page_cgroup(pc);
3374
3375 /*
3376 * If a page is a file cache, radix-tree replacement is very atomic
3377 * and we can skip this check. When it was an Anon page, its mapcount
3378 * goes down to 0. But because we added MIGRATION flage, it's not
3379 * uncharged yet. There are several case but page->mapcount check
3380 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3381 * check. (see prepare_charge() also)
3382 */
3383 if (anon)
3384 mem_cgroup_uncharge_page(used);
3385 /*
3386 * At migration, we may charge account against cgroup which has no
3387 * tasks.
3388 * So, rmdir()->pre_destroy() can be called while we do this charge.
3389 * In that case, we need to call pre_destroy() again. check it here.
3390 */
3391 cgroup_release_and_wakeup_rmdir(&memcg->css);
3392 }
3393
3394 /*
3395 * At replace page cache, newpage is not under any memcg but it's on
3396 * LRU. So, this function doesn't touch res_counter but handles LRU
3397 * in correct way. Both pages are locked so we cannot race with uncharge.
3398 */
3399 void mem_cgroup_replace_page_cache(struct page *oldpage,
3400 struct page *newpage)
3401 {
3402 struct mem_cgroup *memcg = NULL;
3403 struct page_cgroup *pc;
3404 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3405
3406 if (mem_cgroup_disabled())
3407 return;
3408
3409 pc = lookup_page_cgroup(oldpage);
3410 /* fix accounting on old pages */
3411 lock_page_cgroup(pc);
3412 if (PageCgroupUsed(pc)) {
3413 memcg = pc->mem_cgroup;
3414 mem_cgroup_charge_statistics(memcg, false, -1);
3415 ClearPageCgroupUsed(pc);
3416 }
3417 unlock_page_cgroup(pc);
3418
3419 /*
3420 * When called from shmem_replace_page(), in some cases the
3421 * oldpage has already been charged, and in some cases not.
3422 */
3423 if (!memcg)
3424 return;
3425 /*
3426 * Even if newpage->mapping was NULL before starting replacement,
3427 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3428 * LRU while we overwrite pc->mem_cgroup.
3429 */
3430 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3431 }
3432
3433 #ifdef CONFIG_DEBUG_VM
3434 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3435 {
3436 struct page_cgroup *pc;
3437
3438 pc = lookup_page_cgroup(page);
3439 /*
3440 * Can be NULL while feeding pages into the page allocator for
3441 * the first time, i.e. during boot or memory hotplug;
3442 * or when mem_cgroup_disabled().
3443 */
3444 if (likely(pc) && PageCgroupUsed(pc))
3445 return pc;
3446 return NULL;
3447 }
3448
3449 bool mem_cgroup_bad_page_check(struct page *page)
3450 {
3451 if (mem_cgroup_disabled())
3452 return false;
3453
3454 return lookup_page_cgroup_used(page) != NULL;
3455 }
3456
3457 void mem_cgroup_print_bad_page(struct page *page)
3458 {
3459 struct page_cgroup *pc;
3460
3461 pc = lookup_page_cgroup_used(page);
3462 if (pc) {
3463 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3464 pc, pc->flags, pc->mem_cgroup);
3465 }
3466 }
3467 #endif
3468
3469 static DEFINE_MUTEX(set_limit_mutex);
3470
3471 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3472 unsigned long long val)
3473 {
3474 int retry_count;
3475 u64 memswlimit, memlimit;
3476 int ret = 0;
3477 int children = mem_cgroup_count_children(memcg);
3478 u64 curusage, oldusage;
3479 int enlarge;
3480
3481 /*
3482 * For keeping hierarchical_reclaim simple, how long we should retry
3483 * is depends on callers. We set our retry-count to be function
3484 * of # of children which we should visit in this loop.
3485 */
3486 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3487
3488 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3489
3490 enlarge = 0;
3491 while (retry_count) {
3492 if (signal_pending(current)) {
3493 ret = -EINTR;
3494 break;
3495 }
3496 /*
3497 * Rather than hide all in some function, I do this in
3498 * open coded manner. You see what this really does.
3499 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3500 */
3501 mutex_lock(&set_limit_mutex);
3502 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3503 if (memswlimit < val) {
3504 ret = -EINVAL;
3505 mutex_unlock(&set_limit_mutex);
3506 break;
3507 }
3508
3509 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3510 if (memlimit < val)
3511 enlarge = 1;
3512
3513 ret = res_counter_set_limit(&memcg->res, val);
3514 if (!ret) {
3515 if (memswlimit == val)
3516 memcg->memsw_is_minimum = true;
3517 else
3518 memcg->memsw_is_minimum = false;
3519 }
3520 mutex_unlock(&set_limit_mutex);
3521
3522 if (!ret)
3523 break;
3524
3525 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3526 MEM_CGROUP_RECLAIM_SHRINK);
3527 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3528 /* Usage is reduced ? */
3529 if (curusage >= oldusage)
3530 retry_count--;
3531 else
3532 oldusage = curusage;
3533 }
3534 if (!ret && enlarge)
3535 memcg_oom_recover(memcg);
3536
3537 return ret;
3538 }
3539
3540 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3541 unsigned long long val)
3542 {
3543 int retry_count;
3544 u64 memlimit, memswlimit, oldusage, curusage;
3545 int children = mem_cgroup_count_children(memcg);
3546 int ret = -EBUSY;
3547 int enlarge = 0;
3548
3549 /* see mem_cgroup_resize_res_limit */
3550 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3551 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3552 while (retry_count) {
3553 if (signal_pending(current)) {
3554 ret = -EINTR;
3555 break;
3556 }
3557 /*
3558 * Rather than hide all in some function, I do this in
3559 * open coded manner. You see what this really does.
3560 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3561 */
3562 mutex_lock(&set_limit_mutex);
3563 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3564 if (memlimit > val) {
3565 ret = -EINVAL;
3566 mutex_unlock(&set_limit_mutex);
3567 break;
3568 }
3569 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3570 if (memswlimit < val)
3571 enlarge = 1;
3572 ret = res_counter_set_limit(&memcg->memsw, val);
3573 if (!ret) {
3574 if (memlimit == val)
3575 memcg->memsw_is_minimum = true;
3576 else
3577 memcg->memsw_is_minimum = false;
3578 }
3579 mutex_unlock(&set_limit_mutex);
3580
3581 if (!ret)
3582 break;
3583
3584 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3585 MEM_CGROUP_RECLAIM_NOSWAP |
3586 MEM_CGROUP_RECLAIM_SHRINK);
3587 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3588 /* Usage is reduced ? */
3589 if (curusage >= oldusage)
3590 retry_count--;
3591 else
3592 oldusage = curusage;
3593 }
3594 if (!ret && enlarge)
3595 memcg_oom_recover(memcg);
3596 return ret;
3597 }
3598
3599 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3600 gfp_t gfp_mask,
3601 unsigned long *total_scanned)
3602 {
3603 unsigned long nr_reclaimed = 0;
3604 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3605 unsigned long reclaimed;
3606 int loop = 0;
3607 struct mem_cgroup_tree_per_zone *mctz;
3608 unsigned long long excess;
3609 unsigned long nr_scanned;
3610
3611 if (order > 0)
3612 return 0;
3613
3614 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3615 /*
3616 * This loop can run a while, specially if mem_cgroup's continuously
3617 * keep exceeding their soft limit and putting the system under
3618 * pressure
3619 */
3620 do {
3621 if (next_mz)
3622 mz = next_mz;
3623 else
3624 mz = mem_cgroup_largest_soft_limit_node(mctz);
3625 if (!mz)
3626 break;
3627
3628 nr_scanned = 0;
3629 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3630 gfp_mask, &nr_scanned);
3631 nr_reclaimed += reclaimed;
3632 *total_scanned += nr_scanned;
3633 spin_lock(&mctz->lock);
3634
3635 /*
3636 * If we failed to reclaim anything from this memory cgroup
3637 * it is time to move on to the next cgroup
3638 */
3639 next_mz = NULL;
3640 if (!reclaimed) {
3641 do {
3642 /*
3643 * Loop until we find yet another one.
3644 *
3645 * By the time we get the soft_limit lock
3646 * again, someone might have aded the
3647 * group back on the RB tree. Iterate to
3648 * make sure we get a different mem.
3649 * mem_cgroup_largest_soft_limit_node returns
3650 * NULL if no other cgroup is present on
3651 * the tree
3652 */
3653 next_mz =
3654 __mem_cgroup_largest_soft_limit_node(mctz);
3655 if (next_mz == mz)
3656 css_put(&next_mz->memcg->css);
3657 else /* next_mz == NULL or other memcg */
3658 break;
3659 } while (1);
3660 }
3661 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3662 excess = res_counter_soft_limit_excess(&mz->memcg->res);
3663 /*
3664 * One school of thought says that we should not add
3665 * back the node to the tree if reclaim returns 0.
3666 * But our reclaim could return 0, simply because due
3667 * to priority we are exposing a smaller subset of
3668 * memory to reclaim from. Consider this as a longer
3669 * term TODO.
3670 */
3671 /* If excess == 0, no tree ops */
3672 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3673 spin_unlock(&mctz->lock);
3674 css_put(&mz->memcg->css);
3675 loop++;
3676 /*
3677 * Could not reclaim anything and there are no more
3678 * mem cgroups to try or we seem to be looping without
3679 * reclaiming anything.
3680 */
3681 if (!nr_reclaimed &&
3682 (next_mz == NULL ||
3683 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3684 break;
3685 } while (!nr_reclaimed);
3686 if (next_mz)
3687 css_put(&next_mz->memcg->css);
3688 return nr_reclaimed;
3689 }
3690
3691 /*
3692 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
3693 * reclaim the pages page themselves - it just removes the page_cgroups.
3694 * Returns true if some page_cgroups were not freed, indicating that the caller
3695 * must retry this operation.
3696 */
3697 static bool mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3698 int node, int zid, enum lru_list lru)
3699 {
3700 struct mem_cgroup_per_zone *mz;
3701 unsigned long flags, loop;
3702 struct list_head *list;
3703 struct page *busy;
3704 struct zone *zone;
3705
3706 zone = &NODE_DATA(node)->node_zones[zid];
3707 mz = mem_cgroup_zoneinfo(memcg, node, zid);
3708 list = &mz->lruvec.lists[lru];
3709
3710 loop = mz->lru_size[lru];
3711 /* give some margin against EBUSY etc...*/
3712 loop += 256;
3713 busy = NULL;
3714 while (loop--) {
3715 struct page_cgroup *pc;
3716 struct page *page;
3717
3718 spin_lock_irqsave(&zone->lru_lock, flags);
3719 if (list_empty(list)) {
3720 spin_unlock_irqrestore(&zone->lru_lock, flags);
3721 break;
3722 }
3723 page = list_entry(list->prev, struct page, lru);
3724 if (busy == page) {
3725 list_move(&page->lru, list);
3726 busy = NULL;
3727 spin_unlock_irqrestore(&zone->lru_lock, flags);
3728 continue;
3729 }
3730 spin_unlock_irqrestore(&zone->lru_lock, flags);
3731
3732 pc = lookup_page_cgroup(page);
3733
3734 if (mem_cgroup_move_parent(page, pc, memcg)) {
3735 /* found lock contention or "pc" is obsolete. */
3736 busy = page;
3737 cond_resched();
3738 } else
3739 busy = NULL;
3740 }
3741 return !list_empty(list);
3742 }
3743
3744 /*
3745 * make mem_cgroup's charge to be 0 if there is no task.
3746 * This enables deleting this mem_cgroup.
3747 */
3748 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3749 {
3750 int ret;
3751 int node, zid, shrink;
3752 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3753 struct cgroup *cgrp = memcg->css.cgroup;
3754
3755 css_get(&memcg->css);
3756
3757 shrink = 0;
3758 /* should free all ? */
3759 if (free_all)
3760 goto try_to_free;
3761 move_account:
3762 do {
3763 ret = -EBUSY;
3764 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3765 goto out;
3766 /* This is for making all *used* pages to be on LRU. */
3767 lru_add_drain_all();
3768 drain_all_stock_sync(memcg);
3769 ret = 0;
3770 mem_cgroup_start_move(memcg);
3771 for_each_node_state(node, N_HIGH_MEMORY) {
3772 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3773 enum lru_list lru;
3774 for_each_lru(lru) {
3775 ret = mem_cgroup_force_empty_list(memcg,
3776 node, zid, lru);
3777 if (ret)
3778 break;
3779 }
3780 }
3781 if (ret)
3782 break;
3783 }
3784 mem_cgroup_end_move(memcg);
3785 memcg_oom_recover(memcg);
3786 cond_resched();
3787 /* "ret" should also be checked to ensure all lists are empty. */
3788 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3789 out:
3790 css_put(&memcg->css);
3791 return ret;
3792
3793 try_to_free:
3794 /* returns EBUSY if there is a task or if we come here twice. */
3795 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3796 ret = -EBUSY;
3797 goto out;
3798 }
3799 /* we call try-to-free pages for make this cgroup empty */
3800 lru_add_drain_all();
3801 /* try to free all pages in this cgroup */
3802 shrink = 1;
3803 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3804 int progress;
3805
3806 if (signal_pending(current)) {
3807 ret = -EINTR;
3808 goto out;
3809 }
3810 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3811 false);
3812 if (!progress) {
3813 nr_retries--;
3814 /* maybe some writeback is necessary */
3815 congestion_wait(BLK_RW_ASYNC, HZ/10);
3816 }
3817
3818 }
3819 lru_add_drain();
3820 /* try move_account...there may be some *locked* pages. */
3821 goto move_account;
3822 }
3823
3824 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3825 {
3826 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3827 }
3828
3829
3830 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3831 {
3832 return mem_cgroup_from_cont(cont)->use_hierarchy;
3833 }
3834
3835 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3836 u64 val)
3837 {
3838 int retval = 0;
3839 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3840 struct cgroup *parent = cont->parent;
3841 struct mem_cgroup *parent_memcg = NULL;
3842
3843 if (parent)
3844 parent_memcg = mem_cgroup_from_cont(parent);
3845
3846 cgroup_lock();
3847
3848 if (memcg->use_hierarchy == val)
3849 goto out;
3850
3851 /*
3852 * If parent's use_hierarchy is set, we can't make any modifications
3853 * in the child subtrees. If it is unset, then the change can
3854 * occur, provided the current cgroup has no children.
3855 *
3856 * For the root cgroup, parent_mem is NULL, we allow value to be
3857 * set if there are no children.
3858 */
3859 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3860 (val == 1 || val == 0)) {
3861 if (list_empty(&cont->children))
3862 memcg->use_hierarchy = val;
3863 else
3864 retval = -EBUSY;
3865 } else
3866 retval = -EINVAL;
3867
3868 out:
3869 cgroup_unlock();
3870
3871 return retval;
3872 }
3873
3874
3875 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3876 enum mem_cgroup_stat_index idx)
3877 {
3878 struct mem_cgroup *iter;
3879 long val = 0;
3880
3881 /* Per-cpu values can be negative, use a signed accumulator */
3882 for_each_mem_cgroup_tree(iter, memcg)
3883 val += mem_cgroup_read_stat(iter, idx);
3884
3885 if (val < 0) /* race ? */
3886 val = 0;
3887 return val;
3888 }
3889
3890 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3891 {
3892 u64 val;
3893
3894 if (!mem_cgroup_is_root(memcg)) {
3895 if (!swap)
3896 return res_counter_read_u64(&memcg->res, RES_USAGE);
3897 else
3898 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3899 }
3900
3901 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3902 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3903
3904 if (swap)
3905 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
3906
3907 return val << PAGE_SHIFT;
3908 }
3909
3910 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3911 struct file *file, char __user *buf,
3912 size_t nbytes, loff_t *ppos)
3913 {
3914 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3915 char str[64];
3916 u64 val;
3917 int type, name, len;
3918
3919 type = MEMFILE_TYPE(cft->private);
3920 name = MEMFILE_ATTR(cft->private);
3921
3922 if (!do_swap_account && type == _MEMSWAP)
3923 return -EOPNOTSUPP;
3924
3925 switch (type) {
3926 case _MEM:
3927 if (name == RES_USAGE)
3928 val = mem_cgroup_usage(memcg, false);
3929 else
3930 val = res_counter_read_u64(&memcg->res, name);
3931 break;
3932 case _MEMSWAP:
3933 if (name == RES_USAGE)
3934 val = mem_cgroup_usage(memcg, true);
3935 else
3936 val = res_counter_read_u64(&memcg->memsw, name);
3937 break;
3938 default:
3939 BUG();
3940 }
3941
3942 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3943 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
3944 }
3945 /*
3946 * The user of this function is...
3947 * RES_LIMIT.
3948 */
3949 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3950 const char *buffer)
3951 {
3952 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3953 int type, name;
3954 unsigned long long val;
3955 int ret;
3956
3957 type = MEMFILE_TYPE(cft->private);
3958 name = MEMFILE_ATTR(cft->private);
3959
3960 if (!do_swap_account && type == _MEMSWAP)
3961 return -EOPNOTSUPP;
3962
3963 switch (name) {
3964 case RES_LIMIT:
3965 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3966 ret = -EINVAL;
3967 break;
3968 }
3969 /* This function does all necessary parse...reuse it */
3970 ret = res_counter_memparse_write_strategy(buffer, &val);
3971 if (ret)
3972 break;
3973 if (type == _MEM)
3974 ret = mem_cgroup_resize_limit(memcg, val);
3975 else
3976 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3977 break;
3978 case RES_SOFT_LIMIT:
3979 ret = res_counter_memparse_write_strategy(buffer, &val);
3980 if (ret)
3981 break;
3982 /*
3983 * For memsw, soft limits are hard to implement in terms
3984 * of semantics, for now, we support soft limits for
3985 * control without swap
3986 */
3987 if (type == _MEM)
3988 ret = res_counter_set_soft_limit(&memcg->res, val);
3989 else
3990 ret = -EINVAL;
3991 break;
3992 default:
3993 ret = -EINVAL; /* should be BUG() ? */
3994 break;
3995 }
3996 return ret;
3997 }
3998
3999 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4000 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4001 {
4002 struct cgroup *cgroup;
4003 unsigned long long min_limit, min_memsw_limit, tmp;
4004
4005 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4006 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4007 cgroup = memcg->css.cgroup;
4008 if (!memcg->use_hierarchy)
4009 goto out;
4010
4011 while (cgroup->parent) {
4012 cgroup = cgroup->parent;
4013 memcg = mem_cgroup_from_cont(cgroup);
4014 if (!memcg->use_hierarchy)
4015 break;
4016 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4017 min_limit = min(min_limit, tmp);
4018 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4019 min_memsw_limit = min(min_memsw_limit, tmp);
4020 }
4021 out:
4022 *mem_limit = min_limit;
4023 *memsw_limit = min_memsw_limit;
4024 }
4025
4026 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4027 {
4028 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4029 int type, name;
4030
4031 type = MEMFILE_TYPE(event);
4032 name = MEMFILE_ATTR(event);
4033
4034 if (!do_swap_account && type == _MEMSWAP)
4035 return -EOPNOTSUPP;
4036
4037 switch (name) {
4038 case RES_MAX_USAGE:
4039 if (type == _MEM)
4040 res_counter_reset_max(&memcg->res);
4041 else
4042 res_counter_reset_max(&memcg->memsw);
4043 break;
4044 case RES_FAILCNT:
4045 if (type == _MEM)
4046 res_counter_reset_failcnt(&memcg->res);
4047 else
4048 res_counter_reset_failcnt(&memcg->memsw);
4049 break;
4050 }
4051
4052 return 0;
4053 }
4054
4055 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4056 struct cftype *cft)
4057 {
4058 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4059 }
4060
4061 #ifdef CONFIG_MMU
4062 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4063 struct cftype *cft, u64 val)
4064 {
4065 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4066
4067 if (val >= (1 << NR_MOVE_TYPE))
4068 return -EINVAL;
4069 /*
4070 * We check this value several times in both in can_attach() and
4071 * attach(), so we need cgroup lock to prevent this value from being
4072 * inconsistent.
4073 */
4074 cgroup_lock();
4075 memcg->move_charge_at_immigrate = val;
4076 cgroup_unlock();
4077
4078 return 0;
4079 }
4080 #else
4081 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4082 struct cftype *cft, u64 val)
4083 {
4084 return -ENOSYS;
4085 }
4086 #endif
4087
4088 #ifdef CONFIG_NUMA
4089 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4090 struct seq_file *m)
4091 {
4092 int nid;
4093 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4094 unsigned long node_nr;
4095 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4096
4097 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4098 seq_printf(m, "total=%lu", total_nr);
4099 for_each_node_state(nid, N_HIGH_MEMORY) {
4100 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4101 seq_printf(m, " N%d=%lu", nid, node_nr);
4102 }
4103 seq_putc(m, '\n');
4104
4105 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4106 seq_printf(m, "file=%lu", file_nr);
4107 for_each_node_state(nid, N_HIGH_MEMORY) {
4108 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4109 LRU_ALL_FILE);
4110 seq_printf(m, " N%d=%lu", nid, node_nr);
4111 }
4112 seq_putc(m, '\n');
4113
4114 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4115 seq_printf(m, "anon=%lu", anon_nr);
4116 for_each_node_state(nid, N_HIGH_MEMORY) {
4117 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4118 LRU_ALL_ANON);
4119 seq_printf(m, " N%d=%lu", nid, node_nr);
4120 }
4121 seq_putc(m, '\n');
4122
4123 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4124 seq_printf(m, "unevictable=%lu", unevictable_nr);
4125 for_each_node_state(nid, N_HIGH_MEMORY) {
4126 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4127 BIT(LRU_UNEVICTABLE));
4128 seq_printf(m, " N%d=%lu", nid, node_nr);
4129 }
4130 seq_putc(m, '\n');
4131 return 0;
4132 }
4133 #endif /* CONFIG_NUMA */
4134
4135 static const char * const mem_cgroup_lru_names[] = {
4136 "inactive_anon",
4137 "active_anon",
4138 "inactive_file",
4139 "active_file",
4140 "unevictable",
4141 };
4142
4143 static inline void mem_cgroup_lru_names_not_uptodate(void)
4144 {
4145 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4146 }
4147
4148 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
4149 struct seq_file *m)
4150 {
4151 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4152 struct mem_cgroup *mi;
4153 unsigned int i;
4154
4155 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4156 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4157 continue;
4158 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4159 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4160 }
4161
4162 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4163 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4164 mem_cgroup_read_events(memcg, i));
4165
4166 for (i = 0; i < NR_LRU_LISTS; i++)
4167 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4168 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4169
4170 /* Hierarchical information */
4171 {
4172 unsigned long long limit, memsw_limit;
4173 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4174 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4175 if (do_swap_account)
4176 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4177 memsw_limit);
4178 }
4179
4180 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4181 long long val = 0;
4182
4183 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4184 continue;
4185 for_each_mem_cgroup_tree(mi, memcg)
4186 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4187 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4188 }
4189
4190 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4191 unsigned long long val = 0;
4192
4193 for_each_mem_cgroup_tree(mi, memcg)
4194 val += mem_cgroup_read_events(mi, i);
4195 seq_printf(m, "total_%s %llu\n",
4196 mem_cgroup_events_names[i], val);
4197 }
4198
4199 for (i = 0; i < NR_LRU_LISTS; i++) {
4200 unsigned long long val = 0;
4201
4202 for_each_mem_cgroup_tree(mi, memcg)
4203 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4204 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4205 }
4206
4207 #ifdef CONFIG_DEBUG_VM
4208 {
4209 int nid, zid;
4210 struct mem_cgroup_per_zone *mz;
4211 struct zone_reclaim_stat *rstat;
4212 unsigned long recent_rotated[2] = {0, 0};
4213 unsigned long recent_scanned[2] = {0, 0};
4214
4215 for_each_online_node(nid)
4216 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4217 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4218 rstat = &mz->lruvec.reclaim_stat;
4219
4220 recent_rotated[0] += rstat->recent_rotated[0];
4221 recent_rotated[1] += rstat->recent_rotated[1];
4222 recent_scanned[0] += rstat->recent_scanned[0];
4223 recent_scanned[1] += rstat->recent_scanned[1];
4224 }
4225 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4226 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4227 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4228 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
4229 }
4230 #endif
4231
4232 return 0;
4233 }
4234
4235 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4236 {
4237 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4238
4239 return mem_cgroup_swappiness(memcg);
4240 }
4241
4242 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4243 u64 val)
4244 {
4245 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4246 struct mem_cgroup *parent;
4247
4248 if (val > 100)
4249 return -EINVAL;
4250
4251 if (cgrp->parent == NULL)
4252 return -EINVAL;
4253
4254 parent = mem_cgroup_from_cont(cgrp->parent);
4255
4256 cgroup_lock();
4257
4258 /* If under hierarchy, only empty-root can set this value */
4259 if ((parent->use_hierarchy) ||
4260 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4261 cgroup_unlock();
4262 return -EINVAL;
4263 }
4264
4265 memcg->swappiness = val;
4266
4267 cgroup_unlock();
4268
4269 return 0;
4270 }
4271
4272 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4273 {
4274 struct mem_cgroup_threshold_ary *t;
4275 u64 usage;
4276 int i;
4277
4278 rcu_read_lock();
4279 if (!swap)
4280 t = rcu_dereference(memcg->thresholds.primary);
4281 else
4282 t = rcu_dereference(memcg->memsw_thresholds.primary);
4283
4284 if (!t)
4285 goto unlock;
4286
4287 usage = mem_cgroup_usage(memcg, swap);
4288
4289 /*
4290 * current_threshold points to threshold just below or equal to usage.
4291 * If it's not true, a threshold was crossed after last
4292 * call of __mem_cgroup_threshold().
4293 */
4294 i = t->current_threshold;
4295
4296 /*
4297 * Iterate backward over array of thresholds starting from
4298 * current_threshold and check if a threshold is crossed.
4299 * If none of thresholds below usage is crossed, we read
4300 * only one element of the array here.
4301 */
4302 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4303 eventfd_signal(t->entries[i].eventfd, 1);
4304
4305 /* i = current_threshold + 1 */
4306 i++;
4307
4308 /*
4309 * Iterate forward over array of thresholds starting from
4310 * current_threshold+1 and check if a threshold is crossed.
4311 * If none of thresholds above usage is crossed, we read
4312 * only one element of the array here.
4313 */
4314 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4315 eventfd_signal(t->entries[i].eventfd, 1);
4316
4317 /* Update current_threshold */
4318 t->current_threshold = i - 1;
4319 unlock:
4320 rcu_read_unlock();
4321 }
4322
4323 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4324 {
4325 while (memcg) {
4326 __mem_cgroup_threshold(memcg, false);
4327 if (do_swap_account)
4328 __mem_cgroup_threshold(memcg, true);
4329
4330 memcg = parent_mem_cgroup(memcg);
4331 }
4332 }
4333
4334 static int compare_thresholds(const void *a, const void *b)
4335 {
4336 const struct mem_cgroup_threshold *_a = a;
4337 const struct mem_cgroup_threshold *_b = b;
4338
4339 return _a->threshold - _b->threshold;
4340 }
4341
4342 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4343 {
4344 struct mem_cgroup_eventfd_list *ev;
4345
4346 list_for_each_entry(ev, &memcg->oom_notify, list)
4347 eventfd_signal(ev->eventfd, 1);
4348 return 0;
4349 }
4350
4351 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4352 {
4353 struct mem_cgroup *iter;
4354
4355 for_each_mem_cgroup_tree(iter, memcg)
4356 mem_cgroup_oom_notify_cb(iter);
4357 }
4358
4359 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4360 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4361 {
4362 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4363 struct mem_cgroup_thresholds *thresholds;
4364 struct mem_cgroup_threshold_ary *new;
4365 int type = MEMFILE_TYPE(cft->private);
4366 u64 threshold, usage;
4367 int i, size, ret;
4368
4369 ret = res_counter_memparse_write_strategy(args, &threshold);
4370 if (ret)
4371 return ret;
4372
4373 mutex_lock(&memcg->thresholds_lock);
4374
4375 if (type == _MEM)
4376 thresholds = &memcg->thresholds;
4377 else if (type == _MEMSWAP)
4378 thresholds = &memcg->memsw_thresholds;
4379 else
4380 BUG();
4381
4382 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4383
4384 /* Check if a threshold crossed before adding a new one */
4385 if (thresholds->primary)
4386 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4387
4388 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4389
4390 /* Allocate memory for new array of thresholds */
4391 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4392 GFP_KERNEL);
4393 if (!new) {
4394 ret = -ENOMEM;
4395 goto unlock;
4396 }
4397 new->size = size;
4398
4399 /* Copy thresholds (if any) to new array */
4400 if (thresholds->primary) {
4401 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4402 sizeof(struct mem_cgroup_threshold));
4403 }
4404
4405 /* Add new threshold */
4406 new->entries[size - 1].eventfd = eventfd;
4407 new->entries[size - 1].threshold = threshold;
4408
4409 /* Sort thresholds. Registering of new threshold isn't time-critical */
4410 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4411 compare_thresholds, NULL);
4412
4413 /* Find current threshold */
4414 new->current_threshold = -1;
4415 for (i = 0; i < size; i++) {
4416 if (new->entries[i].threshold <= usage) {
4417 /*
4418 * new->current_threshold will not be used until
4419 * rcu_assign_pointer(), so it's safe to increment
4420 * it here.
4421 */
4422 ++new->current_threshold;
4423 } else
4424 break;
4425 }
4426
4427 /* Free old spare buffer and save old primary buffer as spare */
4428 kfree(thresholds->spare);
4429 thresholds->spare = thresholds->primary;
4430
4431 rcu_assign_pointer(thresholds->primary, new);
4432
4433 /* To be sure that nobody uses thresholds */
4434 synchronize_rcu();
4435
4436 unlock:
4437 mutex_unlock(&memcg->thresholds_lock);
4438
4439 return ret;
4440 }
4441
4442 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4443 struct cftype *cft, struct eventfd_ctx *eventfd)
4444 {
4445 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4446 struct mem_cgroup_thresholds *thresholds;
4447 struct mem_cgroup_threshold_ary *new;
4448 int type = MEMFILE_TYPE(cft->private);
4449 u64 usage;
4450 int i, j, size;
4451
4452 mutex_lock(&memcg->thresholds_lock);
4453 if (type == _MEM)
4454 thresholds = &memcg->thresholds;
4455 else if (type == _MEMSWAP)
4456 thresholds = &memcg->memsw_thresholds;
4457 else
4458 BUG();
4459
4460 if (!thresholds->primary)
4461 goto unlock;
4462
4463 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4464
4465 /* Check if a threshold crossed before removing */
4466 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4467
4468 /* Calculate new number of threshold */
4469 size = 0;
4470 for (i = 0; i < thresholds->primary->size; i++) {
4471 if (thresholds->primary->entries[i].eventfd != eventfd)
4472 size++;
4473 }
4474
4475 new = thresholds->spare;
4476
4477 /* Set thresholds array to NULL if we don't have thresholds */
4478 if (!size) {
4479 kfree(new);
4480 new = NULL;
4481 goto swap_buffers;
4482 }
4483
4484 new->size = size;
4485
4486 /* Copy thresholds and find current threshold */
4487 new->current_threshold = -1;
4488 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4489 if (thresholds->primary->entries[i].eventfd == eventfd)
4490 continue;
4491
4492 new->entries[j] = thresholds->primary->entries[i];
4493 if (new->entries[j].threshold <= usage) {
4494 /*
4495 * new->current_threshold will not be used
4496 * until rcu_assign_pointer(), so it's safe to increment
4497 * it here.
4498 */
4499 ++new->current_threshold;
4500 }
4501 j++;
4502 }
4503
4504 swap_buffers:
4505 /* Swap primary and spare array */
4506 thresholds->spare = thresholds->primary;
4507 /* If all events are unregistered, free the spare array */
4508 if (!new) {
4509 kfree(thresholds->spare);
4510 thresholds->spare = NULL;
4511 }
4512
4513 rcu_assign_pointer(thresholds->primary, new);
4514
4515 /* To be sure that nobody uses thresholds */
4516 synchronize_rcu();
4517 unlock:
4518 mutex_unlock(&memcg->thresholds_lock);
4519 }
4520
4521 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4522 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4523 {
4524 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4525 struct mem_cgroup_eventfd_list *event;
4526 int type = MEMFILE_TYPE(cft->private);
4527
4528 BUG_ON(type != _OOM_TYPE);
4529 event = kmalloc(sizeof(*event), GFP_KERNEL);
4530 if (!event)
4531 return -ENOMEM;
4532
4533 spin_lock(&memcg_oom_lock);
4534
4535 event->eventfd = eventfd;
4536 list_add(&event->list, &memcg->oom_notify);
4537
4538 /* already in OOM ? */
4539 if (atomic_read(&memcg->under_oom))
4540 eventfd_signal(eventfd, 1);
4541 spin_unlock(&memcg_oom_lock);
4542
4543 return 0;
4544 }
4545
4546 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4547 struct cftype *cft, struct eventfd_ctx *eventfd)
4548 {
4549 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4550 struct mem_cgroup_eventfd_list *ev, *tmp;
4551 int type = MEMFILE_TYPE(cft->private);
4552
4553 BUG_ON(type != _OOM_TYPE);
4554
4555 spin_lock(&memcg_oom_lock);
4556
4557 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4558 if (ev->eventfd == eventfd) {
4559 list_del(&ev->list);
4560 kfree(ev);
4561 }
4562 }
4563
4564 spin_unlock(&memcg_oom_lock);
4565 }
4566
4567 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4568 struct cftype *cft, struct cgroup_map_cb *cb)
4569 {
4570 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4571
4572 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4573
4574 if (atomic_read(&memcg->under_oom))
4575 cb->fill(cb, "under_oom", 1);
4576 else
4577 cb->fill(cb, "under_oom", 0);
4578 return 0;
4579 }
4580
4581 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4582 struct cftype *cft, u64 val)
4583 {
4584 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4585 struct mem_cgroup *parent;
4586
4587 /* cannot set to root cgroup and only 0 and 1 are allowed */
4588 if (!cgrp->parent || !((val == 0) || (val == 1)))
4589 return -EINVAL;
4590
4591 parent = mem_cgroup_from_cont(cgrp->parent);
4592
4593 cgroup_lock();
4594 /* oom-kill-disable is a flag for subhierarchy. */
4595 if ((parent->use_hierarchy) ||
4596 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4597 cgroup_unlock();
4598 return -EINVAL;
4599 }
4600 memcg->oom_kill_disable = val;
4601 if (!val)
4602 memcg_oom_recover(memcg);
4603 cgroup_unlock();
4604 return 0;
4605 }
4606
4607 #ifdef CONFIG_MEMCG_KMEM
4608 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4609 {
4610 return mem_cgroup_sockets_init(memcg, ss);
4611 };
4612
4613 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4614 {
4615 mem_cgroup_sockets_destroy(memcg);
4616 }
4617 #else
4618 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4619 {
4620 return 0;
4621 }
4622
4623 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4624 {
4625 }
4626 #endif
4627
4628 static struct cftype mem_cgroup_files[] = {
4629 {
4630 .name = "usage_in_bytes",
4631 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4632 .read = mem_cgroup_read,
4633 .register_event = mem_cgroup_usage_register_event,
4634 .unregister_event = mem_cgroup_usage_unregister_event,
4635 },
4636 {
4637 .name = "max_usage_in_bytes",
4638 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4639 .trigger = mem_cgroup_reset,
4640 .read = mem_cgroup_read,
4641 },
4642 {
4643 .name = "limit_in_bytes",
4644 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4645 .write_string = mem_cgroup_write,
4646 .read = mem_cgroup_read,
4647 },
4648 {
4649 .name = "soft_limit_in_bytes",
4650 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4651 .write_string = mem_cgroup_write,
4652 .read = mem_cgroup_read,
4653 },
4654 {
4655 .name = "failcnt",
4656 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4657 .trigger = mem_cgroup_reset,
4658 .read = mem_cgroup_read,
4659 },
4660 {
4661 .name = "stat",
4662 .read_seq_string = memcg_stat_show,
4663 },
4664 {
4665 .name = "force_empty",
4666 .trigger = mem_cgroup_force_empty_write,
4667 },
4668 {
4669 .name = "use_hierarchy",
4670 .write_u64 = mem_cgroup_hierarchy_write,
4671 .read_u64 = mem_cgroup_hierarchy_read,
4672 },
4673 {
4674 .name = "swappiness",
4675 .read_u64 = mem_cgroup_swappiness_read,
4676 .write_u64 = mem_cgroup_swappiness_write,
4677 },
4678 {
4679 .name = "move_charge_at_immigrate",
4680 .read_u64 = mem_cgroup_move_charge_read,
4681 .write_u64 = mem_cgroup_move_charge_write,
4682 },
4683 {
4684 .name = "oom_control",
4685 .read_map = mem_cgroup_oom_control_read,
4686 .write_u64 = mem_cgroup_oom_control_write,
4687 .register_event = mem_cgroup_oom_register_event,
4688 .unregister_event = mem_cgroup_oom_unregister_event,
4689 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4690 },
4691 #ifdef CONFIG_NUMA
4692 {
4693 .name = "numa_stat",
4694 .read_seq_string = memcg_numa_stat_show,
4695 },
4696 #endif
4697 #ifdef CONFIG_MEMCG_SWAP
4698 {
4699 .name = "memsw.usage_in_bytes",
4700 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4701 .read = mem_cgroup_read,
4702 .register_event = mem_cgroup_usage_register_event,
4703 .unregister_event = mem_cgroup_usage_unregister_event,
4704 },
4705 {
4706 .name = "memsw.max_usage_in_bytes",
4707 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4708 .trigger = mem_cgroup_reset,
4709 .read = mem_cgroup_read,
4710 },
4711 {
4712 .name = "memsw.limit_in_bytes",
4713 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4714 .write_string = mem_cgroup_write,
4715 .read = mem_cgroup_read,
4716 },
4717 {
4718 .name = "memsw.failcnt",
4719 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4720 .trigger = mem_cgroup_reset,
4721 .read = mem_cgroup_read,
4722 },
4723 #endif
4724 { }, /* terminate */
4725 };
4726
4727 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4728 {
4729 struct mem_cgroup_per_node *pn;
4730 struct mem_cgroup_per_zone *mz;
4731 int zone, tmp = node;
4732 /*
4733 * This routine is called against possible nodes.
4734 * But it's BUG to call kmalloc() against offline node.
4735 *
4736 * TODO: this routine can waste much memory for nodes which will
4737 * never be onlined. It's better to use memory hotplug callback
4738 * function.
4739 */
4740 if (!node_state(node, N_NORMAL_MEMORY))
4741 tmp = -1;
4742 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4743 if (!pn)
4744 return 1;
4745
4746 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4747 mz = &pn->zoneinfo[zone];
4748 lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
4749 mz->usage_in_excess = 0;
4750 mz->on_tree = false;
4751 mz->memcg = memcg;
4752 }
4753 memcg->info.nodeinfo[node] = pn;
4754 return 0;
4755 }
4756
4757 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4758 {
4759 kfree(memcg->info.nodeinfo[node]);
4760 }
4761
4762 static struct mem_cgroup *mem_cgroup_alloc(void)
4763 {
4764 struct mem_cgroup *memcg;
4765 int size = sizeof(struct mem_cgroup);
4766
4767 /* Can be very big if MAX_NUMNODES is very big */
4768 if (size < PAGE_SIZE)
4769 memcg = kzalloc(size, GFP_KERNEL);
4770 else
4771 memcg = vzalloc(size);
4772
4773 if (!memcg)
4774 return NULL;
4775
4776 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4777 if (!memcg->stat)
4778 goto out_free;
4779 spin_lock_init(&memcg->pcp_counter_lock);
4780 return memcg;
4781
4782 out_free:
4783 if (size < PAGE_SIZE)
4784 kfree(memcg);
4785 else
4786 vfree(memcg);
4787 return NULL;
4788 }
4789
4790 /*
4791 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
4792 * but in process context. The work_freeing structure is overlaid
4793 * on the rcu_freeing structure, which itself is overlaid on memsw.
4794 */
4795 static void free_work(struct work_struct *work)
4796 {
4797 struct mem_cgroup *memcg;
4798 int size = sizeof(struct mem_cgroup);
4799
4800 memcg = container_of(work, struct mem_cgroup, work_freeing);
4801 /*
4802 * We need to make sure that (at least for now), the jump label
4803 * destruction code runs outside of the cgroup lock. This is because
4804 * get_online_cpus(), which is called from the static_branch update,
4805 * can't be called inside the cgroup_lock. cpusets are the ones
4806 * enforcing this dependency, so if they ever change, we might as well.
4807 *
4808 * schedule_work() will guarantee this happens. Be careful if you need
4809 * to move this code around, and make sure it is outside
4810 * the cgroup_lock.
4811 */
4812 disarm_sock_keys(memcg);
4813 if (size < PAGE_SIZE)
4814 kfree(memcg);
4815 else
4816 vfree(memcg);
4817 }
4818
4819 static void free_rcu(struct rcu_head *rcu_head)
4820 {
4821 struct mem_cgroup *memcg;
4822
4823 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4824 INIT_WORK(&memcg->work_freeing, free_work);
4825 schedule_work(&memcg->work_freeing);
4826 }
4827
4828 /*
4829 * At destroying mem_cgroup, references from swap_cgroup can remain.
4830 * (scanning all at force_empty is too costly...)
4831 *
4832 * Instead of clearing all references at force_empty, we remember
4833 * the number of reference from swap_cgroup and free mem_cgroup when
4834 * it goes down to 0.
4835 *
4836 * Removal of cgroup itself succeeds regardless of refs from swap.
4837 */
4838
4839 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4840 {
4841 int node;
4842
4843 mem_cgroup_remove_from_trees(memcg);
4844 free_css_id(&mem_cgroup_subsys, &memcg->css);
4845
4846 for_each_node(node)
4847 free_mem_cgroup_per_zone_info(memcg, node);
4848
4849 free_percpu(memcg->stat);
4850 call_rcu(&memcg->rcu_freeing, free_rcu);
4851 }
4852
4853 static void mem_cgroup_get(struct mem_cgroup *memcg)
4854 {
4855 atomic_inc(&memcg->refcnt);
4856 }
4857
4858 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4859 {
4860 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4861 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4862 __mem_cgroup_free(memcg);
4863 if (parent)
4864 mem_cgroup_put(parent);
4865 }
4866 }
4867
4868 static void mem_cgroup_put(struct mem_cgroup *memcg)
4869 {
4870 __mem_cgroup_put(memcg, 1);
4871 }
4872
4873 /*
4874 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4875 */
4876 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4877 {
4878 if (!memcg->res.parent)
4879 return NULL;
4880 return mem_cgroup_from_res_counter(memcg->res.parent, res);
4881 }
4882 EXPORT_SYMBOL(parent_mem_cgroup);
4883
4884 #ifdef CONFIG_MEMCG_SWAP
4885 static void __init enable_swap_cgroup(void)
4886 {
4887 if (!mem_cgroup_disabled() && really_do_swap_account)
4888 do_swap_account = 1;
4889 }
4890 #else
4891 static void __init enable_swap_cgroup(void)
4892 {
4893 }
4894 #endif
4895
4896 static int mem_cgroup_soft_limit_tree_init(void)
4897 {
4898 struct mem_cgroup_tree_per_node *rtpn;
4899 struct mem_cgroup_tree_per_zone *rtpz;
4900 int tmp, node, zone;
4901
4902 for_each_node(node) {
4903 tmp = node;
4904 if (!node_state(node, N_NORMAL_MEMORY))
4905 tmp = -1;
4906 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4907 if (!rtpn)
4908 goto err_cleanup;
4909
4910 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4911
4912 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4913 rtpz = &rtpn->rb_tree_per_zone[zone];
4914 rtpz->rb_root = RB_ROOT;
4915 spin_lock_init(&rtpz->lock);
4916 }
4917 }
4918 return 0;
4919
4920 err_cleanup:
4921 for_each_node(node) {
4922 if (!soft_limit_tree.rb_tree_per_node[node])
4923 break;
4924 kfree(soft_limit_tree.rb_tree_per_node[node]);
4925 soft_limit_tree.rb_tree_per_node[node] = NULL;
4926 }
4927 return 1;
4928
4929 }
4930
4931 static struct cgroup_subsys_state * __ref
4932 mem_cgroup_create(struct cgroup *cont)
4933 {
4934 struct mem_cgroup *memcg, *parent;
4935 long error = -ENOMEM;
4936 int node;
4937
4938 memcg = mem_cgroup_alloc();
4939 if (!memcg)
4940 return ERR_PTR(error);
4941
4942 for_each_node(node)
4943 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4944 goto free_out;
4945
4946 /* root ? */
4947 if (cont->parent == NULL) {
4948 int cpu;
4949 enable_swap_cgroup();
4950 parent = NULL;
4951 if (mem_cgroup_soft_limit_tree_init())
4952 goto free_out;
4953 root_mem_cgroup = memcg;
4954 for_each_possible_cpu(cpu) {
4955 struct memcg_stock_pcp *stock =
4956 &per_cpu(memcg_stock, cpu);
4957 INIT_WORK(&stock->work, drain_local_stock);
4958 }
4959 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4960 } else {
4961 parent = mem_cgroup_from_cont(cont->parent);
4962 memcg->use_hierarchy = parent->use_hierarchy;
4963 memcg->oom_kill_disable = parent->oom_kill_disable;
4964 }
4965
4966 if (parent && parent->use_hierarchy) {
4967 res_counter_init(&memcg->res, &parent->res);
4968 res_counter_init(&memcg->memsw, &parent->memsw);
4969 /*
4970 * We increment refcnt of the parent to ensure that we can
4971 * safely access it on res_counter_charge/uncharge.
4972 * This refcnt will be decremented when freeing this
4973 * mem_cgroup(see mem_cgroup_put).
4974 */
4975 mem_cgroup_get(parent);
4976 } else {
4977 res_counter_init(&memcg->res, NULL);
4978 res_counter_init(&memcg->memsw, NULL);
4979 /*
4980 * Deeper hierachy with use_hierarchy == false doesn't make
4981 * much sense so let cgroup subsystem know about this
4982 * unfortunate state in our controller.
4983 */
4984 if (parent && parent != root_mem_cgroup)
4985 mem_cgroup_subsys.broken_hierarchy = true;
4986 }
4987 memcg->last_scanned_node = MAX_NUMNODES;
4988 INIT_LIST_HEAD(&memcg->oom_notify);
4989
4990 if (parent)
4991 memcg->swappiness = mem_cgroup_swappiness(parent);
4992 atomic_set(&memcg->refcnt, 1);
4993 memcg->move_charge_at_immigrate = 0;
4994 mutex_init(&memcg->thresholds_lock);
4995 spin_lock_init(&memcg->move_lock);
4996
4997 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
4998 if (error) {
4999 /*
5000 * We call put now because our (and parent's) refcnts
5001 * are already in place. mem_cgroup_put() will internally
5002 * call __mem_cgroup_free, so return directly
5003 */
5004 mem_cgroup_put(memcg);
5005 return ERR_PTR(error);
5006 }
5007 return &memcg->css;
5008 free_out:
5009 __mem_cgroup_free(memcg);
5010 return ERR_PTR(error);
5011 }
5012
5013 static int mem_cgroup_pre_destroy(struct cgroup *cont)
5014 {
5015 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5016
5017 return mem_cgroup_force_empty(memcg, false);
5018 }
5019
5020 static void mem_cgroup_destroy(struct cgroup *cont)
5021 {
5022 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5023
5024 kmem_cgroup_destroy(memcg);
5025
5026 mem_cgroup_put(memcg);
5027 }
5028
5029 #ifdef CONFIG_MMU
5030 /* Handlers for move charge at task migration. */
5031 #define PRECHARGE_COUNT_AT_ONCE 256
5032 static int mem_cgroup_do_precharge(unsigned long count)
5033 {
5034 int ret = 0;
5035 int batch_count = PRECHARGE_COUNT_AT_ONCE;
5036 struct mem_cgroup *memcg = mc.to;
5037
5038 if (mem_cgroup_is_root(memcg)) {
5039 mc.precharge += count;
5040 /* we don't need css_get for root */
5041 return ret;
5042 }
5043 /* try to charge at once */
5044 if (count > 1) {
5045 struct res_counter *dummy;
5046 /*
5047 * "memcg" cannot be under rmdir() because we've already checked
5048 * by cgroup_lock_live_cgroup() that it is not removed and we
5049 * are still under the same cgroup_mutex. So we can postpone
5050 * css_get().
5051 */
5052 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5053 goto one_by_one;
5054 if (do_swap_account && res_counter_charge(&memcg->memsw,
5055 PAGE_SIZE * count, &dummy)) {
5056 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5057 goto one_by_one;
5058 }
5059 mc.precharge += count;
5060 return ret;
5061 }
5062 one_by_one:
5063 /* fall back to one by one charge */
5064 while (count--) {
5065 if (signal_pending(current)) {
5066 ret = -EINTR;
5067 break;
5068 }
5069 if (!batch_count--) {
5070 batch_count = PRECHARGE_COUNT_AT_ONCE;
5071 cond_resched();
5072 }
5073 ret = __mem_cgroup_try_charge(NULL,
5074 GFP_KERNEL, 1, &memcg, false);
5075 if (ret)
5076 /* mem_cgroup_clear_mc() will do uncharge later */
5077 return ret;
5078 mc.precharge++;
5079 }
5080 return ret;
5081 }
5082
5083 /**
5084 * get_mctgt_type - get target type of moving charge
5085 * @vma: the vma the pte to be checked belongs
5086 * @addr: the address corresponding to the pte to be checked
5087 * @ptent: the pte to be checked
5088 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5089 *
5090 * Returns
5091 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5092 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5093 * move charge. if @target is not NULL, the page is stored in target->page
5094 * with extra refcnt got(Callers should handle it).
5095 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5096 * target for charge migration. if @target is not NULL, the entry is stored
5097 * in target->ent.
5098 *
5099 * Called with pte lock held.
5100 */
5101 union mc_target {
5102 struct page *page;
5103 swp_entry_t ent;
5104 };
5105
5106 enum mc_target_type {
5107 MC_TARGET_NONE = 0,
5108 MC_TARGET_PAGE,
5109 MC_TARGET_SWAP,
5110 };
5111
5112 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5113 unsigned long addr, pte_t ptent)
5114 {
5115 struct page *page = vm_normal_page(vma, addr, ptent);
5116
5117 if (!page || !page_mapped(page))
5118 return NULL;
5119 if (PageAnon(page)) {
5120 /* we don't move shared anon */
5121 if (!move_anon())
5122 return NULL;
5123 } else if (!move_file())
5124 /* we ignore mapcount for file pages */
5125 return NULL;
5126 if (!get_page_unless_zero(page))
5127 return NULL;
5128
5129 return page;
5130 }
5131
5132 #ifdef CONFIG_SWAP
5133 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5134 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5135 {
5136 struct page *page = NULL;
5137 swp_entry_t ent = pte_to_swp_entry(ptent);
5138
5139 if (!move_anon() || non_swap_entry(ent))
5140 return NULL;
5141 /*
5142 * Because lookup_swap_cache() updates some statistics counter,
5143 * we call find_get_page() with swapper_space directly.
5144 */
5145 page = find_get_page(&swapper_space, ent.val);
5146 if (do_swap_account)
5147 entry->val = ent.val;
5148
5149 return page;
5150 }
5151 #else
5152 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5153 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5154 {
5155 return NULL;
5156 }
5157 #endif
5158
5159 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5160 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5161 {
5162 struct page *page = NULL;
5163 struct address_space *mapping;
5164 pgoff_t pgoff;
5165
5166 if (!vma->vm_file) /* anonymous vma */
5167 return NULL;
5168 if (!move_file())
5169 return NULL;
5170
5171 mapping = vma->vm_file->f_mapping;
5172 if (pte_none(ptent))
5173 pgoff = linear_page_index(vma, addr);
5174 else /* pte_file(ptent) is true */
5175 pgoff = pte_to_pgoff(ptent);
5176
5177 /* page is moved even if it's not RSS of this task(page-faulted). */
5178 page = find_get_page(mapping, pgoff);
5179
5180 #ifdef CONFIG_SWAP
5181 /* shmem/tmpfs may report page out on swap: account for that too. */
5182 if (radix_tree_exceptional_entry(page)) {
5183 swp_entry_t swap = radix_to_swp_entry(page);
5184 if (do_swap_account)
5185 *entry = swap;
5186 page = find_get_page(&swapper_space, swap.val);
5187 }
5188 #endif
5189 return page;
5190 }
5191
5192 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5193 unsigned long addr, pte_t ptent, union mc_target *target)
5194 {
5195 struct page *page = NULL;
5196 struct page_cgroup *pc;
5197 enum mc_target_type ret = MC_TARGET_NONE;
5198 swp_entry_t ent = { .val = 0 };
5199
5200 if (pte_present(ptent))
5201 page = mc_handle_present_pte(vma, addr, ptent);
5202 else if (is_swap_pte(ptent))
5203 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5204 else if (pte_none(ptent) || pte_file(ptent))
5205 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5206
5207 if (!page && !ent.val)
5208 return ret;
5209 if (page) {
5210 pc = lookup_page_cgroup(page);
5211 /*
5212 * Do only loose check w/o page_cgroup lock.
5213 * mem_cgroup_move_account() checks the pc is valid or not under
5214 * the lock.
5215 */
5216 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5217 ret = MC_TARGET_PAGE;
5218 if (target)
5219 target->page = page;
5220 }
5221 if (!ret || !target)
5222 put_page(page);
5223 }
5224 /* There is a swap entry and a page doesn't exist or isn't charged */
5225 if (ent.val && !ret &&
5226 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5227 ret = MC_TARGET_SWAP;
5228 if (target)
5229 target->ent = ent;
5230 }
5231 return ret;
5232 }
5233
5234 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5235 /*
5236 * We don't consider swapping or file mapped pages because THP does not
5237 * support them for now.
5238 * Caller should make sure that pmd_trans_huge(pmd) is true.
5239 */
5240 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5241 unsigned long addr, pmd_t pmd, union mc_target *target)
5242 {
5243 struct page *page = NULL;
5244 struct page_cgroup *pc;
5245 enum mc_target_type ret = MC_TARGET_NONE;
5246
5247 page = pmd_page(pmd);
5248 VM_BUG_ON(!page || !PageHead(page));
5249 if (!move_anon())
5250 return ret;
5251 pc = lookup_page_cgroup(page);
5252 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5253 ret = MC_TARGET_PAGE;
5254 if (target) {
5255 get_page(page);
5256 target->page = page;
5257 }
5258 }
5259 return ret;
5260 }
5261 #else
5262 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5263 unsigned long addr, pmd_t pmd, union mc_target *target)
5264 {
5265 return MC_TARGET_NONE;
5266 }
5267 #endif
5268
5269 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5270 unsigned long addr, unsigned long end,
5271 struct mm_walk *walk)
5272 {
5273 struct vm_area_struct *vma = walk->private;
5274 pte_t *pte;
5275 spinlock_t *ptl;
5276
5277 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5278 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5279 mc.precharge += HPAGE_PMD_NR;
5280 spin_unlock(&vma->vm_mm->page_table_lock);
5281 return 0;
5282 }
5283
5284 if (pmd_trans_unstable(pmd))
5285 return 0;
5286 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5287 for (; addr != end; pte++, addr += PAGE_SIZE)
5288 if (get_mctgt_type(vma, addr, *pte, NULL))
5289 mc.precharge++; /* increment precharge temporarily */
5290 pte_unmap_unlock(pte - 1, ptl);
5291 cond_resched();
5292
5293 return 0;
5294 }
5295
5296 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5297 {
5298 unsigned long precharge;
5299 struct vm_area_struct *vma;
5300
5301 down_read(&mm->mmap_sem);
5302 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5303 struct mm_walk mem_cgroup_count_precharge_walk = {
5304 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5305 .mm = mm,
5306 .private = vma,
5307 };
5308 if (is_vm_hugetlb_page(vma))
5309 continue;
5310 walk_page_range(vma->vm_start, vma->vm_end,
5311 &mem_cgroup_count_precharge_walk);
5312 }
5313 up_read(&mm->mmap_sem);
5314
5315 precharge = mc.precharge;
5316 mc.precharge = 0;
5317
5318 return precharge;
5319 }
5320
5321 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5322 {
5323 unsigned long precharge = mem_cgroup_count_precharge(mm);
5324
5325 VM_BUG_ON(mc.moving_task);
5326 mc.moving_task = current;
5327 return mem_cgroup_do_precharge(precharge);
5328 }
5329
5330 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5331 static void __mem_cgroup_clear_mc(void)
5332 {
5333 struct mem_cgroup *from = mc.from;
5334 struct mem_cgroup *to = mc.to;
5335
5336 /* we must uncharge all the leftover precharges from mc.to */
5337 if (mc.precharge) {
5338 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5339 mc.precharge = 0;
5340 }
5341 /*
5342 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5343 * we must uncharge here.
5344 */
5345 if (mc.moved_charge) {
5346 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5347 mc.moved_charge = 0;
5348 }
5349 /* we must fixup refcnts and charges */
5350 if (mc.moved_swap) {
5351 /* uncharge swap account from the old cgroup */
5352 if (!mem_cgroup_is_root(mc.from))
5353 res_counter_uncharge(&mc.from->memsw,
5354 PAGE_SIZE * mc.moved_swap);
5355 __mem_cgroup_put(mc.from, mc.moved_swap);
5356
5357 if (!mem_cgroup_is_root(mc.to)) {
5358 /*
5359 * we charged both to->res and to->memsw, so we should
5360 * uncharge to->res.
5361 */
5362 res_counter_uncharge(&mc.to->res,
5363 PAGE_SIZE * mc.moved_swap);
5364 }
5365 /* we've already done mem_cgroup_get(mc.to) */
5366 mc.moved_swap = 0;
5367 }
5368 memcg_oom_recover(from);
5369 memcg_oom_recover(to);
5370 wake_up_all(&mc.waitq);
5371 }
5372
5373 static void mem_cgroup_clear_mc(void)
5374 {
5375 struct mem_cgroup *from = mc.from;
5376
5377 /*
5378 * we must clear moving_task before waking up waiters at the end of
5379 * task migration.
5380 */
5381 mc.moving_task = NULL;
5382 __mem_cgroup_clear_mc();
5383 spin_lock(&mc.lock);
5384 mc.from = NULL;
5385 mc.to = NULL;
5386 spin_unlock(&mc.lock);
5387 mem_cgroup_end_move(from);
5388 }
5389
5390 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5391 struct cgroup_taskset *tset)
5392 {
5393 struct task_struct *p = cgroup_taskset_first(tset);
5394 int ret = 0;
5395 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5396
5397 if (memcg->move_charge_at_immigrate) {
5398 struct mm_struct *mm;
5399 struct mem_cgroup *from = mem_cgroup_from_task(p);
5400
5401 VM_BUG_ON(from == memcg);
5402
5403 mm = get_task_mm(p);
5404 if (!mm)
5405 return 0;
5406 /* We move charges only when we move a owner of the mm */
5407 if (mm->owner == p) {
5408 VM_BUG_ON(mc.from);
5409 VM_BUG_ON(mc.to);
5410 VM_BUG_ON(mc.precharge);
5411 VM_BUG_ON(mc.moved_charge);
5412 VM_BUG_ON(mc.moved_swap);
5413 mem_cgroup_start_move(from);
5414 spin_lock(&mc.lock);
5415 mc.from = from;
5416 mc.to = memcg;
5417 spin_unlock(&mc.lock);
5418 /* We set mc.moving_task later */
5419
5420 ret = mem_cgroup_precharge_mc(mm);
5421 if (ret)
5422 mem_cgroup_clear_mc();
5423 }
5424 mmput(mm);
5425 }
5426 return ret;
5427 }
5428
5429 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5430 struct cgroup_taskset *tset)
5431 {
5432 mem_cgroup_clear_mc();
5433 }
5434
5435 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5436 unsigned long addr, unsigned long end,
5437 struct mm_walk *walk)
5438 {
5439 int ret = 0;
5440 struct vm_area_struct *vma = walk->private;
5441 pte_t *pte;
5442 spinlock_t *ptl;
5443 enum mc_target_type target_type;
5444 union mc_target target;
5445 struct page *page;
5446 struct page_cgroup *pc;
5447
5448 /*
5449 * We don't take compound_lock() here but no race with splitting thp
5450 * happens because:
5451 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5452 * under splitting, which means there's no concurrent thp split,
5453 * - if another thread runs into split_huge_page() just after we
5454 * entered this if-block, the thread must wait for page table lock
5455 * to be unlocked in __split_huge_page_splitting(), where the main
5456 * part of thp split is not executed yet.
5457 */
5458 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5459 if (mc.precharge < HPAGE_PMD_NR) {
5460 spin_unlock(&vma->vm_mm->page_table_lock);
5461 return 0;
5462 }
5463 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5464 if (target_type == MC_TARGET_PAGE) {
5465 page = target.page;
5466 if (!isolate_lru_page(page)) {
5467 pc = lookup_page_cgroup(page);
5468 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5469 pc, mc.from, mc.to)) {
5470 mc.precharge -= HPAGE_PMD_NR;
5471 mc.moved_charge += HPAGE_PMD_NR;
5472 }
5473 putback_lru_page(page);
5474 }
5475 put_page(page);
5476 }
5477 spin_unlock(&vma->vm_mm->page_table_lock);
5478 return 0;
5479 }
5480
5481 if (pmd_trans_unstable(pmd))
5482 return 0;
5483 retry:
5484 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5485 for (; addr != end; addr += PAGE_SIZE) {
5486 pte_t ptent = *(pte++);
5487 swp_entry_t ent;
5488
5489 if (!mc.precharge)
5490 break;
5491
5492 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5493 case MC_TARGET_PAGE:
5494 page = target.page;
5495 if (isolate_lru_page(page))
5496 goto put;
5497 pc = lookup_page_cgroup(page);
5498 if (!mem_cgroup_move_account(page, 1, pc,
5499 mc.from, mc.to)) {
5500 mc.precharge--;
5501 /* we uncharge from mc.from later. */
5502 mc.moved_charge++;
5503 }
5504 putback_lru_page(page);
5505 put: /* get_mctgt_type() gets the page */
5506 put_page(page);
5507 break;
5508 case MC_TARGET_SWAP:
5509 ent = target.ent;
5510 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5511 mc.precharge--;
5512 /* we fixup refcnts and charges later. */
5513 mc.moved_swap++;
5514 }
5515 break;
5516 default:
5517 break;
5518 }
5519 }
5520 pte_unmap_unlock(pte - 1, ptl);
5521 cond_resched();
5522
5523 if (addr != end) {
5524 /*
5525 * We have consumed all precharges we got in can_attach().
5526 * We try charge one by one, but don't do any additional
5527 * charges to mc.to if we have failed in charge once in attach()
5528 * phase.
5529 */
5530 ret = mem_cgroup_do_precharge(1);
5531 if (!ret)
5532 goto retry;
5533 }
5534
5535 return ret;
5536 }
5537
5538 static void mem_cgroup_move_charge(struct mm_struct *mm)
5539 {
5540 struct vm_area_struct *vma;
5541
5542 lru_add_drain_all();
5543 retry:
5544 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5545 /*
5546 * Someone who are holding the mmap_sem might be waiting in
5547 * waitq. So we cancel all extra charges, wake up all waiters,
5548 * and retry. Because we cancel precharges, we might not be able
5549 * to move enough charges, but moving charge is a best-effort
5550 * feature anyway, so it wouldn't be a big problem.
5551 */
5552 __mem_cgroup_clear_mc();
5553 cond_resched();
5554 goto retry;
5555 }
5556 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5557 int ret;
5558 struct mm_walk mem_cgroup_move_charge_walk = {
5559 .pmd_entry = mem_cgroup_move_charge_pte_range,
5560 .mm = mm,
5561 .private = vma,
5562 };
5563 if (is_vm_hugetlb_page(vma))
5564 continue;
5565 ret = walk_page_range(vma->vm_start, vma->vm_end,
5566 &mem_cgroup_move_charge_walk);
5567 if (ret)
5568 /*
5569 * means we have consumed all precharges and failed in
5570 * doing additional charge. Just abandon here.
5571 */
5572 break;
5573 }
5574 up_read(&mm->mmap_sem);
5575 }
5576
5577 static void mem_cgroup_move_task(struct cgroup *cont,
5578 struct cgroup_taskset *tset)
5579 {
5580 struct task_struct *p = cgroup_taskset_first(tset);
5581 struct mm_struct *mm = get_task_mm(p);
5582
5583 if (mm) {
5584 if (mc.to)
5585 mem_cgroup_move_charge(mm);
5586 mmput(mm);
5587 }
5588 if (mc.to)
5589 mem_cgroup_clear_mc();
5590 }
5591 #else /* !CONFIG_MMU */
5592 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5593 struct cgroup_taskset *tset)
5594 {
5595 return 0;
5596 }
5597 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5598 struct cgroup_taskset *tset)
5599 {
5600 }
5601 static void mem_cgroup_move_task(struct cgroup *cont,
5602 struct cgroup_taskset *tset)
5603 {
5604 }
5605 #endif
5606
5607 struct cgroup_subsys mem_cgroup_subsys = {
5608 .name = "memory",
5609 .subsys_id = mem_cgroup_subsys_id,
5610 .create = mem_cgroup_create,
5611 .pre_destroy = mem_cgroup_pre_destroy,
5612 .destroy = mem_cgroup_destroy,
5613 .can_attach = mem_cgroup_can_attach,
5614 .cancel_attach = mem_cgroup_cancel_attach,
5615 .attach = mem_cgroup_move_task,
5616 .base_cftypes = mem_cgroup_files,
5617 .early_init = 0,
5618 .use_id = 1,
5619 .__DEPRECATED_clear_css_refs = true,
5620 };
5621
5622 #ifdef CONFIG_MEMCG_SWAP
5623 static int __init enable_swap_account(char *s)
5624 {
5625 /* consider enabled if no parameter or 1 is given */
5626 if (!strcmp(s, "1"))
5627 really_do_swap_account = 1;
5628 else if (!strcmp(s, "0"))
5629 really_do_swap_account = 0;
5630 return 1;
5631 }
5632 __setup("swapaccount=", enable_swap_account);
5633
5634 #endif
This page took 0.135255 seconds and 6 git commands to generate.