memcg: swappiness
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/smp.h>
26 #include <linux/page-flags.h>
27 #include <linux/backing-dev.h>
28 #include <linux/bit_spinlock.h>
29 #include <linux/rcupdate.h>
30 #include <linux/mutex.h>
31 #include <linux/slab.h>
32 #include <linux/swap.h>
33 #include <linux/spinlock.h>
34 #include <linux/fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/vmalloc.h>
37 #include <linux/mm_inline.h>
38 #include <linux/page_cgroup.h>
39 #include "internal.h"
40
41 #include <asm/uaccess.h>
42
43 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
44 #define MEM_CGROUP_RECLAIM_RETRIES 5
45
46 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
47 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
48 int do_swap_account __read_mostly;
49 static int really_do_swap_account __initdata = 1; /* for remember boot option*/
50 #else
51 #define do_swap_account (0)
52 #endif
53
54
55 /*
56 * Statistics for memory cgroup.
57 */
58 enum mem_cgroup_stat_index {
59 /*
60 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
61 */
62 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
63 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
64 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
65 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
66
67 MEM_CGROUP_STAT_NSTATS,
68 };
69
70 struct mem_cgroup_stat_cpu {
71 s64 count[MEM_CGROUP_STAT_NSTATS];
72 } ____cacheline_aligned_in_smp;
73
74 struct mem_cgroup_stat {
75 struct mem_cgroup_stat_cpu cpustat[0];
76 };
77
78 /*
79 * For accounting under irq disable, no need for increment preempt count.
80 */
81 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
82 enum mem_cgroup_stat_index idx, int val)
83 {
84 stat->count[idx] += val;
85 }
86
87 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
88 enum mem_cgroup_stat_index idx)
89 {
90 int cpu;
91 s64 ret = 0;
92 for_each_possible_cpu(cpu)
93 ret += stat->cpustat[cpu].count[idx];
94 return ret;
95 }
96
97 /*
98 * per-zone information in memory controller.
99 */
100 struct mem_cgroup_per_zone {
101 /*
102 * spin_lock to protect the per cgroup LRU
103 */
104 struct list_head lists[NR_LRU_LISTS];
105 unsigned long count[NR_LRU_LISTS];
106
107 struct zone_reclaim_stat reclaim_stat;
108 };
109 /* Macro for accessing counter */
110 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
111
112 struct mem_cgroup_per_node {
113 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
114 };
115
116 struct mem_cgroup_lru_info {
117 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
118 };
119
120 /*
121 * The memory controller data structure. The memory controller controls both
122 * page cache and RSS per cgroup. We would eventually like to provide
123 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
124 * to help the administrator determine what knobs to tune.
125 *
126 * TODO: Add a water mark for the memory controller. Reclaim will begin when
127 * we hit the water mark. May be even add a low water mark, such that
128 * no reclaim occurs from a cgroup at it's low water mark, this is
129 * a feature that will be implemented much later in the future.
130 */
131 struct mem_cgroup {
132 struct cgroup_subsys_state css;
133 /*
134 * the counter to account for memory usage
135 */
136 struct res_counter res;
137 /*
138 * the counter to account for mem+swap usage.
139 */
140 struct res_counter memsw;
141 /*
142 * Per cgroup active and inactive list, similar to the
143 * per zone LRU lists.
144 */
145 struct mem_cgroup_lru_info info;
146
147 /*
148 protect against reclaim related member.
149 */
150 spinlock_t reclaim_param_lock;
151
152 int prev_priority; /* for recording reclaim priority */
153
154 /*
155 * While reclaiming in a hiearchy, we cache the last child we
156 * reclaimed from. Protected by cgroup_lock()
157 */
158 struct mem_cgroup *last_scanned_child;
159 /*
160 * Should the accounting and control be hierarchical, per subtree?
161 */
162 bool use_hierarchy;
163 unsigned long last_oom_jiffies;
164 int obsolete;
165 atomic_t refcnt;
166
167 unsigned int swappiness;
168
169
170 unsigned int inactive_ratio;
171
172 /*
173 * statistics. This must be placed at the end of memcg.
174 */
175 struct mem_cgroup_stat stat;
176 };
177
178 enum charge_type {
179 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
180 MEM_CGROUP_CHARGE_TYPE_MAPPED,
181 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
182 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
183 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
184 NR_CHARGE_TYPE,
185 };
186
187 /* only for here (for easy reading.) */
188 #define PCGF_CACHE (1UL << PCG_CACHE)
189 #define PCGF_USED (1UL << PCG_USED)
190 #define PCGF_LOCK (1UL << PCG_LOCK)
191 static const unsigned long
192 pcg_default_flags[NR_CHARGE_TYPE] = {
193 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
194 PCGF_USED | PCGF_LOCK, /* Anon */
195 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
196 0, /* FORCE */
197 };
198
199 /* for encoding cft->private value on file */
200 #define _MEM (0)
201 #define _MEMSWAP (1)
202 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
203 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
204 #define MEMFILE_ATTR(val) ((val) & 0xffff)
205
206 static void mem_cgroup_get(struct mem_cgroup *mem);
207 static void mem_cgroup_put(struct mem_cgroup *mem);
208
209 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
210 struct page_cgroup *pc,
211 bool charge)
212 {
213 int val = (charge)? 1 : -1;
214 struct mem_cgroup_stat *stat = &mem->stat;
215 struct mem_cgroup_stat_cpu *cpustat;
216 int cpu = get_cpu();
217
218 cpustat = &stat->cpustat[cpu];
219 if (PageCgroupCache(pc))
220 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
221 else
222 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
223
224 if (charge)
225 __mem_cgroup_stat_add_safe(cpustat,
226 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
227 else
228 __mem_cgroup_stat_add_safe(cpustat,
229 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
230 put_cpu();
231 }
232
233 static struct mem_cgroup_per_zone *
234 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
235 {
236 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
237 }
238
239 static struct mem_cgroup_per_zone *
240 page_cgroup_zoneinfo(struct page_cgroup *pc)
241 {
242 struct mem_cgroup *mem = pc->mem_cgroup;
243 int nid = page_cgroup_nid(pc);
244 int zid = page_cgroup_zid(pc);
245
246 if (!mem)
247 return NULL;
248
249 return mem_cgroup_zoneinfo(mem, nid, zid);
250 }
251
252 static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
253 enum lru_list idx)
254 {
255 int nid, zid;
256 struct mem_cgroup_per_zone *mz;
257 u64 total = 0;
258
259 for_each_online_node(nid)
260 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
261 mz = mem_cgroup_zoneinfo(mem, nid, zid);
262 total += MEM_CGROUP_ZSTAT(mz, idx);
263 }
264 return total;
265 }
266
267 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
268 {
269 return container_of(cgroup_subsys_state(cont,
270 mem_cgroup_subsys_id), struct mem_cgroup,
271 css);
272 }
273
274 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
275 {
276 /*
277 * mm_update_next_owner() may clear mm->owner to NULL
278 * if it races with swapoff, page migration, etc.
279 * So this can be called with p == NULL.
280 */
281 if (unlikely(!p))
282 return NULL;
283
284 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
285 struct mem_cgroup, css);
286 }
287
288 /*
289 * Following LRU functions are allowed to be used without PCG_LOCK.
290 * Operations are called by routine of global LRU independently from memcg.
291 * What we have to take care of here is validness of pc->mem_cgroup.
292 *
293 * Changes to pc->mem_cgroup happens when
294 * 1. charge
295 * 2. moving account
296 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
297 * It is added to LRU before charge.
298 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
299 * When moving account, the page is not on LRU. It's isolated.
300 */
301
302 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
303 {
304 struct page_cgroup *pc;
305 struct mem_cgroup *mem;
306 struct mem_cgroup_per_zone *mz;
307
308 if (mem_cgroup_disabled())
309 return;
310 pc = lookup_page_cgroup(page);
311 /* can happen while we handle swapcache. */
312 if (list_empty(&pc->lru))
313 return;
314 mz = page_cgroup_zoneinfo(pc);
315 mem = pc->mem_cgroup;
316 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
317 list_del_init(&pc->lru);
318 return;
319 }
320
321 void mem_cgroup_del_lru(struct page *page)
322 {
323 mem_cgroup_del_lru_list(page, page_lru(page));
324 }
325
326 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
327 {
328 struct mem_cgroup_per_zone *mz;
329 struct page_cgroup *pc;
330
331 if (mem_cgroup_disabled())
332 return;
333
334 pc = lookup_page_cgroup(page);
335 smp_rmb();
336 /* unused page is not rotated. */
337 if (!PageCgroupUsed(pc))
338 return;
339 mz = page_cgroup_zoneinfo(pc);
340 list_move(&pc->lru, &mz->lists[lru]);
341 }
342
343 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
344 {
345 struct page_cgroup *pc;
346 struct mem_cgroup_per_zone *mz;
347
348 if (mem_cgroup_disabled())
349 return;
350 pc = lookup_page_cgroup(page);
351 /* barrier to sync with "charge" */
352 smp_rmb();
353 if (!PageCgroupUsed(pc))
354 return;
355
356 mz = page_cgroup_zoneinfo(pc);
357 MEM_CGROUP_ZSTAT(mz, lru) += 1;
358 list_add(&pc->lru, &mz->lists[lru]);
359 }
360 /*
361 * To add swapcache into LRU. Be careful to all this function.
362 * zone->lru_lock shouldn't be held and irq must not be disabled.
363 */
364 static void mem_cgroup_lru_fixup(struct page *page)
365 {
366 if (!isolate_lru_page(page))
367 putback_lru_page(page);
368 }
369
370 void mem_cgroup_move_lists(struct page *page,
371 enum lru_list from, enum lru_list to)
372 {
373 if (mem_cgroup_disabled())
374 return;
375 mem_cgroup_del_lru_list(page, from);
376 mem_cgroup_add_lru_list(page, to);
377 }
378
379 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
380 {
381 int ret;
382
383 task_lock(task);
384 ret = task->mm && mm_match_cgroup(task->mm, mem);
385 task_unlock(task);
386 return ret;
387 }
388
389 /*
390 * Calculate mapped_ratio under memory controller. This will be used in
391 * vmscan.c for deteremining we have to reclaim mapped pages.
392 */
393 int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
394 {
395 long total, rss;
396
397 /*
398 * usage is recorded in bytes. But, here, we assume the number of
399 * physical pages can be represented by "long" on any arch.
400 */
401 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
402 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
403 return (int)((rss * 100L) / total);
404 }
405
406 /*
407 * prev_priority control...this will be used in memory reclaim path.
408 */
409 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
410 {
411 int prev_priority;
412
413 spin_lock(&mem->reclaim_param_lock);
414 prev_priority = mem->prev_priority;
415 spin_unlock(&mem->reclaim_param_lock);
416
417 return prev_priority;
418 }
419
420 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
421 {
422 spin_lock(&mem->reclaim_param_lock);
423 if (priority < mem->prev_priority)
424 mem->prev_priority = priority;
425 spin_unlock(&mem->reclaim_param_lock);
426 }
427
428 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
429 {
430 spin_lock(&mem->reclaim_param_lock);
431 mem->prev_priority = priority;
432 spin_unlock(&mem->reclaim_param_lock);
433 }
434
435 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
436 {
437 unsigned long active;
438 unsigned long inactive;
439
440 inactive = mem_cgroup_get_all_zonestat(memcg, LRU_INACTIVE_ANON);
441 active = mem_cgroup_get_all_zonestat(memcg, LRU_ACTIVE_ANON);
442
443 if (inactive * memcg->inactive_ratio < active)
444 return 1;
445
446 return 0;
447 }
448
449 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
450 struct zone *zone,
451 enum lru_list lru)
452 {
453 int nid = zone->zone_pgdat->node_id;
454 int zid = zone_idx(zone);
455 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
456
457 return MEM_CGROUP_ZSTAT(mz, lru);
458 }
459
460 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
461 struct zone *zone)
462 {
463 int nid = zone->zone_pgdat->node_id;
464 int zid = zone_idx(zone);
465 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
466
467 return &mz->reclaim_stat;
468 }
469
470 struct zone_reclaim_stat *
471 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
472 {
473 struct page_cgroup *pc;
474 struct mem_cgroup_per_zone *mz;
475
476 if (mem_cgroup_disabled())
477 return NULL;
478
479 pc = lookup_page_cgroup(page);
480 mz = page_cgroup_zoneinfo(pc);
481 if (!mz)
482 return NULL;
483
484 return &mz->reclaim_stat;
485 }
486
487 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
488 struct list_head *dst,
489 unsigned long *scanned, int order,
490 int mode, struct zone *z,
491 struct mem_cgroup *mem_cont,
492 int active, int file)
493 {
494 unsigned long nr_taken = 0;
495 struct page *page;
496 unsigned long scan;
497 LIST_HEAD(pc_list);
498 struct list_head *src;
499 struct page_cgroup *pc, *tmp;
500 int nid = z->zone_pgdat->node_id;
501 int zid = zone_idx(z);
502 struct mem_cgroup_per_zone *mz;
503 int lru = LRU_FILE * !!file + !!active;
504
505 BUG_ON(!mem_cont);
506 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
507 src = &mz->lists[lru];
508
509 scan = 0;
510 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
511 if (scan >= nr_to_scan)
512 break;
513
514 page = pc->page;
515 if (unlikely(!PageCgroupUsed(pc)))
516 continue;
517 if (unlikely(!PageLRU(page)))
518 continue;
519
520 scan++;
521 if (__isolate_lru_page(page, mode, file) == 0) {
522 list_move(&page->lru, dst);
523 nr_taken++;
524 }
525 }
526
527 *scanned = scan;
528 return nr_taken;
529 }
530
531 #define mem_cgroup_from_res_counter(counter, member) \
532 container_of(counter, struct mem_cgroup, member)
533
534 /*
535 * This routine finds the DFS walk successor. This routine should be
536 * called with cgroup_mutex held
537 */
538 static struct mem_cgroup *
539 mem_cgroup_get_next_node(struct mem_cgroup *curr, struct mem_cgroup *root_mem)
540 {
541 struct cgroup *cgroup, *curr_cgroup, *root_cgroup;
542
543 curr_cgroup = curr->css.cgroup;
544 root_cgroup = root_mem->css.cgroup;
545
546 if (!list_empty(&curr_cgroup->children)) {
547 /*
548 * Walk down to children
549 */
550 mem_cgroup_put(curr);
551 cgroup = list_entry(curr_cgroup->children.next,
552 struct cgroup, sibling);
553 curr = mem_cgroup_from_cont(cgroup);
554 mem_cgroup_get(curr);
555 goto done;
556 }
557
558 visit_parent:
559 if (curr_cgroup == root_cgroup) {
560 mem_cgroup_put(curr);
561 curr = root_mem;
562 mem_cgroup_get(curr);
563 goto done;
564 }
565
566 /*
567 * Goto next sibling
568 */
569 if (curr_cgroup->sibling.next != &curr_cgroup->parent->children) {
570 mem_cgroup_put(curr);
571 cgroup = list_entry(curr_cgroup->sibling.next, struct cgroup,
572 sibling);
573 curr = mem_cgroup_from_cont(cgroup);
574 mem_cgroup_get(curr);
575 goto done;
576 }
577
578 /*
579 * Go up to next parent and next parent's sibling if need be
580 */
581 curr_cgroup = curr_cgroup->parent;
582 goto visit_parent;
583
584 done:
585 root_mem->last_scanned_child = curr;
586 return curr;
587 }
588
589 /*
590 * Visit the first child (need not be the first child as per the ordering
591 * of the cgroup list, since we track last_scanned_child) of @mem and use
592 * that to reclaim free pages from.
593 */
594 static struct mem_cgroup *
595 mem_cgroup_get_first_node(struct mem_cgroup *root_mem)
596 {
597 struct cgroup *cgroup;
598 struct mem_cgroup *ret;
599 bool obsolete = (root_mem->last_scanned_child &&
600 root_mem->last_scanned_child->obsolete);
601
602 /*
603 * Scan all children under the mem_cgroup mem
604 */
605 cgroup_lock();
606 if (list_empty(&root_mem->css.cgroup->children)) {
607 ret = root_mem;
608 goto done;
609 }
610
611 if (!root_mem->last_scanned_child || obsolete) {
612
613 if (obsolete)
614 mem_cgroup_put(root_mem->last_scanned_child);
615
616 cgroup = list_first_entry(&root_mem->css.cgroup->children,
617 struct cgroup, sibling);
618 ret = mem_cgroup_from_cont(cgroup);
619 mem_cgroup_get(ret);
620 } else
621 ret = mem_cgroup_get_next_node(root_mem->last_scanned_child,
622 root_mem);
623
624 done:
625 root_mem->last_scanned_child = ret;
626 cgroup_unlock();
627 return ret;
628 }
629
630 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
631 {
632 if (do_swap_account) {
633 if (res_counter_check_under_limit(&mem->res) &&
634 res_counter_check_under_limit(&mem->memsw))
635 return true;
636 } else
637 if (res_counter_check_under_limit(&mem->res))
638 return true;
639 return false;
640 }
641
642 static unsigned int get_swappiness(struct mem_cgroup *memcg)
643 {
644 struct cgroup *cgrp = memcg->css.cgroup;
645 unsigned int swappiness;
646
647 /* root ? */
648 if (cgrp->parent == NULL)
649 return vm_swappiness;
650
651 spin_lock(&memcg->reclaim_param_lock);
652 swappiness = memcg->swappiness;
653 spin_unlock(&memcg->reclaim_param_lock);
654
655 return swappiness;
656 }
657
658 /*
659 * Dance down the hierarchy if needed to reclaim memory. We remember the
660 * last child we reclaimed from, so that we don't end up penalizing
661 * one child extensively based on its position in the children list.
662 *
663 * root_mem is the original ancestor that we've been reclaim from.
664 */
665 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
666 gfp_t gfp_mask, bool noswap)
667 {
668 struct mem_cgroup *next_mem;
669 int ret = 0;
670
671 /*
672 * Reclaim unconditionally and don't check for return value.
673 * We need to reclaim in the current group and down the tree.
674 * One might think about checking for children before reclaiming,
675 * but there might be left over accounting, even after children
676 * have left.
677 */
678 ret = try_to_free_mem_cgroup_pages(root_mem, gfp_mask, noswap,
679 get_swappiness(root_mem));
680 if (mem_cgroup_check_under_limit(root_mem))
681 return 0;
682 if (!root_mem->use_hierarchy)
683 return ret;
684
685 next_mem = mem_cgroup_get_first_node(root_mem);
686
687 while (next_mem != root_mem) {
688 if (next_mem->obsolete) {
689 mem_cgroup_put(next_mem);
690 cgroup_lock();
691 next_mem = mem_cgroup_get_first_node(root_mem);
692 cgroup_unlock();
693 continue;
694 }
695 ret = try_to_free_mem_cgroup_pages(next_mem, gfp_mask, noswap,
696 get_swappiness(next_mem));
697 if (mem_cgroup_check_under_limit(root_mem))
698 return 0;
699 cgroup_lock();
700 next_mem = mem_cgroup_get_next_node(next_mem, root_mem);
701 cgroup_unlock();
702 }
703 return ret;
704 }
705
706 bool mem_cgroup_oom_called(struct task_struct *task)
707 {
708 bool ret = false;
709 struct mem_cgroup *mem;
710 struct mm_struct *mm;
711
712 rcu_read_lock();
713 mm = task->mm;
714 if (!mm)
715 mm = &init_mm;
716 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
717 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
718 ret = true;
719 rcu_read_unlock();
720 return ret;
721 }
722 /*
723 * Unlike exported interface, "oom" parameter is added. if oom==true,
724 * oom-killer can be invoked.
725 */
726 static int __mem_cgroup_try_charge(struct mm_struct *mm,
727 gfp_t gfp_mask, struct mem_cgroup **memcg,
728 bool oom)
729 {
730 struct mem_cgroup *mem, *mem_over_limit;
731 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
732 struct res_counter *fail_res;
733
734 if (unlikely(test_thread_flag(TIF_MEMDIE))) {
735 /* Don't account this! */
736 *memcg = NULL;
737 return 0;
738 }
739
740 /*
741 * We always charge the cgroup the mm_struct belongs to.
742 * The mm_struct's mem_cgroup changes on task migration if the
743 * thread group leader migrates. It's possible that mm is not
744 * set, if so charge the init_mm (happens for pagecache usage).
745 */
746 if (likely(!*memcg)) {
747 rcu_read_lock();
748 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
749 if (unlikely(!mem)) {
750 rcu_read_unlock();
751 return 0;
752 }
753 /*
754 * For every charge from the cgroup, increment reference count
755 */
756 css_get(&mem->css);
757 *memcg = mem;
758 rcu_read_unlock();
759 } else {
760 mem = *memcg;
761 css_get(&mem->css);
762 }
763
764 while (1) {
765 int ret;
766 bool noswap = false;
767
768 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
769 if (likely(!ret)) {
770 if (!do_swap_account)
771 break;
772 ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
773 &fail_res);
774 if (likely(!ret))
775 break;
776 /* mem+swap counter fails */
777 res_counter_uncharge(&mem->res, PAGE_SIZE);
778 noswap = true;
779 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
780 memsw);
781 } else
782 /* mem counter fails */
783 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
784 res);
785
786 if (!(gfp_mask & __GFP_WAIT))
787 goto nomem;
788
789 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
790 noswap);
791
792 /*
793 * try_to_free_mem_cgroup_pages() might not give us a full
794 * picture of reclaim. Some pages are reclaimed and might be
795 * moved to swap cache or just unmapped from the cgroup.
796 * Check the limit again to see if the reclaim reduced the
797 * current usage of the cgroup before giving up
798 *
799 */
800 if (mem_cgroup_check_under_limit(mem_over_limit))
801 continue;
802
803 if (!nr_retries--) {
804 if (oom) {
805 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
806 mem_over_limit->last_oom_jiffies = jiffies;
807 }
808 goto nomem;
809 }
810 }
811 return 0;
812 nomem:
813 css_put(&mem->css);
814 return -ENOMEM;
815 }
816
817 /**
818 * mem_cgroup_try_charge - get charge of PAGE_SIZE.
819 * @mm: an mm_struct which is charged against. (when *memcg is NULL)
820 * @gfp_mask: gfp_mask for reclaim.
821 * @memcg: a pointer to memory cgroup which is charged against.
822 *
823 * charge against memory cgroup pointed by *memcg. if *memcg == NULL, estimated
824 * memory cgroup from @mm is got and stored in *memcg.
825 *
826 * Returns 0 if success. -ENOMEM at failure.
827 * This call can invoke OOM-Killer.
828 */
829
830 int mem_cgroup_try_charge(struct mm_struct *mm,
831 gfp_t mask, struct mem_cgroup **memcg)
832 {
833 return __mem_cgroup_try_charge(mm, mask, memcg, true);
834 }
835
836 /*
837 * commit a charge got by mem_cgroup_try_charge() and makes page_cgroup to be
838 * USED state. If already USED, uncharge and return.
839 */
840
841 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
842 struct page_cgroup *pc,
843 enum charge_type ctype)
844 {
845 /* try_charge() can return NULL to *memcg, taking care of it. */
846 if (!mem)
847 return;
848
849 lock_page_cgroup(pc);
850 if (unlikely(PageCgroupUsed(pc))) {
851 unlock_page_cgroup(pc);
852 res_counter_uncharge(&mem->res, PAGE_SIZE);
853 if (do_swap_account)
854 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
855 css_put(&mem->css);
856 return;
857 }
858 pc->mem_cgroup = mem;
859 smp_wmb();
860 pc->flags = pcg_default_flags[ctype];
861
862 mem_cgroup_charge_statistics(mem, pc, true);
863
864 unlock_page_cgroup(pc);
865 }
866
867 /**
868 * mem_cgroup_move_account - move account of the page
869 * @pc: page_cgroup of the page.
870 * @from: mem_cgroup which the page is moved from.
871 * @to: mem_cgroup which the page is moved to. @from != @to.
872 *
873 * The caller must confirm following.
874 * - page is not on LRU (isolate_page() is useful.)
875 *
876 * returns 0 at success,
877 * returns -EBUSY when lock is busy or "pc" is unstable.
878 *
879 * This function does "uncharge" from old cgroup but doesn't do "charge" to
880 * new cgroup. It should be done by a caller.
881 */
882
883 static int mem_cgroup_move_account(struct page_cgroup *pc,
884 struct mem_cgroup *from, struct mem_cgroup *to)
885 {
886 struct mem_cgroup_per_zone *from_mz, *to_mz;
887 int nid, zid;
888 int ret = -EBUSY;
889
890 VM_BUG_ON(from == to);
891 VM_BUG_ON(PageLRU(pc->page));
892
893 nid = page_cgroup_nid(pc);
894 zid = page_cgroup_zid(pc);
895 from_mz = mem_cgroup_zoneinfo(from, nid, zid);
896 to_mz = mem_cgroup_zoneinfo(to, nid, zid);
897
898 if (!trylock_page_cgroup(pc))
899 return ret;
900
901 if (!PageCgroupUsed(pc))
902 goto out;
903
904 if (pc->mem_cgroup != from)
905 goto out;
906
907 css_put(&from->css);
908 res_counter_uncharge(&from->res, PAGE_SIZE);
909 mem_cgroup_charge_statistics(from, pc, false);
910 if (do_swap_account)
911 res_counter_uncharge(&from->memsw, PAGE_SIZE);
912 pc->mem_cgroup = to;
913 mem_cgroup_charge_statistics(to, pc, true);
914 css_get(&to->css);
915 ret = 0;
916 out:
917 unlock_page_cgroup(pc);
918 return ret;
919 }
920
921 /*
922 * move charges to its parent.
923 */
924
925 static int mem_cgroup_move_parent(struct page_cgroup *pc,
926 struct mem_cgroup *child,
927 gfp_t gfp_mask)
928 {
929 struct page *page = pc->page;
930 struct cgroup *cg = child->css.cgroup;
931 struct cgroup *pcg = cg->parent;
932 struct mem_cgroup *parent;
933 int ret;
934
935 /* Is ROOT ? */
936 if (!pcg)
937 return -EINVAL;
938
939
940 parent = mem_cgroup_from_cont(pcg);
941
942
943 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
944 if (ret || !parent)
945 return ret;
946
947 if (!get_page_unless_zero(page))
948 return -EBUSY;
949
950 ret = isolate_lru_page(page);
951
952 if (ret)
953 goto cancel;
954
955 ret = mem_cgroup_move_account(pc, child, parent);
956
957 /* drop extra refcnt by try_charge() (move_account increment one) */
958 css_put(&parent->css);
959 putback_lru_page(page);
960 if (!ret) {
961 put_page(page);
962 return 0;
963 }
964 /* uncharge if move fails */
965 cancel:
966 res_counter_uncharge(&parent->res, PAGE_SIZE);
967 if (do_swap_account)
968 res_counter_uncharge(&parent->memsw, PAGE_SIZE);
969 put_page(page);
970 return ret;
971 }
972
973 /*
974 * Charge the memory controller for page usage.
975 * Return
976 * 0 if the charge was successful
977 * < 0 if the cgroup is over its limit
978 */
979 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
980 gfp_t gfp_mask, enum charge_type ctype,
981 struct mem_cgroup *memcg)
982 {
983 struct mem_cgroup *mem;
984 struct page_cgroup *pc;
985 int ret;
986
987 pc = lookup_page_cgroup(page);
988 /* can happen at boot */
989 if (unlikely(!pc))
990 return 0;
991 prefetchw(pc);
992
993 mem = memcg;
994 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
995 if (ret || !mem)
996 return ret;
997
998 __mem_cgroup_commit_charge(mem, pc, ctype);
999 return 0;
1000 }
1001
1002 int mem_cgroup_newpage_charge(struct page *page,
1003 struct mm_struct *mm, gfp_t gfp_mask)
1004 {
1005 if (mem_cgroup_disabled())
1006 return 0;
1007 if (PageCompound(page))
1008 return 0;
1009 /*
1010 * If already mapped, we don't have to account.
1011 * If page cache, page->mapping has address_space.
1012 * But page->mapping may have out-of-use anon_vma pointer,
1013 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1014 * is NULL.
1015 */
1016 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1017 return 0;
1018 if (unlikely(!mm))
1019 mm = &init_mm;
1020 return mem_cgroup_charge_common(page, mm, gfp_mask,
1021 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1022 }
1023
1024 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1025 gfp_t gfp_mask)
1026 {
1027 if (mem_cgroup_disabled())
1028 return 0;
1029 if (PageCompound(page))
1030 return 0;
1031 /*
1032 * Corner case handling. This is called from add_to_page_cache()
1033 * in usual. But some FS (shmem) precharges this page before calling it
1034 * and call add_to_page_cache() with GFP_NOWAIT.
1035 *
1036 * For GFP_NOWAIT case, the page may be pre-charged before calling
1037 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1038 * charge twice. (It works but has to pay a bit larger cost.)
1039 */
1040 if (!(gfp_mask & __GFP_WAIT)) {
1041 struct page_cgroup *pc;
1042
1043
1044 pc = lookup_page_cgroup(page);
1045 if (!pc)
1046 return 0;
1047 lock_page_cgroup(pc);
1048 if (PageCgroupUsed(pc)) {
1049 unlock_page_cgroup(pc);
1050 return 0;
1051 }
1052 unlock_page_cgroup(pc);
1053 }
1054
1055 if (unlikely(!mm))
1056 mm = &init_mm;
1057
1058 if (page_is_file_cache(page))
1059 return mem_cgroup_charge_common(page, mm, gfp_mask,
1060 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1061 else
1062 return mem_cgroup_charge_common(page, mm, gfp_mask,
1063 MEM_CGROUP_CHARGE_TYPE_SHMEM, NULL);
1064 }
1065
1066 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1067 struct page *page,
1068 gfp_t mask, struct mem_cgroup **ptr)
1069 {
1070 struct mem_cgroup *mem;
1071 swp_entry_t ent;
1072
1073 if (mem_cgroup_disabled())
1074 return 0;
1075
1076 if (!do_swap_account)
1077 goto charge_cur_mm;
1078
1079 /*
1080 * A racing thread's fault, or swapoff, may have already updated
1081 * the pte, and even removed page from swap cache: return success
1082 * to go on to do_swap_page()'s pte_same() test, which should fail.
1083 */
1084 if (!PageSwapCache(page))
1085 return 0;
1086
1087 ent.val = page_private(page);
1088
1089 mem = lookup_swap_cgroup(ent);
1090 if (!mem || mem->obsolete)
1091 goto charge_cur_mm;
1092 *ptr = mem;
1093 return __mem_cgroup_try_charge(NULL, mask, ptr, true);
1094 charge_cur_mm:
1095 if (unlikely(!mm))
1096 mm = &init_mm;
1097 return __mem_cgroup_try_charge(mm, mask, ptr, true);
1098 }
1099
1100 #ifdef CONFIG_SWAP
1101
1102 int mem_cgroup_cache_charge_swapin(struct page *page,
1103 struct mm_struct *mm, gfp_t mask, bool locked)
1104 {
1105 int ret = 0;
1106
1107 if (mem_cgroup_disabled())
1108 return 0;
1109 if (unlikely(!mm))
1110 mm = &init_mm;
1111 if (!locked)
1112 lock_page(page);
1113 /*
1114 * If not locked, the page can be dropped from SwapCache until
1115 * we reach here.
1116 */
1117 if (PageSwapCache(page)) {
1118 struct mem_cgroup *mem = NULL;
1119 swp_entry_t ent;
1120
1121 ent.val = page_private(page);
1122 if (do_swap_account) {
1123 mem = lookup_swap_cgroup(ent);
1124 if (mem && mem->obsolete)
1125 mem = NULL;
1126 if (mem)
1127 mm = NULL;
1128 }
1129 ret = mem_cgroup_charge_common(page, mm, mask,
1130 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1131
1132 if (!ret && do_swap_account) {
1133 /* avoid double counting */
1134 mem = swap_cgroup_record(ent, NULL);
1135 if (mem) {
1136 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1137 mem_cgroup_put(mem);
1138 }
1139 }
1140 }
1141 if (!locked)
1142 unlock_page(page);
1143 /* add this page(page_cgroup) to the LRU we want. */
1144 mem_cgroup_lru_fixup(page);
1145
1146 return ret;
1147 }
1148 #endif
1149
1150 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1151 {
1152 struct page_cgroup *pc;
1153
1154 if (mem_cgroup_disabled())
1155 return;
1156 if (!ptr)
1157 return;
1158 pc = lookup_page_cgroup(page);
1159 __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1160 /*
1161 * Now swap is on-memory. This means this page may be
1162 * counted both as mem and swap....double count.
1163 * Fix it by uncharging from memsw. This SwapCache is stable
1164 * because we're still under lock_page().
1165 */
1166 if (do_swap_account) {
1167 swp_entry_t ent = {.val = page_private(page)};
1168 struct mem_cgroup *memcg;
1169 memcg = swap_cgroup_record(ent, NULL);
1170 if (memcg) {
1171 /* If memcg is obsolete, memcg can be != ptr */
1172 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1173 mem_cgroup_put(memcg);
1174 }
1175
1176 }
1177 /* add this page(page_cgroup) to the LRU we want. */
1178 mem_cgroup_lru_fixup(page);
1179 }
1180
1181 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1182 {
1183 if (mem_cgroup_disabled())
1184 return;
1185 if (!mem)
1186 return;
1187 res_counter_uncharge(&mem->res, PAGE_SIZE);
1188 if (do_swap_account)
1189 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1190 css_put(&mem->css);
1191 }
1192
1193
1194 /*
1195 * uncharge if !page_mapped(page)
1196 */
1197 static struct mem_cgroup *
1198 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1199 {
1200 struct page_cgroup *pc;
1201 struct mem_cgroup *mem = NULL;
1202 struct mem_cgroup_per_zone *mz;
1203
1204 if (mem_cgroup_disabled())
1205 return NULL;
1206
1207 if (PageSwapCache(page))
1208 return NULL;
1209
1210 /*
1211 * Check if our page_cgroup is valid
1212 */
1213 pc = lookup_page_cgroup(page);
1214 if (unlikely(!pc || !PageCgroupUsed(pc)))
1215 return NULL;
1216
1217 lock_page_cgroup(pc);
1218
1219 mem = pc->mem_cgroup;
1220
1221 if (!PageCgroupUsed(pc))
1222 goto unlock_out;
1223
1224 switch (ctype) {
1225 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1226 if (page_mapped(page))
1227 goto unlock_out;
1228 break;
1229 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1230 if (!PageAnon(page)) { /* Shared memory */
1231 if (page->mapping && !page_is_file_cache(page))
1232 goto unlock_out;
1233 } else if (page_mapped(page)) /* Anon */
1234 goto unlock_out;
1235 break;
1236 default:
1237 break;
1238 }
1239
1240 res_counter_uncharge(&mem->res, PAGE_SIZE);
1241 if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1242 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1243
1244 mem_cgroup_charge_statistics(mem, pc, false);
1245 ClearPageCgroupUsed(pc);
1246
1247 mz = page_cgroup_zoneinfo(pc);
1248 unlock_page_cgroup(pc);
1249
1250 /* at swapout, this memcg will be accessed to record to swap */
1251 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1252 css_put(&mem->css);
1253
1254 return mem;
1255
1256 unlock_out:
1257 unlock_page_cgroup(pc);
1258 return NULL;
1259 }
1260
1261 void mem_cgroup_uncharge_page(struct page *page)
1262 {
1263 /* early check. */
1264 if (page_mapped(page))
1265 return;
1266 if (page->mapping && !PageAnon(page))
1267 return;
1268 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1269 }
1270
1271 void mem_cgroup_uncharge_cache_page(struct page *page)
1272 {
1273 VM_BUG_ON(page_mapped(page));
1274 VM_BUG_ON(page->mapping);
1275 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1276 }
1277
1278 /*
1279 * called from __delete_from_swap_cache() and drop "page" account.
1280 * memcg information is recorded to swap_cgroup of "ent"
1281 */
1282 void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
1283 {
1284 struct mem_cgroup *memcg;
1285
1286 memcg = __mem_cgroup_uncharge_common(page,
1287 MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
1288 /* record memcg information */
1289 if (do_swap_account && memcg) {
1290 swap_cgroup_record(ent, memcg);
1291 mem_cgroup_get(memcg);
1292 }
1293 if (memcg)
1294 css_put(&memcg->css);
1295 }
1296
1297 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1298 /*
1299 * called from swap_entry_free(). remove record in swap_cgroup and
1300 * uncharge "memsw" account.
1301 */
1302 void mem_cgroup_uncharge_swap(swp_entry_t ent)
1303 {
1304 struct mem_cgroup *memcg;
1305
1306 if (!do_swap_account)
1307 return;
1308
1309 memcg = swap_cgroup_record(ent, NULL);
1310 if (memcg) {
1311 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1312 mem_cgroup_put(memcg);
1313 }
1314 }
1315 #endif
1316
1317 /*
1318 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1319 * page belongs to.
1320 */
1321 int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
1322 {
1323 struct page_cgroup *pc;
1324 struct mem_cgroup *mem = NULL;
1325 int ret = 0;
1326
1327 if (mem_cgroup_disabled())
1328 return 0;
1329
1330 pc = lookup_page_cgroup(page);
1331 lock_page_cgroup(pc);
1332 if (PageCgroupUsed(pc)) {
1333 mem = pc->mem_cgroup;
1334 css_get(&mem->css);
1335 }
1336 unlock_page_cgroup(pc);
1337
1338 if (mem) {
1339 ret = mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem);
1340 css_put(&mem->css);
1341 }
1342 *ptr = mem;
1343 return ret;
1344 }
1345
1346 /* remove redundant charge if migration failed*/
1347 void mem_cgroup_end_migration(struct mem_cgroup *mem,
1348 struct page *oldpage, struct page *newpage)
1349 {
1350 struct page *target, *unused;
1351 struct page_cgroup *pc;
1352 enum charge_type ctype;
1353
1354 if (!mem)
1355 return;
1356
1357 /* at migration success, oldpage->mapping is NULL. */
1358 if (oldpage->mapping) {
1359 target = oldpage;
1360 unused = NULL;
1361 } else {
1362 target = newpage;
1363 unused = oldpage;
1364 }
1365
1366 if (PageAnon(target))
1367 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1368 else if (page_is_file_cache(target))
1369 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1370 else
1371 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1372
1373 /* unused page is not on radix-tree now. */
1374 if (unused)
1375 __mem_cgroup_uncharge_common(unused, ctype);
1376
1377 pc = lookup_page_cgroup(target);
1378 /*
1379 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1380 * So, double-counting is effectively avoided.
1381 */
1382 __mem_cgroup_commit_charge(mem, pc, ctype);
1383
1384 /*
1385 * Both of oldpage and newpage are still under lock_page().
1386 * Then, we don't have to care about race in radix-tree.
1387 * But we have to be careful that this page is unmapped or not.
1388 *
1389 * There is a case for !page_mapped(). At the start of
1390 * migration, oldpage was mapped. But now, it's zapped.
1391 * But we know *target* page is not freed/reused under us.
1392 * mem_cgroup_uncharge_page() does all necessary checks.
1393 */
1394 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1395 mem_cgroup_uncharge_page(target);
1396 }
1397
1398 /*
1399 * A call to try to shrink memory usage under specified resource controller.
1400 * This is typically used for page reclaiming for shmem for reducing side
1401 * effect of page allocation from shmem, which is used by some mem_cgroup.
1402 */
1403 int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask)
1404 {
1405 struct mem_cgroup *mem;
1406 int progress = 0;
1407 int retry = MEM_CGROUP_RECLAIM_RETRIES;
1408
1409 if (mem_cgroup_disabled())
1410 return 0;
1411 if (!mm)
1412 return 0;
1413
1414 rcu_read_lock();
1415 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
1416 if (unlikely(!mem)) {
1417 rcu_read_unlock();
1418 return 0;
1419 }
1420 css_get(&mem->css);
1421 rcu_read_unlock();
1422
1423 do {
1424 progress = try_to_free_mem_cgroup_pages(mem, gfp_mask, true,
1425 get_swappiness(mem));
1426 progress += mem_cgroup_check_under_limit(mem);
1427 } while (!progress && --retry);
1428
1429 css_put(&mem->css);
1430 if (!retry)
1431 return -ENOMEM;
1432 return 0;
1433 }
1434
1435 /*
1436 * The inactive anon list should be small enough that the VM never has to
1437 * do too much work, but large enough that each inactive page has a chance
1438 * to be referenced again before it is swapped out.
1439 *
1440 * this calculation is straightforward porting from
1441 * page_alloc.c::setup_per_zone_inactive_ratio().
1442 * it describe more detail.
1443 */
1444 static void mem_cgroup_set_inactive_ratio(struct mem_cgroup *memcg)
1445 {
1446 unsigned int gb, ratio;
1447
1448 gb = res_counter_read_u64(&memcg->res, RES_LIMIT) >> 30;
1449 if (gb)
1450 ratio = int_sqrt(10 * gb);
1451 else
1452 ratio = 1;
1453
1454 memcg->inactive_ratio = ratio;
1455
1456 }
1457
1458 static DEFINE_MUTEX(set_limit_mutex);
1459
1460 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
1461 unsigned long long val)
1462 {
1463
1464 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1465 int progress;
1466 u64 memswlimit;
1467 int ret = 0;
1468
1469 while (retry_count) {
1470 if (signal_pending(current)) {
1471 ret = -EINTR;
1472 break;
1473 }
1474 /*
1475 * Rather than hide all in some function, I do this in
1476 * open coded manner. You see what this really does.
1477 * We have to guarantee mem->res.limit < mem->memsw.limit.
1478 */
1479 mutex_lock(&set_limit_mutex);
1480 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1481 if (memswlimit < val) {
1482 ret = -EINVAL;
1483 mutex_unlock(&set_limit_mutex);
1484 break;
1485 }
1486 ret = res_counter_set_limit(&memcg->res, val);
1487 mutex_unlock(&set_limit_mutex);
1488
1489 if (!ret)
1490 break;
1491
1492 progress = try_to_free_mem_cgroup_pages(memcg,
1493 GFP_KERNEL,
1494 false,
1495 get_swappiness(memcg));
1496 if (!progress) retry_count--;
1497 }
1498
1499 if (!ret)
1500 mem_cgroup_set_inactive_ratio(memcg);
1501
1502 return ret;
1503 }
1504
1505 int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1506 unsigned long long val)
1507 {
1508 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1509 u64 memlimit, oldusage, curusage;
1510 int ret;
1511
1512 if (!do_swap_account)
1513 return -EINVAL;
1514
1515 while (retry_count) {
1516 if (signal_pending(current)) {
1517 ret = -EINTR;
1518 break;
1519 }
1520 /*
1521 * Rather than hide all in some function, I do this in
1522 * open coded manner. You see what this really does.
1523 * We have to guarantee mem->res.limit < mem->memsw.limit.
1524 */
1525 mutex_lock(&set_limit_mutex);
1526 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1527 if (memlimit > val) {
1528 ret = -EINVAL;
1529 mutex_unlock(&set_limit_mutex);
1530 break;
1531 }
1532 ret = res_counter_set_limit(&memcg->memsw, val);
1533 mutex_unlock(&set_limit_mutex);
1534
1535 if (!ret)
1536 break;
1537
1538 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1539 try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, true,
1540 get_swappiness(memcg));
1541 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1542 if (curusage >= oldusage)
1543 retry_count--;
1544 }
1545 return ret;
1546 }
1547
1548 /*
1549 * This routine traverse page_cgroup in given list and drop them all.
1550 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1551 */
1552 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
1553 int node, int zid, enum lru_list lru)
1554 {
1555 struct zone *zone;
1556 struct mem_cgroup_per_zone *mz;
1557 struct page_cgroup *pc, *busy;
1558 unsigned long flags, loop;
1559 struct list_head *list;
1560 int ret = 0;
1561
1562 zone = &NODE_DATA(node)->node_zones[zid];
1563 mz = mem_cgroup_zoneinfo(mem, node, zid);
1564 list = &mz->lists[lru];
1565
1566 loop = MEM_CGROUP_ZSTAT(mz, lru);
1567 /* give some margin against EBUSY etc...*/
1568 loop += 256;
1569 busy = NULL;
1570 while (loop--) {
1571 ret = 0;
1572 spin_lock_irqsave(&zone->lru_lock, flags);
1573 if (list_empty(list)) {
1574 spin_unlock_irqrestore(&zone->lru_lock, flags);
1575 break;
1576 }
1577 pc = list_entry(list->prev, struct page_cgroup, lru);
1578 if (busy == pc) {
1579 list_move(&pc->lru, list);
1580 busy = 0;
1581 spin_unlock_irqrestore(&zone->lru_lock, flags);
1582 continue;
1583 }
1584 spin_unlock_irqrestore(&zone->lru_lock, flags);
1585
1586 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
1587 if (ret == -ENOMEM)
1588 break;
1589
1590 if (ret == -EBUSY || ret == -EINVAL) {
1591 /* found lock contention or "pc" is obsolete. */
1592 busy = pc;
1593 cond_resched();
1594 } else
1595 busy = NULL;
1596 }
1597
1598 if (!ret && !list_empty(list))
1599 return -EBUSY;
1600 return ret;
1601 }
1602
1603 /*
1604 * make mem_cgroup's charge to be 0 if there is no task.
1605 * This enables deleting this mem_cgroup.
1606 */
1607 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
1608 {
1609 int ret;
1610 int node, zid, shrink;
1611 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1612 struct cgroup *cgrp = mem->css.cgroup;
1613
1614 css_get(&mem->css);
1615
1616 shrink = 0;
1617 /* should free all ? */
1618 if (free_all)
1619 goto try_to_free;
1620 move_account:
1621 while (mem->res.usage > 0) {
1622 ret = -EBUSY;
1623 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1624 goto out;
1625 ret = -EINTR;
1626 if (signal_pending(current))
1627 goto out;
1628 /* This is for making all *used* pages to be on LRU. */
1629 lru_add_drain_all();
1630 ret = 0;
1631 for_each_node_state(node, N_POSSIBLE) {
1632 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
1633 enum lru_list l;
1634 for_each_lru(l) {
1635 ret = mem_cgroup_force_empty_list(mem,
1636 node, zid, l);
1637 if (ret)
1638 break;
1639 }
1640 }
1641 if (ret)
1642 break;
1643 }
1644 /* it seems parent cgroup doesn't have enough mem */
1645 if (ret == -ENOMEM)
1646 goto try_to_free;
1647 cond_resched();
1648 }
1649 ret = 0;
1650 out:
1651 css_put(&mem->css);
1652 return ret;
1653
1654 try_to_free:
1655 /* returns EBUSY if there is a task or if we come here twice. */
1656 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
1657 ret = -EBUSY;
1658 goto out;
1659 }
1660 /* we call try-to-free pages for make this cgroup empty */
1661 lru_add_drain_all();
1662 /* try to free all pages in this cgroup */
1663 shrink = 1;
1664 while (nr_retries && mem->res.usage > 0) {
1665 int progress;
1666
1667 if (signal_pending(current)) {
1668 ret = -EINTR;
1669 goto out;
1670 }
1671 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
1672 false, get_swappiness(mem));
1673 if (!progress) {
1674 nr_retries--;
1675 /* maybe some writeback is necessary */
1676 congestion_wait(WRITE, HZ/10);
1677 }
1678
1679 }
1680 lru_add_drain();
1681 /* try move_account...there may be some *locked* pages. */
1682 if (mem->res.usage)
1683 goto move_account;
1684 ret = 0;
1685 goto out;
1686 }
1687
1688 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1689 {
1690 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1691 }
1692
1693
1694 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
1695 {
1696 return mem_cgroup_from_cont(cont)->use_hierarchy;
1697 }
1698
1699 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
1700 u64 val)
1701 {
1702 int retval = 0;
1703 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1704 struct cgroup *parent = cont->parent;
1705 struct mem_cgroup *parent_mem = NULL;
1706
1707 if (parent)
1708 parent_mem = mem_cgroup_from_cont(parent);
1709
1710 cgroup_lock();
1711 /*
1712 * If parent's use_hiearchy is set, we can't make any modifications
1713 * in the child subtrees. If it is unset, then the change can
1714 * occur, provided the current cgroup has no children.
1715 *
1716 * For the root cgroup, parent_mem is NULL, we allow value to be
1717 * set if there are no children.
1718 */
1719 if ((!parent_mem || !parent_mem->use_hierarchy) &&
1720 (val == 1 || val == 0)) {
1721 if (list_empty(&cont->children))
1722 mem->use_hierarchy = val;
1723 else
1724 retval = -EBUSY;
1725 } else
1726 retval = -EINVAL;
1727 cgroup_unlock();
1728
1729 return retval;
1730 }
1731
1732 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
1733 {
1734 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1735 u64 val = 0;
1736 int type, name;
1737
1738 type = MEMFILE_TYPE(cft->private);
1739 name = MEMFILE_ATTR(cft->private);
1740 switch (type) {
1741 case _MEM:
1742 val = res_counter_read_u64(&mem->res, name);
1743 break;
1744 case _MEMSWAP:
1745 if (do_swap_account)
1746 val = res_counter_read_u64(&mem->memsw, name);
1747 break;
1748 default:
1749 BUG();
1750 break;
1751 }
1752 return val;
1753 }
1754 /*
1755 * The user of this function is...
1756 * RES_LIMIT.
1757 */
1758 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1759 const char *buffer)
1760 {
1761 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
1762 int type, name;
1763 unsigned long long val;
1764 int ret;
1765
1766 type = MEMFILE_TYPE(cft->private);
1767 name = MEMFILE_ATTR(cft->private);
1768 switch (name) {
1769 case RES_LIMIT:
1770 /* This function does all necessary parse...reuse it */
1771 ret = res_counter_memparse_write_strategy(buffer, &val);
1772 if (ret)
1773 break;
1774 if (type == _MEM)
1775 ret = mem_cgroup_resize_limit(memcg, val);
1776 else
1777 ret = mem_cgroup_resize_memsw_limit(memcg, val);
1778 break;
1779 default:
1780 ret = -EINVAL; /* should be BUG() ? */
1781 break;
1782 }
1783 return ret;
1784 }
1785
1786 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
1787 {
1788 struct mem_cgroup *mem;
1789 int type, name;
1790
1791 mem = mem_cgroup_from_cont(cont);
1792 type = MEMFILE_TYPE(event);
1793 name = MEMFILE_ATTR(event);
1794 switch (name) {
1795 case RES_MAX_USAGE:
1796 if (type == _MEM)
1797 res_counter_reset_max(&mem->res);
1798 else
1799 res_counter_reset_max(&mem->memsw);
1800 break;
1801 case RES_FAILCNT:
1802 if (type == _MEM)
1803 res_counter_reset_failcnt(&mem->res);
1804 else
1805 res_counter_reset_failcnt(&mem->memsw);
1806 break;
1807 }
1808 return 0;
1809 }
1810
1811 static const struct mem_cgroup_stat_desc {
1812 const char *msg;
1813 u64 unit;
1814 } mem_cgroup_stat_desc[] = {
1815 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
1816 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
1817 [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
1818 [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
1819 };
1820
1821 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
1822 struct cgroup_map_cb *cb)
1823 {
1824 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
1825 struct mem_cgroup_stat *stat = &mem_cont->stat;
1826 int i;
1827
1828 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
1829 s64 val;
1830
1831 val = mem_cgroup_read_stat(stat, i);
1832 val *= mem_cgroup_stat_desc[i].unit;
1833 cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
1834 }
1835 /* showing # of active pages */
1836 {
1837 unsigned long active_anon, inactive_anon;
1838 unsigned long active_file, inactive_file;
1839 unsigned long unevictable;
1840
1841 inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
1842 LRU_INACTIVE_ANON);
1843 active_anon = mem_cgroup_get_all_zonestat(mem_cont,
1844 LRU_ACTIVE_ANON);
1845 inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
1846 LRU_INACTIVE_FILE);
1847 active_file = mem_cgroup_get_all_zonestat(mem_cont,
1848 LRU_ACTIVE_FILE);
1849 unevictable = mem_cgroup_get_all_zonestat(mem_cont,
1850 LRU_UNEVICTABLE);
1851
1852 cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
1853 cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
1854 cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
1855 cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
1856 cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);
1857
1858 }
1859
1860 #ifdef CONFIG_DEBUG_VM
1861 cb->fill(cb, "inactive_ratio", mem_cont->inactive_ratio);
1862
1863 {
1864 int nid, zid;
1865 struct mem_cgroup_per_zone *mz;
1866 unsigned long recent_rotated[2] = {0, 0};
1867 unsigned long recent_scanned[2] = {0, 0};
1868
1869 for_each_online_node(nid)
1870 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1871 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1872
1873 recent_rotated[0] +=
1874 mz->reclaim_stat.recent_rotated[0];
1875 recent_rotated[1] +=
1876 mz->reclaim_stat.recent_rotated[1];
1877 recent_scanned[0] +=
1878 mz->reclaim_stat.recent_scanned[0];
1879 recent_scanned[1] +=
1880 mz->reclaim_stat.recent_scanned[1];
1881 }
1882 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
1883 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
1884 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
1885 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
1886 }
1887 #endif
1888
1889 return 0;
1890 }
1891
1892 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
1893 {
1894 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
1895
1896 return get_swappiness(memcg);
1897 }
1898
1899 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
1900 u64 val)
1901 {
1902 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
1903 struct mem_cgroup *parent;
1904 if (val > 100)
1905 return -EINVAL;
1906
1907 if (cgrp->parent == NULL)
1908 return -EINVAL;
1909
1910 parent = mem_cgroup_from_cont(cgrp->parent);
1911 /* If under hierarchy, only empty-root can set this value */
1912 if ((parent->use_hierarchy) ||
1913 (memcg->use_hierarchy && !list_empty(&cgrp->children)))
1914 return -EINVAL;
1915
1916 spin_lock(&memcg->reclaim_param_lock);
1917 memcg->swappiness = val;
1918 spin_unlock(&memcg->reclaim_param_lock);
1919
1920 return 0;
1921 }
1922
1923
1924 static struct cftype mem_cgroup_files[] = {
1925 {
1926 .name = "usage_in_bytes",
1927 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
1928 .read_u64 = mem_cgroup_read,
1929 },
1930 {
1931 .name = "max_usage_in_bytes",
1932 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
1933 .trigger = mem_cgroup_reset,
1934 .read_u64 = mem_cgroup_read,
1935 },
1936 {
1937 .name = "limit_in_bytes",
1938 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
1939 .write_string = mem_cgroup_write,
1940 .read_u64 = mem_cgroup_read,
1941 },
1942 {
1943 .name = "failcnt",
1944 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
1945 .trigger = mem_cgroup_reset,
1946 .read_u64 = mem_cgroup_read,
1947 },
1948 {
1949 .name = "stat",
1950 .read_map = mem_control_stat_show,
1951 },
1952 {
1953 .name = "force_empty",
1954 .trigger = mem_cgroup_force_empty_write,
1955 },
1956 {
1957 .name = "use_hierarchy",
1958 .write_u64 = mem_cgroup_hierarchy_write,
1959 .read_u64 = mem_cgroup_hierarchy_read,
1960 },
1961 {
1962 .name = "swappiness",
1963 .read_u64 = mem_cgroup_swappiness_read,
1964 .write_u64 = mem_cgroup_swappiness_write,
1965 },
1966 };
1967
1968 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1969 static struct cftype memsw_cgroup_files[] = {
1970 {
1971 .name = "memsw.usage_in_bytes",
1972 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
1973 .read_u64 = mem_cgroup_read,
1974 },
1975 {
1976 .name = "memsw.max_usage_in_bytes",
1977 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
1978 .trigger = mem_cgroup_reset,
1979 .read_u64 = mem_cgroup_read,
1980 },
1981 {
1982 .name = "memsw.limit_in_bytes",
1983 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
1984 .write_string = mem_cgroup_write,
1985 .read_u64 = mem_cgroup_read,
1986 },
1987 {
1988 .name = "memsw.failcnt",
1989 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
1990 .trigger = mem_cgroup_reset,
1991 .read_u64 = mem_cgroup_read,
1992 },
1993 };
1994
1995 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
1996 {
1997 if (!do_swap_account)
1998 return 0;
1999 return cgroup_add_files(cont, ss, memsw_cgroup_files,
2000 ARRAY_SIZE(memsw_cgroup_files));
2001 };
2002 #else
2003 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2004 {
2005 return 0;
2006 }
2007 #endif
2008
2009 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2010 {
2011 struct mem_cgroup_per_node *pn;
2012 struct mem_cgroup_per_zone *mz;
2013 enum lru_list l;
2014 int zone, tmp = node;
2015 /*
2016 * This routine is called against possible nodes.
2017 * But it's BUG to call kmalloc() against offline node.
2018 *
2019 * TODO: this routine can waste much memory for nodes which will
2020 * never be onlined. It's better to use memory hotplug callback
2021 * function.
2022 */
2023 if (!node_state(node, N_NORMAL_MEMORY))
2024 tmp = -1;
2025 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
2026 if (!pn)
2027 return 1;
2028
2029 mem->info.nodeinfo[node] = pn;
2030 memset(pn, 0, sizeof(*pn));
2031
2032 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2033 mz = &pn->zoneinfo[zone];
2034 for_each_lru(l)
2035 INIT_LIST_HEAD(&mz->lists[l]);
2036 }
2037 return 0;
2038 }
2039
2040 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2041 {
2042 kfree(mem->info.nodeinfo[node]);
2043 }
2044
2045 static int mem_cgroup_size(void)
2046 {
2047 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2048 return sizeof(struct mem_cgroup) + cpustat_size;
2049 }
2050
2051 static struct mem_cgroup *mem_cgroup_alloc(void)
2052 {
2053 struct mem_cgroup *mem;
2054 int size = mem_cgroup_size();
2055
2056 if (size < PAGE_SIZE)
2057 mem = kmalloc(size, GFP_KERNEL);
2058 else
2059 mem = vmalloc(size);
2060
2061 if (mem)
2062 memset(mem, 0, size);
2063 return mem;
2064 }
2065
2066 /*
2067 * At destroying mem_cgroup, references from swap_cgroup can remain.
2068 * (scanning all at force_empty is too costly...)
2069 *
2070 * Instead of clearing all references at force_empty, we remember
2071 * the number of reference from swap_cgroup and free mem_cgroup when
2072 * it goes down to 0.
2073 *
2074 * When mem_cgroup is destroyed, mem->obsolete will be set to 0 and
2075 * entry which points to this memcg will be ignore at swapin.
2076 *
2077 * Removal of cgroup itself succeeds regardless of refs from swap.
2078 */
2079
2080 static void mem_cgroup_free(struct mem_cgroup *mem)
2081 {
2082 int node;
2083
2084 if (atomic_read(&mem->refcnt) > 0)
2085 return;
2086
2087
2088 for_each_node_state(node, N_POSSIBLE)
2089 free_mem_cgroup_per_zone_info(mem, node);
2090
2091 if (mem_cgroup_size() < PAGE_SIZE)
2092 kfree(mem);
2093 else
2094 vfree(mem);
2095 }
2096
2097 static void mem_cgroup_get(struct mem_cgroup *mem)
2098 {
2099 atomic_inc(&mem->refcnt);
2100 }
2101
2102 static void mem_cgroup_put(struct mem_cgroup *mem)
2103 {
2104 if (atomic_dec_and_test(&mem->refcnt)) {
2105 if (!mem->obsolete)
2106 return;
2107 mem_cgroup_free(mem);
2108 }
2109 }
2110
2111
2112 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2113 static void __init enable_swap_cgroup(void)
2114 {
2115 if (!mem_cgroup_disabled() && really_do_swap_account)
2116 do_swap_account = 1;
2117 }
2118 #else
2119 static void __init enable_swap_cgroup(void)
2120 {
2121 }
2122 #endif
2123
2124 static struct cgroup_subsys_state *
2125 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
2126 {
2127 struct mem_cgroup *mem, *parent;
2128 int node;
2129
2130 mem = mem_cgroup_alloc();
2131 if (!mem)
2132 return ERR_PTR(-ENOMEM);
2133
2134 for_each_node_state(node, N_POSSIBLE)
2135 if (alloc_mem_cgroup_per_zone_info(mem, node))
2136 goto free_out;
2137 /* root ? */
2138 if (cont->parent == NULL) {
2139 enable_swap_cgroup();
2140 parent = NULL;
2141 } else {
2142 parent = mem_cgroup_from_cont(cont->parent);
2143 mem->use_hierarchy = parent->use_hierarchy;
2144 }
2145
2146 if (parent && parent->use_hierarchy) {
2147 res_counter_init(&mem->res, &parent->res);
2148 res_counter_init(&mem->memsw, &parent->memsw);
2149 } else {
2150 res_counter_init(&mem->res, NULL);
2151 res_counter_init(&mem->memsw, NULL);
2152 }
2153 mem_cgroup_set_inactive_ratio(mem);
2154 mem->last_scanned_child = NULL;
2155 spin_lock_init(&mem->reclaim_param_lock);
2156
2157 if (parent)
2158 mem->swappiness = get_swappiness(parent);
2159
2160 return &mem->css;
2161 free_out:
2162 for_each_node_state(node, N_POSSIBLE)
2163 free_mem_cgroup_per_zone_info(mem, node);
2164 mem_cgroup_free(mem);
2165 return ERR_PTR(-ENOMEM);
2166 }
2167
2168 static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
2169 struct cgroup *cont)
2170 {
2171 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2172 mem->obsolete = 1;
2173 mem_cgroup_force_empty(mem, false);
2174 }
2175
2176 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2177 struct cgroup *cont)
2178 {
2179 mem_cgroup_free(mem_cgroup_from_cont(cont));
2180 }
2181
2182 static int mem_cgroup_populate(struct cgroup_subsys *ss,
2183 struct cgroup *cont)
2184 {
2185 int ret;
2186
2187 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2188 ARRAY_SIZE(mem_cgroup_files));
2189
2190 if (!ret)
2191 ret = register_memsw_files(cont, ss);
2192 return ret;
2193 }
2194
2195 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2196 struct cgroup *cont,
2197 struct cgroup *old_cont,
2198 struct task_struct *p)
2199 {
2200 /*
2201 * FIXME: It's better to move charges of this process from old
2202 * memcg to new memcg. But it's just on TODO-List now.
2203 */
2204 }
2205
2206 struct cgroup_subsys mem_cgroup_subsys = {
2207 .name = "memory",
2208 .subsys_id = mem_cgroup_subsys_id,
2209 .create = mem_cgroup_create,
2210 .pre_destroy = mem_cgroup_pre_destroy,
2211 .destroy = mem_cgroup_destroy,
2212 .populate = mem_cgroup_populate,
2213 .attach = mem_cgroup_move_task,
2214 .early_init = 0,
2215 };
2216
2217 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2218
2219 static int __init disable_swap_account(char *s)
2220 {
2221 really_do_swap_account = 0;
2222 return 1;
2223 }
2224 __setup("noswapaccount", disable_swap_account);
2225 #endif
This page took 0.098797 seconds and 6 git commands to generate.