memcg: fix calculation of active_ratio
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/smp.h>
26 #include <linux/page-flags.h>
27 #include <linux/backing-dev.h>
28 #include <linux/bit_spinlock.h>
29 #include <linux/rcupdate.h>
30 #include <linux/mutex.h>
31 #include <linux/slab.h>
32 #include <linux/swap.h>
33 #include <linux/spinlock.h>
34 #include <linux/fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/vmalloc.h>
37 #include <linux/mm_inline.h>
38 #include <linux/page_cgroup.h>
39 #include "internal.h"
40
41 #include <asm/uaccess.h>
42
43 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
44 #define MEM_CGROUP_RECLAIM_RETRIES 5
45
46 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
47 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
48 int do_swap_account __read_mostly;
49 static int really_do_swap_account __initdata = 1; /* for remember boot option*/
50 #else
51 #define do_swap_account (0)
52 #endif
53
54
55 /*
56 * Statistics for memory cgroup.
57 */
58 enum mem_cgroup_stat_index {
59 /*
60 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
61 */
62 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
63 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
64 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
65 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
66
67 MEM_CGROUP_STAT_NSTATS,
68 };
69
70 struct mem_cgroup_stat_cpu {
71 s64 count[MEM_CGROUP_STAT_NSTATS];
72 } ____cacheline_aligned_in_smp;
73
74 struct mem_cgroup_stat {
75 struct mem_cgroup_stat_cpu cpustat[0];
76 };
77
78 /*
79 * For accounting under irq disable, no need for increment preempt count.
80 */
81 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
82 enum mem_cgroup_stat_index idx, int val)
83 {
84 stat->count[idx] += val;
85 }
86
87 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
88 enum mem_cgroup_stat_index idx)
89 {
90 int cpu;
91 s64 ret = 0;
92 for_each_possible_cpu(cpu)
93 ret += stat->cpustat[cpu].count[idx];
94 return ret;
95 }
96
97 /*
98 * per-zone information in memory controller.
99 */
100 struct mem_cgroup_per_zone {
101 /*
102 * spin_lock to protect the per cgroup LRU
103 */
104 struct list_head lists[NR_LRU_LISTS];
105 unsigned long count[NR_LRU_LISTS];
106
107 struct zone_reclaim_stat reclaim_stat;
108 };
109 /* Macro for accessing counter */
110 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
111
112 struct mem_cgroup_per_node {
113 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
114 };
115
116 struct mem_cgroup_lru_info {
117 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
118 };
119
120 /*
121 * The memory controller data structure. The memory controller controls both
122 * page cache and RSS per cgroup. We would eventually like to provide
123 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
124 * to help the administrator determine what knobs to tune.
125 *
126 * TODO: Add a water mark for the memory controller. Reclaim will begin when
127 * we hit the water mark. May be even add a low water mark, such that
128 * no reclaim occurs from a cgroup at it's low water mark, this is
129 * a feature that will be implemented much later in the future.
130 */
131 struct mem_cgroup {
132 struct cgroup_subsys_state css;
133 /*
134 * the counter to account for memory usage
135 */
136 struct res_counter res;
137 /*
138 * the counter to account for mem+swap usage.
139 */
140 struct res_counter memsw;
141 /*
142 * Per cgroup active and inactive list, similar to the
143 * per zone LRU lists.
144 */
145 struct mem_cgroup_lru_info info;
146
147 /*
148 protect against reclaim related member.
149 */
150 spinlock_t reclaim_param_lock;
151
152 int prev_priority; /* for recording reclaim priority */
153
154 /*
155 * While reclaiming in a hiearchy, we cache the last child we
156 * reclaimed from. Protected by cgroup_lock()
157 */
158 struct mem_cgroup *last_scanned_child;
159 /*
160 * Should the accounting and control be hierarchical, per subtree?
161 */
162 bool use_hierarchy;
163 unsigned long last_oom_jiffies;
164 int obsolete;
165 atomic_t refcnt;
166
167 unsigned int swappiness;
168
169 /*
170 * statistics. This must be placed at the end of memcg.
171 */
172 struct mem_cgroup_stat stat;
173 };
174
175 enum charge_type {
176 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
177 MEM_CGROUP_CHARGE_TYPE_MAPPED,
178 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
179 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
180 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
181 NR_CHARGE_TYPE,
182 };
183
184 /* only for here (for easy reading.) */
185 #define PCGF_CACHE (1UL << PCG_CACHE)
186 #define PCGF_USED (1UL << PCG_USED)
187 #define PCGF_LOCK (1UL << PCG_LOCK)
188 static const unsigned long
189 pcg_default_flags[NR_CHARGE_TYPE] = {
190 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
191 PCGF_USED | PCGF_LOCK, /* Anon */
192 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
193 0, /* FORCE */
194 };
195
196 /* for encoding cft->private value on file */
197 #define _MEM (0)
198 #define _MEMSWAP (1)
199 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
200 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
201 #define MEMFILE_ATTR(val) ((val) & 0xffff)
202
203 static void mem_cgroup_get(struct mem_cgroup *mem);
204 static void mem_cgroup_put(struct mem_cgroup *mem);
205
206 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
207 struct page_cgroup *pc,
208 bool charge)
209 {
210 int val = (charge)? 1 : -1;
211 struct mem_cgroup_stat *stat = &mem->stat;
212 struct mem_cgroup_stat_cpu *cpustat;
213 int cpu = get_cpu();
214
215 cpustat = &stat->cpustat[cpu];
216 if (PageCgroupCache(pc))
217 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
218 else
219 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
220
221 if (charge)
222 __mem_cgroup_stat_add_safe(cpustat,
223 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
224 else
225 __mem_cgroup_stat_add_safe(cpustat,
226 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
227 put_cpu();
228 }
229
230 static struct mem_cgroup_per_zone *
231 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
232 {
233 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
234 }
235
236 static struct mem_cgroup_per_zone *
237 page_cgroup_zoneinfo(struct page_cgroup *pc)
238 {
239 struct mem_cgroup *mem = pc->mem_cgroup;
240 int nid = page_cgroup_nid(pc);
241 int zid = page_cgroup_zid(pc);
242
243 if (!mem)
244 return NULL;
245
246 return mem_cgroup_zoneinfo(mem, nid, zid);
247 }
248
249 static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
250 enum lru_list idx)
251 {
252 int nid, zid;
253 struct mem_cgroup_per_zone *mz;
254 u64 total = 0;
255
256 for_each_online_node(nid)
257 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
258 mz = mem_cgroup_zoneinfo(mem, nid, zid);
259 total += MEM_CGROUP_ZSTAT(mz, idx);
260 }
261 return total;
262 }
263
264 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
265 {
266 return container_of(cgroup_subsys_state(cont,
267 mem_cgroup_subsys_id), struct mem_cgroup,
268 css);
269 }
270
271 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
272 {
273 /*
274 * mm_update_next_owner() may clear mm->owner to NULL
275 * if it races with swapoff, page migration, etc.
276 * So this can be called with p == NULL.
277 */
278 if (unlikely(!p))
279 return NULL;
280
281 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
282 struct mem_cgroup, css);
283 }
284
285 /*
286 * Following LRU functions are allowed to be used without PCG_LOCK.
287 * Operations are called by routine of global LRU independently from memcg.
288 * What we have to take care of here is validness of pc->mem_cgroup.
289 *
290 * Changes to pc->mem_cgroup happens when
291 * 1. charge
292 * 2. moving account
293 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
294 * It is added to LRU before charge.
295 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
296 * When moving account, the page is not on LRU. It's isolated.
297 */
298
299 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
300 {
301 struct page_cgroup *pc;
302 struct mem_cgroup *mem;
303 struct mem_cgroup_per_zone *mz;
304
305 if (mem_cgroup_disabled())
306 return;
307 pc = lookup_page_cgroup(page);
308 /* can happen while we handle swapcache. */
309 if (list_empty(&pc->lru))
310 return;
311 mz = page_cgroup_zoneinfo(pc);
312 mem = pc->mem_cgroup;
313 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
314 list_del_init(&pc->lru);
315 return;
316 }
317
318 void mem_cgroup_del_lru(struct page *page)
319 {
320 mem_cgroup_del_lru_list(page, page_lru(page));
321 }
322
323 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
324 {
325 struct mem_cgroup_per_zone *mz;
326 struct page_cgroup *pc;
327
328 if (mem_cgroup_disabled())
329 return;
330
331 pc = lookup_page_cgroup(page);
332 smp_rmb();
333 /* unused page is not rotated. */
334 if (!PageCgroupUsed(pc))
335 return;
336 mz = page_cgroup_zoneinfo(pc);
337 list_move(&pc->lru, &mz->lists[lru]);
338 }
339
340 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
341 {
342 struct page_cgroup *pc;
343 struct mem_cgroup_per_zone *mz;
344
345 if (mem_cgroup_disabled())
346 return;
347 pc = lookup_page_cgroup(page);
348 /* barrier to sync with "charge" */
349 smp_rmb();
350 if (!PageCgroupUsed(pc))
351 return;
352
353 mz = page_cgroup_zoneinfo(pc);
354 MEM_CGROUP_ZSTAT(mz, lru) += 1;
355 list_add(&pc->lru, &mz->lists[lru]);
356 }
357 /*
358 * To add swapcache into LRU. Be careful to all this function.
359 * zone->lru_lock shouldn't be held and irq must not be disabled.
360 */
361 static void mem_cgroup_lru_fixup(struct page *page)
362 {
363 if (!isolate_lru_page(page))
364 putback_lru_page(page);
365 }
366
367 void mem_cgroup_move_lists(struct page *page,
368 enum lru_list from, enum lru_list to)
369 {
370 if (mem_cgroup_disabled())
371 return;
372 mem_cgroup_del_lru_list(page, from);
373 mem_cgroup_add_lru_list(page, to);
374 }
375
376 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
377 {
378 int ret;
379
380 task_lock(task);
381 ret = task->mm && mm_match_cgroup(task->mm, mem);
382 task_unlock(task);
383 return ret;
384 }
385
386 /*
387 * Calculate mapped_ratio under memory controller. This will be used in
388 * vmscan.c for deteremining we have to reclaim mapped pages.
389 */
390 int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
391 {
392 long total, rss;
393
394 /*
395 * usage is recorded in bytes. But, here, we assume the number of
396 * physical pages can be represented by "long" on any arch.
397 */
398 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
399 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
400 return (int)((rss * 100L) / total);
401 }
402
403 /*
404 * prev_priority control...this will be used in memory reclaim path.
405 */
406 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
407 {
408 int prev_priority;
409
410 spin_lock(&mem->reclaim_param_lock);
411 prev_priority = mem->prev_priority;
412 spin_unlock(&mem->reclaim_param_lock);
413
414 return prev_priority;
415 }
416
417 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
418 {
419 spin_lock(&mem->reclaim_param_lock);
420 if (priority < mem->prev_priority)
421 mem->prev_priority = priority;
422 spin_unlock(&mem->reclaim_param_lock);
423 }
424
425 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
426 {
427 spin_lock(&mem->reclaim_param_lock);
428 mem->prev_priority = priority;
429 spin_unlock(&mem->reclaim_param_lock);
430 }
431
432 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
433 {
434 unsigned long active;
435 unsigned long inactive;
436 unsigned long gb;
437 unsigned long inactive_ratio;
438
439 inactive = mem_cgroup_get_all_zonestat(memcg, LRU_INACTIVE_ANON);
440 active = mem_cgroup_get_all_zonestat(memcg, LRU_ACTIVE_ANON);
441
442 gb = (inactive + active) >> (30 - PAGE_SHIFT);
443 if (gb)
444 inactive_ratio = int_sqrt(10 * gb);
445 else
446 inactive_ratio = 1;
447
448 if (present_pages) {
449 present_pages[0] = inactive;
450 present_pages[1] = active;
451 }
452
453 return inactive_ratio;
454 }
455
456 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
457 {
458 unsigned long active;
459 unsigned long inactive;
460 unsigned long present_pages[2];
461 unsigned long inactive_ratio;
462
463 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
464
465 inactive = present_pages[0];
466 active = present_pages[1];
467
468 if (inactive * inactive_ratio < active)
469 return 1;
470
471 return 0;
472 }
473
474 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
475 struct zone *zone,
476 enum lru_list lru)
477 {
478 int nid = zone->zone_pgdat->node_id;
479 int zid = zone_idx(zone);
480 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
481
482 return MEM_CGROUP_ZSTAT(mz, lru);
483 }
484
485 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
486 struct zone *zone)
487 {
488 int nid = zone->zone_pgdat->node_id;
489 int zid = zone_idx(zone);
490 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
491
492 return &mz->reclaim_stat;
493 }
494
495 struct zone_reclaim_stat *
496 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
497 {
498 struct page_cgroup *pc;
499 struct mem_cgroup_per_zone *mz;
500
501 if (mem_cgroup_disabled())
502 return NULL;
503
504 pc = lookup_page_cgroup(page);
505 mz = page_cgroup_zoneinfo(pc);
506 if (!mz)
507 return NULL;
508
509 return &mz->reclaim_stat;
510 }
511
512 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
513 struct list_head *dst,
514 unsigned long *scanned, int order,
515 int mode, struct zone *z,
516 struct mem_cgroup *mem_cont,
517 int active, int file)
518 {
519 unsigned long nr_taken = 0;
520 struct page *page;
521 unsigned long scan;
522 LIST_HEAD(pc_list);
523 struct list_head *src;
524 struct page_cgroup *pc, *tmp;
525 int nid = z->zone_pgdat->node_id;
526 int zid = zone_idx(z);
527 struct mem_cgroup_per_zone *mz;
528 int lru = LRU_FILE * !!file + !!active;
529
530 BUG_ON(!mem_cont);
531 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
532 src = &mz->lists[lru];
533
534 scan = 0;
535 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
536 if (scan >= nr_to_scan)
537 break;
538
539 page = pc->page;
540 if (unlikely(!PageCgroupUsed(pc)))
541 continue;
542 if (unlikely(!PageLRU(page)))
543 continue;
544
545 scan++;
546 if (__isolate_lru_page(page, mode, file) == 0) {
547 list_move(&page->lru, dst);
548 nr_taken++;
549 }
550 }
551
552 *scanned = scan;
553 return nr_taken;
554 }
555
556 #define mem_cgroup_from_res_counter(counter, member) \
557 container_of(counter, struct mem_cgroup, member)
558
559 /*
560 * This routine finds the DFS walk successor. This routine should be
561 * called with cgroup_mutex held
562 */
563 static struct mem_cgroup *
564 mem_cgroup_get_next_node(struct mem_cgroup *curr, struct mem_cgroup *root_mem)
565 {
566 struct cgroup *cgroup, *curr_cgroup, *root_cgroup;
567
568 curr_cgroup = curr->css.cgroup;
569 root_cgroup = root_mem->css.cgroup;
570
571 if (!list_empty(&curr_cgroup->children)) {
572 /*
573 * Walk down to children
574 */
575 mem_cgroup_put(curr);
576 cgroup = list_entry(curr_cgroup->children.next,
577 struct cgroup, sibling);
578 curr = mem_cgroup_from_cont(cgroup);
579 mem_cgroup_get(curr);
580 goto done;
581 }
582
583 visit_parent:
584 if (curr_cgroup == root_cgroup) {
585 mem_cgroup_put(curr);
586 curr = root_mem;
587 mem_cgroup_get(curr);
588 goto done;
589 }
590
591 /*
592 * Goto next sibling
593 */
594 if (curr_cgroup->sibling.next != &curr_cgroup->parent->children) {
595 mem_cgroup_put(curr);
596 cgroup = list_entry(curr_cgroup->sibling.next, struct cgroup,
597 sibling);
598 curr = mem_cgroup_from_cont(cgroup);
599 mem_cgroup_get(curr);
600 goto done;
601 }
602
603 /*
604 * Go up to next parent and next parent's sibling if need be
605 */
606 curr_cgroup = curr_cgroup->parent;
607 goto visit_parent;
608
609 done:
610 root_mem->last_scanned_child = curr;
611 return curr;
612 }
613
614 /*
615 * Visit the first child (need not be the first child as per the ordering
616 * of the cgroup list, since we track last_scanned_child) of @mem and use
617 * that to reclaim free pages from.
618 */
619 static struct mem_cgroup *
620 mem_cgroup_get_first_node(struct mem_cgroup *root_mem)
621 {
622 struct cgroup *cgroup;
623 struct mem_cgroup *ret;
624 bool obsolete = (root_mem->last_scanned_child &&
625 root_mem->last_scanned_child->obsolete);
626
627 /*
628 * Scan all children under the mem_cgroup mem
629 */
630 cgroup_lock();
631 if (list_empty(&root_mem->css.cgroup->children)) {
632 ret = root_mem;
633 goto done;
634 }
635
636 if (!root_mem->last_scanned_child || obsolete) {
637
638 if (obsolete)
639 mem_cgroup_put(root_mem->last_scanned_child);
640
641 cgroup = list_first_entry(&root_mem->css.cgroup->children,
642 struct cgroup, sibling);
643 ret = mem_cgroup_from_cont(cgroup);
644 mem_cgroup_get(ret);
645 } else
646 ret = mem_cgroup_get_next_node(root_mem->last_scanned_child,
647 root_mem);
648
649 done:
650 root_mem->last_scanned_child = ret;
651 cgroup_unlock();
652 return ret;
653 }
654
655 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
656 {
657 if (do_swap_account) {
658 if (res_counter_check_under_limit(&mem->res) &&
659 res_counter_check_under_limit(&mem->memsw))
660 return true;
661 } else
662 if (res_counter_check_under_limit(&mem->res))
663 return true;
664 return false;
665 }
666
667 static unsigned int get_swappiness(struct mem_cgroup *memcg)
668 {
669 struct cgroup *cgrp = memcg->css.cgroup;
670 unsigned int swappiness;
671
672 /* root ? */
673 if (cgrp->parent == NULL)
674 return vm_swappiness;
675
676 spin_lock(&memcg->reclaim_param_lock);
677 swappiness = memcg->swappiness;
678 spin_unlock(&memcg->reclaim_param_lock);
679
680 return swappiness;
681 }
682
683 /*
684 * Dance down the hierarchy if needed to reclaim memory. We remember the
685 * last child we reclaimed from, so that we don't end up penalizing
686 * one child extensively based on its position in the children list.
687 *
688 * root_mem is the original ancestor that we've been reclaim from.
689 */
690 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
691 gfp_t gfp_mask, bool noswap)
692 {
693 struct mem_cgroup *next_mem;
694 int ret = 0;
695
696 /*
697 * Reclaim unconditionally and don't check for return value.
698 * We need to reclaim in the current group and down the tree.
699 * One might think about checking for children before reclaiming,
700 * but there might be left over accounting, even after children
701 * have left.
702 */
703 ret = try_to_free_mem_cgroup_pages(root_mem, gfp_mask, noswap,
704 get_swappiness(root_mem));
705 if (mem_cgroup_check_under_limit(root_mem))
706 return 0;
707 if (!root_mem->use_hierarchy)
708 return ret;
709
710 next_mem = mem_cgroup_get_first_node(root_mem);
711
712 while (next_mem != root_mem) {
713 if (next_mem->obsolete) {
714 mem_cgroup_put(next_mem);
715 cgroup_lock();
716 next_mem = mem_cgroup_get_first_node(root_mem);
717 cgroup_unlock();
718 continue;
719 }
720 ret = try_to_free_mem_cgroup_pages(next_mem, gfp_mask, noswap,
721 get_swappiness(next_mem));
722 if (mem_cgroup_check_under_limit(root_mem))
723 return 0;
724 cgroup_lock();
725 next_mem = mem_cgroup_get_next_node(next_mem, root_mem);
726 cgroup_unlock();
727 }
728 return ret;
729 }
730
731 bool mem_cgroup_oom_called(struct task_struct *task)
732 {
733 bool ret = false;
734 struct mem_cgroup *mem;
735 struct mm_struct *mm;
736
737 rcu_read_lock();
738 mm = task->mm;
739 if (!mm)
740 mm = &init_mm;
741 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
742 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
743 ret = true;
744 rcu_read_unlock();
745 return ret;
746 }
747 /*
748 * Unlike exported interface, "oom" parameter is added. if oom==true,
749 * oom-killer can be invoked.
750 */
751 static int __mem_cgroup_try_charge(struct mm_struct *mm,
752 gfp_t gfp_mask, struct mem_cgroup **memcg,
753 bool oom)
754 {
755 struct mem_cgroup *mem, *mem_over_limit;
756 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
757 struct res_counter *fail_res;
758
759 if (unlikely(test_thread_flag(TIF_MEMDIE))) {
760 /* Don't account this! */
761 *memcg = NULL;
762 return 0;
763 }
764
765 /*
766 * We always charge the cgroup the mm_struct belongs to.
767 * The mm_struct's mem_cgroup changes on task migration if the
768 * thread group leader migrates. It's possible that mm is not
769 * set, if so charge the init_mm (happens for pagecache usage).
770 */
771 if (likely(!*memcg)) {
772 rcu_read_lock();
773 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
774 if (unlikely(!mem)) {
775 rcu_read_unlock();
776 return 0;
777 }
778 /*
779 * For every charge from the cgroup, increment reference count
780 */
781 css_get(&mem->css);
782 *memcg = mem;
783 rcu_read_unlock();
784 } else {
785 mem = *memcg;
786 css_get(&mem->css);
787 }
788
789 while (1) {
790 int ret;
791 bool noswap = false;
792
793 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
794 if (likely(!ret)) {
795 if (!do_swap_account)
796 break;
797 ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
798 &fail_res);
799 if (likely(!ret))
800 break;
801 /* mem+swap counter fails */
802 res_counter_uncharge(&mem->res, PAGE_SIZE);
803 noswap = true;
804 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
805 memsw);
806 } else
807 /* mem counter fails */
808 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
809 res);
810
811 if (!(gfp_mask & __GFP_WAIT))
812 goto nomem;
813
814 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
815 noswap);
816
817 /*
818 * try_to_free_mem_cgroup_pages() might not give us a full
819 * picture of reclaim. Some pages are reclaimed and might be
820 * moved to swap cache or just unmapped from the cgroup.
821 * Check the limit again to see if the reclaim reduced the
822 * current usage of the cgroup before giving up
823 *
824 */
825 if (mem_cgroup_check_under_limit(mem_over_limit))
826 continue;
827
828 if (!nr_retries--) {
829 if (oom) {
830 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
831 mem_over_limit->last_oom_jiffies = jiffies;
832 }
833 goto nomem;
834 }
835 }
836 return 0;
837 nomem:
838 css_put(&mem->css);
839 return -ENOMEM;
840 }
841
842 /**
843 * mem_cgroup_try_charge - get charge of PAGE_SIZE.
844 * @mm: an mm_struct which is charged against. (when *memcg is NULL)
845 * @gfp_mask: gfp_mask for reclaim.
846 * @memcg: a pointer to memory cgroup which is charged against.
847 *
848 * charge against memory cgroup pointed by *memcg. if *memcg == NULL, estimated
849 * memory cgroup from @mm is got and stored in *memcg.
850 *
851 * Returns 0 if success. -ENOMEM at failure.
852 * This call can invoke OOM-Killer.
853 */
854
855 int mem_cgroup_try_charge(struct mm_struct *mm,
856 gfp_t mask, struct mem_cgroup **memcg)
857 {
858 return __mem_cgroup_try_charge(mm, mask, memcg, true);
859 }
860
861 /*
862 * commit a charge got by mem_cgroup_try_charge() and makes page_cgroup to be
863 * USED state. If already USED, uncharge and return.
864 */
865
866 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
867 struct page_cgroup *pc,
868 enum charge_type ctype)
869 {
870 /* try_charge() can return NULL to *memcg, taking care of it. */
871 if (!mem)
872 return;
873
874 lock_page_cgroup(pc);
875 if (unlikely(PageCgroupUsed(pc))) {
876 unlock_page_cgroup(pc);
877 res_counter_uncharge(&mem->res, PAGE_SIZE);
878 if (do_swap_account)
879 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
880 css_put(&mem->css);
881 return;
882 }
883 pc->mem_cgroup = mem;
884 smp_wmb();
885 pc->flags = pcg_default_flags[ctype];
886
887 mem_cgroup_charge_statistics(mem, pc, true);
888
889 unlock_page_cgroup(pc);
890 }
891
892 /**
893 * mem_cgroup_move_account - move account of the page
894 * @pc: page_cgroup of the page.
895 * @from: mem_cgroup which the page is moved from.
896 * @to: mem_cgroup which the page is moved to. @from != @to.
897 *
898 * The caller must confirm following.
899 * - page is not on LRU (isolate_page() is useful.)
900 *
901 * returns 0 at success,
902 * returns -EBUSY when lock is busy or "pc" is unstable.
903 *
904 * This function does "uncharge" from old cgroup but doesn't do "charge" to
905 * new cgroup. It should be done by a caller.
906 */
907
908 static int mem_cgroup_move_account(struct page_cgroup *pc,
909 struct mem_cgroup *from, struct mem_cgroup *to)
910 {
911 struct mem_cgroup_per_zone *from_mz, *to_mz;
912 int nid, zid;
913 int ret = -EBUSY;
914
915 VM_BUG_ON(from == to);
916 VM_BUG_ON(PageLRU(pc->page));
917
918 nid = page_cgroup_nid(pc);
919 zid = page_cgroup_zid(pc);
920 from_mz = mem_cgroup_zoneinfo(from, nid, zid);
921 to_mz = mem_cgroup_zoneinfo(to, nid, zid);
922
923 if (!trylock_page_cgroup(pc))
924 return ret;
925
926 if (!PageCgroupUsed(pc))
927 goto out;
928
929 if (pc->mem_cgroup != from)
930 goto out;
931
932 css_put(&from->css);
933 res_counter_uncharge(&from->res, PAGE_SIZE);
934 mem_cgroup_charge_statistics(from, pc, false);
935 if (do_swap_account)
936 res_counter_uncharge(&from->memsw, PAGE_SIZE);
937 pc->mem_cgroup = to;
938 mem_cgroup_charge_statistics(to, pc, true);
939 css_get(&to->css);
940 ret = 0;
941 out:
942 unlock_page_cgroup(pc);
943 return ret;
944 }
945
946 /*
947 * move charges to its parent.
948 */
949
950 static int mem_cgroup_move_parent(struct page_cgroup *pc,
951 struct mem_cgroup *child,
952 gfp_t gfp_mask)
953 {
954 struct page *page = pc->page;
955 struct cgroup *cg = child->css.cgroup;
956 struct cgroup *pcg = cg->parent;
957 struct mem_cgroup *parent;
958 int ret;
959
960 /* Is ROOT ? */
961 if (!pcg)
962 return -EINVAL;
963
964
965 parent = mem_cgroup_from_cont(pcg);
966
967
968 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
969 if (ret || !parent)
970 return ret;
971
972 if (!get_page_unless_zero(page))
973 return -EBUSY;
974
975 ret = isolate_lru_page(page);
976
977 if (ret)
978 goto cancel;
979
980 ret = mem_cgroup_move_account(pc, child, parent);
981
982 /* drop extra refcnt by try_charge() (move_account increment one) */
983 css_put(&parent->css);
984 putback_lru_page(page);
985 if (!ret) {
986 put_page(page);
987 return 0;
988 }
989 /* uncharge if move fails */
990 cancel:
991 res_counter_uncharge(&parent->res, PAGE_SIZE);
992 if (do_swap_account)
993 res_counter_uncharge(&parent->memsw, PAGE_SIZE);
994 put_page(page);
995 return ret;
996 }
997
998 /*
999 * Charge the memory controller for page usage.
1000 * Return
1001 * 0 if the charge was successful
1002 * < 0 if the cgroup is over its limit
1003 */
1004 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1005 gfp_t gfp_mask, enum charge_type ctype,
1006 struct mem_cgroup *memcg)
1007 {
1008 struct mem_cgroup *mem;
1009 struct page_cgroup *pc;
1010 int ret;
1011
1012 pc = lookup_page_cgroup(page);
1013 /* can happen at boot */
1014 if (unlikely(!pc))
1015 return 0;
1016 prefetchw(pc);
1017
1018 mem = memcg;
1019 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1020 if (ret || !mem)
1021 return ret;
1022
1023 __mem_cgroup_commit_charge(mem, pc, ctype);
1024 return 0;
1025 }
1026
1027 int mem_cgroup_newpage_charge(struct page *page,
1028 struct mm_struct *mm, gfp_t gfp_mask)
1029 {
1030 if (mem_cgroup_disabled())
1031 return 0;
1032 if (PageCompound(page))
1033 return 0;
1034 /*
1035 * If already mapped, we don't have to account.
1036 * If page cache, page->mapping has address_space.
1037 * But page->mapping may have out-of-use anon_vma pointer,
1038 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1039 * is NULL.
1040 */
1041 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1042 return 0;
1043 if (unlikely(!mm))
1044 mm = &init_mm;
1045 return mem_cgroup_charge_common(page, mm, gfp_mask,
1046 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1047 }
1048
1049 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1050 gfp_t gfp_mask)
1051 {
1052 if (mem_cgroup_disabled())
1053 return 0;
1054 if (PageCompound(page))
1055 return 0;
1056 /*
1057 * Corner case handling. This is called from add_to_page_cache()
1058 * in usual. But some FS (shmem) precharges this page before calling it
1059 * and call add_to_page_cache() with GFP_NOWAIT.
1060 *
1061 * For GFP_NOWAIT case, the page may be pre-charged before calling
1062 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1063 * charge twice. (It works but has to pay a bit larger cost.)
1064 */
1065 if (!(gfp_mask & __GFP_WAIT)) {
1066 struct page_cgroup *pc;
1067
1068
1069 pc = lookup_page_cgroup(page);
1070 if (!pc)
1071 return 0;
1072 lock_page_cgroup(pc);
1073 if (PageCgroupUsed(pc)) {
1074 unlock_page_cgroup(pc);
1075 return 0;
1076 }
1077 unlock_page_cgroup(pc);
1078 }
1079
1080 if (unlikely(!mm))
1081 mm = &init_mm;
1082
1083 if (page_is_file_cache(page))
1084 return mem_cgroup_charge_common(page, mm, gfp_mask,
1085 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1086 else
1087 return mem_cgroup_charge_common(page, mm, gfp_mask,
1088 MEM_CGROUP_CHARGE_TYPE_SHMEM, NULL);
1089 }
1090
1091 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1092 struct page *page,
1093 gfp_t mask, struct mem_cgroup **ptr)
1094 {
1095 struct mem_cgroup *mem;
1096 swp_entry_t ent;
1097
1098 if (mem_cgroup_disabled())
1099 return 0;
1100
1101 if (!do_swap_account)
1102 goto charge_cur_mm;
1103
1104 /*
1105 * A racing thread's fault, or swapoff, may have already updated
1106 * the pte, and even removed page from swap cache: return success
1107 * to go on to do_swap_page()'s pte_same() test, which should fail.
1108 */
1109 if (!PageSwapCache(page))
1110 return 0;
1111
1112 ent.val = page_private(page);
1113
1114 mem = lookup_swap_cgroup(ent);
1115 if (!mem || mem->obsolete)
1116 goto charge_cur_mm;
1117 *ptr = mem;
1118 return __mem_cgroup_try_charge(NULL, mask, ptr, true);
1119 charge_cur_mm:
1120 if (unlikely(!mm))
1121 mm = &init_mm;
1122 return __mem_cgroup_try_charge(mm, mask, ptr, true);
1123 }
1124
1125 #ifdef CONFIG_SWAP
1126
1127 int mem_cgroup_cache_charge_swapin(struct page *page,
1128 struct mm_struct *mm, gfp_t mask, bool locked)
1129 {
1130 int ret = 0;
1131
1132 if (mem_cgroup_disabled())
1133 return 0;
1134 if (unlikely(!mm))
1135 mm = &init_mm;
1136 if (!locked)
1137 lock_page(page);
1138 /*
1139 * If not locked, the page can be dropped from SwapCache until
1140 * we reach here.
1141 */
1142 if (PageSwapCache(page)) {
1143 struct mem_cgroup *mem = NULL;
1144 swp_entry_t ent;
1145
1146 ent.val = page_private(page);
1147 if (do_swap_account) {
1148 mem = lookup_swap_cgroup(ent);
1149 if (mem && mem->obsolete)
1150 mem = NULL;
1151 if (mem)
1152 mm = NULL;
1153 }
1154 ret = mem_cgroup_charge_common(page, mm, mask,
1155 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1156
1157 if (!ret && do_swap_account) {
1158 /* avoid double counting */
1159 mem = swap_cgroup_record(ent, NULL);
1160 if (mem) {
1161 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1162 mem_cgroup_put(mem);
1163 }
1164 }
1165 }
1166 if (!locked)
1167 unlock_page(page);
1168 /* add this page(page_cgroup) to the LRU we want. */
1169 mem_cgroup_lru_fixup(page);
1170
1171 return ret;
1172 }
1173 #endif
1174
1175 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1176 {
1177 struct page_cgroup *pc;
1178
1179 if (mem_cgroup_disabled())
1180 return;
1181 if (!ptr)
1182 return;
1183 pc = lookup_page_cgroup(page);
1184 __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1185 /*
1186 * Now swap is on-memory. This means this page may be
1187 * counted both as mem and swap....double count.
1188 * Fix it by uncharging from memsw. This SwapCache is stable
1189 * because we're still under lock_page().
1190 */
1191 if (do_swap_account) {
1192 swp_entry_t ent = {.val = page_private(page)};
1193 struct mem_cgroup *memcg;
1194 memcg = swap_cgroup_record(ent, NULL);
1195 if (memcg) {
1196 /* If memcg is obsolete, memcg can be != ptr */
1197 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1198 mem_cgroup_put(memcg);
1199 }
1200
1201 }
1202 /* add this page(page_cgroup) to the LRU we want. */
1203 mem_cgroup_lru_fixup(page);
1204 }
1205
1206 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1207 {
1208 if (mem_cgroup_disabled())
1209 return;
1210 if (!mem)
1211 return;
1212 res_counter_uncharge(&mem->res, PAGE_SIZE);
1213 if (do_swap_account)
1214 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1215 css_put(&mem->css);
1216 }
1217
1218
1219 /*
1220 * uncharge if !page_mapped(page)
1221 */
1222 static struct mem_cgroup *
1223 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1224 {
1225 struct page_cgroup *pc;
1226 struct mem_cgroup *mem = NULL;
1227 struct mem_cgroup_per_zone *mz;
1228
1229 if (mem_cgroup_disabled())
1230 return NULL;
1231
1232 if (PageSwapCache(page))
1233 return NULL;
1234
1235 /*
1236 * Check if our page_cgroup is valid
1237 */
1238 pc = lookup_page_cgroup(page);
1239 if (unlikely(!pc || !PageCgroupUsed(pc)))
1240 return NULL;
1241
1242 lock_page_cgroup(pc);
1243
1244 mem = pc->mem_cgroup;
1245
1246 if (!PageCgroupUsed(pc))
1247 goto unlock_out;
1248
1249 switch (ctype) {
1250 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1251 if (page_mapped(page))
1252 goto unlock_out;
1253 break;
1254 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1255 if (!PageAnon(page)) { /* Shared memory */
1256 if (page->mapping && !page_is_file_cache(page))
1257 goto unlock_out;
1258 } else if (page_mapped(page)) /* Anon */
1259 goto unlock_out;
1260 break;
1261 default:
1262 break;
1263 }
1264
1265 res_counter_uncharge(&mem->res, PAGE_SIZE);
1266 if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1267 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1268
1269 mem_cgroup_charge_statistics(mem, pc, false);
1270 ClearPageCgroupUsed(pc);
1271
1272 mz = page_cgroup_zoneinfo(pc);
1273 unlock_page_cgroup(pc);
1274
1275 /* at swapout, this memcg will be accessed to record to swap */
1276 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1277 css_put(&mem->css);
1278
1279 return mem;
1280
1281 unlock_out:
1282 unlock_page_cgroup(pc);
1283 return NULL;
1284 }
1285
1286 void mem_cgroup_uncharge_page(struct page *page)
1287 {
1288 /* early check. */
1289 if (page_mapped(page))
1290 return;
1291 if (page->mapping && !PageAnon(page))
1292 return;
1293 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1294 }
1295
1296 void mem_cgroup_uncharge_cache_page(struct page *page)
1297 {
1298 VM_BUG_ON(page_mapped(page));
1299 VM_BUG_ON(page->mapping);
1300 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1301 }
1302
1303 /*
1304 * called from __delete_from_swap_cache() and drop "page" account.
1305 * memcg information is recorded to swap_cgroup of "ent"
1306 */
1307 void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
1308 {
1309 struct mem_cgroup *memcg;
1310
1311 memcg = __mem_cgroup_uncharge_common(page,
1312 MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
1313 /* record memcg information */
1314 if (do_swap_account && memcg) {
1315 swap_cgroup_record(ent, memcg);
1316 mem_cgroup_get(memcg);
1317 }
1318 if (memcg)
1319 css_put(&memcg->css);
1320 }
1321
1322 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1323 /*
1324 * called from swap_entry_free(). remove record in swap_cgroup and
1325 * uncharge "memsw" account.
1326 */
1327 void mem_cgroup_uncharge_swap(swp_entry_t ent)
1328 {
1329 struct mem_cgroup *memcg;
1330
1331 if (!do_swap_account)
1332 return;
1333
1334 memcg = swap_cgroup_record(ent, NULL);
1335 if (memcg) {
1336 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1337 mem_cgroup_put(memcg);
1338 }
1339 }
1340 #endif
1341
1342 /*
1343 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1344 * page belongs to.
1345 */
1346 int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
1347 {
1348 struct page_cgroup *pc;
1349 struct mem_cgroup *mem = NULL;
1350 int ret = 0;
1351
1352 if (mem_cgroup_disabled())
1353 return 0;
1354
1355 pc = lookup_page_cgroup(page);
1356 lock_page_cgroup(pc);
1357 if (PageCgroupUsed(pc)) {
1358 mem = pc->mem_cgroup;
1359 css_get(&mem->css);
1360 }
1361 unlock_page_cgroup(pc);
1362
1363 if (mem) {
1364 ret = mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem);
1365 css_put(&mem->css);
1366 }
1367 *ptr = mem;
1368 return ret;
1369 }
1370
1371 /* remove redundant charge if migration failed*/
1372 void mem_cgroup_end_migration(struct mem_cgroup *mem,
1373 struct page *oldpage, struct page *newpage)
1374 {
1375 struct page *target, *unused;
1376 struct page_cgroup *pc;
1377 enum charge_type ctype;
1378
1379 if (!mem)
1380 return;
1381
1382 /* at migration success, oldpage->mapping is NULL. */
1383 if (oldpage->mapping) {
1384 target = oldpage;
1385 unused = NULL;
1386 } else {
1387 target = newpage;
1388 unused = oldpage;
1389 }
1390
1391 if (PageAnon(target))
1392 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1393 else if (page_is_file_cache(target))
1394 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1395 else
1396 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1397
1398 /* unused page is not on radix-tree now. */
1399 if (unused)
1400 __mem_cgroup_uncharge_common(unused, ctype);
1401
1402 pc = lookup_page_cgroup(target);
1403 /*
1404 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1405 * So, double-counting is effectively avoided.
1406 */
1407 __mem_cgroup_commit_charge(mem, pc, ctype);
1408
1409 /*
1410 * Both of oldpage and newpage are still under lock_page().
1411 * Then, we don't have to care about race in radix-tree.
1412 * But we have to be careful that this page is unmapped or not.
1413 *
1414 * There is a case for !page_mapped(). At the start of
1415 * migration, oldpage was mapped. But now, it's zapped.
1416 * But we know *target* page is not freed/reused under us.
1417 * mem_cgroup_uncharge_page() does all necessary checks.
1418 */
1419 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1420 mem_cgroup_uncharge_page(target);
1421 }
1422
1423 /*
1424 * A call to try to shrink memory usage under specified resource controller.
1425 * This is typically used for page reclaiming for shmem for reducing side
1426 * effect of page allocation from shmem, which is used by some mem_cgroup.
1427 */
1428 int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask)
1429 {
1430 struct mem_cgroup *mem;
1431 int progress = 0;
1432 int retry = MEM_CGROUP_RECLAIM_RETRIES;
1433
1434 if (mem_cgroup_disabled())
1435 return 0;
1436 if (!mm)
1437 return 0;
1438
1439 rcu_read_lock();
1440 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
1441 if (unlikely(!mem)) {
1442 rcu_read_unlock();
1443 return 0;
1444 }
1445 css_get(&mem->css);
1446 rcu_read_unlock();
1447
1448 do {
1449 progress = try_to_free_mem_cgroup_pages(mem, gfp_mask, true,
1450 get_swappiness(mem));
1451 progress += mem_cgroup_check_under_limit(mem);
1452 } while (!progress && --retry);
1453
1454 css_put(&mem->css);
1455 if (!retry)
1456 return -ENOMEM;
1457 return 0;
1458 }
1459
1460 static DEFINE_MUTEX(set_limit_mutex);
1461
1462 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
1463 unsigned long long val)
1464 {
1465
1466 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1467 int progress;
1468 u64 memswlimit;
1469 int ret = 0;
1470
1471 while (retry_count) {
1472 if (signal_pending(current)) {
1473 ret = -EINTR;
1474 break;
1475 }
1476 /*
1477 * Rather than hide all in some function, I do this in
1478 * open coded manner. You see what this really does.
1479 * We have to guarantee mem->res.limit < mem->memsw.limit.
1480 */
1481 mutex_lock(&set_limit_mutex);
1482 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1483 if (memswlimit < val) {
1484 ret = -EINVAL;
1485 mutex_unlock(&set_limit_mutex);
1486 break;
1487 }
1488 ret = res_counter_set_limit(&memcg->res, val);
1489 mutex_unlock(&set_limit_mutex);
1490
1491 if (!ret)
1492 break;
1493
1494 progress = try_to_free_mem_cgroup_pages(memcg,
1495 GFP_KERNEL,
1496 false,
1497 get_swappiness(memcg));
1498 if (!progress) retry_count--;
1499 }
1500
1501 return ret;
1502 }
1503
1504 int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1505 unsigned long long val)
1506 {
1507 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1508 u64 memlimit, oldusage, curusage;
1509 int ret;
1510
1511 if (!do_swap_account)
1512 return -EINVAL;
1513
1514 while (retry_count) {
1515 if (signal_pending(current)) {
1516 ret = -EINTR;
1517 break;
1518 }
1519 /*
1520 * Rather than hide all in some function, I do this in
1521 * open coded manner. You see what this really does.
1522 * We have to guarantee mem->res.limit < mem->memsw.limit.
1523 */
1524 mutex_lock(&set_limit_mutex);
1525 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1526 if (memlimit > val) {
1527 ret = -EINVAL;
1528 mutex_unlock(&set_limit_mutex);
1529 break;
1530 }
1531 ret = res_counter_set_limit(&memcg->memsw, val);
1532 mutex_unlock(&set_limit_mutex);
1533
1534 if (!ret)
1535 break;
1536
1537 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1538 try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, true,
1539 get_swappiness(memcg));
1540 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1541 if (curusage >= oldusage)
1542 retry_count--;
1543 }
1544 return ret;
1545 }
1546
1547 /*
1548 * This routine traverse page_cgroup in given list and drop them all.
1549 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1550 */
1551 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
1552 int node, int zid, enum lru_list lru)
1553 {
1554 struct zone *zone;
1555 struct mem_cgroup_per_zone *mz;
1556 struct page_cgroup *pc, *busy;
1557 unsigned long flags, loop;
1558 struct list_head *list;
1559 int ret = 0;
1560
1561 zone = &NODE_DATA(node)->node_zones[zid];
1562 mz = mem_cgroup_zoneinfo(mem, node, zid);
1563 list = &mz->lists[lru];
1564
1565 loop = MEM_CGROUP_ZSTAT(mz, lru);
1566 /* give some margin against EBUSY etc...*/
1567 loop += 256;
1568 busy = NULL;
1569 while (loop--) {
1570 ret = 0;
1571 spin_lock_irqsave(&zone->lru_lock, flags);
1572 if (list_empty(list)) {
1573 spin_unlock_irqrestore(&zone->lru_lock, flags);
1574 break;
1575 }
1576 pc = list_entry(list->prev, struct page_cgroup, lru);
1577 if (busy == pc) {
1578 list_move(&pc->lru, list);
1579 busy = 0;
1580 spin_unlock_irqrestore(&zone->lru_lock, flags);
1581 continue;
1582 }
1583 spin_unlock_irqrestore(&zone->lru_lock, flags);
1584
1585 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
1586 if (ret == -ENOMEM)
1587 break;
1588
1589 if (ret == -EBUSY || ret == -EINVAL) {
1590 /* found lock contention or "pc" is obsolete. */
1591 busy = pc;
1592 cond_resched();
1593 } else
1594 busy = NULL;
1595 }
1596
1597 if (!ret && !list_empty(list))
1598 return -EBUSY;
1599 return ret;
1600 }
1601
1602 /*
1603 * make mem_cgroup's charge to be 0 if there is no task.
1604 * This enables deleting this mem_cgroup.
1605 */
1606 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
1607 {
1608 int ret;
1609 int node, zid, shrink;
1610 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1611 struct cgroup *cgrp = mem->css.cgroup;
1612
1613 css_get(&mem->css);
1614
1615 shrink = 0;
1616 /* should free all ? */
1617 if (free_all)
1618 goto try_to_free;
1619 move_account:
1620 while (mem->res.usage > 0) {
1621 ret = -EBUSY;
1622 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1623 goto out;
1624 ret = -EINTR;
1625 if (signal_pending(current))
1626 goto out;
1627 /* This is for making all *used* pages to be on LRU. */
1628 lru_add_drain_all();
1629 ret = 0;
1630 for_each_node_state(node, N_POSSIBLE) {
1631 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
1632 enum lru_list l;
1633 for_each_lru(l) {
1634 ret = mem_cgroup_force_empty_list(mem,
1635 node, zid, l);
1636 if (ret)
1637 break;
1638 }
1639 }
1640 if (ret)
1641 break;
1642 }
1643 /* it seems parent cgroup doesn't have enough mem */
1644 if (ret == -ENOMEM)
1645 goto try_to_free;
1646 cond_resched();
1647 }
1648 ret = 0;
1649 out:
1650 css_put(&mem->css);
1651 return ret;
1652
1653 try_to_free:
1654 /* returns EBUSY if there is a task or if we come here twice. */
1655 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
1656 ret = -EBUSY;
1657 goto out;
1658 }
1659 /* we call try-to-free pages for make this cgroup empty */
1660 lru_add_drain_all();
1661 /* try to free all pages in this cgroup */
1662 shrink = 1;
1663 while (nr_retries && mem->res.usage > 0) {
1664 int progress;
1665
1666 if (signal_pending(current)) {
1667 ret = -EINTR;
1668 goto out;
1669 }
1670 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
1671 false, get_swappiness(mem));
1672 if (!progress) {
1673 nr_retries--;
1674 /* maybe some writeback is necessary */
1675 congestion_wait(WRITE, HZ/10);
1676 }
1677
1678 }
1679 lru_add_drain();
1680 /* try move_account...there may be some *locked* pages. */
1681 if (mem->res.usage)
1682 goto move_account;
1683 ret = 0;
1684 goto out;
1685 }
1686
1687 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1688 {
1689 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1690 }
1691
1692
1693 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
1694 {
1695 return mem_cgroup_from_cont(cont)->use_hierarchy;
1696 }
1697
1698 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
1699 u64 val)
1700 {
1701 int retval = 0;
1702 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1703 struct cgroup *parent = cont->parent;
1704 struct mem_cgroup *parent_mem = NULL;
1705
1706 if (parent)
1707 parent_mem = mem_cgroup_from_cont(parent);
1708
1709 cgroup_lock();
1710 /*
1711 * If parent's use_hiearchy is set, we can't make any modifications
1712 * in the child subtrees. If it is unset, then the change can
1713 * occur, provided the current cgroup has no children.
1714 *
1715 * For the root cgroup, parent_mem is NULL, we allow value to be
1716 * set if there are no children.
1717 */
1718 if ((!parent_mem || !parent_mem->use_hierarchy) &&
1719 (val == 1 || val == 0)) {
1720 if (list_empty(&cont->children))
1721 mem->use_hierarchy = val;
1722 else
1723 retval = -EBUSY;
1724 } else
1725 retval = -EINVAL;
1726 cgroup_unlock();
1727
1728 return retval;
1729 }
1730
1731 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
1732 {
1733 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1734 u64 val = 0;
1735 int type, name;
1736
1737 type = MEMFILE_TYPE(cft->private);
1738 name = MEMFILE_ATTR(cft->private);
1739 switch (type) {
1740 case _MEM:
1741 val = res_counter_read_u64(&mem->res, name);
1742 break;
1743 case _MEMSWAP:
1744 if (do_swap_account)
1745 val = res_counter_read_u64(&mem->memsw, name);
1746 break;
1747 default:
1748 BUG();
1749 break;
1750 }
1751 return val;
1752 }
1753 /*
1754 * The user of this function is...
1755 * RES_LIMIT.
1756 */
1757 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1758 const char *buffer)
1759 {
1760 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
1761 int type, name;
1762 unsigned long long val;
1763 int ret;
1764
1765 type = MEMFILE_TYPE(cft->private);
1766 name = MEMFILE_ATTR(cft->private);
1767 switch (name) {
1768 case RES_LIMIT:
1769 /* This function does all necessary parse...reuse it */
1770 ret = res_counter_memparse_write_strategy(buffer, &val);
1771 if (ret)
1772 break;
1773 if (type == _MEM)
1774 ret = mem_cgroup_resize_limit(memcg, val);
1775 else
1776 ret = mem_cgroup_resize_memsw_limit(memcg, val);
1777 break;
1778 default:
1779 ret = -EINVAL; /* should be BUG() ? */
1780 break;
1781 }
1782 return ret;
1783 }
1784
1785 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
1786 {
1787 struct mem_cgroup *mem;
1788 int type, name;
1789
1790 mem = mem_cgroup_from_cont(cont);
1791 type = MEMFILE_TYPE(event);
1792 name = MEMFILE_ATTR(event);
1793 switch (name) {
1794 case RES_MAX_USAGE:
1795 if (type == _MEM)
1796 res_counter_reset_max(&mem->res);
1797 else
1798 res_counter_reset_max(&mem->memsw);
1799 break;
1800 case RES_FAILCNT:
1801 if (type == _MEM)
1802 res_counter_reset_failcnt(&mem->res);
1803 else
1804 res_counter_reset_failcnt(&mem->memsw);
1805 break;
1806 }
1807 return 0;
1808 }
1809
1810 static const struct mem_cgroup_stat_desc {
1811 const char *msg;
1812 u64 unit;
1813 } mem_cgroup_stat_desc[] = {
1814 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
1815 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
1816 [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
1817 [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
1818 };
1819
1820 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
1821 struct cgroup_map_cb *cb)
1822 {
1823 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
1824 struct mem_cgroup_stat *stat = &mem_cont->stat;
1825 int i;
1826
1827 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
1828 s64 val;
1829
1830 val = mem_cgroup_read_stat(stat, i);
1831 val *= mem_cgroup_stat_desc[i].unit;
1832 cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
1833 }
1834 /* showing # of active pages */
1835 {
1836 unsigned long active_anon, inactive_anon;
1837 unsigned long active_file, inactive_file;
1838 unsigned long unevictable;
1839
1840 inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
1841 LRU_INACTIVE_ANON);
1842 active_anon = mem_cgroup_get_all_zonestat(mem_cont,
1843 LRU_ACTIVE_ANON);
1844 inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
1845 LRU_INACTIVE_FILE);
1846 active_file = mem_cgroup_get_all_zonestat(mem_cont,
1847 LRU_ACTIVE_FILE);
1848 unevictable = mem_cgroup_get_all_zonestat(mem_cont,
1849 LRU_UNEVICTABLE);
1850
1851 cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
1852 cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
1853 cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
1854 cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
1855 cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);
1856
1857 }
1858
1859 #ifdef CONFIG_DEBUG_VM
1860 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
1861
1862 {
1863 int nid, zid;
1864 struct mem_cgroup_per_zone *mz;
1865 unsigned long recent_rotated[2] = {0, 0};
1866 unsigned long recent_scanned[2] = {0, 0};
1867
1868 for_each_online_node(nid)
1869 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1870 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1871
1872 recent_rotated[0] +=
1873 mz->reclaim_stat.recent_rotated[0];
1874 recent_rotated[1] +=
1875 mz->reclaim_stat.recent_rotated[1];
1876 recent_scanned[0] +=
1877 mz->reclaim_stat.recent_scanned[0];
1878 recent_scanned[1] +=
1879 mz->reclaim_stat.recent_scanned[1];
1880 }
1881 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
1882 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
1883 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
1884 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
1885 }
1886 #endif
1887
1888 return 0;
1889 }
1890
1891 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
1892 {
1893 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
1894
1895 return get_swappiness(memcg);
1896 }
1897
1898 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
1899 u64 val)
1900 {
1901 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
1902 struct mem_cgroup *parent;
1903 if (val > 100)
1904 return -EINVAL;
1905
1906 if (cgrp->parent == NULL)
1907 return -EINVAL;
1908
1909 parent = mem_cgroup_from_cont(cgrp->parent);
1910 /* If under hierarchy, only empty-root can set this value */
1911 if ((parent->use_hierarchy) ||
1912 (memcg->use_hierarchy && !list_empty(&cgrp->children)))
1913 return -EINVAL;
1914
1915 spin_lock(&memcg->reclaim_param_lock);
1916 memcg->swappiness = val;
1917 spin_unlock(&memcg->reclaim_param_lock);
1918
1919 return 0;
1920 }
1921
1922
1923 static struct cftype mem_cgroup_files[] = {
1924 {
1925 .name = "usage_in_bytes",
1926 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
1927 .read_u64 = mem_cgroup_read,
1928 },
1929 {
1930 .name = "max_usage_in_bytes",
1931 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
1932 .trigger = mem_cgroup_reset,
1933 .read_u64 = mem_cgroup_read,
1934 },
1935 {
1936 .name = "limit_in_bytes",
1937 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
1938 .write_string = mem_cgroup_write,
1939 .read_u64 = mem_cgroup_read,
1940 },
1941 {
1942 .name = "failcnt",
1943 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
1944 .trigger = mem_cgroup_reset,
1945 .read_u64 = mem_cgroup_read,
1946 },
1947 {
1948 .name = "stat",
1949 .read_map = mem_control_stat_show,
1950 },
1951 {
1952 .name = "force_empty",
1953 .trigger = mem_cgroup_force_empty_write,
1954 },
1955 {
1956 .name = "use_hierarchy",
1957 .write_u64 = mem_cgroup_hierarchy_write,
1958 .read_u64 = mem_cgroup_hierarchy_read,
1959 },
1960 {
1961 .name = "swappiness",
1962 .read_u64 = mem_cgroup_swappiness_read,
1963 .write_u64 = mem_cgroup_swappiness_write,
1964 },
1965 };
1966
1967 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1968 static struct cftype memsw_cgroup_files[] = {
1969 {
1970 .name = "memsw.usage_in_bytes",
1971 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
1972 .read_u64 = mem_cgroup_read,
1973 },
1974 {
1975 .name = "memsw.max_usage_in_bytes",
1976 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
1977 .trigger = mem_cgroup_reset,
1978 .read_u64 = mem_cgroup_read,
1979 },
1980 {
1981 .name = "memsw.limit_in_bytes",
1982 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
1983 .write_string = mem_cgroup_write,
1984 .read_u64 = mem_cgroup_read,
1985 },
1986 {
1987 .name = "memsw.failcnt",
1988 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
1989 .trigger = mem_cgroup_reset,
1990 .read_u64 = mem_cgroup_read,
1991 },
1992 };
1993
1994 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
1995 {
1996 if (!do_swap_account)
1997 return 0;
1998 return cgroup_add_files(cont, ss, memsw_cgroup_files,
1999 ARRAY_SIZE(memsw_cgroup_files));
2000 };
2001 #else
2002 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2003 {
2004 return 0;
2005 }
2006 #endif
2007
2008 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2009 {
2010 struct mem_cgroup_per_node *pn;
2011 struct mem_cgroup_per_zone *mz;
2012 enum lru_list l;
2013 int zone, tmp = node;
2014 /*
2015 * This routine is called against possible nodes.
2016 * But it's BUG to call kmalloc() against offline node.
2017 *
2018 * TODO: this routine can waste much memory for nodes which will
2019 * never be onlined. It's better to use memory hotplug callback
2020 * function.
2021 */
2022 if (!node_state(node, N_NORMAL_MEMORY))
2023 tmp = -1;
2024 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
2025 if (!pn)
2026 return 1;
2027
2028 mem->info.nodeinfo[node] = pn;
2029 memset(pn, 0, sizeof(*pn));
2030
2031 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2032 mz = &pn->zoneinfo[zone];
2033 for_each_lru(l)
2034 INIT_LIST_HEAD(&mz->lists[l]);
2035 }
2036 return 0;
2037 }
2038
2039 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2040 {
2041 kfree(mem->info.nodeinfo[node]);
2042 }
2043
2044 static int mem_cgroup_size(void)
2045 {
2046 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2047 return sizeof(struct mem_cgroup) + cpustat_size;
2048 }
2049
2050 static struct mem_cgroup *mem_cgroup_alloc(void)
2051 {
2052 struct mem_cgroup *mem;
2053 int size = mem_cgroup_size();
2054
2055 if (size < PAGE_SIZE)
2056 mem = kmalloc(size, GFP_KERNEL);
2057 else
2058 mem = vmalloc(size);
2059
2060 if (mem)
2061 memset(mem, 0, size);
2062 return mem;
2063 }
2064
2065 /*
2066 * At destroying mem_cgroup, references from swap_cgroup can remain.
2067 * (scanning all at force_empty is too costly...)
2068 *
2069 * Instead of clearing all references at force_empty, we remember
2070 * the number of reference from swap_cgroup and free mem_cgroup when
2071 * it goes down to 0.
2072 *
2073 * When mem_cgroup is destroyed, mem->obsolete will be set to 0 and
2074 * entry which points to this memcg will be ignore at swapin.
2075 *
2076 * Removal of cgroup itself succeeds regardless of refs from swap.
2077 */
2078
2079 static void mem_cgroup_free(struct mem_cgroup *mem)
2080 {
2081 int node;
2082
2083 if (atomic_read(&mem->refcnt) > 0)
2084 return;
2085
2086
2087 for_each_node_state(node, N_POSSIBLE)
2088 free_mem_cgroup_per_zone_info(mem, node);
2089
2090 if (mem_cgroup_size() < PAGE_SIZE)
2091 kfree(mem);
2092 else
2093 vfree(mem);
2094 }
2095
2096 static void mem_cgroup_get(struct mem_cgroup *mem)
2097 {
2098 atomic_inc(&mem->refcnt);
2099 }
2100
2101 static void mem_cgroup_put(struct mem_cgroup *mem)
2102 {
2103 if (atomic_dec_and_test(&mem->refcnt)) {
2104 if (!mem->obsolete)
2105 return;
2106 mem_cgroup_free(mem);
2107 }
2108 }
2109
2110
2111 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2112 static void __init enable_swap_cgroup(void)
2113 {
2114 if (!mem_cgroup_disabled() && really_do_swap_account)
2115 do_swap_account = 1;
2116 }
2117 #else
2118 static void __init enable_swap_cgroup(void)
2119 {
2120 }
2121 #endif
2122
2123 static struct cgroup_subsys_state *
2124 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
2125 {
2126 struct mem_cgroup *mem, *parent;
2127 int node;
2128
2129 mem = mem_cgroup_alloc();
2130 if (!mem)
2131 return ERR_PTR(-ENOMEM);
2132
2133 for_each_node_state(node, N_POSSIBLE)
2134 if (alloc_mem_cgroup_per_zone_info(mem, node))
2135 goto free_out;
2136 /* root ? */
2137 if (cont->parent == NULL) {
2138 enable_swap_cgroup();
2139 parent = NULL;
2140 } else {
2141 parent = mem_cgroup_from_cont(cont->parent);
2142 mem->use_hierarchy = parent->use_hierarchy;
2143 }
2144
2145 if (parent && parent->use_hierarchy) {
2146 res_counter_init(&mem->res, &parent->res);
2147 res_counter_init(&mem->memsw, &parent->memsw);
2148 } else {
2149 res_counter_init(&mem->res, NULL);
2150 res_counter_init(&mem->memsw, NULL);
2151 }
2152 mem->last_scanned_child = NULL;
2153 spin_lock_init(&mem->reclaim_param_lock);
2154
2155 if (parent)
2156 mem->swappiness = get_swappiness(parent);
2157
2158 return &mem->css;
2159 free_out:
2160 for_each_node_state(node, N_POSSIBLE)
2161 free_mem_cgroup_per_zone_info(mem, node);
2162 mem_cgroup_free(mem);
2163 return ERR_PTR(-ENOMEM);
2164 }
2165
2166 static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
2167 struct cgroup *cont)
2168 {
2169 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2170 mem->obsolete = 1;
2171 mem_cgroup_force_empty(mem, false);
2172 }
2173
2174 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2175 struct cgroup *cont)
2176 {
2177 mem_cgroup_free(mem_cgroup_from_cont(cont));
2178 }
2179
2180 static int mem_cgroup_populate(struct cgroup_subsys *ss,
2181 struct cgroup *cont)
2182 {
2183 int ret;
2184
2185 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2186 ARRAY_SIZE(mem_cgroup_files));
2187
2188 if (!ret)
2189 ret = register_memsw_files(cont, ss);
2190 return ret;
2191 }
2192
2193 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2194 struct cgroup *cont,
2195 struct cgroup *old_cont,
2196 struct task_struct *p)
2197 {
2198 /*
2199 * FIXME: It's better to move charges of this process from old
2200 * memcg to new memcg. But it's just on TODO-List now.
2201 */
2202 }
2203
2204 struct cgroup_subsys mem_cgroup_subsys = {
2205 .name = "memory",
2206 .subsys_id = mem_cgroup_subsys_id,
2207 .create = mem_cgroup_create,
2208 .pre_destroy = mem_cgroup_pre_destroy,
2209 .destroy = mem_cgroup_destroy,
2210 .populate = mem_cgroup_populate,
2211 .attach = mem_cgroup_move_task,
2212 .early_init = 0,
2213 };
2214
2215 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2216
2217 static int __init disable_swap_account(char *s)
2218 {
2219 really_do_swap_account = 0;
2220 return 1;
2221 }
2222 __setup("noswapaccount", disable_swap_account);
2223 #endif
This page took 0.083174 seconds and 6 git commands to generate.