memcgroup: add the max_usage member on the res_counter
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/page-flags.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bit_spinlock.h>
28 #include <linux/rcupdate.h>
29 #include <linux/swap.h>
30 #include <linux/spinlock.h>
31 #include <linux/fs.h>
32 #include <linux/seq_file.h>
33
34 #include <asm/uaccess.h>
35
36 struct cgroup_subsys mem_cgroup_subsys;
37 static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
38
39 /*
40 * Statistics for memory cgroup.
41 */
42 enum mem_cgroup_stat_index {
43 /*
44 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
45 */
46 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
47 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
48
49 MEM_CGROUP_STAT_NSTATS,
50 };
51
52 struct mem_cgroup_stat_cpu {
53 s64 count[MEM_CGROUP_STAT_NSTATS];
54 } ____cacheline_aligned_in_smp;
55
56 struct mem_cgroup_stat {
57 struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
58 };
59
60 /*
61 * For accounting under irq disable, no need for increment preempt count.
62 */
63 static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat,
64 enum mem_cgroup_stat_index idx, int val)
65 {
66 int cpu = smp_processor_id();
67 stat->cpustat[cpu].count[idx] += val;
68 }
69
70 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
71 enum mem_cgroup_stat_index idx)
72 {
73 int cpu;
74 s64 ret = 0;
75 for_each_possible_cpu(cpu)
76 ret += stat->cpustat[cpu].count[idx];
77 return ret;
78 }
79
80 /*
81 * per-zone information in memory controller.
82 */
83
84 enum mem_cgroup_zstat_index {
85 MEM_CGROUP_ZSTAT_ACTIVE,
86 MEM_CGROUP_ZSTAT_INACTIVE,
87
88 NR_MEM_CGROUP_ZSTAT,
89 };
90
91 struct mem_cgroup_per_zone {
92 /*
93 * spin_lock to protect the per cgroup LRU
94 */
95 spinlock_t lru_lock;
96 struct list_head active_list;
97 struct list_head inactive_list;
98 unsigned long count[NR_MEM_CGROUP_ZSTAT];
99 };
100 /* Macro for accessing counter */
101 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
102
103 struct mem_cgroup_per_node {
104 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
105 };
106
107 struct mem_cgroup_lru_info {
108 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
109 };
110
111 /*
112 * The memory controller data structure. The memory controller controls both
113 * page cache and RSS per cgroup. We would eventually like to provide
114 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
115 * to help the administrator determine what knobs to tune.
116 *
117 * TODO: Add a water mark for the memory controller. Reclaim will begin when
118 * we hit the water mark. May be even add a low water mark, such that
119 * no reclaim occurs from a cgroup at it's low water mark, this is
120 * a feature that will be implemented much later in the future.
121 */
122 struct mem_cgroup {
123 struct cgroup_subsys_state css;
124 /*
125 * the counter to account for memory usage
126 */
127 struct res_counter res;
128 /*
129 * Per cgroup active and inactive list, similar to the
130 * per zone LRU lists.
131 */
132 struct mem_cgroup_lru_info info;
133
134 int prev_priority; /* for recording reclaim priority */
135 /*
136 * statistics.
137 */
138 struct mem_cgroup_stat stat;
139 };
140 static struct mem_cgroup init_mem_cgroup;
141
142 /*
143 * We use the lower bit of the page->page_cgroup pointer as a bit spin
144 * lock. We need to ensure that page->page_cgroup is at least two
145 * byte aligned (based on comments from Nick Piggin). But since
146 * bit_spin_lock doesn't actually set that lock bit in a non-debug
147 * uniprocessor kernel, we should avoid setting it here too.
148 */
149 #define PAGE_CGROUP_LOCK_BIT 0x0
150 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK)
151 #define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
152 #else
153 #define PAGE_CGROUP_LOCK 0x0
154 #endif
155
156 /*
157 * A page_cgroup page is associated with every page descriptor. The
158 * page_cgroup helps us identify information about the cgroup
159 */
160 struct page_cgroup {
161 struct list_head lru; /* per cgroup LRU list */
162 struct page *page;
163 struct mem_cgroup *mem_cgroup;
164 int ref_cnt; /* cached, mapped, migrating */
165 int flags;
166 };
167 #define PAGE_CGROUP_FLAG_CACHE (0x1) /* charged as cache */
168 #define PAGE_CGROUP_FLAG_ACTIVE (0x2) /* page is active in this cgroup */
169
170 static int page_cgroup_nid(struct page_cgroup *pc)
171 {
172 return page_to_nid(pc->page);
173 }
174
175 static enum zone_type page_cgroup_zid(struct page_cgroup *pc)
176 {
177 return page_zonenum(pc->page);
178 }
179
180 enum charge_type {
181 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
182 MEM_CGROUP_CHARGE_TYPE_MAPPED,
183 };
184
185 /*
186 * Always modified under lru lock. Then, not necessary to preempt_disable()
187 */
188 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags,
189 bool charge)
190 {
191 int val = (charge)? 1 : -1;
192 struct mem_cgroup_stat *stat = &mem->stat;
193
194 VM_BUG_ON(!irqs_disabled());
195 if (flags & PAGE_CGROUP_FLAG_CACHE)
196 __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_CACHE, val);
197 else
198 __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val);
199 }
200
201 static struct mem_cgroup_per_zone *
202 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
203 {
204 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
205 }
206
207 static struct mem_cgroup_per_zone *
208 page_cgroup_zoneinfo(struct page_cgroup *pc)
209 {
210 struct mem_cgroup *mem = pc->mem_cgroup;
211 int nid = page_cgroup_nid(pc);
212 int zid = page_cgroup_zid(pc);
213
214 return mem_cgroup_zoneinfo(mem, nid, zid);
215 }
216
217 static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
218 enum mem_cgroup_zstat_index idx)
219 {
220 int nid, zid;
221 struct mem_cgroup_per_zone *mz;
222 u64 total = 0;
223
224 for_each_online_node(nid)
225 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
226 mz = mem_cgroup_zoneinfo(mem, nid, zid);
227 total += MEM_CGROUP_ZSTAT(mz, idx);
228 }
229 return total;
230 }
231
232 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
233 {
234 return container_of(cgroup_subsys_state(cont,
235 mem_cgroup_subsys_id), struct mem_cgroup,
236 css);
237 }
238
239 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
240 {
241 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
242 struct mem_cgroup, css);
243 }
244
245 static inline int page_cgroup_locked(struct page *page)
246 {
247 return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
248 }
249
250 static void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
251 {
252 VM_BUG_ON(!page_cgroup_locked(page));
253 page->page_cgroup = ((unsigned long)pc | PAGE_CGROUP_LOCK);
254 }
255
256 struct page_cgroup *page_get_page_cgroup(struct page *page)
257 {
258 return (struct page_cgroup *) (page->page_cgroup & ~PAGE_CGROUP_LOCK);
259 }
260
261 static void lock_page_cgroup(struct page *page)
262 {
263 bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
264 }
265
266 static int try_lock_page_cgroup(struct page *page)
267 {
268 return bit_spin_trylock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
269 }
270
271 static void unlock_page_cgroup(struct page *page)
272 {
273 bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
274 }
275
276 static void __mem_cgroup_remove_list(struct page_cgroup *pc)
277 {
278 int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
279 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
280
281 if (from)
282 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
283 else
284 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
285
286 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false);
287 list_del_init(&pc->lru);
288 }
289
290 static void __mem_cgroup_add_list(struct page_cgroup *pc)
291 {
292 int to = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
293 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
294
295 if (!to) {
296 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
297 list_add(&pc->lru, &mz->inactive_list);
298 } else {
299 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
300 list_add(&pc->lru, &mz->active_list);
301 }
302 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true);
303 }
304
305 static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
306 {
307 int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
308 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
309
310 if (from)
311 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
312 else
313 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
314
315 if (active) {
316 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
317 pc->flags |= PAGE_CGROUP_FLAG_ACTIVE;
318 list_move(&pc->lru, &mz->active_list);
319 } else {
320 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
321 pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE;
322 list_move(&pc->lru, &mz->inactive_list);
323 }
324 }
325
326 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
327 {
328 int ret;
329
330 task_lock(task);
331 ret = task->mm && mm_match_cgroup(task->mm, mem);
332 task_unlock(task);
333 return ret;
334 }
335
336 /*
337 * This routine assumes that the appropriate zone's lru lock is already held
338 */
339 void mem_cgroup_move_lists(struct page *page, bool active)
340 {
341 struct page_cgroup *pc;
342 struct mem_cgroup_per_zone *mz;
343 unsigned long flags;
344
345 /*
346 * We cannot lock_page_cgroup while holding zone's lru_lock,
347 * because other holders of lock_page_cgroup can be interrupted
348 * with an attempt to rotate_reclaimable_page. But we cannot
349 * safely get to page_cgroup without it, so just try_lock it:
350 * mem_cgroup_isolate_pages allows for page left on wrong list.
351 */
352 if (!try_lock_page_cgroup(page))
353 return;
354
355 pc = page_get_page_cgroup(page);
356 if (pc) {
357 mz = page_cgroup_zoneinfo(pc);
358 spin_lock_irqsave(&mz->lru_lock, flags);
359 __mem_cgroup_move_lists(pc, active);
360 spin_unlock_irqrestore(&mz->lru_lock, flags);
361 }
362 unlock_page_cgroup(page);
363 }
364
365 /*
366 * Calculate mapped_ratio under memory controller. This will be used in
367 * vmscan.c for deteremining we have to reclaim mapped pages.
368 */
369 int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
370 {
371 long total, rss;
372
373 /*
374 * usage is recorded in bytes. But, here, we assume the number of
375 * physical pages can be represented by "long" on any arch.
376 */
377 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
378 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
379 return (int)((rss * 100L) / total);
380 }
381
382 /*
383 * This function is called from vmscan.c. In page reclaiming loop. balance
384 * between active and inactive list is calculated. For memory controller
385 * page reclaiming, we should use using mem_cgroup's imbalance rather than
386 * zone's global lru imbalance.
387 */
388 long mem_cgroup_reclaim_imbalance(struct mem_cgroup *mem)
389 {
390 unsigned long active, inactive;
391 /* active and inactive are the number of pages. 'long' is ok.*/
392 active = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_ACTIVE);
393 inactive = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_INACTIVE);
394 return (long) (active / (inactive + 1));
395 }
396
397 /*
398 * prev_priority control...this will be used in memory reclaim path.
399 */
400 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
401 {
402 return mem->prev_priority;
403 }
404
405 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
406 {
407 if (priority < mem->prev_priority)
408 mem->prev_priority = priority;
409 }
410
411 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
412 {
413 mem->prev_priority = priority;
414 }
415
416 /*
417 * Calculate # of pages to be scanned in this priority/zone.
418 * See also vmscan.c
419 *
420 * priority starts from "DEF_PRIORITY" and decremented in each loop.
421 * (see include/linux/mmzone.h)
422 */
423
424 long mem_cgroup_calc_reclaim_active(struct mem_cgroup *mem,
425 struct zone *zone, int priority)
426 {
427 long nr_active;
428 int nid = zone->zone_pgdat->node_id;
429 int zid = zone_idx(zone);
430 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
431
432 nr_active = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE);
433 return (nr_active >> priority);
434 }
435
436 long mem_cgroup_calc_reclaim_inactive(struct mem_cgroup *mem,
437 struct zone *zone, int priority)
438 {
439 long nr_inactive;
440 int nid = zone->zone_pgdat->node_id;
441 int zid = zone_idx(zone);
442 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
443
444 nr_inactive = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE);
445 return (nr_inactive >> priority);
446 }
447
448 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
449 struct list_head *dst,
450 unsigned long *scanned, int order,
451 int mode, struct zone *z,
452 struct mem_cgroup *mem_cont,
453 int active)
454 {
455 unsigned long nr_taken = 0;
456 struct page *page;
457 unsigned long scan;
458 LIST_HEAD(pc_list);
459 struct list_head *src;
460 struct page_cgroup *pc, *tmp;
461 int nid = z->zone_pgdat->node_id;
462 int zid = zone_idx(z);
463 struct mem_cgroup_per_zone *mz;
464
465 BUG_ON(!mem_cont);
466 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
467 if (active)
468 src = &mz->active_list;
469 else
470 src = &mz->inactive_list;
471
472
473 spin_lock(&mz->lru_lock);
474 scan = 0;
475 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
476 if (scan >= nr_to_scan)
477 break;
478 page = pc->page;
479
480 if (unlikely(!PageLRU(page)))
481 continue;
482
483 if (PageActive(page) && !active) {
484 __mem_cgroup_move_lists(pc, true);
485 continue;
486 }
487 if (!PageActive(page) && active) {
488 __mem_cgroup_move_lists(pc, false);
489 continue;
490 }
491
492 scan++;
493 list_move(&pc->lru, &pc_list);
494
495 if (__isolate_lru_page(page, mode) == 0) {
496 list_move(&page->lru, dst);
497 nr_taken++;
498 }
499 }
500
501 list_splice(&pc_list, src);
502 spin_unlock(&mz->lru_lock);
503
504 *scanned = scan;
505 return nr_taken;
506 }
507
508 /*
509 * Charge the memory controller for page usage.
510 * Return
511 * 0 if the charge was successful
512 * < 0 if the cgroup is over its limit
513 */
514 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
515 gfp_t gfp_mask, enum charge_type ctype)
516 {
517 struct mem_cgroup *mem;
518 struct page_cgroup *pc;
519 unsigned long flags;
520 unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
521 struct mem_cgroup_per_zone *mz;
522
523 if (mem_cgroup_subsys.disabled)
524 return 0;
525
526 /*
527 * Should page_cgroup's go to their own slab?
528 * One could optimize the performance of the charging routine
529 * by saving a bit in the page_flags and using it as a lock
530 * to see if the cgroup page already has a page_cgroup associated
531 * with it
532 */
533 retry:
534 lock_page_cgroup(page);
535 pc = page_get_page_cgroup(page);
536 /*
537 * The page_cgroup exists and
538 * the page has already been accounted.
539 */
540 if (pc) {
541 VM_BUG_ON(pc->page != page);
542 VM_BUG_ON(pc->ref_cnt <= 0);
543
544 pc->ref_cnt++;
545 unlock_page_cgroup(page);
546 goto done;
547 }
548 unlock_page_cgroup(page);
549
550 pc = kzalloc(sizeof(struct page_cgroup), gfp_mask);
551 if (pc == NULL)
552 goto err;
553
554 /*
555 * We always charge the cgroup the mm_struct belongs to.
556 * The mm_struct's mem_cgroup changes on task migration if the
557 * thread group leader migrates. It's possible that mm is not
558 * set, if so charge the init_mm (happens for pagecache usage).
559 */
560 if (!mm)
561 mm = &init_mm;
562
563 rcu_read_lock();
564 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
565 /*
566 * For every charge from the cgroup, increment reference count
567 */
568 css_get(&mem->css);
569 rcu_read_unlock();
570
571 while (res_counter_charge(&mem->res, PAGE_SIZE)) {
572 if (!(gfp_mask & __GFP_WAIT))
573 goto out;
574
575 if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
576 continue;
577
578 /*
579 * try_to_free_mem_cgroup_pages() might not give us a full
580 * picture of reclaim. Some pages are reclaimed and might be
581 * moved to swap cache or just unmapped from the cgroup.
582 * Check the limit again to see if the reclaim reduced the
583 * current usage of the cgroup before giving up
584 */
585 if (res_counter_check_under_limit(&mem->res))
586 continue;
587
588 if (!nr_retries--) {
589 mem_cgroup_out_of_memory(mem, gfp_mask);
590 goto out;
591 }
592 congestion_wait(WRITE, HZ/10);
593 }
594
595 pc->ref_cnt = 1;
596 pc->mem_cgroup = mem;
597 pc->page = page;
598 pc->flags = PAGE_CGROUP_FLAG_ACTIVE;
599 if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
600 pc->flags |= PAGE_CGROUP_FLAG_CACHE;
601
602 lock_page_cgroup(page);
603 if (page_get_page_cgroup(page)) {
604 unlock_page_cgroup(page);
605 /*
606 * Another charge has been added to this page already.
607 * We take lock_page_cgroup(page) again and read
608 * page->cgroup, increment refcnt.... just retry is OK.
609 */
610 res_counter_uncharge(&mem->res, PAGE_SIZE);
611 css_put(&mem->css);
612 kfree(pc);
613 goto retry;
614 }
615 page_assign_page_cgroup(page, pc);
616
617 mz = page_cgroup_zoneinfo(pc);
618 spin_lock_irqsave(&mz->lru_lock, flags);
619 __mem_cgroup_add_list(pc);
620 spin_unlock_irqrestore(&mz->lru_lock, flags);
621
622 unlock_page_cgroup(page);
623 done:
624 return 0;
625 out:
626 css_put(&mem->css);
627 kfree(pc);
628 err:
629 return -ENOMEM;
630 }
631
632 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
633 {
634 return mem_cgroup_charge_common(page, mm, gfp_mask,
635 MEM_CGROUP_CHARGE_TYPE_MAPPED);
636 }
637
638 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
639 gfp_t gfp_mask)
640 {
641 if (!mm)
642 mm = &init_mm;
643 return mem_cgroup_charge_common(page, mm, gfp_mask,
644 MEM_CGROUP_CHARGE_TYPE_CACHE);
645 }
646
647 /*
648 * Uncharging is always a welcome operation, we never complain, simply
649 * uncharge.
650 */
651 void mem_cgroup_uncharge_page(struct page *page)
652 {
653 struct page_cgroup *pc;
654 struct mem_cgroup *mem;
655 struct mem_cgroup_per_zone *mz;
656 unsigned long flags;
657
658 if (mem_cgroup_subsys.disabled)
659 return;
660
661 /*
662 * Check if our page_cgroup is valid
663 */
664 lock_page_cgroup(page);
665 pc = page_get_page_cgroup(page);
666 if (!pc)
667 goto unlock;
668
669 VM_BUG_ON(pc->page != page);
670 VM_BUG_ON(pc->ref_cnt <= 0);
671
672 if (--(pc->ref_cnt) == 0) {
673 mz = page_cgroup_zoneinfo(pc);
674 spin_lock_irqsave(&mz->lru_lock, flags);
675 __mem_cgroup_remove_list(pc);
676 spin_unlock_irqrestore(&mz->lru_lock, flags);
677
678 page_assign_page_cgroup(page, NULL);
679 unlock_page_cgroup(page);
680
681 mem = pc->mem_cgroup;
682 res_counter_uncharge(&mem->res, PAGE_SIZE);
683 css_put(&mem->css);
684
685 kfree(pc);
686 return;
687 }
688
689 unlock:
690 unlock_page_cgroup(page);
691 }
692
693 /*
694 * Returns non-zero if a page (under migration) has valid page_cgroup member.
695 * Refcnt of page_cgroup is incremented.
696 */
697 int mem_cgroup_prepare_migration(struct page *page)
698 {
699 struct page_cgroup *pc;
700
701 if (mem_cgroup_subsys.disabled)
702 return 0;
703
704 lock_page_cgroup(page);
705 pc = page_get_page_cgroup(page);
706 if (pc)
707 pc->ref_cnt++;
708 unlock_page_cgroup(page);
709 return pc != NULL;
710 }
711
712 void mem_cgroup_end_migration(struct page *page)
713 {
714 mem_cgroup_uncharge_page(page);
715 }
716
717 /*
718 * We know both *page* and *newpage* are now not-on-LRU and PG_locked.
719 * And no race with uncharge() routines because page_cgroup for *page*
720 * has extra one reference by mem_cgroup_prepare_migration.
721 */
722 void mem_cgroup_page_migration(struct page *page, struct page *newpage)
723 {
724 struct page_cgroup *pc;
725 struct mem_cgroup_per_zone *mz;
726 unsigned long flags;
727
728 lock_page_cgroup(page);
729 pc = page_get_page_cgroup(page);
730 if (!pc) {
731 unlock_page_cgroup(page);
732 return;
733 }
734
735 mz = page_cgroup_zoneinfo(pc);
736 spin_lock_irqsave(&mz->lru_lock, flags);
737 __mem_cgroup_remove_list(pc);
738 spin_unlock_irqrestore(&mz->lru_lock, flags);
739
740 page_assign_page_cgroup(page, NULL);
741 unlock_page_cgroup(page);
742
743 pc->page = newpage;
744 lock_page_cgroup(newpage);
745 page_assign_page_cgroup(newpage, pc);
746
747 mz = page_cgroup_zoneinfo(pc);
748 spin_lock_irqsave(&mz->lru_lock, flags);
749 __mem_cgroup_add_list(pc);
750 spin_unlock_irqrestore(&mz->lru_lock, flags);
751
752 unlock_page_cgroup(newpage);
753 }
754
755 /*
756 * This routine traverse page_cgroup in given list and drop them all.
757 * This routine ignores page_cgroup->ref_cnt.
758 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
759 */
760 #define FORCE_UNCHARGE_BATCH (128)
761 static void mem_cgroup_force_empty_list(struct mem_cgroup *mem,
762 struct mem_cgroup_per_zone *mz,
763 int active)
764 {
765 struct page_cgroup *pc;
766 struct page *page;
767 int count = FORCE_UNCHARGE_BATCH;
768 unsigned long flags;
769 struct list_head *list;
770
771 if (active)
772 list = &mz->active_list;
773 else
774 list = &mz->inactive_list;
775
776 spin_lock_irqsave(&mz->lru_lock, flags);
777 while (!list_empty(list)) {
778 pc = list_entry(list->prev, struct page_cgroup, lru);
779 page = pc->page;
780 get_page(page);
781 spin_unlock_irqrestore(&mz->lru_lock, flags);
782 mem_cgroup_uncharge_page(page);
783 put_page(page);
784 if (--count <= 0) {
785 count = FORCE_UNCHARGE_BATCH;
786 cond_resched();
787 }
788 spin_lock_irqsave(&mz->lru_lock, flags);
789 }
790 spin_unlock_irqrestore(&mz->lru_lock, flags);
791 }
792
793 /*
794 * make mem_cgroup's charge to be 0 if there is no task.
795 * This enables deleting this mem_cgroup.
796 */
797 static int mem_cgroup_force_empty(struct mem_cgroup *mem)
798 {
799 int ret = -EBUSY;
800 int node, zid;
801
802 if (mem_cgroup_subsys.disabled)
803 return 0;
804
805 css_get(&mem->css);
806 /*
807 * page reclaim code (kswapd etc..) will move pages between
808 * active_list <-> inactive_list while we don't take a lock.
809 * So, we have to do loop here until all lists are empty.
810 */
811 while (mem->res.usage > 0) {
812 if (atomic_read(&mem->css.cgroup->count) > 0)
813 goto out;
814 for_each_node_state(node, N_POSSIBLE)
815 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
816 struct mem_cgroup_per_zone *mz;
817 mz = mem_cgroup_zoneinfo(mem, node, zid);
818 /* drop all page_cgroup in active_list */
819 mem_cgroup_force_empty_list(mem, mz, 1);
820 /* drop all page_cgroup in inactive_list */
821 mem_cgroup_force_empty_list(mem, mz, 0);
822 }
823 }
824 ret = 0;
825 out:
826 css_put(&mem->css);
827 return ret;
828 }
829
830 static int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
831 {
832 *tmp = memparse(buf, &buf);
833 if (*buf != '\0')
834 return -EINVAL;
835
836 /*
837 * Round up the value to the closest page size
838 */
839 *tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
840 return 0;
841 }
842
843 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
844 {
845 return res_counter_read_u64(&mem_cgroup_from_cont(cont)->res,
846 cft->private);
847 }
848
849 static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
850 struct file *file, const char __user *userbuf,
851 size_t nbytes, loff_t *ppos)
852 {
853 return res_counter_write(&mem_cgroup_from_cont(cont)->res,
854 cft->private, userbuf, nbytes, ppos,
855 mem_cgroup_write_strategy);
856 }
857
858 static ssize_t mem_cgroup_max_reset(struct cgroup *cont, struct cftype *cft,
859 struct file *file, const char __user *userbuf,
860 size_t nbytes, loff_t *ppos)
861 {
862 struct mem_cgroup *mem;
863
864 mem = mem_cgroup_from_cont(cont);
865 res_counter_reset_max(&mem->res);
866 return nbytes;
867 }
868
869 static ssize_t mem_force_empty_write(struct cgroup *cont,
870 struct cftype *cft, struct file *file,
871 const char __user *userbuf,
872 size_t nbytes, loff_t *ppos)
873 {
874 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
875 int ret = mem_cgroup_force_empty(mem);
876 if (!ret)
877 ret = nbytes;
878 return ret;
879 }
880
881 static const struct mem_cgroup_stat_desc {
882 const char *msg;
883 u64 unit;
884 } mem_cgroup_stat_desc[] = {
885 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
886 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
887 };
888
889 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
890 struct cgroup_map_cb *cb)
891 {
892 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
893 struct mem_cgroup_stat *stat = &mem_cont->stat;
894 int i;
895
896 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
897 s64 val;
898
899 val = mem_cgroup_read_stat(stat, i);
900 val *= mem_cgroup_stat_desc[i].unit;
901 cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
902 }
903 /* showing # of active pages */
904 {
905 unsigned long active, inactive;
906
907 inactive = mem_cgroup_get_all_zonestat(mem_cont,
908 MEM_CGROUP_ZSTAT_INACTIVE);
909 active = mem_cgroup_get_all_zonestat(mem_cont,
910 MEM_CGROUP_ZSTAT_ACTIVE);
911 cb->fill(cb, "active", (active) * PAGE_SIZE);
912 cb->fill(cb, "inactive", (inactive) * PAGE_SIZE);
913 }
914 return 0;
915 }
916
917 static struct cftype mem_cgroup_files[] = {
918 {
919 .name = "usage_in_bytes",
920 .private = RES_USAGE,
921 .read_u64 = mem_cgroup_read,
922 },
923 {
924 .name = "max_usage_in_bytes",
925 .private = RES_MAX_USAGE,
926 .write = mem_cgroup_max_reset,
927 .read_u64 = mem_cgroup_read,
928 },
929 {
930 .name = "limit_in_bytes",
931 .private = RES_LIMIT,
932 .write = mem_cgroup_write,
933 .read_u64 = mem_cgroup_read,
934 },
935 {
936 .name = "failcnt",
937 .private = RES_FAILCNT,
938 .read_u64 = mem_cgroup_read,
939 },
940 {
941 .name = "force_empty",
942 .write = mem_force_empty_write,
943 },
944 {
945 .name = "stat",
946 .read_map = mem_control_stat_show,
947 },
948 };
949
950 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
951 {
952 struct mem_cgroup_per_node *pn;
953 struct mem_cgroup_per_zone *mz;
954 int zone, tmp = node;
955 /*
956 * This routine is called against possible nodes.
957 * But it's BUG to call kmalloc() against offline node.
958 *
959 * TODO: this routine can waste much memory for nodes which will
960 * never be onlined. It's better to use memory hotplug callback
961 * function.
962 */
963 if (!node_state(node, N_NORMAL_MEMORY))
964 tmp = -1;
965 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
966 if (!pn)
967 return 1;
968
969 mem->info.nodeinfo[node] = pn;
970 memset(pn, 0, sizeof(*pn));
971
972 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
973 mz = &pn->zoneinfo[zone];
974 INIT_LIST_HEAD(&mz->active_list);
975 INIT_LIST_HEAD(&mz->inactive_list);
976 spin_lock_init(&mz->lru_lock);
977 }
978 return 0;
979 }
980
981 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
982 {
983 kfree(mem->info.nodeinfo[node]);
984 }
985
986 static struct cgroup_subsys_state *
987 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
988 {
989 struct mem_cgroup *mem;
990 int node;
991
992 if (unlikely((cont->parent) == NULL))
993 mem = &init_mem_cgroup;
994 else
995 mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);
996
997 if (mem == NULL)
998 return ERR_PTR(-ENOMEM);
999
1000 res_counter_init(&mem->res);
1001
1002 memset(&mem->info, 0, sizeof(mem->info));
1003
1004 for_each_node_state(node, N_POSSIBLE)
1005 if (alloc_mem_cgroup_per_zone_info(mem, node))
1006 goto free_out;
1007
1008 return &mem->css;
1009 free_out:
1010 for_each_node_state(node, N_POSSIBLE)
1011 free_mem_cgroup_per_zone_info(mem, node);
1012 if (cont->parent != NULL)
1013 kfree(mem);
1014 return ERR_PTR(-ENOMEM);
1015 }
1016
1017 static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
1018 struct cgroup *cont)
1019 {
1020 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1021 mem_cgroup_force_empty(mem);
1022 }
1023
1024 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
1025 struct cgroup *cont)
1026 {
1027 int node;
1028 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1029
1030 for_each_node_state(node, N_POSSIBLE)
1031 free_mem_cgroup_per_zone_info(mem, node);
1032
1033 kfree(mem_cgroup_from_cont(cont));
1034 }
1035
1036 static int mem_cgroup_populate(struct cgroup_subsys *ss,
1037 struct cgroup *cont)
1038 {
1039 if (mem_cgroup_subsys.disabled)
1040 return 0;
1041 return cgroup_add_files(cont, ss, mem_cgroup_files,
1042 ARRAY_SIZE(mem_cgroup_files));
1043 }
1044
1045 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
1046 struct cgroup *cont,
1047 struct cgroup *old_cont,
1048 struct task_struct *p)
1049 {
1050 struct mm_struct *mm;
1051 struct mem_cgroup *mem, *old_mem;
1052
1053 if (mem_cgroup_subsys.disabled)
1054 return;
1055
1056 mm = get_task_mm(p);
1057 if (mm == NULL)
1058 return;
1059
1060 mem = mem_cgroup_from_cont(cont);
1061 old_mem = mem_cgroup_from_cont(old_cont);
1062
1063 if (mem == old_mem)
1064 goto out;
1065
1066 /*
1067 * Only thread group leaders are allowed to migrate, the mm_struct is
1068 * in effect owned by the leader
1069 */
1070 if (!thread_group_leader(p))
1071 goto out;
1072
1073 out:
1074 mmput(mm);
1075 }
1076
1077 struct cgroup_subsys mem_cgroup_subsys = {
1078 .name = "memory",
1079 .subsys_id = mem_cgroup_subsys_id,
1080 .create = mem_cgroup_create,
1081 .pre_destroy = mem_cgroup_pre_destroy,
1082 .destroy = mem_cgroup_destroy,
1083 .populate = mem_cgroup_populate,
1084 .attach = mem_cgroup_move_task,
1085 .early_init = 0,
1086 };
This page took 0.051367 seconds and 6 git commands to generate.