memcg: fix USED bit handling at uncharge in THP
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
51 #include "internal.h"
52
53 #include <asm/uaccess.h>
54
55 #include <trace/events/vmscan.h>
56
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58 #define MEM_CGROUP_RECLAIM_RETRIES 5
59 struct mem_cgroup *root_mem_cgroup __read_mostly;
60
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly;
64
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata = 1;
68 #else
69 static int really_do_swap_account __initdata = 0;
70 #endif
71
72 #else
73 #define do_swap_account (0)
74 #endif
75
76 /*
77 * Per memcg event counter is incremented at every pagein/pageout. This counter
78 * is used for trigger some periodic events. This is straightforward and better
79 * than using jiffies etc. to handle periodic memcg event.
80 *
81 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
82 */
83 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
84 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
85
86 /*
87 * Statistics for memory cgroup.
88 */
89 enum mem_cgroup_stat_index {
90 /*
91 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
92 */
93 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
94 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
95 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
96 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
97 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
98 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
99 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
100 /* incremented at every pagein/pageout */
101 MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
102 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
103
104 MEM_CGROUP_STAT_NSTATS,
105 };
106
107 struct mem_cgroup_stat_cpu {
108 s64 count[MEM_CGROUP_STAT_NSTATS];
109 };
110
111 /*
112 * per-zone information in memory controller.
113 */
114 struct mem_cgroup_per_zone {
115 /*
116 * spin_lock to protect the per cgroup LRU
117 */
118 struct list_head lists[NR_LRU_LISTS];
119 unsigned long count[NR_LRU_LISTS];
120
121 struct zone_reclaim_stat reclaim_stat;
122 struct rb_node tree_node; /* RB tree node */
123 unsigned long long usage_in_excess;/* Set to the value by which */
124 /* the soft limit is exceeded*/
125 bool on_tree;
126 struct mem_cgroup *mem; /* Back pointer, we cannot */
127 /* use container_of */
128 };
129 /* Macro for accessing counter */
130 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
131
132 struct mem_cgroup_per_node {
133 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
134 };
135
136 struct mem_cgroup_lru_info {
137 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
138 };
139
140 /*
141 * Cgroups above their limits are maintained in a RB-Tree, independent of
142 * their hierarchy representation
143 */
144
145 struct mem_cgroup_tree_per_zone {
146 struct rb_root rb_root;
147 spinlock_t lock;
148 };
149
150 struct mem_cgroup_tree_per_node {
151 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
152 };
153
154 struct mem_cgroup_tree {
155 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
156 };
157
158 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
159
160 struct mem_cgroup_threshold {
161 struct eventfd_ctx *eventfd;
162 u64 threshold;
163 };
164
165 /* For threshold */
166 struct mem_cgroup_threshold_ary {
167 /* An array index points to threshold just below usage. */
168 int current_threshold;
169 /* Size of entries[] */
170 unsigned int size;
171 /* Array of thresholds */
172 struct mem_cgroup_threshold entries[0];
173 };
174
175 struct mem_cgroup_thresholds {
176 /* Primary thresholds array */
177 struct mem_cgroup_threshold_ary *primary;
178 /*
179 * Spare threshold array.
180 * This is needed to make mem_cgroup_unregister_event() "never fail".
181 * It must be able to store at least primary->size - 1 entries.
182 */
183 struct mem_cgroup_threshold_ary *spare;
184 };
185
186 /* for OOM */
187 struct mem_cgroup_eventfd_list {
188 struct list_head list;
189 struct eventfd_ctx *eventfd;
190 };
191
192 static void mem_cgroup_threshold(struct mem_cgroup *mem);
193 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
194
195 /*
196 * The memory controller data structure. The memory controller controls both
197 * page cache and RSS per cgroup. We would eventually like to provide
198 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
199 * to help the administrator determine what knobs to tune.
200 *
201 * TODO: Add a water mark for the memory controller. Reclaim will begin when
202 * we hit the water mark. May be even add a low water mark, such that
203 * no reclaim occurs from a cgroup at it's low water mark, this is
204 * a feature that will be implemented much later in the future.
205 */
206 struct mem_cgroup {
207 struct cgroup_subsys_state css;
208 /*
209 * the counter to account for memory usage
210 */
211 struct res_counter res;
212 /*
213 * the counter to account for mem+swap usage.
214 */
215 struct res_counter memsw;
216 /*
217 * Per cgroup active and inactive list, similar to the
218 * per zone LRU lists.
219 */
220 struct mem_cgroup_lru_info info;
221
222 /*
223 protect against reclaim related member.
224 */
225 spinlock_t reclaim_param_lock;
226
227 /*
228 * While reclaiming in a hierarchy, we cache the last child we
229 * reclaimed from.
230 */
231 int last_scanned_child;
232 /*
233 * Should the accounting and control be hierarchical, per subtree?
234 */
235 bool use_hierarchy;
236 atomic_t oom_lock;
237 atomic_t refcnt;
238
239 unsigned int swappiness;
240 /* OOM-Killer disable */
241 int oom_kill_disable;
242
243 /* set when res.limit == memsw.limit */
244 bool memsw_is_minimum;
245
246 /* protect arrays of thresholds */
247 struct mutex thresholds_lock;
248
249 /* thresholds for memory usage. RCU-protected */
250 struct mem_cgroup_thresholds thresholds;
251
252 /* thresholds for mem+swap usage. RCU-protected */
253 struct mem_cgroup_thresholds memsw_thresholds;
254
255 /* For oom notifier event fd */
256 struct list_head oom_notify;
257
258 /*
259 * Should we move charges of a task when a task is moved into this
260 * mem_cgroup ? And what type of charges should we move ?
261 */
262 unsigned long move_charge_at_immigrate;
263 /*
264 * percpu counter.
265 */
266 struct mem_cgroup_stat_cpu *stat;
267 /*
268 * used when a cpu is offlined or other synchronizations
269 * See mem_cgroup_read_stat().
270 */
271 struct mem_cgroup_stat_cpu nocpu_base;
272 spinlock_t pcp_counter_lock;
273 };
274
275 /* Stuffs for move charges at task migration. */
276 /*
277 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
278 * left-shifted bitmap of these types.
279 */
280 enum move_type {
281 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
282 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
283 NR_MOVE_TYPE,
284 };
285
286 /* "mc" and its members are protected by cgroup_mutex */
287 static struct move_charge_struct {
288 spinlock_t lock; /* for from, to */
289 struct mem_cgroup *from;
290 struct mem_cgroup *to;
291 unsigned long precharge;
292 unsigned long moved_charge;
293 unsigned long moved_swap;
294 struct task_struct *moving_task; /* a task moving charges */
295 wait_queue_head_t waitq; /* a waitq for other context */
296 } mc = {
297 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
298 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
299 };
300
301 static bool move_anon(void)
302 {
303 return test_bit(MOVE_CHARGE_TYPE_ANON,
304 &mc.to->move_charge_at_immigrate);
305 }
306
307 static bool move_file(void)
308 {
309 return test_bit(MOVE_CHARGE_TYPE_FILE,
310 &mc.to->move_charge_at_immigrate);
311 }
312
313 /*
314 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
315 * limit reclaim to prevent infinite loops, if they ever occur.
316 */
317 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
318 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
319
320 enum charge_type {
321 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
322 MEM_CGROUP_CHARGE_TYPE_MAPPED,
323 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
324 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
325 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
326 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
327 NR_CHARGE_TYPE,
328 };
329
330 /* only for here (for easy reading.) */
331 #define PCGF_CACHE (1UL << PCG_CACHE)
332 #define PCGF_USED (1UL << PCG_USED)
333 #define PCGF_LOCK (1UL << PCG_LOCK)
334 /* Not used, but added here for completeness */
335 #define PCGF_ACCT (1UL << PCG_ACCT)
336
337 /* for encoding cft->private value on file */
338 #define _MEM (0)
339 #define _MEMSWAP (1)
340 #define _OOM_TYPE (2)
341 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
342 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
343 #define MEMFILE_ATTR(val) ((val) & 0xffff)
344 /* Used for OOM nofiier */
345 #define OOM_CONTROL (0)
346
347 /*
348 * Reclaim flags for mem_cgroup_hierarchical_reclaim
349 */
350 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
351 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
352 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
353 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
354 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
355 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
356
357 static void mem_cgroup_get(struct mem_cgroup *mem);
358 static void mem_cgroup_put(struct mem_cgroup *mem);
359 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
360 static void drain_all_stock_async(void);
361
362 static struct mem_cgroup_per_zone *
363 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
364 {
365 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
366 }
367
368 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
369 {
370 return &mem->css;
371 }
372
373 static struct mem_cgroup_per_zone *
374 page_cgroup_zoneinfo(struct page_cgroup *pc)
375 {
376 struct mem_cgroup *mem = pc->mem_cgroup;
377 int nid = page_cgroup_nid(pc);
378 int zid = page_cgroup_zid(pc);
379
380 if (!mem)
381 return NULL;
382
383 return mem_cgroup_zoneinfo(mem, nid, zid);
384 }
385
386 static struct mem_cgroup_tree_per_zone *
387 soft_limit_tree_node_zone(int nid, int zid)
388 {
389 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
390 }
391
392 static struct mem_cgroup_tree_per_zone *
393 soft_limit_tree_from_page(struct page *page)
394 {
395 int nid = page_to_nid(page);
396 int zid = page_zonenum(page);
397
398 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399 }
400
401 static void
402 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
403 struct mem_cgroup_per_zone *mz,
404 struct mem_cgroup_tree_per_zone *mctz,
405 unsigned long long new_usage_in_excess)
406 {
407 struct rb_node **p = &mctz->rb_root.rb_node;
408 struct rb_node *parent = NULL;
409 struct mem_cgroup_per_zone *mz_node;
410
411 if (mz->on_tree)
412 return;
413
414 mz->usage_in_excess = new_usage_in_excess;
415 if (!mz->usage_in_excess)
416 return;
417 while (*p) {
418 parent = *p;
419 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
420 tree_node);
421 if (mz->usage_in_excess < mz_node->usage_in_excess)
422 p = &(*p)->rb_left;
423 /*
424 * We can't avoid mem cgroups that are over their soft
425 * limit by the same amount
426 */
427 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
428 p = &(*p)->rb_right;
429 }
430 rb_link_node(&mz->tree_node, parent, p);
431 rb_insert_color(&mz->tree_node, &mctz->rb_root);
432 mz->on_tree = true;
433 }
434
435 static void
436 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
437 struct mem_cgroup_per_zone *mz,
438 struct mem_cgroup_tree_per_zone *mctz)
439 {
440 if (!mz->on_tree)
441 return;
442 rb_erase(&mz->tree_node, &mctz->rb_root);
443 mz->on_tree = false;
444 }
445
446 static void
447 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
448 struct mem_cgroup_per_zone *mz,
449 struct mem_cgroup_tree_per_zone *mctz)
450 {
451 spin_lock(&mctz->lock);
452 __mem_cgroup_remove_exceeded(mem, mz, mctz);
453 spin_unlock(&mctz->lock);
454 }
455
456
457 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
458 {
459 unsigned long long excess;
460 struct mem_cgroup_per_zone *mz;
461 struct mem_cgroup_tree_per_zone *mctz;
462 int nid = page_to_nid(page);
463 int zid = page_zonenum(page);
464 mctz = soft_limit_tree_from_page(page);
465
466 /*
467 * Necessary to update all ancestors when hierarchy is used.
468 * because their event counter is not touched.
469 */
470 for (; mem; mem = parent_mem_cgroup(mem)) {
471 mz = mem_cgroup_zoneinfo(mem, nid, zid);
472 excess = res_counter_soft_limit_excess(&mem->res);
473 /*
474 * We have to update the tree if mz is on RB-tree or
475 * mem is over its softlimit.
476 */
477 if (excess || mz->on_tree) {
478 spin_lock(&mctz->lock);
479 /* if on-tree, remove it */
480 if (mz->on_tree)
481 __mem_cgroup_remove_exceeded(mem, mz, mctz);
482 /*
483 * Insert again. mz->usage_in_excess will be updated.
484 * If excess is 0, no tree ops.
485 */
486 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
487 spin_unlock(&mctz->lock);
488 }
489 }
490 }
491
492 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
493 {
494 int node, zone;
495 struct mem_cgroup_per_zone *mz;
496 struct mem_cgroup_tree_per_zone *mctz;
497
498 for_each_node_state(node, N_POSSIBLE) {
499 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
500 mz = mem_cgroup_zoneinfo(mem, node, zone);
501 mctz = soft_limit_tree_node_zone(node, zone);
502 mem_cgroup_remove_exceeded(mem, mz, mctz);
503 }
504 }
505 }
506
507 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
508 {
509 return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
510 }
511
512 static struct mem_cgroup_per_zone *
513 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
514 {
515 struct rb_node *rightmost = NULL;
516 struct mem_cgroup_per_zone *mz;
517
518 retry:
519 mz = NULL;
520 rightmost = rb_last(&mctz->rb_root);
521 if (!rightmost)
522 goto done; /* Nothing to reclaim from */
523
524 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
525 /*
526 * Remove the node now but someone else can add it back,
527 * we will to add it back at the end of reclaim to its correct
528 * position in the tree.
529 */
530 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
531 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
532 !css_tryget(&mz->mem->css))
533 goto retry;
534 done:
535 return mz;
536 }
537
538 static struct mem_cgroup_per_zone *
539 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
540 {
541 struct mem_cgroup_per_zone *mz;
542
543 spin_lock(&mctz->lock);
544 mz = __mem_cgroup_largest_soft_limit_node(mctz);
545 spin_unlock(&mctz->lock);
546 return mz;
547 }
548
549 /*
550 * Implementation Note: reading percpu statistics for memcg.
551 *
552 * Both of vmstat[] and percpu_counter has threshold and do periodic
553 * synchronization to implement "quick" read. There are trade-off between
554 * reading cost and precision of value. Then, we may have a chance to implement
555 * a periodic synchronizion of counter in memcg's counter.
556 *
557 * But this _read() function is used for user interface now. The user accounts
558 * memory usage by memory cgroup and he _always_ requires exact value because
559 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
560 * have to visit all online cpus and make sum. So, for now, unnecessary
561 * synchronization is not implemented. (just implemented for cpu hotplug)
562 *
563 * If there are kernel internal actions which can make use of some not-exact
564 * value, and reading all cpu value can be performance bottleneck in some
565 * common workload, threashold and synchonization as vmstat[] should be
566 * implemented.
567 */
568 static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
569 enum mem_cgroup_stat_index idx)
570 {
571 int cpu;
572 s64 val = 0;
573
574 get_online_cpus();
575 for_each_online_cpu(cpu)
576 val += per_cpu(mem->stat->count[idx], cpu);
577 #ifdef CONFIG_HOTPLUG_CPU
578 spin_lock(&mem->pcp_counter_lock);
579 val += mem->nocpu_base.count[idx];
580 spin_unlock(&mem->pcp_counter_lock);
581 #endif
582 put_online_cpus();
583 return val;
584 }
585
586 static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
587 {
588 s64 ret;
589
590 ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
591 ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
592 return ret;
593 }
594
595 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
596 bool charge)
597 {
598 int val = (charge) ? 1 : -1;
599 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
600 }
601
602 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
603 bool file, int nr_pages)
604 {
605 preempt_disable();
606
607 if (file)
608 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
609 else
610 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
611
612 /* pagein of a big page is an event. So, ignore page size */
613 if (nr_pages > 0)
614 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
615 else
616 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
617
618 __this_cpu_add(mem->stat->count[MEM_CGROUP_EVENTS], nr_pages);
619
620 preempt_enable();
621 }
622
623 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
624 enum lru_list idx)
625 {
626 int nid, zid;
627 struct mem_cgroup_per_zone *mz;
628 u64 total = 0;
629
630 for_each_online_node(nid)
631 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
632 mz = mem_cgroup_zoneinfo(mem, nid, zid);
633 total += MEM_CGROUP_ZSTAT(mz, idx);
634 }
635 return total;
636 }
637
638 static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
639 {
640 s64 val;
641
642 val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
643
644 return !(val & ((1 << event_mask_shift) - 1));
645 }
646
647 /*
648 * Check events in order.
649 *
650 */
651 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
652 {
653 /* threshold event is triggered in finer grain than soft limit */
654 if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
655 mem_cgroup_threshold(mem);
656 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
657 mem_cgroup_update_tree(mem, page);
658 }
659 }
660
661 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
662 {
663 return container_of(cgroup_subsys_state(cont,
664 mem_cgroup_subsys_id), struct mem_cgroup,
665 css);
666 }
667
668 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
669 {
670 /*
671 * mm_update_next_owner() may clear mm->owner to NULL
672 * if it races with swapoff, page migration, etc.
673 * So this can be called with p == NULL.
674 */
675 if (unlikely(!p))
676 return NULL;
677
678 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
679 struct mem_cgroup, css);
680 }
681
682 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
683 {
684 struct mem_cgroup *mem = NULL;
685
686 if (!mm)
687 return NULL;
688 /*
689 * Because we have no locks, mm->owner's may be being moved to other
690 * cgroup. We use css_tryget() here even if this looks
691 * pessimistic (rather than adding locks here).
692 */
693 rcu_read_lock();
694 do {
695 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
696 if (unlikely(!mem))
697 break;
698 } while (!css_tryget(&mem->css));
699 rcu_read_unlock();
700 return mem;
701 }
702
703 /* The caller has to guarantee "mem" exists before calling this */
704 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
705 {
706 struct cgroup_subsys_state *css;
707 int found;
708
709 if (!mem) /* ROOT cgroup has the smallest ID */
710 return root_mem_cgroup; /*css_put/get against root is ignored*/
711 if (!mem->use_hierarchy) {
712 if (css_tryget(&mem->css))
713 return mem;
714 return NULL;
715 }
716 rcu_read_lock();
717 /*
718 * searching a memory cgroup which has the smallest ID under given
719 * ROOT cgroup. (ID >= 1)
720 */
721 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
722 if (css && css_tryget(css))
723 mem = container_of(css, struct mem_cgroup, css);
724 else
725 mem = NULL;
726 rcu_read_unlock();
727 return mem;
728 }
729
730 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
731 struct mem_cgroup *root,
732 bool cond)
733 {
734 int nextid = css_id(&iter->css) + 1;
735 int found;
736 int hierarchy_used;
737 struct cgroup_subsys_state *css;
738
739 hierarchy_used = iter->use_hierarchy;
740
741 css_put(&iter->css);
742 /* If no ROOT, walk all, ignore hierarchy */
743 if (!cond || (root && !hierarchy_used))
744 return NULL;
745
746 if (!root)
747 root = root_mem_cgroup;
748
749 do {
750 iter = NULL;
751 rcu_read_lock();
752
753 css = css_get_next(&mem_cgroup_subsys, nextid,
754 &root->css, &found);
755 if (css && css_tryget(css))
756 iter = container_of(css, struct mem_cgroup, css);
757 rcu_read_unlock();
758 /* If css is NULL, no more cgroups will be found */
759 nextid = found + 1;
760 } while (css && !iter);
761
762 return iter;
763 }
764 /*
765 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
766 * be careful that "break" loop is not allowed. We have reference count.
767 * Instead of that modify "cond" to be false and "continue" to exit the loop.
768 */
769 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
770 for (iter = mem_cgroup_start_loop(root);\
771 iter != NULL;\
772 iter = mem_cgroup_get_next(iter, root, cond))
773
774 #define for_each_mem_cgroup_tree(iter, root) \
775 for_each_mem_cgroup_tree_cond(iter, root, true)
776
777 #define for_each_mem_cgroup_all(iter) \
778 for_each_mem_cgroup_tree_cond(iter, NULL, true)
779
780
781 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
782 {
783 return (mem == root_mem_cgroup);
784 }
785
786 /*
787 * Following LRU functions are allowed to be used without PCG_LOCK.
788 * Operations are called by routine of global LRU independently from memcg.
789 * What we have to take care of here is validness of pc->mem_cgroup.
790 *
791 * Changes to pc->mem_cgroup happens when
792 * 1. charge
793 * 2. moving account
794 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
795 * It is added to LRU before charge.
796 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
797 * When moving account, the page is not on LRU. It's isolated.
798 */
799
800 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
801 {
802 struct page_cgroup *pc;
803 struct mem_cgroup_per_zone *mz;
804
805 if (mem_cgroup_disabled())
806 return;
807 pc = lookup_page_cgroup(page);
808 /* can happen while we handle swapcache. */
809 if (!TestClearPageCgroupAcctLRU(pc))
810 return;
811 VM_BUG_ON(!pc->mem_cgroup);
812 /*
813 * We don't check PCG_USED bit. It's cleared when the "page" is finally
814 * removed from global LRU.
815 */
816 mz = page_cgroup_zoneinfo(pc);
817 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
818 if (mem_cgroup_is_root(pc->mem_cgroup))
819 return;
820 VM_BUG_ON(list_empty(&pc->lru));
821 list_del_init(&pc->lru);
822 }
823
824 void mem_cgroup_del_lru(struct page *page)
825 {
826 mem_cgroup_del_lru_list(page, page_lru(page));
827 }
828
829 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
830 {
831 struct mem_cgroup_per_zone *mz;
832 struct page_cgroup *pc;
833
834 if (mem_cgroup_disabled())
835 return;
836
837 pc = lookup_page_cgroup(page);
838 /*
839 * Used bit is set without atomic ops but after smp_wmb().
840 * For making pc->mem_cgroup visible, insert smp_rmb() here.
841 */
842 smp_rmb();
843 /* unused or root page is not rotated. */
844 if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
845 return;
846 mz = page_cgroup_zoneinfo(pc);
847 list_move(&pc->lru, &mz->lists[lru]);
848 }
849
850 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
851 {
852 struct page_cgroup *pc;
853 struct mem_cgroup_per_zone *mz;
854
855 if (mem_cgroup_disabled())
856 return;
857 pc = lookup_page_cgroup(page);
858 VM_BUG_ON(PageCgroupAcctLRU(pc));
859 /*
860 * Used bit is set without atomic ops but after smp_wmb().
861 * For making pc->mem_cgroup visible, insert smp_rmb() here.
862 */
863 smp_rmb();
864 if (!PageCgroupUsed(pc))
865 return;
866
867 mz = page_cgroup_zoneinfo(pc);
868 MEM_CGROUP_ZSTAT(mz, lru) += 1;
869 SetPageCgroupAcctLRU(pc);
870 if (mem_cgroup_is_root(pc->mem_cgroup))
871 return;
872 list_add(&pc->lru, &mz->lists[lru]);
873 }
874
875 /*
876 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
877 * lru because the page may.be reused after it's fully uncharged (because of
878 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
879 * it again. This function is only used to charge SwapCache. It's done under
880 * lock_page and expected that zone->lru_lock is never held.
881 */
882 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
883 {
884 unsigned long flags;
885 struct zone *zone = page_zone(page);
886 struct page_cgroup *pc = lookup_page_cgroup(page);
887
888 spin_lock_irqsave(&zone->lru_lock, flags);
889 /*
890 * Forget old LRU when this page_cgroup is *not* used. This Used bit
891 * is guarded by lock_page() because the page is SwapCache.
892 */
893 if (!PageCgroupUsed(pc))
894 mem_cgroup_del_lru_list(page, page_lru(page));
895 spin_unlock_irqrestore(&zone->lru_lock, flags);
896 }
897
898 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
899 {
900 unsigned long flags;
901 struct zone *zone = page_zone(page);
902 struct page_cgroup *pc = lookup_page_cgroup(page);
903
904 spin_lock_irqsave(&zone->lru_lock, flags);
905 /* link when the page is linked to LRU but page_cgroup isn't */
906 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
907 mem_cgroup_add_lru_list(page, page_lru(page));
908 spin_unlock_irqrestore(&zone->lru_lock, flags);
909 }
910
911
912 void mem_cgroup_move_lists(struct page *page,
913 enum lru_list from, enum lru_list to)
914 {
915 if (mem_cgroup_disabled())
916 return;
917 mem_cgroup_del_lru_list(page, from);
918 mem_cgroup_add_lru_list(page, to);
919 }
920
921 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
922 {
923 int ret;
924 struct mem_cgroup *curr = NULL;
925 struct task_struct *p;
926
927 p = find_lock_task_mm(task);
928 if (!p)
929 return 0;
930 curr = try_get_mem_cgroup_from_mm(p->mm);
931 task_unlock(p);
932 if (!curr)
933 return 0;
934 /*
935 * We should check use_hierarchy of "mem" not "curr". Because checking
936 * use_hierarchy of "curr" here make this function true if hierarchy is
937 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
938 * hierarchy(even if use_hierarchy is disabled in "mem").
939 */
940 if (mem->use_hierarchy)
941 ret = css_is_ancestor(&curr->css, &mem->css);
942 else
943 ret = (curr == mem);
944 css_put(&curr->css);
945 return ret;
946 }
947
948 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
949 {
950 unsigned long active;
951 unsigned long inactive;
952 unsigned long gb;
953 unsigned long inactive_ratio;
954
955 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
956 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
957
958 gb = (inactive + active) >> (30 - PAGE_SHIFT);
959 if (gb)
960 inactive_ratio = int_sqrt(10 * gb);
961 else
962 inactive_ratio = 1;
963
964 if (present_pages) {
965 present_pages[0] = inactive;
966 present_pages[1] = active;
967 }
968
969 return inactive_ratio;
970 }
971
972 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
973 {
974 unsigned long active;
975 unsigned long inactive;
976 unsigned long present_pages[2];
977 unsigned long inactive_ratio;
978
979 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
980
981 inactive = present_pages[0];
982 active = present_pages[1];
983
984 if (inactive * inactive_ratio < active)
985 return 1;
986
987 return 0;
988 }
989
990 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
991 {
992 unsigned long active;
993 unsigned long inactive;
994
995 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
996 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
997
998 return (active > inactive);
999 }
1000
1001 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
1002 struct zone *zone,
1003 enum lru_list lru)
1004 {
1005 int nid = zone_to_nid(zone);
1006 int zid = zone_idx(zone);
1007 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1008
1009 return MEM_CGROUP_ZSTAT(mz, lru);
1010 }
1011
1012 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1013 struct zone *zone)
1014 {
1015 int nid = zone_to_nid(zone);
1016 int zid = zone_idx(zone);
1017 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1018
1019 return &mz->reclaim_stat;
1020 }
1021
1022 struct zone_reclaim_stat *
1023 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1024 {
1025 struct page_cgroup *pc;
1026 struct mem_cgroup_per_zone *mz;
1027
1028 if (mem_cgroup_disabled())
1029 return NULL;
1030
1031 pc = lookup_page_cgroup(page);
1032 /*
1033 * Used bit is set without atomic ops but after smp_wmb().
1034 * For making pc->mem_cgroup visible, insert smp_rmb() here.
1035 */
1036 smp_rmb();
1037 if (!PageCgroupUsed(pc))
1038 return NULL;
1039
1040 mz = page_cgroup_zoneinfo(pc);
1041 if (!mz)
1042 return NULL;
1043
1044 return &mz->reclaim_stat;
1045 }
1046
1047 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1048 struct list_head *dst,
1049 unsigned long *scanned, int order,
1050 int mode, struct zone *z,
1051 struct mem_cgroup *mem_cont,
1052 int active, int file)
1053 {
1054 unsigned long nr_taken = 0;
1055 struct page *page;
1056 unsigned long scan;
1057 LIST_HEAD(pc_list);
1058 struct list_head *src;
1059 struct page_cgroup *pc, *tmp;
1060 int nid = zone_to_nid(z);
1061 int zid = zone_idx(z);
1062 struct mem_cgroup_per_zone *mz;
1063 int lru = LRU_FILE * file + active;
1064 int ret;
1065
1066 BUG_ON(!mem_cont);
1067 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1068 src = &mz->lists[lru];
1069
1070 scan = 0;
1071 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1072 if (scan >= nr_to_scan)
1073 break;
1074
1075 page = pc->page;
1076 if (unlikely(!PageCgroupUsed(pc)))
1077 continue;
1078 if (unlikely(!PageLRU(page)))
1079 continue;
1080
1081 scan++;
1082 ret = __isolate_lru_page(page, mode, file);
1083 switch (ret) {
1084 case 0:
1085 list_move(&page->lru, dst);
1086 mem_cgroup_del_lru(page);
1087 nr_taken += hpage_nr_pages(page);
1088 break;
1089 case -EBUSY:
1090 /* we don't affect global LRU but rotate in our LRU */
1091 mem_cgroup_rotate_lru_list(page, page_lru(page));
1092 break;
1093 default:
1094 break;
1095 }
1096 }
1097
1098 *scanned = scan;
1099
1100 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1101 0, 0, 0, mode);
1102
1103 return nr_taken;
1104 }
1105
1106 #define mem_cgroup_from_res_counter(counter, member) \
1107 container_of(counter, struct mem_cgroup, member)
1108
1109 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1110 {
1111 if (do_swap_account) {
1112 if (res_counter_check_under_limit(&mem->res) &&
1113 res_counter_check_under_limit(&mem->memsw))
1114 return true;
1115 } else
1116 if (res_counter_check_under_limit(&mem->res))
1117 return true;
1118 return false;
1119 }
1120
1121 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1122 {
1123 struct cgroup *cgrp = memcg->css.cgroup;
1124 unsigned int swappiness;
1125
1126 /* root ? */
1127 if (cgrp->parent == NULL)
1128 return vm_swappiness;
1129
1130 spin_lock(&memcg->reclaim_param_lock);
1131 swappiness = memcg->swappiness;
1132 spin_unlock(&memcg->reclaim_param_lock);
1133
1134 return swappiness;
1135 }
1136
1137 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1138 {
1139 int cpu;
1140
1141 get_online_cpus();
1142 spin_lock(&mem->pcp_counter_lock);
1143 for_each_online_cpu(cpu)
1144 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1145 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1146 spin_unlock(&mem->pcp_counter_lock);
1147 put_online_cpus();
1148
1149 synchronize_rcu();
1150 }
1151
1152 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1153 {
1154 int cpu;
1155
1156 if (!mem)
1157 return;
1158 get_online_cpus();
1159 spin_lock(&mem->pcp_counter_lock);
1160 for_each_online_cpu(cpu)
1161 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1162 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1163 spin_unlock(&mem->pcp_counter_lock);
1164 put_online_cpus();
1165 }
1166 /*
1167 * 2 routines for checking "mem" is under move_account() or not.
1168 *
1169 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1170 * for avoiding race in accounting. If true,
1171 * pc->mem_cgroup may be overwritten.
1172 *
1173 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1174 * under hierarchy of moving cgroups. This is for
1175 * waiting at hith-memory prressure caused by "move".
1176 */
1177
1178 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1179 {
1180 VM_BUG_ON(!rcu_read_lock_held());
1181 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1182 }
1183
1184 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1185 {
1186 struct mem_cgroup *from;
1187 struct mem_cgroup *to;
1188 bool ret = false;
1189 /*
1190 * Unlike task_move routines, we access mc.to, mc.from not under
1191 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1192 */
1193 spin_lock(&mc.lock);
1194 from = mc.from;
1195 to = mc.to;
1196 if (!from)
1197 goto unlock;
1198 if (from == mem || to == mem
1199 || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1200 || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1201 ret = true;
1202 unlock:
1203 spin_unlock(&mc.lock);
1204 return ret;
1205 }
1206
1207 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1208 {
1209 if (mc.moving_task && current != mc.moving_task) {
1210 if (mem_cgroup_under_move(mem)) {
1211 DEFINE_WAIT(wait);
1212 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1213 /* moving charge context might have finished. */
1214 if (mc.moving_task)
1215 schedule();
1216 finish_wait(&mc.waitq, &wait);
1217 return true;
1218 }
1219 }
1220 return false;
1221 }
1222
1223 /**
1224 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1225 * @memcg: The memory cgroup that went over limit
1226 * @p: Task that is going to be killed
1227 *
1228 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1229 * enabled
1230 */
1231 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1232 {
1233 struct cgroup *task_cgrp;
1234 struct cgroup *mem_cgrp;
1235 /*
1236 * Need a buffer in BSS, can't rely on allocations. The code relies
1237 * on the assumption that OOM is serialized for memory controller.
1238 * If this assumption is broken, revisit this code.
1239 */
1240 static char memcg_name[PATH_MAX];
1241 int ret;
1242
1243 if (!memcg || !p)
1244 return;
1245
1246
1247 rcu_read_lock();
1248
1249 mem_cgrp = memcg->css.cgroup;
1250 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1251
1252 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1253 if (ret < 0) {
1254 /*
1255 * Unfortunately, we are unable to convert to a useful name
1256 * But we'll still print out the usage information
1257 */
1258 rcu_read_unlock();
1259 goto done;
1260 }
1261 rcu_read_unlock();
1262
1263 printk(KERN_INFO "Task in %s killed", memcg_name);
1264
1265 rcu_read_lock();
1266 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1267 if (ret < 0) {
1268 rcu_read_unlock();
1269 goto done;
1270 }
1271 rcu_read_unlock();
1272
1273 /*
1274 * Continues from above, so we don't need an KERN_ level
1275 */
1276 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1277 done:
1278
1279 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1280 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1281 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1282 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1283 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1284 "failcnt %llu\n",
1285 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1286 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1287 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1288 }
1289
1290 /*
1291 * This function returns the number of memcg under hierarchy tree. Returns
1292 * 1(self count) if no children.
1293 */
1294 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1295 {
1296 int num = 0;
1297 struct mem_cgroup *iter;
1298
1299 for_each_mem_cgroup_tree(iter, mem)
1300 num++;
1301 return num;
1302 }
1303
1304 /*
1305 * Return the memory (and swap, if configured) limit for a memcg.
1306 */
1307 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1308 {
1309 u64 limit;
1310 u64 memsw;
1311
1312 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1313 limit += total_swap_pages << PAGE_SHIFT;
1314
1315 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1316 /*
1317 * If memsw is finite and limits the amount of swap space available
1318 * to this memcg, return that limit.
1319 */
1320 return min(limit, memsw);
1321 }
1322
1323 /*
1324 * Visit the first child (need not be the first child as per the ordering
1325 * of the cgroup list, since we track last_scanned_child) of @mem and use
1326 * that to reclaim free pages from.
1327 */
1328 static struct mem_cgroup *
1329 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1330 {
1331 struct mem_cgroup *ret = NULL;
1332 struct cgroup_subsys_state *css;
1333 int nextid, found;
1334
1335 if (!root_mem->use_hierarchy) {
1336 css_get(&root_mem->css);
1337 ret = root_mem;
1338 }
1339
1340 while (!ret) {
1341 rcu_read_lock();
1342 nextid = root_mem->last_scanned_child + 1;
1343 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1344 &found);
1345 if (css && css_tryget(css))
1346 ret = container_of(css, struct mem_cgroup, css);
1347
1348 rcu_read_unlock();
1349 /* Updates scanning parameter */
1350 spin_lock(&root_mem->reclaim_param_lock);
1351 if (!css) {
1352 /* this means start scan from ID:1 */
1353 root_mem->last_scanned_child = 0;
1354 } else
1355 root_mem->last_scanned_child = found;
1356 spin_unlock(&root_mem->reclaim_param_lock);
1357 }
1358
1359 return ret;
1360 }
1361
1362 /*
1363 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1364 * we reclaimed from, so that we don't end up penalizing one child extensively
1365 * based on its position in the children list.
1366 *
1367 * root_mem is the original ancestor that we've been reclaim from.
1368 *
1369 * We give up and return to the caller when we visit root_mem twice.
1370 * (other groups can be removed while we're walking....)
1371 *
1372 * If shrink==true, for avoiding to free too much, this returns immedieately.
1373 */
1374 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1375 struct zone *zone,
1376 gfp_t gfp_mask,
1377 unsigned long reclaim_options)
1378 {
1379 struct mem_cgroup *victim;
1380 int ret, total = 0;
1381 int loop = 0;
1382 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1383 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1384 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1385 unsigned long excess = mem_cgroup_get_excess(root_mem);
1386
1387 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1388 if (root_mem->memsw_is_minimum)
1389 noswap = true;
1390
1391 while (1) {
1392 victim = mem_cgroup_select_victim(root_mem);
1393 if (victim == root_mem) {
1394 loop++;
1395 if (loop >= 1)
1396 drain_all_stock_async();
1397 if (loop >= 2) {
1398 /*
1399 * If we have not been able to reclaim
1400 * anything, it might because there are
1401 * no reclaimable pages under this hierarchy
1402 */
1403 if (!check_soft || !total) {
1404 css_put(&victim->css);
1405 break;
1406 }
1407 /*
1408 * We want to do more targetted reclaim.
1409 * excess >> 2 is not to excessive so as to
1410 * reclaim too much, nor too less that we keep
1411 * coming back to reclaim from this cgroup
1412 */
1413 if (total >= (excess >> 2) ||
1414 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1415 css_put(&victim->css);
1416 break;
1417 }
1418 }
1419 }
1420 if (!mem_cgroup_local_usage(victim)) {
1421 /* this cgroup's local usage == 0 */
1422 css_put(&victim->css);
1423 continue;
1424 }
1425 /* we use swappiness of local cgroup */
1426 if (check_soft)
1427 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1428 noswap, get_swappiness(victim), zone);
1429 else
1430 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1431 noswap, get_swappiness(victim));
1432 css_put(&victim->css);
1433 /*
1434 * At shrinking usage, we can't check we should stop here or
1435 * reclaim more. It's depends on callers. last_scanned_child
1436 * will work enough for keeping fairness under tree.
1437 */
1438 if (shrink)
1439 return ret;
1440 total += ret;
1441 if (check_soft) {
1442 if (res_counter_check_under_soft_limit(&root_mem->res))
1443 return total;
1444 } else if (mem_cgroup_check_under_limit(root_mem))
1445 return 1 + total;
1446 }
1447 return total;
1448 }
1449
1450 /*
1451 * Check OOM-Killer is already running under our hierarchy.
1452 * If someone is running, return false.
1453 */
1454 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1455 {
1456 int x, lock_count = 0;
1457 struct mem_cgroup *iter;
1458
1459 for_each_mem_cgroup_tree(iter, mem) {
1460 x = atomic_inc_return(&iter->oom_lock);
1461 lock_count = max(x, lock_count);
1462 }
1463
1464 if (lock_count == 1)
1465 return true;
1466 return false;
1467 }
1468
1469 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1470 {
1471 struct mem_cgroup *iter;
1472
1473 /*
1474 * When a new child is created while the hierarchy is under oom,
1475 * mem_cgroup_oom_lock() may not be called. We have to use
1476 * atomic_add_unless() here.
1477 */
1478 for_each_mem_cgroup_tree(iter, mem)
1479 atomic_add_unless(&iter->oom_lock, -1, 0);
1480 return 0;
1481 }
1482
1483
1484 static DEFINE_MUTEX(memcg_oom_mutex);
1485 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1486
1487 struct oom_wait_info {
1488 struct mem_cgroup *mem;
1489 wait_queue_t wait;
1490 };
1491
1492 static int memcg_oom_wake_function(wait_queue_t *wait,
1493 unsigned mode, int sync, void *arg)
1494 {
1495 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1496 struct oom_wait_info *oom_wait_info;
1497
1498 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1499
1500 if (oom_wait_info->mem == wake_mem)
1501 goto wakeup;
1502 /* if no hierarchy, no match */
1503 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1504 return 0;
1505 /*
1506 * Both of oom_wait_info->mem and wake_mem are stable under us.
1507 * Then we can use css_is_ancestor without taking care of RCU.
1508 */
1509 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1510 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1511 return 0;
1512
1513 wakeup:
1514 return autoremove_wake_function(wait, mode, sync, arg);
1515 }
1516
1517 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1518 {
1519 /* for filtering, pass "mem" as argument. */
1520 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1521 }
1522
1523 static void memcg_oom_recover(struct mem_cgroup *mem)
1524 {
1525 if (mem && atomic_read(&mem->oom_lock))
1526 memcg_wakeup_oom(mem);
1527 }
1528
1529 /*
1530 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1531 */
1532 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1533 {
1534 struct oom_wait_info owait;
1535 bool locked, need_to_kill;
1536
1537 owait.mem = mem;
1538 owait.wait.flags = 0;
1539 owait.wait.func = memcg_oom_wake_function;
1540 owait.wait.private = current;
1541 INIT_LIST_HEAD(&owait.wait.task_list);
1542 need_to_kill = true;
1543 /* At first, try to OOM lock hierarchy under mem.*/
1544 mutex_lock(&memcg_oom_mutex);
1545 locked = mem_cgroup_oom_lock(mem);
1546 /*
1547 * Even if signal_pending(), we can't quit charge() loop without
1548 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1549 * under OOM is always welcomed, use TASK_KILLABLE here.
1550 */
1551 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1552 if (!locked || mem->oom_kill_disable)
1553 need_to_kill = false;
1554 if (locked)
1555 mem_cgroup_oom_notify(mem);
1556 mutex_unlock(&memcg_oom_mutex);
1557
1558 if (need_to_kill) {
1559 finish_wait(&memcg_oom_waitq, &owait.wait);
1560 mem_cgroup_out_of_memory(mem, mask);
1561 } else {
1562 schedule();
1563 finish_wait(&memcg_oom_waitq, &owait.wait);
1564 }
1565 mutex_lock(&memcg_oom_mutex);
1566 mem_cgroup_oom_unlock(mem);
1567 memcg_wakeup_oom(mem);
1568 mutex_unlock(&memcg_oom_mutex);
1569
1570 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1571 return false;
1572 /* Give chance to dying process */
1573 schedule_timeout(1);
1574 return true;
1575 }
1576
1577 /*
1578 * Currently used to update mapped file statistics, but the routine can be
1579 * generalized to update other statistics as well.
1580 *
1581 * Notes: Race condition
1582 *
1583 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1584 * it tends to be costly. But considering some conditions, we doesn't need
1585 * to do so _always_.
1586 *
1587 * Considering "charge", lock_page_cgroup() is not required because all
1588 * file-stat operations happen after a page is attached to radix-tree. There
1589 * are no race with "charge".
1590 *
1591 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1592 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1593 * if there are race with "uncharge". Statistics itself is properly handled
1594 * by flags.
1595 *
1596 * Considering "move", this is an only case we see a race. To make the race
1597 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1598 * possibility of race condition. If there is, we take a lock.
1599 */
1600
1601 void mem_cgroup_update_page_stat(struct page *page,
1602 enum mem_cgroup_page_stat_item idx, int val)
1603 {
1604 struct mem_cgroup *mem;
1605 struct page_cgroup *pc = lookup_page_cgroup(page);
1606 bool need_unlock = false;
1607 unsigned long uninitialized_var(flags);
1608
1609 if (unlikely(!pc))
1610 return;
1611
1612 rcu_read_lock();
1613 mem = pc->mem_cgroup;
1614 if (unlikely(!mem || !PageCgroupUsed(pc)))
1615 goto out;
1616 /* pc->mem_cgroup is unstable ? */
1617 if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1618 /* take a lock against to access pc->mem_cgroup */
1619 move_lock_page_cgroup(pc, &flags);
1620 need_unlock = true;
1621 mem = pc->mem_cgroup;
1622 if (!mem || !PageCgroupUsed(pc))
1623 goto out;
1624 }
1625
1626 switch (idx) {
1627 case MEMCG_NR_FILE_MAPPED:
1628 if (val > 0)
1629 SetPageCgroupFileMapped(pc);
1630 else if (!page_mapped(page))
1631 ClearPageCgroupFileMapped(pc);
1632 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1633 break;
1634 default:
1635 BUG();
1636 }
1637
1638 this_cpu_add(mem->stat->count[idx], val);
1639
1640 out:
1641 if (unlikely(need_unlock))
1642 move_unlock_page_cgroup(pc, &flags);
1643 rcu_read_unlock();
1644 return;
1645 }
1646 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1647
1648 /*
1649 * size of first charge trial. "32" comes from vmscan.c's magic value.
1650 * TODO: maybe necessary to use big numbers in big irons.
1651 */
1652 #define CHARGE_SIZE (32 * PAGE_SIZE)
1653 struct memcg_stock_pcp {
1654 struct mem_cgroup *cached; /* this never be root cgroup */
1655 int charge;
1656 struct work_struct work;
1657 };
1658 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1659 static atomic_t memcg_drain_count;
1660
1661 /*
1662 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1663 * from local stock and true is returned. If the stock is 0 or charges from a
1664 * cgroup which is not current target, returns false. This stock will be
1665 * refilled.
1666 */
1667 static bool consume_stock(struct mem_cgroup *mem)
1668 {
1669 struct memcg_stock_pcp *stock;
1670 bool ret = true;
1671
1672 stock = &get_cpu_var(memcg_stock);
1673 if (mem == stock->cached && stock->charge)
1674 stock->charge -= PAGE_SIZE;
1675 else /* need to call res_counter_charge */
1676 ret = false;
1677 put_cpu_var(memcg_stock);
1678 return ret;
1679 }
1680
1681 /*
1682 * Returns stocks cached in percpu to res_counter and reset cached information.
1683 */
1684 static void drain_stock(struct memcg_stock_pcp *stock)
1685 {
1686 struct mem_cgroup *old = stock->cached;
1687
1688 if (stock->charge) {
1689 res_counter_uncharge(&old->res, stock->charge);
1690 if (do_swap_account)
1691 res_counter_uncharge(&old->memsw, stock->charge);
1692 }
1693 stock->cached = NULL;
1694 stock->charge = 0;
1695 }
1696
1697 /*
1698 * This must be called under preempt disabled or must be called by
1699 * a thread which is pinned to local cpu.
1700 */
1701 static void drain_local_stock(struct work_struct *dummy)
1702 {
1703 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1704 drain_stock(stock);
1705 }
1706
1707 /*
1708 * Cache charges(val) which is from res_counter, to local per_cpu area.
1709 * This will be consumed by consume_stock() function, later.
1710 */
1711 static void refill_stock(struct mem_cgroup *mem, int val)
1712 {
1713 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1714
1715 if (stock->cached != mem) { /* reset if necessary */
1716 drain_stock(stock);
1717 stock->cached = mem;
1718 }
1719 stock->charge += val;
1720 put_cpu_var(memcg_stock);
1721 }
1722
1723 /*
1724 * Tries to drain stocked charges in other cpus. This function is asynchronous
1725 * and just put a work per cpu for draining localy on each cpu. Caller can
1726 * expects some charges will be back to res_counter later but cannot wait for
1727 * it.
1728 */
1729 static void drain_all_stock_async(void)
1730 {
1731 int cpu;
1732 /* This function is for scheduling "drain" in asynchronous way.
1733 * The result of "drain" is not directly handled by callers. Then,
1734 * if someone is calling drain, we don't have to call drain more.
1735 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1736 * there is a race. We just do loose check here.
1737 */
1738 if (atomic_read(&memcg_drain_count))
1739 return;
1740 /* Notify other cpus that system-wide "drain" is running */
1741 atomic_inc(&memcg_drain_count);
1742 get_online_cpus();
1743 for_each_online_cpu(cpu) {
1744 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1745 schedule_work_on(cpu, &stock->work);
1746 }
1747 put_online_cpus();
1748 atomic_dec(&memcg_drain_count);
1749 /* We don't wait for flush_work */
1750 }
1751
1752 /* This is a synchronous drain interface. */
1753 static void drain_all_stock_sync(void)
1754 {
1755 /* called when force_empty is called */
1756 atomic_inc(&memcg_drain_count);
1757 schedule_on_each_cpu(drain_local_stock);
1758 atomic_dec(&memcg_drain_count);
1759 }
1760
1761 /*
1762 * This function drains percpu counter value from DEAD cpu and
1763 * move it to local cpu. Note that this function can be preempted.
1764 */
1765 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1766 {
1767 int i;
1768
1769 spin_lock(&mem->pcp_counter_lock);
1770 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1771 s64 x = per_cpu(mem->stat->count[i], cpu);
1772
1773 per_cpu(mem->stat->count[i], cpu) = 0;
1774 mem->nocpu_base.count[i] += x;
1775 }
1776 /* need to clear ON_MOVE value, works as a kind of lock. */
1777 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1778 spin_unlock(&mem->pcp_counter_lock);
1779 }
1780
1781 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1782 {
1783 int idx = MEM_CGROUP_ON_MOVE;
1784
1785 spin_lock(&mem->pcp_counter_lock);
1786 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1787 spin_unlock(&mem->pcp_counter_lock);
1788 }
1789
1790 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1791 unsigned long action,
1792 void *hcpu)
1793 {
1794 int cpu = (unsigned long)hcpu;
1795 struct memcg_stock_pcp *stock;
1796 struct mem_cgroup *iter;
1797
1798 if ((action == CPU_ONLINE)) {
1799 for_each_mem_cgroup_all(iter)
1800 synchronize_mem_cgroup_on_move(iter, cpu);
1801 return NOTIFY_OK;
1802 }
1803
1804 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1805 return NOTIFY_OK;
1806
1807 for_each_mem_cgroup_all(iter)
1808 mem_cgroup_drain_pcp_counter(iter, cpu);
1809
1810 stock = &per_cpu(memcg_stock, cpu);
1811 drain_stock(stock);
1812 return NOTIFY_OK;
1813 }
1814
1815
1816 /* See __mem_cgroup_try_charge() for details */
1817 enum {
1818 CHARGE_OK, /* success */
1819 CHARGE_RETRY, /* need to retry but retry is not bad */
1820 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
1821 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
1822 CHARGE_OOM_DIE, /* the current is killed because of OOM */
1823 };
1824
1825 static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1826 int csize, bool oom_check)
1827 {
1828 struct mem_cgroup *mem_over_limit;
1829 struct res_counter *fail_res;
1830 unsigned long flags = 0;
1831 int ret;
1832
1833 ret = res_counter_charge(&mem->res, csize, &fail_res);
1834
1835 if (likely(!ret)) {
1836 if (!do_swap_account)
1837 return CHARGE_OK;
1838 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1839 if (likely(!ret))
1840 return CHARGE_OK;
1841
1842 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1843 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1844 } else
1845 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1846
1847 if (csize > PAGE_SIZE) /* change csize and retry */
1848 return CHARGE_RETRY;
1849
1850 if (!(gfp_mask & __GFP_WAIT))
1851 return CHARGE_WOULDBLOCK;
1852
1853 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1854 gfp_mask, flags);
1855 /*
1856 * try_to_free_mem_cgroup_pages() might not give us a full
1857 * picture of reclaim. Some pages are reclaimed and might be
1858 * moved to swap cache or just unmapped from the cgroup.
1859 * Check the limit again to see if the reclaim reduced the
1860 * current usage of the cgroup before giving up
1861 */
1862 if (ret || mem_cgroup_check_under_limit(mem_over_limit))
1863 return CHARGE_RETRY;
1864
1865 /*
1866 * At task move, charge accounts can be doubly counted. So, it's
1867 * better to wait until the end of task_move if something is going on.
1868 */
1869 if (mem_cgroup_wait_acct_move(mem_over_limit))
1870 return CHARGE_RETRY;
1871
1872 /* If we don't need to call oom-killer at el, return immediately */
1873 if (!oom_check)
1874 return CHARGE_NOMEM;
1875 /* check OOM */
1876 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1877 return CHARGE_OOM_DIE;
1878
1879 return CHARGE_RETRY;
1880 }
1881
1882 /*
1883 * Unlike exported interface, "oom" parameter is added. if oom==true,
1884 * oom-killer can be invoked.
1885 */
1886 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1887 gfp_t gfp_mask,
1888 struct mem_cgroup **memcg, bool oom,
1889 int page_size)
1890 {
1891 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1892 struct mem_cgroup *mem = NULL;
1893 int ret;
1894 int csize = max(CHARGE_SIZE, (unsigned long) page_size);
1895
1896 /*
1897 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1898 * in system level. So, allow to go ahead dying process in addition to
1899 * MEMDIE process.
1900 */
1901 if (unlikely(test_thread_flag(TIF_MEMDIE)
1902 || fatal_signal_pending(current)))
1903 goto bypass;
1904
1905 /*
1906 * We always charge the cgroup the mm_struct belongs to.
1907 * The mm_struct's mem_cgroup changes on task migration if the
1908 * thread group leader migrates. It's possible that mm is not
1909 * set, if so charge the init_mm (happens for pagecache usage).
1910 */
1911 if (!*memcg && !mm)
1912 goto bypass;
1913 again:
1914 if (*memcg) { /* css should be a valid one */
1915 mem = *memcg;
1916 VM_BUG_ON(css_is_removed(&mem->css));
1917 if (mem_cgroup_is_root(mem))
1918 goto done;
1919 if (page_size == PAGE_SIZE && consume_stock(mem))
1920 goto done;
1921 css_get(&mem->css);
1922 } else {
1923 struct task_struct *p;
1924
1925 rcu_read_lock();
1926 p = rcu_dereference(mm->owner);
1927 /*
1928 * Because we don't have task_lock(), "p" can exit.
1929 * In that case, "mem" can point to root or p can be NULL with
1930 * race with swapoff. Then, we have small risk of mis-accouning.
1931 * But such kind of mis-account by race always happens because
1932 * we don't have cgroup_mutex(). It's overkill and we allo that
1933 * small race, here.
1934 * (*) swapoff at el will charge against mm-struct not against
1935 * task-struct. So, mm->owner can be NULL.
1936 */
1937 mem = mem_cgroup_from_task(p);
1938 if (!mem || mem_cgroup_is_root(mem)) {
1939 rcu_read_unlock();
1940 goto done;
1941 }
1942 if (page_size == PAGE_SIZE && consume_stock(mem)) {
1943 /*
1944 * It seems dagerous to access memcg without css_get().
1945 * But considering how consume_stok works, it's not
1946 * necessary. If consume_stock success, some charges
1947 * from this memcg are cached on this cpu. So, we
1948 * don't need to call css_get()/css_tryget() before
1949 * calling consume_stock().
1950 */
1951 rcu_read_unlock();
1952 goto done;
1953 }
1954 /* after here, we may be blocked. we need to get refcnt */
1955 if (!css_tryget(&mem->css)) {
1956 rcu_read_unlock();
1957 goto again;
1958 }
1959 rcu_read_unlock();
1960 }
1961
1962 do {
1963 bool oom_check;
1964
1965 /* If killed, bypass charge */
1966 if (fatal_signal_pending(current)) {
1967 css_put(&mem->css);
1968 goto bypass;
1969 }
1970
1971 oom_check = false;
1972 if (oom && !nr_oom_retries) {
1973 oom_check = true;
1974 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1975 }
1976
1977 ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
1978
1979 switch (ret) {
1980 case CHARGE_OK:
1981 break;
1982 case CHARGE_RETRY: /* not in OOM situation but retry */
1983 csize = page_size;
1984 css_put(&mem->css);
1985 mem = NULL;
1986 goto again;
1987 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
1988 css_put(&mem->css);
1989 goto nomem;
1990 case CHARGE_NOMEM: /* OOM routine works */
1991 if (!oom) {
1992 css_put(&mem->css);
1993 goto nomem;
1994 }
1995 /* If oom, we never return -ENOMEM */
1996 nr_oom_retries--;
1997 break;
1998 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
1999 css_put(&mem->css);
2000 goto bypass;
2001 }
2002 } while (ret != CHARGE_OK);
2003
2004 if (csize > page_size)
2005 refill_stock(mem, csize - page_size);
2006 css_put(&mem->css);
2007 done:
2008 *memcg = mem;
2009 return 0;
2010 nomem:
2011 *memcg = NULL;
2012 return -ENOMEM;
2013 bypass:
2014 *memcg = NULL;
2015 return 0;
2016 }
2017
2018 /*
2019 * Somemtimes we have to undo a charge we got by try_charge().
2020 * This function is for that and do uncharge, put css's refcnt.
2021 * gotten by try_charge().
2022 */
2023 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2024 unsigned long count)
2025 {
2026 if (!mem_cgroup_is_root(mem)) {
2027 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
2028 if (do_swap_account)
2029 res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
2030 }
2031 }
2032
2033 static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2034 int page_size)
2035 {
2036 __mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
2037 }
2038
2039 /*
2040 * A helper function to get mem_cgroup from ID. must be called under
2041 * rcu_read_lock(). The caller must check css_is_removed() or some if
2042 * it's concern. (dropping refcnt from swap can be called against removed
2043 * memcg.)
2044 */
2045 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2046 {
2047 struct cgroup_subsys_state *css;
2048
2049 /* ID 0 is unused ID */
2050 if (!id)
2051 return NULL;
2052 css = css_lookup(&mem_cgroup_subsys, id);
2053 if (!css)
2054 return NULL;
2055 return container_of(css, struct mem_cgroup, css);
2056 }
2057
2058 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2059 {
2060 struct mem_cgroup *mem = NULL;
2061 struct page_cgroup *pc;
2062 unsigned short id;
2063 swp_entry_t ent;
2064
2065 VM_BUG_ON(!PageLocked(page));
2066
2067 pc = lookup_page_cgroup(page);
2068 lock_page_cgroup(pc);
2069 if (PageCgroupUsed(pc)) {
2070 mem = pc->mem_cgroup;
2071 if (mem && !css_tryget(&mem->css))
2072 mem = NULL;
2073 } else if (PageSwapCache(page)) {
2074 ent.val = page_private(page);
2075 id = lookup_swap_cgroup(ent);
2076 rcu_read_lock();
2077 mem = mem_cgroup_lookup(id);
2078 if (mem && !css_tryget(&mem->css))
2079 mem = NULL;
2080 rcu_read_unlock();
2081 }
2082 unlock_page_cgroup(pc);
2083 return mem;
2084 }
2085
2086 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2087 struct page_cgroup *pc,
2088 enum charge_type ctype,
2089 int page_size)
2090 {
2091 int nr_pages = page_size >> PAGE_SHIFT;
2092
2093 /* try_charge() can return NULL to *memcg, taking care of it. */
2094 if (!mem)
2095 return;
2096
2097 lock_page_cgroup(pc);
2098 if (unlikely(PageCgroupUsed(pc))) {
2099 unlock_page_cgroup(pc);
2100 mem_cgroup_cancel_charge(mem, page_size);
2101 return;
2102 }
2103 /*
2104 * we don't need page_cgroup_lock about tail pages, becase they are not
2105 * accessed by any other context at this point.
2106 */
2107 pc->mem_cgroup = mem;
2108 /*
2109 * We access a page_cgroup asynchronously without lock_page_cgroup().
2110 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2111 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2112 * before USED bit, we need memory barrier here.
2113 * See mem_cgroup_add_lru_list(), etc.
2114 */
2115 smp_wmb();
2116 switch (ctype) {
2117 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2118 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2119 SetPageCgroupCache(pc);
2120 SetPageCgroupUsed(pc);
2121 break;
2122 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2123 ClearPageCgroupCache(pc);
2124 SetPageCgroupUsed(pc);
2125 break;
2126 default:
2127 break;
2128 }
2129
2130 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2131 unlock_page_cgroup(pc);
2132 /*
2133 * "charge_statistics" updated event counter. Then, check it.
2134 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2135 * if they exceeds softlimit.
2136 */
2137 memcg_check_events(mem, pc->page);
2138 }
2139
2140 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2141
2142 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2143 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2144 /*
2145 * Because tail pages are not marked as "used", set it. We're under
2146 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2147 */
2148 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2149 {
2150 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2151 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2152 unsigned long flags;
2153
2154 /*
2155 * We have no races witch charge/uncharge but will have races with
2156 * page state accounting.
2157 */
2158 move_lock_page_cgroup(head_pc, &flags);
2159
2160 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2161 smp_wmb(); /* see __commit_charge() */
2162 /* we don't need to copy all flags...*/
2163 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2164 move_unlock_page_cgroup(head_pc, &flags);
2165 }
2166 #endif
2167
2168 /**
2169 * __mem_cgroup_move_account - move account of the page
2170 * @pc: page_cgroup of the page.
2171 * @from: mem_cgroup which the page is moved from.
2172 * @to: mem_cgroup which the page is moved to. @from != @to.
2173 * @uncharge: whether we should call uncharge and css_put against @from.
2174 *
2175 * The caller must confirm following.
2176 * - page is not on LRU (isolate_page() is useful.)
2177 * - the pc is locked, used, and ->mem_cgroup points to @from.
2178 *
2179 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2180 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2181 * true, this function does "uncharge" from old cgroup, but it doesn't if
2182 * @uncharge is false, so a caller should do "uncharge".
2183 */
2184
2185 static void __mem_cgroup_move_account(struct page_cgroup *pc,
2186 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
2187 {
2188 VM_BUG_ON(from == to);
2189 VM_BUG_ON(PageLRU(pc->page));
2190 VM_BUG_ON(!page_is_cgroup_locked(pc));
2191 VM_BUG_ON(!PageCgroupUsed(pc));
2192 VM_BUG_ON(pc->mem_cgroup != from);
2193
2194 if (PageCgroupFileMapped(pc)) {
2195 /* Update mapped_file data for mem_cgroup */
2196 preempt_disable();
2197 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2198 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2199 preempt_enable();
2200 }
2201 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -1);
2202 if (uncharge)
2203 /* This is not "cancel", but cancel_charge does all we need. */
2204 mem_cgroup_cancel_charge(from, PAGE_SIZE);
2205
2206 /* caller should have done css_get */
2207 pc->mem_cgroup = to;
2208 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), 1);
2209 /*
2210 * We charges against "to" which may not have any tasks. Then, "to"
2211 * can be under rmdir(). But in current implementation, caller of
2212 * this function is just force_empty() and move charge, so it's
2213 * garanteed that "to" is never removed. So, we don't check rmdir
2214 * status here.
2215 */
2216 }
2217
2218 /*
2219 * check whether the @pc is valid for moving account and call
2220 * __mem_cgroup_move_account()
2221 */
2222 static int mem_cgroup_move_account(struct page_cgroup *pc,
2223 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
2224 {
2225 int ret = -EINVAL;
2226 unsigned long flags;
2227
2228 lock_page_cgroup(pc);
2229 if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2230 move_lock_page_cgroup(pc, &flags);
2231 __mem_cgroup_move_account(pc, from, to, uncharge);
2232 move_unlock_page_cgroup(pc, &flags);
2233 ret = 0;
2234 }
2235 unlock_page_cgroup(pc);
2236 /*
2237 * check events
2238 */
2239 memcg_check_events(to, pc->page);
2240 memcg_check_events(from, pc->page);
2241 return ret;
2242 }
2243
2244 /*
2245 * move charges to its parent.
2246 */
2247
2248 static int mem_cgroup_move_parent(struct page_cgroup *pc,
2249 struct mem_cgroup *child,
2250 gfp_t gfp_mask)
2251 {
2252 struct page *page = pc->page;
2253 struct cgroup *cg = child->css.cgroup;
2254 struct cgroup *pcg = cg->parent;
2255 struct mem_cgroup *parent;
2256 int ret;
2257
2258 /* Is ROOT ? */
2259 if (!pcg)
2260 return -EINVAL;
2261
2262 ret = -EBUSY;
2263 if (!get_page_unless_zero(page))
2264 goto out;
2265 if (isolate_lru_page(page))
2266 goto put;
2267
2268 parent = mem_cgroup_from_cont(pcg);
2269 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false,
2270 PAGE_SIZE);
2271 if (ret || !parent)
2272 goto put_back;
2273
2274 ret = mem_cgroup_move_account(pc, child, parent, true);
2275 if (ret)
2276 mem_cgroup_cancel_charge(parent, PAGE_SIZE);
2277 put_back:
2278 putback_lru_page(page);
2279 put:
2280 put_page(page);
2281 out:
2282 return ret;
2283 }
2284
2285 /*
2286 * Charge the memory controller for page usage.
2287 * Return
2288 * 0 if the charge was successful
2289 * < 0 if the cgroup is over its limit
2290 */
2291 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2292 gfp_t gfp_mask, enum charge_type ctype)
2293 {
2294 struct mem_cgroup *mem = NULL;
2295 struct page_cgroup *pc;
2296 int ret;
2297 int page_size = PAGE_SIZE;
2298
2299 if (PageTransHuge(page)) {
2300 page_size <<= compound_order(page);
2301 VM_BUG_ON(!PageTransHuge(page));
2302 }
2303
2304 pc = lookup_page_cgroup(page);
2305 /* can happen at boot */
2306 if (unlikely(!pc))
2307 return 0;
2308 prefetchw(pc);
2309
2310 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page_size);
2311 if (ret || !mem)
2312 return ret;
2313
2314 __mem_cgroup_commit_charge(mem, pc, ctype, page_size);
2315 return 0;
2316 }
2317
2318 int mem_cgroup_newpage_charge(struct page *page,
2319 struct mm_struct *mm, gfp_t gfp_mask)
2320 {
2321 if (mem_cgroup_disabled())
2322 return 0;
2323 /*
2324 * If already mapped, we don't have to account.
2325 * If page cache, page->mapping has address_space.
2326 * But page->mapping may have out-of-use anon_vma pointer,
2327 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2328 * is NULL.
2329 */
2330 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2331 return 0;
2332 if (unlikely(!mm))
2333 mm = &init_mm;
2334 return mem_cgroup_charge_common(page, mm, gfp_mask,
2335 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2336 }
2337
2338 static void
2339 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2340 enum charge_type ctype);
2341
2342 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2343 gfp_t gfp_mask)
2344 {
2345 int ret;
2346
2347 if (mem_cgroup_disabled())
2348 return 0;
2349 if (PageCompound(page))
2350 return 0;
2351 /*
2352 * Corner case handling. This is called from add_to_page_cache()
2353 * in usual. But some FS (shmem) precharges this page before calling it
2354 * and call add_to_page_cache() with GFP_NOWAIT.
2355 *
2356 * For GFP_NOWAIT case, the page may be pre-charged before calling
2357 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2358 * charge twice. (It works but has to pay a bit larger cost.)
2359 * And when the page is SwapCache, it should take swap information
2360 * into account. This is under lock_page() now.
2361 */
2362 if (!(gfp_mask & __GFP_WAIT)) {
2363 struct page_cgroup *pc;
2364
2365 pc = lookup_page_cgroup(page);
2366 if (!pc)
2367 return 0;
2368 lock_page_cgroup(pc);
2369 if (PageCgroupUsed(pc)) {
2370 unlock_page_cgroup(pc);
2371 return 0;
2372 }
2373 unlock_page_cgroup(pc);
2374 }
2375
2376 if (unlikely(!mm))
2377 mm = &init_mm;
2378
2379 if (page_is_file_cache(page))
2380 return mem_cgroup_charge_common(page, mm, gfp_mask,
2381 MEM_CGROUP_CHARGE_TYPE_CACHE);
2382
2383 /* shmem */
2384 if (PageSwapCache(page)) {
2385 struct mem_cgroup *mem = NULL;
2386
2387 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2388 if (!ret)
2389 __mem_cgroup_commit_charge_swapin(page, mem,
2390 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2391 } else
2392 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2393 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2394
2395 return ret;
2396 }
2397
2398 /*
2399 * While swap-in, try_charge -> commit or cancel, the page is locked.
2400 * And when try_charge() successfully returns, one refcnt to memcg without
2401 * struct page_cgroup is acquired. This refcnt will be consumed by
2402 * "commit()" or removed by "cancel()"
2403 */
2404 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2405 struct page *page,
2406 gfp_t mask, struct mem_cgroup **ptr)
2407 {
2408 struct mem_cgroup *mem;
2409 int ret;
2410
2411 if (mem_cgroup_disabled())
2412 return 0;
2413
2414 if (!do_swap_account)
2415 goto charge_cur_mm;
2416 /*
2417 * A racing thread's fault, or swapoff, may have already updated
2418 * the pte, and even removed page from swap cache: in those cases
2419 * do_swap_page()'s pte_same() test will fail; but there's also a
2420 * KSM case which does need to charge the page.
2421 */
2422 if (!PageSwapCache(page))
2423 goto charge_cur_mm;
2424 mem = try_get_mem_cgroup_from_page(page);
2425 if (!mem)
2426 goto charge_cur_mm;
2427 *ptr = mem;
2428 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
2429 css_put(&mem->css);
2430 return ret;
2431 charge_cur_mm:
2432 if (unlikely(!mm))
2433 mm = &init_mm;
2434 return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
2435 }
2436
2437 static void
2438 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2439 enum charge_type ctype)
2440 {
2441 struct page_cgroup *pc;
2442
2443 if (mem_cgroup_disabled())
2444 return;
2445 if (!ptr)
2446 return;
2447 cgroup_exclude_rmdir(&ptr->css);
2448 pc = lookup_page_cgroup(page);
2449 mem_cgroup_lru_del_before_commit_swapcache(page);
2450 __mem_cgroup_commit_charge(ptr, pc, ctype, PAGE_SIZE);
2451 mem_cgroup_lru_add_after_commit_swapcache(page);
2452 /*
2453 * Now swap is on-memory. This means this page may be
2454 * counted both as mem and swap....double count.
2455 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2456 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2457 * may call delete_from_swap_cache() before reach here.
2458 */
2459 if (do_swap_account && PageSwapCache(page)) {
2460 swp_entry_t ent = {.val = page_private(page)};
2461 unsigned short id;
2462 struct mem_cgroup *memcg;
2463
2464 id = swap_cgroup_record(ent, 0);
2465 rcu_read_lock();
2466 memcg = mem_cgroup_lookup(id);
2467 if (memcg) {
2468 /*
2469 * This recorded memcg can be obsolete one. So, avoid
2470 * calling css_tryget
2471 */
2472 if (!mem_cgroup_is_root(memcg))
2473 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2474 mem_cgroup_swap_statistics(memcg, false);
2475 mem_cgroup_put(memcg);
2476 }
2477 rcu_read_unlock();
2478 }
2479 /*
2480 * At swapin, we may charge account against cgroup which has no tasks.
2481 * So, rmdir()->pre_destroy() can be called while we do this charge.
2482 * In that case, we need to call pre_destroy() again. check it here.
2483 */
2484 cgroup_release_and_wakeup_rmdir(&ptr->css);
2485 }
2486
2487 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2488 {
2489 __mem_cgroup_commit_charge_swapin(page, ptr,
2490 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2491 }
2492
2493 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2494 {
2495 if (mem_cgroup_disabled())
2496 return;
2497 if (!mem)
2498 return;
2499 mem_cgroup_cancel_charge(mem, PAGE_SIZE);
2500 }
2501
2502 static void
2503 __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
2504 int page_size)
2505 {
2506 struct memcg_batch_info *batch = NULL;
2507 bool uncharge_memsw = true;
2508 /* If swapout, usage of swap doesn't decrease */
2509 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2510 uncharge_memsw = false;
2511
2512 batch = &current->memcg_batch;
2513 /*
2514 * In usual, we do css_get() when we remember memcg pointer.
2515 * But in this case, we keep res->usage until end of a series of
2516 * uncharges. Then, it's ok to ignore memcg's refcnt.
2517 */
2518 if (!batch->memcg)
2519 batch->memcg = mem;
2520 /*
2521 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2522 * In those cases, all pages freed continously can be expected to be in
2523 * the same cgroup and we have chance to coalesce uncharges.
2524 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2525 * because we want to do uncharge as soon as possible.
2526 */
2527
2528 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2529 goto direct_uncharge;
2530
2531 if (page_size != PAGE_SIZE)
2532 goto direct_uncharge;
2533
2534 /*
2535 * In typical case, batch->memcg == mem. This means we can
2536 * merge a series of uncharges to an uncharge of res_counter.
2537 * If not, we uncharge res_counter ony by one.
2538 */
2539 if (batch->memcg != mem)
2540 goto direct_uncharge;
2541 /* remember freed charge and uncharge it later */
2542 batch->bytes += PAGE_SIZE;
2543 if (uncharge_memsw)
2544 batch->memsw_bytes += PAGE_SIZE;
2545 return;
2546 direct_uncharge:
2547 res_counter_uncharge(&mem->res, page_size);
2548 if (uncharge_memsw)
2549 res_counter_uncharge(&mem->memsw, page_size);
2550 if (unlikely(batch->memcg != mem))
2551 memcg_oom_recover(mem);
2552 return;
2553 }
2554
2555 /*
2556 * uncharge if !page_mapped(page)
2557 */
2558 static struct mem_cgroup *
2559 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2560 {
2561 int count;
2562 struct page_cgroup *pc;
2563 struct mem_cgroup *mem = NULL;
2564 int page_size = PAGE_SIZE;
2565
2566 if (mem_cgroup_disabled())
2567 return NULL;
2568
2569 if (PageSwapCache(page))
2570 return NULL;
2571
2572 if (PageTransHuge(page)) {
2573 page_size <<= compound_order(page);
2574 VM_BUG_ON(!PageTransHuge(page));
2575 }
2576
2577 count = page_size >> PAGE_SHIFT;
2578 /*
2579 * Check if our page_cgroup is valid
2580 */
2581 pc = lookup_page_cgroup(page);
2582 if (unlikely(!pc || !PageCgroupUsed(pc)))
2583 return NULL;
2584
2585 lock_page_cgroup(pc);
2586
2587 mem = pc->mem_cgroup;
2588
2589 if (!PageCgroupUsed(pc))
2590 goto unlock_out;
2591
2592 switch (ctype) {
2593 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2594 case MEM_CGROUP_CHARGE_TYPE_DROP:
2595 /* See mem_cgroup_prepare_migration() */
2596 if (page_mapped(page) || PageCgroupMigration(pc))
2597 goto unlock_out;
2598 break;
2599 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2600 if (!PageAnon(page)) { /* Shared memory */
2601 if (page->mapping && !page_is_file_cache(page))
2602 goto unlock_out;
2603 } else if (page_mapped(page)) /* Anon */
2604 goto unlock_out;
2605 break;
2606 default:
2607 break;
2608 }
2609
2610 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -count);
2611
2612 ClearPageCgroupUsed(pc);
2613 /*
2614 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2615 * freed from LRU. This is safe because uncharged page is expected not
2616 * to be reused (freed soon). Exception is SwapCache, it's handled by
2617 * special functions.
2618 */
2619
2620 unlock_page_cgroup(pc);
2621 /*
2622 * even after unlock, we have mem->res.usage here and this memcg
2623 * will never be freed.
2624 */
2625 memcg_check_events(mem, page);
2626 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2627 mem_cgroup_swap_statistics(mem, true);
2628 mem_cgroup_get(mem);
2629 }
2630 if (!mem_cgroup_is_root(mem))
2631 __do_uncharge(mem, ctype, page_size);
2632
2633 return mem;
2634
2635 unlock_out:
2636 unlock_page_cgroup(pc);
2637 return NULL;
2638 }
2639
2640 void mem_cgroup_uncharge_page(struct page *page)
2641 {
2642 /* early check. */
2643 if (page_mapped(page))
2644 return;
2645 if (page->mapping && !PageAnon(page))
2646 return;
2647 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2648 }
2649
2650 void mem_cgroup_uncharge_cache_page(struct page *page)
2651 {
2652 VM_BUG_ON(page_mapped(page));
2653 VM_BUG_ON(page->mapping);
2654 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2655 }
2656
2657 /*
2658 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2659 * In that cases, pages are freed continuously and we can expect pages
2660 * are in the same memcg. All these calls itself limits the number of
2661 * pages freed at once, then uncharge_start/end() is called properly.
2662 * This may be called prural(2) times in a context,
2663 */
2664
2665 void mem_cgroup_uncharge_start(void)
2666 {
2667 current->memcg_batch.do_batch++;
2668 /* We can do nest. */
2669 if (current->memcg_batch.do_batch == 1) {
2670 current->memcg_batch.memcg = NULL;
2671 current->memcg_batch.bytes = 0;
2672 current->memcg_batch.memsw_bytes = 0;
2673 }
2674 }
2675
2676 void mem_cgroup_uncharge_end(void)
2677 {
2678 struct memcg_batch_info *batch = &current->memcg_batch;
2679
2680 if (!batch->do_batch)
2681 return;
2682
2683 batch->do_batch--;
2684 if (batch->do_batch) /* If stacked, do nothing. */
2685 return;
2686
2687 if (!batch->memcg)
2688 return;
2689 /*
2690 * This "batch->memcg" is valid without any css_get/put etc...
2691 * bacause we hide charges behind us.
2692 */
2693 if (batch->bytes)
2694 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2695 if (batch->memsw_bytes)
2696 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2697 memcg_oom_recover(batch->memcg);
2698 /* forget this pointer (for sanity check) */
2699 batch->memcg = NULL;
2700 }
2701
2702 #ifdef CONFIG_SWAP
2703 /*
2704 * called after __delete_from_swap_cache() and drop "page" account.
2705 * memcg information is recorded to swap_cgroup of "ent"
2706 */
2707 void
2708 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2709 {
2710 struct mem_cgroup *memcg;
2711 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2712
2713 if (!swapout) /* this was a swap cache but the swap is unused ! */
2714 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2715
2716 memcg = __mem_cgroup_uncharge_common(page, ctype);
2717
2718 /*
2719 * record memcg information, if swapout && memcg != NULL,
2720 * mem_cgroup_get() was called in uncharge().
2721 */
2722 if (do_swap_account && swapout && memcg)
2723 swap_cgroup_record(ent, css_id(&memcg->css));
2724 }
2725 #endif
2726
2727 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2728 /*
2729 * called from swap_entry_free(). remove record in swap_cgroup and
2730 * uncharge "memsw" account.
2731 */
2732 void mem_cgroup_uncharge_swap(swp_entry_t ent)
2733 {
2734 struct mem_cgroup *memcg;
2735 unsigned short id;
2736
2737 if (!do_swap_account)
2738 return;
2739
2740 id = swap_cgroup_record(ent, 0);
2741 rcu_read_lock();
2742 memcg = mem_cgroup_lookup(id);
2743 if (memcg) {
2744 /*
2745 * We uncharge this because swap is freed.
2746 * This memcg can be obsolete one. We avoid calling css_tryget
2747 */
2748 if (!mem_cgroup_is_root(memcg))
2749 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2750 mem_cgroup_swap_statistics(memcg, false);
2751 mem_cgroup_put(memcg);
2752 }
2753 rcu_read_unlock();
2754 }
2755
2756 /**
2757 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2758 * @entry: swap entry to be moved
2759 * @from: mem_cgroup which the entry is moved from
2760 * @to: mem_cgroup which the entry is moved to
2761 * @need_fixup: whether we should fixup res_counters and refcounts.
2762 *
2763 * It succeeds only when the swap_cgroup's record for this entry is the same
2764 * as the mem_cgroup's id of @from.
2765 *
2766 * Returns 0 on success, -EINVAL on failure.
2767 *
2768 * The caller must have charged to @to, IOW, called res_counter_charge() about
2769 * both res and memsw, and called css_get().
2770 */
2771 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2772 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2773 {
2774 unsigned short old_id, new_id;
2775
2776 old_id = css_id(&from->css);
2777 new_id = css_id(&to->css);
2778
2779 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2780 mem_cgroup_swap_statistics(from, false);
2781 mem_cgroup_swap_statistics(to, true);
2782 /*
2783 * This function is only called from task migration context now.
2784 * It postpones res_counter and refcount handling till the end
2785 * of task migration(mem_cgroup_clear_mc()) for performance
2786 * improvement. But we cannot postpone mem_cgroup_get(to)
2787 * because if the process that has been moved to @to does
2788 * swap-in, the refcount of @to might be decreased to 0.
2789 */
2790 mem_cgroup_get(to);
2791 if (need_fixup) {
2792 if (!mem_cgroup_is_root(from))
2793 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2794 mem_cgroup_put(from);
2795 /*
2796 * we charged both to->res and to->memsw, so we should
2797 * uncharge to->res.
2798 */
2799 if (!mem_cgroup_is_root(to))
2800 res_counter_uncharge(&to->res, PAGE_SIZE);
2801 }
2802 return 0;
2803 }
2804 return -EINVAL;
2805 }
2806 #else
2807 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2808 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2809 {
2810 return -EINVAL;
2811 }
2812 #endif
2813
2814 /*
2815 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2816 * page belongs to.
2817 */
2818 int mem_cgroup_prepare_migration(struct page *page,
2819 struct page *newpage, struct mem_cgroup **ptr)
2820 {
2821 struct page_cgroup *pc;
2822 struct mem_cgroup *mem = NULL;
2823 enum charge_type ctype;
2824 int ret = 0;
2825
2826 VM_BUG_ON(PageTransHuge(page));
2827 if (mem_cgroup_disabled())
2828 return 0;
2829
2830 pc = lookup_page_cgroup(page);
2831 lock_page_cgroup(pc);
2832 if (PageCgroupUsed(pc)) {
2833 mem = pc->mem_cgroup;
2834 css_get(&mem->css);
2835 /*
2836 * At migrating an anonymous page, its mapcount goes down
2837 * to 0 and uncharge() will be called. But, even if it's fully
2838 * unmapped, migration may fail and this page has to be
2839 * charged again. We set MIGRATION flag here and delay uncharge
2840 * until end_migration() is called
2841 *
2842 * Corner Case Thinking
2843 * A)
2844 * When the old page was mapped as Anon and it's unmap-and-freed
2845 * while migration was ongoing.
2846 * If unmap finds the old page, uncharge() of it will be delayed
2847 * until end_migration(). If unmap finds a new page, it's
2848 * uncharged when it make mapcount to be 1->0. If unmap code
2849 * finds swap_migration_entry, the new page will not be mapped
2850 * and end_migration() will find it(mapcount==0).
2851 *
2852 * B)
2853 * When the old page was mapped but migraion fails, the kernel
2854 * remaps it. A charge for it is kept by MIGRATION flag even
2855 * if mapcount goes down to 0. We can do remap successfully
2856 * without charging it again.
2857 *
2858 * C)
2859 * The "old" page is under lock_page() until the end of
2860 * migration, so, the old page itself will not be swapped-out.
2861 * If the new page is swapped out before end_migraton, our
2862 * hook to usual swap-out path will catch the event.
2863 */
2864 if (PageAnon(page))
2865 SetPageCgroupMigration(pc);
2866 }
2867 unlock_page_cgroup(pc);
2868 /*
2869 * If the page is not charged at this point,
2870 * we return here.
2871 */
2872 if (!mem)
2873 return 0;
2874
2875 *ptr = mem;
2876 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false, PAGE_SIZE);
2877 css_put(&mem->css);/* drop extra refcnt */
2878 if (ret || *ptr == NULL) {
2879 if (PageAnon(page)) {
2880 lock_page_cgroup(pc);
2881 ClearPageCgroupMigration(pc);
2882 unlock_page_cgroup(pc);
2883 /*
2884 * The old page may be fully unmapped while we kept it.
2885 */
2886 mem_cgroup_uncharge_page(page);
2887 }
2888 return -ENOMEM;
2889 }
2890 /*
2891 * We charge new page before it's used/mapped. So, even if unlock_page()
2892 * is called before end_migration, we can catch all events on this new
2893 * page. In the case new page is migrated but not remapped, new page's
2894 * mapcount will be finally 0 and we call uncharge in end_migration().
2895 */
2896 pc = lookup_page_cgroup(newpage);
2897 if (PageAnon(page))
2898 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2899 else if (page_is_file_cache(page))
2900 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2901 else
2902 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2903 __mem_cgroup_commit_charge(mem, pc, ctype, PAGE_SIZE);
2904 return ret;
2905 }
2906
2907 /* remove redundant charge if migration failed*/
2908 void mem_cgroup_end_migration(struct mem_cgroup *mem,
2909 struct page *oldpage, struct page *newpage, bool migration_ok)
2910 {
2911 struct page *used, *unused;
2912 struct page_cgroup *pc;
2913
2914 if (!mem)
2915 return;
2916 /* blocks rmdir() */
2917 cgroup_exclude_rmdir(&mem->css);
2918 if (!migration_ok) {
2919 used = oldpage;
2920 unused = newpage;
2921 } else {
2922 used = newpage;
2923 unused = oldpage;
2924 }
2925 /*
2926 * We disallowed uncharge of pages under migration because mapcount
2927 * of the page goes down to zero, temporarly.
2928 * Clear the flag and check the page should be charged.
2929 */
2930 pc = lookup_page_cgroup(oldpage);
2931 lock_page_cgroup(pc);
2932 ClearPageCgroupMigration(pc);
2933 unlock_page_cgroup(pc);
2934
2935 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
2936
2937 /*
2938 * If a page is a file cache, radix-tree replacement is very atomic
2939 * and we can skip this check. When it was an Anon page, its mapcount
2940 * goes down to 0. But because we added MIGRATION flage, it's not
2941 * uncharged yet. There are several case but page->mapcount check
2942 * and USED bit check in mem_cgroup_uncharge_page() will do enough
2943 * check. (see prepare_charge() also)
2944 */
2945 if (PageAnon(used))
2946 mem_cgroup_uncharge_page(used);
2947 /*
2948 * At migration, we may charge account against cgroup which has no
2949 * tasks.
2950 * So, rmdir()->pre_destroy() can be called while we do this charge.
2951 * In that case, we need to call pre_destroy() again. check it here.
2952 */
2953 cgroup_release_and_wakeup_rmdir(&mem->css);
2954 }
2955
2956 /*
2957 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2958 * Calling hierarchical_reclaim is not enough because we should update
2959 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2960 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2961 * not from the memcg which this page would be charged to.
2962 * try_charge_swapin does all of these works properly.
2963 */
2964 int mem_cgroup_shmem_charge_fallback(struct page *page,
2965 struct mm_struct *mm,
2966 gfp_t gfp_mask)
2967 {
2968 struct mem_cgroup *mem = NULL;
2969 int ret;
2970
2971 if (mem_cgroup_disabled())
2972 return 0;
2973
2974 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2975 if (!ret)
2976 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2977
2978 return ret;
2979 }
2980
2981 static DEFINE_MUTEX(set_limit_mutex);
2982
2983 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2984 unsigned long long val)
2985 {
2986 int retry_count;
2987 u64 memswlimit, memlimit;
2988 int ret = 0;
2989 int children = mem_cgroup_count_children(memcg);
2990 u64 curusage, oldusage;
2991 int enlarge;
2992
2993 /*
2994 * For keeping hierarchical_reclaim simple, how long we should retry
2995 * is depends on callers. We set our retry-count to be function
2996 * of # of children which we should visit in this loop.
2997 */
2998 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2999
3000 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3001
3002 enlarge = 0;
3003 while (retry_count) {
3004 if (signal_pending(current)) {
3005 ret = -EINTR;
3006 break;
3007 }
3008 /*
3009 * Rather than hide all in some function, I do this in
3010 * open coded manner. You see what this really does.
3011 * We have to guarantee mem->res.limit < mem->memsw.limit.
3012 */
3013 mutex_lock(&set_limit_mutex);
3014 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3015 if (memswlimit < val) {
3016 ret = -EINVAL;
3017 mutex_unlock(&set_limit_mutex);
3018 break;
3019 }
3020
3021 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3022 if (memlimit < val)
3023 enlarge = 1;
3024
3025 ret = res_counter_set_limit(&memcg->res, val);
3026 if (!ret) {
3027 if (memswlimit == val)
3028 memcg->memsw_is_minimum = true;
3029 else
3030 memcg->memsw_is_minimum = false;
3031 }
3032 mutex_unlock(&set_limit_mutex);
3033
3034 if (!ret)
3035 break;
3036
3037 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3038 MEM_CGROUP_RECLAIM_SHRINK);
3039 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3040 /* Usage is reduced ? */
3041 if (curusage >= oldusage)
3042 retry_count--;
3043 else
3044 oldusage = curusage;
3045 }
3046 if (!ret && enlarge)
3047 memcg_oom_recover(memcg);
3048
3049 return ret;
3050 }
3051
3052 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3053 unsigned long long val)
3054 {
3055 int retry_count;
3056 u64 memlimit, memswlimit, oldusage, curusage;
3057 int children = mem_cgroup_count_children(memcg);
3058 int ret = -EBUSY;
3059 int enlarge = 0;
3060
3061 /* see mem_cgroup_resize_res_limit */
3062 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3063 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3064 while (retry_count) {
3065 if (signal_pending(current)) {
3066 ret = -EINTR;
3067 break;
3068 }
3069 /*
3070 * Rather than hide all in some function, I do this in
3071 * open coded manner. You see what this really does.
3072 * We have to guarantee mem->res.limit < mem->memsw.limit.
3073 */
3074 mutex_lock(&set_limit_mutex);
3075 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3076 if (memlimit > val) {
3077 ret = -EINVAL;
3078 mutex_unlock(&set_limit_mutex);
3079 break;
3080 }
3081 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3082 if (memswlimit < val)
3083 enlarge = 1;
3084 ret = res_counter_set_limit(&memcg->memsw, val);
3085 if (!ret) {
3086 if (memlimit == val)
3087 memcg->memsw_is_minimum = true;
3088 else
3089 memcg->memsw_is_minimum = false;
3090 }
3091 mutex_unlock(&set_limit_mutex);
3092
3093 if (!ret)
3094 break;
3095
3096 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3097 MEM_CGROUP_RECLAIM_NOSWAP |
3098 MEM_CGROUP_RECLAIM_SHRINK);
3099 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3100 /* Usage is reduced ? */
3101 if (curusage >= oldusage)
3102 retry_count--;
3103 else
3104 oldusage = curusage;
3105 }
3106 if (!ret && enlarge)
3107 memcg_oom_recover(memcg);
3108 return ret;
3109 }
3110
3111 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3112 gfp_t gfp_mask)
3113 {
3114 unsigned long nr_reclaimed = 0;
3115 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3116 unsigned long reclaimed;
3117 int loop = 0;
3118 struct mem_cgroup_tree_per_zone *mctz;
3119 unsigned long long excess;
3120
3121 if (order > 0)
3122 return 0;
3123
3124 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3125 /*
3126 * This loop can run a while, specially if mem_cgroup's continuously
3127 * keep exceeding their soft limit and putting the system under
3128 * pressure
3129 */
3130 do {
3131 if (next_mz)
3132 mz = next_mz;
3133 else
3134 mz = mem_cgroup_largest_soft_limit_node(mctz);
3135 if (!mz)
3136 break;
3137
3138 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3139 gfp_mask,
3140 MEM_CGROUP_RECLAIM_SOFT);
3141 nr_reclaimed += reclaimed;
3142 spin_lock(&mctz->lock);
3143
3144 /*
3145 * If we failed to reclaim anything from this memory cgroup
3146 * it is time to move on to the next cgroup
3147 */
3148 next_mz = NULL;
3149 if (!reclaimed) {
3150 do {
3151 /*
3152 * Loop until we find yet another one.
3153 *
3154 * By the time we get the soft_limit lock
3155 * again, someone might have aded the
3156 * group back on the RB tree. Iterate to
3157 * make sure we get a different mem.
3158 * mem_cgroup_largest_soft_limit_node returns
3159 * NULL if no other cgroup is present on
3160 * the tree
3161 */
3162 next_mz =
3163 __mem_cgroup_largest_soft_limit_node(mctz);
3164 if (next_mz == mz) {
3165 css_put(&next_mz->mem->css);
3166 next_mz = NULL;
3167 } else /* next_mz == NULL or other memcg */
3168 break;
3169 } while (1);
3170 }
3171 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3172 excess = res_counter_soft_limit_excess(&mz->mem->res);
3173 /*
3174 * One school of thought says that we should not add
3175 * back the node to the tree if reclaim returns 0.
3176 * But our reclaim could return 0, simply because due
3177 * to priority we are exposing a smaller subset of
3178 * memory to reclaim from. Consider this as a longer
3179 * term TODO.
3180 */
3181 /* If excess == 0, no tree ops */
3182 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3183 spin_unlock(&mctz->lock);
3184 css_put(&mz->mem->css);
3185 loop++;
3186 /*
3187 * Could not reclaim anything and there are no more
3188 * mem cgroups to try or we seem to be looping without
3189 * reclaiming anything.
3190 */
3191 if (!nr_reclaimed &&
3192 (next_mz == NULL ||
3193 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3194 break;
3195 } while (!nr_reclaimed);
3196 if (next_mz)
3197 css_put(&next_mz->mem->css);
3198 return nr_reclaimed;
3199 }
3200
3201 /*
3202 * This routine traverse page_cgroup in given list and drop them all.
3203 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3204 */
3205 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3206 int node, int zid, enum lru_list lru)
3207 {
3208 struct zone *zone;
3209 struct mem_cgroup_per_zone *mz;
3210 struct page_cgroup *pc, *busy;
3211 unsigned long flags, loop;
3212 struct list_head *list;
3213 int ret = 0;
3214
3215 zone = &NODE_DATA(node)->node_zones[zid];
3216 mz = mem_cgroup_zoneinfo(mem, node, zid);
3217 list = &mz->lists[lru];
3218
3219 loop = MEM_CGROUP_ZSTAT(mz, lru);
3220 /* give some margin against EBUSY etc...*/
3221 loop += 256;
3222 busy = NULL;
3223 while (loop--) {
3224 ret = 0;
3225 spin_lock_irqsave(&zone->lru_lock, flags);
3226 if (list_empty(list)) {
3227 spin_unlock_irqrestore(&zone->lru_lock, flags);
3228 break;
3229 }
3230 pc = list_entry(list->prev, struct page_cgroup, lru);
3231 if (busy == pc) {
3232 list_move(&pc->lru, list);
3233 busy = NULL;
3234 spin_unlock_irqrestore(&zone->lru_lock, flags);
3235 continue;
3236 }
3237 spin_unlock_irqrestore(&zone->lru_lock, flags);
3238
3239 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
3240 if (ret == -ENOMEM)
3241 break;
3242
3243 if (ret == -EBUSY || ret == -EINVAL) {
3244 /* found lock contention or "pc" is obsolete. */
3245 busy = pc;
3246 cond_resched();
3247 } else
3248 busy = NULL;
3249 }
3250
3251 if (!ret && !list_empty(list))
3252 return -EBUSY;
3253 return ret;
3254 }
3255
3256 /*
3257 * make mem_cgroup's charge to be 0 if there is no task.
3258 * This enables deleting this mem_cgroup.
3259 */
3260 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3261 {
3262 int ret;
3263 int node, zid, shrink;
3264 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3265 struct cgroup *cgrp = mem->css.cgroup;
3266
3267 css_get(&mem->css);
3268
3269 shrink = 0;
3270 /* should free all ? */
3271 if (free_all)
3272 goto try_to_free;
3273 move_account:
3274 do {
3275 ret = -EBUSY;
3276 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3277 goto out;
3278 ret = -EINTR;
3279 if (signal_pending(current))
3280 goto out;
3281 /* This is for making all *used* pages to be on LRU. */
3282 lru_add_drain_all();
3283 drain_all_stock_sync();
3284 ret = 0;
3285 mem_cgroup_start_move(mem);
3286 for_each_node_state(node, N_HIGH_MEMORY) {
3287 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3288 enum lru_list l;
3289 for_each_lru(l) {
3290 ret = mem_cgroup_force_empty_list(mem,
3291 node, zid, l);
3292 if (ret)
3293 break;
3294 }
3295 }
3296 if (ret)
3297 break;
3298 }
3299 mem_cgroup_end_move(mem);
3300 memcg_oom_recover(mem);
3301 /* it seems parent cgroup doesn't have enough mem */
3302 if (ret == -ENOMEM)
3303 goto try_to_free;
3304 cond_resched();
3305 /* "ret" should also be checked to ensure all lists are empty. */
3306 } while (mem->res.usage > 0 || ret);
3307 out:
3308 css_put(&mem->css);
3309 return ret;
3310
3311 try_to_free:
3312 /* returns EBUSY if there is a task or if we come here twice. */
3313 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3314 ret = -EBUSY;
3315 goto out;
3316 }
3317 /* we call try-to-free pages for make this cgroup empty */
3318 lru_add_drain_all();
3319 /* try to free all pages in this cgroup */
3320 shrink = 1;
3321 while (nr_retries && mem->res.usage > 0) {
3322 int progress;
3323
3324 if (signal_pending(current)) {
3325 ret = -EINTR;
3326 goto out;
3327 }
3328 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3329 false, get_swappiness(mem));
3330 if (!progress) {
3331 nr_retries--;
3332 /* maybe some writeback is necessary */
3333 congestion_wait(BLK_RW_ASYNC, HZ/10);
3334 }
3335
3336 }
3337 lru_add_drain();
3338 /* try move_account...there may be some *locked* pages. */
3339 goto move_account;
3340 }
3341
3342 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3343 {
3344 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3345 }
3346
3347
3348 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3349 {
3350 return mem_cgroup_from_cont(cont)->use_hierarchy;
3351 }
3352
3353 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3354 u64 val)
3355 {
3356 int retval = 0;
3357 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3358 struct cgroup *parent = cont->parent;
3359 struct mem_cgroup *parent_mem = NULL;
3360
3361 if (parent)
3362 parent_mem = mem_cgroup_from_cont(parent);
3363
3364 cgroup_lock();
3365 /*
3366 * If parent's use_hierarchy is set, we can't make any modifications
3367 * in the child subtrees. If it is unset, then the change can
3368 * occur, provided the current cgroup has no children.
3369 *
3370 * For the root cgroup, parent_mem is NULL, we allow value to be
3371 * set if there are no children.
3372 */
3373 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3374 (val == 1 || val == 0)) {
3375 if (list_empty(&cont->children))
3376 mem->use_hierarchy = val;
3377 else
3378 retval = -EBUSY;
3379 } else
3380 retval = -EINVAL;
3381 cgroup_unlock();
3382
3383 return retval;
3384 }
3385
3386
3387 static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3388 enum mem_cgroup_stat_index idx)
3389 {
3390 struct mem_cgroup *iter;
3391 s64 val = 0;
3392
3393 /* each per cpu's value can be minus.Then, use s64 */
3394 for_each_mem_cgroup_tree(iter, mem)
3395 val += mem_cgroup_read_stat(iter, idx);
3396
3397 if (val < 0) /* race ? */
3398 val = 0;
3399 return val;
3400 }
3401
3402 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3403 {
3404 u64 val;
3405
3406 if (!mem_cgroup_is_root(mem)) {
3407 if (!swap)
3408 return res_counter_read_u64(&mem->res, RES_USAGE);
3409 else
3410 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3411 }
3412
3413 val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
3414 val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3415
3416 if (swap)
3417 val += mem_cgroup_get_recursive_idx_stat(mem,
3418 MEM_CGROUP_STAT_SWAPOUT);
3419
3420 return val << PAGE_SHIFT;
3421 }
3422
3423 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3424 {
3425 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3426 u64 val;
3427 int type, name;
3428
3429 type = MEMFILE_TYPE(cft->private);
3430 name = MEMFILE_ATTR(cft->private);
3431 switch (type) {
3432 case _MEM:
3433 if (name == RES_USAGE)
3434 val = mem_cgroup_usage(mem, false);
3435 else
3436 val = res_counter_read_u64(&mem->res, name);
3437 break;
3438 case _MEMSWAP:
3439 if (name == RES_USAGE)
3440 val = mem_cgroup_usage(mem, true);
3441 else
3442 val = res_counter_read_u64(&mem->memsw, name);
3443 break;
3444 default:
3445 BUG();
3446 break;
3447 }
3448 return val;
3449 }
3450 /*
3451 * The user of this function is...
3452 * RES_LIMIT.
3453 */
3454 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3455 const char *buffer)
3456 {
3457 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3458 int type, name;
3459 unsigned long long val;
3460 int ret;
3461
3462 type = MEMFILE_TYPE(cft->private);
3463 name = MEMFILE_ATTR(cft->private);
3464 switch (name) {
3465 case RES_LIMIT:
3466 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3467 ret = -EINVAL;
3468 break;
3469 }
3470 /* This function does all necessary parse...reuse it */
3471 ret = res_counter_memparse_write_strategy(buffer, &val);
3472 if (ret)
3473 break;
3474 if (type == _MEM)
3475 ret = mem_cgroup_resize_limit(memcg, val);
3476 else
3477 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3478 break;
3479 case RES_SOFT_LIMIT:
3480 ret = res_counter_memparse_write_strategy(buffer, &val);
3481 if (ret)
3482 break;
3483 /*
3484 * For memsw, soft limits are hard to implement in terms
3485 * of semantics, for now, we support soft limits for
3486 * control without swap
3487 */
3488 if (type == _MEM)
3489 ret = res_counter_set_soft_limit(&memcg->res, val);
3490 else
3491 ret = -EINVAL;
3492 break;
3493 default:
3494 ret = -EINVAL; /* should be BUG() ? */
3495 break;
3496 }
3497 return ret;
3498 }
3499
3500 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3501 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3502 {
3503 struct cgroup *cgroup;
3504 unsigned long long min_limit, min_memsw_limit, tmp;
3505
3506 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3507 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3508 cgroup = memcg->css.cgroup;
3509 if (!memcg->use_hierarchy)
3510 goto out;
3511
3512 while (cgroup->parent) {
3513 cgroup = cgroup->parent;
3514 memcg = mem_cgroup_from_cont(cgroup);
3515 if (!memcg->use_hierarchy)
3516 break;
3517 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3518 min_limit = min(min_limit, tmp);
3519 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3520 min_memsw_limit = min(min_memsw_limit, tmp);
3521 }
3522 out:
3523 *mem_limit = min_limit;
3524 *memsw_limit = min_memsw_limit;
3525 return;
3526 }
3527
3528 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3529 {
3530 struct mem_cgroup *mem;
3531 int type, name;
3532
3533 mem = mem_cgroup_from_cont(cont);
3534 type = MEMFILE_TYPE(event);
3535 name = MEMFILE_ATTR(event);
3536 switch (name) {
3537 case RES_MAX_USAGE:
3538 if (type == _MEM)
3539 res_counter_reset_max(&mem->res);
3540 else
3541 res_counter_reset_max(&mem->memsw);
3542 break;
3543 case RES_FAILCNT:
3544 if (type == _MEM)
3545 res_counter_reset_failcnt(&mem->res);
3546 else
3547 res_counter_reset_failcnt(&mem->memsw);
3548 break;
3549 }
3550
3551 return 0;
3552 }
3553
3554 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3555 struct cftype *cft)
3556 {
3557 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3558 }
3559
3560 #ifdef CONFIG_MMU
3561 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3562 struct cftype *cft, u64 val)
3563 {
3564 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3565
3566 if (val >= (1 << NR_MOVE_TYPE))
3567 return -EINVAL;
3568 /*
3569 * We check this value several times in both in can_attach() and
3570 * attach(), so we need cgroup lock to prevent this value from being
3571 * inconsistent.
3572 */
3573 cgroup_lock();
3574 mem->move_charge_at_immigrate = val;
3575 cgroup_unlock();
3576
3577 return 0;
3578 }
3579 #else
3580 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3581 struct cftype *cft, u64 val)
3582 {
3583 return -ENOSYS;
3584 }
3585 #endif
3586
3587
3588 /* For read statistics */
3589 enum {
3590 MCS_CACHE,
3591 MCS_RSS,
3592 MCS_FILE_MAPPED,
3593 MCS_PGPGIN,
3594 MCS_PGPGOUT,
3595 MCS_SWAP,
3596 MCS_INACTIVE_ANON,
3597 MCS_ACTIVE_ANON,
3598 MCS_INACTIVE_FILE,
3599 MCS_ACTIVE_FILE,
3600 MCS_UNEVICTABLE,
3601 NR_MCS_STAT,
3602 };
3603
3604 struct mcs_total_stat {
3605 s64 stat[NR_MCS_STAT];
3606 };
3607
3608 struct {
3609 char *local_name;
3610 char *total_name;
3611 } memcg_stat_strings[NR_MCS_STAT] = {
3612 {"cache", "total_cache"},
3613 {"rss", "total_rss"},
3614 {"mapped_file", "total_mapped_file"},
3615 {"pgpgin", "total_pgpgin"},
3616 {"pgpgout", "total_pgpgout"},
3617 {"swap", "total_swap"},
3618 {"inactive_anon", "total_inactive_anon"},
3619 {"active_anon", "total_active_anon"},
3620 {"inactive_file", "total_inactive_file"},
3621 {"active_file", "total_active_file"},
3622 {"unevictable", "total_unevictable"}
3623 };
3624
3625
3626 static void
3627 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3628 {
3629 s64 val;
3630
3631 /* per cpu stat */
3632 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3633 s->stat[MCS_CACHE] += val * PAGE_SIZE;
3634 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3635 s->stat[MCS_RSS] += val * PAGE_SIZE;
3636 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3637 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3638 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3639 s->stat[MCS_PGPGIN] += val;
3640 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3641 s->stat[MCS_PGPGOUT] += val;
3642 if (do_swap_account) {
3643 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3644 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3645 }
3646
3647 /* per zone stat */
3648 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3649 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3650 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3651 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3652 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3653 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3654 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3655 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3656 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3657 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3658 }
3659
3660 static void
3661 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3662 {
3663 struct mem_cgroup *iter;
3664
3665 for_each_mem_cgroup_tree(iter, mem)
3666 mem_cgroup_get_local_stat(iter, s);
3667 }
3668
3669 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3670 struct cgroup_map_cb *cb)
3671 {
3672 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3673 struct mcs_total_stat mystat;
3674 int i;
3675
3676 memset(&mystat, 0, sizeof(mystat));
3677 mem_cgroup_get_local_stat(mem_cont, &mystat);
3678
3679 for (i = 0; i < NR_MCS_STAT; i++) {
3680 if (i == MCS_SWAP && !do_swap_account)
3681 continue;
3682 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3683 }
3684
3685 /* Hierarchical information */
3686 {
3687 unsigned long long limit, memsw_limit;
3688 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3689 cb->fill(cb, "hierarchical_memory_limit", limit);
3690 if (do_swap_account)
3691 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3692 }
3693
3694 memset(&mystat, 0, sizeof(mystat));
3695 mem_cgroup_get_total_stat(mem_cont, &mystat);
3696 for (i = 0; i < NR_MCS_STAT; i++) {
3697 if (i == MCS_SWAP && !do_swap_account)
3698 continue;
3699 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3700 }
3701
3702 #ifdef CONFIG_DEBUG_VM
3703 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3704
3705 {
3706 int nid, zid;
3707 struct mem_cgroup_per_zone *mz;
3708 unsigned long recent_rotated[2] = {0, 0};
3709 unsigned long recent_scanned[2] = {0, 0};
3710
3711 for_each_online_node(nid)
3712 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3713 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3714
3715 recent_rotated[0] +=
3716 mz->reclaim_stat.recent_rotated[0];
3717 recent_rotated[1] +=
3718 mz->reclaim_stat.recent_rotated[1];
3719 recent_scanned[0] +=
3720 mz->reclaim_stat.recent_scanned[0];
3721 recent_scanned[1] +=
3722 mz->reclaim_stat.recent_scanned[1];
3723 }
3724 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3725 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3726 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3727 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3728 }
3729 #endif
3730
3731 return 0;
3732 }
3733
3734 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3735 {
3736 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3737
3738 return get_swappiness(memcg);
3739 }
3740
3741 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3742 u64 val)
3743 {
3744 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3745 struct mem_cgroup *parent;
3746
3747 if (val > 100)
3748 return -EINVAL;
3749
3750 if (cgrp->parent == NULL)
3751 return -EINVAL;
3752
3753 parent = mem_cgroup_from_cont(cgrp->parent);
3754
3755 cgroup_lock();
3756
3757 /* If under hierarchy, only empty-root can set this value */
3758 if ((parent->use_hierarchy) ||
3759 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3760 cgroup_unlock();
3761 return -EINVAL;
3762 }
3763
3764 spin_lock(&memcg->reclaim_param_lock);
3765 memcg->swappiness = val;
3766 spin_unlock(&memcg->reclaim_param_lock);
3767
3768 cgroup_unlock();
3769
3770 return 0;
3771 }
3772
3773 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3774 {
3775 struct mem_cgroup_threshold_ary *t;
3776 u64 usage;
3777 int i;
3778
3779 rcu_read_lock();
3780 if (!swap)
3781 t = rcu_dereference(memcg->thresholds.primary);
3782 else
3783 t = rcu_dereference(memcg->memsw_thresholds.primary);
3784
3785 if (!t)
3786 goto unlock;
3787
3788 usage = mem_cgroup_usage(memcg, swap);
3789
3790 /*
3791 * current_threshold points to threshold just below usage.
3792 * If it's not true, a threshold was crossed after last
3793 * call of __mem_cgroup_threshold().
3794 */
3795 i = t->current_threshold;
3796
3797 /*
3798 * Iterate backward over array of thresholds starting from
3799 * current_threshold and check if a threshold is crossed.
3800 * If none of thresholds below usage is crossed, we read
3801 * only one element of the array here.
3802 */
3803 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3804 eventfd_signal(t->entries[i].eventfd, 1);
3805
3806 /* i = current_threshold + 1 */
3807 i++;
3808
3809 /*
3810 * Iterate forward over array of thresholds starting from
3811 * current_threshold+1 and check if a threshold is crossed.
3812 * If none of thresholds above usage is crossed, we read
3813 * only one element of the array here.
3814 */
3815 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3816 eventfd_signal(t->entries[i].eventfd, 1);
3817
3818 /* Update current_threshold */
3819 t->current_threshold = i - 1;
3820 unlock:
3821 rcu_read_unlock();
3822 }
3823
3824 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3825 {
3826 while (memcg) {
3827 __mem_cgroup_threshold(memcg, false);
3828 if (do_swap_account)
3829 __mem_cgroup_threshold(memcg, true);
3830
3831 memcg = parent_mem_cgroup(memcg);
3832 }
3833 }
3834
3835 static int compare_thresholds(const void *a, const void *b)
3836 {
3837 const struct mem_cgroup_threshold *_a = a;
3838 const struct mem_cgroup_threshold *_b = b;
3839
3840 return _a->threshold - _b->threshold;
3841 }
3842
3843 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
3844 {
3845 struct mem_cgroup_eventfd_list *ev;
3846
3847 list_for_each_entry(ev, &mem->oom_notify, list)
3848 eventfd_signal(ev->eventfd, 1);
3849 return 0;
3850 }
3851
3852 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3853 {
3854 struct mem_cgroup *iter;
3855
3856 for_each_mem_cgroup_tree(iter, mem)
3857 mem_cgroup_oom_notify_cb(iter);
3858 }
3859
3860 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3861 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3862 {
3863 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3864 struct mem_cgroup_thresholds *thresholds;
3865 struct mem_cgroup_threshold_ary *new;
3866 int type = MEMFILE_TYPE(cft->private);
3867 u64 threshold, usage;
3868 int i, size, ret;
3869
3870 ret = res_counter_memparse_write_strategy(args, &threshold);
3871 if (ret)
3872 return ret;
3873
3874 mutex_lock(&memcg->thresholds_lock);
3875
3876 if (type == _MEM)
3877 thresholds = &memcg->thresholds;
3878 else if (type == _MEMSWAP)
3879 thresholds = &memcg->memsw_thresholds;
3880 else
3881 BUG();
3882
3883 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3884
3885 /* Check if a threshold crossed before adding a new one */
3886 if (thresholds->primary)
3887 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3888
3889 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3890
3891 /* Allocate memory for new array of thresholds */
3892 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3893 GFP_KERNEL);
3894 if (!new) {
3895 ret = -ENOMEM;
3896 goto unlock;
3897 }
3898 new->size = size;
3899
3900 /* Copy thresholds (if any) to new array */
3901 if (thresholds->primary) {
3902 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3903 sizeof(struct mem_cgroup_threshold));
3904 }
3905
3906 /* Add new threshold */
3907 new->entries[size - 1].eventfd = eventfd;
3908 new->entries[size - 1].threshold = threshold;
3909
3910 /* Sort thresholds. Registering of new threshold isn't time-critical */
3911 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3912 compare_thresholds, NULL);
3913
3914 /* Find current threshold */
3915 new->current_threshold = -1;
3916 for (i = 0; i < size; i++) {
3917 if (new->entries[i].threshold < usage) {
3918 /*
3919 * new->current_threshold will not be used until
3920 * rcu_assign_pointer(), so it's safe to increment
3921 * it here.
3922 */
3923 ++new->current_threshold;
3924 }
3925 }
3926
3927 /* Free old spare buffer and save old primary buffer as spare */
3928 kfree(thresholds->spare);
3929 thresholds->spare = thresholds->primary;
3930
3931 rcu_assign_pointer(thresholds->primary, new);
3932
3933 /* To be sure that nobody uses thresholds */
3934 synchronize_rcu();
3935
3936 unlock:
3937 mutex_unlock(&memcg->thresholds_lock);
3938
3939 return ret;
3940 }
3941
3942 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
3943 struct cftype *cft, struct eventfd_ctx *eventfd)
3944 {
3945 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3946 struct mem_cgroup_thresholds *thresholds;
3947 struct mem_cgroup_threshold_ary *new;
3948 int type = MEMFILE_TYPE(cft->private);
3949 u64 usage;
3950 int i, j, size;
3951
3952 mutex_lock(&memcg->thresholds_lock);
3953 if (type == _MEM)
3954 thresholds = &memcg->thresholds;
3955 else if (type == _MEMSWAP)
3956 thresholds = &memcg->memsw_thresholds;
3957 else
3958 BUG();
3959
3960 /*
3961 * Something went wrong if we trying to unregister a threshold
3962 * if we don't have thresholds
3963 */
3964 BUG_ON(!thresholds);
3965
3966 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3967
3968 /* Check if a threshold crossed before removing */
3969 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3970
3971 /* Calculate new number of threshold */
3972 size = 0;
3973 for (i = 0; i < thresholds->primary->size; i++) {
3974 if (thresholds->primary->entries[i].eventfd != eventfd)
3975 size++;
3976 }
3977
3978 new = thresholds->spare;
3979
3980 /* Set thresholds array to NULL if we don't have thresholds */
3981 if (!size) {
3982 kfree(new);
3983 new = NULL;
3984 goto swap_buffers;
3985 }
3986
3987 new->size = size;
3988
3989 /* Copy thresholds and find current threshold */
3990 new->current_threshold = -1;
3991 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3992 if (thresholds->primary->entries[i].eventfd == eventfd)
3993 continue;
3994
3995 new->entries[j] = thresholds->primary->entries[i];
3996 if (new->entries[j].threshold < usage) {
3997 /*
3998 * new->current_threshold will not be used
3999 * until rcu_assign_pointer(), so it's safe to increment
4000 * it here.
4001 */
4002 ++new->current_threshold;
4003 }
4004 j++;
4005 }
4006
4007 swap_buffers:
4008 /* Swap primary and spare array */
4009 thresholds->spare = thresholds->primary;
4010 rcu_assign_pointer(thresholds->primary, new);
4011
4012 /* To be sure that nobody uses thresholds */
4013 synchronize_rcu();
4014
4015 mutex_unlock(&memcg->thresholds_lock);
4016 }
4017
4018 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4019 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4020 {
4021 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4022 struct mem_cgroup_eventfd_list *event;
4023 int type = MEMFILE_TYPE(cft->private);
4024
4025 BUG_ON(type != _OOM_TYPE);
4026 event = kmalloc(sizeof(*event), GFP_KERNEL);
4027 if (!event)
4028 return -ENOMEM;
4029
4030 mutex_lock(&memcg_oom_mutex);
4031
4032 event->eventfd = eventfd;
4033 list_add(&event->list, &memcg->oom_notify);
4034
4035 /* already in OOM ? */
4036 if (atomic_read(&memcg->oom_lock))
4037 eventfd_signal(eventfd, 1);
4038 mutex_unlock(&memcg_oom_mutex);
4039
4040 return 0;
4041 }
4042
4043 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4044 struct cftype *cft, struct eventfd_ctx *eventfd)
4045 {
4046 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4047 struct mem_cgroup_eventfd_list *ev, *tmp;
4048 int type = MEMFILE_TYPE(cft->private);
4049
4050 BUG_ON(type != _OOM_TYPE);
4051
4052 mutex_lock(&memcg_oom_mutex);
4053
4054 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4055 if (ev->eventfd == eventfd) {
4056 list_del(&ev->list);
4057 kfree(ev);
4058 }
4059 }
4060
4061 mutex_unlock(&memcg_oom_mutex);
4062 }
4063
4064 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4065 struct cftype *cft, struct cgroup_map_cb *cb)
4066 {
4067 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4068
4069 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4070
4071 if (atomic_read(&mem->oom_lock))
4072 cb->fill(cb, "under_oom", 1);
4073 else
4074 cb->fill(cb, "under_oom", 0);
4075 return 0;
4076 }
4077
4078 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4079 struct cftype *cft, u64 val)
4080 {
4081 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4082 struct mem_cgroup *parent;
4083
4084 /* cannot set to root cgroup and only 0 and 1 are allowed */
4085 if (!cgrp->parent || !((val == 0) || (val == 1)))
4086 return -EINVAL;
4087
4088 parent = mem_cgroup_from_cont(cgrp->parent);
4089
4090 cgroup_lock();
4091 /* oom-kill-disable is a flag for subhierarchy. */
4092 if ((parent->use_hierarchy) ||
4093 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4094 cgroup_unlock();
4095 return -EINVAL;
4096 }
4097 mem->oom_kill_disable = val;
4098 if (!val)
4099 memcg_oom_recover(mem);
4100 cgroup_unlock();
4101 return 0;
4102 }
4103
4104 static struct cftype mem_cgroup_files[] = {
4105 {
4106 .name = "usage_in_bytes",
4107 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4108 .read_u64 = mem_cgroup_read,
4109 .register_event = mem_cgroup_usage_register_event,
4110 .unregister_event = mem_cgroup_usage_unregister_event,
4111 },
4112 {
4113 .name = "max_usage_in_bytes",
4114 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4115 .trigger = mem_cgroup_reset,
4116 .read_u64 = mem_cgroup_read,
4117 },
4118 {
4119 .name = "limit_in_bytes",
4120 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4121 .write_string = mem_cgroup_write,
4122 .read_u64 = mem_cgroup_read,
4123 },
4124 {
4125 .name = "soft_limit_in_bytes",
4126 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4127 .write_string = mem_cgroup_write,
4128 .read_u64 = mem_cgroup_read,
4129 },
4130 {
4131 .name = "failcnt",
4132 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4133 .trigger = mem_cgroup_reset,
4134 .read_u64 = mem_cgroup_read,
4135 },
4136 {
4137 .name = "stat",
4138 .read_map = mem_control_stat_show,
4139 },
4140 {
4141 .name = "force_empty",
4142 .trigger = mem_cgroup_force_empty_write,
4143 },
4144 {
4145 .name = "use_hierarchy",
4146 .write_u64 = mem_cgroup_hierarchy_write,
4147 .read_u64 = mem_cgroup_hierarchy_read,
4148 },
4149 {
4150 .name = "swappiness",
4151 .read_u64 = mem_cgroup_swappiness_read,
4152 .write_u64 = mem_cgroup_swappiness_write,
4153 },
4154 {
4155 .name = "move_charge_at_immigrate",
4156 .read_u64 = mem_cgroup_move_charge_read,
4157 .write_u64 = mem_cgroup_move_charge_write,
4158 },
4159 {
4160 .name = "oom_control",
4161 .read_map = mem_cgroup_oom_control_read,
4162 .write_u64 = mem_cgroup_oom_control_write,
4163 .register_event = mem_cgroup_oom_register_event,
4164 .unregister_event = mem_cgroup_oom_unregister_event,
4165 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4166 },
4167 };
4168
4169 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4170 static struct cftype memsw_cgroup_files[] = {
4171 {
4172 .name = "memsw.usage_in_bytes",
4173 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4174 .read_u64 = mem_cgroup_read,
4175 .register_event = mem_cgroup_usage_register_event,
4176 .unregister_event = mem_cgroup_usage_unregister_event,
4177 },
4178 {
4179 .name = "memsw.max_usage_in_bytes",
4180 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4181 .trigger = mem_cgroup_reset,
4182 .read_u64 = mem_cgroup_read,
4183 },
4184 {
4185 .name = "memsw.limit_in_bytes",
4186 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4187 .write_string = mem_cgroup_write,
4188 .read_u64 = mem_cgroup_read,
4189 },
4190 {
4191 .name = "memsw.failcnt",
4192 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4193 .trigger = mem_cgroup_reset,
4194 .read_u64 = mem_cgroup_read,
4195 },
4196 };
4197
4198 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4199 {
4200 if (!do_swap_account)
4201 return 0;
4202 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4203 ARRAY_SIZE(memsw_cgroup_files));
4204 };
4205 #else
4206 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4207 {
4208 return 0;
4209 }
4210 #endif
4211
4212 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4213 {
4214 struct mem_cgroup_per_node *pn;
4215 struct mem_cgroup_per_zone *mz;
4216 enum lru_list l;
4217 int zone, tmp = node;
4218 /*
4219 * This routine is called against possible nodes.
4220 * But it's BUG to call kmalloc() against offline node.
4221 *
4222 * TODO: this routine can waste much memory for nodes which will
4223 * never be onlined. It's better to use memory hotplug callback
4224 * function.
4225 */
4226 if (!node_state(node, N_NORMAL_MEMORY))
4227 tmp = -1;
4228 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4229 if (!pn)
4230 return 1;
4231
4232 mem->info.nodeinfo[node] = pn;
4233 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4234 mz = &pn->zoneinfo[zone];
4235 for_each_lru(l)
4236 INIT_LIST_HEAD(&mz->lists[l]);
4237 mz->usage_in_excess = 0;
4238 mz->on_tree = false;
4239 mz->mem = mem;
4240 }
4241 return 0;
4242 }
4243
4244 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4245 {
4246 kfree(mem->info.nodeinfo[node]);
4247 }
4248
4249 static struct mem_cgroup *mem_cgroup_alloc(void)
4250 {
4251 struct mem_cgroup *mem;
4252 int size = sizeof(struct mem_cgroup);
4253
4254 /* Can be very big if MAX_NUMNODES is very big */
4255 if (size < PAGE_SIZE)
4256 mem = kzalloc(size, GFP_KERNEL);
4257 else
4258 mem = vzalloc(size);
4259
4260 if (!mem)
4261 return NULL;
4262
4263 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4264 if (!mem->stat)
4265 goto out_free;
4266 spin_lock_init(&mem->pcp_counter_lock);
4267 return mem;
4268
4269 out_free:
4270 if (size < PAGE_SIZE)
4271 kfree(mem);
4272 else
4273 vfree(mem);
4274 return NULL;
4275 }
4276
4277 /*
4278 * At destroying mem_cgroup, references from swap_cgroup can remain.
4279 * (scanning all at force_empty is too costly...)
4280 *
4281 * Instead of clearing all references at force_empty, we remember
4282 * the number of reference from swap_cgroup and free mem_cgroup when
4283 * it goes down to 0.
4284 *
4285 * Removal of cgroup itself succeeds regardless of refs from swap.
4286 */
4287
4288 static void __mem_cgroup_free(struct mem_cgroup *mem)
4289 {
4290 int node;
4291
4292 mem_cgroup_remove_from_trees(mem);
4293 free_css_id(&mem_cgroup_subsys, &mem->css);
4294
4295 for_each_node_state(node, N_POSSIBLE)
4296 free_mem_cgroup_per_zone_info(mem, node);
4297
4298 free_percpu(mem->stat);
4299 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4300 kfree(mem);
4301 else
4302 vfree(mem);
4303 }
4304
4305 static void mem_cgroup_get(struct mem_cgroup *mem)
4306 {
4307 atomic_inc(&mem->refcnt);
4308 }
4309
4310 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4311 {
4312 if (atomic_sub_and_test(count, &mem->refcnt)) {
4313 struct mem_cgroup *parent = parent_mem_cgroup(mem);
4314 __mem_cgroup_free(mem);
4315 if (parent)
4316 mem_cgroup_put(parent);
4317 }
4318 }
4319
4320 static void mem_cgroup_put(struct mem_cgroup *mem)
4321 {
4322 __mem_cgroup_put(mem, 1);
4323 }
4324
4325 /*
4326 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4327 */
4328 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4329 {
4330 if (!mem->res.parent)
4331 return NULL;
4332 return mem_cgroup_from_res_counter(mem->res.parent, res);
4333 }
4334
4335 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4336 static void __init enable_swap_cgroup(void)
4337 {
4338 if (!mem_cgroup_disabled() && really_do_swap_account)
4339 do_swap_account = 1;
4340 }
4341 #else
4342 static void __init enable_swap_cgroup(void)
4343 {
4344 }
4345 #endif
4346
4347 static int mem_cgroup_soft_limit_tree_init(void)
4348 {
4349 struct mem_cgroup_tree_per_node *rtpn;
4350 struct mem_cgroup_tree_per_zone *rtpz;
4351 int tmp, node, zone;
4352
4353 for_each_node_state(node, N_POSSIBLE) {
4354 tmp = node;
4355 if (!node_state(node, N_NORMAL_MEMORY))
4356 tmp = -1;
4357 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4358 if (!rtpn)
4359 return 1;
4360
4361 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4362
4363 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4364 rtpz = &rtpn->rb_tree_per_zone[zone];
4365 rtpz->rb_root = RB_ROOT;
4366 spin_lock_init(&rtpz->lock);
4367 }
4368 }
4369 return 0;
4370 }
4371
4372 static struct cgroup_subsys_state * __ref
4373 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4374 {
4375 struct mem_cgroup *mem, *parent;
4376 long error = -ENOMEM;
4377 int node;
4378
4379 mem = mem_cgroup_alloc();
4380 if (!mem)
4381 return ERR_PTR(error);
4382
4383 for_each_node_state(node, N_POSSIBLE)
4384 if (alloc_mem_cgroup_per_zone_info(mem, node))
4385 goto free_out;
4386
4387 /* root ? */
4388 if (cont->parent == NULL) {
4389 int cpu;
4390 enable_swap_cgroup();
4391 parent = NULL;
4392 root_mem_cgroup = mem;
4393 if (mem_cgroup_soft_limit_tree_init())
4394 goto free_out;
4395 for_each_possible_cpu(cpu) {
4396 struct memcg_stock_pcp *stock =
4397 &per_cpu(memcg_stock, cpu);
4398 INIT_WORK(&stock->work, drain_local_stock);
4399 }
4400 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4401 } else {
4402 parent = mem_cgroup_from_cont(cont->parent);
4403 mem->use_hierarchy = parent->use_hierarchy;
4404 mem->oom_kill_disable = parent->oom_kill_disable;
4405 }
4406
4407 if (parent && parent->use_hierarchy) {
4408 res_counter_init(&mem->res, &parent->res);
4409 res_counter_init(&mem->memsw, &parent->memsw);
4410 /*
4411 * We increment refcnt of the parent to ensure that we can
4412 * safely access it on res_counter_charge/uncharge.
4413 * This refcnt will be decremented when freeing this
4414 * mem_cgroup(see mem_cgroup_put).
4415 */
4416 mem_cgroup_get(parent);
4417 } else {
4418 res_counter_init(&mem->res, NULL);
4419 res_counter_init(&mem->memsw, NULL);
4420 }
4421 mem->last_scanned_child = 0;
4422 spin_lock_init(&mem->reclaim_param_lock);
4423 INIT_LIST_HEAD(&mem->oom_notify);
4424
4425 if (parent)
4426 mem->swappiness = get_swappiness(parent);
4427 atomic_set(&mem->refcnt, 1);
4428 mem->move_charge_at_immigrate = 0;
4429 mutex_init(&mem->thresholds_lock);
4430 return &mem->css;
4431 free_out:
4432 __mem_cgroup_free(mem);
4433 root_mem_cgroup = NULL;
4434 return ERR_PTR(error);
4435 }
4436
4437 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4438 struct cgroup *cont)
4439 {
4440 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4441
4442 return mem_cgroup_force_empty(mem, false);
4443 }
4444
4445 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4446 struct cgroup *cont)
4447 {
4448 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4449
4450 mem_cgroup_put(mem);
4451 }
4452
4453 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4454 struct cgroup *cont)
4455 {
4456 int ret;
4457
4458 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4459 ARRAY_SIZE(mem_cgroup_files));
4460
4461 if (!ret)
4462 ret = register_memsw_files(cont, ss);
4463 return ret;
4464 }
4465
4466 #ifdef CONFIG_MMU
4467 /* Handlers for move charge at task migration. */
4468 #define PRECHARGE_COUNT_AT_ONCE 256
4469 static int mem_cgroup_do_precharge(unsigned long count)
4470 {
4471 int ret = 0;
4472 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4473 struct mem_cgroup *mem = mc.to;
4474
4475 if (mem_cgroup_is_root(mem)) {
4476 mc.precharge += count;
4477 /* we don't need css_get for root */
4478 return ret;
4479 }
4480 /* try to charge at once */
4481 if (count > 1) {
4482 struct res_counter *dummy;
4483 /*
4484 * "mem" cannot be under rmdir() because we've already checked
4485 * by cgroup_lock_live_cgroup() that it is not removed and we
4486 * are still under the same cgroup_mutex. So we can postpone
4487 * css_get().
4488 */
4489 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4490 goto one_by_one;
4491 if (do_swap_account && res_counter_charge(&mem->memsw,
4492 PAGE_SIZE * count, &dummy)) {
4493 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4494 goto one_by_one;
4495 }
4496 mc.precharge += count;
4497 return ret;
4498 }
4499 one_by_one:
4500 /* fall back to one by one charge */
4501 while (count--) {
4502 if (signal_pending(current)) {
4503 ret = -EINTR;
4504 break;
4505 }
4506 if (!batch_count--) {
4507 batch_count = PRECHARGE_COUNT_AT_ONCE;
4508 cond_resched();
4509 }
4510 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
4511 PAGE_SIZE);
4512 if (ret || !mem)
4513 /* mem_cgroup_clear_mc() will do uncharge later */
4514 return -ENOMEM;
4515 mc.precharge++;
4516 }
4517 return ret;
4518 }
4519
4520 /**
4521 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4522 * @vma: the vma the pte to be checked belongs
4523 * @addr: the address corresponding to the pte to be checked
4524 * @ptent: the pte to be checked
4525 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4526 *
4527 * Returns
4528 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4529 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4530 * move charge. if @target is not NULL, the page is stored in target->page
4531 * with extra refcnt got(Callers should handle it).
4532 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4533 * target for charge migration. if @target is not NULL, the entry is stored
4534 * in target->ent.
4535 *
4536 * Called with pte lock held.
4537 */
4538 union mc_target {
4539 struct page *page;
4540 swp_entry_t ent;
4541 };
4542
4543 enum mc_target_type {
4544 MC_TARGET_NONE, /* not used */
4545 MC_TARGET_PAGE,
4546 MC_TARGET_SWAP,
4547 };
4548
4549 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4550 unsigned long addr, pte_t ptent)
4551 {
4552 struct page *page = vm_normal_page(vma, addr, ptent);
4553
4554 if (!page || !page_mapped(page))
4555 return NULL;
4556 if (PageAnon(page)) {
4557 /* we don't move shared anon */
4558 if (!move_anon() || page_mapcount(page) > 2)
4559 return NULL;
4560 } else if (!move_file())
4561 /* we ignore mapcount for file pages */
4562 return NULL;
4563 if (!get_page_unless_zero(page))
4564 return NULL;
4565
4566 return page;
4567 }
4568
4569 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4570 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4571 {
4572 int usage_count;
4573 struct page *page = NULL;
4574 swp_entry_t ent = pte_to_swp_entry(ptent);
4575
4576 if (!move_anon() || non_swap_entry(ent))
4577 return NULL;
4578 usage_count = mem_cgroup_count_swap_user(ent, &page);
4579 if (usage_count > 1) { /* we don't move shared anon */
4580 if (page)
4581 put_page(page);
4582 return NULL;
4583 }
4584 if (do_swap_account)
4585 entry->val = ent.val;
4586
4587 return page;
4588 }
4589
4590 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4591 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4592 {
4593 struct page *page = NULL;
4594 struct inode *inode;
4595 struct address_space *mapping;
4596 pgoff_t pgoff;
4597
4598 if (!vma->vm_file) /* anonymous vma */
4599 return NULL;
4600 if (!move_file())
4601 return NULL;
4602
4603 inode = vma->vm_file->f_path.dentry->d_inode;
4604 mapping = vma->vm_file->f_mapping;
4605 if (pte_none(ptent))
4606 pgoff = linear_page_index(vma, addr);
4607 else /* pte_file(ptent) is true */
4608 pgoff = pte_to_pgoff(ptent);
4609
4610 /* page is moved even if it's not RSS of this task(page-faulted). */
4611 if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4612 page = find_get_page(mapping, pgoff);
4613 } else { /* shmem/tmpfs file. we should take account of swap too. */
4614 swp_entry_t ent;
4615 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4616 if (do_swap_account)
4617 entry->val = ent.val;
4618 }
4619
4620 return page;
4621 }
4622
4623 static int is_target_pte_for_mc(struct vm_area_struct *vma,
4624 unsigned long addr, pte_t ptent, union mc_target *target)
4625 {
4626 struct page *page = NULL;
4627 struct page_cgroup *pc;
4628 int ret = 0;
4629 swp_entry_t ent = { .val = 0 };
4630
4631 if (pte_present(ptent))
4632 page = mc_handle_present_pte(vma, addr, ptent);
4633 else if (is_swap_pte(ptent))
4634 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4635 else if (pte_none(ptent) || pte_file(ptent))
4636 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4637
4638 if (!page && !ent.val)
4639 return 0;
4640 if (page) {
4641 pc = lookup_page_cgroup(page);
4642 /*
4643 * Do only loose check w/o page_cgroup lock.
4644 * mem_cgroup_move_account() checks the pc is valid or not under
4645 * the lock.
4646 */
4647 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4648 ret = MC_TARGET_PAGE;
4649 if (target)
4650 target->page = page;
4651 }
4652 if (!ret || !target)
4653 put_page(page);
4654 }
4655 /* There is a swap entry and a page doesn't exist or isn't charged */
4656 if (ent.val && !ret &&
4657 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4658 ret = MC_TARGET_SWAP;
4659 if (target)
4660 target->ent = ent;
4661 }
4662 return ret;
4663 }
4664
4665 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4666 unsigned long addr, unsigned long end,
4667 struct mm_walk *walk)
4668 {
4669 struct vm_area_struct *vma = walk->private;
4670 pte_t *pte;
4671 spinlock_t *ptl;
4672
4673 VM_BUG_ON(pmd_trans_huge(*pmd));
4674 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4675 for (; addr != end; pte++, addr += PAGE_SIZE)
4676 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4677 mc.precharge++; /* increment precharge temporarily */
4678 pte_unmap_unlock(pte - 1, ptl);
4679 cond_resched();
4680
4681 return 0;
4682 }
4683
4684 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4685 {
4686 unsigned long precharge;
4687 struct vm_area_struct *vma;
4688
4689 down_read(&mm->mmap_sem);
4690 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4691 struct mm_walk mem_cgroup_count_precharge_walk = {
4692 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4693 .mm = mm,
4694 .private = vma,
4695 };
4696 if (is_vm_hugetlb_page(vma))
4697 continue;
4698 walk_page_range(vma->vm_start, vma->vm_end,
4699 &mem_cgroup_count_precharge_walk);
4700 }
4701 up_read(&mm->mmap_sem);
4702
4703 precharge = mc.precharge;
4704 mc.precharge = 0;
4705
4706 return precharge;
4707 }
4708
4709 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4710 {
4711 unsigned long precharge = mem_cgroup_count_precharge(mm);
4712
4713 VM_BUG_ON(mc.moving_task);
4714 mc.moving_task = current;
4715 return mem_cgroup_do_precharge(precharge);
4716 }
4717
4718 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4719 static void __mem_cgroup_clear_mc(void)
4720 {
4721 struct mem_cgroup *from = mc.from;
4722 struct mem_cgroup *to = mc.to;
4723
4724 /* we must uncharge all the leftover precharges from mc.to */
4725 if (mc.precharge) {
4726 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4727 mc.precharge = 0;
4728 }
4729 /*
4730 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4731 * we must uncharge here.
4732 */
4733 if (mc.moved_charge) {
4734 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4735 mc.moved_charge = 0;
4736 }
4737 /* we must fixup refcnts and charges */
4738 if (mc.moved_swap) {
4739 /* uncharge swap account from the old cgroup */
4740 if (!mem_cgroup_is_root(mc.from))
4741 res_counter_uncharge(&mc.from->memsw,
4742 PAGE_SIZE * mc.moved_swap);
4743 __mem_cgroup_put(mc.from, mc.moved_swap);
4744
4745 if (!mem_cgroup_is_root(mc.to)) {
4746 /*
4747 * we charged both to->res and to->memsw, so we should
4748 * uncharge to->res.
4749 */
4750 res_counter_uncharge(&mc.to->res,
4751 PAGE_SIZE * mc.moved_swap);
4752 }
4753 /* we've already done mem_cgroup_get(mc.to) */
4754 mc.moved_swap = 0;
4755 }
4756 memcg_oom_recover(from);
4757 memcg_oom_recover(to);
4758 wake_up_all(&mc.waitq);
4759 }
4760
4761 static void mem_cgroup_clear_mc(void)
4762 {
4763 struct mem_cgroup *from = mc.from;
4764
4765 /*
4766 * we must clear moving_task before waking up waiters at the end of
4767 * task migration.
4768 */
4769 mc.moving_task = NULL;
4770 __mem_cgroup_clear_mc();
4771 spin_lock(&mc.lock);
4772 mc.from = NULL;
4773 mc.to = NULL;
4774 spin_unlock(&mc.lock);
4775 mem_cgroup_end_move(from);
4776 }
4777
4778 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4779 struct cgroup *cgroup,
4780 struct task_struct *p,
4781 bool threadgroup)
4782 {
4783 int ret = 0;
4784 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4785
4786 if (mem->move_charge_at_immigrate) {
4787 struct mm_struct *mm;
4788 struct mem_cgroup *from = mem_cgroup_from_task(p);
4789
4790 VM_BUG_ON(from == mem);
4791
4792 mm = get_task_mm(p);
4793 if (!mm)
4794 return 0;
4795 /* We move charges only when we move a owner of the mm */
4796 if (mm->owner == p) {
4797 VM_BUG_ON(mc.from);
4798 VM_BUG_ON(mc.to);
4799 VM_BUG_ON(mc.precharge);
4800 VM_BUG_ON(mc.moved_charge);
4801 VM_BUG_ON(mc.moved_swap);
4802 mem_cgroup_start_move(from);
4803 spin_lock(&mc.lock);
4804 mc.from = from;
4805 mc.to = mem;
4806 spin_unlock(&mc.lock);
4807 /* We set mc.moving_task later */
4808
4809 ret = mem_cgroup_precharge_mc(mm);
4810 if (ret)
4811 mem_cgroup_clear_mc();
4812 }
4813 mmput(mm);
4814 }
4815 return ret;
4816 }
4817
4818 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4819 struct cgroup *cgroup,
4820 struct task_struct *p,
4821 bool threadgroup)
4822 {
4823 mem_cgroup_clear_mc();
4824 }
4825
4826 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4827 unsigned long addr, unsigned long end,
4828 struct mm_walk *walk)
4829 {
4830 int ret = 0;
4831 struct vm_area_struct *vma = walk->private;
4832 pte_t *pte;
4833 spinlock_t *ptl;
4834
4835 retry:
4836 VM_BUG_ON(pmd_trans_huge(*pmd));
4837 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4838 for (; addr != end; addr += PAGE_SIZE) {
4839 pte_t ptent = *(pte++);
4840 union mc_target target;
4841 int type;
4842 struct page *page;
4843 struct page_cgroup *pc;
4844 swp_entry_t ent;
4845
4846 if (!mc.precharge)
4847 break;
4848
4849 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4850 switch (type) {
4851 case MC_TARGET_PAGE:
4852 page = target.page;
4853 if (isolate_lru_page(page))
4854 goto put;
4855 pc = lookup_page_cgroup(page);
4856 if (!mem_cgroup_move_account(pc,
4857 mc.from, mc.to, false)) {
4858 mc.precharge--;
4859 /* we uncharge from mc.from later. */
4860 mc.moved_charge++;
4861 }
4862 putback_lru_page(page);
4863 put: /* is_target_pte_for_mc() gets the page */
4864 put_page(page);
4865 break;
4866 case MC_TARGET_SWAP:
4867 ent = target.ent;
4868 if (!mem_cgroup_move_swap_account(ent,
4869 mc.from, mc.to, false)) {
4870 mc.precharge--;
4871 /* we fixup refcnts and charges later. */
4872 mc.moved_swap++;
4873 }
4874 break;
4875 default:
4876 break;
4877 }
4878 }
4879 pte_unmap_unlock(pte - 1, ptl);
4880 cond_resched();
4881
4882 if (addr != end) {
4883 /*
4884 * We have consumed all precharges we got in can_attach().
4885 * We try charge one by one, but don't do any additional
4886 * charges to mc.to if we have failed in charge once in attach()
4887 * phase.
4888 */
4889 ret = mem_cgroup_do_precharge(1);
4890 if (!ret)
4891 goto retry;
4892 }
4893
4894 return ret;
4895 }
4896
4897 static void mem_cgroup_move_charge(struct mm_struct *mm)
4898 {
4899 struct vm_area_struct *vma;
4900
4901 lru_add_drain_all();
4902 retry:
4903 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4904 /*
4905 * Someone who are holding the mmap_sem might be waiting in
4906 * waitq. So we cancel all extra charges, wake up all waiters,
4907 * and retry. Because we cancel precharges, we might not be able
4908 * to move enough charges, but moving charge is a best-effort
4909 * feature anyway, so it wouldn't be a big problem.
4910 */
4911 __mem_cgroup_clear_mc();
4912 cond_resched();
4913 goto retry;
4914 }
4915 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4916 int ret;
4917 struct mm_walk mem_cgroup_move_charge_walk = {
4918 .pmd_entry = mem_cgroup_move_charge_pte_range,
4919 .mm = mm,
4920 .private = vma,
4921 };
4922 if (is_vm_hugetlb_page(vma))
4923 continue;
4924 ret = walk_page_range(vma->vm_start, vma->vm_end,
4925 &mem_cgroup_move_charge_walk);
4926 if (ret)
4927 /*
4928 * means we have consumed all precharges and failed in
4929 * doing additional charge. Just abandon here.
4930 */
4931 break;
4932 }
4933 up_read(&mm->mmap_sem);
4934 }
4935
4936 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4937 struct cgroup *cont,
4938 struct cgroup *old_cont,
4939 struct task_struct *p,
4940 bool threadgroup)
4941 {
4942 struct mm_struct *mm;
4943
4944 if (!mc.to)
4945 /* no need to move charge */
4946 return;
4947
4948 mm = get_task_mm(p);
4949 if (mm) {
4950 mem_cgroup_move_charge(mm);
4951 mmput(mm);
4952 }
4953 mem_cgroup_clear_mc();
4954 }
4955 #else /* !CONFIG_MMU */
4956 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4957 struct cgroup *cgroup,
4958 struct task_struct *p,
4959 bool threadgroup)
4960 {
4961 return 0;
4962 }
4963 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4964 struct cgroup *cgroup,
4965 struct task_struct *p,
4966 bool threadgroup)
4967 {
4968 }
4969 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4970 struct cgroup *cont,
4971 struct cgroup *old_cont,
4972 struct task_struct *p,
4973 bool threadgroup)
4974 {
4975 }
4976 #endif
4977
4978 struct cgroup_subsys mem_cgroup_subsys = {
4979 .name = "memory",
4980 .subsys_id = mem_cgroup_subsys_id,
4981 .create = mem_cgroup_create,
4982 .pre_destroy = mem_cgroup_pre_destroy,
4983 .destroy = mem_cgroup_destroy,
4984 .populate = mem_cgroup_populate,
4985 .can_attach = mem_cgroup_can_attach,
4986 .cancel_attach = mem_cgroup_cancel_attach,
4987 .attach = mem_cgroup_move_task,
4988 .early_init = 0,
4989 .use_id = 1,
4990 };
4991
4992 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4993 static int __init enable_swap_account(char *s)
4994 {
4995 /* consider enabled if no parameter or 1 is given */
4996 if (!s || !strcmp(s, "1"))
4997 really_do_swap_account = 1;
4998 else if (!strcmp(s, "0"))
4999 really_do_swap_account = 0;
5000 return 1;
5001 }
5002 __setup("swapaccount", enable_swap_account);
5003
5004 static int __init disable_swap_account(char *s)
5005 {
5006 enable_swap_account("0");
5007 return 1;
5008 }
5009 __setup("noswapaccount", disable_swap_account);
5010 #endif
This page took 0.369924 seconds and 6 git commands to generate.