Merge tag 'sound-4.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include "internal.h"
66 #include <net/sock.h>
67 #include <net/ip.h>
68 #include <net/tcp_memcontrol.h>
69 #include "slab.h"
70
71 #include <asm/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 #define MEM_CGROUP_RECLAIM_RETRIES 5
79 static struct mem_cgroup *root_mem_cgroup __read_mostly;
80
81 /* Whether the swap controller is active */
82 #ifdef CONFIG_MEMCG_SWAP
83 int do_swap_account __read_mostly;
84 #else
85 #define do_swap_account 0
86 #endif
87
88 static const char * const mem_cgroup_stat_names[] = {
89 "cache",
90 "rss",
91 "rss_huge",
92 "mapped_file",
93 "writeback",
94 "swap",
95 };
96
97 static const char * const mem_cgroup_events_names[] = {
98 "pgpgin",
99 "pgpgout",
100 "pgfault",
101 "pgmajfault",
102 };
103
104 static const char * const mem_cgroup_lru_names[] = {
105 "inactive_anon",
106 "active_anon",
107 "inactive_file",
108 "active_file",
109 "unevictable",
110 };
111
112 /*
113 * Per memcg event counter is incremented at every pagein/pageout. With THP,
114 * it will be incremated by the number of pages. This counter is used for
115 * for trigger some periodic events. This is straightforward and better
116 * than using jiffies etc. to handle periodic memcg event.
117 */
118 enum mem_cgroup_events_target {
119 MEM_CGROUP_TARGET_THRESH,
120 MEM_CGROUP_TARGET_SOFTLIMIT,
121 MEM_CGROUP_TARGET_NUMAINFO,
122 MEM_CGROUP_NTARGETS,
123 };
124 #define THRESHOLDS_EVENTS_TARGET 128
125 #define SOFTLIMIT_EVENTS_TARGET 1024
126 #define NUMAINFO_EVENTS_TARGET 1024
127
128 struct mem_cgroup_stat_cpu {
129 long count[MEM_CGROUP_STAT_NSTATS];
130 unsigned long events[MEMCG_NR_EVENTS];
131 unsigned long nr_page_events;
132 unsigned long targets[MEM_CGROUP_NTARGETS];
133 };
134
135 struct reclaim_iter {
136 struct mem_cgroup *position;
137 /* scan generation, increased every round-trip */
138 unsigned int generation;
139 };
140
141 /*
142 * per-zone information in memory controller.
143 */
144 struct mem_cgroup_per_zone {
145 struct lruvec lruvec;
146 unsigned long lru_size[NR_LRU_LISTS];
147
148 struct reclaim_iter iter[DEF_PRIORITY + 1];
149
150 struct rb_node tree_node; /* RB tree node */
151 unsigned long usage_in_excess;/* Set to the value by which */
152 /* the soft limit is exceeded*/
153 bool on_tree;
154 struct mem_cgroup *memcg; /* Back pointer, we cannot */
155 /* use container_of */
156 };
157
158 struct mem_cgroup_per_node {
159 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
160 };
161
162 /*
163 * Cgroups above their limits are maintained in a RB-Tree, independent of
164 * their hierarchy representation
165 */
166
167 struct mem_cgroup_tree_per_zone {
168 struct rb_root rb_root;
169 spinlock_t lock;
170 };
171
172 struct mem_cgroup_tree_per_node {
173 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
174 };
175
176 struct mem_cgroup_tree {
177 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
178 };
179
180 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
181
182 struct mem_cgroup_threshold {
183 struct eventfd_ctx *eventfd;
184 unsigned long threshold;
185 };
186
187 /* For threshold */
188 struct mem_cgroup_threshold_ary {
189 /* An array index points to threshold just below or equal to usage. */
190 int current_threshold;
191 /* Size of entries[] */
192 unsigned int size;
193 /* Array of thresholds */
194 struct mem_cgroup_threshold entries[0];
195 };
196
197 struct mem_cgroup_thresholds {
198 /* Primary thresholds array */
199 struct mem_cgroup_threshold_ary *primary;
200 /*
201 * Spare threshold array.
202 * This is needed to make mem_cgroup_unregister_event() "never fail".
203 * It must be able to store at least primary->size - 1 entries.
204 */
205 struct mem_cgroup_threshold_ary *spare;
206 };
207
208 /* for OOM */
209 struct mem_cgroup_eventfd_list {
210 struct list_head list;
211 struct eventfd_ctx *eventfd;
212 };
213
214 /*
215 * cgroup_event represents events which userspace want to receive.
216 */
217 struct mem_cgroup_event {
218 /*
219 * memcg which the event belongs to.
220 */
221 struct mem_cgroup *memcg;
222 /*
223 * eventfd to signal userspace about the event.
224 */
225 struct eventfd_ctx *eventfd;
226 /*
227 * Each of these stored in a list by the cgroup.
228 */
229 struct list_head list;
230 /*
231 * register_event() callback will be used to add new userspace
232 * waiter for changes related to this event. Use eventfd_signal()
233 * on eventfd to send notification to userspace.
234 */
235 int (*register_event)(struct mem_cgroup *memcg,
236 struct eventfd_ctx *eventfd, const char *args);
237 /*
238 * unregister_event() callback will be called when userspace closes
239 * the eventfd or on cgroup removing. This callback must be set,
240 * if you want provide notification functionality.
241 */
242 void (*unregister_event)(struct mem_cgroup *memcg,
243 struct eventfd_ctx *eventfd);
244 /*
245 * All fields below needed to unregister event when
246 * userspace closes eventfd.
247 */
248 poll_table pt;
249 wait_queue_head_t *wqh;
250 wait_queue_t wait;
251 struct work_struct remove;
252 };
253
254 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
255 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
256
257 /*
258 * The memory controller data structure. The memory controller controls both
259 * page cache and RSS per cgroup. We would eventually like to provide
260 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
261 * to help the administrator determine what knobs to tune.
262 *
263 * TODO: Add a water mark for the memory controller. Reclaim will begin when
264 * we hit the water mark. May be even add a low water mark, such that
265 * no reclaim occurs from a cgroup at it's low water mark, this is
266 * a feature that will be implemented much later in the future.
267 */
268 struct mem_cgroup {
269 struct cgroup_subsys_state css;
270
271 /* Accounted resources */
272 struct page_counter memory;
273 struct page_counter memsw;
274 struct page_counter kmem;
275
276 /* Normal memory consumption range */
277 unsigned long low;
278 unsigned long high;
279
280 unsigned long soft_limit;
281
282 /* vmpressure notifications */
283 struct vmpressure vmpressure;
284
285 /* css_online() has been completed */
286 int initialized;
287
288 /*
289 * Should the accounting and control be hierarchical, per subtree?
290 */
291 bool use_hierarchy;
292
293 bool oom_lock;
294 atomic_t under_oom;
295 atomic_t oom_wakeups;
296
297 int swappiness;
298 /* OOM-Killer disable */
299 int oom_kill_disable;
300
301 /* protect arrays of thresholds */
302 struct mutex thresholds_lock;
303
304 /* thresholds for memory usage. RCU-protected */
305 struct mem_cgroup_thresholds thresholds;
306
307 /* thresholds for mem+swap usage. RCU-protected */
308 struct mem_cgroup_thresholds memsw_thresholds;
309
310 /* For oom notifier event fd */
311 struct list_head oom_notify;
312
313 /*
314 * Should we move charges of a task when a task is moved into this
315 * mem_cgroup ? And what type of charges should we move ?
316 */
317 unsigned long move_charge_at_immigrate;
318 /*
319 * set > 0 if pages under this cgroup are moving to other cgroup.
320 */
321 atomic_t moving_account;
322 /* taken only while moving_account > 0 */
323 spinlock_t move_lock;
324 struct task_struct *move_lock_task;
325 unsigned long move_lock_flags;
326 /*
327 * percpu counter.
328 */
329 struct mem_cgroup_stat_cpu __percpu *stat;
330 /*
331 * used when a cpu is offlined or other synchronizations
332 * See mem_cgroup_read_stat().
333 */
334 struct mem_cgroup_stat_cpu nocpu_base;
335 spinlock_t pcp_counter_lock;
336
337 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
338 struct cg_proto tcp_mem;
339 #endif
340 #if defined(CONFIG_MEMCG_KMEM)
341 /* Index in the kmem_cache->memcg_params.memcg_caches array */
342 int kmemcg_id;
343 bool kmem_acct_activated;
344 bool kmem_acct_active;
345 #endif
346
347 int last_scanned_node;
348 #if MAX_NUMNODES > 1
349 nodemask_t scan_nodes;
350 atomic_t numainfo_events;
351 atomic_t numainfo_updating;
352 #endif
353
354 /* List of events which userspace want to receive */
355 struct list_head event_list;
356 spinlock_t event_list_lock;
357
358 struct mem_cgroup_per_node *nodeinfo[0];
359 /* WARNING: nodeinfo must be the last member here */
360 };
361
362 #ifdef CONFIG_MEMCG_KMEM
363 bool memcg_kmem_is_active(struct mem_cgroup *memcg)
364 {
365 return memcg->kmem_acct_active;
366 }
367 #endif
368
369 /* Stuffs for move charges at task migration. */
370 /*
371 * Types of charges to be moved.
372 */
373 #define MOVE_ANON 0x1U
374 #define MOVE_FILE 0x2U
375 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
376
377 /* "mc" and its members are protected by cgroup_mutex */
378 static struct move_charge_struct {
379 spinlock_t lock; /* for from, to */
380 struct mem_cgroup *from;
381 struct mem_cgroup *to;
382 unsigned long flags;
383 unsigned long precharge;
384 unsigned long moved_charge;
385 unsigned long moved_swap;
386 struct task_struct *moving_task; /* a task moving charges */
387 wait_queue_head_t waitq; /* a waitq for other context */
388 } mc = {
389 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
390 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
391 };
392
393 /*
394 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
395 * limit reclaim to prevent infinite loops, if they ever occur.
396 */
397 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
398 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
399
400 enum charge_type {
401 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
402 MEM_CGROUP_CHARGE_TYPE_ANON,
403 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
404 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
405 NR_CHARGE_TYPE,
406 };
407
408 /* for encoding cft->private value on file */
409 enum res_type {
410 _MEM,
411 _MEMSWAP,
412 _OOM_TYPE,
413 _KMEM,
414 };
415
416 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
417 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
418 #define MEMFILE_ATTR(val) ((val) & 0xffff)
419 /* Used for OOM nofiier */
420 #define OOM_CONTROL (0)
421
422 /*
423 * The memcg_create_mutex will be held whenever a new cgroup is created.
424 * As a consequence, any change that needs to protect against new child cgroups
425 * appearing has to hold it as well.
426 */
427 static DEFINE_MUTEX(memcg_create_mutex);
428
429 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
430 {
431 return s ? container_of(s, struct mem_cgroup, css) : NULL;
432 }
433
434 /* Some nice accessors for the vmpressure. */
435 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
436 {
437 if (!memcg)
438 memcg = root_mem_cgroup;
439 return &memcg->vmpressure;
440 }
441
442 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
443 {
444 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
445 }
446
447 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
448 {
449 return (memcg == root_mem_cgroup);
450 }
451
452 /*
453 * We restrict the id in the range of [1, 65535], so it can fit into
454 * an unsigned short.
455 */
456 #define MEM_CGROUP_ID_MAX USHRT_MAX
457
458 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
459 {
460 return memcg->css.id;
461 }
462
463 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
464 {
465 struct cgroup_subsys_state *css;
466
467 css = css_from_id(id, &memory_cgrp_subsys);
468 return mem_cgroup_from_css(css);
469 }
470
471 /* Writing them here to avoid exposing memcg's inner layout */
472 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
473
474 void sock_update_memcg(struct sock *sk)
475 {
476 if (mem_cgroup_sockets_enabled) {
477 struct mem_cgroup *memcg;
478 struct cg_proto *cg_proto;
479
480 BUG_ON(!sk->sk_prot->proto_cgroup);
481
482 /* Socket cloning can throw us here with sk_cgrp already
483 * filled. It won't however, necessarily happen from
484 * process context. So the test for root memcg given
485 * the current task's memcg won't help us in this case.
486 *
487 * Respecting the original socket's memcg is a better
488 * decision in this case.
489 */
490 if (sk->sk_cgrp) {
491 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
492 css_get(&sk->sk_cgrp->memcg->css);
493 return;
494 }
495
496 rcu_read_lock();
497 memcg = mem_cgroup_from_task(current);
498 cg_proto = sk->sk_prot->proto_cgroup(memcg);
499 if (!mem_cgroup_is_root(memcg) &&
500 memcg_proto_active(cg_proto) &&
501 css_tryget_online(&memcg->css)) {
502 sk->sk_cgrp = cg_proto;
503 }
504 rcu_read_unlock();
505 }
506 }
507 EXPORT_SYMBOL(sock_update_memcg);
508
509 void sock_release_memcg(struct sock *sk)
510 {
511 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
512 struct mem_cgroup *memcg;
513 WARN_ON(!sk->sk_cgrp->memcg);
514 memcg = sk->sk_cgrp->memcg;
515 css_put(&sk->sk_cgrp->memcg->css);
516 }
517 }
518
519 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
520 {
521 if (!memcg || mem_cgroup_is_root(memcg))
522 return NULL;
523
524 return &memcg->tcp_mem;
525 }
526 EXPORT_SYMBOL(tcp_proto_cgroup);
527
528 #endif
529
530 #ifdef CONFIG_MEMCG_KMEM
531 /*
532 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
533 * The main reason for not using cgroup id for this:
534 * this works better in sparse environments, where we have a lot of memcgs,
535 * but only a few kmem-limited. Or also, if we have, for instance, 200
536 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
537 * 200 entry array for that.
538 *
539 * The current size of the caches array is stored in memcg_nr_cache_ids. It
540 * will double each time we have to increase it.
541 */
542 static DEFINE_IDA(memcg_cache_ida);
543 int memcg_nr_cache_ids;
544
545 /* Protects memcg_nr_cache_ids */
546 static DECLARE_RWSEM(memcg_cache_ids_sem);
547
548 void memcg_get_cache_ids(void)
549 {
550 down_read(&memcg_cache_ids_sem);
551 }
552
553 void memcg_put_cache_ids(void)
554 {
555 up_read(&memcg_cache_ids_sem);
556 }
557
558 /*
559 * MIN_SIZE is different than 1, because we would like to avoid going through
560 * the alloc/free process all the time. In a small machine, 4 kmem-limited
561 * cgroups is a reasonable guess. In the future, it could be a parameter or
562 * tunable, but that is strictly not necessary.
563 *
564 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
565 * this constant directly from cgroup, but it is understandable that this is
566 * better kept as an internal representation in cgroup.c. In any case, the
567 * cgrp_id space is not getting any smaller, and we don't have to necessarily
568 * increase ours as well if it increases.
569 */
570 #define MEMCG_CACHES_MIN_SIZE 4
571 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
572
573 /*
574 * A lot of the calls to the cache allocation functions are expected to be
575 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
576 * conditional to this static branch, we'll have to allow modules that does
577 * kmem_cache_alloc and the such to see this symbol as well
578 */
579 struct static_key memcg_kmem_enabled_key;
580 EXPORT_SYMBOL(memcg_kmem_enabled_key);
581
582 #endif /* CONFIG_MEMCG_KMEM */
583
584 static struct mem_cgroup_per_zone *
585 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
586 {
587 int nid = zone_to_nid(zone);
588 int zid = zone_idx(zone);
589
590 return &memcg->nodeinfo[nid]->zoneinfo[zid];
591 }
592
593 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
594 {
595 return &memcg->css;
596 }
597
598 static struct mem_cgroup_per_zone *
599 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
600 {
601 int nid = page_to_nid(page);
602 int zid = page_zonenum(page);
603
604 return &memcg->nodeinfo[nid]->zoneinfo[zid];
605 }
606
607 static struct mem_cgroup_tree_per_zone *
608 soft_limit_tree_node_zone(int nid, int zid)
609 {
610 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
611 }
612
613 static struct mem_cgroup_tree_per_zone *
614 soft_limit_tree_from_page(struct page *page)
615 {
616 int nid = page_to_nid(page);
617 int zid = page_zonenum(page);
618
619 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
620 }
621
622 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
623 struct mem_cgroup_tree_per_zone *mctz,
624 unsigned long new_usage_in_excess)
625 {
626 struct rb_node **p = &mctz->rb_root.rb_node;
627 struct rb_node *parent = NULL;
628 struct mem_cgroup_per_zone *mz_node;
629
630 if (mz->on_tree)
631 return;
632
633 mz->usage_in_excess = new_usage_in_excess;
634 if (!mz->usage_in_excess)
635 return;
636 while (*p) {
637 parent = *p;
638 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
639 tree_node);
640 if (mz->usage_in_excess < mz_node->usage_in_excess)
641 p = &(*p)->rb_left;
642 /*
643 * We can't avoid mem cgroups that are over their soft
644 * limit by the same amount
645 */
646 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
647 p = &(*p)->rb_right;
648 }
649 rb_link_node(&mz->tree_node, parent, p);
650 rb_insert_color(&mz->tree_node, &mctz->rb_root);
651 mz->on_tree = true;
652 }
653
654 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
655 struct mem_cgroup_tree_per_zone *mctz)
656 {
657 if (!mz->on_tree)
658 return;
659 rb_erase(&mz->tree_node, &mctz->rb_root);
660 mz->on_tree = false;
661 }
662
663 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
664 struct mem_cgroup_tree_per_zone *mctz)
665 {
666 unsigned long flags;
667
668 spin_lock_irqsave(&mctz->lock, flags);
669 __mem_cgroup_remove_exceeded(mz, mctz);
670 spin_unlock_irqrestore(&mctz->lock, flags);
671 }
672
673 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
674 {
675 unsigned long nr_pages = page_counter_read(&memcg->memory);
676 unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
677 unsigned long excess = 0;
678
679 if (nr_pages > soft_limit)
680 excess = nr_pages - soft_limit;
681
682 return excess;
683 }
684
685 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
686 {
687 unsigned long excess;
688 struct mem_cgroup_per_zone *mz;
689 struct mem_cgroup_tree_per_zone *mctz;
690
691 mctz = soft_limit_tree_from_page(page);
692 /*
693 * Necessary to update all ancestors when hierarchy is used.
694 * because their event counter is not touched.
695 */
696 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
697 mz = mem_cgroup_page_zoneinfo(memcg, page);
698 excess = soft_limit_excess(memcg);
699 /*
700 * We have to update the tree if mz is on RB-tree or
701 * mem is over its softlimit.
702 */
703 if (excess || mz->on_tree) {
704 unsigned long flags;
705
706 spin_lock_irqsave(&mctz->lock, flags);
707 /* if on-tree, remove it */
708 if (mz->on_tree)
709 __mem_cgroup_remove_exceeded(mz, mctz);
710 /*
711 * Insert again. mz->usage_in_excess will be updated.
712 * If excess is 0, no tree ops.
713 */
714 __mem_cgroup_insert_exceeded(mz, mctz, excess);
715 spin_unlock_irqrestore(&mctz->lock, flags);
716 }
717 }
718 }
719
720 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
721 {
722 struct mem_cgroup_tree_per_zone *mctz;
723 struct mem_cgroup_per_zone *mz;
724 int nid, zid;
725
726 for_each_node(nid) {
727 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
728 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
729 mctz = soft_limit_tree_node_zone(nid, zid);
730 mem_cgroup_remove_exceeded(mz, mctz);
731 }
732 }
733 }
734
735 static struct mem_cgroup_per_zone *
736 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
737 {
738 struct rb_node *rightmost = NULL;
739 struct mem_cgroup_per_zone *mz;
740
741 retry:
742 mz = NULL;
743 rightmost = rb_last(&mctz->rb_root);
744 if (!rightmost)
745 goto done; /* Nothing to reclaim from */
746
747 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
748 /*
749 * Remove the node now but someone else can add it back,
750 * we will to add it back at the end of reclaim to its correct
751 * position in the tree.
752 */
753 __mem_cgroup_remove_exceeded(mz, mctz);
754 if (!soft_limit_excess(mz->memcg) ||
755 !css_tryget_online(&mz->memcg->css))
756 goto retry;
757 done:
758 return mz;
759 }
760
761 static struct mem_cgroup_per_zone *
762 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
763 {
764 struct mem_cgroup_per_zone *mz;
765
766 spin_lock_irq(&mctz->lock);
767 mz = __mem_cgroup_largest_soft_limit_node(mctz);
768 spin_unlock_irq(&mctz->lock);
769 return mz;
770 }
771
772 /*
773 * Implementation Note: reading percpu statistics for memcg.
774 *
775 * Both of vmstat[] and percpu_counter has threshold and do periodic
776 * synchronization to implement "quick" read. There are trade-off between
777 * reading cost and precision of value. Then, we may have a chance to implement
778 * a periodic synchronizion of counter in memcg's counter.
779 *
780 * But this _read() function is used for user interface now. The user accounts
781 * memory usage by memory cgroup and he _always_ requires exact value because
782 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
783 * have to visit all online cpus and make sum. So, for now, unnecessary
784 * synchronization is not implemented. (just implemented for cpu hotplug)
785 *
786 * If there are kernel internal actions which can make use of some not-exact
787 * value, and reading all cpu value can be performance bottleneck in some
788 * common workload, threashold and synchonization as vmstat[] should be
789 * implemented.
790 */
791 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
792 enum mem_cgroup_stat_index idx)
793 {
794 long val = 0;
795 int cpu;
796
797 get_online_cpus();
798 for_each_online_cpu(cpu)
799 val += per_cpu(memcg->stat->count[idx], cpu);
800 #ifdef CONFIG_HOTPLUG_CPU
801 spin_lock(&memcg->pcp_counter_lock);
802 val += memcg->nocpu_base.count[idx];
803 spin_unlock(&memcg->pcp_counter_lock);
804 #endif
805 put_online_cpus();
806 return val;
807 }
808
809 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
810 enum mem_cgroup_events_index idx)
811 {
812 unsigned long val = 0;
813 int cpu;
814
815 get_online_cpus();
816 for_each_online_cpu(cpu)
817 val += per_cpu(memcg->stat->events[idx], cpu);
818 #ifdef CONFIG_HOTPLUG_CPU
819 spin_lock(&memcg->pcp_counter_lock);
820 val += memcg->nocpu_base.events[idx];
821 spin_unlock(&memcg->pcp_counter_lock);
822 #endif
823 put_online_cpus();
824 return val;
825 }
826
827 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
828 struct page *page,
829 int nr_pages)
830 {
831 /*
832 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
833 * counted as CACHE even if it's on ANON LRU.
834 */
835 if (PageAnon(page))
836 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
837 nr_pages);
838 else
839 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
840 nr_pages);
841
842 if (PageTransHuge(page))
843 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
844 nr_pages);
845
846 /* pagein of a big page is an event. So, ignore page size */
847 if (nr_pages > 0)
848 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
849 else {
850 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
851 nr_pages = -nr_pages; /* for event */
852 }
853
854 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
855 }
856
857 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
858 {
859 struct mem_cgroup_per_zone *mz;
860
861 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
862 return mz->lru_size[lru];
863 }
864
865 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
866 int nid,
867 unsigned int lru_mask)
868 {
869 unsigned long nr = 0;
870 int zid;
871
872 VM_BUG_ON((unsigned)nid >= nr_node_ids);
873
874 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
875 struct mem_cgroup_per_zone *mz;
876 enum lru_list lru;
877
878 for_each_lru(lru) {
879 if (!(BIT(lru) & lru_mask))
880 continue;
881 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
882 nr += mz->lru_size[lru];
883 }
884 }
885 return nr;
886 }
887
888 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
889 unsigned int lru_mask)
890 {
891 unsigned long nr = 0;
892 int nid;
893
894 for_each_node_state(nid, N_MEMORY)
895 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
896 return nr;
897 }
898
899 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
900 enum mem_cgroup_events_target target)
901 {
902 unsigned long val, next;
903
904 val = __this_cpu_read(memcg->stat->nr_page_events);
905 next = __this_cpu_read(memcg->stat->targets[target]);
906 /* from time_after() in jiffies.h */
907 if ((long)next - (long)val < 0) {
908 switch (target) {
909 case MEM_CGROUP_TARGET_THRESH:
910 next = val + THRESHOLDS_EVENTS_TARGET;
911 break;
912 case MEM_CGROUP_TARGET_SOFTLIMIT:
913 next = val + SOFTLIMIT_EVENTS_TARGET;
914 break;
915 case MEM_CGROUP_TARGET_NUMAINFO:
916 next = val + NUMAINFO_EVENTS_TARGET;
917 break;
918 default:
919 break;
920 }
921 __this_cpu_write(memcg->stat->targets[target], next);
922 return true;
923 }
924 return false;
925 }
926
927 /*
928 * Check events in order.
929 *
930 */
931 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
932 {
933 /* threshold event is triggered in finer grain than soft limit */
934 if (unlikely(mem_cgroup_event_ratelimit(memcg,
935 MEM_CGROUP_TARGET_THRESH))) {
936 bool do_softlimit;
937 bool do_numainfo __maybe_unused;
938
939 do_softlimit = mem_cgroup_event_ratelimit(memcg,
940 MEM_CGROUP_TARGET_SOFTLIMIT);
941 #if MAX_NUMNODES > 1
942 do_numainfo = mem_cgroup_event_ratelimit(memcg,
943 MEM_CGROUP_TARGET_NUMAINFO);
944 #endif
945 mem_cgroup_threshold(memcg);
946 if (unlikely(do_softlimit))
947 mem_cgroup_update_tree(memcg, page);
948 #if MAX_NUMNODES > 1
949 if (unlikely(do_numainfo))
950 atomic_inc(&memcg->numainfo_events);
951 #endif
952 }
953 }
954
955 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
956 {
957 /*
958 * mm_update_next_owner() may clear mm->owner to NULL
959 * if it races with swapoff, page migration, etc.
960 * So this can be called with p == NULL.
961 */
962 if (unlikely(!p))
963 return NULL;
964
965 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
966 }
967
968 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
969 {
970 struct mem_cgroup *memcg = NULL;
971
972 rcu_read_lock();
973 do {
974 /*
975 * Page cache insertions can happen withou an
976 * actual mm context, e.g. during disk probing
977 * on boot, loopback IO, acct() writes etc.
978 */
979 if (unlikely(!mm))
980 memcg = root_mem_cgroup;
981 else {
982 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
983 if (unlikely(!memcg))
984 memcg = root_mem_cgroup;
985 }
986 } while (!css_tryget_online(&memcg->css));
987 rcu_read_unlock();
988 return memcg;
989 }
990
991 /**
992 * mem_cgroup_iter - iterate over memory cgroup hierarchy
993 * @root: hierarchy root
994 * @prev: previously returned memcg, NULL on first invocation
995 * @reclaim: cookie for shared reclaim walks, NULL for full walks
996 *
997 * Returns references to children of the hierarchy below @root, or
998 * @root itself, or %NULL after a full round-trip.
999 *
1000 * Caller must pass the return value in @prev on subsequent
1001 * invocations for reference counting, or use mem_cgroup_iter_break()
1002 * to cancel a hierarchy walk before the round-trip is complete.
1003 *
1004 * Reclaimers can specify a zone and a priority level in @reclaim to
1005 * divide up the memcgs in the hierarchy among all concurrent
1006 * reclaimers operating on the same zone and priority.
1007 */
1008 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1009 struct mem_cgroup *prev,
1010 struct mem_cgroup_reclaim_cookie *reclaim)
1011 {
1012 struct reclaim_iter *uninitialized_var(iter);
1013 struct cgroup_subsys_state *css = NULL;
1014 struct mem_cgroup *memcg = NULL;
1015 struct mem_cgroup *pos = NULL;
1016
1017 if (mem_cgroup_disabled())
1018 return NULL;
1019
1020 if (!root)
1021 root = root_mem_cgroup;
1022
1023 if (prev && !reclaim)
1024 pos = prev;
1025
1026 if (!root->use_hierarchy && root != root_mem_cgroup) {
1027 if (prev)
1028 goto out;
1029 return root;
1030 }
1031
1032 rcu_read_lock();
1033
1034 if (reclaim) {
1035 struct mem_cgroup_per_zone *mz;
1036
1037 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1038 iter = &mz->iter[reclaim->priority];
1039
1040 if (prev && reclaim->generation != iter->generation)
1041 goto out_unlock;
1042
1043 do {
1044 pos = ACCESS_ONCE(iter->position);
1045 /*
1046 * A racing update may change the position and
1047 * put the last reference, hence css_tryget(),
1048 * or retry to see the updated position.
1049 */
1050 } while (pos && !css_tryget(&pos->css));
1051 }
1052
1053 if (pos)
1054 css = &pos->css;
1055
1056 for (;;) {
1057 css = css_next_descendant_pre(css, &root->css);
1058 if (!css) {
1059 /*
1060 * Reclaimers share the hierarchy walk, and a
1061 * new one might jump in right at the end of
1062 * the hierarchy - make sure they see at least
1063 * one group and restart from the beginning.
1064 */
1065 if (!prev)
1066 continue;
1067 break;
1068 }
1069
1070 /*
1071 * Verify the css and acquire a reference. The root
1072 * is provided by the caller, so we know it's alive
1073 * and kicking, and don't take an extra reference.
1074 */
1075 memcg = mem_cgroup_from_css(css);
1076
1077 if (css == &root->css)
1078 break;
1079
1080 if (css_tryget(css)) {
1081 /*
1082 * Make sure the memcg is initialized:
1083 * mem_cgroup_css_online() orders the the
1084 * initialization against setting the flag.
1085 */
1086 if (smp_load_acquire(&memcg->initialized))
1087 break;
1088
1089 css_put(css);
1090 }
1091
1092 memcg = NULL;
1093 }
1094
1095 if (reclaim) {
1096 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1097 if (memcg)
1098 css_get(&memcg->css);
1099 if (pos)
1100 css_put(&pos->css);
1101 }
1102
1103 /*
1104 * pairs with css_tryget when dereferencing iter->position
1105 * above.
1106 */
1107 if (pos)
1108 css_put(&pos->css);
1109
1110 if (!memcg)
1111 iter->generation++;
1112 else if (!prev)
1113 reclaim->generation = iter->generation;
1114 }
1115
1116 out_unlock:
1117 rcu_read_unlock();
1118 out:
1119 if (prev && prev != root)
1120 css_put(&prev->css);
1121
1122 return memcg;
1123 }
1124
1125 /**
1126 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1127 * @root: hierarchy root
1128 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1129 */
1130 void mem_cgroup_iter_break(struct mem_cgroup *root,
1131 struct mem_cgroup *prev)
1132 {
1133 if (!root)
1134 root = root_mem_cgroup;
1135 if (prev && prev != root)
1136 css_put(&prev->css);
1137 }
1138
1139 /*
1140 * Iteration constructs for visiting all cgroups (under a tree). If
1141 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1142 * be used for reference counting.
1143 */
1144 #define for_each_mem_cgroup_tree(iter, root) \
1145 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1146 iter != NULL; \
1147 iter = mem_cgroup_iter(root, iter, NULL))
1148
1149 #define for_each_mem_cgroup(iter) \
1150 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1151 iter != NULL; \
1152 iter = mem_cgroup_iter(NULL, iter, NULL))
1153
1154 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1155 {
1156 struct mem_cgroup *memcg;
1157
1158 rcu_read_lock();
1159 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1160 if (unlikely(!memcg))
1161 goto out;
1162
1163 switch (idx) {
1164 case PGFAULT:
1165 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1166 break;
1167 case PGMAJFAULT:
1168 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1169 break;
1170 default:
1171 BUG();
1172 }
1173 out:
1174 rcu_read_unlock();
1175 }
1176 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1177
1178 /**
1179 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1180 * @zone: zone of the wanted lruvec
1181 * @memcg: memcg of the wanted lruvec
1182 *
1183 * Returns the lru list vector holding pages for the given @zone and
1184 * @mem. This can be the global zone lruvec, if the memory controller
1185 * is disabled.
1186 */
1187 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1188 struct mem_cgroup *memcg)
1189 {
1190 struct mem_cgroup_per_zone *mz;
1191 struct lruvec *lruvec;
1192
1193 if (mem_cgroup_disabled()) {
1194 lruvec = &zone->lruvec;
1195 goto out;
1196 }
1197
1198 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1199 lruvec = &mz->lruvec;
1200 out:
1201 /*
1202 * Since a node can be onlined after the mem_cgroup was created,
1203 * we have to be prepared to initialize lruvec->zone here;
1204 * and if offlined then reonlined, we need to reinitialize it.
1205 */
1206 if (unlikely(lruvec->zone != zone))
1207 lruvec->zone = zone;
1208 return lruvec;
1209 }
1210
1211 /**
1212 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1213 * @page: the page
1214 * @zone: zone of the page
1215 *
1216 * This function is only safe when following the LRU page isolation
1217 * and putback protocol: the LRU lock must be held, and the page must
1218 * either be PageLRU() or the caller must have isolated/allocated it.
1219 */
1220 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1221 {
1222 struct mem_cgroup_per_zone *mz;
1223 struct mem_cgroup *memcg;
1224 struct lruvec *lruvec;
1225
1226 if (mem_cgroup_disabled()) {
1227 lruvec = &zone->lruvec;
1228 goto out;
1229 }
1230
1231 memcg = page->mem_cgroup;
1232 /*
1233 * Swapcache readahead pages are added to the LRU - and
1234 * possibly migrated - before they are charged.
1235 */
1236 if (!memcg)
1237 memcg = root_mem_cgroup;
1238
1239 mz = mem_cgroup_page_zoneinfo(memcg, page);
1240 lruvec = &mz->lruvec;
1241 out:
1242 /*
1243 * Since a node can be onlined after the mem_cgroup was created,
1244 * we have to be prepared to initialize lruvec->zone here;
1245 * and if offlined then reonlined, we need to reinitialize it.
1246 */
1247 if (unlikely(lruvec->zone != zone))
1248 lruvec->zone = zone;
1249 return lruvec;
1250 }
1251
1252 /**
1253 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1254 * @lruvec: mem_cgroup per zone lru vector
1255 * @lru: index of lru list the page is sitting on
1256 * @nr_pages: positive when adding or negative when removing
1257 *
1258 * This function must be called when a page is added to or removed from an
1259 * lru list.
1260 */
1261 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1262 int nr_pages)
1263 {
1264 struct mem_cgroup_per_zone *mz;
1265 unsigned long *lru_size;
1266
1267 if (mem_cgroup_disabled())
1268 return;
1269
1270 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1271 lru_size = mz->lru_size + lru;
1272 *lru_size += nr_pages;
1273 VM_BUG_ON((long)(*lru_size) < 0);
1274 }
1275
1276 bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
1277 {
1278 if (root == memcg)
1279 return true;
1280 if (!root->use_hierarchy)
1281 return false;
1282 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
1283 }
1284
1285 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1286 {
1287 struct mem_cgroup *task_memcg;
1288 struct task_struct *p;
1289 bool ret;
1290
1291 p = find_lock_task_mm(task);
1292 if (p) {
1293 task_memcg = get_mem_cgroup_from_mm(p->mm);
1294 task_unlock(p);
1295 } else {
1296 /*
1297 * All threads may have already detached their mm's, but the oom
1298 * killer still needs to detect if they have already been oom
1299 * killed to prevent needlessly killing additional tasks.
1300 */
1301 rcu_read_lock();
1302 task_memcg = mem_cgroup_from_task(task);
1303 css_get(&task_memcg->css);
1304 rcu_read_unlock();
1305 }
1306 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1307 css_put(&task_memcg->css);
1308 return ret;
1309 }
1310
1311 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1312 {
1313 unsigned long inactive_ratio;
1314 unsigned long inactive;
1315 unsigned long active;
1316 unsigned long gb;
1317
1318 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1319 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1320
1321 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1322 if (gb)
1323 inactive_ratio = int_sqrt(10 * gb);
1324 else
1325 inactive_ratio = 1;
1326
1327 return inactive * inactive_ratio < active;
1328 }
1329
1330 bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
1331 {
1332 struct mem_cgroup_per_zone *mz;
1333 struct mem_cgroup *memcg;
1334
1335 if (mem_cgroup_disabled())
1336 return true;
1337
1338 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1339 memcg = mz->memcg;
1340
1341 return !!(memcg->css.flags & CSS_ONLINE);
1342 }
1343
1344 #define mem_cgroup_from_counter(counter, member) \
1345 container_of(counter, struct mem_cgroup, member)
1346
1347 /**
1348 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1349 * @memcg: the memory cgroup
1350 *
1351 * Returns the maximum amount of memory @mem can be charged with, in
1352 * pages.
1353 */
1354 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1355 {
1356 unsigned long margin = 0;
1357 unsigned long count;
1358 unsigned long limit;
1359
1360 count = page_counter_read(&memcg->memory);
1361 limit = ACCESS_ONCE(memcg->memory.limit);
1362 if (count < limit)
1363 margin = limit - count;
1364
1365 if (do_swap_account) {
1366 count = page_counter_read(&memcg->memsw);
1367 limit = ACCESS_ONCE(memcg->memsw.limit);
1368 if (count <= limit)
1369 margin = min(margin, limit - count);
1370 }
1371
1372 return margin;
1373 }
1374
1375 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1376 {
1377 /* root ? */
1378 if (mem_cgroup_disabled() || !memcg->css.parent)
1379 return vm_swappiness;
1380
1381 return memcg->swappiness;
1382 }
1383
1384 /*
1385 * A routine for checking "mem" is under move_account() or not.
1386 *
1387 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1388 * moving cgroups. This is for waiting at high-memory pressure
1389 * caused by "move".
1390 */
1391 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1392 {
1393 struct mem_cgroup *from;
1394 struct mem_cgroup *to;
1395 bool ret = false;
1396 /*
1397 * Unlike task_move routines, we access mc.to, mc.from not under
1398 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1399 */
1400 spin_lock(&mc.lock);
1401 from = mc.from;
1402 to = mc.to;
1403 if (!from)
1404 goto unlock;
1405
1406 ret = mem_cgroup_is_descendant(from, memcg) ||
1407 mem_cgroup_is_descendant(to, memcg);
1408 unlock:
1409 spin_unlock(&mc.lock);
1410 return ret;
1411 }
1412
1413 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1414 {
1415 if (mc.moving_task && current != mc.moving_task) {
1416 if (mem_cgroup_under_move(memcg)) {
1417 DEFINE_WAIT(wait);
1418 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1419 /* moving charge context might have finished. */
1420 if (mc.moving_task)
1421 schedule();
1422 finish_wait(&mc.waitq, &wait);
1423 return true;
1424 }
1425 }
1426 return false;
1427 }
1428
1429 #define K(x) ((x) << (PAGE_SHIFT-10))
1430 /**
1431 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1432 * @memcg: The memory cgroup that went over limit
1433 * @p: Task that is going to be killed
1434 *
1435 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1436 * enabled
1437 */
1438 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1439 {
1440 /* oom_info_lock ensures that parallel ooms do not interleave */
1441 static DEFINE_MUTEX(oom_info_lock);
1442 struct mem_cgroup *iter;
1443 unsigned int i;
1444
1445 mutex_lock(&oom_info_lock);
1446 rcu_read_lock();
1447
1448 if (p) {
1449 pr_info("Task in ");
1450 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1451 pr_cont(" killed as a result of limit of ");
1452 } else {
1453 pr_info("Memory limit reached of cgroup ");
1454 }
1455
1456 pr_cont_cgroup_path(memcg->css.cgroup);
1457 pr_cont("\n");
1458
1459 rcu_read_unlock();
1460
1461 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1462 K((u64)page_counter_read(&memcg->memory)),
1463 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1464 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1465 K((u64)page_counter_read(&memcg->memsw)),
1466 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1467 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1468 K((u64)page_counter_read(&memcg->kmem)),
1469 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1470
1471 for_each_mem_cgroup_tree(iter, memcg) {
1472 pr_info("Memory cgroup stats for ");
1473 pr_cont_cgroup_path(iter->css.cgroup);
1474 pr_cont(":");
1475
1476 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1477 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1478 continue;
1479 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1480 K(mem_cgroup_read_stat(iter, i)));
1481 }
1482
1483 for (i = 0; i < NR_LRU_LISTS; i++)
1484 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1485 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1486
1487 pr_cont("\n");
1488 }
1489 mutex_unlock(&oom_info_lock);
1490 }
1491
1492 /*
1493 * This function returns the number of memcg under hierarchy tree. Returns
1494 * 1(self count) if no children.
1495 */
1496 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1497 {
1498 int num = 0;
1499 struct mem_cgroup *iter;
1500
1501 for_each_mem_cgroup_tree(iter, memcg)
1502 num++;
1503 return num;
1504 }
1505
1506 /*
1507 * Return the memory (and swap, if configured) limit for a memcg.
1508 */
1509 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1510 {
1511 unsigned long limit;
1512
1513 limit = memcg->memory.limit;
1514 if (mem_cgroup_swappiness(memcg)) {
1515 unsigned long memsw_limit;
1516
1517 memsw_limit = memcg->memsw.limit;
1518 limit = min(limit + total_swap_pages, memsw_limit);
1519 }
1520 return limit;
1521 }
1522
1523 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1524 int order)
1525 {
1526 struct mem_cgroup *iter;
1527 unsigned long chosen_points = 0;
1528 unsigned long totalpages;
1529 unsigned int points = 0;
1530 struct task_struct *chosen = NULL;
1531
1532 /*
1533 * If current has a pending SIGKILL or is exiting, then automatically
1534 * select it. The goal is to allow it to allocate so that it may
1535 * quickly exit and free its memory.
1536 */
1537 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1538 mark_tsk_oom_victim(current);
1539 return;
1540 }
1541
1542 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL, memcg);
1543 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1544 for_each_mem_cgroup_tree(iter, memcg) {
1545 struct css_task_iter it;
1546 struct task_struct *task;
1547
1548 css_task_iter_start(&iter->css, &it);
1549 while ((task = css_task_iter_next(&it))) {
1550 switch (oom_scan_process_thread(task, totalpages, NULL,
1551 false)) {
1552 case OOM_SCAN_SELECT:
1553 if (chosen)
1554 put_task_struct(chosen);
1555 chosen = task;
1556 chosen_points = ULONG_MAX;
1557 get_task_struct(chosen);
1558 /* fall through */
1559 case OOM_SCAN_CONTINUE:
1560 continue;
1561 case OOM_SCAN_ABORT:
1562 css_task_iter_end(&it);
1563 mem_cgroup_iter_break(memcg, iter);
1564 if (chosen)
1565 put_task_struct(chosen);
1566 return;
1567 case OOM_SCAN_OK:
1568 break;
1569 };
1570 points = oom_badness(task, memcg, NULL, totalpages);
1571 if (!points || points < chosen_points)
1572 continue;
1573 /* Prefer thread group leaders for display purposes */
1574 if (points == chosen_points &&
1575 thread_group_leader(chosen))
1576 continue;
1577
1578 if (chosen)
1579 put_task_struct(chosen);
1580 chosen = task;
1581 chosen_points = points;
1582 get_task_struct(chosen);
1583 }
1584 css_task_iter_end(&it);
1585 }
1586
1587 if (!chosen)
1588 return;
1589 points = chosen_points * 1000 / totalpages;
1590 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1591 NULL, "Memory cgroup out of memory");
1592 }
1593
1594 #if MAX_NUMNODES > 1
1595
1596 /**
1597 * test_mem_cgroup_node_reclaimable
1598 * @memcg: the target memcg
1599 * @nid: the node ID to be checked.
1600 * @noswap : specify true here if the user wants flle only information.
1601 *
1602 * This function returns whether the specified memcg contains any
1603 * reclaimable pages on a node. Returns true if there are any reclaimable
1604 * pages in the node.
1605 */
1606 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1607 int nid, bool noswap)
1608 {
1609 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1610 return true;
1611 if (noswap || !total_swap_pages)
1612 return false;
1613 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1614 return true;
1615 return false;
1616
1617 }
1618
1619 /*
1620 * Always updating the nodemask is not very good - even if we have an empty
1621 * list or the wrong list here, we can start from some node and traverse all
1622 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1623 *
1624 */
1625 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1626 {
1627 int nid;
1628 /*
1629 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1630 * pagein/pageout changes since the last update.
1631 */
1632 if (!atomic_read(&memcg->numainfo_events))
1633 return;
1634 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1635 return;
1636
1637 /* make a nodemask where this memcg uses memory from */
1638 memcg->scan_nodes = node_states[N_MEMORY];
1639
1640 for_each_node_mask(nid, node_states[N_MEMORY]) {
1641
1642 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1643 node_clear(nid, memcg->scan_nodes);
1644 }
1645
1646 atomic_set(&memcg->numainfo_events, 0);
1647 atomic_set(&memcg->numainfo_updating, 0);
1648 }
1649
1650 /*
1651 * Selecting a node where we start reclaim from. Because what we need is just
1652 * reducing usage counter, start from anywhere is O,K. Considering
1653 * memory reclaim from current node, there are pros. and cons.
1654 *
1655 * Freeing memory from current node means freeing memory from a node which
1656 * we'll use or we've used. So, it may make LRU bad. And if several threads
1657 * hit limits, it will see a contention on a node. But freeing from remote
1658 * node means more costs for memory reclaim because of memory latency.
1659 *
1660 * Now, we use round-robin. Better algorithm is welcomed.
1661 */
1662 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1663 {
1664 int node;
1665
1666 mem_cgroup_may_update_nodemask(memcg);
1667 node = memcg->last_scanned_node;
1668
1669 node = next_node(node, memcg->scan_nodes);
1670 if (node == MAX_NUMNODES)
1671 node = first_node(memcg->scan_nodes);
1672 /*
1673 * We call this when we hit limit, not when pages are added to LRU.
1674 * No LRU may hold pages because all pages are UNEVICTABLE or
1675 * memcg is too small and all pages are not on LRU. In that case,
1676 * we use curret node.
1677 */
1678 if (unlikely(node == MAX_NUMNODES))
1679 node = numa_node_id();
1680
1681 memcg->last_scanned_node = node;
1682 return node;
1683 }
1684 #else
1685 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1686 {
1687 return 0;
1688 }
1689 #endif
1690
1691 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1692 struct zone *zone,
1693 gfp_t gfp_mask,
1694 unsigned long *total_scanned)
1695 {
1696 struct mem_cgroup *victim = NULL;
1697 int total = 0;
1698 int loop = 0;
1699 unsigned long excess;
1700 unsigned long nr_scanned;
1701 struct mem_cgroup_reclaim_cookie reclaim = {
1702 .zone = zone,
1703 .priority = 0,
1704 };
1705
1706 excess = soft_limit_excess(root_memcg);
1707
1708 while (1) {
1709 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1710 if (!victim) {
1711 loop++;
1712 if (loop >= 2) {
1713 /*
1714 * If we have not been able to reclaim
1715 * anything, it might because there are
1716 * no reclaimable pages under this hierarchy
1717 */
1718 if (!total)
1719 break;
1720 /*
1721 * We want to do more targeted reclaim.
1722 * excess >> 2 is not to excessive so as to
1723 * reclaim too much, nor too less that we keep
1724 * coming back to reclaim from this cgroup
1725 */
1726 if (total >= (excess >> 2) ||
1727 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1728 break;
1729 }
1730 continue;
1731 }
1732 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1733 zone, &nr_scanned);
1734 *total_scanned += nr_scanned;
1735 if (!soft_limit_excess(root_memcg))
1736 break;
1737 }
1738 mem_cgroup_iter_break(root_memcg, victim);
1739 return total;
1740 }
1741
1742 #ifdef CONFIG_LOCKDEP
1743 static struct lockdep_map memcg_oom_lock_dep_map = {
1744 .name = "memcg_oom_lock",
1745 };
1746 #endif
1747
1748 static DEFINE_SPINLOCK(memcg_oom_lock);
1749
1750 /*
1751 * Check OOM-Killer is already running under our hierarchy.
1752 * If someone is running, return false.
1753 */
1754 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1755 {
1756 struct mem_cgroup *iter, *failed = NULL;
1757
1758 spin_lock(&memcg_oom_lock);
1759
1760 for_each_mem_cgroup_tree(iter, memcg) {
1761 if (iter->oom_lock) {
1762 /*
1763 * this subtree of our hierarchy is already locked
1764 * so we cannot give a lock.
1765 */
1766 failed = iter;
1767 mem_cgroup_iter_break(memcg, iter);
1768 break;
1769 } else
1770 iter->oom_lock = true;
1771 }
1772
1773 if (failed) {
1774 /*
1775 * OK, we failed to lock the whole subtree so we have
1776 * to clean up what we set up to the failing subtree
1777 */
1778 for_each_mem_cgroup_tree(iter, memcg) {
1779 if (iter == failed) {
1780 mem_cgroup_iter_break(memcg, iter);
1781 break;
1782 }
1783 iter->oom_lock = false;
1784 }
1785 } else
1786 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1787
1788 spin_unlock(&memcg_oom_lock);
1789
1790 return !failed;
1791 }
1792
1793 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1794 {
1795 struct mem_cgroup *iter;
1796
1797 spin_lock(&memcg_oom_lock);
1798 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1799 for_each_mem_cgroup_tree(iter, memcg)
1800 iter->oom_lock = false;
1801 spin_unlock(&memcg_oom_lock);
1802 }
1803
1804 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1805 {
1806 struct mem_cgroup *iter;
1807
1808 for_each_mem_cgroup_tree(iter, memcg)
1809 atomic_inc(&iter->under_oom);
1810 }
1811
1812 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1813 {
1814 struct mem_cgroup *iter;
1815
1816 /*
1817 * When a new child is created while the hierarchy is under oom,
1818 * mem_cgroup_oom_lock() may not be called. We have to use
1819 * atomic_add_unless() here.
1820 */
1821 for_each_mem_cgroup_tree(iter, memcg)
1822 atomic_add_unless(&iter->under_oom, -1, 0);
1823 }
1824
1825 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1826
1827 struct oom_wait_info {
1828 struct mem_cgroup *memcg;
1829 wait_queue_t wait;
1830 };
1831
1832 static int memcg_oom_wake_function(wait_queue_t *wait,
1833 unsigned mode, int sync, void *arg)
1834 {
1835 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1836 struct mem_cgroup *oom_wait_memcg;
1837 struct oom_wait_info *oom_wait_info;
1838
1839 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1840 oom_wait_memcg = oom_wait_info->memcg;
1841
1842 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1843 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1844 return 0;
1845 return autoremove_wake_function(wait, mode, sync, arg);
1846 }
1847
1848 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1849 {
1850 atomic_inc(&memcg->oom_wakeups);
1851 /* for filtering, pass "memcg" as argument. */
1852 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1853 }
1854
1855 static void memcg_oom_recover(struct mem_cgroup *memcg)
1856 {
1857 if (memcg && atomic_read(&memcg->under_oom))
1858 memcg_wakeup_oom(memcg);
1859 }
1860
1861 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1862 {
1863 if (!current->memcg_oom.may_oom)
1864 return;
1865 /*
1866 * We are in the middle of the charge context here, so we
1867 * don't want to block when potentially sitting on a callstack
1868 * that holds all kinds of filesystem and mm locks.
1869 *
1870 * Also, the caller may handle a failed allocation gracefully
1871 * (like optional page cache readahead) and so an OOM killer
1872 * invocation might not even be necessary.
1873 *
1874 * That's why we don't do anything here except remember the
1875 * OOM context and then deal with it at the end of the page
1876 * fault when the stack is unwound, the locks are released,
1877 * and when we know whether the fault was overall successful.
1878 */
1879 css_get(&memcg->css);
1880 current->memcg_oom.memcg = memcg;
1881 current->memcg_oom.gfp_mask = mask;
1882 current->memcg_oom.order = order;
1883 }
1884
1885 /**
1886 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1887 * @handle: actually kill/wait or just clean up the OOM state
1888 *
1889 * This has to be called at the end of a page fault if the memcg OOM
1890 * handler was enabled.
1891 *
1892 * Memcg supports userspace OOM handling where failed allocations must
1893 * sleep on a waitqueue until the userspace task resolves the
1894 * situation. Sleeping directly in the charge context with all kinds
1895 * of locks held is not a good idea, instead we remember an OOM state
1896 * in the task and mem_cgroup_oom_synchronize() has to be called at
1897 * the end of the page fault to complete the OOM handling.
1898 *
1899 * Returns %true if an ongoing memcg OOM situation was detected and
1900 * completed, %false otherwise.
1901 */
1902 bool mem_cgroup_oom_synchronize(bool handle)
1903 {
1904 struct mem_cgroup *memcg = current->memcg_oom.memcg;
1905 struct oom_wait_info owait;
1906 bool locked;
1907
1908 /* OOM is global, do not handle */
1909 if (!memcg)
1910 return false;
1911
1912 if (!handle || oom_killer_disabled)
1913 goto cleanup;
1914
1915 owait.memcg = memcg;
1916 owait.wait.flags = 0;
1917 owait.wait.func = memcg_oom_wake_function;
1918 owait.wait.private = current;
1919 INIT_LIST_HEAD(&owait.wait.task_list);
1920
1921 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1922 mem_cgroup_mark_under_oom(memcg);
1923
1924 locked = mem_cgroup_oom_trylock(memcg);
1925
1926 if (locked)
1927 mem_cgroup_oom_notify(memcg);
1928
1929 if (locked && !memcg->oom_kill_disable) {
1930 mem_cgroup_unmark_under_oom(memcg);
1931 finish_wait(&memcg_oom_waitq, &owait.wait);
1932 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1933 current->memcg_oom.order);
1934 } else {
1935 schedule();
1936 mem_cgroup_unmark_under_oom(memcg);
1937 finish_wait(&memcg_oom_waitq, &owait.wait);
1938 }
1939
1940 if (locked) {
1941 mem_cgroup_oom_unlock(memcg);
1942 /*
1943 * There is no guarantee that an OOM-lock contender
1944 * sees the wakeups triggered by the OOM kill
1945 * uncharges. Wake any sleepers explicitely.
1946 */
1947 memcg_oom_recover(memcg);
1948 }
1949 cleanup:
1950 current->memcg_oom.memcg = NULL;
1951 css_put(&memcg->css);
1952 return true;
1953 }
1954
1955 /**
1956 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1957 * @page: page that is going to change accounted state
1958 *
1959 * This function must mark the beginning of an accounted page state
1960 * change to prevent double accounting when the page is concurrently
1961 * being moved to another memcg:
1962 *
1963 * memcg = mem_cgroup_begin_page_stat(page);
1964 * if (TestClearPageState(page))
1965 * mem_cgroup_update_page_stat(memcg, state, -1);
1966 * mem_cgroup_end_page_stat(memcg);
1967 */
1968 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1969 {
1970 struct mem_cgroup *memcg;
1971 unsigned long flags;
1972
1973 /*
1974 * The RCU lock is held throughout the transaction. The fast
1975 * path can get away without acquiring the memcg->move_lock
1976 * because page moving starts with an RCU grace period.
1977 *
1978 * The RCU lock also protects the memcg from being freed when
1979 * the page state that is going to change is the only thing
1980 * preventing the page from being uncharged.
1981 * E.g. end-writeback clearing PageWriteback(), which allows
1982 * migration to go ahead and uncharge the page before the
1983 * account transaction might be complete.
1984 */
1985 rcu_read_lock();
1986
1987 if (mem_cgroup_disabled())
1988 return NULL;
1989 again:
1990 memcg = page->mem_cgroup;
1991 if (unlikely(!memcg))
1992 return NULL;
1993
1994 if (atomic_read(&memcg->moving_account) <= 0)
1995 return memcg;
1996
1997 spin_lock_irqsave(&memcg->move_lock, flags);
1998 if (memcg != page->mem_cgroup) {
1999 spin_unlock_irqrestore(&memcg->move_lock, flags);
2000 goto again;
2001 }
2002
2003 /*
2004 * When charge migration first begins, we can have locked and
2005 * unlocked page stat updates happening concurrently. Track
2006 * the task who has the lock for mem_cgroup_end_page_stat().
2007 */
2008 memcg->move_lock_task = current;
2009 memcg->move_lock_flags = flags;
2010
2011 return memcg;
2012 }
2013
2014 /**
2015 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2016 * @memcg: the memcg that was accounted against
2017 */
2018 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
2019 {
2020 if (memcg && memcg->move_lock_task == current) {
2021 unsigned long flags = memcg->move_lock_flags;
2022
2023 memcg->move_lock_task = NULL;
2024 memcg->move_lock_flags = 0;
2025
2026 spin_unlock_irqrestore(&memcg->move_lock, flags);
2027 }
2028
2029 rcu_read_unlock();
2030 }
2031
2032 /**
2033 * mem_cgroup_update_page_stat - update page state statistics
2034 * @memcg: memcg to account against
2035 * @idx: page state item to account
2036 * @val: number of pages (positive or negative)
2037 *
2038 * See mem_cgroup_begin_page_stat() for locking requirements.
2039 */
2040 void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
2041 enum mem_cgroup_stat_index idx, int val)
2042 {
2043 VM_BUG_ON(!rcu_read_lock_held());
2044
2045 if (memcg)
2046 this_cpu_add(memcg->stat->count[idx], val);
2047 }
2048
2049 /*
2050 * size of first charge trial. "32" comes from vmscan.c's magic value.
2051 * TODO: maybe necessary to use big numbers in big irons.
2052 */
2053 #define CHARGE_BATCH 32U
2054 struct memcg_stock_pcp {
2055 struct mem_cgroup *cached; /* this never be root cgroup */
2056 unsigned int nr_pages;
2057 struct work_struct work;
2058 unsigned long flags;
2059 #define FLUSHING_CACHED_CHARGE 0
2060 };
2061 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2062 static DEFINE_MUTEX(percpu_charge_mutex);
2063
2064 /**
2065 * consume_stock: Try to consume stocked charge on this cpu.
2066 * @memcg: memcg to consume from.
2067 * @nr_pages: how many pages to charge.
2068 *
2069 * The charges will only happen if @memcg matches the current cpu's memcg
2070 * stock, and at least @nr_pages are available in that stock. Failure to
2071 * service an allocation will refill the stock.
2072 *
2073 * returns true if successful, false otherwise.
2074 */
2075 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2076 {
2077 struct memcg_stock_pcp *stock;
2078 bool ret = false;
2079
2080 if (nr_pages > CHARGE_BATCH)
2081 return ret;
2082
2083 stock = &get_cpu_var(memcg_stock);
2084 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2085 stock->nr_pages -= nr_pages;
2086 ret = true;
2087 }
2088 put_cpu_var(memcg_stock);
2089 return ret;
2090 }
2091
2092 /*
2093 * Returns stocks cached in percpu and reset cached information.
2094 */
2095 static void drain_stock(struct memcg_stock_pcp *stock)
2096 {
2097 struct mem_cgroup *old = stock->cached;
2098
2099 if (stock->nr_pages) {
2100 page_counter_uncharge(&old->memory, stock->nr_pages);
2101 if (do_swap_account)
2102 page_counter_uncharge(&old->memsw, stock->nr_pages);
2103 css_put_many(&old->css, stock->nr_pages);
2104 stock->nr_pages = 0;
2105 }
2106 stock->cached = NULL;
2107 }
2108
2109 /*
2110 * This must be called under preempt disabled or must be called by
2111 * a thread which is pinned to local cpu.
2112 */
2113 static void drain_local_stock(struct work_struct *dummy)
2114 {
2115 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2116 drain_stock(stock);
2117 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2118 }
2119
2120 /*
2121 * Cache charges(val) to local per_cpu area.
2122 * This will be consumed by consume_stock() function, later.
2123 */
2124 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2125 {
2126 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2127
2128 if (stock->cached != memcg) { /* reset if necessary */
2129 drain_stock(stock);
2130 stock->cached = memcg;
2131 }
2132 stock->nr_pages += nr_pages;
2133 put_cpu_var(memcg_stock);
2134 }
2135
2136 /*
2137 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2138 * of the hierarchy under it.
2139 */
2140 static void drain_all_stock(struct mem_cgroup *root_memcg)
2141 {
2142 int cpu, curcpu;
2143
2144 /* If someone's already draining, avoid adding running more workers. */
2145 if (!mutex_trylock(&percpu_charge_mutex))
2146 return;
2147 /* Notify other cpus that system-wide "drain" is running */
2148 get_online_cpus();
2149 curcpu = get_cpu();
2150 for_each_online_cpu(cpu) {
2151 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2152 struct mem_cgroup *memcg;
2153
2154 memcg = stock->cached;
2155 if (!memcg || !stock->nr_pages)
2156 continue;
2157 if (!mem_cgroup_is_descendant(memcg, root_memcg))
2158 continue;
2159 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2160 if (cpu == curcpu)
2161 drain_local_stock(&stock->work);
2162 else
2163 schedule_work_on(cpu, &stock->work);
2164 }
2165 }
2166 put_cpu();
2167 put_online_cpus();
2168 mutex_unlock(&percpu_charge_mutex);
2169 }
2170
2171 /*
2172 * This function drains percpu counter value from DEAD cpu and
2173 * move it to local cpu. Note that this function can be preempted.
2174 */
2175 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2176 {
2177 int i;
2178
2179 spin_lock(&memcg->pcp_counter_lock);
2180 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2181 long x = per_cpu(memcg->stat->count[i], cpu);
2182
2183 per_cpu(memcg->stat->count[i], cpu) = 0;
2184 memcg->nocpu_base.count[i] += x;
2185 }
2186 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2187 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2188
2189 per_cpu(memcg->stat->events[i], cpu) = 0;
2190 memcg->nocpu_base.events[i] += x;
2191 }
2192 spin_unlock(&memcg->pcp_counter_lock);
2193 }
2194
2195 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2196 unsigned long action,
2197 void *hcpu)
2198 {
2199 int cpu = (unsigned long)hcpu;
2200 struct memcg_stock_pcp *stock;
2201 struct mem_cgroup *iter;
2202
2203 if (action == CPU_ONLINE)
2204 return NOTIFY_OK;
2205
2206 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2207 return NOTIFY_OK;
2208
2209 for_each_mem_cgroup(iter)
2210 mem_cgroup_drain_pcp_counter(iter, cpu);
2211
2212 stock = &per_cpu(memcg_stock, cpu);
2213 drain_stock(stock);
2214 return NOTIFY_OK;
2215 }
2216
2217 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2218 unsigned int nr_pages)
2219 {
2220 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2221 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2222 struct mem_cgroup *mem_over_limit;
2223 struct page_counter *counter;
2224 unsigned long nr_reclaimed;
2225 bool may_swap = true;
2226 bool drained = false;
2227 int ret = 0;
2228
2229 if (mem_cgroup_is_root(memcg))
2230 goto done;
2231 retry:
2232 if (consume_stock(memcg, nr_pages))
2233 goto done;
2234
2235 if (!do_swap_account ||
2236 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2237 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2238 goto done_restock;
2239 if (do_swap_account)
2240 page_counter_uncharge(&memcg->memsw, batch);
2241 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2242 } else {
2243 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2244 may_swap = false;
2245 }
2246
2247 if (batch > nr_pages) {
2248 batch = nr_pages;
2249 goto retry;
2250 }
2251
2252 /*
2253 * Unlike in global OOM situations, memcg is not in a physical
2254 * memory shortage. Allow dying and OOM-killed tasks to
2255 * bypass the last charges so that they can exit quickly and
2256 * free their memory.
2257 */
2258 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2259 fatal_signal_pending(current) ||
2260 current->flags & PF_EXITING))
2261 goto bypass;
2262
2263 if (unlikely(task_in_memcg_oom(current)))
2264 goto nomem;
2265
2266 if (!(gfp_mask & __GFP_WAIT))
2267 goto nomem;
2268
2269 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2270
2271 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2272 gfp_mask, may_swap);
2273
2274 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2275 goto retry;
2276
2277 if (!drained) {
2278 drain_all_stock(mem_over_limit);
2279 drained = true;
2280 goto retry;
2281 }
2282
2283 if (gfp_mask & __GFP_NORETRY)
2284 goto nomem;
2285 /*
2286 * Even though the limit is exceeded at this point, reclaim
2287 * may have been able to free some pages. Retry the charge
2288 * before killing the task.
2289 *
2290 * Only for regular pages, though: huge pages are rather
2291 * unlikely to succeed so close to the limit, and we fall back
2292 * to regular pages anyway in case of failure.
2293 */
2294 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2295 goto retry;
2296 /*
2297 * At task move, charge accounts can be doubly counted. So, it's
2298 * better to wait until the end of task_move if something is going on.
2299 */
2300 if (mem_cgroup_wait_acct_move(mem_over_limit))
2301 goto retry;
2302
2303 if (nr_retries--)
2304 goto retry;
2305
2306 if (gfp_mask & __GFP_NOFAIL)
2307 goto bypass;
2308
2309 if (fatal_signal_pending(current))
2310 goto bypass;
2311
2312 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2313
2314 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2315 nomem:
2316 if (!(gfp_mask & __GFP_NOFAIL))
2317 return -ENOMEM;
2318 bypass:
2319 return -EINTR;
2320
2321 done_restock:
2322 css_get_many(&memcg->css, batch);
2323 if (batch > nr_pages)
2324 refill_stock(memcg, batch - nr_pages);
2325 /*
2326 * If the hierarchy is above the normal consumption range,
2327 * make the charging task trim their excess contribution.
2328 */
2329 do {
2330 if (page_counter_read(&memcg->memory) <= memcg->high)
2331 continue;
2332 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
2333 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2334 } while ((memcg = parent_mem_cgroup(memcg)));
2335 done:
2336 return ret;
2337 }
2338
2339 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2340 {
2341 if (mem_cgroup_is_root(memcg))
2342 return;
2343
2344 page_counter_uncharge(&memcg->memory, nr_pages);
2345 if (do_swap_account)
2346 page_counter_uncharge(&memcg->memsw, nr_pages);
2347
2348 css_put_many(&memcg->css, nr_pages);
2349 }
2350
2351 /*
2352 * A helper function to get mem_cgroup from ID. must be called under
2353 * rcu_read_lock(). The caller is responsible for calling
2354 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2355 * refcnt from swap can be called against removed memcg.)
2356 */
2357 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2358 {
2359 /* ID 0 is unused ID */
2360 if (!id)
2361 return NULL;
2362 return mem_cgroup_from_id(id);
2363 }
2364
2365 /*
2366 * try_get_mem_cgroup_from_page - look up page's memcg association
2367 * @page: the page
2368 *
2369 * Look up, get a css reference, and return the memcg that owns @page.
2370 *
2371 * The page must be locked to prevent racing with swap-in and page
2372 * cache charges. If coming from an unlocked page table, the caller
2373 * must ensure the page is on the LRU or this can race with charging.
2374 */
2375 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2376 {
2377 struct mem_cgroup *memcg;
2378 unsigned short id;
2379 swp_entry_t ent;
2380
2381 VM_BUG_ON_PAGE(!PageLocked(page), page);
2382
2383 memcg = page->mem_cgroup;
2384 if (memcg) {
2385 if (!css_tryget_online(&memcg->css))
2386 memcg = NULL;
2387 } else if (PageSwapCache(page)) {
2388 ent.val = page_private(page);
2389 id = lookup_swap_cgroup_id(ent);
2390 rcu_read_lock();
2391 memcg = mem_cgroup_lookup(id);
2392 if (memcg && !css_tryget_online(&memcg->css))
2393 memcg = NULL;
2394 rcu_read_unlock();
2395 }
2396 return memcg;
2397 }
2398
2399 static void lock_page_lru(struct page *page, int *isolated)
2400 {
2401 struct zone *zone = page_zone(page);
2402
2403 spin_lock_irq(&zone->lru_lock);
2404 if (PageLRU(page)) {
2405 struct lruvec *lruvec;
2406
2407 lruvec = mem_cgroup_page_lruvec(page, zone);
2408 ClearPageLRU(page);
2409 del_page_from_lru_list(page, lruvec, page_lru(page));
2410 *isolated = 1;
2411 } else
2412 *isolated = 0;
2413 }
2414
2415 static void unlock_page_lru(struct page *page, int isolated)
2416 {
2417 struct zone *zone = page_zone(page);
2418
2419 if (isolated) {
2420 struct lruvec *lruvec;
2421
2422 lruvec = mem_cgroup_page_lruvec(page, zone);
2423 VM_BUG_ON_PAGE(PageLRU(page), page);
2424 SetPageLRU(page);
2425 add_page_to_lru_list(page, lruvec, page_lru(page));
2426 }
2427 spin_unlock_irq(&zone->lru_lock);
2428 }
2429
2430 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2431 bool lrucare)
2432 {
2433 int isolated;
2434
2435 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2436
2437 /*
2438 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2439 * may already be on some other mem_cgroup's LRU. Take care of it.
2440 */
2441 if (lrucare)
2442 lock_page_lru(page, &isolated);
2443
2444 /*
2445 * Nobody should be changing or seriously looking at
2446 * page->mem_cgroup at this point:
2447 *
2448 * - the page is uncharged
2449 *
2450 * - the page is off-LRU
2451 *
2452 * - an anonymous fault has exclusive page access, except for
2453 * a locked page table
2454 *
2455 * - a page cache insertion, a swapin fault, or a migration
2456 * have the page locked
2457 */
2458 page->mem_cgroup = memcg;
2459
2460 if (lrucare)
2461 unlock_page_lru(page, isolated);
2462 }
2463
2464 #ifdef CONFIG_MEMCG_KMEM
2465 int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2466 unsigned long nr_pages)
2467 {
2468 struct page_counter *counter;
2469 int ret = 0;
2470
2471 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2472 if (ret < 0)
2473 return ret;
2474
2475 ret = try_charge(memcg, gfp, nr_pages);
2476 if (ret == -EINTR) {
2477 /*
2478 * try_charge() chose to bypass to root due to OOM kill or
2479 * fatal signal. Since our only options are to either fail
2480 * the allocation or charge it to this cgroup, do it as a
2481 * temporary condition. But we can't fail. From a kmem/slab
2482 * perspective, the cache has already been selected, by
2483 * mem_cgroup_kmem_get_cache(), so it is too late to change
2484 * our minds.
2485 *
2486 * This condition will only trigger if the task entered
2487 * memcg_charge_kmem in a sane state, but was OOM-killed
2488 * during try_charge() above. Tasks that were already dying
2489 * when the allocation triggers should have been already
2490 * directed to the root cgroup in memcontrol.h
2491 */
2492 page_counter_charge(&memcg->memory, nr_pages);
2493 if (do_swap_account)
2494 page_counter_charge(&memcg->memsw, nr_pages);
2495 css_get_many(&memcg->css, nr_pages);
2496 ret = 0;
2497 } else if (ret)
2498 page_counter_uncharge(&memcg->kmem, nr_pages);
2499
2500 return ret;
2501 }
2502
2503 void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
2504 {
2505 page_counter_uncharge(&memcg->memory, nr_pages);
2506 if (do_swap_account)
2507 page_counter_uncharge(&memcg->memsw, nr_pages);
2508
2509 page_counter_uncharge(&memcg->kmem, nr_pages);
2510
2511 css_put_many(&memcg->css, nr_pages);
2512 }
2513
2514 /*
2515 * helper for acessing a memcg's index. It will be used as an index in the
2516 * child cache array in kmem_cache, and also to derive its name. This function
2517 * will return -1 when this is not a kmem-limited memcg.
2518 */
2519 int memcg_cache_id(struct mem_cgroup *memcg)
2520 {
2521 return memcg ? memcg->kmemcg_id : -1;
2522 }
2523
2524 static int memcg_alloc_cache_id(void)
2525 {
2526 int id, size;
2527 int err;
2528
2529 id = ida_simple_get(&memcg_cache_ida,
2530 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2531 if (id < 0)
2532 return id;
2533
2534 if (id < memcg_nr_cache_ids)
2535 return id;
2536
2537 /*
2538 * There's no space for the new id in memcg_caches arrays,
2539 * so we have to grow them.
2540 */
2541 down_write(&memcg_cache_ids_sem);
2542
2543 size = 2 * (id + 1);
2544 if (size < MEMCG_CACHES_MIN_SIZE)
2545 size = MEMCG_CACHES_MIN_SIZE;
2546 else if (size > MEMCG_CACHES_MAX_SIZE)
2547 size = MEMCG_CACHES_MAX_SIZE;
2548
2549 err = memcg_update_all_caches(size);
2550 if (!err)
2551 err = memcg_update_all_list_lrus(size);
2552 if (!err)
2553 memcg_nr_cache_ids = size;
2554
2555 up_write(&memcg_cache_ids_sem);
2556
2557 if (err) {
2558 ida_simple_remove(&memcg_cache_ida, id);
2559 return err;
2560 }
2561 return id;
2562 }
2563
2564 static void memcg_free_cache_id(int id)
2565 {
2566 ida_simple_remove(&memcg_cache_ida, id);
2567 }
2568
2569 struct memcg_kmem_cache_create_work {
2570 struct mem_cgroup *memcg;
2571 struct kmem_cache *cachep;
2572 struct work_struct work;
2573 };
2574
2575 static void memcg_kmem_cache_create_func(struct work_struct *w)
2576 {
2577 struct memcg_kmem_cache_create_work *cw =
2578 container_of(w, struct memcg_kmem_cache_create_work, work);
2579 struct mem_cgroup *memcg = cw->memcg;
2580 struct kmem_cache *cachep = cw->cachep;
2581
2582 memcg_create_kmem_cache(memcg, cachep);
2583
2584 css_put(&memcg->css);
2585 kfree(cw);
2586 }
2587
2588 /*
2589 * Enqueue the creation of a per-memcg kmem_cache.
2590 */
2591 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2592 struct kmem_cache *cachep)
2593 {
2594 struct memcg_kmem_cache_create_work *cw;
2595
2596 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2597 if (!cw)
2598 return;
2599
2600 css_get(&memcg->css);
2601
2602 cw->memcg = memcg;
2603 cw->cachep = cachep;
2604 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2605
2606 schedule_work(&cw->work);
2607 }
2608
2609 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2610 struct kmem_cache *cachep)
2611 {
2612 /*
2613 * We need to stop accounting when we kmalloc, because if the
2614 * corresponding kmalloc cache is not yet created, the first allocation
2615 * in __memcg_schedule_kmem_cache_create will recurse.
2616 *
2617 * However, it is better to enclose the whole function. Depending on
2618 * the debugging options enabled, INIT_WORK(), for instance, can
2619 * trigger an allocation. This too, will make us recurse. Because at
2620 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2621 * the safest choice is to do it like this, wrapping the whole function.
2622 */
2623 current->memcg_kmem_skip_account = 1;
2624 __memcg_schedule_kmem_cache_create(memcg, cachep);
2625 current->memcg_kmem_skip_account = 0;
2626 }
2627
2628 /*
2629 * Return the kmem_cache we're supposed to use for a slab allocation.
2630 * We try to use the current memcg's version of the cache.
2631 *
2632 * If the cache does not exist yet, if we are the first user of it,
2633 * we either create it immediately, if possible, or create it asynchronously
2634 * in a workqueue.
2635 * In the latter case, we will let the current allocation go through with
2636 * the original cache.
2637 *
2638 * Can't be called in interrupt context or from kernel threads.
2639 * This function needs to be called with rcu_read_lock() held.
2640 */
2641 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2642 {
2643 struct mem_cgroup *memcg;
2644 struct kmem_cache *memcg_cachep;
2645 int kmemcg_id;
2646
2647 VM_BUG_ON(!is_root_cache(cachep));
2648
2649 if (current->memcg_kmem_skip_account)
2650 return cachep;
2651
2652 memcg = get_mem_cgroup_from_mm(current->mm);
2653 kmemcg_id = ACCESS_ONCE(memcg->kmemcg_id);
2654 if (kmemcg_id < 0)
2655 goto out;
2656
2657 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2658 if (likely(memcg_cachep))
2659 return memcg_cachep;
2660
2661 /*
2662 * If we are in a safe context (can wait, and not in interrupt
2663 * context), we could be be predictable and return right away.
2664 * This would guarantee that the allocation being performed
2665 * already belongs in the new cache.
2666 *
2667 * However, there are some clashes that can arrive from locking.
2668 * For instance, because we acquire the slab_mutex while doing
2669 * memcg_create_kmem_cache, this means no further allocation
2670 * could happen with the slab_mutex held. So it's better to
2671 * defer everything.
2672 */
2673 memcg_schedule_kmem_cache_create(memcg, cachep);
2674 out:
2675 css_put(&memcg->css);
2676 return cachep;
2677 }
2678
2679 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2680 {
2681 if (!is_root_cache(cachep))
2682 css_put(&cachep->memcg_params.memcg->css);
2683 }
2684
2685 /*
2686 * We need to verify if the allocation against current->mm->owner's memcg is
2687 * possible for the given order. But the page is not allocated yet, so we'll
2688 * need a further commit step to do the final arrangements.
2689 *
2690 * It is possible for the task to switch cgroups in this mean time, so at
2691 * commit time, we can't rely on task conversion any longer. We'll then use
2692 * the handle argument to return to the caller which cgroup we should commit
2693 * against. We could also return the memcg directly and avoid the pointer
2694 * passing, but a boolean return value gives better semantics considering
2695 * the compiled-out case as well.
2696 *
2697 * Returning true means the allocation is possible.
2698 */
2699 bool
2700 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2701 {
2702 struct mem_cgroup *memcg;
2703 int ret;
2704
2705 *_memcg = NULL;
2706
2707 memcg = get_mem_cgroup_from_mm(current->mm);
2708
2709 if (!memcg_kmem_is_active(memcg)) {
2710 css_put(&memcg->css);
2711 return true;
2712 }
2713
2714 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2715 if (!ret)
2716 *_memcg = memcg;
2717
2718 css_put(&memcg->css);
2719 return (ret == 0);
2720 }
2721
2722 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2723 int order)
2724 {
2725 VM_BUG_ON(mem_cgroup_is_root(memcg));
2726
2727 /* The page allocation failed. Revert */
2728 if (!page) {
2729 memcg_uncharge_kmem(memcg, 1 << order);
2730 return;
2731 }
2732 page->mem_cgroup = memcg;
2733 }
2734
2735 void __memcg_kmem_uncharge_pages(struct page *page, int order)
2736 {
2737 struct mem_cgroup *memcg = page->mem_cgroup;
2738
2739 if (!memcg)
2740 return;
2741
2742 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2743
2744 memcg_uncharge_kmem(memcg, 1 << order);
2745 page->mem_cgroup = NULL;
2746 }
2747
2748 struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
2749 {
2750 struct mem_cgroup *memcg = NULL;
2751 struct kmem_cache *cachep;
2752 struct page *page;
2753
2754 page = virt_to_head_page(ptr);
2755 if (PageSlab(page)) {
2756 cachep = page->slab_cache;
2757 if (!is_root_cache(cachep))
2758 memcg = cachep->memcg_params.memcg;
2759 } else
2760 /* page allocated by alloc_kmem_pages */
2761 memcg = page->mem_cgroup;
2762
2763 return memcg;
2764 }
2765 #endif /* CONFIG_MEMCG_KMEM */
2766
2767 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2768
2769 /*
2770 * Because tail pages are not marked as "used", set it. We're under
2771 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2772 * charge/uncharge will be never happen and move_account() is done under
2773 * compound_lock(), so we don't have to take care of races.
2774 */
2775 void mem_cgroup_split_huge_fixup(struct page *head)
2776 {
2777 int i;
2778
2779 if (mem_cgroup_disabled())
2780 return;
2781
2782 for (i = 1; i < HPAGE_PMD_NR; i++)
2783 head[i].mem_cgroup = head->mem_cgroup;
2784
2785 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2786 HPAGE_PMD_NR);
2787 }
2788 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2789
2790 #ifdef CONFIG_MEMCG_SWAP
2791 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2792 bool charge)
2793 {
2794 int val = (charge) ? 1 : -1;
2795 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2796 }
2797
2798 /**
2799 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2800 * @entry: swap entry to be moved
2801 * @from: mem_cgroup which the entry is moved from
2802 * @to: mem_cgroup which the entry is moved to
2803 *
2804 * It succeeds only when the swap_cgroup's record for this entry is the same
2805 * as the mem_cgroup's id of @from.
2806 *
2807 * Returns 0 on success, -EINVAL on failure.
2808 *
2809 * The caller must have charged to @to, IOW, called page_counter_charge() about
2810 * both res and memsw, and called css_get().
2811 */
2812 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2813 struct mem_cgroup *from, struct mem_cgroup *to)
2814 {
2815 unsigned short old_id, new_id;
2816
2817 old_id = mem_cgroup_id(from);
2818 new_id = mem_cgroup_id(to);
2819
2820 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2821 mem_cgroup_swap_statistics(from, false);
2822 mem_cgroup_swap_statistics(to, true);
2823 return 0;
2824 }
2825 return -EINVAL;
2826 }
2827 #else
2828 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2829 struct mem_cgroup *from, struct mem_cgroup *to)
2830 {
2831 return -EINVAL;
2832 }
2833 #endif
2834
2835 static DEFINE_MUTEX(memcg_limit_mutex);
2836
2837 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2838 unsigned long limit)
2839 {
2840 unsigned long curusage;
2841 unsigned long oldusage;
2842 bool enlarge = false;
2843 int retry_count;
2844 int ret;
2845
2846 /*
2847 * For keeping hierarchical_reclaim simple, how long we should retry
2848 * is depends on callers. We set our retry-count to be function
2849 * of # of children which we should visit in this loop.
2850 */
2851 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2852 mem_cgroup_count_children(memcg);
2853
2854 oldusage = page_counter_read(&memcg->memory);
2855
2856 do {
2857 if (signal_pending(current)) {
2858 ret = -EINTR;
2859 break;
2860 }
2861
2862 mutex_lock(&memcg_limit_mutex);
2863 if (limit > memcg->memsw.limit) {
2864 mutex_unlock(&memcg_limit_mutex);
2865 ret = -EINVAL;
2866 break;
2867 }
2868 if (limit > memcg->memory.limit)
2869 enlarge = true;
2870 ret = page_counter_limit(&memcg->memory, limit);
2871 mutex_unlock(&memcg_limit_mutex);
2872
2873 if (!ret)
2874 break;
2875
2876 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2877
2878 curusage = page_counter_read(&memcg->memory);
2879 /* Usage is reduced ? */
2880 if (curusage >= oldusage)
2881 retry_count--;
2882 else
2883 oldusage = curusage;
2884 } while (retry_count);
2885
2886 if (!ret && enlarge)
2887 memcg_oom_recover(memcg);
2888
2889 return ret;
2890 }
2891
2892 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2893 unsigned long limit)
2894 {
2895 unsigned long curusage;
2896 unsigned long oldusage;
2897 bool enlarge = false;
2898 int retry_count;
2899 int ret;
2900
2901 /* see mem_cgroup_resize_res_limit */
2902 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2903 mem_cgroup_count_children(memcg);
2904
2905 oldusage = page_counter_read(&memcg->memsw);
2906
2907 do {
2908 if (signal_pending(current)) {
2909 ret = -EINTR;
2910 break;
2911 }
2912
2913 mutex_lock(&memcg_limit_mutex);
2914 if (limit < memcg->memory.limit) {
2915 mutex_unlock(&memcg_limit_mutex);
2916 ret = -EINVAL;
2917 break;
2918 }
2919 if (limit > memcg->memsw.limit)
2920 enlarge = true;
2921 ret = page_counter_limit(&memcg->memsw, limit);
2922 mutex_unlock(&memcg_limit_mutex);
2923
2924 if (!ret)
2925 break;
2926
2927 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2928
2929 curusage = page_counter_read(&memcg->memsw);
2930 /* Usage is reduced ? */
2931 if (curusage >= oldusage)
2932 retry_count--;
2933 else
2934 oldusage = curusage;
2935 } while (retry_count);
2936
2937 if (!ret && enlarge)
2938 memcg_oom_recover(memcg);
2939
2940 return ret;
2941 }
2942
2943 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2944 gfp_t gfp_mask,
2945 unsigned long *total_scanned)
2946 {
2947 unsigned long nr_reclaimed = 0;
2948 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2949 unsigned long reclaimed;
2950 int loop = 0;
2951 struct mem_cgroup_tree_per_zone *mctz;
2952 unsigned long excess;
2953 unsigned long nr_scanned;
2954
2955 if (order > 0)
2956 return 0;
2957
2958 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2959 /*
2960 * This loop can run a while, specially if mem_cgroup's continuously
2961 * keep exceeding their soft limit and putting the system under
2962 * pressure
2963 */
2964 do {
2965 if (next_mz)
2966 mz = next_mz;
2967 else
2968 mz = mem_cgroup_largest_soft_limit_node(mctz);
2969 if (!mz)
2970 break;
2971
2972 nr_scanned = 0;
2973 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2974 gfp_mask, &nr_scanned);
2975 nr_reclaimed += reclaimed;
2976 *total_scanned += nr_scanned;
2977 spin_lock_irq(&mctz->lock);
2978 __mem_cgroup_remove_exceeded(mz, mctz);
2979
2980 /*
2981 * If we failed to reclaim anything from this memory cgroup
2982 * it is time to move on to the next cgroup
2983 */
2984 next_mz = NULL;
2985 if (!reclaimed)
2986 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2987
2988 excess = soft_limit_excess(mz->memcg);
2989 /*
2990 * One school of thought says that we should not add
2991 * back the node to the tree if reclaim returns 0.
2992 * But our reclaim could return 0, simply because due
2993 * to priority we are exposing a smaller subset of
2994 * memory to reclaim from. Consider this as a longer
2995 * term TODO.
2996 */
2997 /* If excess == 0, no tree ops */
2998 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2999 spin_unlock_irq(&mctz->lock);
3000 css_put(&mz->memcg->css);
3001 loop++;
3002 /*
3003 * Could not reclaim anything and there are no more
3004 * mem cgroups to try or we seem to be looping without
3005 * reclaiming anything.
3006 */
3007 if (!nr_reclaimed &&
3008 (next_mz == NULL ||
3009 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3010 break;
3011 } while (!nr_reclaimed);
3012 if (next_mz)
3013 css_put(&next_mz->memcg->css);
3014 return nr_reclaimed;
3015 }
3016
3017 /*
3018 * Test whether @memcg has children, dead or alive. Note that this
3019 * function doesn't care whether @memcg has use_hierarchy enabled and
3020 * returns %true if there are child csses according to the cgroup
3021 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3022 */
3023 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3024 {
3025 bool ret;
3026
3027 /*
3028 * The lock does not prevent addition or deletion of children, but
3029 * it prevents a new child from being initialized based on this
3030 * parent in css_online(), so it's enough to decide whether
3031 * hierarchically inherited attributes can still be changed or not.
3032 */
3033 lockdep_assert_held(&memcg_create_mutex);
3034
3035 rcu_read_lock();
3036 ret = css_next_child(NULL, &memcg->css);
3037 rcu_read_unlock();
3038 return ret;
3039 }
3040
3041 /*
3042 * Reclaims as many pages from the given memcg as possible and moves
3043 * the rest to the parent.
3044 *
3045 * Caller is responsible for holding css reference for memcg.
3046 */
3047 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3048 {
3049 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3050
3051 /* we call try-to-free pages for make this cgroup empty */
3052 lru_add_drain_all();
3053 /* try to free all pages in this cgroup */
3054 while (nr_retries && page_counter_read(&memcg->memory)) {
3055 int progress;
3056
3057 if (signal_pending(current))
3058 return -EINTR;
3059
3060 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3061 GFP_KERNEL, true);
3062 if (!progress) {
3063 nr_retries--;
3064 /* maybe some writeback is necessary */
3065 congestion_wait(BLK_RW_ASYNC, HZ/10);
3066 }
3067
3068 }
3069
3070 return 0;
3071 }
3072
3073 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3074 char *buf, size_t nbytes,
3075 loff_t off)
3076 {
3077 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3078
3079 if (mem_cgroup_is_root(memcg))
3080 return -EINVAL;
3081 return mem_cgroup_force_empty(memcg) ?: nbytes;
3082 }
3083
3084 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3085 struct cftype *cft)
3086 {
3087 return mem_cgroup_from_css(css)->use_hierarchy;
3088 }
3089
3090 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3091 struct cftype *cft, u64 val)
3092 {
3093 int retval = 0;
3094 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3095 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3096
3097 mutex_lock(&memcg_create_mutex);
3098
3099 if (memcg->use_hierarchy == val)
3100 goto out;
3101
3102 /*
3103 * If parent's use_hierarchy is set, we can't make any modifications
3104 * in the child subtrees. If it is unset, then the change can
3105 * occur, provided the current cgroup has no children.
3106 *
3107 * For the root cgroup, parent_mem is NULL, we allow value to be
3108 * set if there are no children.
3109 */
3110 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3111 (val == 1 || val == 0)) {
3112 if (!memcg_has_children(memcg))
3113 memcg->use_hierarchy = val;
3114 else
3115 retval = -EBUSY;
3116 } else
3117 retval = -EINVAL;
3118
3119 out:
3120 mutex_unlock(&memcg_create_mutex);
3121
3122 return retval;
3123 }
3124
3125 static unsigned long tree_stat(struct mem_cgroup *memcg,
3126 enum mem_cgroup_stat_index idx)
3127 {
3128 struct mem_cgroup *iter;
3129 long val = 0;
3130
3131 /* Per-cpu values can be negative, use a signed accumulator */
3132 for_each_mem_cgroup_tree(iter, memcg)
3133 val += mem_cgroup_read_stat(iter, idx);
3134
3135 if (val < 0) /* race ? */
3136 val = 0;
3137 return val;
3138 }
3139
3140 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3141 {
3142 u64 val;
3143
3144 if (mem_cgroup_is_root(memcg)) {
3145 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3146 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3147 if (swap)
3148 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3149 } else {
3150 if (!swap)
3151 val = page_counter_read(&memcg->memory);
3152 else
3153 val = page_counter_read(&memcg->memsw);
3154 }
3155 return val << PAGE_SHIFT;
3156 }
3157
3158 enum {
3159 RES_USAGE,
3160 RES_LIMIT,
3161 RES_MAX_USAGE,
3162 RES_FAILCNT,
3163 RES_SOFT_LIMIT,
3164 };
3165
3166 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3167 struct cftype *cft)
3168 {
3169 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3170 struct page_counter *counter;
3171
3172 switch (MEMFILE_TYPE(cft->private)) {
3173 case _MEM:
3174 counter = &memcg->memory;
3175 break;
3176 case _MEMSWAP:
3177 counter = &memcg->memsw;
3178 break;
3179 case _KMEM:
3180 counter = &memcg->kmem;
3181 break;
3182 default:
3183 BUG();
3184 }
3185
3186 switch (MEMFILE_ATTR(cft->private)) {
3187 case RES_USAGE:
3188 if (counter == &memcg->memory)
3189 return mem_cgroup_usage(memcg, false);
3190 if (counter == &memcg->memsw)
3191 return mem_cgroup_usage(memcg, true);
3192 return (u64)page_counter_read(counter) * PAGE_SIZE;
3193 case RES_LIMIT:
3194 return (u64)counter->limit * PAGE_SIZE;
3195 case RES_MAX_USAGE:
3196 return (u64)counter->watermark * PAGE_SIZE;
3197 case RES_FAILCNT:
3198 return counter->failcnt;
3199 case RES_SOFT_LIMIT:
3200 return (u64)memcg->soft_limit * PAGE_SIZE;
3201 default:
3202 BUG();
3203 }
3204 }
3205
3206 #ifdef CONFIG_MEMCG_KMEM
3207 static int memcg_activate_kmem(struct mem_cgroup *memcg,
3208 unsigned long nr_pages)
3209 {
3210 int err = 0;
3211 int memcg_id;
3212
3213 BUG_ON(memcg->kmemcg_id >= 0);
3214 BUG_ON(memcg->kmem_acct_activated);
3215 BUG_ON(memcg->kmem_acct_active);
3216
3217 /*
3218 * For simplicity, we won't allow this to be disabled. It also can't
3219 * be changed if the cgroup has children already, or if tasks had
3220 * already joined.
3221 *
3222 * If tasks join before we set the limit, a person looking at
3223 * kmem.usage_in_bytes will have no way to determine when it took
3224 * place, which makes the value quite meaningless.
3225 *
3226 * After it first became limited, changes in the value of the limit are
3227 * of course permitted.
3228 */
3229 mutex_lock(&memcg_create_mutex);
3230 if (cgroup_has_tasks(memcg->css.cgroup) ||
3231 (memcg->use_hierarchy && memcg_has_children(memcg)))
3232 err = -EBUSY;
3233 mutex_unlock(&memcg_create_mutex);
3234 if (err)
3235 goto out;
3236
3237 memcg_id = memcg_alloc_cache_id();
3238 if (memcg_id < 0) {
3239 err = memcg_id;
3240 goto out;
3241 }
3242
3243 /*
3244 * We couldn't have accounted to this cgroup, because it hasn't got
3245 * activated yet, so this should succeed.
3246 */
3247 err = page_counter_limit(&memcg->kmem, nr_pages);
3248 VM_BUG_ON(err);
3249
3250 static_key_slow_inc(&memcg_kmem_enabled_key);
3251 /*
3252 * A memory cgroup is considered kmem-active as soon as it gets
3253 * kmemcg_id. Setting the id after enabling static branching will
3254 * guarantee no one starts accounting before all call sites are
3255 * patched.
3256 */
3257 memcg->kmemcg_id = memcg_id;
3258 memcg->kmem_acct_activated = true;
3259 memcg->kmem_acct_active = true;
3260 out:
3261 return err;
3262 }
3263
3264 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3265 unsigned long limit)
3266 {
3267 int ret;
3268
3269 mutex_lock(&memcg_limit_mutex);
3270 if (!memcg_kmem_is_active(memcg))
3271 ret = memcg_activate_kmem(memcg, limit);
3272 else
3273 ret = page_counter_limit(&memcg->kmem, limit);
3274 mutex_unlock(&memcg_limit_mutex);
3275 return ret;
3276 }
3277
3278 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3279 {
3280 int ret = 0;
3281 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3282
3283 if (!parent)
3284 return 0;
3285
3286 mutex_lock(&memcg_limit_mutex);
3287 /*
3288 * If the parent cgroup is not kmem-active now, it cannot be activated
3289 * after this point, because it has at least one child already.
3290 */
3291 if (memcg_kmem_is_active(parent))
3292 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3293 mutex_unlock(&memcg_limit_mutex);
3294 return ret;
3295 }
3296 #else
3297 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3298 unsigned long limit)
3299 {
3300 return -EINVAL;
3301 }
3302 #endif /* CONFIG_MEMCG_KMEM */
3303
3304 /*
3305 * The user of this function is...
3306 * RES_LIMIT.
3307 */
3308 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3309 char *buf, size_t nbytes, loff_t off)
3310 {
3311 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3312 unsigned long nr_pages;
3313 int ret;
3314
3315 buf = strstrip(buf);
3316 ret = page_counter_memparse(buf, "-1", &nr_pages);
3317 if (ret)
3318 return ret;
3319
3320 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3321 case RES_LIMIT:
3322 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3323 ret = -EINVAL;
3324 break;
3325 }
3326 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3327 case _MEM:
3328 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3329 break;
3330 case _MEMSWAP:
3331 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3332 break;
3333 case _KMEM:
3334 ret = memcg_update_kmem_limit(memcg, nr_pages);
3335 break;
3336 }
3337 break;
3338 case RES_SOFT_LIMIT:
3339 memcg->soft_limit = nr_pages;
3340 ret = 0;
3341 break;
3342 }
3343 return ret ?: nbytes;
3344 }
3345
3346 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3347 size_t nbytes, loff_t off)
3348 {
3349 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3350 struct page_counter *counter;
3351
3352 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3353 case _MEM:
3354 counter = &memcg->memory;
3355 break;
3356 case _MEMSWAP:
3357 counter = &memcg->memsw;
3358 break;
3359 case _KMEM:
3360 counter = &memcg->kmem;
3361 break;
3362 default:
3363 BUG();
3364 }
3365
3366 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3367 case RES_MAX_USAGE:
3368 page_counter_reset_watermark(counter);
3369 break;
3370 case RES_FAILCNT:
3371 counter->failcnt = 0;
3372 break;
3373 default:
3374 BUG();
3375 }
3376
3377 return nbytes;
3378 }
3379
3380 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3381 struct cftype *cft)
3382 {
3383 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3384 }
3385
3386 #ifdef CONFIG_MMU
3387 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3388 struct cftype *cft, u64 val)
3389 {
3390 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3391
3392 if (val & ~MOVE_MASK)
3393 return -EINVAL;
3394
3395 /*
3396 * No kind of locking is needed in here, because ->can_attach() will
3397 * check this value once in the beginning of the process, and then carry
3398 * on with stale data. This means that changes to this value will only
3399 * affect task migrations starting after the change.
3400 */
3401 memcg->move_charge_at_immigrate = val;
3402 return 0;
3403 }
3404 #else
3405 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3406 struct cftype *cft, u64 val)
3407 {
3408 return -ENOSYS;
3409 }
3410 #endif
3411
3412 #ifdef CONFIG_NUMA
3413 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3414 {
3415 struct numa_stat {
3416 const char *name;
3417 unsigned int lru_mask;
3418 };
3419
3420 static const struct numa_stat stats[] = {
3421 { "total", LRU_ALL },
3422 { "file", LRU_ALL_FILE },
3423 { "anon", LRU_ALL_ANON },
3424 { "unevictable", BIT(LRU_UNEVICTABLE) },
3425 };
3426 const struct numa_stat *stat;
3427 int nid;
3428 unsigned long nr;
3429 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3430
3431 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3432 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3433 seq_printf(m, "%s=%lu", stat->name, nr);
3434 for_each_node_state(nid, N_MEMORY) {
3435 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3436 stat->lru_mask);
3437 seq_printf(m, " N%d=%lu", nid, nr);
3438 }
3439 seq_putc(m, '\n');
3440 }
3441
3442 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3443 struct mem_cgroup *iter;
3444
3445 nr = 0;
3446 for_each_mem_cgroup_tree(iter, memcg)
3447 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3448 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3449 for_each_node_state(nid, N_MEMORY) {
3450 nr = 0;
3451 for_each_mem_cgroup_tree(iter, memcg)
3452 nr += mem_cgroup_node_nr_lru_pages(
3453 iter, nid, stat->lru_mask);
3454 seq_printf(m, " N%d=%lu", nid, nr);
3455 }
3456 seq_putc(m, '\n');
3457 }
3458
3459 return 0;
3460 }
3461 #endif /* CONFIG_NUMA */
3462
3463 static int memcg_stat_show(struct seq_file *m, void *v)
3464 {
3465 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3466 unsigned long memory, memsw;
3467 struct mem_cgroup *mi;
3468 unsigned int i;
3469
3470 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3471 MEM_CGROUP_STAT_NSTATS);
3472 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3473 MEM_CGROUP_EVENTS_NSTATS);
3474 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3475
3476 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3477 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3478 continue;
3479 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3480 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3481 }
3482
3483 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3484 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3485 mem_cgroup_read_events(memcg, i));
3486
3487 for (i = 0; i < NR_LRU_LISTS; i++)
3488 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3489 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3490
3491 /* Hierarchical information */
3492 memory = memsw = PAGE_COUNTER_MAX;
3493 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3494 memory = min(memory, mi->memory.limit);
3495 memsw = min(memsw, mi->memsw.limit);
3496 }
3497 seq_printf(m, "hierarchical_memory_limit %llu\n",
3498 (u64)memory * PAGE_SIZE);
3499 if (do_swap_account)
3500 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3501 (u64)memsw * PAGE_SIZE);
3502
3503 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3504 long long val = 0;
3505
3506 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3507 continue;
3508 for_each_mem_cgroup_tree(mi, memcg)
3509 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3510 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3511 }
3512
3513 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3514 unsigned long long val = 0;
3515
3516 for_each_mem_cgroup_tree(mi, memcg)
3517 val += mem_cgroup_read_events(mi, i);
3518 seq_printf(m, "total_%s %llu\n",
3519 mem_cgroup_events_names[i], val);
3520 }
3521
3522 for (i = 0; i < NR_LRU_LISTS; i++) {
3523 unsigned long long val = 0;
3524
3525 for_each_mem_cgroup_tree(mi, memcg)
3526 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3527 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3528 }
3529
3530 #ifdef CONFIG_DEBUG_VM
3531 {
3532 int nid, zid;
3533 struct mem_cgroup_per_zone *mz;
3534 struct zone_reclaim_stat *rstat;
3535 unsigned long recent_rotated[2] = {0, 0};
3536 unsigned long recent_scanned[2] = {0, 0};
3537
3538 for_each_online_node(nid)
3539 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3540 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3541 rstat = &mz->lruvec.reclaim_stat;
3542
3543 recent_rotated[0] += rstat->recent_rotated[0];
3544 recent_rotated[1] += rstat->recent_rotated[1];
3545 recent_scanned[0] += rstat->recent_scanned[0];
3546 recent_scanned[1] += rstat->recent_scanned[1];
3547 }
3548 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3549 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3550 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3551 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3552 }
3553 #endif
3554
3555 return 0;
3556 }
3557
3558 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3559 struct cftype *cft)
3560 {
3561 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3562
3563 return mem_cgroup_swappiness(memcg);
3564 }
3565
3566 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3567 struct cftype *cft, u64 val)
3568 {
3569 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3570
3571 if (val > 100)
3572 return -EINVAL;
3573
3574 if (css->parent)
3575 memcg->swappiness = val;
3576 else
3577 vm_swappiness = val;
3578
3579 return 0;
3580 }
3581
3582 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3583 {
3584 struct mem_cgroup_threshold_ary *t;
3585 unsigned long usage;
3586 int i;
3587
3588 rcu_read_lock();
3589 if (!swap)
3590 t = rcu_dereference(memcg->thresholds.primary);
3591 else
3592 t = rcu_dereference(memcg->memsw_thresholds.primary);
3593
3594 if (!t)
3595 goto unlock;
3596
3597 usage = mem_cgroup_usage(memcg, swap);
3598
3599 /*
3600 * current_threshold points to threshold just below or equal to usage.
3601 * If it's not true, a threshold was crossed after last
3602 * call of __mem_cgroup_threshold().
3603 */
3604 i = t->current_threshold;
3605
3606 /*
3607 * Iterate backward over array of thresholds starting from
3608 * current_threshold and check if a threshold is crossed.
3609 * If none of thresholds below usage is crossed, we read
3610 * only one element of the array here.
3611 */
3612 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3613 eventfd_signal(t->entries[i].eventfd, 1);
3614
3615 /* i = current_threshold + 1 */
3616 i++;
3617
3618 /*
3619 * Iterate forward over array of thresholds starting from
3620 * current_threshold+1 and check if a threshold is crossed.
3621 * If none of thresholds above usage is crossed, we read
3622 * only one element of the array here.
3623 */
3624 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3625 eventfd_signal(t->entries[i].eventfd, 1);
3626
3627 /* Update current_threshold */
3628 t->current_threshold = i - 1;
3629 unlock:
3630 rcu_read_unlock();
3631 }
3632
3633 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3634 {
3635 while (memcg) {
3636 __mem_cgroup_threshold(memcg, false);
3637 if (do_swap_account)
3638 __mem_cgroup_threshold(memcg, true);
3639
3640 memcg = parent_mem_cgroup(memcg);
3641 }
3642 }
3643
3644 static int compare_thresholds(const void *a, const void *b)
3645 {
3646 const struct mem_cgroup_threshold *_a = a;
3647 const struct mem_cgroup_threshold *_b = b;
3648
3649 if (_a->threshold > _b->threshold)
3650 return 1;
3651
3652 if (_a->threshold < _b->threshold)
3653 return -1;
3654
3655 return 0;
3656 }
3657
3658 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3659 {
3660 struct mem_cgroup_eventfd_list *ev;
3661
3662 spin_lock(&memcg_oom_lock);
3663
3664 list_for_each_entry(ev, &memcg->oom_notify, list)
3665 eventfd_signal(ev->eventfd, 1);
3666
3667 spin_unlock(&memcg_oom_lock);
3668 return 0;
3669 }
3670
3671 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3672 {
3673 struct mem_cgroup *iter;
3674
3675 for_each_mem_cgroup_tree(iter, memcg)
3676 mem_cgroup_oom_notify_cb(iter);
3677 }
3678
3679 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3680 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3681 {
3682 struct mem_cgroup_thresholds *thresholds;
3683 struct mem_cgroup_threshold_ary *new;
3684 unsigned long threshold;
3685 unsigned long usage;
3686 int i, size, ret;
3687
3688 ret = page_counter_memparse(args, "-1", &threshold);
3689 if (ret)
3690 return ret;
3691
3692 mutex_lock(&memcg->thresholds_lock);
3693
3694 if (type == _MEM) {
3695 thresholds = &memcg->thresholds;
3696 usage = mem_cgroup_usage(memcg, false);
3697 } else if (type == _MEMSWAP) {
3698 thresholds = &memcg->memsw_thresholds;
3699 usage = mem_cgroup_usage(memcg, true);
3700 } else
3701 BUG();
3702
3703 /* Check if a threshold crossed before adding a new one */
3704 if (thresholds->primary)
3705 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3706
3707 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3708
3709 /* Allocate memory for new array of thresholds */
3710 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3711 GFP_KERNEL);
3712 if (!new) {
3713 ret = -ENOMEM;
3714 goto unlock;
3715 }
3716 new->size = size;
3717
3718 /* Copy thresholds (if any) to new array */
3719 if (thresholds->primary) {
3720 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3721 sizeof(struct mem_cgroup_threshold));
3722 }
3723
3724 /* Add new threshold */
3725 new->entries[size - 1].eventfd = eventfd;
3726 new->entries[size - 1].threshold = threshold;
3727
3728 /* Sort thresholds. Registering of new threshold isn't time-critical */
3729 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3730 compare_thresholds, NULL);
3731
3732 /* Find current threshold */
3733 new->current_threshold = -1;
3734 for (i = 0; i < size; i++) {
3735 if (new->entries[i].threshold <= usage) {
3736 /*
3737 * new->current_threshold will not be used until
3738 * rcu_assign_pointer(), so it's safe to increment
3739 * it here.
3740 */
3741 ++new->current_threshold;
3742 } else
3743 break;
3744 }
3745
3746 /* Free old spare buffer and save old primary buffer as spare */
3747 kfree(thresholds->spare);
3748 thresholds->spare = thresholds->primary;
3749
3750 rcu_assign_pointer(thresholds->primary, new);
3751
3752 /* To be sure that nobody uses thresholds */
3753 synchronize_rcu();
3754
3755 unlock:
3756 mutex_unlock(&memcg->thresholds_lock);
3757
3758 return ret;
3759 }
3760
3761 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3762 struct eventfd_ctx *eventfd, const char *args)
3763 {
3764 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3765 }
3766
3767 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3768 struct eventfd_ctx *eventfd, const char *args)
3769 {
3770 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3771 }
3772
3773 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3774 struct eventfd_ctx *eventfd, enum res_type type)
3775 {
3776 struct mem_cgroup_thresholds *thresholds;
3777 struct mem_cgroup_threshold_ary *new;
3778 unsigned long usage;
3779 int i, j, size;
3780
3781 mutex_lock(&memcg->thresholds_lock);
3782
3783 if (type == _MEM) {
3784 thresholds = &memcg->thresholds;
3785 usage = mem_cgroup_usage(memcg, false);
3786 } else if (type == _MEMSWAP) {
3787 thresholds = &memcg->memsw_thresholds;
3788 usage = mem_cgroup_usage(memcg, true);
3789 } else
3790 BUG();
3791
3792 if (!thresholds->primary)
3793 goto unlock;
3794
3795 /* Check if a threshold crossed before removing */
3796 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3797
3798 /* Calculate new number of threshold */
3799 size = 0;
3800 for (i = 0; i < thresholds->primary->size; i++) {
3801 if (thresholds->primary->entries[i].eventfd != eventfd)
3802 size++;
3803 }
3804
3805 new = thresholds->spare;
3806
3807 /* Set thresholds array to NULL if we don't have thresholds */
3808 if (!size) {
3809 kfree(new);
3810 new = NULL;
3811 goto swap_buffers;
3812 }
3813
3814 new->size = size;
3815
3816 /* Copy thresholds and find current threshold */
3817 new->current_threshold = -1;
3818 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3819 if (thresholds->primary->entries[i].eventfd == eventfd)
3820 continue;
3821
3822 new->entries[j] = thresholds->primary->entries[i];
3823 if (new->entries[j].threshold <= usage) {
3824 /*
3825 * new->current_threshold will not be used
3826 * until rcu_assign_pointer(), so it's safe to increment
3827 * it here.
3828 */
3829 ++new->current_threshold;
3830 }
3831 j++;
3832 }
3833
3834 swap_buffers:
3835 /* Swap primary and spare array */
3836 thresholds->spare = thresholds->primary;
3837 /* If all events are unregistered, free the spare array */
3838 if (!new) {
3839 kfree(thresholds->spare);
3840 thresholds->spare = NULL;
3841 }
3842
3843 rcu_assign_pointer(thresholds->primary, new);
3844
3845 /* To be sure that nobody uses thresholds */
3846 synchronize_rcu();
3847 unlock:
3848 mutex_unlock(&memcg->thresholds_lock);
3849 }
3850
3851 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3852 struct eventfd_ctx *eventfd)
3853 {
3854 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3855 }
3856
3857 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3858 struct eventfd_ctx *eventfd)
3859 {
3860 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3861 }
3862
3863 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3864 struct eventfd_ctx *eventfd, const char *args)
3865 {
3866 struct mem_cgroup_eventfd_list *event;
3867
3868 event = kmalloc(sizeof(*event), GFP_KERNEL);
3869 if (!event)
3870 return -ENOMEM;
3871
3872 spin_lock(&memcg_oom_lock);
3873
3874 event->eventfd = eventfd;
3875 list_add(&event->list, &memcg->oom_notify);
3876
3877 /* already in OOM ? */
3878 if (atomic_read(&memcg->under_oom))
3879 eventfd_signal(eventfd, 1);
3880 spin_unlock(&memcg_oom_lock);
3881
3882 return 0;
3883 }
3884
3885 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3886 struct eventfd_ctx *eventfd)
3887 {
3888 struct mem_cgroup_eventfd_list *ev, *tmp;
3889
3890 spin_lock(&memcg_oom_lock);
3891
3892 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3893 if (ev->eventfd == eventfd) {
3894 list_del(&ev->list);
3895 kfree(ev);
3896 }
3897 }
3898
3899 spin_unlock(&memcg_oom_lock);
3900 }
3901
3902 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3903 {
3904 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3905
3906 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3907 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3908 return 0;
3909 }
3910
3911 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3912 struct cftype *cft, u64 val)
3913 {
3914 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3915
3916 /* cannot set to root cgroup and only 0 and 1 are allowed */
3917 if (!css->parent || !((val == 0) || (val == 1)))
3918 return -EINVAL;
3919
3920 memcg->oom_kill_disable = val;
3921 if (!val)
3922 memcg_oom_recover(memcg);
3923
3924 return 0;
3925 }
3926
3927 #ifdef CONFIG_MEMCG_KMEM
3928 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3929 {
3930 int ret;
3931
3932 ret = memcg_propagate_kmem(memcg);
3933 if (ret)
3934 return ret;
3935
3936 return mem_cgroup_sockets_init(memcg, ss);
3937 }
3938
3939 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3940 {
3941 struct cgroup_subsys_state *css;
3942 struct mem_cgroup *parent, *child;
3943 int kmemcg_id;
3944
3945 if (!memcg->kmem_acct_active)
3946 return;
3947
3948 /*
3949 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3950 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3951 * guarantees no cache will be created for this cgroup after we are
3952 * done (see memcg_create_kmem_cache()).
3953 */
3954 memcg->kmem_acct_active = false;
3955
3956 memcg_deactivate_kmem_caches(memcg);
3957
3958 kmemcg_id = memcg->kmemcg_id;
3959 BUG_ON(kmemcg_id < 0);
3960
3961 parent = parent_mem_cgroup(memcg);
3962 if (!parent)
3963 parent = root_mem_cgroup;
3964
3965 /*
3966 * Change kmemcg_id of this cgroup and all its descendants to the
3967 * parent's id, and then move all entries from this cgroup's list_lrus
3968 * to ones of the parent. After we have finished, all list_lrus
3969 * corresponding to this cgroup are guaranteed to remain empty. The
3970 * ordering is imposed by list_lru_node->lock taken by
3971 * memcg_drain_all_list_lrus().
3972 */
3973 css_for_each_descendant_pre(css, &memcg->css) {
3974 child = mem_cgroup_from_css(css);
3975 BUG_ON(child->kmemcg_id != kmemcg_id);
3976 child->kmemcg_id = parent->kmemcg_id;
3977 if (!memcg->use_hierarchy)
3978 break;
3979 }
3980 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3981
3982 memcg_free_cache_id(kmemcg_id);
3983 }
3984
3985 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3986 {
3987 if (memcg->kmem_acct_activated) {
3988 memcg_destroy_kmem_caches(memcg);
3989 static_key_slow_dec(&memcg_kmem_enabled_key);
3990 WARN_ON(page_counter_read(&memcg->kmem));
3991 }
3992 mem_cgroup_sockets_destroy(memcg);
3993 }
3994 #else
3995 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3996 {
3997 return 0;
3998 }
3999
4000 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
4001 {
4002 }
4003
4004 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4005 {
4006 }
4007 #endif
4008
4009 /*
4010 * DO NOT USE IN NEW FILES.
4011 *
4012 * "cgroup.event_control" implementation.
4013 *
4014 * This is way over-engineered. It tries to support fully configurable
4015 * events for each user. Such level of flexibility is completely
4016 * unnecessary especially in the light of the planned unified hierarchy.
4017 *
4018 * Please deprecate this and replace with something simpler if at all
4019 * possible.
4020 */
4021
4022 /*
4023 * Unregister event and free resources.
4024 *
4025 * Gets called from workqueue.
4026 */
4027 static void memcg_event_remove(struct work_struct *work)
4028 {
4029 struct mem_cgroup_event *event =
4030 container_of(work, struct mem_cgroup_event, remove);
4031 struct mem_cgroup *memcg = event->memcg;
4032
4033 remove_wait_queue(event->wqh, &event->wait);
4034
4035 event->unregister_event(memcg, event->eventfd);
4036
4037 /* Notify userspace the event is going away. */
4038 eventfd_signal(event->eventfd, 1);
4039
4040 eventfd_ctx_put(event->eventfd);
4041 kfree(event);
4042 css_put(&memcg->css);
4043 }
4044
4045 /*
4046 * Gets called on POLLHUP on eventfd when user closes it.
4047 *
4048 * Called with wqh->lock held and interrupts disabled.
4049 */
4050 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4051 int sync, void *key)
4052 {
4053 struct mem_cgroup_event *event =
4054 container_of(wait, struct mem_cgroup_event, wait);
4055 struct mem_cgroup *memcg = event->memcg;
4056 unsigned long flags = (unsigned long)key;
4057
4058 if (flags & POLLHUP) {
4059 /*
4060 * If the event has been detached at cgroup removal, we
4061 * can simply return knowing the other side will cleanup
4062 * for us.
4063 *
4064 * We can't race against event freeing since the other
4065 * side will require wqh->lock via remove_wait_queue(),
4066 * which we hold.
4067 */
4068 spin_lock(&memcg->event_list_lock);
4069 if (!list_empty(&event->list)) {
4070 list_del_init(&event->list);
4071 /*
4072 * We are in atomic context, but cgroup_event_remove()
4073 * may sleep, so we have to call it in workqueue.
4074 */
4075 schedule_work(&event->remove);
4076 }
4077 spin_unlock(&memcg->event_list_lock);
4078 }
4079
4080 return 0;
4081 }
4082
4083 static void memcg_event_ptable_queue_proc(struct file *file,
4084 wait_queue_head_t *wqh, poll_table *pt)
4085 {
4086 struct mem_cgroup_event *event =
4087 container_of(pt, struct mem_cgroup_event, pt);
4088
4089 event->wqh = wqh;
4090 add_wait_queue(wqh, &event->wait);
4091 }
4092
4093 /*
4094 * DO NOT USE IN NEW FILES.
4095 *
4096 * Parse input and register new cgroup event handler.
4097 *
4098 * Input must be in format '<event_fd> <control_fd> <args>'.
4099 * Interpretation of args is defined by control file implementation.
4100 */
4101 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4102 char *buf, size_t nbytes, loff_t off)
4103 {
4104 struct cgroup_subsys_state *css = of_css(of);
4105 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4106 struct mem_cgroup_event *event;
4107 struct cgroup_subsys_state *cfile_css;
4108 unsigned int efd, cfd;
4109 struct fd efile;
4110 struct fd cfile;
4111 const char *name;
4112 char *endp;
4113 int ret;
4114
4115 buf = strstrip(buf);
4116
4117 efd = simple_strtoul(buf, &endp, 10);
4118 if (*endp != ' ')
4119 return -EINVAL;
4120 buf = endp + 1;
4121
4122 cfd = simple_strtoul(buf, &endp, 10);
4123 if ((*endp != ' ') && (*endp != '\0'))
4124 return -EINVAL;
4125 buf = endp + 1;
4126
4127 event = kzalloc(sizeof(*event), GFP_KERNEL);
4128 if (!event)
4129 return -ENOMEM;
4130
4131 event->memcg = memcg;
4132 INIT_LIST_HEAD(&event->list);
4133 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4134 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4135 INIT_WORK(&event->remove, memcg_event_remove);
4136
4137 efile = fdget(efd);
4138 if (!efile.file) {
4139 ret = -EBADF;
4140 goto out_kfree;
4141 }
4142
4143 event->eventfd = eventfd_ctx_fileget(efile.file);
4144 if (IS_ERR(event->eventfd)) {
4145 ret = PTR_ERR(event->eventfd);
4146 goto out_put_efile;
4147 }
4148
4149 cfile = fdget(cfd);
4150 if (!cfile.file) {
4151 ret = -EBADF;
4152 goto out_put_eventfd;
4153 }
4154
4155 /* the process need read permission on control file */
4156 /* AV: shouldn't we check that it's been opened for read instead? */
4157 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4158 if (ret < 0)
4159 goto out_put_cfile;
4160
4161 /*
4162 * Determine the event callbacks and set them in @event. This used
4163 * to be done via struct cftype but cgroup core no longer knows
4164 * about these events. The following is crude but the whole thing
4165 * is for compatibility anyway.
4166 *
4167 * DO NOT ADD NEW FILES.
4168 */
4169 name = cfile.file->f_path.dentry->d_name.name;
4170
4171 if (!strcmp(name, "memory.usage_in_bytes")) {
4172 event->register_event = mem_cgroup_usage_register_event;
4173 event->unregister_event = mem_cgroup_usage_unregister_event;
4174 } else if (!strcmp(name, "memory.oom_control")) {
4175 event->register_event = mem_cgroup_oom_register_event;
4176 event->unregister_event = mem_cgroup_oom_unregister_event;
4177 } else if (!strcmp(name, "memory.pressure_level")) {
4178 event->register_event = vmpressure_register_event;
4179 event->unregister_event = vmpressure_unregister_event;
4180 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4181 event->register_event = memsw_cgroup_usage_register_event;
4182 event->unregister_event = memsw_cgroup_usage_unregister_event;
4183 } else {
4184 ret = -EINVAL;
4185 goto out_put_cfile;
4186 }
4187
4188 /*
4189 * Verify @cfile should belong to @css. Also, remaining events are
4190 * automatically removed on cgroup destruction but the removal is
4191 * asynchronous, so take an extra ref on @css.
4192 */
4193 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4194 &memory_cgrp_subsys);
4195 ret = -EINVAL;
4196 if (IS_ERR(cfile_css))
4197 goto out_put_cfile;
4198 if (cfile_css != css) {
4199 css_put(cfile_css);
4200 goto out_put_cfile;
4201 }
4202
4203 ret = event->register_event(memcg, event->eventfd, buf);
4204 if (ret)
4205 goto out_put_css;
4206
4207 efile.file->f_op->poll(efile.file, &event->pt);
4208
4209 spin_lock(&memcg->event_list_lock);
4210 list_add(&event->list, &memcg->event_list);
4211 spin_unlock(&memcg->event_list_lock);
4212
4213 fdput(cfile);
4214 fdput(efile);
4215
4216 return nbytes;
4217
4218 out_put_css:
4219 css_put(css);
4220 out_put_cfile:
4221 fdput(cfile);
4222 out_put_eventfd:
4223 eventfd_ctx_put(event->eventfd);
4224 out_put_efile:
4225 fdput(efile);
4226 out_kfree:
4227 kfree(event);
4228
4229 return ret;
4230 }
4231
4232 static struct cftype mem_cgroup_legacy_files[] = {
4233 {
4234 .name = "usage_in_bytes",
4235 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4236 .read_u64 = mem_cgroup_read_u64,
4237 },
4238 {
4239 .name = "max_usage_in_bytes",
4240 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4241 .write = mem_cgroup_reset,
4242 .read_u64 = mem_cgroup_read_u64,
4243 },
4244 {
4245 .name = "limit_in_bytes",
4246 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4247 .write = mem_cgroup_write,
4248 .read_u64 = mem_cgroup_read_u64,
4249 },
4250 {
4251 .name = "soft_limit_in_bytes",
4252 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4253 .write = mem_cgroup_write,
4254 .read_u64 = mem_cgroup_read_u64,
4255 },
4256 {
4257 .name = "failcnt",
4258 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4259 .write = mem_cgroup_reset,
4260 .read_u64 = mem_cgroup_read_u64,
4261 },
4262 {
4263 .name = "stat",
4264 .seq_show = memcg_stat_show,
4265 },
4266 {
4267 .name = "force_empty",
4268 .write = mem_cgroup_force_empty_write,
4269 },
4270 {
4271 .name = "use_hierarchy",
4272 .write_u64 = mem_cgroup_hierarchy_write,
4273 .read_u64 = mem_cgroup_hierarchy_read,
4274 },
4275 {
4276 .name = "cgroup.event_control", /* XXX: for compat */
4277 .write = memcg_write_event_control,
4278 .flags = CFTYPE_NO_PREFIX,
4279 .mode = S_IWUGO,
4280 },
4281 {
4282 .name = "swappiness",
4283 .read_u64 = mem_cgroup_swappiness_read,
4284 .write_u64 = mem_cgroup_swappiness_write,
4285 },
4286 {
4287 .name = "move_charge_at_immigrate",
4288 .read_u64 = mem_cgroup_move_charge_read,
4289 .write_u64 = mem_cgroup_move_charge_write,
4290 },
4291 {
4292 .name = "oom_control",
4293 .seq_show = mem_cgroup_oom_control_read,
4294 .write_u64 = mem_cgroup_oom_control_write,
4295 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4296 },
4297 {
4298 .name = "pressure_level",
4299 },
4300 #ifdef CONFIG_NUMA
4301 {
4302 .name = "numa_stat",
4303 .seq_show = memcg_numa_stat_show,
4304 },
4305 #endif
4306 #ifdef CONFIG_MEMCG_KMEM
4307 {
4308 .name = "kmem.limit_in_bytes",
4309 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4310 .write = mem_cgroup_write,
4311 .read_u64 = mem_cgroup_read_u64,
4312 },
4313 {
4314 .name = "kmem.usage_in_bytes",
4315 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4316 .read_u64 = mem_cgroup_read_u64,
4317 },
4318 {
4319 .name = "kmem.failcnt",
4320 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4321 .write = mem_cgroup_reset,
4322 .read_u64 = mem_cgroup_read_u64,
4323 },
4324 {
4325 .name = "kmem.max_usage_in_bytes",
4326 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4327 .write = mem_cgroup_reset,
4328 .read_u64 = mem_cgroup_read_u64,
4329 },
4330 #ifdef CONFIG_SLABINFO
4331 {
4332 .name = "kmem.slabinfo",
4333 .seq_start = slab_start,
4334 .seq_next = slab_next,
4335 .seq_stop = slab_stop,
4336 .seq_show = memcg_slab_show,
4337 },
4338 #endif
4339 #endif
4340 { }, /* terminate */
4341 };
4342
4343 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4344 {
4345 struct mem_cgroup_per_node *pn;
4346 struct mem_cgroup_per_zone *mz;
4347 int zone, tmp = node;
4348 /*
4349 * This routine is called against possible nodes.
4350 * But it's BUG to call kmalloc() against offline node.
4351 *
4352 * TODO: this routine can waste much memory for nodes which will
4353 * never be onlined. It's better to use memory hotplug callback
4354 * function.
4355 */
4356 if (!node_state(node, N_NORMAL_MEMORY))
4357 tmp = -1;
4358 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4359 if (!pn)
4360 return 1;
4361
4362 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4363 mz = &pn->zoneinfo[zone];
4364 lruvec_init(&mz->lruvec);
4365 mz->usage_in_excess = 0;
4366 mz->on_tree = false;
4367 mz->memcg = memcg;
4368 }
4369 memcg->nodeinfo[node] = pn;
4370 return 0;
4371 }
4372
4373 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4374 {
4375 kfree(memcg->nodeinfo[node]);
4376 }
4377
4378 static struct mem_cgroup *mem_cgroup_alloc(void)
4379 {
4380 struct mem_cgroup *memcg;
4381 size_t size;
4382
4383 size = sizeof(struct mem_cgroup);
4384 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4385
4386 memcg = kzalloc(size, GFP_KERNEL);
4387 if (!memcg)
4388 return NULL;
4389
4390 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4391 if (!memcg->stat)
4392 goto out_free;
4393 spin_lock_init(&memcg->pcp_counter_lock);
4394 return memcg;
4395
4396 out_free:
4397 kfree(memcg);
4398 return NULL;
4399 }
4400
4401 /*
4402 * At destroying mem_cgroup, references from swap_cgroup can remain.
4403 * (scanning all at force_empty is too costly...)
4404 *
4405 * Instead of clearing all references at force_empty, we remember
4406 * the number of reference from swap_cgroup and free mem_cgroup when
4407 * it goes down to 0.
4408 *
4409 * Removal of cgroup itself succeeds regardless of refs from swap.
4410 */
4411
4412 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4413 {
4414 int node;
4415
4416 mem_cgroup_remove_from_trees(memcg);
4417
4418 for_each_node(node)
4419 free_mem_cgroup_per_zone_info(memcg, node);
4420
4421 free_percpu(memcg->stat);
4422 kfree(memcg);
4423 }
4424
4425 /*
4426 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4427 */
4428 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4429 {
4430 if (!memcg->memory.parent)
4431 return NULL;
4432 return mem_cgroup_from_counter(memcg->memory.parent, memory);
4433 }
4434 EXPORT_SYMBOL(parent_mem_cgroup);
4435
4436 static struct cgroup_subsys_state * __ref
4437 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4438 {
4439 struct mem_cgroup *memcg;
4440 long error = -ENOMEM;
4441 int node;
4442
4443 memcg = mem_cgroup_alloc();
4444 if (!memcg)
4445 return ERR_PTR(error);
4446
4447 for_each_node(node)
4448 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4449 goto free_out;
4450
4451 /* root ? */
4452 if (parent_css == NULL) {
4453 root_mem_cgroup = memcg;
4454 page_counter_init(&memcg->memory, NULL);
4455 memcg->high = PAGE_COUNTER_MAX;
4456 memcg->soft_limit = PAGE_COUNTER_MAX;
4457 page_counter_init(&memcg->memsw, NULL);
4458 page_counter_init(&memcg->kmem, NULL);
4459 }
4460
4461 memcg->last_scanned_node = MAX_NUMNODES;
4462 INIT_LIST_HEAD(&memcg->oom_notify);
4463 memcg->move_charge_at_immigrate = 0;
4464 mutex_init(&memcg->thresholds_lock);
4465 spin_lock_init(&memcg->move_lock);
4466 vmpressure_init(&memcg->vmpressure);
4467 INIT_LIST_HEAD(&memcg->event_list);
4468 spin_lock_init(&memcg->event_list_lock);
4469 #ifdef CONFIG_MEMCG_KMEM
4470 memcg->kmemcg_id = -1;
4471 #endif
4472
4473 return &memcg->css;
4474
4475 free_out:
4476 __mem_cgroup_free(memcg);
4477 return ERR_PTR(error);
4478 }
4479
4480 static int
4481 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4482 {
4483 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4484 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4485 int ret;
4486
4487 if (css->id > MEM_CGROUP_ID_MAX)
4488 return -ENOSPC;
4489
4490 if (!parent)
4491 return 0;
4492
4493 mutex_lock(&memcg_create_mutex);
4494
4495 memcg->use_hierarchy = parent->use_hierarchy;
4496 memcg->oom_kill_disable = parent->oom_kill_disable;
4497 memcg->swappiness = mem_cgroup_swappiness(parent);
4498
4499 if (parent->use_hierarchy) {
4500 page_counter_init(&memcg->memory, &parent->memory);
4501 memcg->high = PAGE_COUNTER_MAX;
4502 memcg->soft_limit = PAGE_COUNTER_MAX;
4503 page_counter_init(&memcg->memsw, &parent->memsw);
4504 page_counter_init(&memcg->kmem, &parent->kmem);
4505
4506 /*
4507 * No need to take a reference to the parent because cgroup
4508 * core guarantees its existence.
4509 */
4510 } else {
4511 page_counter_init(&memcg->memory, NULL);
4512 memcg->high = PAGE_COUNTER_MAX;
4513 memcg->soft_limit = PAGE_COUNTER_MAX;
4514 page_counter_init(&memcg->memsw, NULL);
4515 page_counter_init(&memcg->kmem, NULL);
4516 /*
4517 * Deeper hierachy with use_hierarchy == false doesn't make
4518 * much sense so let cgroup subsystem know about this
4519 * unfortunate state in our controller.
4520 */
4521 if (parent != root_mem_cgroup)
4522 memory_cgrp_subsys.broken_hierarchy = true;
4523 }
4524 mutex_unlock(&memcg_create_mutex);
4525
4526 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4527 if (ret)
4528 return ret;
4529
4530 /*
4531 * Make sure the memcg is initialized: mem_cgroup_iter()
4532 * orders reading memcg->initialized against its callers
4533 * reading the memcg members.
4534 */
4535 smp_store_release(&memcg->initialized, 1);
4536
4537 return 0;
4538 }
4539
4540 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4541 {
4542 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4543 struct mem_cgroup_event *event, *tmp;
4544
4545 /*
4546 * Unregister events and notify userspace.
4547 * Notify userspace about cgroup removing only after rmdir of cgroup
4548 * directory to avoid race between userspace and kernelspace.
4549 */
4550 spin_lock(&memcg->event_list_lock);
4551 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4552 list_del_init(&event->list);
4553 schedule_work(&event->remove);
4554 }
4555 spin_unlock(&memcg->event_list_lock);
4556
4557 vmpressure_cleanup(&memcg->vmpressure);
4558
4559 memcg_deactivate_kmem(memcg);
4560 }
4561
4562 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4563 {
4564 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4565
4566 memcg_destroy_kmem(memcg);
4567 __mem_cgroup_free(memcg);
4568 }
4569
4570 /**
4571 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4572 * @css: the target css
4573 *
4574 * Reset the states of the mem_cgroup associated with @css. This is
4575 * invoked when the userland requests disabling on the default hierarchy
4576 * but the memcg is pinned through dependency. The memcg should stop
4577 * applying policies and should revert to the vanilla state as it may be
4578 * made visible again.
4579 *
4580 * The current implementation only resets the essential configurations.
4581 * This needs to be expanded to cover all the visible parts.
4582 */
4583 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4584 {
4585 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4586
4587 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4588 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4589 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4590 memcg->low = 0;
4591 memcg->high = PAGE_COUNTER_MAX;
4592 memcg->soft_limit = PAGE_COUNTER_MAX;
4593 }
4594
4595 #ifdef CONFIG_MMU
4596 /* Handlers for move charge at task migration. */
4597 static int mem_cgroup_do_precharge(unsigned long count)
4598 {
4599 int ret;
4600
4601 /* Try a single bulk charge without reclaim first */
4602 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4603 if (!ret) {
4604 mc.precharge += count;
4605 return ret;
4606 }
4607 if (ret == -EINTR) {
4608 cancel_charge(root_mem_cgroup, count);
4609 return ret;
4610 }
4611
4612 /* Try charges one by one with reclaim */
4613 while (count--) {
4614 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4615 /*
4616 * In case of failure, any residual charges against
4617 * mc.to will be dropped by mem_cgroup_clear_mc()
4618 * later on. However, cancel any charges that are
4619 * bypassed to root right away or they'll be lost.
4620 */
4621 if (ret == -EINTR)
4622 cancel_charge(root_mem_cgroup, 1);
4623 if (ret)
4624 return ret;
4625 mc.precharge++;
4626 cond_resched();
4627 }
4628 return 0;
4629 }
4630
4631 /**
4632 * get_mctgt_type - get target type of moving charge
4633 * @vma: the vma the pte to be checked belongs
4634 * @addr: the address corresponding to the pte to be checked
4635 * @ptent: the pte to be checked
4636 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4637 *
4638 * Returns
4639 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4640 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4641 * move charge. if @target is not NULL, the page is stored in target->page
4642 * with extra refcnt got(Callers should handle it).
4643 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4644 * target for charge migration. if @target is not NULL, the entry is stored
4645 * in target->ent.
4646 *
4647 * Called with pte lock held.
4648 */
4649 union mc_target {
4650 struct page *page;
4651 swp_entry_t ent;
4652 };
4653
4654 enum mc_target_type {
4655 MC_TARGET_NONE = 0,
4656 MC_TARGET_PAGE,
4657 MC_TARGET_SWAP,
4658 };
4659
4660 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4661 unsigned long addr, pte_t ptent)
4662 {
4663 struct page *page = vm_normal_page(vma, addr, ptent);
4664
4665 if (!page || !page_mapped(page))
4666 return NULL;
4667 if (PageAnon(page)) {
4668 if (!(mc.flags & MOVE_ANON))
4669 return NULL;
4670 } else {
4671 if (!(mc.flags & MOVE_FILE))
4672 return NULL;
4673 }
4674 if (!get_page_unless_zero(page))
4675 return NULL;
4676
4677 return page;
4678 }
4679
4680 #ifdef CONFIG_SWAP
4681 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4682 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4683 {
4684 struct page *page = NULL;
4685 swp_entry_t ent = pte_to_swp_entry(ptent);
4686
4687 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4688 return NULL;
4689 /*
4690 * Because lookup_swap_cache() updates some statistics counter,
4691 * we call find_get_page() with swapper_space directly.
4692 */
4693 page = find_get_page(swap_address_space(ent), ent.val);
4694 if (do_swap_account)
4695 entry->val = ent.val;
4696
4697 return page;
4698 }
4699 #else
4700 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4701 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4702 {
4703 return NULL;
4704 }
4705 #endif
4706
4707 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4708 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4709 {
4710 struct page *page = NULL;
4711 struct address_space *mapping;
4712 pgoff_t pgoff;
4713
4714 if (!vma->vm_file) /* anonymous vma */
4715 return NULL;
4716 if (!(mc.flags & MOVE_FILE))
4717 return NULL;
4718
4719 mapping = vma->vm_file->f_mapping;
4720 pgoff = linear_page_index(vma, addr);
4721
4722 /* page is moved even if it's not RSS of this task(page-faulted). */
4723 #ifdef CONFIG_SWAP
4724 /* shmem/tmpfs may report page out on swap: account for that too. */
4725 if (shmem_mapping(mapping)) {
4726 page = find_get_entry(mapping, pgoff);
4727 if (radix_tree_exceptional_entry(page)) {
4728 swp_entry_t swp = radix_to_swp_entry(page);
4729 if (do_swap_account)
4730 *entry = swp;
4731 page = find_get_page(swap_address_space(swp), swp.val);
4732 }
4733 } else
4734 page = find_get_page(mapping, pgoff);
4735 #else
4736 page = find_get_page(mapping, pgoff);
4737 #endif
4738 return page;
4739 }
4740
4741 /**
4742 * mem_cgroup_move_account - move account of the page
4743 * @page: the page
4744 * @nr_pages: number of regular pages (>1 for huge pages)
4745 * @from: mem_cgroup which the page is moved from.
4746 * @to: mem_cgroup which the page is moved to. @from != @to.
4747 *
4748 * The caller must confirm following.
4749 * - page is not on LRU (isolate_page() is useful.)
4750 * - compound_lock is held when nr_pages > 1
4751 *
4752 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4753 * from old cgroup.
4754 */
4755 static int mem_cgroup_move_account(struct page *page,
4756 unsigned int nr_pages,
4757 struct mem_cgroup *from,
4758 struct mem_cgroup *to)
4759 {
4760 unsigned long flags;
4761 int ret;
4762
4763 VM_BUG_ON(from == to);
4764 VM_BUG_ON_PAGE(PageLRU(page), page);
4765 /*
4766 * The page is isolated from LRU. So, collapse function
4767 * will not handle this page. But page splitting can happen.
4768 * Do this check under compound_page_lock(). The caller should
4769 * hold it.
4770 */
4771 ret = -EBUSY;
4772 if (nr_pages > 1 && !PageTransHuge(page))
4773 goto out;
4774
4775 /*
4776 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
4777 * of its source page while we change it: page migration takes
4778 * both pages off the LRU, but page cache replacement doesn't.
4779 */
4780 if (!trylock_page(page))
4781 goto out;
4782
4783 ret = -EINVAL;
4784 if (page->mem_cgroup != from)
4785 goto out_unlock;
4786
4787 spin_lock_irqsave(&from->move_lock, flags);
4788
4789 if (!PageAnon(page) && page_mapped(page)) {
4790 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4791 nr_pages);
4792 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4793 nr_pages);
4794 }
4795
4796 if (PageWriteback(page)) {
4797 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4798 nr_pages);
4799 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4800 nr_pages);
4801 }
4802
4803 /*
4804 * It is safe to change page->mem_cgroup here because the page
4805 * is referenced, charged, and isolated - we can't race with
4806 * uncharging, charging, migration, or LRU putback.
4807 */
4808
4809 /* caller should have done css_get */
4810 page->mem_cgroup = to;
4811 spin_unlock_irqrestore(&from->move_lock, flags);
4812
4813 ret = 0;
4814
4815 local_irq_disable();
4816 mem_cgroup_charge_statistics(to, page, nr_pages);
4817 memcg_check_events(to, page);
4818 mem_cgroup_charge_statistics(from, page, -nr_pages);
4819 memcg_check_events(from, page);
4820 local_irq_enable();
4821 out_unlock:
4822 unlock_page(page);
4823 out:
4824 return ret;
4825 }
4826
4827 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4828 unsigned long addr, pte_t ptent, union mc_target *target)
4829 {
4830 struct page *page = NULL;
4831 enum mc_target_type ret = MC_TARGET_NONE;
4832 swp_entry_t ent = { .val = 0 };
4833
4834 if (pte_present(ptent))
4835 page = mc_handle_present_pte(vma, addr, ptent);
4836 else if (is_swap_pte(ptent))
4837 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4838 else if (pte_none(ptent))
4839 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4840
4841 if (!page && !ent.val)
4842 return ret;
4843 if (page) {
4844 /*
4845 * Do only loose check w/o serialization.
4846 * mem_cgroup_move_account() checks the page is valid or
4847 * not under LRU exclusion.
4848 */
4849 if (page->mem_cgroup == mc.from) {
4850 ret = MC_TARGET_PAGE;
4851 if (target)
4852 target->page = page;
4853 }
4854 if (!ret || !target)
4855 put_page(page);
4856 }
4857 /* There is a swap entry and a page doesn't exist or isn't charged */
4858 if (ent.val && !ret &&
4859 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4860 ret = MC_TARGET_SWAP;
4861 if (target)
4862 target->ent = ent;
4863 }
4864 return ret;
4865 }
4866
4867 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4868 /*
4869 * We don't consider swapping or file mapped pages because THP does not
4870 * support them for now.
4871 * Caller should make sure that pmd_trans_huge(pmd) is true.
4872 */
4873 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4874 unsigned long addr, pmd_t pmd, union mc_target *target)
4875 {
4876 struct page *page = NULL;
4877 enum mc_target_type ret = MC_TARGET_NONE;
4878
4879 page = pmd_page(pmd);
4880 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4881 if (!(mc.flags & MOVE_ANON))
4882 return ret;
4883 if (page->mem_cgroup == mc.from) {
4884 ret = MC_TARGET_PAGE;
4885 if (target) {
4886 get_page(page);
4887 target->page = page;
4888 }
4889 }
4890 return ret;
4891 }
4892 #else
4893 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4894 unsigned long addr, pmd_t pmd, union mc_target *target)
4895 {
4896 return MC_TARGET_NONE;
4897 }
4898 #endif
4899
4900 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4901 unsigned long addr, unsigned long end,
4902 struct mm_walk *walk)
4903 {
4904 struct vm_area_struct *vma = walk->vma;
4905 pte_t *pte;
4906 spinlock_t *ptl;
4907
4908 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4909 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4910 mc.precharge += HPAGE_PMD_NR;
4911 spin_unlock(ptl);
4912 return 0;
4913 }
4914
4915 if (pmd_trans_unstable(pmd))
4916 return 0;
4917 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4918 for (; addr != end; pte++, addr += PAGE_SIZE)
4919 if (get_mctgt_type(vma, addr, *pte, NULL))
4920 mc.precharge++; /* increment precharge temporarily */
4921 pte_unmap_unlock(pte - 1, ptl);
4922 cond_resched();
4923
4924 return 0;
4925 }
4926
4927 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4928 {
4929 unsigned long precharge;
4930
4931 struct mm_walk mem_cgroup_count_precharge_walk = {
4932 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4933 .mm = mm,
4934 };
4935 down_read(&mm->mmap_sem);
4936 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4937 up_read(&mm->mmap_sem);
4938
4939 precharge = mc.precharge;
4940 mc.precharge = 0;
4941
4942 return precharge;
4943 }
4944
4945 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4946 {
4947 unsigned long precharge = mem_cgroup_count_precharge(mm);
4948
4949 VM_BUG_ON(mc.moving_task);
4950 mc.moving_task = current;
4951 return mem_cgroup_do_precharge(precharge);
4952 }
4953
4954 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4955 static void __mem_cgroup_clear_mc(void)
4956 {
4957 struct mem_cgroup *from = mc.from;
4958 struct mem_cgroup *to = mc.to;
4959
4960 /* we must uncharge all the leftover precharges from mc.to */
4961 if (mc.precharge) {
4962 cancel_charge(mc.to, mc.precharge);
4963 mc.precharge = 0;
4964 }
4965 /*
4966 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4967 * we must uncharge here.
4968 */
4969 if (mc.moved_charge) {
4970 cancel_charge(mc.from, mc.moved_charge);
4971 mc.moved_charge = 0;
4972 }
4973 /* we must fixup refcnts and charges */
4974 if (mc.moved_swap) {
4975 /* uncharge swap account from the old cgroup */
4976 if (!mem_cgroup_is_root(mc.from))
4977 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4978
4979 /*
4980 * we charged both to->memory and to->memsw, so we
4981 * should uncharge to->memory.
4982 */
4983 if (!mem_cgroup_is_root(mc.to))
4984 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4985
4986 css_put_many(&mc.from->css, mc.moved_swap);
4987
4988 /* we've already done css_get(mc.to) */
4989 mc.moved_swap = 0;
4990 }
4991 memcg_oom_recover(from);
4992 memcg_oom_recover(to);
4993 wake_up_all(&mc.waitq);
4994 }
4995
4996 static void mem_cgroup_clear_mc(void)
4997 {
4998 /*
4999 * we must clear moving_task before waking up waiters at the end of
5000 * task migration.
5001 */
5002 mc.moving_task = NULL;
5003 __mem_cgroup_clear_mc();
5004 spin_lock(&mc.lock);
5005 mc.from = NULL;
5006 mc.to = NULL;
5007 spin_unlock(&mc.lock);
5008 }
5009
5010 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5011 struct cgroup_taskset *tset)
5012 {
5013 struct task_struct *p = cgroup_taskset_first(tset);
5014 int ret = 0;
5015 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5016 unsigned long move_flags;
5017
5018 /*
5019 * We are now commited to this value whatever it is. Changes in this
5020 * tunable will only affect upcoming migrations, not the current one.
5021 * So we need to save it, and keep it going.
5022 */
5023 move_flags = ACCESS_ONCE(memcg->move_charge_at_immigrate);
5024 if (move_flags) {
5025 struct mm_struct *mm;
5026 struct mem_cgroup *from = mem_cgroup_from_task(p);
5027
5028 VM_BUG_ON(from == memcg);
5029
5030 mm = get_task_mm(p);
5031 if (!mm)
5032 return 0;
5033 /* We move charges only when we move a owner of the mm */
5034 if (mm->owner == p) {
5035 VM_BUG_ON(mc.from);
5036 VM_BUG_ON(mc.to);
5037 VM_BUG_ON(mc.precharge);
5038 VM_BUG_ON(mc.moved_charge);
5039 VM_BUG_ON(mc.moved_swap);
5040
5041 spin_lock(&mc.lock);
5042 mc.from = from;
5043 mc.to = memcg;
5044 mc.flags = move_flags;
5045 spin_unlock(&mc.lock);
5046 /* We set mc.moving_task later */
5047
5048 ret = mem_cgroup_precharge_mc(mm);
5049 if (ret)
5050 mem_cgroup_clear_mc();
5051 }
5052 mmput(mm);
5053 }
5054 return ret;
5055 }
5056
5057 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5058 struct cgroup_taskset *tset)
5059 {
5060 if (mc.to)
5061 mem_cgroup_clear_mc();
5062 }
5063
5064 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5065 unsigned long addr, unsigned long end,
5066 struct mm_walk *walk)
5067 {
5068 int ret = 0;
5069 struct vm_area_struct *vma = walk->vma;
5070 pte_t *pte;
5071 spinlock_t *ptl;
5072 enum mc_target_type target_type;
5073 union mc_target target;
5074 struct page *page;
5075
5076 /*
5077 * We don't take compound_lock() here but no race with splitting thp
5078 * happens because:
5079 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5080 * under splitting, which means there's no concurrent thp split,
5081 * - if another thread runs into split_huge_page() just after we
5082 * entered this if-block, the thread must wait for page table lock
5083 * to be unlocked in __split_huge_page_splitting(), where the main
5084 * part of thp split is not executed yet.
5085 */
5086 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5087 if (mc.precharge < HPAGE_PMD_NR) {
5088 spin_unlock(ptl);
5089 return 0;
5090 }
5091 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5092 if (target_type == MC_TARGET_PAGE) {
5093 page = target.page;
5094 if (!isolate_lru_page(page)) {
5095 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5096 mc.from, mc.to)) {
5097 mc.precharge -= HPAGE_PMD_NR;
5098 mc.moved_charge += HPAGE_PMD_NR;
5099 }
5100 putback_lru_page(page);
5101 }
5102 put_page(page);
5103 }
5104 spin_unlock(ptl);
5105 return 0;
5106 }
5107
5108 if (pmd_trans_unstable(pmd))
5109 return 0;
5110 retry:
5111 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5112 for (; addr != end; addr += PAGE_SIZE) {
5113 pte_t ptent = *(pte++);
5114 swp_entry_t ent;
5115
5116 if (!mc.precharge)
5117 break;
5118
5119 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5120 case MC_TARGET_PAGE:
5121 page = target.page;
5122 if (isolate_lru_page(page))
5123 goto put;
5124 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
5125 mc.precharge--;
5126 /* we uncharge from mc.from later. */
5127 mc.moved_charge++;
5128 }
5129 putback_lru_page(page);
5130 put: /* get_mctgt_type() gets the page */
5131 put_page(page);
5132 break;
5133 case MC_TARGET_SWAP:
5134 ent = target.ent;
5135 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5136 mc.precharge--;
5137 /* we fixup refcnts and charges later. */
5138 mc.moved_swap++;
5139 }
5140 break;
5141 default:
5142 break;
5143 }
5144 }
5145 pte_unmap_unlock(pte - 1, ptl);
5146 cond_resched();
5147
5148 if (addr != end) {
5149 /*
5150 * We have consumed all precharges we got in can_attach().
5151 * We try charge one by one, but don't do any additional
5152 * charges to mc.to if we have failed in charge once in attach()
5153 * phase.
5154 */
5155 ret = mem_cgroup_do_precharge(1);
5156 if (!ret)
5157 goto retry;
5158 }
5159
5160 return ret;
5161 }
5162
5163 static void mem_cgroup_move_charge(struct mm_struct *mm)
5164 {
5165 struct mm_walk mem_cgroup_move_charge_walk = {
5166 .pmd_entry = mem_cgroup_move_charge_pte_range,
5167 .mm = mm,
5168 };
5169
5170 lru_add_drain_all();
5171 /*
5172 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5173 * move_lock while we're moving its pages to another memcg.
5174 * Then wait for already started RCU-only updates to finish.
5175 */
5176 atomic_inc(&mc.from->moving_account);
5177 synchronize_rcu();
5178 retry:
5179 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5180 /*
5181 * Someone who are holding the mmap_sem might be waiting in
5182 * waitq. So we cancel all extra charges, wake up all waiters,
5183 * and retry. Because we cancel precharges, we might not be able
5184 * to move enough charges, but moving charge is a best-effort
5185 * feature anyway, so it wouldn't be a big problem.
5186 */
5187 __mem_cgroup_clear_mc();
5188 cond_resched();
5189 goto retry;
5190 }
5191 /*
5192 * When we have consumed all precharges and failed in doing
5193 * additional charge, the page walk just aborts.
5194 */
5195 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5196 up_read(&mm->mmap_sem);
5197 atomic_dec(&mc.from->moving_account);
5198 }
5199
5200 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5201 struct cgroup_taskset *tset)
5202 {
5203 struct task_struct *p = cgroup_taskset_first(tset);
5204 struct mm_struct *mm = get_task_mm(p);
5205
5206 if (mm) {
5207 if (mc.to)
5208 mem_cgroup_move_charge(mm);
5209 mmput(mm);
5210 }
5211 if (mc.to)
5212 mem_cgroup_clear_mc();
5213 }
5214 #else /* !CONFIG_MMU */
5215 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5216 struct cgroup_taskset *tset)
5217 {
5218 return 0;
5219 }
5220 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5221 struct cgroup_taskset *tset)
5222 {
5223 }
5224 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5225 struct cgroup_taskset *tset)
5226 {
5227 }
5228 #endif
5229
5230 /*
5231 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5232 * to verify whether we're attached to the default hierarchy on each mount
5233 * attempt.
5234 */
5235 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5236 {
5237 /*
5238 * use_hierarchy is forced on the default hierarchy. cgroup core
5239 * guarantees that @root doesn't have any children, so turning it
5240 * on for the root memcg is enough.
5241 */
5242 if (cgroup_on_dfl(root_css->cgroup))
5243 root_mem_cgroup->use_hierarchy = true;
5244 else
5245 root_mem_cgroup->use_hierarchy = false;
5246 }
5247
5248 static u64 memory_current_read(struct cgroup_subsys_state *css,
5249 struct cftype *cft)
5250 {
5251 return mem_cgroup_usage(mem_cgroup_from_css(css), false);
5252 }
5253
5254 static int memory_low_show(struct seq_file *m, void *v)
5255 {
5256 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5257 unsigned long low = ACCESS_ONCE(memcg->low);
5258
5259 if (low == PAGE_COUNTER_MAX)
5260 seq_puts(m, "max\n");
5261 else
5262 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5263
5264 return 0;
5265 }
5266
5267 static ssize_t memory_low_write(struct kernfs_open_file *of,
5268 char *buf, size_t nbytes, loff_t off)
5269 {
5270 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5271 unsigned long low;
5272 int err;
5273
5274 buf = strstrip(buf);
5275 err = page_counter_memparse(buf, "max", &low);
5276 if (err)
5277 return err;
5278
5279 memcg->low = low;
5280
5281 return nbytes;
5282 }
5283
5284 static int memory_high_show(struct seq_file *m, void *v)
5285 {
5286 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5287 unsigned long high = ACCESS_ONCE(memcg->high);
5288
5289 if (high == PAGE_COUNTER_MAX)
5290 seq_puts(m, "max\n");
5291 else
5292 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5293
5294 return 0;
5295 }
5296
5297 static ssize_t memory_high_write(struct kernfs_open_file *of,
5298 char *buf, size_t nbytes, loff_t off)
5299 {
5300 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5301 unsigned long high;
5302 int err;
5303
5304 buf = strstrip(buf);
5305 err = page_counter_memparse(buf, "max", &high);
5306 if (err)
5307 return err;
5308
5309 memcg->high = high;
5310
5311 return nbytes;
5312 }
5313
5314 static int memory_max_show(struct seq_file *m, void *v)
5315 {
5316 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5317 unsigned long max = ACCESS_ONCE(memcg->memory.limit);
5318
5319 if (max == PAGE_COUNTER_MAX)
5320 seq_puts(m, "max\n");
5321 else
5322 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5323
5324 return 0;
5325 }
5326
5327 static ssize_t memory_max_write(struct kernfs_open_file *of,
5328 char *buf, size_t nbytes, loff_t off)
5329 {
5330 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5331 unsigned long max;
5332 int err;
5333
5334 buf = strstrip(buf);
5335 err = page_counter_memparse(buf, "max", &max);
5336 if (err)
5337 return err;
5338
5339 err = mem_cgroup_resize_limit(memcg, max);
5340 if (err)
5341 return err;
5342
5343 return nbytes;
5344 }
5345
5346 static int memory_events_show(struct seq_file *m, void *v)
5347 {
5348 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5349
5350 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5351 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5352 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5353 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5354
5355 return 0;
5356 }
5357
5358 static struct cftype memory_files[] = {
5359 {
5360 .name = "current",
5361 .read_u64 = memory_current_read,
5362 },
5363 {
5364 .name = "low",
5365 .flags = CFTYPE_NOT_ON_ROOT,
5366 .seq_show = memory_low_show,
5367 .write = memory_low_write,
5368 },
5369 {
5370 .name = "high",
5371 .flags = CFTYPE_NOT_ON_ROOT,
5372 .seq_show = memory_high_show,
5373 .write = memory_high_write,
5374 },
5375 {
5376 .name = "max",
5377 .flags = CFTYPE_NOT_ON_ROOT,
5378 .seq_show = memory_max_show,
5379 .write = memory_max_write,
5380 },
5381 {
5382 .name = "events",
5383 .flags = CFTYPE_NOT_ON_ROOT,
5384 .seq_show = memory_events_show,
5385 },
5386 { } /* terminate */
5387 };
5388
5389 struct cgroup_subsys memory_cgrp_subsys = {
5390 .css_alloc = mem_cgroup_css_alloc,
5391 .css_online = mem_cgroup_css_online,
5392 .css_offline = mem_cgroup_css_offline,
5393 .css_free = mem_cgroup_css_free,
5394 .css_reset = mem_cgroup_css_reset,
5395 .can_attach = mem_cgroup_can_attach,
5396 .cancel_attach = mem_cgroup_cancel_attach,
5397 .attach = mem_cgroup_move_task,
5398 .bind = mem_cgroup_bind,
5399 .dfl_cftypes = memory_files,
5400 .legacy_cftypes = mem_cgroup_legacy_files,
5401 .early_init = 0,
5402 };
5403
5404 /**
5405 * mem_cgroup_events - count memory events against a cgroup
5406 * @memcg: the memory cgroup
5407 * @idx: the event index
5408 * @nr: the number of events to account for
5409 */
5410 void mem_cgroup_events(struct mem_cgroup *memcg,
5411 enum mem_cgroup_events_index idx,
5412 unsigned int nr)
5413 {
5414 this_cpu_add(memcg->stat->events[idx], nr);
5415 }
5416
5417 /**
5418 * mem_cgroup_low - check if memory consumption is below the normal range
5419 * @root: the highest ancestor to consider
5420 * @memcg: the memory cgroup to check
5421 *
5422 * Returns %true if memory consumption of @memcg, and that of all
5423 * configurable ancestors up to @root, is below the normal range.
5424 */
5425 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5426 {
5427 if (mem_cgroup_disabled())
5428 return false;
5429
5430 /*
5431 * The toplevel group doesn't have a configurable range, so
5432 * it's never low when looked at directly, and it is not
5433 * considered an ancestor when assessing the hierarchy.
5434 */
5435
5436 if (memcg == root_mem_cgroup)
5437 return false;
5438
5439 if (page_counter_read(&memcg->memory) >= memcg->low)
5440 return false;
5441
5442 while (memcg != root) {
5443 memcg = parent_mem_cgroup(memcg);
5444
5445 if (memcg == root_mem_cgroup)
5446 break;
5447
5448 if (page_counter_read(&memcg->memory) >= memcg->low)
5449 return false;
5450 }
5451 return true;
5452 }
5453
5454 /**
5455 * mem_cgroup_try_charge - try charging a page
5456 * @page: page to charge
5457 * @mm: mm context of the victim
5458 * @gfp_mask: reclaim mode
5459 * @memcgp: charged memcg return
5460 *
5461 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5462 * pages according to @gfp_mask if necessary.
5463 *
5464 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5465 * Otherwise, an error code is returned.
5466 *
5467 * After page->mapping has been set up, the caller must finalize the
5468 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5469 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5470 */
5471 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5472 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5473 {
5474 struct mem_cgroup *memcg = NULL;
5475 unsigned int nr_pages = 1;
5476 int ret = 0;
5477
5478 if (mem_cgroup_disabled())
5479 goto out;
5480
5481 if (PageSwapCache(page)) {
5482 /*
5483 * Every swap fault against a single page tries to charge the
5484 * page, bail as early as possible. shmem_unuse() encounters
5485 * already charged pages, too. The USED bit is protected by
5486 * the page lock, which serializes swap cache removal, which
5487 * in turn serializes uncharging.
5488 */
5489 if (page->mem_cgroup)
5490 goto out;
5491 }
5492
5493 if (PageTransHuge(page)) {
5494 nr_pages <<= compound_order(page);
5495 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5496 }
5497
5498 if (do_swap_account && PageSwapCache(page))
5499 memcg = try_get_mem_cgroup_from_page(page);
5500 if (!memcg)
5501 memcg = get_mem_cgroup_from_mm(mm);
5502
5503 ret = try_charge(memcg, gfp_mask, nr_pages);
5504
5505 css_put(&memcg->css);
5506
5507 if (ret == -EINTR) {
5508 memcg = root_mem_cgroup;
5509 ret = 0;
5510 }
5511 out:
5512 *memcgp = memcg;
5513 return ret;
5514 }
5515
5516 /**
5517 * mem_cgroup_commit_charge - commit a page charge
5518 * @page: page to charge
5519 * @memcg: memcg to charge the page to
5520 * @lrucare: page might be on LRU already
5521 *
5522 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5523 * after page->mapping has been set up. This must happen atomically
5524 * as part of the page instantiation, i.e. under the page table lock
5525 * for anonymous pages, under the page lock for page and swap cache.
5526 *
5527 * In addition, the page must not be on the LRU during the commit, to
5528 * prevent racing with task migration. If it might be, use @lrucare.
5529 *
5530 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5531 */
5532 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5533 bool lrucare)
5534 {
5535 unsigned int nr_pages = 1;
5536
5537 VM_BUG_ON_PAGE(!page->mapping, page);
5538 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5539
5540 if (mem_cgroup_disabled())
5541 return;
5542 /*
5543 * Swap faults will attempt to charge the same page multiple
5544 * times. But reuse_swap_page() might have removed the page
5545 * from swapcache already, so we can't check PageSwapCache().
5546 */
5547 if (!memcg)
5548 return;
5549
5550 commit_charge(page, memcg, lrucare);
5551
5552 if (PageTransHuge(page)) {
5553 nr_pages <<= compound_order(page);
5554 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5555 }
5556
5557 local_irq_disable();
5558 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5559 memcg_check_events(memcg, page);
5560 local_irq_enable();
5561
5562 if (do_swap_account && PageSwapCache(page)) {
5563 swp_entry_t entry = { .val = page_private(page) };
5564 /*
5565 * The swap entry might not get freed for a long time,
5566 * let's not wait for it. The page already received a
5567 * memory+swap charge, drop the swap entry duplicate.
5568 */
5569 mem_cgroup_uncharge_swap(entry);
5570 }
5571 }
5572
5573 /**
5574 * mem_cgroup_cancel_charge - cancel a page charge
5575 * @page: page to charge
5576 * @memcg: memcg to charge the page to
5577 *
5578 * Cancel a charge transaction started by mem_cgroup_try_charge().
5579 */
5580 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5581 {
5582 unsigned int nr_pages = 1;
5583
5584 if (mem_cgroup_disabled())
5585 return;
5586 /*
5587 * Swap faults will attempt to charge the same page multiple
5588 * times. But reuse_swap_page() might have removed the page
5589 * from swapcache already, so we can't check PageSwapCache().
5590 */
5591 if (!memcg)
5592 return;
5593
5594 if (PageTransHuge(page)) {
5595 nr_pages <<= compound_order(page);
5596 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5597 }
5598
5599 cancel_charge(memcg, nr_pages);
5600 }
5601
5602 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5603 unsigned long nr_anon, unsigned long nr_file,
5604 unsigned long nr_huge, struct page *dummy_page)
5605 {
5606 unsigned long nr_pages = nr_anon + nr_file;
5607 unsigned long flags;
5608
5609 if (!mem_cgroup_is_root(memcg)) {
5610 page_counter_uncharge(&memcg->memory, nr_pages);
5611 if (do_swap_account)
5612 page_counter_uncharge(&memcg->memsw, nr_pages);
5613 memcg_oom_recover(memcg);
5614 }
5615
5616 local_irq_save(flags);
5617 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5618 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5619 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5620 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5621 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5622 memcg_check_events(memcg, dummy_page);
5623 local_irq_restore(flags);
5624
5625 if (!mem_cgroup_is_root(memcg))
5626 css_put_many(&memcg->css, nr_pages);
5627 }
5628
5629 static void uncharge_list(struct list_head *page_list)
5630 {
5631 struct mem_cgroup *memcg = NULL;
5632 unsigned long nr_anon = 0;
5633 unsigned long nr_file = 0;
5634 unsigned long nr_huge = 0;
5635 unsigned long pgpgout = 0;
5636 struct list_head *next;
5637 struct page *page;
5638
5639 next = page_list->next;
5640 do {
5641 unsigned int nr_pages = 1;
5642
5643 page = list_entry(next, struct page, lru);
5644 next = page->lru.next;
5645
5646 VM_BUG_ON_PAGE(PageLRU(page), page);
5647 VM_BUG_ON_PAGE(page_count(page), page);
5648
5649 if (!page->mem_cgroup)
5650 continue;
5651
5652 /*
5653 * Nobody should be changing or seriously looking at
5654 * page->mem_cgroup at this point, we have fully
5655 * exclusive access to the page.
5656 */
5657
5658 if (memcg != page->mem_cgroup) {
5659 if (memcg) {
5660 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5661 nr_huge, page);
5662 pgpgout = nr_anon = nr_file = nr_huge = 0;
5663 }
5664 memcg = page->mem_cgroup;
5665 }
5666
5667 if (PageTransHuge(page)) {
5668 nr_pages <<= compound_order(page);
5669 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5670 nr_huge += nr_pages;
5671 }
5672
5673 if (PageAnon(page))
5674 nr_anon += nr_pages;
5675 else
5676 nr_file += nr_pages;
5677
5678 page->mem_cgroup = NULL;
5679
5680 pgpgout++;
5681 } while (next != page_list);
5682
5683 if (memcg)
5684 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5685 nr_huge, page);
5686 }
5687
5688 /**
5689 * mem_cgroup_uncharge - uncharge a page
5690 * @page: page to uncharge
5691 *
5692 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5693 * mem_cgroup_commit_charge().
5694 */
5695 void mem_cgroup_uncharge(struct page *page)
5696 {
5697 if (mem_cgroup_disabled())
5698 return;
5699
5700 /* Don't touch page->lru of any random page, pre-check: */
5701 if (!page->mem_cgroup)
5702 return;
5703
5704 INIT_LIST_HEAD(&page->lru);
5705 uncharge_list(&page->lru);
5706 }
5707
5708 /**
5709 * mem_cgroup_uncharge_list - uncharge a list of page
5710 * @page_list: list of pages to uncharge
5711 *
5712 * Uncharge a list of pages previously charged with
5713 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5714 */
5715 void mem_cgroup_uncharge_list(struct list_head *page_list)
5716 {
5717 if (mem_cgroup_disabled())
5718 return;
5719
5720 if (!list_empty(page_list))
5721 uncharge_list(page_list);
5722 }
5723
5724 /**
5725 * mem_cgroup_migrate - migrate a charge to another page
5726 * @oldpage: currently charged page
5727 * @newpage: page to transfer the charge to
5728 * @lrucare: either or both pages might be on the LRU already
5729 *
5730 * Migrate the charge from @oldpage to @newpage.
5731 *
5732 * Both pages must be locked, @newpage->mapping must be set up.
5733 */
5734 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5735 bool lrucare)
5736 {
5737 struct mem_cgroup *memcg;
5738 int isolated;
5739
5740 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5741 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5742 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5743 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5744 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5745 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5746 newpage);
5747
5748 if (mem_cgroup_disabled())
5749 return;
5750
5751 /* Page cache replacement: new page already charged? */
5752 if (newpage->mem_cgroup)
5753 return;
5754
5755 /*
5756 * Swapcache readahead pages can get migrated before being
5757 * charged, and migration from compaction can happen to an
5758 * uncharged page when the PFN walker finds a page that
5759 * reclaim just put back on the LRU but has not released yet.
5760 */
5761 memcg = oldpage->mem_cgroup;
5762 if (!memcg)
5763 return;
5764
5765 if (lrucare)
5766 lock_page_lru(oldpage, &isolated);
5767
5768 oldpage->mem_cgroup = NULL;
5769
5770 if (lrucare)
5771 unlock_page_lru(oldpage, isolated);
5772
5773 commit_charge(newpage, memcg, lrucare);
5774 }
5775
5776 /*
5777 * subsys_initcall() for memory controller.
5778 *
5779 * Some parts like hotcpu_notifier() have to be initialized from this context
5780 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5781 * everything that doesn't depend on a specific mem_cgroup structure should
5782 * be initialized from here.
5783 */
5784 static int __init mem_cgroup_init(void)
5785 {
5786 int cpu, node;
5787
5788 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5789
5790 for_each_possible_cpu(cpu)
5791 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5792 drain_local_stock);
5793
5794 for_each_node(node) {
5795 struct mem_cgroup_tree_per_node *rtpn;
5796 int zone;
5797
5798 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5799 node_online(node) ? node : NUMA_NO_NODE);
5800
5801 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5802 struct mem_cgroup_tree_per_zone *rtpz;
5803
5804 rtpz = &rtpn->rb_tree_per_zone[zone];
5805 rtpz->rb_root = RB_ROOT;
5806 spin_lock_init(&rtpz->lock);
5807 }
5808 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5809 }
5810
5811 return 0;
5812 }
5813 subsys_initcall(mem_cgroup_init);
5814
5815 #ifdef CONFIG_MEMCG_SWAP
5816 /**
5817 * mem_cgroup_swapout - transfer a memsw charge to swap
5818 * @page: page whose memsw charge to transfer
5819 * @entry: swap entry to move the charge to
5820 *
5821 * Transfer the memsw charge of @page to @entry.
5822 */
5823 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5824 {
5825 struct mem_cgroup *memcg;
5826 unsigned short oldid;
5827
5828 VM_BUG_ON_PAGE(PageLRU(page), page);
5829 VM_BUG_ON_PAGE(page_count(page), page);
5830
5831 if (!do_swap_account)
5832 return;
5833
5834 memcg = page->mem_cgroup;
5835
5836 /* Readahead page, never charged */
5837 if (!memcg)
5838 return;
5839
5840 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5841 VM_BUG_ON_PAGE(oldid, page);
5842 mem_cgroup_swap_statistics(memcg, true);
5843
5844 page->mem_cgroup = NULL;
5845
5846 if (!mem_cgroup_is_root(memcg))
5847 page_counter_uncharge(&memcg->memory, 1);
5848
5849 /* XXX: caller holds IRQ-safe mapping->tree_lock */
5850 VM_BUG_ON(!irqs_disabled());
5851
5852 mem_cgroup_charge_statistics(memcg, page, -1);
5853 memcg_check_events(memcg, page);
5854 }
5855
5856 /**
5857 * mem_cgroup_uncharge_swap - uncharge a swap entry
5858 * @entry: swap entry to uncharge
5859 *
5860 * Drop the memsw charge associated with @entry.
5861 */
5862 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5863 {
5864 struct mem_cgroup *memcg;
5865 unsigned short id;
5866
5867 if (!do_swap_account)
5868 return;
5869
5870 id = swap_cgroup_record(entry, 0);
5871 rcu_read_lock();
5872 memcg = mem_cgroup_lookup(id);
5873 if (memcg) {
5874 if (!mem_cgroup_is_root(memcg))
5875 page_counter_uncharge(&memcg->memsw, 1);
5876 mem_cgroup_swap_statistics(memcg, false);
5877 css_put(&memcg->css);
5878 }
5879 rcu_read_unlock();
5880 }
5881
5882 /* for remember boot option*/
5883 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5884 static int really_do_swap_account __initdata = 1;
5885 #else
5886 static int really_do_swap_account __initdata;
5887 #endif
5888
5889 static int __init enable_swap_account(char *s)
5890 {
5891 if (!strcmp(s, "1"))
5892 really_do_swap_account = 1;
5893 else if (!strcmp(s, "0"))
5894 really_do_swap_account = 0;
5895 return 1;
5896 }
5897 __setup("swapaccount=", enable_swap_account);
5898
5899 static struct cftype memsw_cgroup_files[] = {
5900 {
5901 .name = "memsw.usage_in_bytes",
5902 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5903 .read_u64 = mem_cgroup_read_u64,
5904 },
5905 {
5906 .name = "memsw.max_usage_in_bytes",
5907 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5908 .write = mem_cgroup_reset,
5909 .read_u64 = mem_cgroup_read_u64,
5910 },
5911 {
5912 .name = "memsw.limit_in_bytes",
5913 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5914 .write = mem_cgroup_write,
5915 .read_u64 = mem_cgroup_read_u64,
5916 },
5917 {
5918 .name = "memsw.failcnt",
5919 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5920 .write = mem_cgroup_reset,
5921 .read_u64 = mem_cgroup_read_u64,
5922 },
5923 { }, /* terminate */
5924 };
5925
5926 static int __init mem_cgroup_swap_init(void)
5927 {
5928 if (!mem_cgroup_disabled() && really_do_swap_account) {
5929 do_swap_account = 1;
5930 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5931 memsw_cgroup_files));
5932 }
5933 return 0;
5934 }
5935 subsys_initcall(mem_cgroup_swap_init);
5936
5937 #endif /* CONFIG_MEMCG_SWAP */
This page took 0.40621 seconds and 6 git commands to generate.