net: drop tcp_memcontrol.c
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70
71 #include <asm/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79
80 #define MEM_CGROUP_RECLAIM_RETRIES 5
81
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account 0
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100
101 static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
104 "rss_huge",
105 "mapped_file",
106 "dirty",
107 "writeback",
108 "swap",
109 };
110
111 static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116 };
117
118 static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124 };
125
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET 1024
129
130 /*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135 struct mem_cgroup_tree_per_zone {
136 struct rb_root rb_root;
137 spinlock_t lock;
138 };
139
140 struct mem_cgroup_tree_per_node {
141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142 };
143
144 struct mem_cgroup_tree {
145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146 };
147
148 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
150 /* for OOM */
151 struct mem_cgroup_eventfd_list {
152 struct list_head list;
153 struct eventfd_ctx *eventfd;
154 };
155
156 /*
157 * cgroup_event represents events which userspace want to receive.
158 */
159 struct mem_cgroup_event {
160 /*
161 * memcg which the event belongs to.
162 */
163 struct mem_cgroup *memcg;
164 /*
165 * eventfd to signal userspace about the event.
166 */
167 struct eventfd_ctx *eventfd;
168 /*
169 * Each of these stored in a list by the cgroup.
170 */
171 struct list_head list;
172 /*
173 * register_event() callback will be used to add new userspace
174 * waiter for changes related to this event. Use eventfd_signal()
175 * on eventfd to send notification to userspace.
176 */
177 int (*register_event)(struct mem_cgroup *memcg,
178 struct eventfd_ctx *eventfd, const char *args);
179 /*
180 * unregister_event() callback will be called when userspace closes
181 * the eventfd or on cgroup removing. This callback must be set,
182 * if you want provide notification functionality.
183 */
184 void (*unregister_event)(struct mem_cgroup *memcg,
185 struct eventfd_ctx *eventfd);
186 /*
187 * All fields below needed to unregister event when
188 * userspace closes eventfd.
189 */
190 poll_table pt;
191 wait_queue_head_t *wqh;
192 wait_queue_t wait;
193 struct work_struct remove;
194 };
195
196 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198
199 /* Stuffs for move charges at task migration. */
200 /*
201 * Types of charges to be moved.
202 */
203 #define MOVE_ANON 0x1U
204 #define MOVE_FILE 0x2U
205 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
206
207 /* "mc" and its members are protected by cgroup_mutex */
208 static struct move_charge_struct {
209 spinlock_t lock; /* for from, to */
210 struct mem_cgroup *from;
211 struct mem_cgroup *to;
212 unsigned long flags;
213 unsigned long precharge;
214 unsigned long moved_charge;
215 unsigned long moved_swap;
216 struct task_struct *moving_task; /* a task moving charges */
217 wait_queue_head_t waitq; /* a waitq for other context */
218 } mc = {
219 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
220 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
221 };
222
223 /*
224 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
225 * limit reclaim to prevent infinite loops, if they ever occur.
226 */
227 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
228 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
229
230 enum charge_type {
231 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
232 MEM_CGROUP_CHARGE_TYPE_ANON,
233 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
234 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
235 NR_CHARGE_TYPE,
236 };
237
238 /* for encoding cft->private value on file */
239 enum res_type {
240 _MEM,
241 _MEMSWAP,
242 _OOM_TYPE,
243 _KMEM,
244 _TCP,
245 };
246
247 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
248 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
249 #define MEMFILE_ATTR(val) ((val) & 0xffff)
250 /* Used for OOM nofiier */
251 #define OOM_CONTROL (0)
252
253 /*
254 * The memcg_create_mutex will be held whenever a new cgroup is created.
255 * As a consequence, any change that needs to protect against new child cgroups
256 * appearing has to hold it as well.
257 */
258 static DEFINE_MUTEX(memcg_create_mutex);
259
260 /* Some nice accessors for the vmpressure. */
261 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
262 {
263 if (!memcg)
264 memcg = root_mem_cgroup;
265 return &memcg->vmpressure;
266 }
267
268 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
269 {
270 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
271 }
272
273 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
274 {
275 return (memcg == root_mem_cgroup);
276 }
277
278 /*
279 * We restrict the id in the range of [1, 65535], so it can fit into
280 * an unsigned short.
281 */
282 #define MEM_CGROUP_ID_MAX USHRT_MAX
283
284 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
285 {
286 return memcg->css.id;
287 }
288
289 /*
290 * A helper function to get mem_cgroup from ID. must be called under
291 * rcu_read_lock(). The caller is responsible for calling
292 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
293 * refcnt from swap can be called against removed memcg.)
294 */
295 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
296 {
297 struct cgroup_subsys_state *css;
298
299 css = css_from_id(id, &memory_cgrp_subsys);
300 return mem_cgroup_from_css(css);
301 }
302
303 #ifndef CONFIG_SLOB
304 /*
305 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
306 * The main reason for not using cgroup id for this:
307 * this works better in sparse environments, where we have a lot of memcgs,
308 * but only a few kmem-limited. Or also, if we have, for instance, 200
309 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
310 * 200 entry array for that.
311 *
312 * The current size of the caches array is stored in memcg_nr_cache_ids. It
313 * will double each time we have to increase it.
314 */
315 static DEFINE_IDA(memcg_cache_ida);
316 int memcg_nr_cache_ids;
317
318 /* Protects memcg_nr_cache_ids */
319 static DECLARE_RWSEM(memcg_cache_ids_sem);
320
321 void memcg_get_cache_ids(void)
322 {
323 down_read(&memcg_cache_ids_sem);
324 }
325
326 void memcg_put_cache_ids(void)
327 {
328 up_read(&memcg_cache_ids_sem);
329 }
330
331 /*
332 * MIN_SIZE is different than 1, because we would like to avoid going through
333 * the alloc/free process all the time. In a small machine, 4 kmem-limited
334 * cgroups is a reasonable guess. In the future, it could be a parameter or
335 * tunable, but that is strictly not necessary.
336 *
337 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
338 * this constant directly from cgroup, but it is understandable that this is
339 * better kept as an internal representation in cgroup.c. In any case, the
340 * cgrp_id space is not getting any smaller, and we don't have to necessarily
341 * increase ours as well if it increases.
342 */
343 #define MEMCG_CACHES_MIN_SIZE 4
344 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
345
346 /*
347 * A lot of the calls to the cache allocation functions are expected to be
348 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
349 * conditional to this static branch, we'll have to allow modules that does
350 * kmem_cache_alloc and the such to see this symbol as well
351 */
352 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
353 EXPORT_SYMBOL(memcg_kmem_enabled_key);
354
355 #endif /* !CONFIG_SLOB */
356
357 static struct mem_cgroup_per_zone *
358 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
359 {
360 int nid = zone_to_nid(zone);
361 int zid = zone_idx(zone);
362
363 return &memcg->nodeinfo[nid]->zoneinfo[zid];
364 }
365
366 /**
367 * mem_cgroup_css_from_page - css of the memcg associated with a page
368 * @page: page of interest
369 *
370 * If memcg is bound to the default hierarchy, css of the memcg associated
371 * with @page is returned. The returned css remains associated with @page
372 * until it is released.
373 *
374 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
375 * is returned.
376 *
377 * XXX: The above description of behavior on the default hierarchy isn't
378 * strictly true yet as replace_page_cache_page() can modify the
379 * association before @page is released even on the default hierarchy;
380 * however, the current and planned usages don't mix the the two functions
381 * and replace_page_cache_page() will soon be updated to make the invariant
382 * actually true.
383 */
384 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
385 {
386 struct mem_cgroup *memcg;
387
388 memcg = page->mem_cgroup;
389
390 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
391 memcg = root_mem_cgroup;
392
393 return &memcg->css;
394 }
395
396 /**
397 * page_cgroup_ino - return inode number of the memcg a page is charged to
398 * @page: the page
399 *
400 * Look up the closest online ancestor of the memory cgroup @page is charged to
401 * and return its inode number or 0 if @page is not charged to any cgroup. It
402 * is safe to call this function without holding a reference to @page.
403 *
404 * Note, this function is inherently racy, because there is nothing to prevent
405 * the cgroup inode from getting torn down and potentially reallocated a moment
406 * after page_cgroup_ino() returns, so it only should be used by callers that
407 * do not care (such as procfs interfaces).
408 */
409 ino_t page_cgroup_ino(struct page *page)
410 {
411 struct mem_cgroup *memcg;
412 unsigned long ino = 0;
413
414 rcu_read_lock();
415 memcg = READ_ONCE(page->mem_cgroup);
416 while (memcg && !(memcg->css.flags & CSS_ONLINE))
417 memcg = parent_mem_cgroup(memcg);
418 if (memcg)
419 ino = cgroup_ino(memcg->css.cgroup);
420 rcu_read_unlock();
421 return ino;
422 }
423
424 static struct mem_cgroup_per_zone *
425 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
426 {
427 int nid = page_to_nid(page);
428 int zid = page_zonenum(page);
429
430 return &memcg->nodeinfo[nid]->zoneinfo[zid];
431 }
432
433 static struct mem_cgroup_tree_per_zone *
434 soft_limit_tree_node_zone(int nid, int zid)
435 {
436 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
437 }
438
439 static struct mem_cgroup_tree_per_zone *
440 soft_limit_tree_from_page(struct page *page)
441 {
442 int nid = page_to_nid(page);
443 int zid = page_zonenum(page);
444
445 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
446 }
447
448 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
449 struct mem_cgroup_tree_per_zone *mctz,
450 unsigned long new_usage_in_excess)
451 {
452 struct rb_node **p = &mctz->rb_root.rb_node;
453 struct rb_node *parent = NULL;
454 struct mem_cgroup_per_zone *mz_node;
455
456 if (mz->on_tree)
457 return;
458
459 mz->usage_in_excess = new_usage_in_excess;
460 if (!mz->usage_in_excess)
461 return;
462 while (*p) {
463 parent = *p;
464 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
465 tree_node);
466 if (mz->usage_in_excess < mz_node->usage_in_excess)
467 p = &(*p)->rb_left;
468 /*
469 * We can't avoid mem cgroups that are over their soft
470 * limit by the same amount
471 */
472 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
473 p = &(*p)->rb_right;
474 }
475 rb_link_node(&mz->tree_node, parent, p);
476 rb_insert_color(&mz->tree_node, &mctz->rb_root);
477 mz->on_tree = true;
478 }
479
480 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
481 struct mem_cgroup_tree_per_zone *mctz)
482 {
483 if (!mz->on_tree)
484 return;
485 rb_erase(&mz->tree_node, &mctz->rb_root);
486 mz->on_tree = false;
487 }
488
489 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
490 struct mem_cgroup_tree_per_zone *mctz)
491 {
492 unsigned long flags;
493
494 spin_lock_irqsave(&mctz->lock, flags);
495 __mem_cgroup_remove_exceeded(mz, mctz);
496 spin_unlock_irqrestore(&mctz->lock, flags);
497 }
498
499 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
500 {
501 unsigned long nr_pages = page_counter_read(&memcg->memory);
502 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
503 unsigned long excess = 0;
504
505 if (nr_pages > soft_limit)
506 excess = nr_pages - soft_limit;
507
508 return excess;
509 }
510
511 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
512 {
513 unsigned long excess;
514 struct mem_cgroup_per_zone *mz;
515 struct mem_cgroup_tree_per_zone *mctz;
516
517 mctz = soft_limit_tree_from_page(page);
518 /*
519 * Necessary to update all ancestors when hierarchy is used.
520 * because their event counter is not touched.
521 */
522 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
523 mz = mem_cgroup_page_zoneinfo(memcg, page);
524 excess = soft_limit_excess(memcg);
525 /*
526 * We have to update the tree if mz is on RB-tree or
527 * mem is over its softlimit.
528 */
529 if (excess || mz->on_tree) {
530 unsigned long flags;
531
532 spin_lock_irqsave(&mctz->lock, flags);
533 /* if on-tree, remove it */
534 if (mz->on_tree)
535 __mem_cgroup_remove_exceeded(mz, mctz);
536 /*
537 * Insert again. mz->usage_in_excess will be updated.
538 * If excess is 0, no tree ops.
539 */
540 __mem_cgroup_insert_exceeded(mz, mctz, excess);
541 spin_unlock_irqrestore(&mctz->lock, flags);
542 }
543 }
544 }
545
546 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
547 {
548 struct mem_cgroup_tree_per_zone *mctz;
549 struct mem_cgroup_per_zone *mz;
550 int nid, zid;
551
552 for_each_node(nid) {
553 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
554 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
555 mctz = soft_limit_tree_node_zone(nid, zid);
556 mem_cgroup_remove_exceeded(mz, mctz);
557 }
558 }
559 }
560
561 static struct mem_cgroup_per_zone *
562 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
563 {
564 struct rb_node *rightmost = NULL;
565 struct mem_cgroup_per_zone *mz;
566
567 retry:
568 mz = NULL;
569 rightmost = rb_last(&mctz->rb_root);
570 if (!rightmost)
571 goto done; /* Nothing to reclaim from */
572
573 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
574 /*
575 * Remove the node now but someone else can add it back,
576 * we will to add it back at the end of reclaim to its correct
577 * position in the tree.
578 */
579 __mem_cgroup_remove_exceeded(mz, mctz);
580 if (!soft_limit_excess(mz->memcg) ||
581 !css_tryget_online(&mz->memcg->css))
582 goto retry;
583 done:
584 return mz;
585 }
586
587 static struct mem_cgroup_per_zone *
588 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
589 {
590 struct mem_cgroup_per_zone *mz;
591
592 spin_lock_irq(&mctz->lock);
593 mz = __mem_cgroup_largest_soft_limit_node(mctz);
594 spin_unlock_irq(&mctz->lock);
595 return mz;
596 }
597
598 /*
599 * Return page count for single (non recursive) @memcg.
600 *
601 * Implementation Note: reading percpu statistics for memcg.
602 *
603 * Both of vmstat[] and percpu_counter has threshold and do periodic
604 * synchronization to implement "quick" read. There are trade-off between
605 * reading cost and precision of value. Then, we may have a chance to implement
606 * a periodic synchronization of counter in memcg's counter.
607 *
608 * But this _read() function is used for user interface now. The user accounts
609 * memory usage by memory cgroup and he _always_ requires exact value because
610 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
611 * have to visit all online cpus and make sum. So, for now, unnecessary
612 * synchronization is not implemented. (just implemented for cpu hotplug)
613 *
614 * If there are kernel internal actions which can make use of some not-exact
615 * value, and reading all cpu value can be performance bottleneck in some
616 * common workload, threshold and synchronization as vmstat[] should be
617 * implemented.
618 */
619 static unsigned long
620 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
621 {
622 long val = 0;
623 int cpu;
624
625 /* Per-cpu values can be negative, use a signed accumulator */
626 for_each_possible_cpu(cpu)
627 val += per_cpu(memcg->stat->count[idx], cpu);
628 /*
629 * Summing races with updates, so val may be negative. Avoid exposing
630 * transient negative values.
631 */
632 if (val < 0)
633 val = 0;
634 return val;
635 }
636
637 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
638 enum mem_cgroup_events_index idx)
639 {
640 unsigned long val = 0;
641 int cpu;
642
643 for_each_possible_cpu(cpu)
644 val += per_cpu(memcg->stat->events[idx], cpu);
645 return val;
646 }
647
648 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
649 struct page *page,
650 bool compound, int nr_pages)
651 {
652 /*
653 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
654 * counted as CACHE even if it's on ANON LRU.
655 */
656 if (PageAnon(page))
657 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
658 nr_pages);
659 else
660 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
661 nr_pages);
662
663 if (compound) {
664 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
665 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
666 nr_pages);
667 }
668
669 /* pagein of a big page is an event. So, ignore page size */
670 if (nr_pages > 0)
671 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
672 else {
673 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
674 nr_pages = -nr_pages; /* for event */
675 }
676
677 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
678 }
679
680 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
681 int nid,
682 unsigned int lru_mask)
683 {
684 unsigned long nr = 0;
685 int zid;
686
687 VM_BUG_ON((unsigned)nid >= nr_node_ids);
688
689 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
690 struct mem_cgroup_per_zone *mz;
691 enum lru_list lru;
692
693 for_each_lru(lru) {
694 if (!(BIT(lru) & lru_mask))
695 continue;
696 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
697 nr += mz->lru_size[lru];
698 }
699 }
700 return nr;
701 }
702
703 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
704 unsigned int lru_mask)
705 {
706 unsigned long nr = 0;
707 int nid;
708
709 for_each_node_state(nid, N_MEMORY)
710 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
711 return nr;
712 }
713
714 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
715 enum mem_cgroup_events_target target)
716 {
717 unsigned long val, next;
718
719 val = __this_cpu_read(memcg->stat->nr_page_events);
720 next = __this_cpu_read(memcg->stat->targets[target]);
721 /* from time_after() in jiffies.h */
722 if ((long)next - (long)val < 0) {
723 switch (target) {
724 case MEM_CGROUP_TARGET_THRESH:
725 next = val + THRESHOLDS_EVENTS_TARGET;
726 break;
727 case MEM_CGROUP_TARGET_SOFTLIMIT:
728 next = val + SOFTLIMIT_EVENTS_TARGET;
729 break;
730 case MEM_CGROUP_TARGET_NUMAINFO:
731 next = val + NUMAINFO_EVENTS_TARGET;
732 break;
733 default:
734 break;
735 }
736 __this_cpu_write(memcg->stat->targets[target], next);
737 return true;
738 }
739 return false;
740 }
741
742 /*
743 * Check events in order.
744 *
745 */
746 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
747 {
748 /* threshold event is triggered in finer grain than soft limit */
749 if (unlikely(mem_cgroup_event_ratelimit(memcg,
750 MEM_CGROUP_TARGET_THRESH))) {
751 bool do_softlimit;
752 bool do_numainfo __maybe_unused;
753
754 do_softlimit = mem_cgroup_event_ratelimit(memcg,
755 MEM_CGROUP_TARGET_SOFTLIMIT);
756 #if MAX_NUMNODES > 1
757 do_numainfo = mem_cgroup_event_ratelimit(memcg,
758 MEM_CGROUP_TARGET_NUMAINFO);
759 #endif
760 mem_cgroup_threshold(memcg);
761 if (unlikely(do_softlimit))
762 mem_cgroup_update_tree(memcg, page);
763 #if MAX_NUMNODES > 1
764 if (unlikely(do_numainfo))
765 atomic_inc(&memcg->numainfo_events);
766 #endif
767 }
768 }
769
770 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
771 {
772 /*
773 * mm_update_next_owner() may clear mm->owner to NULL
774 * if it races with swapoff, page migration, etc.
775 * So this can be called with p == NULL.
776 */
777 if (unlikely(!p))
778 return NULL;
779
780 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
781 }
782 EXPORT_SYMBOL(mem_cgroup_from_task);
783
784 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
785 {
786 struct mem_cgroup *memcg = NULL;
787
788 rcu_read_lock();
789 do {
790 /*
791 * Page cache insertions can happen withou an
792 * actual mm context, e.g. during disk probing
793 * on boot, loopback IO, acct() writes etc.
794 */
795 if (unlikely(!mm))
796 memcg = root_mem_cgroup;
797 else {
798 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
799 if (unlikely(!memcg))
800 memcg = root_mem_cgroup;
801 }
802 } while (!css_tryget_online(&memcg->css));
803 rcu_read_unlock();
804 return memcg;
805 }
806
807 /**
808 * mem_cgroup_iter - iterate over memory cgroup hierarchy
809 * @root: hierarchy root
810 * @prev: previously returned memcg, NULL on first invocation
811 * @reclaim: cookie for shared reclaim walks, NULL for full walks
812 *
813 * Returns references to children of the hierarchy below @root, or
814 * @root itself, or %NULL after a full round-trip.
815 *
816 * Caller must pass the return value in @prev on subsequent
817 * invocations for reference counting, or use mem_cgroup_iter_break()
818 * to cancel a hierarchy walk before the round-trip is complete.
819 *
820 * Reclaimers can specify a zone and a priority level in @reclaim to
821 * divide up the memcgs in the hierarchy among all concurrent
822 * reclaimers operating on the same zone and priority.
823 */
824 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
825 struct mem_cgroup *prev,
826 struct mem_cgroup_reclaim_cookie *reclaim)
827 {
828 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
829 struct cgroup_subsys_state *css = NULL;
830 struct mem_cgroup *memcg = NULL;
831 struct mem_cgroup *pos = NULL;
832
833 if (mem_cgroup_disabled())
834 return NULL;
835
836 if (!root)
837 root = root_mem_cgroup;
838
839 if (prev && !reclaim)
840 pos = prev;
841
842 if (!root->use_hierarchy && root != root_mem_cgroup) {
843 if (prev)
844 goto out;
845 return root;
846 }
847
848 rcu_read_lock();
849
850 if (reclaim) {
851 struct mem_cgroup_per_zone *mz;
852
853 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
854 iter = &mz->iter[reclaim->priority];
855
856 if (prev && reclaim->generation != iter->generation)
857 goto out_unlock;
858
859 while (1) {
860 pos = READ_ONCE(iter->position);
861 if (!pos || css_tryget(&pos->css))
862 break;
863 /*
864 * css reference reached zero, so iter->position will
865 * be cleared by ->css_released. However, we should not
866 * rely on this happening soon, because ->css_released
867 * is called from a work queue, and by busy-waiting we
868 * might block it. So we clear iter->position right
869 * away.
870 */
871 (void)cmpxchg(&iter->position, pos, NULL);
872 }
873 }
874
875 if (pos)
876 css = &pos->css;
877
878 for (;;) {
879 css = css_next_descendant_pre(css, &root->css);
880 if (!css) {
881 /*
882 * Reclaimers share the hierarchy walk, and a
883 * new one might jump in right at the end of
884 * the hierarchy - make sure they see at least
885 * one group and restart from the beginning.
886 */
887 if (!prev)
888 continue;
889 break;
890 }
891
892 /*
893 * Verify the css and acquire a reference. The root
894 * is provided by the caller, so we know it's alive
895 * and kicking, and don't take an extra reference.
896 */
897 memcg = mem_cgroup_from_css(css);
898
899 if (css == &root->css)
900 break;
901
902 if (css_tryget(css)) {
903 /*
904 * Make sure the memcg is initialized:
905 * mem_cgroup_css_online() orders the the
906 * initialization against setting the flag.
907 */
908 if (smp_load_acquire(&memcg->initialized))
909 break;
910
911 css_put(css);
912 }
913
914 memcg = NULL;
915 }
916
917 if (reclaim) {
918 /*
919 * The position could have already been updated by a competing
920 * thread, so check that the value hasn't changed since we read
921 * it to avoid reclaiming from the same cgroup twice.
922 */
923 (void)cmpxchg(&iter->position, pos, memcg);
924
925 if (pos)
926 css_put(&pos->css);
927
928 if (!memcg)
929 iter->generation++;
930 else if (!prev)
931 reclaim->generation = iter->generation;
932 }
933
934 out_unlock:
935 rcu_read_unlock();
936 out:
937 if (prev && prev != root)
938 css_put(&prev->css);
939
940 return memcg;
941 }
942
943 /**
944 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
945 * @root: hierarchy root
946 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
947 */
948 void mem_cgroup_iter_break(struct mem_cgroup *root,
949 struct mem_cgroup *prev)
950 {
951 if (!root)
952 root = root_mem_cgroup;
953 if (prev && prev != root)
954 css_put(&prev->css);
955 }
956
957 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
958 {
959 struct mem_cgroup *memcg = dead_memcg;
960 struct mem_cgroup_reclaim_iter *iter;
961 struct mem_cgroup_per_zone *mz;
962 int nid, zid;
963 int i;
964
965 while ((memcg = parent_mem_cgroup(memcg))) {
966 for_each_node(nid) {
967 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
968 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
969 for (i = 0; i <= DEF_PRIORITY; i++) {
970 iter = &mz->iter[i];
971 cmpxchg(&iter->position,
972 dead_memcg, NULL);
973 }
974 }
975 }
976 }
977 }
978
979 /*
980 * Iteration constructs for visiting all cgroups (under a tree). If
981 * loops are exited prematurely (break), mem_cgroup_iter_break() must
982 * be used for reference counting.
983 */
984 #define for_each_mem_cgroup_tree(iter, root) \
985 for (iter = mem_cgroup_iter(root, NULL, NULL); \
986 iter != NULL; \
987 iter = mem_cgroup_iter(root, iter, NULL))
988
989 #define for_each_mem_cgroup(iter) \
990 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
991 iter != NULL; \
992 iter = mem_cgroup_iter(NULL, iter, NULL))
993
994 /**
995 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
996 * @zone: zone of the wanted lruvec
997 * @memcg: memcg of the wanted lruvec
998 *
999 * Returns the lru list vector holding pages for the given @zone and
1000 * @mem. This can be the global zone lruvec, if the memory controller
1001 * is disabled.
1002 */
1003 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1004 struct mem_cgroup *memcg)
1005 {
1006 struct mem_cgroup_per_zone *mz;
1007 struct lruvec *lruvec;
1008
1009 if (mem_cgroup_disabled()) {
1010 lruvec = &zone->lruvec;
1011 goto out;
1012 }
1013
1014 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1015 lruvec = &mz->lruvec;
1016 out:
1017 /*
1018 * Since a node can be onlined after the mem_cgroup was created,
1019 * we have to be prepared to initialize lruvec->zone here;
1020 * and if offlined then reonlined, we need to reinitialize it.
1021 */
1022 if (unlikely(lruvec->zone != zone))
1023 lruvec->zone = zone;
1024 return lruvec;
1025 }
1026
1027 /**
1028 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1029 * @page: the page
1030 * @zone: zone of the page
1031 *
1032 * This function is only safe when following the LRU page isolation
1033 * and putback protocol: the LRU lock must be held, and the page must
1034 * either be PageLRU() or the caller must have isolated/allocated it.
1035 */
1036 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1037 {
1038 struct mem_cgroup_per_zone *mz;
1039 struct mem_cgroup *memcg;
1040 struct lruvec *lruvec;
1041
1042 if (mem_cgroup_disabled()) {
1043 lruvec = &zone->lruvec;
1044 goto out;
1045 }
1046
1047 memcg = page->mem_cgroup;
1048 /*
1049 * Swapcache readahead pages are added to the LRU - and
1050 * possibly migrated - before they are charged.
1051 */
1052 if (!memcg)
1053 memcg = root_mem_cgroup;
1054
1055 mz = mem_cgroup_page_zoneinfo(memcg, page);
1056 lruvec = &mz->lruvec;
1057 out:
1058 /*
1059 * Since a node can be onlined after the mem_cgroup was created,
1060 * we have to be prepared to initialize lruvec->zone here;
1061 * and if offlined then reonlined, we need to reinitialize it.
1062 */
1063 if (unlikely(lruvec->zone != zone))
1064 lruvec->zone = zone;
1065 return lruvec;
1066 }
1067
1068 /**
1069 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1070 * @lruvec: mem_cgroup per zone lru vector
1071 * @lru: index of lru list the page is sitting on
1072 * @nr_pages: positive when adding or negative when removing
1073 *
1074 * This function must be called when a page is added to or removed from an
1075 * lru list.
1076 */
1077 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1078 int nr_pages)
1079 {
1080 struct mem_cgroup_per_zone *mz;
1081 unsigned long *lru_size;
1082
1083 if (mem_cgroup_disabled())
1084 return;
1085
1086 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1087 lru_size = mz->lru_size + lru;
1088 *lru_size += nr_pages;
1089 VM_BUG_ON((long)(*lru_size) < 0);
1090 }
1091
1092 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1093 {
1094 struct mem_cgroup *task_memcg;
1095 struct task_struct *p;
1096 bool ret;
1097
1098 p = find_lock_task_mm(task);
1099 if (p) {
1100 task_memcg = get_mem_cgroup_from_mm(p->mm);
1101 task_unlock(p);
1102 } else {
1103 /*
1104 * All threads may have already detached their mm's, but the oom
1105 * killer still needs to detect if they have already been oom
1106 * killed to prevent needlessly killing additional tasks.
1107 */
1108 rcu_read_lock();
1109 task_memcg = mem_cgroup_from_task(task);
1110 css_get(&task_memcg->css);
1111 rcu_read_unlock();
1112 }
1113 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1114 css_put(&task_memcg->css);
1115 return ret;
1116 }
1117
1118 /**
1119 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1120 * @memcg: the memory cgroup
1121 *
1122 * Returns the maximum amount of memory @mem can be charged with, in
1123 * pages.
1124 */
1125 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1126 {
1127 unsigned long margin = 0;
1128 unsigned long count;
1129 unsigned long limit;
1130
1131 count = page_counter_read(&memcg->memory);
1132 limit = READ_ONCE(memcg->memory.limit);
1133 if (count < limit)
1134 margin = limit - count;
1135
1136 if (do_memsw_account()) {
1137 count = page_counter_read(&memcg->memsw);
1138 limit = READ_ONCE(memcg->memsw.limit);
1139 if (count <= limit)
1140 margin = min(margin, limit - count);
1141 }
1142
1143 return margin;
1144 }
1145
1146 /*
1147 * A routine for checking "mem" is under move_account() or not.
1148 *
1149 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1150 * moving cgroups. This is for waiting at high-memory pressure
1151 * caused by "move".
1152 */
1153 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1154 {
1155 struct mem_cgroup *from;
1156 struct mem_cgroup *to;
1157 bool ret = false;
1158 /*
1159 * Unlike task_move routines, we access mc.to, mc.from not under
1160 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1161 */
1162 spin_lock(&mc.lock);
1163 from = mc.from;
1164 to = mc.to;
1165 if (!from)
1166 goto unlock;
1167
1168 ret = mem_cgroup_is_descendant(from, memcg) ||
1169 mem_cgroup_is_descendant(to, memcg);
1170 unlock:
1171 spin_unlock(&mc.lock);
1172 return ret;
1173 }
1174
1175 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1176 {
1177 if (mc.moving_task && current != mc.moving_task) {
1178 if (mem_cgroup_under_move(memcg)) {
1179 DEFINE_WAIT(wait);
1180 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1181 /* moving charge context might have finished. */
1182 if (mc.moving_task)
1183 schedule();
1184 finish_wait(&mc.waitq, &wait);
1185 return true;
1186 }
1187 }
1188 return false;
1189 }
1190
1191 #define K(x) ((x) << (PAGE_SHIFT-10))
1192 /**
1193 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1194 * @memcg: The memory cgroup that went over limit
1195 * @p: Task that is going to be killed
1196 *
1197 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1198 * enabled
1199 */
1200 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1201 {
1202 /* oom_info_lock ensures that parallel ooms do not interleave */
1203 static DEFINE_MUTEX(oom_info_lock);
1204 struct mem_cgroup *iter;
1205 unsigned int i;
1206
1207 mutex_lock(&oom_info_lock);
1208 rcu_read_lock();
1209
1210 if (p) {
1211 pr_info("Task in ");
1212 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1213 pr_cont(" killed as a result of limit of ");
1214 } else {
1215 pr_info("Memory limit reached of cgroup ");
1216 }
1217
1218 pr_cont_cgroup_path(memcg->css.cgroup);
1219 pr_cont("\n");
1220
1221 rcu_read_unlock();
1222
1223 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1224 K((u64)page_counter_read(&memcg->memory)),
1225 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1226 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1227 K((u64)page_counter_read(&memcg->memsw)),
1228 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1229 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1230 K((u64)page_counter_read(&memcg->kmem)),
1231 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1232
1233 for_each_mem_cgroup_tree(iter, memcg) {
1234 pr_info("Memory cgroup stats for ");
1235 pr_cont_cgroup_path(iter->css.cgroup);
1236 pr_cont(":");
1237
1238 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1239 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1240 continue;
1241 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1242 K(mem_cgroup_read_stat(iter, i)));
1243 }
1244
1245 for (i = 0; i < NR_LRU_LISTS; i++)
1246 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1247 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1248
1249 pr_cont("\n");
1250 }
1251 mutex_unlock(&oom_info_lock);
1252 }
1253
1254 /*
1255 * This function returns the number of memcg under hierarchy tree. Returns
1256 * 1(self count) if no children.
1257 */
1258 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1259 {
1260 int num = 0;
1261 struct mem_cgroup *iter;
1262
1263 for_each_mem_cgroup_tree(iter, memcg)
1264 num++;
1265 return num;
1266 }
1267
1268 /*
1269 * Return the memory (and swap, if configured) limit for a memcg.
1270 */
1271 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1272 {
1273 unsigned long limit;
1274
1275 limit = memcg->memory.limit;
1276 if (mem_cgroup_swappiness(memcg)) {
1277 unsigned long memsw_limit;
1278
1279 memsw_limit = memcg->memsw.limit;
1280 limit = min(limit + total_swap_pages, memsw_limit);
1281 }
1282 return limit;
1283 }
1284
1285 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1286 int order)
1287 {
1288 struct oom_control oc = {
1289 .zonelist = NULL,
1290 .nodemask = NULL,
1291 .gfp_mask = gfp_mask,
1292 .order = order,
1293 };
1294 struct mem_cgroup *iter;
1295 unsigned long chosen_points = 0;
1296 unsigned long totalpages;
1297 unsigned int points = 0;
1298 struct task_struct *chosen = NULL;
1299
1300 mutex_lock(&oom_lock);
1301
1302 /*
1303 * If current has a pending SIGKILL or is exiting, then automatically
1304 * select it. The goal is to allow it to allocate so that it may
1305 * quickly exit and free its memory.
1306 */
1307 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1308 mark_oom_victim(current);
1309 goto unlock;
1310 }
1311
1312 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1313 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1314 for_each_mem_cgroup_tree(iter, memcg) {
1315 struct css_task_iter it;
1316 struct task_struct *task;
1317
1318 css_task_iter_start(&iter->css, &it);
1319 while ((task = css_task_iter_next(&it))) {
1320 switch (oom_scan_process_thread(&oc, task, totalpages)) {
1321 case OOM_SCAN_SELECT:
1322 if (chosen)
1323 put_task_struct(chosen);
1324 chosen = task;
1325 chosen_points = ULONG_MAX;
1326 get_task_struct(chosen);
1327 /* fall through */
1328 case OOM_SCAN_CONTINUE:
1329 continue;
1330 case OOM_SCAN_ABORT:
1331 css_task_iter_end(&it);
1332 mem_cgroup_iter_break(memcg, iter);
1333 if (chosen)
1334 put_task_struct(chosen);
1335 goto unlock;
1336 case OOM_SCAN_OK:
1337 break;
1338 };
1339 points = oom_badness(task, memcg, NULL, totalpages);
1340 if (!points || points < chosen_points)
1341 continue;
1342 /* Prefer thread group leaders for display purposes */
1343 if (points == chosen_points &&
1344 thread_group_leader(chosen))
1345 continue;
1346
1347 if (chosen)
1348 put_task_struct(chosen);
1349 chosen = task;
1350 chosen_points = points;
1351 get_task_struct(chosen);
1352 }
1353 css_task_iter_end(&it);
1354 }
1355
1356 if (chosen) {
1357 points = chosen_points * 1000 / totalpages;
1358 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1359 "Memory cgroup out of memory");
1360 }
1361 unlock:
1362 mutex_unlock(&oom_lock);
1363 }
1364
1365 #if MAX_NUMNODES > 1
1366
1367 /**
1368 * test_mem_cgroup_node_reclaimable
1369 * @memcg: the target memcg
1370 * @nid: the node ID to be checked.
1371 * @noswap : specify true here if the user wants flle only information.
1372 *
1373 * This function returns whether the specified memcg contains any
1374 * reclaimable pages on a node. Returns true if there are any reclaimable
1375 * pages in the node.
1376 */
1377 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1378 int nid, bool noswap)
1379 {
1380 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1381 return true;
1382 if (noswap || !total_swap_pages)
1383 return false;
1384 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1385 return true;
1386 return false;
1387
1388 }
1389
1390 /*
1391 * Always updating the nodemask is not very good - even if we have an empty
1392 * list or the wrong list here, we can start from some node and traverse all
1393 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1394 *
1395 */
1396 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1397 {
1398 int nid;
1399 /*
1400 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1401 * pagein/pageout changes since the last update.
1402 */
1403 if (!atomic_read(&memcg->numainfo_events))
1404 return;
1405 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1406 return;
1407
1408 /* make a nodemask where this memcg uses memory from */
1409 memcg->scan_nodes = node_states[N_MEMORY];
1410
1411 for_each_node_mask(nid, node_states[N_MEMORY]) {
1412
1413 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1414 node_clear(nid, memcg->scan_nodes);
1415 }
1416
1417 atomic_set(&memcg->numainfo_events, 0);
1418 atomic_set(&memcg->numainfo_updating, 0);
1419 }
1420
1421 /*
1422 * Selecting a node where we start reclaim from. Because what we need is just
1423 * reducing usage counter, start from anywhere is O,K. Considering
1424 * memory reclaim from current node, there are pros. and cons.
1425 *
1426 * Freeing memory from current node means freeing memory from a node which
1427 * we'll use or we've used. So, it may make LRU bad. And if several threads
1428 * hit limits, it will see a contention on a node. But freeing from remote
1429 * node means more costs for memory reclaim because of memory latency.
1430 *
1431 * Now, we use round-robin. Better algorithm is welcomed.
1432 */
1433 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1434 {
1435 int node;
1436
1437 mem_cgroup_may_update_nodemask(memcg);
1438 node = memcg->last_scanned_node;
1439
1440 node = next_node(node, memcg->scan_nodes);
1441 if (node == MAX_NUMNODES)
1442 node = first_node(memcg->scan_nodes);
1443 /*
1444 * We call this when we hit limit, not when pages are added to LRU.
1445 * No LRU may hold pages because all pages are UNEVICTABLE or
1446 * memcg is too small and all pages are not on LRU. In that case,
1447 * we use curret node.
1448 */
1449 if (unlikely(node == MAX_NUMNODES))
1450 node = numa_node_id();
1451
1452 memcg->last_scanned_node = node;
1453 return node;
1454 }
1455 #else
1456 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1457 {
1458 return 0;
1459 }
1460 #endif
1461
1462 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1463 struct zone *zone,
1464 gfp_t gfp_mask,
1465 unsigned long *total_scanned)
1466 {
1467 struct mem_cgroup *victim = NULL;
1468 int total = 0;
1469 int loop = 0;
1470 unsigned long excess;
1471 unsigned long nr_scanned;
1472 struct mem_cgroup_reclaim_cookie reclaim = {
1473 .zone = zone,
1474 .priority = 0,
1475 };
1476
1477 excess = soft_limit_excess(root_memcg);
1478
1479 while (1) {
1480 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1481 if (!victim) {
1482 loop++;
1483 if (loop >= 2) {
1484 /*
1485 * If we have not been able to reclaim
1486 * anything, it might because there are
1487 * no reclaimable pages under this hierarchy
1488 */
1489 if (!total)
1490 break;
1491 /*
1492 * We want to do more targeted reclaim.
1493 * excess >> 2 is not to excessive so as to
1494 * reclaim too much, nor too less that we keep
1495 * coming back to reclaim from this cgroup
1496 */
1497 if (total >= (excess >> 2) ||
1498 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1499 break;
1500 }
1501 continue;
1502 }
1503 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1504 zone, &nr_scanned);
1505 *total_scanned += nr_scanned;
1506 if (!soft_limit_excess(root_memcg))
1507 break;
1508 }
1509 mem_cgroup_iter_break(root_memcg, victim);
1510 return total;
1511 }
1512
1513 #ifdef CONFIG_LOCKDEP
1514 static struct lockdep_map memcg_oom_lock_dep_map = {
1515 .name = "memcg_oom_lock",
1516 };
1517 #endif
1518
1519 static DEFINE_SPINLOCK(memcg_oom_lock);
1520
1521 /*
1522 * Check OOM-Killer is already running under our hierarchy.
1523 * If someone is running, return false.
1524 */
1525 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1526 {
1527 struct mem_cgroup *iter, *failed = NULL;
1528
1529 spin_lock(&memcg_oom_lock);
1530
1531 for_each_mem_cgroup_tree(iter, memcg) {
1532 if (iter->oom_lock) {
1533 /*
1534 * this subtree of our hierarchy is already locked
1535 * so we cannot give a lock.
1536 */
1537 failed = iter;
1538 mem_cgroup_iter_break(memcg, iter);
1539 break;
1540 } else
1541 iter->oom_lock = true;
1542 }
1543
1544 if (failed) {
1545 /*
1546 * OK, we failed to lock the whole subtree so we have
1547 * to clean up what we set up to the failing subtree
1548 */
1549 for_each_mem_cgroup_tree(iter, memcg) {
1550 if (iter == failed) {
1551 mem_cgroup_iter_break(memcg, iter);
1552 break;
1553 }
1554 iter->oom_lock = false;
1555 }
1556 } else
1557 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1558
1559 spin_unlock(&memcg_oom_lock);
1560
1561 return !failed;
1562 }
1563
1564 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1565 {
1566 struct mem_cgroup *iter;
1567
1568 spin_lock(&memcg_oom_lock);
1569 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1570 for_each_mem_cgroup_tree(iter, memcg)
1571 iter->oom_lock = false;
1572 spin_unlock(&memcg_oom_lock);
1573 }
1574
1575 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1576 {
1577 struct mem_cgroup *iter;
1578
1579 spin_lock(&memcg_oom_lock);
1580 for_each_mem_cgroup_tree(iter, memcg)
1581 iter->under_oom++;
1582 spin_unlock(&memcg_oom_lock);
1583 }
1584
1585 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1586 {
1587 struct mem_cgroup *iter;
1588
1589 /*
1590 * When a new child is created while the hierarchy is under oom,
1591 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1592 */
1593 spin_lock(&memcg_oom_lock);
1594 for_each_mem_cgroup_tree(iter, memcg)
1595 if (iter->under_oom > 0)
1596 iter->under_oom--;
1597 spin_unlock(&memcg_oom_lock);
1598 }
1599
1600 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1601
1602 struct oom_wait_info {
1603 struct mem_cgroup *memcg;
1604 wait_queue_t wait;
1605 };
1606
1607 static int memcg_oom_wake_function(wait_queue_t *wait,
1608 unsigned mode, int sync, void *arg)
1609 {
1610 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1611 struct mem_cgroup *oom_wait_memcg;
1612 struct oom_wait_info *oom_wait_info;
1613
1614 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1615 oom_wait_memcg = oom_wait_info->memcg;
1616
1617 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1618 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1619 return 0;
1620 return autoremove_wake_function(wait, mode, sync, arg);
1621 }
1622
1623 static void memcg_oom_recover(struct mem_cgroup *memcg)
1624 {
1625 /*
1626 * For the following lockless ->under_oom test, the only required
1627 * guarantee is that it must see the state asserted by an OOM when
1628 * this function is called as a result of userland actions
1629 * triggered by the notification of the OOM. This is trivially
1630 * achieved by invoking mem_cgroup_mark_under_oom() before
1631 * triggering notification.
1632 */
1633 if (memcg && memcg->under_oom)
1634 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1635 }
1636
1637 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1638 {
1639 if (!current->memcg_may_oom)
1640 return;
1641 /*
1642 * We are in the middle of the charge context here, so we
1643 * don't want to block when potentially sitting on a callstack
1644 * that holds all kinds of filesystem and mm locks.
1645 *
1646 * Also, the caller may handle a failed allocation gracefully
1647 * (like optional page cache readahead) and so an OOM killer
1648 * invocation might not even be necessary.
1649 *
1650 * That's why we don't do anything here except remember the
1651 * OOM context and then deal with it at the end of the page
1652 * fault when the stack is unwound, the locks are released,
1653 * and when we know whether the fault was overall successful.
1654 */
1655 css_get(&memcg->css);
1656 current->memcg_in_oom = memcg;
1657 current->memcg_oom_gfp_mask = mask;
1658 current->memcg_oom_order = order;
1659 }
1660
1661 /**
1662 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1663 * @handle: actually kill/wait or just clean up the OOM state
1664 *
1665 * This has to be called at the end of a page fault if the memcg OOM
1666 * handler was enabled.
1667 *
1668 * Memcg supports userspace OOM handling where failed allocations must
1669 * sleep on a waitqueue until the userspace task resolves the
1670 * situation. Sleeping directly in the charge context with all kinds
1671 * of locks held is not a good idea, instead we remember an OOM state
1672 * in the task and mem_cgroup_oom_synchronize() has to be called at
1673 * the end of the page fault to complete the OOM handling.
1674 *
1675 * Returns %true if an ongoing memcg OOM situation was detected and
1676 * completed, %false otherwise.
1677 */
1678 bool mem_cgroup_oom_synchronize(bool handle)
1679 {
1680 struct mem_cgroup *memcg = current->memcg_in_oom;
1681 struct oom_wait_info owait;
1682 bool locked;
1683
1684 /* OOM is global, do not handle */
1685 if (!memcg)
1686 return false;
1687
1688 if (!handle || oom_killer_disabled)
1689 goto cleanup;
1690
1691 owait.memcg = memcg;
1692 owait.wait.flags = 0;
1693 owait.wait.func = memcg_oom_wake_function;
1694 owait.wait.private = current;
1695 INIT_LIST_HEAD(&owait.wait.task_list);
1696
1697 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1698 mem_cgroup_mark_under_oom(memcg);
1699
1700 locked = mem_cgroup_oom_trylock(memcg);
1701
1702 if (locked)
1703 mem_cgroup_oom_notify(memcg);
1704
1705 if (locked && !memcg->oom_kill_disable) {
1706 mem_cgroup_unmark_under_oom(memcg);
1707 finish_wait(&memcg_oom_waitq, &owait.wait);
1708 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1709 current->memcg_oom_order);
1710 } else {
1711 schedule();
1712 mem_cgroup_unmark_under_oom(memcg);
1713 finish_wait(&memcg_oom_waitq, &owait.wait);
1714 }
1715
1716 if (locked) {
1717 mem_cgroup_oom_unlock(memcg);
1718 /*
1719 * There is no guarantee that an OOM-lock contender
1720 * sees the wakeups triggered by the OOM kill
1721 * uncharges. Wake any sleepers explicitely.
1722 */
1723 memcg_oom_recover(memcg);
1724 }
1725 cleanup:
1726 current->memcg_in_oom = NULL;
1727 css_put(&memcg->css);
1728 return true;
1729 }
1730
1731 /**
1732 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1733 * @page: page that is going to change accounted state
1734 *
1735 * This function must mark the beginning of an accounted page state
1736 * change to prevent double accounting when the page is concurrently
1737 * being moved to another memcg:
1738 *
1739 * memcg = mem_cgroup_begin_page_stat(page);
1740 * if (TestClearPageState(page))
1741 * mem_cgroup_update_page_stat(memcg, state, -1);
1742 * mem_cgroup_end_page_stat(memcg);
1743 */
1744 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1745 {
1746 struct mem_cgroup *memcg;
1747 unsigned long flags;
1748
1749 /*
1750 * The RCU lock is held throughout the transaction. The fast
1751 * path can get away without acquiring the memcg->move_lock
1752 * because page moving starts with an RCU grace period.
1753 *
1754 * The RCU lock also protects the memcg from being freed when
1755 * the page state that is going to change is the only thing
1756 * preventing the page from being uncharged.
1757 * E.g. end-writeback clearing PageWriteback(), which allows
1758 * migration to go ahead and uncharge the page before the
1759 * account transaction might be complete.
1760 */
1761 rcu_read_lock();
1762
1763 if (mem_cgroup_disabled())
1764 return NULL;
1765 again:
1766 memcg = page->mem_cgroup;
1767 if (unlikely(!memcg))
1768 return NULL;
1769
1770 if (atomic_read(&memcg->moving_account) <= 0)
1771 return memcg;
1772
1773 spin_lock_irqsave(&memcg->move_lock, flags);
1774 if (memcg != page->mem_cgroup) {
1775 spin_unlock_irqrestore(&memcg->move_lock, flags);
1776 goto again;
1777 }
1778
1779 /*
1780 * When charge migration first begins, we can have locked and
1781 * unlocked page stat updates happening concurrently. Track
1782 * the task who has the lock for mem_cgroup_end_page_stat().
1783 */
1784 memcg->move_lock_task = current;
1785 memcg->move_lock_flags = flags;
1786
1787 return memcg;
1788 }
1789 EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
1790
1791 /**
1792 * mem_cgroup_end_page_stat - finish a page state statistics transaction
1793 * @memcg: the memcg that was accounted against
1794 */
1795 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
1796 {
1797 if (memcg && memcg->move_lock_task == current) {
1798 unsigned long flags = memcg->move_lock_flags;
1799
1800 memcg->move_lock_task = NULL;
1801 memcg->move_lock_flags = 0;
1802
1803 spin_unlock_irqrestore(&memcg->move_lock, flags);
1804 }
1805
1806 rcu_read_unlock();
1807 }
1808 EXPORT_SYMBOL(mem_cgroup_end_page_stat);
1809
1810 /*
1811 * size of first charge trial. "32" comes from vmscan.c's magic value.
1812 * TODO: maybe necessary to use big numbers in big irons.
1813 */
1814 #define CHARGE_BATCH 32U
1815 struct memcg_stock_pcp {
1816 struct mem_cgroup *cached; /* this never be root cgroup */
1817 unsigned int nr_pages;
1818 struct work_struct work;
1819 unsigned long flags;
1820 #define FLUSHING_CACHED_CHARGE 0
1821 };
1822 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1823 static DEFINE_MUTEX(percpu_charge_mutex);
1824
1825 /**
1826 * consume_stock: Try to consume stocked charge on this cpu.
1827 * @memcg: memcg to consume from.
1828 * @nr_pages: how many pages to charge.
1829 *
1830 * The charges will only happen if @memcg matches the current cpu's memcg
1831 * stock, and at least @nr_pages are available in that stock. Failure to
1832 * service an allocation will refill the stock.
1833 *
1834 * returns true if successful, false otherwise.
1835 */
1836 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1837 {
1838 struct memcg_stock_pcp *stock;
1839 bool ret = false;
1840
1841 if (nr_pages > CHARGE_BATCH)
1842 return ret;
1843
1844 stock = &get_cpu_var(memcg_stock);
1845 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1846 stock->nr_pages -= nr_pages;
1847 ret = true;
1848 }
1849 put_cpu_var(memcg_stock);
1850 return ret;
1851 }
1852
1853 /*
1854 * Returns stocks cached in percpu and reset cached information.
1855 */
1856 static void drain_stock(struct memcg_stock_pcp *stock)
1857 {
1858 struct mem_cgroup *old = stock->cached;
1859
1860 if (stock->nr_pages) {
1861 page_counter_uncharge(&old->memory, stock->nr_pages);
1862 if (do_memsw_account())
1863 page_counter_uncharge(&old->memsw, stock->nr_pages);
1864 css_put_many(&old->css, stock->nr_pages);
1865 stock->nr_pages = 0;
1866 }
1867 stock->cached = NULL;
1868 }
1869
1870 /*
1871 * This must be called under preempt disabled or must be called by
1872 * a thread which is pinned to local cpu.
1873 */
1874 static void drain_local_stock(struct work_struct *dummy)
1875 {
1876 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1877 drain_stock(stock);
1878 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1879 }
1880
1881 /*
1882 * Cache charges(val) to local per_cpu area.
1883 * This will be consumed by consume_stock() function, later.
1884 */
1885 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1886 {
1887 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1888
1889 if (stock->cached != memcg) { /* reset if necessary */
1890 drain_stock(stock);
1891 stock->cached = memcg;
1892 }
1893 stock->nr_pages += nr_pages;
1894 put_cpu_var(memcg_stock);
1895 }
1896
1897 /*
1898 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1899 * of the hierarchy under it.
1900 */
1901 static void drain_all_stock(struct mem_cgroup *root_memcg)
1902 {
1903 int cpu, curcpu;
1904
1905 /* If someone's already draining, avoid adding running more workers. */
1906 if (!mutex_trylock(&percpu_charge_mutex))
1907 return;
1908 /* Notify other cpus that system-wide "drain" is running */
1909 get_online_cpus();
1910 curcpu = get_cpu();
1911 for_each_online_cpu(cpu) {
1912 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1913 struct mem_cgroup *memcg;
1914
1915 memcg = stock->cached;
1916 if (!memcg || !stock->nr_pages)
1917 continue;
1918 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1919 continue;
1920 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1921 if (cpu == curcpu)
1922 drain_local_stock(&stock->work);
1923 else
1924 schedule_work_on(cpu, &stock->work);
1925 }
1926 }
1927 put_cpu();
1928 put_online_cpus();
1929 mutex_unlock(&percpu_charge_mutex);
1930 }
1931
1932 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1933 unsigned long action,
1934 void *hcpu)
1935 {
1936 int cpu = (unsigned long)hcpu;
1937 struct memcg_stock_pcp *stock;
1938
1939 if (action == CPU_ONLINE)
1940 return NOTIFY_OK;
1941
1942 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1943 return NOTIFY_OK;
1944
1945 stock = &per_cpu(memcg_stock, cpu);
1946 drain_stock(stock);
1947 return NOTIFY_OK;
1948 }
1949
1950 static void reclaim_high(struct mem_cgroup *memcg,
1951 unsigned int nr_pages,
1952 gfp_t gfp_mask)
1953 {
1954 do {
1955 if (page_counter_read(&memcg->memory) <= memcg->high)
1956 continue;
1957 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1958 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1959 } while ((memcg = parent_mem_cgroup(memcg)));
1960 }
1961
1962 static void high_work_func(struct work_struct *work)
1963 {
1964 struct mem_cgroup *memcg;
1965
1966 memcg = container_of(work, struct mem_cgroup, high_work);
1967 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1968 }
1969
1970 /*
1971 * Scheduled by try_charge() to be executed from the userland return path
1972 * and reclaims memory over the high limit.
1973 */
1974 void mem_cgroup_handle_over_high(void)
1975 {
1976 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1977 struct mem_cgroup *memcg;
1978
1979 if (likely(!nr_pages))
1980 return;
1981
1982 memcg = get_mem_cgroup_from_mm(current->mm);
1983 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1984 css_put(&memcg->css);
1985 current->memcg_nr_pages_over_high = 0;
1986 }
1987
1988 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1989 unsigned int nr_pages)
1990 {
1991 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1992 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1993 struct mem_cgroup *mem_over_limit;
1994 struct page_counter *counter;
1995 unsigned long nr_reclaimed;
1996 bool may_swap = true;
1997 bool drained = false;
1998
1999 if (mem_cgroup_is_root(memcg))
2000 return 0;
2001 retry:
2002 if (consume_stock(memcg, nr_pages))
2003 return 0;
2004
2005 if (!do_memsw_account() ||
2006 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2007 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2008 goto done_restock;
2009 if (do_memsw_account())
2010 page_counter_uncharge(&memcg->memsw, batch);
2011 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2012 } else {
2013 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2014 may_swap = false;
2015 }
2016
2017 if (batch > nr_pages) {
2018 batch = nr_pages;
2019 goto retry;
2020 }
2021
2022 /*
2023 * Unlike in global OOM situations, memcg is not in a physical
2024 * memory shortage. Allow dying and OOM-killed tasks to
2025 * bypass the last charges so that they can exit quickly and
2026 * free their memory.
2027 */
2028 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2029 fatal_signal_pending(current) ||
2030 current->flags & PF_EXITING))
2031 goto force;
2032
2033 if (unlikely(task_in_memcg_oom(current)))
2034 goto nomem;
2035
2036 if (!gfpflags_allow_blocking(gfp_mask))
2037 goto nomem;
2038
2039 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2040
2041 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2042 gfp_mask, may_swap);
2043
2044 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2045 goto retry;
2046
2047 if (!drained) {
2048 drain_all_stock(mem_over_limit);
2049 drained = true;
2050 goto retry;
2051 }
2052
2053 if (gfp_mask & __GFP_NORETRY)
2054 goto nomem;
2055 /*
2056 * Even though the limit is exceeded at this point, reclaim
2057 * may have been able to free some pages. Retry the charge
2058 * before killing the task.
2059 *
2060 * Only for regular pages, though: huge pages are rather
2061 * unlikely to succeed so close to the limit, and we fall back
2062 * to regular pages anyway in case of failure.
2063 */
2064 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2065 goto retry;
2066 /*
2067 * At task move, charge accounts can be doubly counted. So, it's
2068 * better to wait until the end of task_move if something is going on.
2069 */
2070 if (mem_cgroup_wait_acct_move(mem_over_limit))
2071 goto retry;
2072
2073 if (nr_retries--)
2074 goto retry;
2075
2076 if (gfp_mask & __GFP_NOFAIL)
2077 goto force;
2078
2079 if (fatal_signal_pending(current))
2080 goto force;
2081
2082 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2083
2084 mem_cgroup_oom(mem_over_limit, gfp_mask,
2085 get_order(nr_pages * PAGE_SIZE));
2086 nomem:
2087 if (!(gfp_mask & __GFP_NOFAIL))
2088 return -ENOMEM;
2089 force:
2090 /*
2091 * The allocation either can't fail or will lead to more memory
2092 * being freed very soon. Allow memory usage go over the limit
2093 * temporarily by force charging it.
2094 */
2095 page_counter_charge(&memcg->memory, nr_pages);
2096 if (do_memsw_account())
2097 page_counter_charge(&memcg->memsw, nr_pages);
2098 css_get_many(&memcg->css, nr_pages);
2099
2100 return 0;
2101
2102 done_restock:
2103 css_get_many(&memcg->css, batch);
2104 if (batch > nr_pages)
2105 refill_stock(memcg, batch - nr_pages);
2106
2107 /*
2108 * If the hierarchy is above the normal consumption range, schedule
2109 * reclaim on returning to userland. We can perform reclaim here
2110 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2111 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2112 * not recorded as it most likely matches current's and won't
2113 * change in the meantime. As high limit is checked again before
2114 * reclaim, the cost of mismatch is negligible.
2115 */
2116 do {
2117 if (page_counter_read(&memcg->memory) > memcg->high) {
2118 /* Don't bother a random interrupted task */
2119 if (in_interrupt()) {
2120 schedule_work(&memcg->high_work);
2121 break;
2122 }
2123 current->memcg_nr_pages_over_high += batch;
2124 set_notify_resume(current);
2125 break;
2126 }
2127 } while ((memcg = parent_mem_cgroup(memcg)));
2128
2129 return 0;
2130 }
2131
2132 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2133 {
2134 if (mem_cgroup_is_root(memcg))
2135 return;
2136
2137 page_counter_uncharge(&memcg->memory, nr_pages);
2138 if (do_memsw_account())
2139 page_counter_uncharge(&memcg->memsw, nr_pages);
2140
2141 css_put_many(&memcg->css, nr_pages);
2142 }
2143
2144 static void lock_page_lru(struct page *page, int *isolated)
2145 {
2146 struct zone *zone = page_zone(page);
2147
2148 spin_lock_irq(&zone->lru_lock);
2149 if (PageLRU(page)) {
2150 struct lruvec *lruvec;
2151
2152 lruvec = mem_cgroup_page_lruvec(page, zone);
2153 ClearPageLRU(page);
2154 del_page_from_lru_list(page, lruvec, page_lru(page));
2155 *isolated = 1;
2156 } else
2157 *isolated = 0;
2158 }
2159
2160 static void unlock_page_lru(struct page *page, int isolated)
2161 {
2162 struct zone *zone = page_zone(page);
2163
2164 if (isolated) {
2165 struct lruvec *lruvec;
2166
2167 lruvec = mem_cgroup_page_lruvec(page, zone);
2168 VM_BUG_ON_PAGE(PageLRU(page), page);
2169 SetPageLRU(page);
2170 add_page_to_lru_list(page, lruvec, page_lru(page));
2171 }
2172 spin_unlock_irq(&zone->lru_lock);
2173 }
2174
2175 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2176 bool lrucare)
2177 {
2178 int isolated;
2179
2180 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2181
2182 /*
2183 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2184 * may already be on some other mem_cgroup's LRU. Take care of it.
2185 */
2186 if (lrucare)
2187 lock_page_lru(page, &isolated);
2188
2189 /*
2190 * Nobody should be changing or seriously looking at
2191 * page->mem_cgroup at this point:
2192 *
2193 * - the page is uncharged
2194 *
2195 * - the page is off-LRU
2196 *
2197 * - an anonymous fault has exclusive page access, except for
2198 * a locked page table
2199 *
2200 * - a page cache insertion, a swapin fault, or a migration
2201 * have the page locked
2202 */
2203 page->mem_cgroup = memcg;
2204
2205 if (lrucare)
2206 unlock_page_lru(page, isolated);
2207 }
2208
2209 #ifndef CONFIG_SLOB
2210 static int memcg_alloc_cache_id(void)
2211 {
2212 int id, size;
2213 int err;
2214
2215 id = ida_simple_get(&memcg_cache_ida,
2216 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2217 if (id < 0)
2218 return id;
2219
2220 if (id < memcg_nr_cache_ids)
2221 return id;
2222
2223 /*
2224 * There's no space for the new id in memcg_caches arrays,
2225 * so we have to grow them.
2226 */
2227 down_write(&memcg_cache_ids_sem);
2228
2229 size = 2 * (id + 1);
2230 if (size < MEMCG_CACHES_MIN_SIZE)
2231 size = MEMCG_CACHES_MIN_SIZE;
2232 else if (size > MEMCG_CACHES_MAX_SIZE)
2233 size = MEMCG_CACHES_MAX_SIZE;
2234
2235 err = memcg_update_all_caches(size);
2236 if (!err)
2237 err = memcg_update_all_list_lrus(size);
2238 if (!err)
2239 memcg_nr_cache_ids = size;
2240
2241 up_write(&memcg_cache_ids_sem);
2242
2243 if (err) {
2244 ida_simple_remove(&memcg_cache_ida, id);
2245 return err;
2246 }
2247 return id;
2248 }
2249
2250 static void memcg_free_cache_id(int id)
2251 {
2252 ida_simple_remove(&memcg_cache_ida, id);
2253 }
2254
2255 struct memcg_kmem_cache_create_work {
2256 struct mem_cgroup *memcg;
2257 struct kmem_cache *cachep;
2258 struct work_struct work;
2259 };
2260
2261 static void memcg_kmem_cache_create_func(struct work_struct *w)
2262 {
2263 struct memcg_kmem_cache_create_work *cw =
2264 container_of(w, struct memcg_kmem_cache_create_work, work);
2265 struct mem_cgroup *memcg = cw->memcg;
2266 struct kmem_cache *cachep = cw->cachep;
2267
2268 memcg_create_kmem_cache(memcg, cachep);
2269
2270 css_put(&memcg->css);
2271 kfree(cw);
2272 }
2273
2274 /*
2275 * Enqueue the creation of a per-memcg kmem_cache.
2276 */
2277 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2278 struct kmem_cache *cachep)
2279 {
2280 struct memcg_kmem_cache_create_work *cw;
2281
2282 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2283 if (!cw)
2284 return;
2285
2286 css_get(&memcg->css);
2287
2288 cw->memcg = memcg;
2289 cw->cachep = cachep;
2290 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2291
2292 schedule_work(&cw->work);
2293 }
2294
2295 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2296 struct kmem_cache *cachep)
2297 {
2298 /*
2299 * We need to stop accounting when we kmalloc, because if the
2300 * corresponding kmalloc cache is not yet created, the first allocation
2301 * in __memcg_schedule_kmem_cache_create will recurse.
2302 *
2303 * However, it is better to enclose the whole function. Depending on
2304 * the debugging options enabled, INIT_WORK(), for instance, can
2305 * trigger an allocation. This too, will make us recurse. Because at
2306 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2307 * the safest choice is to do it like this, wrapping the whole function.
2308 */
2309 current->memcg_kmem_skip_account = 1;
2310 __memcg_schedule_kmem_cache_create(memcg, cachep);
2311 current->memcg_kmem_skip_account = 0;
2312 }
2313
2314 /*
2315 * Return the kmem_cache we're supposed to use for a slab allocation.
2316 * We try to use the current memcg's version of the cache.
2317 *
2318 * If the cache does not exist yet, if we are the first user of it,
2319 * we either create it immediately, if possible, or create it asynchronously
2320 * in a workqueue.
2321 * In the latter case, we will let the current allocation go through with
2322 * the original cache.
2323 *
2324 * Can't be called in interrupt context or from kernel threads.
2325 * This function needs to be called with rcu_read_lock() held.
2326 */
2327 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2328 {
2329 struct mem_cgroup *memcg;
2330 struct kmem_cache *memcg_cachep;
2331 int kmemcg_id;
2332
2333 VM_BUG_ON(!is_root_cache(cachep));
2334
2335 if (cachep->flags & SLAB_ACCOUNT)
2336 gfp |= __GFP_ACCOUNT;
2337
2338 if (!(gfp & __GFP_ACCOUNT))
2339 return cachep;
2340
2341 if (current->memcg_kmem_skip_account)
2342 return cachep;
2343
2344 memcg = get_mem_cgroup_from_mm(current->mm);
2345 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2346 if (kmemcg_id < 0)
2347 goto out;
2348
2349 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2350 if (likely(memcg_cachep))
2351 return memcg_cachep;
2352
2353 /*
2354 * If we are in a safe context (can wait, and not in interrupt
2355 * context), we could be be predictable and return right away.
2356 * This would guarantee that the allocation being performed
2357 * already belongs in the new cache.
2358 *
2359 * However, there are some clashes that can arrive from locking.
2360 * For instance, because we acquire the slab_mutex while doing
2361 * memcg_create_kmem_cache, this means no further allocation
2362 * could happen with the slab_mutex held. So it's better to
2363 * defer everything.
2364 */
2365 memcg_schedule_kmem_cache_create(memcg, cachep);
2366 out:
2367 css_put(&memcg->css);
2368 return cachep;
2369 }
2370
2371 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2372 {
2373 if (!is_root_cache(cachep))
2374 css_put(&cachep->memcg_params.memcg->css);
2375 }
2376
2377 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2378 struct mem_cgroup *memcg)
2379 {
2380 unsigned int nr_pages = 1 << order;
2381 struct page_counter *counter;
2382 int ret;
2383
2384 if (!memcg_kmem_online(memcg))
2385 return 0;
2386
2387 ret = try_charge(memcg, gfp, nr_pages);
2388 if (ret)
2389 return ret;
2390
2391 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2392 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2393 cancel_charge(memcg, nr_pages);
2394 return -ENOMEM;
2395 }
2396
2397 page->mem_cgroup = memcg;
2398
2399 return 0;
2400 }
2401
2402 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2403 {
2404 struct mem_cgroup *memcg;
2405 int ret;
2406
2407 memcg = get_mem_cgroup_from_mm(current->mm);
2408 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2409 css_put(&memcg->css);
2410 return ret;
2411 }
2412
2413 void __memcg_kmem_uncharge(struct page *page, int order)
2414 {
2415 struct mem_cgroup *memcg = page->mem_cgroup;
2416 unsigned int nr_pages = 1 << order;
2417
2418 if (!memcg)
2419 return;
2420
2421 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2422
2423 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2424 page_counter_uncharge(&memcg->kmem, nr_pages);
2425
2426 page_counter_uncharge(&memcg->memory, nr_pages);
2427 if (do_memsw_account())
2428 page_counter_uncharge(&memcg->memsw, nr_pages);
2429
2430 page->mem_cgroup = NULL;
2431 css_put_many(&memcg->css, nr_pages);
2432 }
2433 #endif /* !CONFIG_SLOB */
2434
2435 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2436
2437 /*
2438 * Because tail pages are not marked as "used", set it. We're under
2439 * zone->lru_lock and migration entries setup in all page mappings.
2440 */
2441 void mem_cgroup_split_huge_fixup(struct page *head)
2442 {
2443 int i;
2444
2445 if (mem_cgroup_disabled())
2446 return;
2447
2448 for (i = 1; i < HPAGE_PMD_NR; i++)
2449 head[i].mem_cgroup = head->mem_cgroup;
2450
2451 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2452 HPAGE_PMD_NR);
2453 }
2454 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2455
2456 #ifdef CONFIG_MEMCG_SWAP
2457 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2458 bool charge)
2459 {
2460 int val = (charge) ? 1 : -1;
2461 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2462 }
2463
2464 /**
2465 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2466 * @entry: swap entry to be moved
2467 * @from: mem_cgroup which the entry is moved from
2468 * @to: mem_cgroup which the entry is moved to
2469 *
2470 * It succeeds only when the swap_cgroup's record for this entry is the same
2471 * as the mem_cgroup's id of @from.
2472 *
2473 * Returns 0 on success, -EINVAL on failure.
2474 *
2475 * The caller must have charged to @to, IOW, called page_counter_charge() about
2476 * both res and memsw, and called css_get().
2477 */
2478 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2479 struct mem_cgroup *from, struct mem_cgroup *to)
2480 {
2481 unsigned short old_id, new_id;
2482
2483 old_id = mem_cgroup_id(from);
2484 new_id = mem_cgroup_id(to);
2485
2486 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2487 mem_cgroup_swap_statistics(from, false);
2488 mem_cgroup_swap_statistics(to, true);
2489 return 0;
2490 }
2491 return -EINVAL;
2492 }
2493 #else
2494 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2495 struct mem_cgroup *from, struct mem_cgroup *to)
2496 {
2497 return -EINVAL;
2498 }
2499 #endif
2500
2501 static DEFINE_MUTEX(memcg_limit_mutex);
2502
2503 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2504 unsigned long limit)
2505 {
2506 unsigned long curusage;
2507 unsigned long oldusage;
2508 bool enlarge = false;
2509 int retry_count;
2510 int ret;
2511
2512 /*
2513 * For keeping hierarchical_reclaim simple, how long we should retry
2514 * is depends on callers. We set our retry-count to be function
2515 * of # of children which we should visit in this loop.
2516 */
2517 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2518 mem_cgroup_count_children(memcg);
2519
2520 oldusage = page_counter_read(&memcg->memory);
2521
2522 do {
2523 if (signal_pending(current)) {
2524 ret = -EINTR;
2525 break;
2526 }
2527
2528 mutex_lock(&memcg_limit_mutex);
2529 if (limit > memcg->memsw.limit) {
2530 mutex_unlock(&memcg_limit_mutex);
2531 ret = -EINVAL;
2532 break;
2533 }
2534 if (limit > memcg->memory.limit)
2535 enlarge = true;
2536 ret = page_counter_limit(&memcg->memory, limit);
2537 mutex_unlock(&memcg_limit_mutex);
2538
2539 if (!ret)
2540 break;
2541
2542 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2543
2544 curusage = page_counter_read(&memcg->memory);
2545 /* Usage is reduced ? */
2546 if (curusage >= oldusage)
2547 retry_count--;
2548 else
2549 oldusage = curusage;
2550 } while (retry_count);
2551
2552 if (!ret && enlarge)
2553 memcg_oom_recover(memcg);
2554
2555 return ret;
2556 }
2557
2558 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2559 unsigned long limit)
2560 {
2561 unsigned long curusage;
2562 unsigned long oldusage;
2563 bool enlarge = false;
2564 int retry_count;
2565 int ret;
2566
2567 /* see mem_cgroup_resize_res_limit */
2568 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2569 mem_cgroup_count_children(memcg);
2570
2571 oldusage = page_counter_read(&memcg->memsw);
2572
2573 do {
2574 if (signal_pending(current)) {
2575 ret = -EINTR;
2576 break;
2577 }
2578
2579 mutex_lock(&memcg_limit_mutex);
2580 if (limit < memcg->memory.limit) {
2581 mutex_unlock(&memcg_limit_mutex);
2582 ret = -EINVAL;
2583 break;
2584 }
2585 if (limit > memcg->memsw.limit)
2586 enlarge = true;
2587 ret = page_counter_limit(&memcg->memsw, limit);
2588 mutex_unlock(&memcg_limit_mutex);
2589
2590 if (!ret)
2591 break;
2592
2593 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2594
2595 curusage = page_counter_read(&memcg->memsw);
2596 /* Usage is reduced ? */
2597 if (curusage >= oldusage)
2598 retry_count--;
2599 else
2600 oldusage = curusage;
2601 } while (retry_count);
2602
2603 if (!ret && enlarge)
2604 memcg_oom_recover(memcg);
2605
2606 return ret;
2607 }
2608
2609 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2610 gfp_t gfp_mask,
2611 unsigned long *total_scanned)
2612 {
2613 unsigned long nr_reclaimed = 0;
2614 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2615 unsigned long reclaimed;
2616 int loop = 0;
2617 struct mem_cgroup_tree_per_zone *mctz;
2618 unsigned long excess;
2619 unsigned long nr_scanned;
2620
2621 if (order > 0)
2622 return 0;
2623
2624 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2625 /*
2626 * This loop can run a while, specially if mem_cgroup's continuously
2627 * keep exceeding their soft limit and putting the system under
2628 * pressure
2629 */
2630 do {
2631 if (next_mz)
2632 mz = next_mz;
2633 else
2634 mz = mem_cgroup_largest_soft_limit_node(mctz);
2635 if (!mz)
2636 break;
2637
2638 nr_scanned = 0;
2639 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2640 gfp_mask, &nr_scanned);
2641 nr_reclaimed += reclaimed;
2642 *total_scanned += nr_scanned;
2643 spin_lock_irq(&mctz->lock);
2644 __mem_cgroup_remove_exceeded(mz, mctz);
2645
2646 /*
2647 * If we failed to reclaim anything from this memory cgroup
2648 * it is time to move on to the next cgroup
2649 */
2650 next_mz = NULL;
2651 if (!reclaimed)
2652 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2653
2654 excess = soft_limit_excess(mz->memcg);
2655 /*
2656 * One school of thought says that we should not add
2657 * back the node to the tree if reclaim returns 0.
2658 * But our reclaim could return 0, simply because due
2659 * to priority we are exposing a smaller subset of
2660 * memory to reclaim from. Consider this as a longer
2661 * term TODO.
2662 */
2663 /* If excess == 0, no tree ops */
2664 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2665 spin_unlock_irq(&mctz->lock);
2666 css_put(&mz->memcg->css);
2667 loop++;
2668 /*
2669 * Could not reclaim anything and there are no more
2670 * mem cgroups to try or we seem to be looping without
2671 * reclaiming anything.
2672 */
2673 if (!nr_reclaimed &&
2674 (next_mz == NULL ||
2675 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2676 break;
2677 } while (!nr_reclaimed);
2678 if (next_mz)
2679 css_put(&next_mz->memcg->css);
2680 return nr_reclaimed;
2681 }
2682
2683 /*
2684 * Test whether @memcg has children, dead or alive. Note that this
2685 * function doesn't care whether @memcg has use_hierarchy enabled and
2686 * returns %true if there are child csses according to the cgroup
2687 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2688 */
2689 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2690 {
2691 bool ret;
2692
2693 /*
2694 * The lock does not prevent addition or deletion of children, but
2695 * it prevents a new child from being initialized based on this
2696 * parent in css_online(), so it's enough to decide whether
2697 * hierarchically inherited attributes can still be changed or not.
2698 */
2699 lockdep_assert_held(&memcg_create_mutex);
2700
2701 rcu_read_lock();
2702 ret = css_next_child(NULL, &memcg->css);
2703 rcu_read_unlock();
2704 return ret;
2705 }
2706
2707 /*
2708 * Reclaims as many pages from the given memcg as possible and moves
2709 * the rest to the parent.
2710 *
2711 * Caller is responsible for holding css reference for memcg.
2712 */
2713 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2714 {
2715 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2716
2717 /* we call try-to-free pages for make this cgroup empty */
2718 lru_add_drain_all();
2719 /* try to free all pages in this cgroup */
2720 while (nr_retries && page_counter_read(&memcg->memory)) {
2721 int progress;
2722
2723 if (signal_pending(current))
2724 return -EINTR;
2725
2726 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2727 GFP_KERNEL, true);
2728 if (!progress) {
2729 nr_retries--;
2730 /* maybe some writeback is necessary */
2731 congestion_wait(BLK_RW_ASYNC, HZ/10);
2732 }
2733
2734 }
2735
2736 return 0;
2737 }
2738
2739 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2740 char *buf, size_t nbytes,
2741 loff_t off)
2742 {
2743 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2744
2745 if (mem_cgroup_is_root(memcg))
2746 return -EINVAL;
2747 return mem_cgroup_force_empty(memcg) ?: nbytes;
2748 }
2749
2750 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2751 struct cftype *cft)
2752 {
2753 return mem_cgroup_from_css(css)->use_hierarchy;
2754 }
2755
2756 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2757 struct cftype *cft, u64 val)
2758 {
2759 int retval = 0;
2760 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2761 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2762
2763 mutex_lock(&memcg_create_mutex);
2764
2765 if (memcg->use_hierarchy == val)
2766 goto out;
2767
2768 /*
2769 * If parent's use_hierarchy is set, we can't make any modifications
2770 * in the child subtrees. If it is unset, then the change can
2771 * occur, provided the current cgroup has no children.
2772 *
2773 * For the root cgroup, parent_mem is NULL, we allow value to be
2774 * set if there are no children.
2775 */
2776 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2777 (val == 1 || val == 0)) {
2778 if (!memcg_has_children(memcg))
2779 memcg->use_hierarchy = val;
2780 else
2781 retval = -EBUSY;
2782 } else
2783 retval = -EINVAL;
2784
2785 out:
2786 mutex_unlock(&memcg_create_mutex);
2787
2788 return retval;
2789 }
2790
2791 static unsigned long tree_stat(struct mem_cgroup *memcg,
2792 enum mem_cgroup_stat_index idx)
2793 {
2794 struct mem_cgroup *iter;
2795 unsigned long val = 0;
2796
2797 for_each_mem_cgroup_tree(iter, memcg)
2798 val += mem_cgroup_read_stat(iter, idx);
2799
2800 return val;
2801 }
2802
2803 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2804 {
2805 unsigned long val;
2806
2807 if (mem_cgroup_is_root(memcg)) {
2808 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2809 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2810 if (swap)
2811 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2812 } else {
2813 if (!swap)
2814 val = page_counter_read(&memcg->memory);
2815 else
2816 val = page_counter_read(&memcg->memsw);
2817 }
2818 return val;
2819 }
2820
2821 enum {
2822 RES_USAGE,
2823 RES_LIMIT,
2824 RES_MAX_USAGE,
2825 RES_FAILCNT,
2826 RES_SOFT_LIMIT,
2827 };
2828
2829 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2830 struct cftype *cft)
2831 {
2832 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2833 struct page_counter *counter;
2834
2835 switch (MEMFILE_TYPE(cft->private)) {
2836 case _MEM:
2837 counter = &memcg->memory;
2838 break;
2839 case _MEMSWAP:
2840 counter = &memcg->memsw;
2841 break;
2842 case _KMEM:
2843 counter = &memcg->kmem;
2844 break;
2845 #if defined(CONFIG_MEMCG_LEGACY_KMEM) && defined(CONFIG_INET)
2846 case _TCP:
2847 counter = &memcg->tcp_mem.memory_allocated;
2848 break;
2849 #endif
2850 default:
2851 BUG();
2852 }
2853
2854 switch (MEMFILE_ATTR(cft->private)) {
2855 case RES_USAGE:
2856 if (counter == &memcg->memory)
2857 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2858 if (counter == &memcg->memsw)
2859 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2860 return (u64)page_counter_read(counter) * PAGE_SIZE;
2861 case RES_LIMIT:
2862 return (u64)counter->limit * PAGE_SIZE;
2863 case RES_MAX_USAGE:
2864 return (u64)counter->watermark * PAGE_SIZE;
2865 case RES_FAILCNT:
2866 return counter->failcnt;
2867 case RES_SOFT_LIMIT:
2868 return (u64)memcg->soft_limit * PAGE_SIZE;
2869 default:
2870 BUG();
2871 }
2872 }
2873
2874 #ifndef CONFIG_SLOB
2875 static int memcg_online_kmem(struct mem_cgroup *memcg)
2876 {
2877 int err = 0;
2878 int memcg_id;
2879
2880 BUG_ON(memcg->kmemcg_id >= 0);
2881 BUG_ON(memcg->kmem_state);
2882
2883 /*
2884 * For simplicity, we won't allow this to be disabled. It also can't
2885 * be changed if the cgroup has children already, or if tasks had
2886 * already joined.
2887 *
2888 * If tasks join before we set the limit, a person looking at
2889 * kmem.usage_in_bytes will have no way to determine when it took
2890 * place, which makes the value quite meaningless.
2891 *
2892 * After it first became limited, changes in the value of the limit are
2893 * of course permitted.
2894 */
2895 mutex_lock(&memcg_create_mutex);
2896 if (cgroup_is_populated(memcg->css.cgroup) ||
2897 (memcg->use_hierarchy && memcg_has_children(memcg)))
2898 err = -EBUSY;
2899 mutex_unlock(&memcg_create_mutex);
2900 if (err)
2901 goto out;
2902
2903 memcg_id = memcg_alloc_cache_id();
2904 if (memcg_id < 0) {
2905 err = memcg_id;
2906 goto out;
2907 }
2908
2909 static_branch_inc(&memcg_kmem_enabled_key);
2910 /*
2911 * A memory cgroup is considered kmem-online as soon as it gets
2912 * kmemcg_id. Setting the id after enabling static branching will
2913 * guarantee no one starts accounting before all call sites are
2914 * patched.
2915 */
2916 memcg->kmemcg_id = memcg_id;
2917 memcg->kmem_state = KMEM_ONLINE;
2918 out:
2919 return err;
2920 }
2921
2922 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
2923 {
2924 int ret = 0;
2925 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
2926
2927 if (!parent)
2928 return 0;
2929
2930 mutex_lock(&memcg_limit_mutex);
2931 /*
2932 * If the parent cgroup is not kmem-online now, it cannot be
2933 * onlined after this point, because it has at least one child
2934 * already.
2935 */
2936 if (memcg_kmem_online(parent) ||
2937 (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nokmem))
2938 ret = memcg_online_kmem(memcg);
2939 mutex_unlock(&memcg_limit_mutex);
2940 return ret;
2941 }
2942
2943 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2944 {
2945 struct cgroup_subsys_state *css;
2946 struct mem_cgroup *parent, *child;
2947 int kmemcg_id;
2948
2949 if (memcg->kmem_state != KMEM_ONLINE)
2950 return;
2951 /*
2952 * Clear the online state before clearing memcg_caches array
2953 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2954 * guarantees that no cache will be created for this cgroup
2955 * after we are done (see memcg_create_kmem_cache()).
2956 */
2957 memcg->kmem_state = KMEM_ALLOCATED;
2958
2959 memcg_deactivate_kmem_caches(memcg);
2960
2961 kmemcg_id = memcg->kmemcg_id;
2962 BUG_ON(kmemcg_id < 0);
2963
2964 parent = parent_mem_cgroup(memcg);
2965 if (!parent)
2966 parent = root_mem_cgroup;
2967
2968 /*
2969 * Change kmemcg_id of this cgroup and all its descendants to the
2970 * parent's id, and then move all entries from this cgroup's list_lrus
2971 * to ones of the parent. After we have finished, all list_lrus
2972 * corresponding to this cgroup are guaranteed to remain empty. The
2973 * ordering is imposed by list_lru_node->lock taken by
2974 * memcg_drain_all_list_lrus().
2975 */
2976 css_for_each_descendant_pre(css, &memcg->css) {
2977 child = mem_cgroup_from_css(css);
2978 BUG_ON(child->kmemcg_id != kmemcg_id);
2979 child->kmemcg_id = parent->kmemcg_id;
2980 if (!memcg->use_hierarchy)
2981 break;
2982 }
2983 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2984
2985 memcg_free_cache_id(kmemcg_id);
2986 }
2987
2988 static void memcg_free_kmem(struct mem_cgroup *memcg)
2989 {
2990 if (memcg->kmem_state == KMEM_ALLOCATED) {
2991 memcg_destroy_kmem_caches(memcg);
2992 static_branch_dec(&memcg_kmem_enabled_key);
2993 WARN_ON(page_counter_read(&memcg->kmem));
2994 }
2995 }
2996 #else
2997 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
2998 {
2999 return 0;
3000 }
3001 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3002 {
3003 }
3004 static void memcg_free_kmem(struct mem_cgroup *memcg)
3005 {
3006 }
3007 #endif /* !CONFIG_SLOB */
3008
3009 #ifdef CONFIG_MEMCG_LEGACY_KMEM
3010 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3011 unsigned long limit)
3012 {
3013 int ret;
3014
3015 mutex_lock(&memcg_limit_mutex);
3016 /* Top-level cgroup doesn't propagate from root */
3017 if (!memcg_kmem_online(memcg)) {
3018 ret = memcg_online_kmem(memcg);
3019 if (ret)
3020 goto out;
3021 }
3022 ret = page_counter_limit(&memcg->kmem, limit);
3023 out:
3024 mutex_unlock(&memcg_limit_mutex);
3025 return ret;
3026 }
3027 #else
3028 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3029 unsigned long limit)
3030 {
3031 return -EINVAL;
3032 }
3033 #endif /* CONFIG_MEMCG_LEGACY_KMEM */
3034
3035
3036 #if defined(CONFIG_MEMCG_LEGACY_KMEM) && defined(CONFIG_INET)
3037 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
3038 {
3039 int ret;
3040
3041 mutex_lock(&memcg_limit_mutex);
3042
3043 ret = page_counter_limit(&memcg->tcp_mem.memory_allocated, limit);
3044 if (ret)
3045 goto out;
3046
3047 if (!memcg->tcp_mem.active) {
3048 /*
3049 * The active flag needs to be written after the static_key
3050 * update. This is what guarantees that the socket activation
3051 * function is the last one to run. See sock_update_memcg() for
3052 * details, and note that we don't mark any socket as belonging
3053 * to this memcg until that flag is up.
3054 *
3055 * We need to do this, because static_keys will span multiple
3056 * sites, but we can't control their order. If we mark a socket
3057 * as accounted, but the accounting functions are not patched in
3058 * yet, we'll lose accounting.
3059 *
3060 * We never race with the readers in sock_update_memcg(),
3061 * because when this value change, the code to process it is not
3062 * patched in yet.
3063 */
3064 static_branch_inc(&memcg_sockets_enabled_key);
3065 memcg->tcp_mem.active = true;
3066 }
3067 out:
3068 mutex_unlock(&memcg_limit_mutex);
3069 return ret;
3070 }
3071 #else
3072 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
3073 {
3074 return -EINVAL;
3075 }
3076 #endif /* CONFIG_MEMCG_LEGACY_KMEM && CONFIG_INET */
3077
3078 /*
3079 * The user of this function is...
3080 * RES_LIMIT.
3081 */
3082 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3083 char *buf, size_t nbytes, loff_t off)
3084 {
3085 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3086 unsigned long nr_pages;
3087 int ret;
3088
3089 buf = strstrip(buf);
3090 ret = page_counter_memparse(buf, "-1", &nr_pages);
3091 if (ret)
3092 return ret;
3093
3094 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3095 case RES_LIMIT:
3096 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3097 ret = -EINVAL;
3098 break;
3099 }
3100 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3101 case _MEM:
3102 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3103 break;
3104 case _MEMSWAP:
3105 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3106 break;
3107 case _KMEM:
3108 ret = memcg_update_kmem_limit(memcg, nr_pages);
3109 break;
3110 case _TCP:
3111 ret = memcg_update_tcp_limit(memcg, nr_pages);
3112 break;
3113 }
3114 break;
3115 case RES_SOFT_LIMIT:
3116 memcg->soft_limit = nr_pages;
3117 ret = 0;
3118 break;
3119 }
3120 return ret ?: nbytes;
3121 }
3122
3123 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3124 size_t nbytes, loff_t off)
3125 {
3126 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3127 struct page_counter *counter;
3128
3129 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3130 case _MEM:
3131 counter = &memcg->memory;
3132 break;
3133 case _MEMSWAP:
3134 counter = &memcg->memsw;
3135 break;
3136 case _KMEM:
3137 counter = &memcg->kmem;
3138 break;
3139 #if defined(CONFIG_MEMCG_LEGACY_KMEM) && defined(CONFIG_INET)
3140 case _TCP:
3141 counter = &memcg->tcp_mem.memory_allocated;
3142 break;
3143 #endif
3144 default:
3145 BUG();
3146 }
3147
3148 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3149 case RES_MAX_USAGE:
3150 page_counter_reset_watermark(counter);
3151 break;
3152 case RES_FAILCNT:
3153 counter->failcnt = 0;
3154 break;
3155 default:
3156 BUG();
3157 }
3158
3159 return nbytes;
3160 }
3161
3162 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3163 struct cftype *cft)
3164 {
3165 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3166 }
3167
3168 #ifdef CONFIG_MMU
3169 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3170 struct cftype *cft, u64 val)
3171 {
3172 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3173
3174 if (val & ~MOVE_MASK)
3175 return -EINVAL;
3176
3177 /*
3178 * No kind of locking is needed in here, because ->can_attach() will
3179 * check this value once in the beginning of the process, and then carry
3180 * on with stale data. This means that changes to this value will only
3181 * affect task migrations starting after the change.
3182 */
3183 memcg->move_charge_at_immigrate = val;
3184 return 0;
3185 }
3186 #else
3187 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3188 struct cftype *cft, u64 val)
3189 {
3190 return -ENOSYS;
3191 }
3192 #endif
3193
3194 #ifdef CONFIG_NUMA
3195 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3196 {
3197 struct numa_stat {
3198 const char *name;
3199 unsigned int lru_mask;
3200 };
3201
3202 static const struct numa_stat stats[] = {
3203 { "total", LRU_ALL },
3204 { "file", LRU_ALL_FILE },
3205 { "anon", LRU_ALL_ANON },
3206 { "unevictable", BIT(LRU_UNEVICTABLE) },
3207 };
3208 const struct numa_stat *stat;
3209 int nid;
3210 unsigned long nr;
3211 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3212
3213 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3214 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3215 seq_printf(m, "%s=%lu", stat->name, nr);
3216 for_each_node_state(nid, N_MEMORY) {
3217 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3218 stat->lru_mask);
3219 seq_printf(m, " N%d=%lu", nid, nr);
3220 }
3221 seq_putc(m, '\n');
3222 }
3223
3224 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3225 struct mem_cgroup *iter;
3226
3227 nr = 0;
3228 for_each_mem_cgroup_tree(iter, memcg)
3229 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3230 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3231 for_each_node_state(nid, N_MEMORY) {
3232 nr = 0;
3233 for_each_mem_cgroup_tree(iter, memcg)
3234 nr += mem_cgroup_node_nr_lru_pages(
3235 iter, nid, stat->lru_mask);
3236 seq_printf(m, " N%d=%lu", nid, nr);
3237 }
3238 seq_putc(m, '\n');
3239 }
3240
3241 return 0;
3242 }
3243 #endif /* CONFIG_NUMA */
3244
3245 static int memcg_stat_show(struct seq_file *m, void *v)
3246 {
3247 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3248 unsigned long memory, memsw;
3249 struct mem_cgroup *mi;
3250 unsigned int i;
3251
3252 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3253 MEM_CGROUP_STAT_NSTATS);
3254 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3255 MEM_CGROUP_EVENTS_NSTATS);
3256 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3257
3258 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3259 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3260 continue;
3261 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3262 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3263 }
3264
3265 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3266 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3267 mem_cgroup_read_events(memcg, i));
3268
3269 for (i = 0; i < NR_LRU_LISTS; i++)
3270 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3271 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3272
3273 /* Hierarchical information */
3274 memory = memsw = PAGE_COUNTER_MAX;
3275 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3276 memory = min(memory, mi->memory.limit);
3277 memsw = min(memsw, mi->memsw.limit);
3278 }
3279 seq_printf(m, "hierarchical_memory_limit %llu\n",
3280 (u64)memory * PAGE_SIZE);
3281 if (do_memsw_account())
3282 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3283 (u64)memsw * PAGE_SIZE);
3284
3285 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3286 unsigned long long val = 0;
3287
3288 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3289 continue;
3290 for_each_mem_cgroup_tree(mi, memcg)
3291 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3292 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3293 }
3294
3295 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3296 unsigned long long val = 0;
3297
3298 for_each_mem_cgroup_tree(mi, memcg)
3299 val += mem_cgroup_read_events(mi, i);
3300 seq_printf(m, "total_%s %llu\n",
3301 mem_cgroup_events_names[i], val);
3302 }
3303
3304 for (i = 0; i < NR_LRU_LISTS; i++) {
3305 unsigned long long val = 0;
3306
3307 for_each_mem_cgroup_tree(mi, memcg)
3308 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3309 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3310 }
3311
3312 #ifdef CONFIG_DEBUG_VM
3313 {
3314 int nid, zid;
3315 struct mem_cgroup_per_zone *mz;
3316 struct zone_reclaim_stat *rstat;
3317 unsigned long recent_rotated[2] = {0, 0};
3318 unsigned long recent_scanned[2] = {0, 0};
3319
3320 for_each_online_node(nid)
3321 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3322 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3323 rstat = &mz->lruvec.reclaim_stat;
3324
3325 recent_rotated[0] += rstat->recent_rotated[0];
3326 recent_rotated[1] += rstat->recent_rotated[1];
3327 recent_scanned[0] += rstat->recent_scanned[0];
3328 recent_scanned[1] += rstat->recent_scanned[1];
3329 }
3330 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3331 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3332 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3333 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3334 }
3335 #endif
3336
3337 return 0;
3338 }
3339
3340 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3341 struct cftype *cft)
3342 {
3343 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3344
3345 return mem_cgroup_swappiness(memcg);
3346 }
3347
3348 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3349 struct cftype *cft, u64 val)
3350 {
3351 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3352
3353 if (val > 100)
3354 return -EINVAL;
3355
3356 if (css->parent)
3357 memcg->swappiness = val;
3358 else
3359 vm_swappiness = val;
3360
3361 return 0;
3362 }
3363
3364 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3365 {
3366 struct mem_cgroup_threshold_ary *t;
3367 unsigned long usage;
3368 int i;
3369
3370 rcu_read_lock();
3371 if (!swap)
3372 t = rcu_dereference(memcg->thresholds.primary);
3373 else
3374 t = rcu_dereference(memcg->memsw_thresholds.primary);
3375
3376 if (!t)
3377 goto unlock;
3378
3379 usage = mem_cgroup_usage(memcg, swap);
3380
3381 /*
3382 * current_threshold points to threshold just below or equal to usage.
3383 * If it's not true, a threshold was crossed after last
3384 * call of __mem_cgroup_threshold().
3385 */
3386 i = t->current_threshold;
3387
3388 /*
3389 * Iterate backward over array of thresholds starting from
3390 * current_threshold and check if a threshold is crossed.
3391 * If none of thresholds below usage is crossed, we read
3392 * only one element of the array here.
3393 */
3394 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3395 eventfd_signal(t->entries[i].eventfd, 1);
3396
3397 /* i = current_threshold + 1 */
3398 i++;
3399
3400 /*
3401 * Iterate forward over array of thresholds starting from
3402 * current_threshold+1 and check if a threshold is crossed.
3403 * If none of thresholds above usage is crossed, we read
3404 * only one element of the array here.
3405 */
3406 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3407 eventfd_signal(t->entries[i].eventfd, 1);
3408
3409 /* Update current_threshold */
3410 t->current_threshold = i - 1;
3411 unlock:
3412 rcu_read_unlock();
3413 }
3414
3415 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3416 {
3417 while (memcg) {
3418 __mem_cgroup_threshold(memcg, false);
3419 if (do_memsw_account())
3420 __mem_cgroup_threshold(memcg, true);
3421
3422 memcg = parent_mem_cgroup(memcg);
3423 }
3424 }
3425
3426 static int compare_thresholds(const void *a, const void *b)
3427 {
3428 const struct mem_cgroup_threshold *_a = a;
3429 const struct mem_cgroup_threshold *_b = b;
3430
3431 if (_a->threshold > _b->threshold)
3432 return 1;
3433
3434 if (_a->threshold < _b->threshold)
3435 return -1;
3436
3437 return 0;
3438 }
3439
3440 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3441 {
3442 struct mem_cgroup_eventfd_list *ev;
3443
3444 spin_lock(&memcg_oom_lock);
3445
3446 list_for_each_entry(ev, &memcg->oom_notify, list)
3447 eventfd_signal(ev->eventfd, 1);
3448
3449 spin_unlock(&memcg_oom_lock);
3450 return 0;
3451 }
3452
3453 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3454 {
3455 struct mem_cgroup *iter;
3456
3457 for_each_mem_cgroup_tree(iter, memcg)
3458 mem_cgroup_oom_notify_cb(iter);
3459 }
3460
3461 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3462 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3463 {
3464 struct mem_cgroup_thresholds *thresholds;
3465 struct mem_cgroup_threshold_ary *new;
3466 unsigned long threshold;
3467 unsigned long usage;
3468 int i, size, ret;
3469
3470 ret = page_counter_memparse(args, "-1", &threshold);
3471 if (ret)
3472 return ret;
3473
3474 mutex_lock(&memcg->thresholds_lock);
3475
3476 if (type == _MEM) {
3477 thresholds = &memcg->thresholds;
3478 usage = mem_cgroup_usage(memcg, false);
3479 } else if (type == _MEMSWAP) {
3480 thresholds = &memcg->memsw_thresholds;
3481 usage = mem_cgroup_usage(memcg, true);
3482 } else
3483 BUG();
3484
3485 /* Check if a threshold crossed before adding a new one */
3486 if (thresholds->primary)
3487 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3488
3489 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3490
3491 /* Allocate memory for new array of thresholds */
3492 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3493 GFP_KERNEL);
3494 if (!new) {
3495 ret = -ENOMEM;
3496 goto unlock;
3497 }
3498 new->size = size;
3499
3500 /* Copy thresholds (if any) to new array */
3501 if (thresholds->primary) {
3502 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3503 sizeof(struct mem_cgroup_threshold));
3504 }
3505
3506 /* Add new threshold */
3507 new->entries[size - 1].eventfd = eventfd;
3508 new->entries[size - 1].threshold = threshold;
3509
3510 /* Sort thresholds. Registering of new threshold isn't time-critical */
3511 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3512 compare_thresholds, NULL);
3513
3514 /* Find current threshold */
3515 new->current_threshold = -1;
3516 for (i = 0; i < size; i++) {
3517 if (new->entries[i].threshold <= usage) {
3518 /*
3519 * new->current_threshold will not be used until
3520 * rcu_assign_pointer(), so it's safe to increment
3521 * it here.
3522 */
3523 ++new->current_threshold;
3524 } else
3525 break;
3526 }
3527
3528 /* Free old spare buffer and save old primary buffer as spare */
3529 kfree(thresholds->spare);
3530 thresholds->spare = thresholds->primary;
3531
3532 rcu_assign_pointer(thresholds->primary, new);
3533
3534 /* To be sure that nobody uses thresholds */
3535 synchronize_rcu();
3536
3537 unlock:
3538 mutex_unlock(&memcg->thresholds_lock);
3539
3540 return ret;
3541 }
3542
3543 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3544 struct eventfd_ctx *eventfd, const char *args)
3545 {
3546 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3547 }
3548
3549 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3550 struct eventfd_ctx *eventfd, const char *args)
3551 {
3552 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3553 }
3554
3555 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3556 struct eventfd_ctx *eventfd, enum res_type type)
3557 {
3558 struct mem_cgroup_thresholds *thresholds;
3559 struct mem_cgroup_threshold_ary *new;
3560 unsigned long usage;
3561 int i, j, size;
3562
3563 mutex_lock(&memcg->thresholds_lock);
3564
3565 if (type == _MEM) {
3566 thresholds = &memcg->thresholds;
3567 usage = mem_cgroup_usage(memcg, false);
3568 } else if (type == _MEMSWAP) {
3569 thresholds = &memcg->memsw_thresholds;
3570 usage = mem_cgroup_usage(memcg, true);
3571 } else
3572 BUG();
3573
3574 if (!thresholds->primary)
3575 goto unlock;
3576
3577 /* Check if a threshold crossed before removing */
3578 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3579
3580 /* Calculate new number of threshold */
3581 size = 0;
3582 for (i = 0; i < thresholds->primary->size; i++) {
3583 if (thresholds->primary->entries[i].eventfd != eventfd)
3584 size++;
3585 }
3586
3587 new = thresholds->spare;
3588
3589 /* Set thresholds array to NULL if we don't have thresholds */
3590 if (!size) {
3591 kfree(new);
3592 new = NULL;
3593 goto swap_buffers;
3594 }
3595
3596 new->size = size;
3597
3598 /* Copy thresholds and find current threshold */
3599 new->current_threshold = -1;
3600 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3601 if (thresholds->primary->entries[i].eventfd == eventfd)
3602 continue;
3603
3604 new->entries[j] = thresholds->primary->entries[i];
3605 if (new->entries[j].threshold <= usage) {
3606 /*
3607 * new->current_threshold will not be used
3608 * until rcu_assign_pointer(), so it's safe to increment
3609 * it here.
3610 */
3611 ++new->current_threshold;
3612 }
3613 j++;
3614 }
3615
3616 swap_buffers:
3617 /* Swap primary and spare array */
3618 thresholds->spare = thresholds->primary;
3619
3620 rcu_assign_pointer(thresholds->primary, new);
3621
3622 /* To be sure that nobody uses thresholds */
3623 synchronize_rcu();
3624
3625 /* If all events are unregistered, free the spare array */
3626 if (!new) {
3627 kfree(thresholds->spare);
3628 thresholds->spare = NULL;
3629 }
3630 unlock:
3631 mutex_unlock(&memcg->thresholds_lock);
3632 }
3633
3634 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3635 struct eventfd_ctx *eventfd)
3636 {
3637 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3638 }
3639
3640 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3641 struct eventfd_ctx *eventfd)
3642 {
3643 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3644 }
3645
3646 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3647 struct eventfd_ctx *eventfd, const char *args)
3648 {
3649 struct mem_cgroup_eventfd_list *event;
3650
3651 event = kmalloc(sizeof(*event), GFP_KERNEL);
3652 if (!event)
3653 return -ENOMEM;
3654
3655 spin_lock(&memcg_oom_lock);
3656
3657 event->eventfd = eventfd;
3658 list_add(&event->list, &memcg->oom_notify);
3659
3660 /* already in OOM ? */
3661 if (memcg->under_oom)
3662 eventfd_signal(eventfd, 1);
3663 spin_unlock(&memcg_oom_lock);
3664
3665 return 0;
3666 }
3667
3668 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3669 struct eventfd_ctx *eventfd)
3670 {
3671 struct mem_cgroup_eventfd_list *ev, *tmp;
3672
3673 spin_lock(&memcg_oom_lock);
3674
3675 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3676 if (ev->eventfd == eventfd) {
3677 list_del(&ev->list);
3678 kfree(ev);
3679 }
3680 }
3681
3682 spin_unlock(&memcg_oom_lock);
3683 }
3684
3685 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3686 {
3687 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3688
3689 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3690 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3691 return 0;
3692 }
3693
3694 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3695 struct cftype *cft, u64 val)
3696 {
3697 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3698
3699 /* cannot set to root cgroup and only 0 and 1 are allowed */
3700 if (!css->parent || !((val == 0) || (val == 1)))
3701 return -EINVAL;
3702
3703 memcg->oom_kill_disable = val;
3704 if (!val)
3705 memcg_oom_recover(memcg);
3706
3707 return 0;
3708 }
3709
3710 #ifdef CONFIG_CGROUP_WRITEBACK
3711
3712 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3713 {
3714 return &memcg->cgwb_list;
3715 }
3716
3717 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3718 {
3719 return wb_domain_init(&memcg->cgwb_domain, gfp);
3720 }
3721
3722 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3723 {
3724 wb_domain_exit(&memcg->cgwb_domain);
3725 }
3726
3727 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3728 {
3729 wb_domain_size_changed(&memcg->cgwb_domain);
3730 }
3731
3732 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3733 {
3734 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3735
3736 if (!memcg->css.parent)
3737 return NULL;
3738
3739 return &memcg->cgwb_domain;
3740 }
3741
3742 /**
3743 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3744 * @wb: bdi_writeback in question
3745 * @pfilepages: out parameter for number of file pages
3746 * @pheadroom: out parameter for number of allocatable pages according to memcg
3747 * @pdirty: out parameter for number of dirty pages
3748 * @pwriteback: out parameter for number of pages under writeback
3749 *
3750 * Determine the numbers of file, headroom, dirty, and writeback pages in
3751 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3752 * is a bit more involved.
3753 *
3754 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3755 * headroom is calculated as the lowest headroom of itself and the
3756 * ancestors. Note that this doesn't consider the actual amount of
3757 * available memory in the system. The caller should further cap
3758 * *@pheadroom accordingly.
3759 */
3760 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3761 unsigned long *pheadroom, unsigned long *pdirty,
3762 unsigned long *pwriteback)
3763 {
3764 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3765 struct mem_cgroup *parent;
3766
3767 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3768
3769 /* this should eventually include NR_UNSTABLE_NFS */
3770 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3771 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3772 (1 << LRU_ACTIVE_FILE));
3773 *pheadroom = PAGE_COUNTER_MAX;
3774
3775 while ((parent = parent_mem_cgroup(memcg))) {
3776 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3777 unsigned long used = page_counter_read(&memcg->memory);
3778
3779 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3780 memcg = parent;
3781 }
3782 }
3783
3784 #else /* CONFIG_CGROUP_WRITEBACK */
3785
3786 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3787 {
3788 return 0;
3789 }
3790
3791 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3792 {
3793 }
3794
3795 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3796 {
3797 }
3798
3799 #endif /* CONFIG_CGROUP_WRITEBACK */
3800
3801 /*
3802 * DO NOT USE IN NEW FILES.
3803 *
3804 * "cgroup.event_control" implementation.
3805 *
3806 * This is way over-engineered. It tries to support fully configurable
3807 * events for each user. Such level of flexibility is completely
3808 * unnecessary especially in the light of the planned unified hierarchy.
3809 *
3810 * Please deprecate this and replace with something simpler if at all
3811 * possible.
3812 */
3813
3814 /*
3815 * Unregister event and free resources.
3816 *
3817 * Gets called from workqueue.
3818 */
3819 static void memcg_event_remove(struct work_struct *work)
3820 {
3821 struct mem_cgroup_event *event =
3822 container_of(work, struct mem_cgroup_event, remove);
3823 struct mem_cgroup *memcg = event->memcg;
3824
3825 remove_wait_queue(event->wqh, &event->wait);
3826
3827 event->unregister_event(memcg, event->eventfd);
3828
3829 /* Notify userspace the event is going away. */
3830 eventfd_signal(event->eventfd, 1);
3831
3832 eventfd_ctx_put(event->eventfd);
3833 kfree(event);
3834 css_put(&memcg->css);
3835 }
3836
3837 /*
3838 * Gets called on POLLHUP on eventfd when user closes it.
3839 *
3840 * Called with wqh->lock held and interrupts disabled.
3841 */
3842 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3843 int sync, void *key)
3844 {
3845 struct mem_cgroup_event *event =
3846 container_of(wait, struct mem_cgroup_event, wait);
3847 struct mem_cgroup *memcg = event->memcg;
3848 unsigned long flags = (unsigned long)key;
3849
3850 if (flags & POLLHUP) {
3851 /*
3852 * If the event has been detached at cgroup removal, we
3853 * can simply return knowing the other side will cleanup
3854 * for us.
3855 *
3856 * We can't race against event freeing since the other
3857 * side will require wqh->lock via remove_wait_queue(),
3858 * which we hold.
3859 */
3860 spin_lock(&memcg->event_list_lock);
3861 if (!list_empty(&event->list)) {
3862 list_del_init(&event->list);
3863 /*
3864 * We are in atomic context, but cgroup_event_remove()
3865 * may sleep, so we have to call it in workqueue.
3866 */
3867 schedule_work(&event->remove);
3868 }
3869 spin_unlock(&memcg->event_list_lock);
3870 }
3871
3872 return 0;
3873 }
3874
3875 static void memcg_event_ptable_queue_proc(struct file *file,
3876 wait_queue_head_t *wqh, poll_table *pt)
3877 {
3878 struct mem_cgroup_event *event =
3879 container_of(pt, struct mem_cgroup_event, pt);
3880
3881 event->wqh = wqh;
3882 add_wait_queue(wqh, &event->wait);
3883 }
3884
3885 /*
3886 * DO NOT USE IN NEW FILES.
3887 *
3888 * Parse input and register new cgroup event handler.
3889 *
3890 * Input must be in format '<event_fd> <control_fd> <args>'.
3891 * Interpretation of args is defined by control file implementation.
3892 */
3893 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3894 char *buf, size_t nbytes, loff_t off)
3895 {
3896 struct cgroup_subsys_state *css = of_css(of);
3897 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3898 struct mem_cgroup_event *event;
3899 struct cgroup_subsys_state *cfile_css;
3900 unsigned int efd, cfd;
3901 struct fd efile;
3902 struct fd cfile;
3903 const char *name;
3904 char *endp;
3905 int ret;
3906
3907 buf = strstrip(buf);
3908
3909 efd = simple_strtoul(buf, &endp, 10);
3910 if (*endp != ' ')
3911 return -EINVAL;
3912 buf = endp + 1;
3913
3914 cfd = simple_strtoul(buf, &endp, 10);
3915 if ((*endp != ' ') && (*endp != '\0'))
3916 return -EINVAL;
3917 buf = endp + 1;
3918
3919 event = kzalloc(sizeof(*event), GFP_KERNEL);
3920 if (!event)
3921 return -ENOMEM;
3922
3923 event->memcg = memcg;
3924 INIT_LIST_HEAD(&event->list);
3925 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3926 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3927 INIT_WORK(&event->remove, memcg_event_remove);
3928
3929 efile = fdget(efd);
3930 if (!efile.file) {
3931 ret = -EBADF;
3932 goto out_kfree;
3933 }
3934
3935 event->eventfd = eventfd_ctx_fileget(efile.file);
3936 if (IS_ERR(event->eventfd)) {
3937 ret = PTR_ERR(event->eventfd);
3938 goto out_put_efile;
3939 }
3940
3941 cfile = fdget(cfd);
3942 if (!cfile.file) {
3943 ret = -EBADF;
3944 goto out_put_eventfd;
3945 }
3946
3947 /* the process need read permission on control file */
3948 /* AV: shouldn't we check that it's been opened for read instead? */
3949 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3950 if (ret < 0)
3951 goto out_put_cfile;
3952
3953 /*
3954 * Determine the event callbacks and set them in @event. This used
3955 * to be done via struct cftype but cgroup core no longer knows
3956 * about these events. The following is crude but the whole thing
3957 * is for compatibility anyway.
3958 *
3959 * DO NOT ADD NEW FILES.
3960 */
3961 name = cfile.file->f_path.dentry->d_name.name;
3962
3963 if (!strcmp(name, "memory.usage_in_bytes")) {
3964 event->register_event = mem_cgroup_usage_register_event;
3965 event->unregister_event = mem_cgroup_usage_unregister_event;
3966 } else if (!strcmp(name, "memory.oom_control")) {
3967 event->register_event = mem_cgroup_oom_register_event;
3968 event->unregister_event = mem_cgroup_oom_unregister_event;
3969 } else if (!strcmp(name, "memory.pressure_level")) {
3970 event->register_event = vmpressure_register_event;
3971 event->unregister_event = vmpressure_unregister_event;
3972 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3973 event->register_event = memsw_cgroup_usage_register_event;
3974 event->unregister_event = memsw_cgroup_usage_unregister_event;
3975 } else {
3976 ret = -EINVAL;
3977 goto out_put_cfile;
3978 }
3979
3980 /*
3981 * Verify @cfile should belong to @css. Also, remaining events are
3982 * automatically removed on cgroup destruction but the removal is
3983 * asynchronous, so take an extra ref on @css.
3984 */
3985 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3986 &memory_cgrp_subsys);
3987 ret = -EINVAL;
3988 if (IS_ERR(cfile_css))
3989 goto out_put_cfile;
3990 if (cfile_css != css) {
3991 css_put(cfile_css);
3992 goto out_put_cfile;
3993 }
3994
3995 ret = event->register_event(memcg, event->eventfd, buf);
3996 if (ret)
3997 goto out_put_css;
3998
3999 efile.file->f_op->poll(efile.file, &event->pt);
4000
4001 spin_lock(&memcg->event_list_lock);
4002 list_add(&event->list, &memcg->event_list);
4003 spin_unlock(&memcg->event_list_lock);
4004
4005 fdput(cfile);
4006 fdput(efile);
4007
4008 return nbytes;
4009
4010 out_put_css:
4011 css_put(css);
4012 out_put_cfile:
4013 fdput(cfile);
4014 out_put_eventfd:
4015 eventfd_ctx_put(event->eventfd);
4016 out_put_efile:
4017 fdput(efile);
4018 out_kfree:
4019 kfree(event);
4020
4021 return ret;
4022 }
4023
4024 static struct cftype mem_cgroup_legacy_files[] = {
4025 {
4026 .name = "usage_in_bytes",
4027 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4028 .read_u64 = mem_cgroup_read_u64,
4029 },
4030 {
4031 .name = "max_usage_in_bytes",
4032 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4033 .write = mem_cgroup_reset,
4034 .read_u64 = mem_cgroup_read_u64,
4035 },
4036 {
4037 .name = "limit_in_bytes",
4038 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4039 .write = mem_cgroup_write,
4040 .read_u64 = mem_cgroup_read_u64,
4041 },
4042 {
4043 .name = "soft_limit_in_bytes",
4044 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4045 .write = mem_cgroup_write,
4046 .read_u64 = mem_cgroup_read_u64,
4047 },
4048 {
4049 .name = "failcnt",
4050 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4051 .write = mem_cgroup_reset,
4052 .read_u64 = mem_cgroup_read_u64,
4053 },
4054 {
4055 .name = "stat",
4056 .seq_show = memcg_stat_show,
4057 },
4058 {
4059 .name = "force_empty",
4060 .write = mem_cgroup_force_empty_write,
4061 },
4062 {
4063 .name = "use_hierarchy",
4064 .write_u64 = mem_cgroup_hierarchy_write,
4065 .read_u64 = mem_cgroup_hierarchy_read,
4066 },
4067 {
4068 .name = "cgroup.event_control", /* XXX: for compat */
4069 .write = memcg_write_event_control,
4070 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4071 },
4072 {
4073 .name = "swappiness",
4074 .read_u64 = mem_cgroup_swappiness_read,
4075 .write_u64 = mem_cgroup_swappiness_write,
4076 },
4077 {
4078 .name = "move_charge_at_immigrate",
4079 .read_u64 = mem_cgroup_move_charge_read,
4080 .write_u64 = mem_cgroup_move_charge_write,
4081 },
4082 {
4083 .name = "oom_control",
4084 .seq_show = mem_cgroup_oom_control_read,
4085 .write_u64 = mem_cgroup_oom_control_write,
4086 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4087 },
4088 {
4089 .name = "pressure_level",
4090 },
4091 #ifdef CONFIG_NUMA
4092 {
4093 .name = "numa_stat",
4094 .seq_show = memcg_numa_stat_show,
4095 },
4096 #endif
4097 #ifdef CONFIG_MEMCG_LEGACY_KMEM
4098 {
4099 .name = "kmem.limit_in_bytes",
4100 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4101 .write = mem_cgroup_write,
4102 .read_u64 = mem_cgroup_read_u64,
4103 },
4104 {
4105 .name = "kmem.usage_in_bytes",
4106 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4107 .read_u64 = mem_cgroup_read_u64,
4108 },
4109 {
4110 .name = "kmem.failcnt",
4111 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4112 .write = mem_cgroup_reset,
4113 .read_u64 = mem_cgroup_read_u64,
4114 },
4115 {
4116 .name = "kmem.max_usage_in_bytes",
4117 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4118 .write = mem_cgroup_reset,
4119 .read_u64 = mem_cgroup_read_u64,
4120 },
4121 #ifdef CONFIG_SLABINFO
4122 {
4123 .name = "kmem.slabinfo",
4124 .seq_start = slab_start,
4125 .seq_next = slab_next,
4126 .seq_stop = slab_stop,
4127 .seq_show = memcg_slab_show,
4128 },
4129 #endif
4130 #ifdef CONFIG_INET
4131 {
4132 .name = "kmem.tcp.limit_in_bytes",
4133 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4134 .write = mem_cgroup_write,
4135 .read_u64 = mem_cgroup_read_u64,
4136 },
4137 {
4138 .name = "kmem.tcp.usage_in_bytes",
4139 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4140 .read_u64 = mem_cgroup_read_u64,
4141 },
4142 {
4143 .name = "kmem.tcp.failcnt",
4144 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4145 .write = mem_cgroup_reset,
4146 .read_u64 = mem_cgroup_read_u64,
4147 },
4148 {
4149 .name = "kmem.tcp.max_usage_in_bytes",
4150 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4151 .write = mem_cgroup_reset,
4152 .read_u64 = mem_cgroup_read_u64,
4153 },
4154 #endif
4155 #endif
4156 { }, /* terminate */
4157 };
4158
4159 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4160 {
4161 struct mem_cgroup_per_node *pn;
4162 struct mem_cgroup_per_zone *mz;
4163 int zone, tmp = node;
4164 /*
4165 * This routine is called against possible nodes.
4166 * But it's BUG to call kmalloc() against offline node.
4167 *
4168 * TODO: this routine can waste much memory for nodes which will
4169 * never be onlined. It's better to use memory hotplug callback
4170 * function.
4171 */
4172 if (!node_state(node, N_NORMAL_MEMORY))
4173 tmp = -1;
4174 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4175 if (!pn)
4176 return 1;
4177
4178 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4179 mz = &pn->zoneinfo[zone];
4180 lruvec_init(&mz->lruvec);
4181 mz->usage_in_excess = 0;
4182 mz->on_tree = false;
4183 mz->memcg = memcg;
4184 }
4185 memcg->nodeinfo[node] = pn;
4186 return 0;
4187 }
4188
4189 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4190 {
4191 kfree(memcg->nodeinfo[node]);
4192 }
4193
4194 static struct mem_cgroup *mem_cgroup_alloc(void)
4195 {
4196 struct mem_cgroup *memcg;
4197 size_t size;
4198
4199 size = sizeof(struct mem_cgroup);
4200 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4201
4202 memcg = kzalloc(size, GFP_KERNEL);
4203 if (!memcg)
4204 return NULL;
4205
4206 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4207 if (!memcg->stat)
4208 goto out_free;
4209
4210 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4211 goto out_free_stat;
4212
4213 return memcg;
4214
4215 out_free_stat:
4216 free_percpu(memcg->stat);
4217 out_free:
4218 kfree(memcg);
4219 return NULL;
4220 }
4221
4222 /*
4223 * At destroying mem_cgroup, references from swap_cgroup can remain.
4224 * (scanning all at force_empty is too costly...)
4225 *
4226 * Instead of clearing all references at force_empty, we remember
4227 * the number of reference from swap_cgroup and free mem_cgroup when
4228 * it goes down to 0.
4229 *
4230 * Removal of cgroup itself succeeds regardless of refs from swap.
4231 */
4232
4233 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4234 {
4235 int node;
4236
4237 cancel_work_sync(&memcg->high_work);
4238
4239 mem_cgroup_remove_from_trees(memcg);
4240
4241 for_each_node(node)
4242 free_mem_cgroup_per_zone_info(memcg, node);
4243
4244 free_percpu(memcg->stat);
4245 memcg_wb_domain_exit(memcg);
4246 kfree(memcg);
4247 }
4248
4249 static struct cgroup_subsys_state * __ref
4250 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4251 {
4252 struct mem_cgroup *memcg;
4253 long error = -ENOMEM;
4254 int node;
4255
4256 memcg = mem_cgroup_alloc();
4257 if (!memcg)
4258 return ERR_PTR(error);
4259
4260 for_each_node(node)
4261 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4262 goto free_out;
4263
4264 /* root ? */
4265 if (parent_css == NULL) {
4266 root_mem_cgroup = memcg;
4267 page_counter_init(&memcg->memory, NULL);
4268 memcg->high = PAGE_COUNTER_MAX;
4269 memcg->soft_limit = PAGE_COUNTER_MAX;
4270 page_counter_init(&memcg->memsw, NULL);
4271 page_counter_init(&memcg->kmem, NULL);
4272 }
4273
4274 INIT_WORK(&memcg->high_work, high_work_func);
4275 memcg->last_scanned_node = MAX_NUMNODES;
4276 INIT_LIST_HEAD(&memcg->oom_notify);
4277 memcg->move_charge_at_immigrate = 0;
4278 mutex_init(&memcg->thresholds_lock);
4279 spin_lock_init(&memcg->move_lock);
4280 vmpressure_init(&memcg->vmpressure);
4281 INIT_LIST_HEAD(&memcg->event_list);
4282 spin_lock_init(&memcg->event_list_lock);
4283 #ifndef CONFIG_SLOB
4284 memcg->kmemcg_id = -1;
4285 #endif
4286 #ifdef CONFIG_CGROUP_WRITEBACK
4287 INIT_LIST_HEAD(&memcg->cgwb_list);
4288 #endif
4289 #ifdef CONFIG_INET
4290 memcg->socket_pressure = jiffies;
4291 #endif
4292 return &memcg->css;
4293
4294 free_out:
4295 __mem_cgroup_free(memcg);
4296 return ERR_PTR(error);
4297 }
4298
4299 static int
4300 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4301 {
4302 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4303 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4304 int ret;
4305
4306 if (css->id > MEM_CGROUP_ID_MAX)
4307 return -ENOSPC;
4308
4309 if (!parent)
4310 return 0;
4311
4312 mutex_lock(&memcg_create_mutex);
4313
4314 memcg->use_hierarchy = parent->use_hierarchy;
4315 memcg->oom_kill_disable = parent->oom_kill_disable;
4316 memcg->swappiness = mem_cgroup_swappiness(parent);
4317
4318 if (parent->use_hierarchy) {
4319 page_counter_init(&memcg->memory, &parent->memory);
4320 memcg->high = PAGE_COUNTER_MAX;
4321 memcg->soft_limit = PAGE_COUNTER_MAX;
4322 page_counter_init(&memcg->memsw, &parent->memsw);
4323 page_counter_init(&memcg->kmem, &parent->kmem);
4324 #if defined(CONFIG_MEMCG_LEGACY_KMEM) && defined(CONFIG_INET)
4325 page_counter_init(&memcg->tcp_mem.memory_allocated,
4326 &parent->tcp_mem.memory_allocated);
4327 #endif
4328
4329 /*
4330 * No need to take a reference to the parent because cgroup
4331 * core guarantees its existence.
4332 */
4333 } else {
4334 page_counter_init(&memcg->memory, NULL);
4335 memcg->high = PAGE_COUNTER_MAX;
4336 memcg->soft_limit = PAGE_COUNTER_MAX;
4337 page_counter_init(&memcg->memsw, NULL);
4338 page_counter_init(&memcg->kmem, NULL);
4339 #if defined(CONFIG_MEMCG_LEGACY_KMEM) && defined(CONFIG_INET)
4340 page_counter_init(&memcg->tcp_mem.memory_allocated, NULL);
4341 #endif
4342 /*
4343 * Deeper hierachy with use_hierarchy == false doesn't make
4344 * much sense so let cgroup subsystem know about this
4345 * unfortunate state in our controller.
4346 */
4347 if (parent != root_mem_cgroup)
4348 memory_cgrp_subsys.broken_hierarchy = true;
4349 }
4350 mutex_unlock(&memcg_create_mutex);
4351
4352 ret = memcg_propagate_kmem(memcg);
4353 if (ret)
4354 return ret;
4355
4356 #ifdef CONFIG_INET
4357 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4358 static_branch_inc(&memcg_sockets_enabled_key);
4359 #endif
4360
4361 /*
4362 * Make sure the memcg is initialized: mem_cgroup_iter()
4363 * orders reading memcg->initialized against its callers
4364 * reading the memcg members.
4365 */
4366 smp_store_release(&memcg->initialized, 1);
4367
4368 return 0;
4369 }
4370
4371 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4372 {
4373 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4374 struct mem_cgroup_event *event, *tmp;
4375
4376 /*
4377 * Unregister events and notify userspace.
4378 * Notify userspace about cgroup removing only after rmdir of cgroup
4379 * directory to avoid race between userspace and kernelspace.
4380 */
4381 spin_lock(&memcg->event_list_lock);
4382 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4383 list_del_init(&event->list);
4384 schedule_work(&event->remove);
4385 }
4386 spin_unlock(&memcg->event_list_lock);
4387
4388 vmpressure_cleanup(&memcg->vmpressure);
4389
4390 memcg_offline_kmem(memcg);
4391
4392 wb_memcg_offline(memcg);
4393 }
4394
4395 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4396 {
4397 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4398
4399 invalidate_reclaim_iterators(memcg);
4400 }
4401
4402 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4403 {
4404 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4405
4406 #ifdef CONFIG_INET
4407 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4408 static_branch_dec(&memcg_sockets_enabled_key);
4409 #endif
4410
4411 memcg_free_kmem(memcg);
4412
4413 #if defined(CONFIG_MEMCG_LEGACY_KMEM) && defined(CONFIG_INET)
4414 if (memcg->tcp_mem.active)
4415 static_branch_dec(&memcg_sockets_enabled_key);
4416 #endif
4417
4418 __mem_cgroup_free(memcg);
4419 }
4420
4421 /**
4422 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4423 * @css: the target css
4424 *
4425 * Reset the states of the mem_cgroup associated with @css. This is
4426 * invoked when the userland requests disabling on the default hierarchy
4427 * but the memcg is pinned through dependency. The memcg should stop
4428 * applying policies and should revert to the vanilla state as it may be
4429 * made visible again.
4430 *
4431 * The current implementation only resets the essential configurations.
4432 * This needs to be expanded to cover all the visible parts.
4433 */
4434 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4435 {
4436 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4437
4438 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4439 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4440 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4441 memcg->low = 0;
4442 memcg->high = PAGE_COUNTER_MAX;
4443 memcg->soft_limit = PAGE_COUNTER_MAX;
4444 memcg_wb_domain_size_changed(memcg);
4445 }
4446
4447 #ifdef CONFIG_MMU
4448 /* Handlers for move charge at task migration. */
4449 static int mem_cgroup_do_precharge(unsigned long count)
4450 {
4451 int ret;
4452
4453 /* Try a single bulk charge without reclaim first, kswapd may wake */
4454 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4455 if (!ret) {
4456 mc.precharge += count;
4457 return ret;
4458 }
4459
4460 /* Try charges one by one with reclaim */
4461 while (count--) {
4462 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4463 if (ret)
4464 return ret;
4465 mc.precharge++;
4466 cond_resched();
4467 }
4468 return 0;
4469 }
4470
4471 /**
4472 * get_mctgt_type - get target type of moving charge
4473 * @vma: the vma the pte to be checked belongs
4474 * @addr: the address corresponding to the pte to be checked
4475 * @ptent: the pte to be checked
4476 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4477 *
4478 * Returns
4479 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4480 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4481 * move charge. if @target is not NULL, the page is stored in target->page
4482 * with extra refcnt got(Callers should handle it).
4483 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4484 * target for charge migration. if @target is not NULL, the entry is stored
4485 * in target->ent.
4486 *
4487 * Called with pte lock held.
4488 */
4489 union mc_target {
4490 struct page *page;
4491 swp_entry_t ent;
4492 };
4493
4494 enum mc_target_type {
4495 MC_TARGET_NONE = 0,
4496 MC_TARGET_PAGE,
4497 MC_TARGET_SWAP,
4498 };
4499
4500 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4501 unsigned long addr, pte_t ptent)
4502 {
4503 struct page *page = vm_normal_page(vma, addr, ptent);
4504
4505 if (!page || !page_mapped(page))
4506 return NULL;
4507 if (PageAnon(page)) {
4508 if (!(mc.flags & MOVE_ANON))
4509 return NULL;
4510 } else {
4511 if (!(mc.flags & MOVE_FILE))
4512 return NULL;
4513 }
4514 if (!get_page_unless_zero(page))
4515 return NULL;
4516
4517 return page;
4518 }
4519
4520 #ifdef CONFIG_SWAP
4521 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4522 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4523 {
4524 struct page *page = NULL;
4525 swp_entry_t ent = pte_to_swp_entry(ptent);
4526
4527 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4528 return NULL;
4529 /*
4530 * Because lookup_swap_cache() updates some statistics counter,
4531 * we call find_get_page() with swapper_space directly.
4532 */
4533 page = find_get_page(swap_address_space(ent), ent.val);
4534 if (do_memsw_account())
4535 entry->val = ent.val;
4536
4537 return page;
4538 }
4539 #else
4540 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4541 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4542 {
4543 return NULL;
4544 }
4545 #endif
4546
4547 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4548 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4549 {
4550 struct page *page = NULL;
4551 struct address_space *mapping;
4552 pgoff_t pgoff;
4553
4554 if (!vma->vm_file) /* anonymous vma */
4555 return NULL;
4556 if (!(mc.flags & MOVE_FILE))
4557 return NULL;
4558
4559 mapping = vma->vm_file->f_mapping;
4560 pgoff = linear_page_index(vma, addr);
4561
4562 /* page is moved even if it's not RSS of this task(page-faulted). */
4563 #ifdef CONFIG_SWAP
4564 /* shmem/tmpfs may report page out on swap: account for that too. */
4565 if (shmem_mapping(mapping)) {
4566 page = find_get_entry(mapping, pgoff);
4567 if (radix_tree_exceptional_entry(page)) {
4568 swp_entry_t swp = radix_to_swp_entry(page);
4569 if (do_memsw_account())
4570 *entry = swp;
4571 page = find_get_page(swap_address_space(swp), swp.val);
4572 }
4573 } else
4574 page = find_get_page(mapping, pgoff);
4575 #else
4576 page = find_get_page(mapping, pgoff);
4577 #endif
4578 return page;
4579 }
4580
4581 /**
4582 * mem_cgroup_move_account - move account of the page
4583 * @page: the page
4584 * @nr_pages: number of regular pages (>1 for huge pages)
4585 * @from: mem_cgroup which the page is moved from.
4586 * @to: mem_cgroup which the page is moved to. @from != @to.
4587 *
4588 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4589 *
4590 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4591 * from old cgroup.
4592 */
4593 static int mem_cgroup_move_account(struct page *page,
4594 bool compound,
4595 struct mem_cgroup *from,
4596 struct mem_cgroup *to)
4597 {
4598 unsigned long flags;
4599 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4600 int ret;
4601 bool anon;
4602
4603 VM_BUG_ON(from == to);
4604 VM_BUG_ON_PAGE(PageLRU(page), page);
4605 VM_BUG_ON(compound && !PageTransHuge(page));
4606
4607 /*
4608 * Prevent mem_cgroup_replace_page() from looking at
4609 * page->mem_cgroup of its source page while we change it.
4610 */
4611 ret = -EBUSY;
4612 if (!trylock_page(page))
4613 goto out;
4614
4615 ret = -EINVAL;
4616 if (page->mem_cgroup != from)
4617 goto out_unlock;
4618
4619 anon = PageAnon(page);
4620
4621 spin_lock_irqsave(&from->move_lock, flags);
4622
4623 if (!anon && page_mapped(page)) {
4624 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4625 nr_pages);
4626 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4627 nr_pages);
4628 }
4629
4630 /*
4631 * move_lock grabbed above and caller set from->moving_account, so
4632 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4633 * So mapping should be stable for dirty pages.
4634 */
4635 if (!anon && PageDirty(page)) {
4636 struct address_space *mapping = page_mapping(page);
4637
4638 if (mapping_cap_account_dirty(mapping)) {
4639 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4640 nr_pages);
4641 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4642 nr_pages);
4643 }
4644 }
4645
4646 if (PageWriteback(page)) {
4647 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4648 nr_pages);
4649 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4650 nr_pages);
4651 }
4652
4653 /*
4654 * It is safe to change page->mem_cgroup here because the page
4655 * is referenced, charged, and isolated - we can't race with
4656 * uncharging, charging, migration, or LRU putback.
4657 */
4658
4659 /* caller should have done css_get */
4660 page->mem_cgroup = to;
4661 spin_unlock_irqrestore(&from->move_lock, flags);
4662
4663 ret = 0;
4664
4665 local_irq_disable();
4666 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4667 memcg_check_events(to, page);
4668 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4669 memcg_check_events(from, page);
4670 local_irq_enable();
4671 out_unlock:
4672 unlock_page(page);
4673 out:
4674 return ret;
4675 }
4676
4677 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4678 unsigned long addr, pte_t ptent, union mc_target *target)
4679 {
4680 struct page *page = NULL;
4681 enum mc_target_type ret = MC_TARGET_NONE;
4682 swp_entry_t ent = { .val = 0 };
4683
4684 if (pte_present(ptent))
4685 page = mc_handle_present_pte(vma, addr, ptent);
4686 else if (is_swap_pte(ptent))
4687 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4688 else if (pte_none(ptent))
4689 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4690
4691 if (!page && !ent.val)
4692 return ret;
4693 if (page) {
4694 /*
4695 * Do only loose check w/o serialization.
4696 * mem_cgroup_move_account() checks the page is valid or
4697 * not under LRU exclusion.
4698 */
4699 if (page->mem_cgroup == mc.from) {
4700 ret = MC_TARGET_PAGE;
4701 if (target)
4702 target->page = page;
4703 }
4704 if (!ret || !target)
4705 put_page(page);
4706 }
4707 /* There is a swap entry and a page doesn't exist or isn't charged */
4708 if (ent.val && !ret &&
4709 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4710 ret = MC_TARGET_SWAP;
4711 if (target)
4712 target->ent = ent;
4713 }
4714 return ret;
4715 }
4716
4717 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4718 /*
4719 * We don't consider swapping or file mapped pages because THP does not
4720 * support them for now.
4721 * Caller should make sure that pmd_trans_huge(pmd) is true.
4722 */
4723 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4724 unsigned long addr, pmd_t pmd, union mc_target *target)
4725 {
4726 struct page *page = NULL;
4727 enum mc_target_type ret = MC_TARGET_NONE;
4728
4729 page = pmd_page(pmd);
4730 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4731 if (!(mc.flags & MOVE_ANON))
4732 return ret;
4733 if (page->mem_cgroup == mc.from) {
4734 ret = MC_TARGET_PAGE;
4735 if (target) {
4736 get_page(page);
4737 target->page = page;
4738 }
4739 }
4740 return ret;
4741 }
4742 #else
4743 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4744 unsigned long addr, pmd_t pmd, union mc_target *target)
4745 {
4746 return MC_TARGET_NONE;
4747 }
4748 #endif
4749
4750 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4751 unsigned long addr, unsigned long end,
4752 struct mm_walk *walk)
4753 {
4754 struct vm_area_struct *vma = walk->vma;
4755 pte_t *pte;
4756 spinlock_t *ptl;
4757
4758 if (pmd_trans_huge_lock(pmd, vma, &ptl)) {
4759 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4760 mc.precharge += HPAGE_PMD_NR;
4761 spin_unlock(ptl);
4762 return 0;
4763 }
4764
4765 if (pmd_trans_unstable(pmd))
4766 return 0;
4767 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4768 for (; addr != end; pte++, addr += PAGE_SIZE)
4769 if (get_mctgt_type(vma, addr, *pte, NULL))
4770 mc.precharge++; /* increment precharge temporarily */
4771 pte_unmap_unlock(pte - 1, ptl);
4772 cond_resched();
4773
4774 return 0;
4775 }
4776
4777 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4778 {
4779 unsigned long precharge;
4780
4781 struct mm_walk mem_cgroup_count_precharge_walk = {
4782 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4783 .mm = mm,
4784 };
4785 down_read(&mm->mmap_sem);
4786 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4787 up_read(&mm->mmap_sem);
4788
4789 precharge = mc.precharge;
4790 mc.precharge = 0;
4791
4792 return precharge;
4793 }
4794
4795 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4796 {
4797 unsigned long precharge = mem_cgroup_count_precharge(mm);
4798
4799 VM_BUG_ON(mc.moving_task);
4800 mc.moving_task = current;
4801 return mem_cgroup_do_precharge(precharge);
4802 }
4803
4804 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4805 static void __mem_cgroup_clear_mc(void)
4806 {
4807 struct mem_cgroup *from = mc.from;
4808 struct mem_cgroup *to = mc.to;
4809
4810 /* we must uncharge all the leftover precharges from mc.to */
4811 if (mc.precharge) {
4812 cancel_charge(mc.to, mc.precharge);
4813 mc.precharge = 0;
4814 }
4815 /*
4816 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4817 * we must uncharge here.
4818 */
4819 if (mc.moved_charge) {
4820 cancel_charge(mc.from, mc.moved_charge);
4821 mc.moved_charge = 0;
4822 }
4823 /* we must fixup refcnts and charges */
4824 if (mc.moved_swap) {
4825 /* uncharge swap account from the old cgroup */
4826 if (!mem_cgroup_is_root(mc.from))
4827 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4828
4829 /*
4830 * we charged both to->memory and to->memsw, so we
4831 * should uncharge to->memory.
4832 */
4833 if (!mem_cgroup_is_root(mc.to))
4834 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4835
4836 css_put_many(&mc.from->css, mc.moved_swap);
4837
4838 /* we've already done css_get(mc.to) */
4839 mc.moved_swap = 0;
4840 }
4841 memcg_oom_recover(from);
4842 memcg_oom_recover(to);
4843 wake_up_all(&mc.waitq);
4844 }
4845
4846 static void mem_cgroup_clear_mc(void)
4847 {
4848 /*
4849 * we must clear moving_task before waking up waiters at the end of
4850 * task migration.
4851 */
4852 mc.moving_task = NULL;
4853 __mem_cgroup_clear_mc();
4854 spin_lock(&mc.lock);
4855 mc.from = NULL;
4856 mc.to = NULL;
4857 spin_unlock(&mc.lock);
4858 }
4859
4860 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4861 {
4862 struct cgroup_subsys_state *css;
4863 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4864 struct mem_cgroup *from;
4865 struct task_struct *leader, *p;
4866 struct mm_struct *mm;
4867 unsigned long move_flags;
4868 int ret = 0;
4869
4870 /* charge immigration isn't supported on the default hierarchy */
4871 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4872 return 0;
4873
4874 /*
4875 * Multi-process migrations only happen on the default hierarchy
4876 * where charge immigration is not used. Perform charge
4877 * immigration if @tset contains a leader and whine if there are
4878 * multiple.
4879 */
4880 p = NULL;
4881 cgroup_taskset_for_each_leader(leader, css, tset) {
4882 WARN_ON_ONCE(p);
4883 p = leader;
4884 memcg = mem_cgroup_from_css(css);
4885 }
4886 if (!p)
4887 return 0;
4888
4889 /*
4890 * We are now commited to this value whatever it is. Changes in this
4891 * tunable will only affect upcoming migrations, not the current one.
4892 * So we need to save it, and keep it going.
4893 */
4894 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4895 if (!move_flags)
4896 return 0;
4897
4898 from = mem_cgroup_from_task(p);
4899
4900 VM_BUG_ON(from == memcg);
4901
4902 mm = get_task_mm(p);
4903 if (!mm)
4904 return 0;
4905 /* We move charges only when we move a owner of the mm */
4906 if (mm->owner == p) {
4907 VM_BUG_ON(mc.from);
4908 VM_BUG_ON(mc.to);
4909 VM_BUG_ON(mc.precharge);
4910 VM_BUG_ON(mc.moved_charge);
4911 VM_BUG_ON(mc.moved_swap);
4912
4913 spin_lock(&mc.lock);
4914 mc.from = from;
4915 mc.to = memcg;
4916 mc.flags = move_flags;
4917 spin_unlock(&mc.lock);
4918 /* We set mc.moving_task later */
4919
4920 ret = mem_cgroup_precharge_mc(mm);
4921 if (ret)
4922 mem_cgroup_clear_mc();
4923 }
4924 mmput(mm);
4925 return ret;
4926 }
4927
4928 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4929 {
4930 if (mc.to)
4931 mem_cgroup_clear_mc();
4932 }
4933
4934 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4935 unsigned long addr, unsigned long end,
4936 struct mm_walk *walk)
4937 {
4938 int ret = 0;
4939 struct vm_area_struct *vma = walk->vma;
4940 pte_t *pte;
4941 spinlock_t *ptl;
4942 enum mc_target_type target_type;
4943 union mc_target target;
4944 struct page *page;
4945
4946 if (pmd_trans_huge_lock(pmd, vma, &ptl)) {
4947 if (mc.precharge < HPAGE_PMD_NR) {
4948 spin_unlock(ptl);
4949 return 0;
4950 }
4951 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4952 if (target_type == MC_TARGET_PAGE) {
4953 page = target.page;
4954 if (!isolate_lru_page(page)) {
4955 if (!mem_cgroup_move_account(page, true,
4956 mc.from, mc.to)) {
4957 mc.precharge -= HPAGE_PMD_NR;
4958 mc.moved_charge += HPAGE_PMD_NR;
4959 }
4960 putback_lru_page(page);
4961 }
4962 put_page(page);
4963 }
4964 spin_unlock(ptl);
4965 return 0;
4966 }
4967
4968 if (pmd_trans_unstable(pmd))
4969 return 0;
4970 retry:
4971 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4972 for (; addr != end; addr += PAGE_SIZE) {
4973 pte_t ptent = *(pte++);
4974 swp_entry_t ent;
4975
4976 if (!mc.precharge)
4977 break;
4978
4979 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4980 case MC_TARGET_PAGE:
4981 page = target.page;
4982 /*
4983 * We can have a part of the split pmd here. Moving it
4984 * can be done but it would be too convoluted so simply
4985 * ignore such a partial THP and keep it in original
4986 * memcg. There should be somebody mapping the head.
4987 */
4988 if (PageTransCompound(page))
4989 goto put;
4990 if (isolate_lru_page(page))
4991 goto put;
4992 if (!mem_cgroup_move_account(page, false,
4993 mc.from, mc.to)) {
4994 mc.precharge--;
4995 /* we uncharge from mc.from later. */
4996 mc.moved_charge++;
4997 }
4998 putback_lru_page(page);
4999 put: /* get_mctgt_type() gets the page */
5000 put_page(page);
5001 break;
5002 case MC_TARGET_SWAP:
5003 ent = target.ent;
5004 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5005 mc.precharge--;
5006 /* we fixup refcnts and charges later. */
5007 mc.moved_swap++;
5008 }
5009 break;
5010 default:
5011 break;
5012 }
5013 }
5014 pte_unmap_unlock(pte - 1, ptl);
5015 cond_resched();
5016
5017 if (addr != end) {
5018 /*
5019 * We have consumed all precharges we got in can_attach().
5020 * We try charge one by one, but don't do any additional
5021 * charges to mc.to if we have failed in charge once in attach()
5022 * phase.
5023 */
5024 ret = mem_cgroup_do_precharge(1);
5025 if (!ret)
5026 goto retry;
5027 }
5028
5029 return ret;
5030 }
5031
5032 static void mem_cgroup_move_charge(struct mm_struct *mm)
5033 {
5034 struct mm_walk mem_cgroup_move_charge_walk = {
5035 .pmd_entry = mem_cgroup_move_charge_pte_range,
5036 .mm = mm,
5037 };
5038
5039 lru_add_drain_all();
5040 /*
5041 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5042 * move_lock while we're moving its pages to another memcg.
5043 * Then wait for already started RCU-only updates to finish.
5044 */
5045 atomic_inc(&mc.from->moving_account);
5046 synchronize_rcu();
5047 retry:
5048 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5049 /*
5050 * Someone who are holding the mmap_sem might be waiting in
5051 * waitq. So we cancel all extra charges, wake up all waiters,
5052 * and retry. Because we cancel precharges, we might not be able
5053 * to move enough charges, but moving charge is a best-effort
5054 * feature anyway, so it wouldn't be a big problem.
5055 */
5056 __mem_cgroup_clear_mc();
5057 cond_resched();
5058 goto retry;
5059 }
5060 /*
5061 * When we have consumed all precharges and failed in doing
5062 * additional charge, the page walk just aborts.
5063 */
5064 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5065 up_read(&mm->mmap_sem);
5066 atomic_dec(&mc.from->moving_account);
5067 }
5068
5069 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
5070 {
5071 struct cgroup_subsys_state *css;
5072 struct task_struct *p = cgroup_taskset_first(tset, &css);
5073 struct mm_struct *mm = get_task_mm(p);
5074
5075 if (mm) {
5076 if (mc.to)
5077 mem_cgroup_move_charge(mm);
5078 mmput(mm);
5079 }
5080 if (mc.to)
5081 mem_cgroup_clear_mc();
5082 }
5083 #else /* !CONFIG_MMU */
5084 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5085 {
5086 return 0;
5087 }
5088 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5089 {
5090 }
5091 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
5092 {
5093 }
5094 #endif
5095
5096 /*
5097 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5098 * to verify whether we're attached to the default hierarchy on each mount
5099 * attempt.
5100 */
5101 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5102 {
5103 /*
5104 * use_hierarchy is forced on the default hierarchy. cgroup core
5105 * guarantees that @root doesn't have any children, so turning it
5106 * on for the root memcg is enough.
5107 */
5108 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5109 root_mem_cgroup->use_hierarchy = true;
5110 else
5111 root_mem_cgroup->use_hierarchy = false;
5112 }
5113
5114 static u64 memory_current_read(struct cgroup_subsys_state *css,
5115 struct cftype *cft)
5116 {
5117 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5118
5119 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5120 }
5121
5122 static int memory_low_show(struct seq_file *m, void *v)
5123 {
5124 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5125 unsigned long low = READ_ONCE(memcg->low);
5126
5127 if (low == PAGE_COUNTER_MAX)
5128 seq_puts(m, "max\n");
5129 else
5130 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5131
5132 return 0;
5133 }
5134
5135 static ssize_t memory_low_write(struct kernfs_open_file *of,
5136 char *buf, size_t nbytes, loff_t off)
5137 {
5138 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5139 unsigned long low;
5140 int err;
5141
5142 buf = strstrip(buf);
5143 err = page_counter_memparse(buf, "max", &low);
5144 if (err)
5145 return err;
5146
5147 memcg->low = low;
5148
5149 return nbytes;
5150 }
5151
5152 static int memory_high_show(struct seq_file *m, void *v)
5153 {
5154 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5155 unsigned long high = READ_ONCE(memcg->high);
5156
5157 if (high == PAGE_COUNTER_MAX)
5158 seq_puts(m, "max\n");
5159 else
5160 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5161
5162 return 0;
5163 }
5164
5165 static ssize_t memory_high_write(struct kernfs_open_file *of,
5166 char *buf, size_t nbytes, loff_t off)
5167 {
5168 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5169 unsigned long high;
5170 int err;
5171
5172 buf = strstrip(buf);
5173 err = page_counter_memparse(buf, "max", &high);
5174 if (err)
5175 return err;
5176
5177 memcg->high = high;
5178
5179 memcg_wb_domain_size_changed(memcg);
5180 return nbytes;
5181 }
5182
5183 static int memory_max_show(struct seq_file *m, void *v)
5184 {
5185 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5186 unsigned long max = READ_ONCE(memcg->memory.limit);
5187
5188 if (max == PAGE_COUNTER_MAX)
5189 seq_puts(m, "max\n");
5190 else
5191 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5192
5193 return 0;
5194 }
5195
5196 static ssize_t memory_max_write(struct kernfs_open_file *of,
5197 char *buf, size_t nbytes, loff_t off)
5198 {
5199 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5200 unsigned long max;
5201 int err;
5202
5203 buf = strstrip(buf);
5204 err = page_counter_memparse(buf, "max", &max);
5205 if (err)
5206 return err;
5207
5208 err = mem_cgroup_resize_limit(memcg, max);
5209 if (err)
5210 return err;
5211
5212 memcg_wb_domain_size_changed(memcg);
5213 return nbytes;
5214 }
5215
5216 static int memory_events_show(struct seq_file *m, void *v)
5217 {
5218 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5219
5220 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5221 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5222 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5223 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5224
5225 return 0;
5226 }
5227
5228 static struct cftype memory_files[] = {
5229 {
5230 .name = "current",
5231 .flags = CFTYPE_NOT_ON_ROOT,
5232 .read_u64 = memory_current_read,
5233 },
5234 {
5235 .name = "low",
5236 .flags = CFTYPE_NOT_ON_ROOT,
5237 .seq_show = memory_low_show,
5238 .write = memory_low_write,
5239 },
5240 {
5241 .name = "high",
5242 .flags = CFTYPE_NOT_ON_ROOT,
5243 .seq_show = memory_high_show,
5244 .write = memory_high_write,
5245 },
5246 {
5247 .name = "max",
5248 .flags = CFTYPE_NOT_ON_ROOT,
5249 .seq_show = memory_max_show,
5250 .write = memory_max_write,
5251 },
5252 {
5253 .name = "events",
5254 .flags = CFTYPE_NOT_ON_ROOT,
5255 .file_offset = offsetof(struct mem_cgroup, events_file),
5256 .seq_show = memory_events_show,
5257 },
5258 { } /* terminate */
5259 };
5260
5261 struct cgroup_subsys memory_cgrp_subsys = {
5262 .css_alloc = mem_cgroup_css_alloc,
5263 .css_online = mem_cgroup_css_online,
5264 .css_offline = mem_cgroup_css_offline,
5265 .css_released = mem_cgroup_css_released,
5266 .css_free = mem_cgroup_css_free,
5267 .css_reset = mem_cgroup_css_reset,
5268 .can_attach = mem_cgroup_can_attach,
5269 .cancel_attach = mem_cgroup_cancel_attach,
5270 .attach = mem_cgroup_move_task,
5271 .bind = mem_cgroup_bind,
5272 .dfl_cftypes = memory_files,
5273 .legacy_cftypes = mem_cgroup_legacy_files,
5274 .early_init = 0,
5275 };
5276
5277 /**
5278 * mem_cgroup_low - check if memory consumption is below the normal range
5279 * @root: the highest ancestor to consider
5280 * @memcg: the memory cgroup to check
5281 *
5282 * Returns %true if memory consumption of @memcg, and that of all
5283 * configurable ancestors up to @root, is below the normal range.
5284 */
5285 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5286 {
5287 if (mem_cgroup_disabled())
5288 return false;
5289
5290 /*
5291 * The toplevel group doesn't have a configurable range, so
5292 * it's never low when looked at directly, and it is not
5293 * considered an ancestor when assessing the hierarchy.
5294 */
5295
5296 if (memcg == root_mem_cgroup)
5297 return false;
5298
5299 if (page_counter_read(&memcg->memory) >= memcg->low)
5300 return false;
5301
5302 while (memcg != root) {
5303 memcg = parent_mem_cgroup(memcg);
5304
5305 if (memcg == root_mem_cgroup)
5306 break;
5307
5308 if (page_counter_read(&memcg->memory) >= memcg->low)
5309 return false;
5310 }
5311 return true;
5312 }
5313
5314 /**
5315 * mem_cgroup_try_charge - try charging a page
5316 * @page: page to charge
5317 * @mm: mm context of the victim
5318 * @gfp_mask: reclaim mode
5319 * @memcgp: charged memcg return
5320 *
5321 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5322 * pages according to @gfp_mask if necessary.
5323 *
5324 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5325 * Otherwise, an error code is returned.
5326 *
5327 * After page->mapping has been set up, the caller must finalize the
5328 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5329 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5330 */
5331 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5332 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5333 bool compound)
5334 {
5335 struct mem_cgroup *memcg = NULL;
5336 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5337 int ret = 0;
5338
5339 if (mem_cgroup_disabled())
5340 goto out;
5341
5342 if (PageSwapCache(page)) {
5343 /*
5344 * Every swap fault against a single page tries to charge the
5345 * page, bail as early as possible. shmem_unuse() encounters
5346 * already charged pages, too. The USED bit is protected by
5347 * the page lock, which serializes swap cache removal, which
5348 * in turn serializes uncharging.
5349 */
5350 VM_BUG_ON_PAGE(!PageLocked(page), page);
5351 if (page->mem_cgroup)
5352 goto out;
5353
5354 if (do_memsw_account()) {
5355 swp_entry_t ent = { .val = page_private(page), };
5356 unsigned short id = lookup_swap_cgroup_id(ent);
5357
5358 rcu_read_lock();
5359 memcg = mem_cgroup_from_id(id);
5360 if (memcg && !css_tryget_online(&memcg->css))
5361 memcg = NULL;
5362 rcu_read_unlock();
5363 }
5364 }
5365
5366 if (!memcg)
5367 memcg = get_mem_cgroup_from_mm(mm);
5368
5369 ret = try_charge(memcg, gfp_mask, nr_pages);
5370
5371 css_put(&memcg->css);
5372 out:
5373 *memcgp = memcg;
5374 return ret;
5375 }
5376
5377 /**
5378 * mem_cgroup_commit_charge - commit a page charge
5379 * @page: page to charge
5380 * @memcg: memcg to charge the page to
5381 * @lrucare: page might be on LRU already
5382 *
5383 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5384 * after page->mapping has been set up. This must happen atomically
5385 * as part of the page instantiation, i.e. under the page table lock
5386 * for anonymous pages, under the page lock for page and swap cache.
5387 *
5388 * In addition, the page must not be on the LRU during the commit, to
5389 * prevent racing with task migration. If it might be, use @lrucare.
5390 *
5391 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5392 */
5393 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5394 bool lrucare, bool compound)
5395 {
5396 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5397
5398 VM_BUG_ON_PAGE(!page->mapping, page);
5399 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5400
5401 if (mem_cgroup_disabled())
5402 return;
5403 /*
5404 * Swap faults will attempt to charge the same page multiple
5405 * times. But reuse_swap_page() might have removed the page
5406 * from swapcache already, so we can't check PageSwapCache().
5407 */
5408 if (!memcg)
5409 return;
5410
5411 commit_charge(page, memcg, lrucare);
5412
5413 local_irq_disable();
5414 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5415 memcg_check_events(memcg, page);
5416 local_irq_enable();
5417
5418 if (do_memsw_account() && PageSwapCache(page)) {
5419 swp_entry_t entry = { .val = page_private(page) };
5420 /*
5421 * The swap entry might not get freed for a long time,
5422 * let's not wait for it. The page already received a
5423 * memory+swap charge, drop the swap entry duplicate.
5424 */
5425 mem_cgroup_uncharge_swap(entry);
5426 }
5427 }
5428
5429 /**
5430 * mem_cgroup_cancel_charge - cancel a page charge
5431 * @page: page to charge
5432 * @memcg: memcg to charge the page to
5433 *
5434 * Cancel a charge transaction started by mem_cgroup_try_charge().
5435 */
5436 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5437 bool compound)
5438 {
5439 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5440
5441 if (mem_cgroup_disabled())
5442 return;
5443 /*
5444 * Swap faults will attempt to charge the same page multiple
5445 * times. But reuse_swap_page() might have removed the page
5446 * from swapcache already, so we can't check PageSwapCache().
5447 */
5448 if (!memcg)
5449 return;
5450
5451 cancel_charge(memcg, nr_pages);
5452 }
5453
5454 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5455 unsigned long nr_anon, unsigned long nr_file,
5456 unsigned long nr_huge, struct page *dummy_page)
5457 {
5458 unsigned long nr_pages = nr_anon + nr_file;
5459 unsigned long flags;
5460
5461 if (!mem_cgroup_is_root(memcg)) {
5462 page_counter_uncharge(&memcg->memory, nr_pages);
5463 if (do_memsw_account())
5464 page_counter_uncharge(&memcg->memsw, nr_pages);
5465 memcg_oom_recover(memcg);
5466 }
5467
5468 local_irq_save(flags);
5469 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5470 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5471 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5472 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5473 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5474 memcg_check_events(memcg, dummy_page);
5475 local_irq_restore(flags);
5476
5477 if (!mem_cgroup_is_root(memcg))
5478 css_put_many(&memcg->css, nr_pages);
5479 }
5480
5481 static void uncharge_list(struct list_head *page_list)
5482 {
5483 struct mem_cgroup *memcg = NULL;
5484 unsigned long nr_anon = 0;
5485 unsigned long nr_file = 0;
5486 unsigned long nr_huge = 0;
5487 unsigned long pgpgout = 0;
5488 struct list_head *next;
5489 struct page *page;
5490
5491 next = page_list->next;
5492 do {
5493 unsigned int nr_pages = 1;
5494
5495 page = list_entry(next, struct page, lru);
5496 next = page->lru.next;
5497
5498 VM_BUG_ON_PAGE(PageLRU(page), page);
5499 VM_BUG_ON_PAGE(page_count(page), page);
5500
5501 if (!page->mem_cgroup)
5502 continue;
5503
5504 /*
5505 * Nobody should be changing or seriously looking at
5506 * page->mem_cgroup at this point, we have fully
5507 * exclusive access to the page.
5508 */
5509
5510 if (memcg != page->mem_cgroup) {
5511 if (memcg) {
5512 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5513 nr_huge, page);
5514 pgpgout = nr_anon = nr_file = nr_huge = 0;
5515 }
5516 memcg = page->mem_cgroup;
5517 }
5518
5519 if (PageTransHuge(page)) {
5520 nr_pages <<= compound_order(page);
5521 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5522 nr_huge += nr_pages;
5523 }
5524
5525 if (PageAnon(page))
5526 nr_anon += nr_pages;
5527 else
5528 nr_file += nr_pages;
5529
5530 page->mem_cgroup = NULL;
5531
5532 pgpgout++;
5533 } while (next != page_list);
5534
5535 if (memcg)
5536 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5537 nr_huge, page);
5538 }
5539
5540 /**
5541 * mem_cgroup_uncharge - uncharge a page
5542 * @page: page to uncharge
5543 *
5544 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5545 * mem_cgroup_commit_charge().
5546 */
5547 void mem_cgroup_uncharge(struct page *page)
5548 {
5549 if (mem_cgroup_disabled())
5550 return;
5551
5552 /* Don't touch page->lru of any random page, pre-check: */
5553 if (!page->mem_cgroup)
5554 return;
5555
5556 INIT_LIST_HEAD(&page->lru);
5557 uncharge_list(&page->lru);
5558 }
5559
5560 /**
5561 * mem_cgroup_uncharge_list - uncharge a list of page
5562 * @page_list: list of pages to uncharge
5563 *
5564 * Uncharge a list of pages previously charged with
5565 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5566 */
5567 void mem_cgroup_uncharge_list(struct list_head *page_list)
5568 {
5569 if (mem_cgroup_disabled())
5570 return;
5571
5572 if (!list_empty(page_list))
5573 uncharge_list(page_list);
5574 }
5575
5576 /**
5577 * mem_cgroup_replace_page - migrate a charge to another page
5578 * @oldpage: currently charged page
5579 * @newpage: page to transfer the charge to
5580 *
5581 * Migrate the charge from @oldpage to @newpage.
5582 *
5583 * Both pages must be locked, @newpage->mapping must be set up.
5584 * Either or both pages might be on the LRU already.
5585 */
5586 void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
5587 {
5588 struct mem_cgroup *memcg;
5589 int isolated;
5590
5591 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5592 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5593 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5594 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5595 newpage);
5596
5597 if (mem_cgroup_disabled())
5598 return;
5599
5600 /* Page cache replacement: new page already charged? */
5601 if (newpage->mem_cgroup)
5602 return;
5603
5604 /* Swapcache readahead pages can get replaced before being charged */
5605 memcg = oldpage->mem_cgroup;
5606 if (!memcg)
5607 return;
5608
5609 lock_page_lru(oldpage, &isolated);
5610 oldpage->mem_cgroup = NULL;
5611 unlock_page_lru(oldpage, isolated);
5612
5613 commit_charge(newpage, memcg, true);
5614 }
5615
5616 #ifdef CONFIG_INET
5617
5618 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5619 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5620
5621 void sock_update_memcg(struct sock *sk)
5622 {
5623 struct mem_cgroup *memcg;
5624
5625 /* Socket cloning can throw us here with sk_cgrp already
5626 * filled. It won't however, necessarily happen from
5627 * process context. So the test for root memcg given
5628 * the current task's memcg won't help us in this case.
5629 *
5630 * Respecting the original socket's memcg is a better
5631 * decision in this case.
5632 */
5633 if (sk->sk_memcg) {
5634 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5635 css_get(&sk->sk_memcg->css);
5636 return;
5637 }
5638
5639 rcu_read_lock();
5640 memcg = mem_cgroup_from_task(current);
5641 if (memcg == root_mem_cgroup)
5642 goto out;
5643 #ifdef CONFIG_MEMCG_LEGACY_KMEM
5644 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcp_mem.active)
5645 goto out;
5646 #endif
5647 if (css_tryget_online(&memcg->css))
5648 sk->sk_memcg = memcg;
5649 out:
5650 rcu_read_unlock();
5651 }
5652 EXPORT_SYMBOL(sock_update_memcg);
5653
5654 void sock_release_memcg(struct sock *sk)
5655 {
5656 WARN_ON(!sk->sk_memcg);
5657 css_put(&sk->sk_memcg->css);
5658 }
5659
5660 /**
5661 * mem_cgroup_charge_skmem - charge socket memory
5662 * @memcg: memcg to charge
5663 * @nr_pages: number of pages to charge
5664 *
5665 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5666 * @memcg's configured limit, %false if the charge had to be forced.
5667 */
5668 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5669 {
5670 gfp_t gfp_mask = GFP_KERNEL;
5671
5672 #ifdef CONFIG_MEMCG_LEGACY_KMEM
5673 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5674 struct page_counter *counter;
5675
5676 if (page_counter_try_charge(&memcg->tcp_mem.memory_allocated,
5677 nr_pages, &counter)) {
5678 memcg->tcp_mem.memory_pressure = 0;
5679 return true;
5680 }
5681 page_counter_charge(&memcg->tcp_mem.memory_allocated, nr_pages);
5682 memcg->tcp_mem.memory_pressure = 1;
5683 return false;
5684 }
5685 #endif
5686 /* Don't block in the packet receive path */
5687 if (in_softirq())
5688 gfp_mask = GFP_NOWAIT;
5689
5690 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5691 return true;
5692
5693 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5694 return false;
5695 }
5696
5697 /**
5698 * mem_cgroup_uncharge_skmem - uncharge socket memory
5699 * @memcg - memcg to uncharge
5700 * @nr_pages - number of pages to uncharge
5701 */
5702 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5703 {
5704 #ifdef CONFIG_MEMCG_LEGACY_KMEM
5705 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5706 page_counter_uncharge(&memcg->tcp_mem.memory_allocated,
5707 nr_pages);
5708 return;
5709 }
5710 #endif
5711 page_counter_uncharge(&memcg->memory, nr_pages);
5712 css_put_many(&memcg->css, nr_pages);
5713 }
5714
5715 #endif /* CONFIG_INET */
5716
5717 static int __init cgroup_memory(char *s)
5718 {
5719 char *token;
5720
5721 while ((token = strsep(&s, ",")) != NULL) {
5722 if (!*token)
5723 continue;
5724 if (!strcmp(token, "nosocket"))
5725 cgroup_memory_nosocket = true;
5726 if (!strcmp(token, "nokmem"))
5727 cgroup_memory_nokmem = true;
5728 }
5729 return 0;
5730 }
5731 __setup("cgroup.memory=", cgroup_memory);
5732
5733 /*
5734 * subsys_initcall() for memory controller.
5735 *
5736 * Some parts like hotcpu_notifier() have to be initialized from this context
5737 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5738 * everything that doesn't depend on a specific mem_cgroup structure should
5739 * be initialized from here.
5740 */
5741 static int __init mem_cgroup_init(void)
5742 {
5743 int cpu, node;
5744
5745 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5746
5747 for_each_possible_cpu(cpu)
5748 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5749 drain_local_stock);
5750
5751 for_each_node(node) {
5752 struct mem_cgroup_tree_per_node *rtpn;
5753 int zone;
5754
5755 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5756 node_online(node) ? node : NUMA_NO_NODE);
5757
5758 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5759 struct mem_cgroup_tree_per_zone *rtpz;
5760
5761 rtpz = &rtpn->rb_tree_per_zone[zone];
5762 rtpz->rb_root = RB_ROOT;
5763 spin_lock_init(&rtpz->lock);
5764 }
5765 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5766 }
5767
5768 return 0;
5769 }
5770 subsys_initcall(mem_cgroup_init);
5771
5772 #ifdef CONFIG_MEMCG_SWAP
5773 /**
5774 * mem_cgroup_swapout - transfer a memsw charge to swap
5775 * @page: page whose memsw charge to transfer
5776 * @entry: swap entry to move the charge to
5777 *
5778 * Transfer the memsw charge of @page to @entry.
5779 */
5780 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5781 {
5782 struct mem_cgroup *memcg;
5783 unsigned short oldid;
5784
5785 VM_BUG_ON_PAGE(PageLRU(page), page);
5786 VM_BUG_ON_PAGE(page_count(page), page);
5787
5788 if (!do_memsw_account())
5789 return;
5790
5791 memcg = page->mem_cgroup;
5792
5793 /* Readahead page, never charged */
5794 if (!memcg)
5795 return;
5796
5797 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5798 VM_BUG_ON_PAGE(oldid, page);
5799 mem_cgroup_swap_statistics(memcg, true);
5800
5801 page->mem_cgroup = NULL;
5802
5803 if (!mem_cgroup_is_root(memcg))
5804 page_counter_uncharge(&memcg->memory, 1);
5805
5806 /*
5807 * Interrupts should be disabled here because the caller holds the
5808 * mapping->tree_lock lock which is taken with interrupts-off. It is
5809 * important here to have the interrupts disabled because it is the
5810 * only synchronisation we have for udpating the per-CPU variables.
5811 */
5812 VM_BUG_ON(!irqs_disabled());
5813 mem_cgroup_charge_statistics(memcg, page, false, -1);
5814 memcg_check_events(memcg, page);
5815 }
5816
5817 /**
5818 * mem_cgroup_uncharge_swap - uncharge a swap entry
5819 * @entry: swap entry to uncharge
5820 *
5821 * Drop the memsw charge associated with @entry.
5822 */
5823 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5824 {
5825 struct mem_cgroup *memcg;
5826 unsigned short id;
5827
5828 if (!do_memsw_account())
5829 return;
5830
5831 id = swap_cgroup_record(entry, 0);
5832 rcu_read_lock();
5833 memcg = mem_cgroup_from_id(id);
5834 if (memcg) {
5835 if (!mem_cgroup_is_root(memcg))
5836 page_counter_uncharge(&memcg->memsw, 1);
5837 mem_cgroup_swap_statistics(memcg, false);
5838 css_put(&memcg->css);
5839 }
5840 rcu_read_unlock();
5841 }
5842
5843 /* for remember boot option*/
5844 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5845 static int really_do_swap_account __initdata = 1;
5846 #else
5847 static int really_do_swap_account __initdata;
5848 #endif
5849
5850 static int __init enable_swap_account(char *s)
5851 {
5852 if (!strcmp(s, "1"))
5853 really_do_swap_account = 1;
5854 else if (!strcmp(s, "0"))
5855 really_do_swap_account = 0;
5856 return 1;
5857 }
5858 __setup("swapaccount=", enable_swap_account);
5859
5860 static struct cftype memsw_cgroup_files[] = {
5861 {
5862 .name = "memsw.usage_in_bytes",
5863 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5864 .read_u64 = mem_cgroup_read_u64,
5865 },
5866 {
5867 .name = "memsw.max_usage_in_bytes",
5868 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5869 .write = mem_cgroup_reset,
5870 .read_u64 = mem_cgroup_read_u64,
5871 },
5872 {
5873 .name = "memsw.limit_in_bytes",
5874 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5875 .write = mem_cgroup_write,
5876 .read_u64 = mem_cgroup_read_u64,
5877 },
5878 {
5879 .name = "memsw.failcnt",
5880 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5881 .write = mem_cgroup_reset,
5882 .read_u64 = mem_cgroup_read_u64,
5883 },
5884 { }, /* terminate */
5885 };
5886
5887 static int __init mem_cgroup_swap_init(void)
5888 {
5889 if (!mem_cgroup_disabled() && really_do_swap_account) {
5890 do_swap_account = 1;
5891 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5892 memsw_cgroup_files));
5893 }
5894 return 0;
5895 }
5896 subsys_initcall(mem_cgroup_swap_init);
5897
5898 #endif /* CONFIG_MEMCG_SWAP */
This page took 0.229374 seconds and 6 git commands to generate.