Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70
71 #include <asm/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79
80 #define MEM_CGROUP_RECLAIM_RETRIES 5
81
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account 0
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100
101 static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
104 "rss_huge",
105 "mapped_file",
106 "dirty",
107 "writeback",
108 "swap",
109 };
110
111 static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116 };
117
118 static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124 };
125
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET 1024
129
130 /*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135 struct mem_cgroup_tree_per_zone {
136 struct rb_root rb_root;
137 spinlock_t lock;
138 };
139
140 struct mem_cgroup_tree_per_node {
141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142 };
143
144 struct mem_cgroup_tree {
145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146 };
147
148 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
150 /* for OOM */
151 struct mem_cgroup_eventfd_list {
152 struct list_head list;
153 struct eventfd_ctx *eventfd;
154 };
155
156 /*
157 * cgroup_event represents events which userspace want to receive.
158 */
159 struct mem_cgroup_event {
160 /*
161 * memcg which the event belongs to.
162 */
163 struct mem_cgroup *memcg;
164 /*
165 * eventfd to signal userspace about the event.
166 */
167 struct eventfd_ctx *eventfd;
168 /*
169 * Each of these stored in a list by the cgroup.
170 */
171 struct list_head list;
172 /*
173 * register_event() callback will be used to add new userspace
174 * waiter for changes related to this event. Use eventfd_signal()
175 * on eventfd to send notification to userspace.
176 */
177 int (*register_event)(struct mem_cgroup *memcg,
178 struct eventfd_ctx *eventfd, const char *args);
179 /*
180 * unregister_event() callback will be called when userspace closes
181 * the eventfd or on cgroup removing. This callback must be set,
182 * if you want provide notification functionality.
183 */
184 void (*unregister_event)(struct mem_cgroup *memcg,
185 struct eventfd_ctx *eventfd);
186 /*
187 * All fields below needed to unregister event when
188 * userspace closes eventfd.
189 */
190 poll_table pt;
191 wait_queue_head_t *wqh;
192 wait_queue_t wait;
193 struct work_struct remove;
194 };
195
196 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198
199 /* Stuffs for move charges at task migration. */
200 /*
201 * Types of charges to be moved.
202 */
203 #define MOVE_ANON 0x1U
204 #define MOVE_FILE 0x2U
205 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
206
207 /* "mc" and its members are protected by cgroup_mutex */
208 static struct move_charge_struct {
209 spinlock_t lock; /* for from, to */
210 struct mem_cgroup *from;
211 struct mem_cgroup *to;
212 unsigned long flags;
213 unsigned long precharge;
214 unsigned long moved_charge;
215 unsigned long moved_swap;
216 struct task_struct *moving_task; /* a task moving charges */
217 wait_queue_head_t waitq; /* a waitq for other context */
218 } mc = {
219 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
220 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
221 };
222
223 /*
224 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
225 * limit reclaim to prevent infinite loops, if they ever occur.
226 */
227 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
228 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
229
230 enum charge_type {
231 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
232 MEM_CGROUP_CHARGE_TYPE_ANON,
233 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
234 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
235 NR_CHARGE_TYPE,
236 };
237
238 /* for encoding cft->private value on file */
239 enum res_type {
240 _MEM,
241 _MEMSWAP,
242 _OOM_TYPE,
243 _KMEM,
244 _TCP,
245 };
246
247 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
248 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
249 #define MEMFILE_ATTR(val) ((val) & 0xffff)
250 /* Used for OOM nofiier */
251 #define OOM_CONTROL (0)
252
253 /* Some nice accessors for the vmpressure. */
254 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
255 {
256 if (!memcg)
257 memcg = root_mem_cgroup;
258 return &memcg->vmpressure;
259 }
260
261 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
262 {
263 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
264 }
265
266 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
267 {
268 return (memcg == root_mem_cgroup);
269 }
270
271 #ifndef CONFIG_SLOB
272 /*
273 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
274 * The main reason for not using cgroup id for this:
275 * this works better in sparse environments, where we have a lot of memcgs,
276 * but only a few kmem-limited. Or also, if we have, for instance, 200
277 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
278 * 200 entry array for that.
279 *
280 * The current size of the caches array is stored in memcg_nr_cache_ids. It
281 * will double each time we have to increase it.
282 */
283 static DEFINE_IDA(memcg_cache_ida);
284 int memcg_nr_cache_ids;
285
286 /* Protects memcg_nr_cache_ids */
287 static DECLARE_RWSEM(memcg_cache_ids_sem);
288
289 void memcg_get_cache_ids(void)
290 {
291 down_read(&memcg_cache_ids_sem);
292 }
293
294 void memcg_put_cache_ids(void)
295 {
296 up_read(&memcg_cache_ids_sem);
297 }
298
299 /*
300 * MIN_SIZE is different than 1, because we would like to avoid going through
301 * the alloc/free process all the time. In a small machine, 4 kmem-limited
302 * cgroups is a reasonable guess. In the future, it could be a parameter or
303 * tunable, but that is strictly not necessary.
304 *
305 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
306 * this constant directly from cgroup, but it is understandable that this is
307 * better kept as an internal representation in cgroup.c. In any case, the
308 * cgrp_id space is not getting any smaller, and we don't have to necessarily
309 * increase ours as well if it increases.
310 */
311 #define MEMCG_CACHES_MIN_SIZE 4
312 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
313
314 /*
315 * A lot of the calls to the cache allocation functions are expected to be
316 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
317 * conditional to this static branch, we'll have to allow modules that does
318 * kmem_cache_alloc and the such to see this symbol as well
319 */
320 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
321 EXPORT_SYMBOL(memcg_kmem_enabled_key);
322
323 #endif /* !CONFIG_SLOB */
324
325 static struct mem_cgroup_per_zone *
326 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
327 {
328 int nid = zone_to_nid(zone);
329 int zid = zone_idx(zone);
330
331 return &memcg->nodeinfo[nid]->zoneinfo[zid];
332 }
333
334 /**
335 * mem_cgroup_css_from_page - css of the memcg associated with a page
336 * @page: page of interest
337 *
338 * If memcg is bound to the default hierarchy, css of the memcg associated
339 * with @page is returned. The returned css remains associated with @page
340 * until it is released.
341 *
342 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
343 * is returned.
344 */
345 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
346 {
347 struct mem_cgroup *memcg;
348
349 memcg = page->mem_cgroup;
350
351 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
352 memcg = root_mem_cgroup;
353
354 return &memcg->css;
355 }
356
357 /**
358 * page_cgroup_ino - return inode number of the memcg a page is charged to
359 * @page: the page
360 *
361 * Look up the closest online ancestor of the memory cgroup @page is charged to
362 * and return its inode number or 0 if @page is not charged to any cgroup. It
363 * is safe to call this function without holding a reference to @page.
364 *
365 * Note, this function is inherently racy, because there is nothing to prevent
366 * the cgroup inode from getting torn down and potentially reallocated a moment
367 * after page_cgroup_ino() returns, so it only should be used by callers that
368 * do not care (such as procfs interfaces).
369 */
370 ino_t page_cgroup_ino(struct page *page)
371 {
372 struct mem_cgroup *memcg;
373 unsigned long ino = 0;
374
375 rcu_read_lock();
376 memcg = READ_ONCE(page->mem_cgroup);
377 while (memcg && !(memcg->css.flags & CSS_ONLINE))
378 memcg = parent_mem_cgroup(memcg);
379 if (memcg)
380 ino = cgroup_ino(memcg->css.cgroup);
381 rcu_read_unlock();
382 return ino;
383 }
384
385 static struct mem_cgroup_per_zone *
386 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
387 {
388 int nid = page_to_nid(page);
389 int zid = page_zonenum(page);
390
391 return &memcg->nodeinfo[nid]->zoneinfo[zid];
392 }
393
394 static struct mem_cgroup_tree_per_zone *
395 soft_limit_tree_node_zone(int nid, int zid)
396 {
397 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
398 }
399
400 static struct mem_cgroup_tree_per_zone *
401 soft_limit_tree_from_page(struct page *page)
402 {
403 int nid = page_to_nid(page);
404 int zid = page_zonenum(page);
405
406 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
407 }
408
409 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
410 struct mem_cgroup_tree_per_zone *mctz,
411 unsigned long new_usage_in_excess)
412 {
413 struct rb_node **p = &mctz->rb_root.rb_node;
414 struct rb_node *parent = NULL;
415 struct mem_cgroup_per_zone *mz_node;
416
417 if (mz->on_tree)
418 return;
419
420 mz->usage_in_excess = new_usage_in_excess;
421 if (!mz->usage_in_excess)
422 return;
423 while (*p) {
424 parent = *p;
425 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
426 tree_node);
427 if (mz->usage_in_excess < mz_node->usage_in_excess)
428 p = &(*p)->rb_left;
429 /*
430 * We can't avoid mem cgroups that are over their soft
431 * limit by the same amount
432 */
433 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
434 p = &(*p)->rb_right;
435 }
436 rb_link_node(&mz->tree_node, parent, p);
437 rb_insert_color(&mz->tree_node, &mctz->rb_root);
438 mz->on_tree = true;
439 }
440
441 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
442 struct mem_cgroup_tree_per_zone *mctz)
443 {
444 if (!mz->on_tree)
445 return;
446 rb_erase(&mz->tree_node, &mctz->rb_root);
447 mz->on_tree = false;
448 }
449
450 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
451 struct mem_cgroup_tree_per_zone *mctz)
452 {
453 unsigned long flags;
454
455 spin_lock_irqsave(&mctz->lock, flags);
456 __mem_cgroup_remove_exceeded(mz, mctz);
457 spin_unlock_irqrestore(&mctz->lock, flags);
458 }
459
460 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
461 {
462 unsigned long nr_pages = page_counter_read(&memcg->memory);
463 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
464 unsigned long excess = 0;
465
466 if (nr_pages > soft_limit)
467 excess = nr_pages - soft_limit;
468
469 return excess;
470 }
471
472 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
473 {
474 unsigned long excess;
475 struct mem_cgroup_per_zone *mz;
476 struct mem_cgroup_tree_per_zone *mctz;
477
478 mctz = soft_limit_tree_from_page(page);
479 /*
480 * Necessary to update all ancestors when hierarchy is used.
481 * because their event counter is not touched.
482 */
483 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
484 mz = mem_cgroup_page_zoneinfo(memcg, page);
485 excess = soft_limit_excess(memcg);
486 /*
487 * We have to update the tree if mz is on RB-tree or
488 * mem is over its softlimit.
489 */
490 if (excess || mz->on_tree) {
491 unsigned long flags;
492
493 spin_lock_irqsave(&mctz->lock, flags);
494 /* if on-tree, remove it */
495 if (mz->on_tree)
496 __mem_cgroup_remove_exceeded(mz, mctz);
497 /*
498 * Insert again. mz->usage_in_excess will be updated.
499 * If excess is 0, no tree ops.
500 */
501 __mem_cgroup_insert_exceeded(mz, mctz, excess);
502 spin_unlock_irqrestore(&mctz->lock, flags);
503 }
504 }
505 }
506
507 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
508 {
509 struct mem_cgroup_tree_per_zone *mctz;
510 struct mem_cgroup_per_zone *mz;
511 int nid, zid;
512
513 for_each_node(nid) {
514 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
515 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
516 mctz = soft_limit_tree_node_zone(nid, zid);
517 mem_cgroup_remove_exceeded(mz, mctz);
518 }
519 }
520 }
521
522 static struct mem_cgroup_per_zone *
523 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
524 {
525 struct rb_node *rightmost = NULL;
526 struct mem_cgroup_per_zone *mz;
527
528 retry:
529 mz = NULL;
530 rightmost = rb_last(&mctz->rb_root);
531 if (!rightmost)
532 goto done; /* Nothing to reclaim from */
533
534 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
535 /*
536 * Remove the node now but someone else can add it back,
537 * we will to add it back at the end of reclaim to its correct
538 * position in the tree.
539 */
540 __mem_cgroup_remove_exceeded(mz, mctz);
541 if (!soft_limit_excess(mz->memcg) ||
542 !css_tryget_online(&mz->memcg->css))
543 goto retry;
544 done:
545 return mz;
546 }
547
548 static struct mem_cgroup_per_zone *
549 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
550 {
551 struct mem_cgroup_per_zone *mz;
552
553 spin_lock_irq(&mctz->lock);
554 mz = __mem_cgroup_largest_soft_limit_node(mctz);
555 spin_unlock_irq(&mctz->lock);
556 return mz;
557 }
558
559 /*
560 * Return page count for single (non recursive) @memcg.
561 *
562 * Implementation Note: reading percpu statistics for memcg.
563 *
564 * Both of vmstat[] and percpu_counter has threshold and do periodic
565 * synchronization to implement "quick" read. There are trade-off between
566 * reading cost and precision of value. Then, we may have a chance to implement
567 * a periodic synchronization of counter in memcg's counter.
568 *
569 * But this _read() function is used for user interface now. The user accounts
570 * memory usage by memory cgroup and he _always_ requires exact value because
571 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
572 * have to visit all online cpus and make sum. So, for now, unnecessary
573 * synchronization is not implemented. (just implemented for cpu hotplug)
574 *
575 * If there are kernel internal actions which can make use of some not-exact
576 * value, and reading all cpu value can be performance bottleneck in some
577 * common workload, threshold and synchronization as vmstat[] should be
578 * implemented.
579 */
580 static unsigned long
581 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
582 {
583 long val = 0;
584 int cpu;
585
586 /* Per-cpu values can be negative, use a signed accumulator */
587 for_each_possible_cpu(cpu)
588 val += per_cpu(memcg->stat->count[idx], cpu);
589 /*
590 * Summing races with updates, so val may be negative. Avoid exposing
591 * transient negative values.
592 */
593 if (val < 0)
594 val = 0;
595 return val;
596 }
597
598 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
599 enum mem_cgroup_events_index idx)
600 {
601 unsigned long val = 0;
602 int cpu;
603
604 for_each_possible_cpu(cpu)
605 val += per_cpu(memcg->stat->events[idx], cpu);
606 return val;
607 }
608
609 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
610 struct page *page,
611 bool compound, int nr_pages)
612 {
613 /*
614 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
615 * counted as CACHE even if it's on ANON LRU.
616 */
617 if (PageAnon(page))
618 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
619 nr_pages);
620 else
621 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
622 nr_pages);
623
624 if (compound) {
625 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
626 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
627 nr_pages);
628 }
629
630 /* pagein of a big page is an event. So, ignore page size */
631 if (nr_pages > 0)
632 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
633 else {
634 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
635 nr_pages = -nr_pages; /* for event */
636 }
637
638 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
639 }
640
641 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
642 int nid,
643 unsigned int lru_mask)
644 {
645 unsigned long nr = 0;
646 int zid;
647
648 VM_BUG_ON((unsigned)nid >= nr_node_ids);
649
650 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
651 struct mem_cgroup_per_zone *mz;
652 enum lru_list lru;
653
654 for_each_lru(lru) {
655 if (!(BIT(lru) & lru_mask))
656 continue;
657 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
658 nr += mz->lru_size[lru];
659 }
660 }
661 return nr;
662 }
663
664 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
665 unsigned int lru_mask)
666 {
667 unsigned long nr = 0;
668 int nid;
669
670 for_each_node_state(nid, N_MEMORY)
671 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
672 return nr;
673 }
674
675 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
676 enum mem_cgroup_events_target target)
677 {
678 unsigned long val, next;
679
680 val = __this_cpu_read(memcg->stat->nr_page_events);
681 next = __this_cpu_read(memcg->stat->targets[target]);
682 /* from time_after() in jiffies.h */
683 if ((long)next - (long)val < 0) {
684 switch (target) {
685 case MEM_CGROUP_TARGET_THRESH:
686 next = val + THRESHOLDS_EVENTS_TARGET;
687 break;
688 case MEM_CGROUP_TARGET_SOFTLIMIT:
689 next = val + SOFTLIMIT_EVENTS_TARGET;
690 break;
691 case MEM_CGROUP_TARGET_NUMAINFO:
692 next = val + NUMAINFO_EVENTS_TARGET;
693 break;
694 default:
695 break;
696 }
697 __this_cpu_write(memcg->stat->targets[target], next);
698 return true;
699 }
700 return false;
701 }
702
703 /*
704 * Check events in order.
705 *
706 */
707 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
708 {
709 /* threshold event is triggered in finer grain than soft limit */
710 if (unlikely(mem_cgroup_event_ratelimit(memcg,
711 MEM_CGROUP_TARGET_THRESH))) {
712 bool do_softlimit;
713 bool do_numainfo __maybe_unused;
714
715 do_softlimit = mem_cgroup_event_ratelimit(memcg,
716 MEM_CGROUP_TARGET_SOFTLIMIT);
717 #if MAX_NUMNODES > 1
718 do_numainfo = mem_cgroup_event_ratelimit(memcg,
719 MEM_CGROUP_TARGET_NUMAINFO);
720 #endif
721 mem_cgroup_threshold(memcg);
722 if (unlikely(do_softlimit))
723 mem_cgroup_update_tree(memcg, page);
724 #if MAX_NUMNODES > 1
725 if (unlikely(do_numainfo))
726 atomic_inc(&memcg->numainfo_events);
727 #endif
728 }
729 }
730
731 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
732 {
733 /*
734 * mm_update_next_owner() may clear mm->owner to NULL
735 * if it races with swapoff, page migration, etc.
736 * So this can be called with p == NULL.
737 */
738 if (unlikely(!p))
739 return NULL;
740
741 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
742 }
743 EXPORT_SYMBOL(mem_cgroup_from_task);
744
745 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
746 {
747 struct mem_cgroup *memcg = NULL;
748
749 rcu_read_lock();
750 do {
751 /*
752 * Page cache insertions can happen withou an
753 * actual mm context, e.g. during disk probing
754 * on boot, loopback IO, acct() writes etc.
755 */
756 if (unlikely(!mm))
757 memcg = root_mem_cgroup;
758 else {
759 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
760 if (unlikely(!memcg))
761 memcg = root_mem_cgroup;
762 }
763 } while (!css_tryget_online(&memcg->css));
764 rcu_read_unlock();
765 return memcg;
766 }
767
768 /**
769 * mem_cgroup_iter - iterate over memory cgroup hierarchy
770 * @root: hierarchy root
771 * @prev: previously returned memcg, NULL on first invocation
772 * @reclaim: cookie for shared reclaim walks, NULL for full walks
773 *
774 * Returns references to children of the hierarchy below @root, or
775 * @root itself, or %NULL after a full round-trip.
776 *
777 * Caller must pass the return value in @prev on subsequent
778 * invocations for reference counting, or use mem_cgroup_iter_break()
779 * to cancel a hierarchy walk before the round-trip is complete.
780 *
781 * Reclaimers can specify a zone and a priority level in @reclaim to
782 * divide up the memcgs in the hierarchy among all concurrent
783 * reclaimers operating on the same zone and priority.
784 */
785 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
786 struct mem_cgroup *prev,
787 struct mem_cgroup_reclaim_cookie *reclaim)
788 {
789 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
790 struct cgroup_subsys_state *css = NULL;
791 struct mem_cgroup *memcg = NULL;
792 struct mem_cgroup *pos = NULL;
793
794 if (mem_cgroup_disabled())
795 return NULL;
796
797 if (!root)
798 root = root_mem_cgroup;
799
800 if (prev && !reclaim)
801 pos = prev;
802
803 if (!root->use_hierarchy && root != root_mem_cgroup) {
804 if (prev)
805 goto out;
806 return root;
807 }
808
809 rcu_read_lock();
810
811 if (reclaim) {
812 struct mem_cgroup_per_zone *mz;
813
814 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
815 iter = &mz->iter[reclaim->priority];
816
817 if (prev && reclaim->generation != iter->generation)
818 goto out_unlock;
819
820 while (1) {
821 pos = READ_ONCE(iter->position);
822 if (!pos || css_tryget(&pos->css))
823 break;
824 /*
825 * css reference reached zero, so iter->position will
826 * be cleared by ->css_released. However, we should not
827 * rely on this happening soon, because ->css_released
828 * is called from a work queue, and by busy-waiting we
829 * might block it. So we clear iter->position right
830 * away.
831 */
832 (void)cmpxchg(&iter->position, pos, NULL);
833 }
834 }
835
836 if (pos)
837 css = &pos->css;
838
839 for (;;) {
840 css = css_next_descendant_pre(css, &root->css);
841 if (!css) {
842 /*
843 * Reclaimers share the hierarchy walk, and a
844 * new one might jump in right at the end of
845 * the hierarchy - make sure they see at least
846 * one group and restart from the beginning.
847 */
848 if (!prev)
849 continue;
850 break;
851 }
852
853 /*
854 * Verify the css and acquire a reference. The root
855 * is provided by the caller, so we know it's alive
856 * and kicking, and don't take an extra reference.
857 */
858 memcg = mem_cgroup_from_css(css);
859
860 if (css == &root->css)
861 break;
862
863 if (css_tryget(css))
864 break;
865
866 memcg = NULL;
867 }
868
869 if (reclaim) {
870 /*
871 * The position could have already been updated by a competing
872 * thread, so check that the value hasn't changed since we read
873 * it to avoid reclaiming from the same cgroup twice.
874 */
875 (void)cmpxchg(&iter->position, pos, memcg);
876
877 if (pos)
878 css_put(&pos->css);
879
880 if (!memcg)
881 iter->generation++;
882 else if (!prev)
883 reclaim->generation = iter->generation;
884 }
885
886 out_unlock:
887 rcu_read_unlock();
888 out:
889 if (prev && prev != root)
890 css_put(&prev->css);
891
892 return memcg;
893 }
894
895 /**
896 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
897 * @root: hierarchy root
898 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
899 */
900 void mem_cgroup_iter_break(struct mem_cgroup *root,
901 struct mem_cgroup *prev)
902 {
903 if (!root)
904 root = root_mem_cgroup;
905 if (prev && prev != root)
906 css_put(&prev->css);
907 }
908
909 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
910 {
911 struct mem_cgroup *memcg = dead_memcg;
912 struct mem_cgroup_reclaim_iter *iter;
913 struct mem_cgroup_per_zone *mz;
914 int nid, zid;
915 int i;
916
917 while ((memcg = parent_mem_cgroup(memcg))) {
918 for_each_node(nid) {
919 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
920 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
921 for (i = 0; i <= DEF_PRIORITY; i++) {
922 iter = &mz->iter[i];
923 cmpxchg(&iter->position,
924 dead_memcg, NULL);
925 }
926 }
927 }
928 }
929 }
930
931 /*
932 * Iteration constructs for visiting all cgroups (under a tree). If
933 * loops are exited prematurely (break), mem_cgroup_iter_break() must
934 * be used for reference counting.
935 */
936 #define for_each_mem_cgroup_tree(iter, root) \
937 for (iter = mem_cgroup_iter(root, NULL, NULL); \
938 iter != NULL; \
939 iter = mem_cgroup_iter(root, iter, NULL))
940
941 #define for_each_mem_cgroup(iter) \
942 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
943 iter != NULL; \
944 iter = mem_cgroup_iter(NULL, iter, NULL))
945
946 /**
947 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
948 * @zone: zone of the wanted lruvec
949 * @memcg: memcg of the wanted lruvec
950 *
951 * Returns the lru list vector holding pages for the given @zone and
952 * @mem. This can be the global zone lruvec, if the memory controller
953 * is disabled.
954 */
955 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
956 struct mem_cgroup *memcg)
957 {
958 struct mem_cgroup_per_zone *mz;
959 struct lruvec *lruvec;
960
961 if (mem_cgroup_disabled()) {
962 lruvec = &zone->lruvec;
963 goto out;
964 }
965
966 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
967 lruvec = &mz->lruvec;
968 out:
969 /*
970 * Since a node can be onlined after the mem_cgroup was created,
971 * we have to be prepared to initialize lruvec->zone here;
972 * and if offlined then reonlined, we need to reinitialize it.
973 */
974 if (unlikely(lruvec->zone != zone))
975 lruvec->zone = zone;
976 return lruvec;
977 }
978
979 /**
980 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
981 * @page: the page
982 * @zone: zone of the page
983 *
984 * This function is only safe when following the LRU page isolation
985 * and putback protocol: the LRU lock must be held, and the page must
986 * either be PageLRU() or the caller must have isolated/allocated it.
987 */
988 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
989 {
990 struct mem_cgroup_per_zone *mz;
991 struct mem_cgroup *memcg;
992 struct lruvec *lruvec;
993
994 if (mem_cgroup_disabled()) {
995 lruvec = &zone->lruvec;
996 goto out;
997 }
998
999 memcg = page->mem_cgroup;
1000 /*
1001 * Swapcache readahead pages are added to the LRU - and
1002 * possibly migrated - before they are charged.
1003 */
1004 if (!memcg)
1005 memcg = root_mem_cgroup;
1006
1007 mz = mem_cgroup_page_zoneinfo(memcg, page);
1008 lruvec = &mz->lruvec;
1009 out:
1010 /*
1011 * Since a node can be onlined after the mem_cgroup was created,
1012 * we have to be prepared to initialize lruvec->zone here;
1013 * and if offlined then reonlined, we need to reinitialize it.
1014 */
1015 if (unlikely(lruvec->zone != zone))
1016 lruvec->zone = zone;
1017 return lruvec;
1018 }
1019
1020 /**
1021 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1022 * @lruvec: mem_cgroup per zone lru vector
1023 * @lru: index of lru list the page is sitting on
1024 * @nr_pages: positive when adding or negative when removing
1025 *
1026 * This function must be called when a page is added to or removed from an
1027 * lru list.
1028 */
1029 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1030 int nr_pages)
1031 {
1032 struct mem_cgroup_per_zone *mz;
1033 unsigned long *lru_size;
1034
1035 if (mem_cgroup_disabled())
1036 return;
1037
1038 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1039 lru_size = mz->lru_size + lru;
1040 *lru_size += nr_pages;
1041 VM_BUG_ON((long)(*lru_size) < 0);
1042 }
1043
1044 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1045 {
1046 struct mem_cgroup *task_memcg;
1047 struct task_struct *p;
1048 bool ret;
1049
1050 p = find_lock_task_mm(task);
1051 if (p) {
1052 task_memcg = get_mem_cgroup_from_mm(p->mm);
1053 task_unlock(p);
1054 } else {
1055 /*
1056 * All threads may have already detached their mm's, but the oom
1057 * killer still needs to detect if they have already been oom
1058 * killed to prevent needlessly killing additional tasks.
1059 */
1060 rcu_read_lock();
1061 task_memcg = mem_cgroup_from_task(task);
1062 css_get(&task_memcg->css);
1063 rcu_read_unlock();
1064 }
1065 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1066 css_put(&task_memcg->css);
1067 return ret;
1068 }
1069
1070 /**
1071 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1072 * @memcg: the memory cgroup
1073 *
1074 * Returns the maximum amount of memory @mem can be charged with, in
1075 * pages.
1076 */
1077 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1078 {
1079 unsigned long margin = 0;
1080 unsigned long count;
1081 unsigned long limit;
1082
1083 count = page_counter_read(&memcg->memory);
1084 limit = READ_ONCE(memcg->memory.limit);
1085 if (count < limit)
1086 margin = limit - count;
1087
1088 if (do_memsw_account()) {
1089 count = page_counter_read(&memcg->memsw);
1090 limit = READ_ONCE(memcg->memsw.limit);
1091 if (count <= limit)
1092 margin = min(margin, limit - count);
1093 }
1094
1095 return margin;
1096 }
1097
1098 /*
1099 * A routine for checking "mem" is under move_account() or not.
1100 *
1101 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1102 * moving cgroups. This is for waiting at high-memory pressure
1103 * caused by "move".
1104 */
1105 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1106 {
1107 struct mem_cgroup *from;
1108 struct mem_cgroup *to;
1109 bool ret = false;
1110 /*
1111 * Unlike task_move routines, we access mc.to, mc.from not under
1112 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1113 */
1114 spin_lock(&mc.lock);
1115 from = mc.from;
1116 to = mc.to;
1117 if (!from)
1118 goto unlock;
1119
1120 ret = mem_cgroup_is_descendant(from, memcg) ||
1121 mem_cgroup_is_descendant(to, memcg);
1122 unlock:
1123 spin_unlock(&mc.lock);
1124 return ret;
1125 }
1126
1127 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1128 {
1129 if (mc.moving_task && current != mc.moving_task) {
1130 if (mem_cgroup_under_move(memcg)) {
1131 DEFINE_WAIT(wait);
1132 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1133 /* moving charge context might have finished. */
1134 if (mc.moving_task)
1135 schedule();
1136 finish_wait(&mc.waitq, &wait);
1137 return true;
1138 }
1139 }
1140 return false;
1141 }
1142
1143 #define K(x) ((x) << (PAGE_SHIFT-10))
1144 /**
1145 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1146 * @memcg: The memory cgroup that went over limit
1147 * @p: Task that is going to be killed
1148 *
1149 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1150 * enabled
1151 */
1152 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1153 {
1154 /* oom_info_lock ensures that parallel ooms do not interleave */
1155 static DEFINE_MUTEX(oom_info_lock);
1156 struct mem_cgroup *iter;
1157 unsigned int i;
1158
1159 mutex_lock(&oom_info_lock);
1160 rcu_read_lock();
1161
1162 if (p) {
1163 pr_info("Task in ");
1164 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1165 pr_cont(" killed as a result of limit of ");
1166 } else {
1167 pr_info("Memory limit reached of cgroup ");
1168 }
1169
1170 pr_cont_cgroup_path(memcg->css.cgroup);
1171 pr_cont("\n");
1172
1173 rcu_read_unlock();
1174
1175 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1176 K((u64)page_counter_read(&memcg->memory)),
1177 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1178 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1179 K((u64)page_counter_read(&memcg->memsw)),
1180 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1181 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1182 K((u64)page_counter_read(&memcg->kmem)),
1183 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1184
1185 for_each_mem_cgroup_tree(iter, memcg) {
1186 pr_info("Memory cgroup stats for ");
1187 pr_cont_cgroup_path(iter->css.cgroup);
1188 pr_cont(":");
1189
1190 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1191 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1192 continue;
1193 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1194 K(mem_cgroup_read_stat(iter, i)));
1195 }
1196
1197 for (i = 0; i < NR_LRU_LISTS; i++)
1198 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1199 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1200
1201 pr_cont("\n");
1202 }
1203 mutex_unlock(&oom_info_lock);
1204 }
1205
1206 /*
1207 * This function returns the number of memcg under hierarchy tree. Returns
1208 * 1(self count) if no children.
1209 */
1210 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1211 {
1212 int num = 0;
1213 struct mem_cgroup *iter;
1214
1215 for_each_mem_cgroup_tree(iter, memcg)
1216 num++;
1217 return num;
1218 }
1219
1220 /*
1221 * Return the memory (and swap, if configured) limit for a memcg.
1222 */
1223 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1224 {
1225 unsigned long limit;
1226
1227 limit = memcg->memory.limit;
1228 if (mem_cgroup_swappiness(memcg)) {
1229 unsigned long memsw_limit;
1230 unsigned long swap_limit;
1231
1232 memsw_limit = memcg->memsw.limit;
1233 swap_limit = memcg->swap.limit;
1234 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1235 limit = min(limit + swap_limit, memsw_limit);
1236 }
1237 return limit;
1238 }
1239
1240 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1241 int order)
1242 {
1243 struct oom_control oc = {
1244 .zonelist = NULL,
1245 .nodemask = NULL,
1246 .gfp_mask = gfp_mask,
1247 .order = order,
1248 };
1249 struct mem_cgroup *iter;
1250 unsigned long chosen_points = 0;
1251 unsigned long totalpages;
1252 unsigned int points = 0;
1253 struct task_struct *chosen = NULL;
1254
1255 mutex_lock(&oom_lock);
1256
1257 /*
1258 * If current has a pending SIGKILL or is exiting, then automatically
1259 * select it. The goal is to allow it to allocate so that it may
1260 * quickly exit and free its memory.
1261 */
1262 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1263 mark_oom_victim(current);
1264 goto unlock;
1265 }
1266
1267 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1268 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1269 for_each_mem_cgroup_tree(iter, memcg) {
1270 struct css_task_iter it;
1271 struct task_struct *task;
1272
1273 css_task_iter_start(&iter->css, &it);
1274 while ((task = css_task_iter_next(&it))) {
1275 switch (oom_scan_process_thread(&oc, task, totalpages)) {
1276 case OOM_SCAN_SELECT:
1277 if (chosen)
1278 put_task_struct(chosen);
1279 chosen = task;
1280 chosen_points = ULONG_MAX;
1281 get_task_struct(chosen);
1282 /* fall through */
1283 case OOM_SCAN_CONTINUE:
1284 continue;
1285 case OOM_SCAN_ABORT:
1286 css_task_iter_end(&it);
1287 mem_cgroup_iter_break(memcg, iter);
1288 if (chosen)
1289 put_task_struct(chosen);
1290 goto unlock;
1291 case OOM_SCAN_OK:
1292 break;
1293 };
1294 points = oom_badness(task, memcg, NULL, totalpages);
1295 if (!points || points < chosen_points)
1296 continue;
1297 /* Prefer thread group leaders for display purposes */
1298 if (points == chosen_points &&
1299 thread_group_leader(chosen))
1300 continue;
1301
1302 if (chosen)
1303 put_task_struct(chosen);
1304 chosen = task;
1305 chosen_points = points;
1306 get_task_struct(chosen);
1307 }
1308 css_task_iter_end(&it);
1309 }
1310
1311 if (chosen) {
1312 points = chosen_points * 1000 / totalpages;
1313 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1314 "Memory cgroup out of memory");
1315 }
1316 unlock:
1317 mutex_unlock(&oom_lock);
1318 }
1319
1320 #if MAX_NUMNODES > 1
1321
1322 /**
1323 * test_mem_cgroup_node_reclaimable
1324 * @memcg: the target memcg
1325 * @nid: the node ID to be checked.
1326 * @noswap : specify true here if the user wants flle only information.
1327 *
1328 * This function returns whether the specified memcg contains any
1329 * reclaimable pages on a node. Returns true if there are any reclaimable
1330 * pages in the node.
1331 */
1332 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1333 int nid, bool noswap)
1334 {
1335 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1336 return true;
1337 if (noswap || !total_swap_pages)
1338 return false;
1339 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1340 return true;
1341 return false;
1342
1343 }
1344
1345 /*
1346 * Always updating the nodemask is not very good - even if we have an empty
1347 * list or the wrong list here, we can start from some node and traverse all
1348 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1349 *
1350 */
1351 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1352 {
1353 int nid;
1354 /*
1355 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1356 * pagein/pageout changes since the last update.
1357 */
1358 if (!atomic_read(&memcg->numainfo_events))
1359 return;
1360 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1361 return;
1362
1363 /* make a nodemask where this memcg uses memory from */
1364 memcg->scan_nodes = node_states[N_MEMORY];
1365
1366 for_each_node_mask(nid, node_states[N_MEMORY]) {
1367
1368 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1369 node_clear(nid, memcg->scan_nodes);
1370 }
1371
1372 atomic_set(&memcg->numainfo_events, 0);
1373 atomic_set(&memcg->numainfo_updating, 0);
1374 }
1375
1376 /*
1377 * Selecting a node where we start reclaim from. Because what we need is just
1378 * reducing usage counter, start from anywhere is O,K. Considering
1379 * memory reclaim from current node, there are pros. and cons.
1380 *
1381 * Freeing memory from current node means freeing memory from a node which
1382 * we'll use or we've used. So, it may make LRU bad. And if several threads
1383 * hit limits, it will see a contention on a node. But freeing from remote
1384 * node means more costs for memory reclaim because of memory latency.
1385 *
1386 * Now, we use round-robin. Better algorithm is welcomed.
1387 */
1388 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1389 {
1390 int node;
1391
1392 mem_cgroup_may_update_nodemask(memcg);
1393 node = memcg->last_scanned_node;
1394
1395 node = next_node(node, memcg->scan_nodes);
1396 if (node == MAX_NUMNODES)
1397 node = first_node(memcg->scan_nodes);
1398 /*
1399 * We call this when we hit limit, not when pages are added to LRU.
1400 * No LRU may hold pages because all pages are UNEVICTABLE or
1401 * memcg is too small and all pages are not on LRU. In that case,
1402 * we use curret node.
1403 */
1404 if (unlikely(node == MAX_NUMNODES))
1405 node = numa_node_id();
1406
1407 memcg->last_scanned_node = node;
1408 return node;
1409 }
1410 #else
1411 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1412 {
1413 return 0;
1414 }
1415 #endif
1416
1417 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1418 struct zone *zone,
1419 gfp_t gfp_mask,
1420 unsigned long *total_scanned)
1421 {
1422 struct mem_cgroup *victim = NULL;
1423 int total = 0;
1424 int loop = 0;
1425 unsigned long excess;
1426 unsigned long nr_scanned;
1427 struct mem_cgroup_reclaim_cookie reclaim = {
1428 .zone = zone,
1429 .priority = 0,
1430 };
1431
1432 excess = soft_limit_excess(root_memcg);
1433
1434 while (1) {
1435 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1436 if (!victim) {
1437 loop++;
1438 if (loop >= 2) {
1439 /*
1440 * If we have not been able to reclaim
1441 * anything, it might because there are
1442 * no reclaimable pages under this hierarchy
1443 */
1444 if (!total)
1445 break;
1446 /*
1447 * We want to do more targeted reclaim.
1448 * excess >> 2 is not to excessive so as to
1449 * reclaim too much, nor too less that we keep
1450 * coming back to reclaim from this cgroup
1451 */
1452 if (total >= (excess >> 2) ||
1453 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1454 break;
1455 }
1456 continue;
1457 }
1458 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1459 zone, &nr_scanned);
1460 *total_scanned += nr_scanned;
1461 if (!soft_limit_excess(root_memcg))
1462 break;
1463 }
1464 mem_cgroup_iter_break(root_memcg, victim);
1465 return total;
1466 }
1467
1468 #ifdef CONFIG_LOCKDEP
1469 static struct lockdep_map memcg_oom_lock_dep_map = {
1470 .name = "memcg_oom_lock",
1471 };
1472 #endif
1473
1474 static DEFINE_SPINLOCK(memcg_oom_lock);
1475
1476 /*
1477 * Check OOM-Killer is already running under our hierarchy.
1478 * If someone is running, return false.
1479 */
1480 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1481 {
1482 struct mem_cgroup *iter, *failed = NULL;
1483
1484 spin_lock(&memcg_oom_lock);
1485
1486 for_each_mem_cgroup_tree(iter, memcg) {
1487 if (iter->oom_lock) {
1488 /*
1489 * this subtree of our hierarchy is already locked
1490 * so we cannot give a lock.
1491 */
1492 failed = iter;
1493 mem_cgroup_iter_break(memcg, iter);
1494 break;
1495 } else
1496 iter->oom_lock = true;
1497 }
1498
1499 if (failed) {
1500 /*
1501 * OK, we failed to lock the whole subtree so we have
1502 * to clean up what we set up to the failing subtree
1503 */
1504 for_each_mem_cgroup_tree(iter, memcg) {
1505 if (iter == failed) {
1506 mem_cgroup_iter_break(memcg, iter);
1507 break;
1508 }
1509 iter->oom_lock = false;
1510 }
1511 } else
1512 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1513
1514 spin_unlock(&memcg_oom_lock);
1515
1516 return !failed;
1517 }
1518
1519 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1520 {
1521 struct mem_cgroup *iter;
1522
1523 spin_lock(&memcg_oom_lock);
1524 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1525 for_each_mem_cgroup_tree(iter, memcg)
1526 iter->oom_lock = false;
1527 spin_unlock(&memcg_oom_lock);
1528 }
1529
1530 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1531 {
1532 struct mem_cgroup *iter;
1533
1534 spin_lock(&memcg_oom_lock);
1535 for_each_mem_cgroup_tree(iter, memcg)
1536 iter->under_oom++;
1537 spin_unlock(&memcg_oom_lock);
1538 }
1539
1540 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1541 {
1542 struct mem_cgroup *iter;
1543
1544 /*
1545 * When a new child is created while the hierarchy is under oom,
1546 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1547 */
1548 spin_lock(&memcg_oom_lock);
1549 for_each_mem_cgroup_tree(iter, memcg)
1550 if (iter->under_oom > 0)
1551 iter->under_oom--;
1552 spin_unlock(&memcg_oom_lock);
1553 }
1554
1555 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1556
1557 struct oom_wait_info {
1558 struct mem_cgroup *memcg;
1559 wait_queue_t wait;
1560 };
1561
1562 static int memcg_oom_wake_function(wait_queue_t *wait,
1563 unsigned mode, int sync, void *arg)
1564 {
1565 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1566 struct mem_cgroup *oom_wait_memcg;
1567 struct oom_wait_info *oom_wait_info;
1568
1569 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1570 oom_wait_memcg = oom_wait_info->memcg;
1571
1572 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1573 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1574 return 0;
1575 return autoremove_wake_function(wait, mode, sync, arg);
1576 }
1577
1578 static void memcg_oom_recover(struct mem_cgroup *memcg)
1579 {
1580 /*
1581 * For the following lockless ->under_oom test, the only required
1582 * guarantee is that it must see the state asserted by an OOM when
1583 * this function is called as a result of userland actions
1584 * triggered by the notification of the OOM. This is trivially
1585 * achieved by invoking mem_cgroup_mark_under_oom() before
1586 * triggering notification.
1587 */
1588 if (memcg && memcg->under_oom)
1589 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1590 }
1591
1592 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1593 {
1594 if (!current->memcg_may_oom)
1595 return;
1596 /*
1597 * We are in the middle of the charge context here, so we
1598 * don't want to block when potentially sitting on a callstack
1599 * that holds all kinds of filesystem and mm locks.
1600 *
1601 * Also, the caller may handle a failed allocation gracefully
1602 * (like optional page cache readahead) and so an OOM killer
1603 * invocation might not even be necessary.
1604 *
1605 * That's why we don't do anything here except remember the
1606 * OOM context and then deal with it at the end of the page
1607 * fault when the stack is unwound, the locks are released,
1608 * and when we know whether the fault was overall successful.
1609 */
1610 css_get(&memcg->css);
1611 current->memcg_in_oom = memcg;
1612 current->memcg_oom_gfp_mask = mask;
1613 current->memcg_oom_order = order;
1614 }
1615
1616 /**
1617 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1618 * @handle: actually kill/wait or just clean up the OOM state
1619 *
1620 * This has to be called at the end of a page fault if the memcg OOM
1621 * handler was enabled.
1622 *
1623 * Memcg supports userspace OOM handling where failed allocations must
1624 * sleep on a waitqueue until the userspace task resolves the
1625 * situation. Sleeping directly in the charge context with all kinds
1626 * of locks held is not a good idea, instead we remember an OOM state
1627 * in the task and mem_cgroup_oom_synchronize() has to be called at
1628 * the end of the page fault to complete the OOM handling.
1629 *
1630 * Returns %true if an ongoing memcg OOM situation was detected and
1631 * completed, %false otherwise.
1632 */
1633 bool mem_cgroup_oom_synchronize(bool handle)
1634 {
1635 struct mem_cgroup *memcg = current->memcg_in_oom;
1636 struct oom_wait_info owait;
1637 bool locked;
1638
1639 /* OOM is global, do not handle */
1640 if (!memcg)
1641 return false;
1642
1643 if (!handle || oom_killer_disabled)
1644 goto cleanup;
1645
1646 owait.memcg = memcg;
1647 owait.wait.flags = 0;
1648 owait.wait.func = memcg_oom_wake_function;
1649 owait.wait.private = current;
1650 INIT_LIST_HEAD(&owait.wait.task_list);
1651
1652 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1653 mem_cgroup_mark_under_oom(memcg);
1654
1655 locked = mem_cgroup_oom_trylock(memcg);
1656
1657 if (locked)
1658 mem_cgroup_oom_notify(memcg);
1659
1660 if (locked && !memcg->oom_kill_disable) {
1661 mem_cgroup_unmark_under_oom(memcg);
1662 finish_wait(&memcg_oom_waitq, &owait.wait);
1663 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1664 current->memcg_oom_order);
1665 } else {
1666 schedule();
1667 mem_cgroup_unmark_under_oom(memcg);
1668 finish_wait(&memcg_oom_waitq, &owait.wait);
1669 }
1670
1671 if (locked) {
1672 mem_cgroup_oom_unlock(memcg);
1673 /*
1674 * There is no guarantee that an OOM-lock contender
1675 * sees the wakeups triggered by the OOM kill
1676 * uncharges. Wake any sleepers explicitely.
1677 */
1678 memcg_oom_recover(memcg);
1679 }
1680 cleanup:
1681 current->memcg_in_oom = NULL;
1682 css_put(&memcg->css);
1683 return true;
1684 }
1685
1686 /**
1687 * lock_page_memcg - lock a page->mem_cgroup binding
1688 * @page: the page
1689 *
1690 * This function protects unlocked LRU pages from being moved to
1691 * another cgroup and stabilizes their page->mem_cgroup binding.
1692 */
1693 void lock_page_memcg(struct page *page)
1694 {
1695 struct mem_cgroup *memcg;
1696 unsigned long flags;
1697
1698 /*
1699 * The RCU lock is held throughout the transaction. The fast
1700 * path can get away without acquiring the memcg->move_lock
1701 * because page moving starts with an RCU grace period.
1702 */
1703 rcu_read_lock();
1704
1705 if (mem_cgroup_disabled())
1706 return;
1707 again:
1708 memcg = page->mem_cgroup;
1709 if (unlikely(!memcg))
1710 return;
1711
1712 if (atomic_read(&memcg->moving_account) <= 0)
1713 return;
1714
1715 spin_lock_irqsave(&memcg->move_lock, flags);
1716 if (memcg != page->mem_cgroup) {
1717 spin_unlock_irqrestore(&memcg->move_lock, flags);
1718 goto again;
1719 }
1720
1721 /*
1722 * When charge migration first begins, we can have locked and
1723 * unlocked page stat updates happening concurrently. Track
1724 * the task who has the lock for unlock_page_memcg().
1725 */
1726 memcg->move_lock_task = current;
1727 memcg->move_lock_flags = flags;
1728
1729 return;
1730 }
1731 EXPORT_SYMBOL(lock_page_memcg);
1732
1733 /**
1734 * unlock_page_memcg - unlock a page->mem_cgroup binding
1735 * @page: the page
1736 */
1737 void unlock_page_memcg(struct page *page)
1738 {
1739 struct mem_cgroup *memcg = page->mem_cgroup;
1740
1741 if (memcg && memcg->move_lock_task == current) {
1742 unsigned long flags = memcg->move_lock_flags;
1743
1744 memcg->move_lock_task = NULL;
1745 memcg->move_lock_flags = 0;
1746
1747 spin_unlock_irqrestore(&memcg->move_lock, flags);
1748 }
1749
1750 rcu_read_unlock();
1751 }
1752 EXPORT_SYMBOL(unlock_page_memcg);
1753
1754 /*
1755 * size of first charge trial. "32" comes from vmscan.c's magic value.
1756 * TODO: maybe necessary to use big numbers in big irons.
1757 */
1758 #define CHARGE_BATCH 32U
1759 struct memcg_stock_pcp {
1760 struct mem_cgroup *cached; /* this never be root cgroup */
1761 unsigned int nr_pages;
1762 struct work_struct work;
1763 unsigned long flags;
1764 #define FLUSHING_CACHED_CHARGE 0
1765 };
1766 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1767 static DEFINE_MUTEX(percpu_charge_mutex);
1768
1769 /**
1770 * consume_stock: Try to consume stocked charge on this cpu.
1771 * @memcg: memcg to consume from.
1772 * @nr_pages: how many pages to charge.
1773 *
1774 * The charges will only happen if @memcg matches the current cpu's memcg
1775 * stock, and at least @nr_pages are available in that stock. Failure to
1776 * service an allocation will refill the stock.
1777 *
1778 * returns true if successful, false otherwise.
1779 */
1780 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1781 {
1782 struct memcg_stock_pcp *stock;
1783 bool ret = false;
1784
1785 if (nr_pages > CHARGE_BATCH)
1786 return ret;
1787
1788 stock = &get_cpu_var(memcg_stock);
1789 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1790 stock->nr_pages -= nr_pages;
1791 ret = true;
1792 }
1793 put_cpu_var(memcg_stock);
1794 return ret;
1795 }
1796
1797 /*
1798 * Returns stocks cached in percpu and reset cached information.
1799 */
1800 static void drain_stock(struct memcg_stock_pcp *stock)
1801 {
1802 struct mem_cgroup *old = stock->cached;
1803
1804 if (stock->nr_pages) {
1805 page_counter_uncharge(&old->memory, stock->nr_pages);
1806 if (do_memsw_account())
1807 page_counter_uncharge(&old->memsw, stock->nr_pages);
1808 css_put_many(&old->css, stock->nr_pages);
1809 stock->nr_pages = 0;
1810 }
1811 stock->cached = NULL;
1812 }
1813
1814 /*
1815 * This must be called under preempt disabled or must be called by
1816 * a thread which is pinned to local cpu.
1817 */
1818 static void drain_local_stock(struct work_struct *dummy)
1819 {
1820 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1821 drain_stock(stock);
1822 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1823 }
1824
1825 /*
1826 * Cache charges(val) to local per_cpu area.
1827 * This will be consumed by consume_stock() function, later.
1828 */
1829 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1830 {
1831 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1832
1833 if (stock->cached != memcg) { /* reset if necessary */
1834 drain_stock(stock);
1835 stock->cached = memcg;
1836 }
1837 stock->nr_pages += nr_pages;
1838 put_cpu_var(memcg_stock);
1839 }
1840
1841 /*
1842 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1843 * of the hierarchy under it.
1844 */
1845 static void drain_all_stock(struct mem_cgroup *root_memcg)
1846 {
1847 int cpu, curcpu;
1848
1849 /* If someone's already draining, avoid adding running more workers. */
1850 if (!mutex_trylock(&percpu_charge_mutex))
1851 return;
1852 /* Notify other cpus that system-wide "drain" is running */
1853 get_online_cpus();
1854 curcpu = get_cpu();
1855 for_each_online_cpu(cpu) {
1856 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1857 struct mem_cgroup *memcg;
1858
1859 memcg = stock->cached;
1860 if (!memcg || !stock->nr_pages)
1861 continue;
1862 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1863 continue;
1864 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1865 if (cpu == curcpu)
1866 drain_local_stock(&stock->work);
1867 else
1868 schedule_work_on(cpu, &stock->work);
1869 }
1870 }
1871 put_cpu();
1872 put_online_cpus();
1873 mutex_unlock(&percpu_charge_mutex);
1874 }
1875
1876 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1877 unsigned long action,
1878 void *hcpu)
1879 {
1880 int cpu = (unsigned long)hcpu;
1881 struct memcg_stock_pcp *stock;
1882
1883 if (action == CPU_ONLINE)
1884 return NOTIFY_OK;
1885
1886 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1887 return NOTIFY_OK;
1888
1889 stock = &per_cpu(memcg_stock, cpu);
1890 drain_stock(stock);
1891 return NOTIFY_OK;
1892 }
1893
1894 static void reclaim_high(struct mem_cgroup *memcg,
1895 unsigned int nr_pages,
1896 gfp_t gfp_mask)
1897 {
1898 do {
1899 if (page_counter_read(&memcg->memory) <= memcg->high)
1900 continue;
1901 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1902 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1903 } while ((memcg = parent_mem_cgroup(memcg)));
1904 }
1905
1906 static void high_work_func(struct work_struct *work)
1907 {
1908 struct mem_cgroup *memcg;
1909
1910 memcg = container_of(work, struct mem_cgroup, high_work);
1911 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1912 }
1913
1914 /*
1915 * Scheduled by try_charge() to be executed from the userland return path
1916 * and reclaims memory over the high limit.
1917 */
1918 void mem_cgroup_handle_over_high(void)
1919 {
1920 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1921 struct mem_cgroup *memcg;
1922
1923 if (likely(!nr_pages))
1924 return;
1925
1926 memcg = get_mem_cgroup_from_mm(current->mm);
1927 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1928 css_put(&memcg->css);
1929 current->memcg_nr_pages_over_high = 0;
1930 }
1931
1932 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1933 unsigned int nr_pages)
1934 {
1935 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1936 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1937 struct mem_cgroup *mem_over_limit;
1938 struct page_counter *counter;
1939 unsigned long nr_reclaimed;
1940 bool may_swap = true;
1941 bool drained = false;
1942
1943 if (mem_cgroup_is_root(memcg))
1944 return 0;
1945 retry:
1946 if (consume_stock(memcg, nr_pages))
1947 return 0;
1948
1949 if (!do_memsw_account() ||
1950 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1951 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1952 goto done_restock;
1953 if (do_memsw_account())
1954 page_counter_uncharge(&memcg->memsw, batch);
1955 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1956 } else {
1957 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1958 may_swap = false;
1959 }
1960
1961 if (batch > nr_pages) {
1962 batch = nr_pages;
1963 goto retry;
1964 }
1965
1966 /*
1967 * Unlike in global OOM situations, memcg is not in a physical
1968 * memory shortage. Allow dying and OOM-killed tasks to
1969 * bypass the last charges so that they can exit quickly and
1970 * free their memory.
1971 */
1972 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1973 fatal_signal_pending(current) ||
1974 current->flags & PF_EXITING))
1975 goto force;
1976
1977 if (unlikely(task_in_memcg_oom(current)))
1978 goto nomem;
1979
1980 if (!gfpflags_allow_blocking(gfp_mask))
1981 goto nomem;
1982
1983 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1984
1985 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1986 gfp_mask, may_swap);
1987
1988 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1989 goto retry;
1990
1991 if (!drained) {
1992 drain_all_stock(mem_over_limit);
1993 drained = true;
1994 goto retry;
1995 }
1996
1997 if (gfp_mask & __GFP_NORETRY)
1998 goto nomem;
1999 /*
2000 * Even though the limit is exceeded at this point, reclaim
2001 * may have been able to free some pages. Retry the charge
2002 * before killing the task.
2003 *
2004 * Only for regular pages, though: huge pages are rather
2005 * unlikely to succeed so close to the limit, and we fall back
2006 * to regular pages anyway in case of failure.
2007 */
2008 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2009 goto retry;
2010 /*
2011 * At task move, charge accounts can be doubly counted. So, it's
2012 * better to wait until the end of task_move if something is going on.
2013 */
2014 if (mem_cgroup_wait_acct_move(mem_over_limit))
2015 goto retry;
2016
2017 if (nr_retries--)
2018 goto retry;
2019
2020 if (gfp_mask & __GFP_NOFAIL)
2021 goto force;
2022
2023 if (fatal_signal_pending(current))
2024 goto force;
2025
2026 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2027
2028 mem_cgroup_oom(mem_over_limit, gfp_mask,
2029 get_order(nr_pages * PAGE_SIZE));
2030 nomem:
2031 if (!(gfp_mask & __GFP_NOFAIL))
2032 return -ENOMEM;
2033 force:
2034 /*
2035 * The allocation either can't fail or will lead to more memory
2036 * being freed very soon. Allow memory usage go over the limit
2037 * temporarily by force charging it.
2038 */
2039 page_counter_charge(&memcg->memory, nr_pages);
2040 if (do_memsw_account())
2041 page_counter_charge(&memcg->memsw, nr_pages);
2042 css_get_many(&memcg->css, nr_pages);
2043
2044 return 0;
2045
2046 done_restock:
2047 css_get_many(&memcg->css, batch);
2048 if (batch > nr_pages)
2049 refill_stock(memcg, batch - nr_pages);
2050
2051 /*
2052 * If the hierarchy is above the normal consumption range, schedule
2053 * reclaim on returning to userland. We can perform reclaim here
2054 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2055 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2056 * not recorded as it most likely matches current's and won't
2057 * change in the meantime. As high limit is checked again before
2058 * reclaim, the cost of mismatch is negligible.
2059 */
2060 do {
2061 if (page_counter_read(&memcg->memory) > memcg->high) {
2062 /* Don't bother a random interrupted task */
2063 if (in_interrupt()) {
2064 schedule_work(&memcg->high_work);
2065 break;
2066 }
2067 current->memcg_nr_pages_over_high += batch;
2068 set_notify_resume(current);
2069 break;
2070 }
2071 } while ((memcg = parent_mem_cgroup(memcg)));
2072
2073 return 0;
2074 }
2075
2076 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2077 {
2078 if (mem_cgroup_is_root(memcg))
2079 return;
2080
2081 page_counter_uncharge(&memcg->memory, nr_pages);
2082 if (do_memsw_account())
2083 page_counter_uncharge(&memcg->memsw, nr_pages);
2084
2085 css_put_many(&memcg->css, nr_pages);
2086 }
2087
2088 static void lock_page_lru(struct page *page, int *isolated)
2089 {
2090 struct zone *zone = page_zone(page);
2091
2092 spin_lock_irq(&zone->lru_lock);
2093 if (PageLRU(page)) {
2094 struct lruvec *lruvec;
2095
2096 lruvec = mem_cgroup_page_lruvec(page, zone);
2097 ClearPageLRU(page);
2098 del_page_from_lru_list(page, lruvec, page_lru(page));
2099 *isolated = 1;
2100 } else
2101 *isolated = 0;
2102 }
2103
2104 static void unlock_page_lru(struct page *page, int isolated)
2105 {
2106 struct zone *zone = page_zone(page);
2107
2108 if (isolated) {
2109 struct lruvec *lruvec;
2110
2111 lruvec = mem_cgroup_page_lruvec(page, zone);
2112 VM_BUG_ON_PAGE(PageLRU(page), page);
2113 SetPageLRU(page);
2114 add_page_to_lru_list(page, lruvec, page_lru(page));
2115 }
2116 spin_unlock_irq(&zone->lru_lock);
2117 }
2118
2119 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2120 bool lrucare)
2121 {
2122 int isolated;
2123
2124 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2125
2126 /*
2127 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2128 * may already be on some other mem_cgroup's LRU. Take care of it.
2129 */
2130 if (lrucare)
2131 lock_page_lru(page, &isolated);
2132
2133 /*
2134 * Nobody should be changing or seriously looking at
2135 * page->mem_cgroup at this point:
2136 *
2137 * - the page is uncharged
2138 *
2139 * - the page is off-LRU
2140 *
2141 * - an anonymous fault has exclusive page access, except for
2142 * a locked page table
2143 *
2144 * - a page cache insertion, a swapin fault, or a migration
2145 * have the page locked
2146 */
2147 page->mem_cgroup = memcg;
2148
2149 if (lrucare)
2150 unlock_page_lru(page, isolated);
2151 }
2152
2153 #ifndef CONFIG_SLOB
2154 static int memcg_alloc_cache_id(void)
2155 {
2156 int id, size;
2157 int err;
2158
2159 id = ida_simple_get(&memcg_cache_ida,
2160 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2161 if (id < 0)
2162 return id;
2163
2164 if (id < memcg_nr_cache_ids)
2165 return id;
2166
2167 /*
2168 * There's no space for the new id in memcg_caches arrays,
2169 * so we have to grow them.
2170 */
2171 down_write(&memcg_cache_ids_sem);
2172
2173 size = 2 * (id + 1);
2174 if (size < MEMCG_CACHES_MIN_SIZE)
2175 size = MEMCG_CACHES_MIN_SIZE;
2176 else if (size > MEMCG_CACHES_MAX_SIZE)
2177 size = MEMCG_CACHES_MAX_SIZE;
2178
2179 err = memcg_update_all_caches(size);
2180 if (!err)
2181 err = memcg_update_all_list_lrus(size);
2182 if (!err)
2183 memcg_nr_cache_ids = size;
2184
2185 up_write(&memcg_cache_ids_sem);
2186
2187 if (err) {
2188 ida_simple_remove(&memcg_cache_ida, id);
2189 return err;
2190 }
2191 return id;
2192 }
2193
2194 static void memcg_free_cache_id(int id)
2195 {
2196 ida_simple_remove(&memcg_cache_ida, id);
2197 }
2198
2199 struct memcg_kmem_cache_create_work {
2200 struct mem_cgroup *memcg;
2201 struct kmem_cache *cachep;
2202 struct work_struct work;
2203 };
2204
2205 static void memcg_kmem_cache_create_func(struct work_struct *w)
2206 {
2207 struct memcg_kmem_cache_create_work *cw =
2208 container_of(w, struct memcg_kmem_cache_create_work, work);
2209 struct mem_cgroup *memcg = cw->memcg;
2210 struct kmem_cache *cachep = cw->cachep;
2211
2212 memcg_create_kmem_cache(memcg, cachep);
2213
2214 css_put(&memcg->css);
2215 kfree(cw);
2216 }
2217
2218 /*
2219 * Enqueue the creation of a per-memcg kmem_cache.
2220 */
2221 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2222 struct kmem_cache *cachep)
2223 {
2224 struct memcg_kmem_cache_create_work *cw;
2225
2226 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2227 if (!cw)
2228 return;
2229
2230 css_get(&memcg->css);
2231
2232 cw->memcg = memcg;
2233 cw->cachep = cachep;
2234 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2235
2236 schedule_work(&cw->work);
2237 }
2238
2239 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2240 struct kmem_cache *cachep)
2241 {
2242 /*
2243 * We need to stop accounting when we kmalloc, because if the
2244 * corresponding kmalloc cache is not yet created, the first allocation
2245 * in __memcg_schedule_kmem_cache_create will recurse.
2246 *
2247 * However, it is better to enclose the whole function. Depending on
2248 * the debugging options enabled, INIT_WORK(), for instance, can
2249 * trigger an allocation. This too, will make us recurse. Because at
2250 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2251 * the safest choice is to do it like this, wrapping the whole function.
2252 */
2253 current->memcg_kmem_skip_account = 1;
2254 __memcg_schedule_kmem_cache_create(memcg, cachep);
2255 current->memcg_kmem_skip_account = 0;
2256 }
2257
2258 /*
2259 * Return the kmem_cache we're supposed to use for a slab allocation.
2260 * We try to use the current memcg's version of the cache.
2261 *
2262 * If the cache does not exist yet, if we are the first user of it,
2263 * we either create it immediately, if possible, or create it asynchronously
2264 * in a workqueue.
2265 * In the latter case, we will let the current allocation go through with
2266 * the original cache.
2267 *
2268 * Can't be called in interrupt context or from kernel threads.
2269 * This function needs to be called with rcu_read_lock() held.
2270 */
2271 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2272 {
2273 struct mem_cgroup *memcg;
2274 struct kmem_cache *memcg_cachep;
2275 int kmemcg_id;
2276
2277 VM_BUG_ON(!is_root_cache(cachep));
2278
2279 if (cachep->flags & SLAB_ACCOUNT)
2280 gfp |= __GFP_ACCOUNT;
2281
2282 if (!(gfp & __GFP_ACCOUNT))
2283 return cachep;
2284
2285 if (current->memcg_kmem_skip_account)
2286 return cachep;
2287
2288 memcg = get_mem_cgroup_from_mm(current->mm);
2289 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2290 if (kmemcg_id < 0)
2291 goto out;
2292
2293 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2294 if (likely(memcg_cachep))
2295 return memcg_cachep;
2296
2297 /*
2298 * If we are in a safe context (can wait, and not in interrupt
2299 * context), we could be be predictable and return right away.
2300 * This would guarantee that the allocation being performed
2301 * already belongs in the new cache.
2302 *
2303 * However, there are some clashes that can arrive from locking.
2304 * For instance, because we acquire the slab_mutex while doing
2305 * memcg_create_kmem_cache, this means no further allocation
2306 * could happen with the slab_mutex held. So it's better to
2307 * defer everything.
2308 */
2309 memcg_schedule_kmem_cache_create(memcg, cachep);
2310 out:
2311 css_put(&memcg->css);
2312 return cachep;
2313 }
2314
2315 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2316 {
2317 if (!is_root_cache(cachep))
2318 css_put(&cachep->memcg_params.memcg->css);
2319 }
2320
2321 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2322 struct mem_cgroup *memcg)
2323 {
2324 unsigned int nr_pages = 1 << order;
2325 struct page_counter *counter;
2326 int ret;
2327
2328 if (!memcg_kmem_online(memcg))
2329 return 0;
2330
2331 ret = try_charge(memcg, gfp, nr_pages);
2332 if (ret)
2333 return ret;
2334
2335 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2336 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2337 cancel_charge(memcg, nr_pages);
2338 return -ENOMEM;
2339 }
2340
2341 page->mem_cgroup = memcg;
2342
2343 return 0;
2344 }
2345
2346 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2347 {
2348 struct mem_cgroup *memcg;
2349 int ret;
2350
2351 memcg = get_mem_cgroup_from_mm(current->mm);
2352 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2353 css_put(&memcg->css);
2354 return ret;
2355 }
2356
2357 void __memcg_kmem_uncharge(struct page *page, int order)
2358 {
2359 struct mem_cgroup *memcg = page->mem_cgroup;
2360 unsigned int nr_pages = 1 << order;
2361
2362 if (!memcg)
2363 return;
2364
2365 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2366
2367 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2368 page_counter_uncharge(&memcg->kmem, nr_pages);
2369
2370 page_counter_uncharge(&memcg->memory, nr_pages);
2371 if (do_memsw_account())
2372 page_counter_uncharge(&memcg->memsw, nr_pages);
2373
2374 page->mem_cgroup = NULL;
2375 css_put_many(&memcg->css, nr_pages);
2376 }
2377 #endif /* !CONFIG_SLOB */
2378
2379 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2380
2381 /*
2382 * Because tail pages are not marked as "used", set it. We're under
2383 * zone->lru_lock and migration entries setup in all page mappings.
2384 */
2385 void mem_cgroup_split_huge_fixup(struct page *head)
2386 {
2387 int i;
2388
2389 if (mem_cgroup_disabled())
2390 return;
2391
2392 for (i = 1; i < HPAGE_PMD_NR; i++)
2393 head[i].mem_cgroup = head->mem_cgroup;
2394
2395 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2396 HPAGE_PMD_NR);
2397 }
2398 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2399
2400 #ifdef CONFIG_MEMCG_SWAP
2401 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2402 bool charge)
2403 {
2404 int val = (charge) ? 1 : -1;
2405 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2406 }
2407
2408 /**
2409 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2410 * @entry: swap entry to be moved
2411 * @from: mem_cgroup which the entry is moved from
2412 * @to: mem_cgroup which the entry is moved to
2413 *
2414 * It succeeds only when the swap_cgroup's record for this entry is the same
2415 * as the mem_cgroup's id of @from.
2416 *
2417 * Returns 0 on success, -EINVAL on failure.
2418 *
2419 * The caller must have charged to @to, IOW, called page_counter_charge() about
2420 * both res and memsw, and called css_get().
2421 */
2422 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2423 struct mem_cgroup *from, struct mem_cgroup *to)
2424 {
2425 unsigned short old_id, new_id;
2426
2427 old_id = mem_cgroup_id(from);
2428 new_id = mem_cgroup_id(to);
2429
2430 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2431 mem_cgroup_swap_statistics(from, false);
2432 mem_cgroup_swap_statistics(to, true);
2433 return 0;
2434 }
2435 return -EINVAL;
2436 }
2437 #else
2438 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2439 struct mem_cgroup *from, struct mem_cgroup *to)
2440 {
2441 return -EINVAL;
2442 }
2443 #endif
2444
2445 static DEFINE_MUTEX(memcg_limit_mutex);
2446
2447 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2448 unsigned long limit)
2449 {
2450 unsigned long curusage;
2451 unsigned long oldusage;
2452 bool enlarge = false;
2453 int retry_count;
2454 int ret;
2455
2456 /*
2457 * For keeping hierarchical_reclaim simple, how long we should retry
2458 * is depends on callers. We set our retry-count to be function
2459 * of # of children which we should visit in this loop.
2460 */
2461 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2462 mem_cgroup_count_children(memcg);
2463
2464 oldusage = page_counter_read(&memcg->memory);
2465
2466 do {
2467 if (signal_pending(current)) {
2468 ret = -EINTR;
2469 break;
2470 }
2471
2472 mutex_lock(&memcg_limit_mutex);
2473 if (limit > memcg->memsw.limit) {
2474 mutex_unlock(&memcg_limit_mutex);
2475 ret = -EINVAL;
2476 break;
2477 }
2478 if (limit > memcg->memory.limit)
2479 enlarge = true;
2480 ret = page_counter_limit(&memcg->memory, limit);
2481 mutex_unlock(&memcg_limit_mutex);
2482
2483 if (!ret)
2484 break;
2485
2486 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2487
2488 curusage = page_counter_read(&memcg->memory);
2489 /* Usage is reduced ? */
2490 if (curusage >= oldusage)
2491 retry_count--;
2492 else
2493 oldusage = curusage;
2494 } while (retry_count);
2495
2496 if (!ret && enlarge)
2497 memcg_oom_recover(memcg);
2498
2499 return ret;
2500 }
2501
2502 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2503 unsigned long limit)
2504 {
2505 unsigned long curusage;
2506 unsigned long oldusage;
2507 bool enlarge = false;
2508 int retry_count;
2509 int ret;
2510
2511 /* see mem_cgroup_resize_res_limit */
2512 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2513 mem_cgroup_count_children(memcg);
2514
2515 oldusage = page_counter_read(&memcg->memsw);
2516
2517 do {
2518 if (signal_pending(current)) {
2519 ret = -EINTR;
2520 break;
2521 }
2522
2523 mutex_lock(&memcg_limit_mutex);
2524 if (limit < memcg->memory.limit) {
2525 mutex_unlock(&memcg_limit_mutex);
2526 ret = -EINVAL;
2527 break;
2528 }
2529 if (limit > memcg->memsw.limit)
2530 enlarge = true;
2531 ret = page_counter_limit(&memcg->memsw, limit);
2532 mutex_unlock(&memcg_limit_mutex);
2533
2534 if (!ret)
2535 break;
2536
2537 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2538
2539 curusage = page_counter_read(&memcg->memsw);
2540 /* Usage is reduced ? */
2541 if (curusage >= oldusage)
2542 retry_count--;
2543 else
2544 oldusage = curusage;
2545 } while (retry_count);
2546
2547 if (!ret && enlarge)
2548 memcg_oom_recover(memcg);
2549
2550 return ret;
2551 }
2552
2553 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2554 gfp_t gfp_mask,
2555 unsigned long *total_scanned)
2556 {
2557 unsigned long nr_reclaimed = 0;
2558 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2559 unsigned long reclaimed;
2560 int loop = 0;
2561 struct mem_cgroup_tree_per_zone *mctz;
2562 unsigned long excess;
2563 unsigned long nr_scanned;
2564
2565 if (order > 0)
2566 return 0;
2567
2568 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2569 /*
2570 * This loop can run a while, specially if mem_cgroup's continuously
2571 * keep exceeding their soft limit and putting the system under
2572 * pressure
2573 */
2574 do {
2575 if (next_mz)
2576 mz = next_mz;
2577 else
2578 mz = mem_cgroup_largest_soft_limit_node(mctz);
2579 if (!mz)
2580 break;
2581
2582 nr_scanned = 0;
2583 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2584 gfp_mask, &nr_scanned);
2585 nr_reclaimed += reclaimed;
2586 *total_scanned += nr_scanned;
2587 spin_lock_irq(&mctz->lock);
2588 __mem_cgroup_remove_exceeded(mz, mctz);
2589
2590 /*
2591 * If we failed to reclaim anything from this memory cgroup
2592 * it is time to move on to the next cgroup
2593 */
2594 next_mz = NULL;
2595 if (!reclaimed)
2596 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2597
2598 excess = soft_limit_excess(mz->memcg);
2599 /*
2600 * One school of thought says that we should not add
2601 * back the node to the tree if reclaim returns 0.
2602 * But our reclaim could return 0, simply because due
2603 * to priority we are exposing a smaller subset of
2604 * memory to reclaim from. Consider this as a longer
2605 * term TODO.
2606 */
2607 /* If excess == 0, no tree ops */
2608 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2609 spin_unlock_irq(&mctz->lock);
2610 css_put(&mz->memcg->css);
2611 loop++;
2612 /*
2613 * Could not reclaim anything and there are no more
2614 * mem cgroups to try or we seem to be looping without
2615 * reclaiming anything.
2616 */
2617 if (!nr_reclaimed &&
2618 (next_mz == NULL ||
2619 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2620 break;
2621 } while (!nr_reclaimed);
2622 if (next_mz)
2623 css_put(&next_mz->memcg->css);
2624 return nr_reclaimed;
2625 }
2626
2627 /*
2628 * Test whether @memcg has children, dead or alive. Note that this
2629 * function doesn't care whether @memcg has use_hierarchy enabled and
2630 * returns %true if there are child csses according to the cgroup
2631 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2632 */
2633 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2634 {
2635 bool ret;
2636
2637 rcu_read_lock();
2638 ret = css_next_child(NULL, &memcg->css);
2639 rcu_read_unlock();
2640 return ret;
2641 }
2642
2643 /*
2644 * Reclaims as many pages from the given memcg as possible and moves
2645 * the rest to the parent.
2646 *
2647 * Caller is responsible for holding css reference for memcg.
2648 */
2649 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2650 {
2651 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2652
2653 /* we call try-to-free pages for make this cgroup empty */
2654 lru_add_drain_all();
2655 /* try to free all pages in this cgroup */
2656 while (nr_retries && page_counter_read(&memcg->memory)) {
2657 int progress;
2658
2659 if (signal_pending(current))
2660 return -EINTR;
2661
2662 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2663 GFP_KERNEL, true);
2664 if (!progress) {
2665 nr_retries--;
2666 /* maybe some writeback is necessary */
2667 congestion_wait(BLK_RW_ASYNC, HZ/10);
2668 }
2669
2670 }
2671
2672 return 0;
2673 }
2674
2675 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2676 char *buf, size_t nbytes,
2677 loff_t off)
2678 {
2679 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2680
2681 if (mem_cgroup_is_root(memcg))
2682 return -EINVAL;
2683 return mem_cgroup_force_empty(memcg) ?: nbytes;
2684 }
2685
2686 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2687 struct cftype *cft)
2688 {
2689 return mem_cgroup_from_css(css)->use_hierarchy;
2690 }
2691
2692 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2693 struct cftype *cft, u64 val)
2694 {
2695 int retval = 0;
2696 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2697 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2698
2699 if (memcg->use_hierarchy == val)
2700 return 0;
2701
2702 /*
2703 * If parent's use_hierarchy is set, we can't make any modifications
2704 * in the child subtrees. If it is unset, then the change can
2705 * occur, provided the current cgroup has no children.
2706 *
2707 * For the root cgroup, parent_mem is NULL, we allow value to be
2708 * set if there are no children.
2709 */
2710 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2711 (val == 1 || val == 0)) {
2712 if (!memcg_has_children(memcg))
2713 memcg->use_hierarchy = val;
2714 else
2715 retval = -EBUSY;
2716 } else
2717 retval = -EINVAL;
2718
2719 return retval;
2720 }
2721
2722 static unsigned long tree_stat(struct mem_cgroup *memcg,
2723 enum mem_cgroup_stat_index idx)
2724 {
2725 struct mem_cgroup *iter;
2726 unsigned long val = 0;
2727
2728 for_each_mem_cgroup_tree(iter, memcg)
2729 val += mem_cgroup_read_stat(iter, idx);
2730
2731 return val;
2732 }
2733
2734 static unsigned long tree_events(struct mem_cgroup *memcg,
2735 enum mem_cgroup_events_index idx)
2736 {
2737 struct mem_cgroup *iter;
2738 unsigned long val = 0;
2739
2740 for_each_mem_cgroup_tree(iter, memcg)
2741 val += mem_cgroup_read_events(iter, idx);
2742
2743 return val;
2744 }
2745
2746 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2747 {
2748 unsigned long val;
2749
2750 if (mem_cgroup_is_root(memcg)) {
2751 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2752 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2753 if (swap)
2754 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2755 } else {
2756 if (!swap)
2757 val = page_counter_read(&memcg->memory);
2758 else
2759 val = page_counter_read(&memcg->memsw);
2760 }
2761 return val;
2762 }
2763
2764 enum {
2765 RES_USAGE,
2766 RES_LIMIT,
2767 RES_MAX_USAGE,
2768 RES_FAILCNT,
2769 RES_SOFT_LIMIT,
2770 };
2771
2772 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2773 struct cftype *cft)
2774 {
2775 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2776 struct page_counter *counter;
2777
2778 switch (MEMFILE_TYPE(cft->private)) {
2779 case _MEM:
2780 counter = &memcg->memory;
2781 break;
2782 case _MEMSWAP:
2783 counter = &memcg->memsw;
2784 break;
2785 case _KMEM:
2786 counter = &memcg->kmem;
2787 break;
2788 case _TCP:
2789 counter = &memcg->tcpmem;
2790 break;
2791 default:
2792 BUG();
2793 }
2794
2795 switch (MEMFILE_ATTR(cft->private)) {
2796 case RES_USAGE:
2797 if (counter == &memcg->memory)
2798 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2799 if (counter == &memcg->memsw)
2800 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2801 return (u64)page_counter_read(counter) * PAGE_SIZE;
2802 case RES_LIMIT:
2803 return (u64)counter->limit * PAGE_SIZE;
2804 case RES_MAX_USAGE:
2805 return (u64)counter->watermark * PAGE_SIZE;
2806 case RES_FAILCNT:
2807 return counter->failcnt;
2808 case RES_SOFT_LIMIT:
2809 return (u64)memcg->soft_limit * PAGE_SIZE;
2810 default:
2811 BUG();
2812 }
2813 }
2814
2815 #ifndef CONFIG_SLOB
2816 static int memcg_online_kmem(struct mem_cgroup *memcg)
2817 {
2818 int memcg_id;
2819
2820 BUG_ON(memcg->kmemcg_id >= 0);
2821 BUG_ON(memcg->kmem_state);
2822
2823 memcg_id = memcg_alloc_cache_id();
2824 if (memcg_id < 0)
2825 return memcg_id;
2826
2827 static_branch_inc(&memcg_kmem_enabled_key);
2828 /*
2829 * A memory cgroup is considered kmem-online as soon as it gets
2830 * kmemcg_id. Setting the id after enabling static branching will
2831 * guarantee no one starts accounting before all call sites are
2832 * patched.
2833 */
2834 memcg->kmemcg_id = memcg_id;
2835 memcg->kmem_state = KMEM_ONLINE;
2836
2837 return 0;
2838 }
2839
2840 static int memcg_propagate_kmem(struct mem_cgroup *parent,
2841 struct mem_cgroup *memcg)
2842 {
2843 int ret = 0;
2844
2845 mutex_lock(&memcg_limit_mutex);
2846 /*
2847 * If the parent cgroup is not kmem-online now, it cannot be
2848 * onlined after this point, because it has at least one child
2849 * already.
2850 */
2851 if (memcg_kmem_online(parent) ||
2852 (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nokmem))
2853 ret = memcg_online_kmem(memcg);
2854 mutex_unlock(&memcg_limit_mutex);
2855 return ret;
2856 }
2857
2858 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2859 {
2860 struct cgroup_subsys_state *css;
2861 struct mem_cgroup *parent, *child;
2862 int kmemcg_id;
2863
2864 if (memcg->kmem_state != KMEM_ONLINE)
2865 return;
2866 /*
2867 * Clear the online state before clearing memcg_caches array
2868 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2869 * guarantees that no cache will be created for this cgroup
2870 * after we are done (see memcg_create_kmem_cache()).
2871 */
2872 memcg->kmem_state = KMEM_ALLOCATED;
2873
2874 memcg_deactivate_kmem_caches(memcg);
2875
2876 kmemcg_id = memcg->kmemcg_id;
2877 BUG_ON(kmemcg_id < 0);
2878
2879 parent = parent_mem_cgroup(memcg);
2880 if (!parent)
2881 parent = root_mem_cgroup;
2882
2883 /*
2884 * Change kmemcg_id of this cgroup and all its descendants to the
2885 * parent's id, and then move all entries from this cgroup's list_lrus
2886 * to ones of the parent. After we have finished, all list_lrus
2887 * corresponding to this cgroup are guaranteed to remain empty. The
2888 * ordering is imposed by list_lru_node->lock taken by
2889 * memcg_drain_all_list_lrus().
2890 */
2891 css_for_each_descendant_pre(css, &memcg->css) {
2892 child = mem_cgroup_from_css(css);
2893 BUG_ON(child->kmemcg_id != kmemcg_id);
2894 child->kmemcg_id = parent->kmemcg_id;
2895 if (!memcg->use_hierarchy)
2896 break;
2897 }
2898 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2899
2900 memcg_free_cache_id(kmemcg_id);
2901 }
2902
2903 static void memcg_free_kmem(struct mem_cgroup *memcg)
2904 {
2905 /* css_alloc() failed, offlining didn't happen */
2906 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2907 memcg_offline_kmem(memcg);
2908
2909 if (memcg->kmem_state == KMEM_ALLOCATED) {
2910 memcg_destroy_kmem_caches(memcg);
2911 static_branch_dec(&memcg_kmem_enabled_key);
2912 WARN_ON(page_counter_read(&memcg->kmem));
2913 }
2914 }
2915 #else
2916 static int memcg_propagate_kmem(struct mem_cgroup *parent, struct mem_cgroup *memcg)
2917 {
2918 return 0;
2919 }
2920 static int memcg_online_kmem(struct mem_cgroup *memcg)
2921 {
2922 return 0;
2923 }
2924 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2925 {
2926 }
2927 static void memcg_free_kmem(struct mem_cgroup *memcg)
2928 {
2929 }
2930 #endif /* !CONFIG_SLOB */
2931
2932 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2933 unsigned long limit)
2934 {
2935 int ret = 0;
2936
2937 mutex_lock(&memcg_limit_mutex);
2938 /* Top-level cgroup doesn't propagate from root */
2939 if (!memcg_kmem_online(memcg)) {
2940 if (cgroup_is_populated(memcg->css.cgroup) ||
2941 (memcg->use_hierarchy && memcg_has_children(memcg)))
2942 ret = -EBUSY;
2943 if (ret)
2944 goto out;
2945 ret = memcg_online_kmem(memcg);
2946 if (ret)
2947 goto out;
2948 }
2949 ret = page_counter_limit(&memcg->kmem, limit);
2950 out:
2951 mutex_unlock(&memcg_limit_mutex);
2952 return ret;
2953 }
2954
2955 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2956 {
2957 int ret;
2958
2959 mutex_lock(&memcg_limit_mutex);
2960
2961 ret = page_counter_limit(&memcg->tcpmem, limit);
2962 if (ret)
2963 goto out;
2964
2965 if (!memcg->tcpmem_active) {
2966 /*
2967 * The active flag needs to be written after the static_key
2968 * update. This is what guarantees that the socket activation
2969 * function is the last one to run. See sock_update_memcg() for
2970 * details, and note that we don't mark any socket as belonging
2971 * to this memcg until that flag is up.
2972 *
2973 * We need to do this, because static_keys will span multiple
2974 * sites, but we can't control their order. If we mark a socket
2975 * as accounted, but the accounting functions are not patched in
2976 * yet, we'll lose accounting.
2977 *
2978 * We never race with the readers in sock_update_memcg(),
2979 * because when this value change, the code to process it is not
2980 * patched in yet.
2981 */
2982 static_branch_inc(&memcg_sockets_enabled_key);
2983 memcg->tcpmem_active = true;
2984 }
2985 out:
2986 mutex_unlock(&memcg_limit_mutex);
2987 return ret;
2988 }
2989
2990 /*
2991 * The user of this function is...
2992 * RES_LIMIT.
2993 */
2994 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2995 char *buf, size_t nbytes, loff_t off)
2996 {
2997 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2998 unsigned long nr_pages;
2999 int ret;
3000
3001 buf = strstrip(buf);
3002 ret = page_counter_memparse(buf, "-1", &nr_pages);
3003 if (ret)
3004 return ret;
3005
3006 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3007 case RES_LIMIT:
3008 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3009 ret = -EINVAL;
3010 break;
3011 }
3012 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3013 case _MEM:
3014 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3015 break;
3016 case _MEMSWAP:
3017 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3018 break;
3019 case _KMEM:
3020 ret = memcg_update_kmem_limit(memcg, nr_pages);
3021 break;
3022 case _TCP:
3023 ret = memcg_update_tcp_limit(memcg, nr_pages);
3024 break;
3025 }
3026 break;
3027 case RES_SOFT_LIMIT:
3028 memcg->soft_limit = nr_pages;
3029 ret = 0;
3030 break;
3031 }
3032 return ret ?: nbytes;
3033 }
3034
3035 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3036 size_t nbytes, loff_t off)
3037 {
3038 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3039 struct page_counter *counter;
3040
3041 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3042 case _MEM:
3043 counter = &memcg->memory;
3044 break;
3045 case _MEMSWAP:
3046 counter = &memcg->memsw;
3047 break;
3048 case _KMEM:
3049 counter = &memcg->kmem;
3050 break;
3051 case _TCP:
3052 counter = &memcg->tcpmem;
3053 break;
3054 default:
3055 BUG();
3056 }
3057
3058 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3059 case RES_MAX_USAGE:
3060 page_counter_reset_watermark(counter);
3061 break;
3062 case RES_FAILCNT:
3063 counter->failcnt = 0;
3064 break;
3065 default:
3066 BUG();
3067 }
3068
3069 return nbytes;
3070 }
3071
3072 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3073 struct cftype *cft)
3074 {
3075 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3076 }
3077
3078 #ifdef CONFIG_MMU
3079 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3080 struct cftype *cft, u64 val)
3081 {
3082 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3083
3084 if (val & ~MOVE_MASK)
3085 return -EINVAL;
3086
3087 /*
3088 * No kind of locking is needed in here, because ->can_attach() will
3089 * check this value once in the beginning of the process, and then carry
3090 * on with stale data. This means that changes to this value will only
3091 * affect task migrations starting after the change.
3092 */
3093 memcg->move_charge_at_immigrate = val;
3094 return 0;
3095 }
3096 #else
3097 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3098 struct cftype *cft, u64 val)
3099 {
3100 return -ENOSYS;
3101 }
3102 #endif
3103
3104 #ifdef CONFIG_NUMA
3105 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3106 {
3107 struct numa_stat {
3108 const char *name;
3109 unsigned int lru_mask;
3110 };
3111
3112 static const struct numa_stat stats[] = {
3113 { "total", LRU_ALL },
3114 { "file", LRU_ALL_FILE },
3115 { "anon", LRU_ALL_ANON },
3116 { "unevictable", BIT(LRU_UNEVICTABLE) },
3117 };
3118 const struct numa_stat *stat;
3119 int nid;
3120 unsigned long nr;
3121 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3122
3123 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3124 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3125 seq_printf(m, "%s=%lu", stat->name, nr);
3126 for_each_node_state(nid, N_MEMORY) {
3127 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3128 stat->lru_mask);
3129 seq_printf(m, " N%d=%lu", nid, nr);
3130 }
3131 seq_putc(m, '\n');
3132 }
3133
3134 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3135 struct mem_cgroup *iter;
3136
3137 nr = 0;
3138 for_each_mem_cgroup_tree(iter, memcg)
3139 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3140 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3141 for_each_node_state(nid, N_MEMORY) {
3142 nr = 0;
3143 for_each_mem_cgroup_tree(iter, memcg)
3144 nr += mem_cgroup_node_nr_lru_pages(
3145 iter, nid, stat->lru_mask);
3146 seq_printf(m, " N%d=%lu", nid, nr);
3147 }
3148 seq_putc(m, '\n');
3149 }
3150
3151 return 0;
3152 }
3153 #endif /* CONFIG_NUMA */
3154
3155 static int memcg_stat_show(struct seq_file *m, void *v)
3156 {
3157 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3158 unsigned long memory, memsw;
3159 struct mem_cgroup *mi;
3160 unsigned int i;
3161
3162 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3163 MEM_CGROUP_STAT_NSTATS);
3164 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3165 MEM_CGROUP_EVENTS_NSTATS);
3166 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3167
3168 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3169 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3170 continue;
3171 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3172 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3173 }
3174
3175 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3176 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3177 mem_cgroup_read_events(memcg, i));
3178
3179 for (i = 0; i < NR_LRU_LISTS; i++)
3180 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3181 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3182
3183 /* Hierarchical information */
3184 memory = memsw = PAGE_COUNTER_MAX;
3185 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3186 memory = min(memory, mi->memory.limit);
3187 memsw = min(memsw, mi->memsw.limit);
3188 }
3189 seq_printf(m, "hierarchical_memory_limit %llu\n",
3190 (u64)memory * PAGE_SIZE);
3191 if (do_memsw_account())
3192 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3193 (u64)memsw * PAGE_SIZE);
3194
3195 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3196 unsigned long long val = 0;
3197
3198 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3199 continue;
3200 for_each_mem_cgroup_tree(mi, memcg)
3201 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3202 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3203 }
3204
3205 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3206 unsigned long long val = 0;
3207
3208 for_each_mem_cgroup_tree(mi, memcg)
3209 val += mem_cgroup_read_events(mi, i);
3210 seq_printf(m, "total_%s %llu\n",
3211 mem_cgroup_events_names[i], val);
3212 }
3213
3214 for (i = 0; i < NR_LRU_LISTS; i++) {
3215 unsigned long long val = 0;
3216
3217 for_each_mem_cgroup_tree(mi, memcg)
3218 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3219 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3220 }
3221
3222 #ifdef CONFIG_DEBUG_VM
3223 {
3224 int nid, zid;
3225 struct mem_cgroup_per_zone *mz;
3226 struct zone_reclaim_stat *rstat;
3227 unsigned long recent_rotated[2] = {0, 0};
3228 unsigned long recent_scanned[2] = {0, 0};
3229
3230 for_each_online_node(nid)
3231 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3232 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3233 rstat = &mz->lruvec.reclaim_stat;
3234
3235 recent_rotated[0] += rstat->recent_rotated[0];
3236 recent_rotated[1] += rstat->recent_rotated[1];
3237 recent_scanned[0] += rstat->recent_scanned[0];
3238 recent_scanned[1] += rstat->recent_scanned[1];
3239 }
3240 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3241 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3242 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3243 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3244 }
3245 #endif
3246
3247 return 0;
3248 }
3249
3250 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3251 struct cftype *cft)
3252 {
3253 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3254
3255 return mem_cgroup_swappiness(memcg);
3256 }
3257
3258 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3259 struct cftype *cft, u64 val)
3260 {
3261 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3262
3263 if (val > 100)
3264 return -EINVAL;
3265
3266 if (css->parent)
3267 memcg->swappiness = val;
3268 else
3269 vm_swappiness = val;
3270
3271 return 0;
3272 }
3273
3274 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3275 {
3276 struct mem_cgroup_threshold_ary *t;
3277 unsigned long usage;
3278 int i;
3279
3280 rcu_read_lock();
3281 if (!swap)
3282 t = rcu_dereference(memcg->thresholds.primary);
3283 else
3284 t = rcu_dereference(memcg->memsw_thresholds.primary);
3285
3286 if (!t)
3287 goto unlock;
3288
3289 usage = mem_cgroup_usage(memcg, swap);
3290
3291 /*
3292 * current_threshold points to threshold just below or equal to usage.
3293 * If it's not true, a threshold was crossed after last
3294 * call of __mem_cgroup_threshold().
3295 */
3296 i = t->current_threshold;
3297
3298 /*
3299 * Iterate backward over array of thresholds starting from
3300 * current_threshold and check if a threshold is crossed.
3301 * If none of thresholds below usage is crossed, we read
3302 * only one element of the array here.
3303 */
3304 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3305 eventfd_signal(t->entries[i].eventfd, 1);
3306
3307 /* i = current_threshold + 1 */
3308 i++;
3309
3310 /*
3311 * Iterate forward over array of thresholds starting from
3312 * current_threshold+1 and check if a threshold is crossed.
3313 * If none of thresholds above usage is crossed, we read
3314 * only one element of the array here.
3315 */
3316 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3317 eventfd_signal(t->entries[i].eventfd, 1);
3318
3319 /* Update current_threshold */
3320 t->current_threshold = i - 1;
3321 unlock:
3322 rcu_read_unlock();
3323 }
3324
3325 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3326 {
3327 while (memcg) {
3328 __mem_cgroup_threshold(memcg, false);
3329 if (do_memsw_account())
3330 __mem_cgroup_threshold(memcg, true);
3331
3332 memcg = parent_mem_cgroup(memcg);
3333 }
3334 }
3335
3336 static int compare_thresholds(const void *a, const void *b)
3337 {
3338 const struct mem_cgroup_threshold *_a = a;
3339 const struct mem_cgroup_threshold *_b = b;
3340
3341 if (_a->threshold > _b->threshold)
3342 return 1;
3343
3344 if (_a->threshold < _b->threshold)
3345 return -1;
3346
3347 return 0;
3348 }
3349
3350 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3351 {
3352 struct mem_cgroup_eventfd_list *ev;
3353
3354 spin_lock(&memcg_oom_lock);
3355
3356 list_for_each_entry(ev, &memcg->oom_notify, list)
3357 eventfd_signal(ev->eventfd, 1);
3358
3359 spin_unlock(&memcg_oom_lock);
3360 return 0;
3361 }
3362
3363 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3364 {
3365 struct mem_cgroup *iter;
3366
3367 for_each_mem_cgroup_tree(iter, memcg)
3368 mem_cgroup_oom_notify_cb(iter);
3369 }
3370
3371 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3372 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3373 {
3374 struct mem_cgroup_thresholds *thresholds;
3375 struct mem_cgroup_threshold_ary *new;
3376 unsigned long threshold;
3377 unsigned long usage;
3378 int i, size, ret;
3379
3380 ret = page_counter_memparse(args, "-1", &threshold);
3381 if (ret)
3382 return ret;
3383
3384 mutex_lock(&memcg->thresholds_lock);
3385
3386 if (type == _MEM) {
3387 thresholds = &memcg->thresholds;
3388 usage = mem_cgroup_usage(memcg, false);
3389 } else if (type == _MEMSWAP) {
3390 thresholds = &memcg->memsw_thresholds;
3391 usage = mem_cgroup_usage(memcg, true);
3392 } else
3393 BUG();
3394
3395 /* Check if a threshold crossed before adding a new one */
3396 if (thresholds->primary)
3397 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3398
3399 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3400
3401 /* Allocate memory for new array of thresholds */
3402 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3403 GFP_KERNEL);
3404 if (!new) {
3405 ret = -ENOMEM;
3406 goto unlock;
3407 }
3408 new->size = size;
3409
3410 /* Copy thresholds (if any) to new array */
3411 if (thresholds->primary) {
3412 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3413 sizeof(struct mem_cgroup_threshold));
3414 }
3415
3416 /* Add new threshold */
3417 new->entries[size - 1].eventfd = eventfd;
3418 new->entries[size - 1].threshold = threshold;
3419
3420 /* Sort thresholds. Registering of new threshold isn't time-critical */
3421 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3422 compare_thresholds, NULL);
3423
3424 /* Find current threshold */
3425 new->current_threshold = -1;
3426 for (i = 0; i < size; i++) {
3427 if (new->entries[i].threshold <= usage) {
3428 /*
3429 * new->current_threshold will not be used until
3430 * rcu_assign_pointer(), so it's safe to increment
3431 * it here.
3432 */
3433 ++new->current_threshold;
3434 } else
3435 break;
3436 }
3437
3438 /* Free old spare buffer and save old primary buffer as spare */
3439 kfree(thresholds->spare);
3440 thresholds->spare = thresholds->primary;
3441
3442 rcu_assign_pointer(thresholds->primary, new);
3443
3444 /* To be sure that nobody uses thresholds */
3445 synchronize_rcu();
3446
3447 unlock:
3448 mutex_unlock(&memcg->thresholds_lock);
3449
3450 return ret;
3451 }
3452
3453 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3454 struct eventfd_ctx *eventfd, const char *args)
3455 {
3456 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3457 }
3458
3459 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3460 struct eventfd_ctx *eventfd, const char *args)
3461 {
3462 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3463 }
3464
3465 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3466 struct eventfd_ctx *eventfd, enum res_type type)
3467 {
3468 struct mem_cgroup_thresholds *thresholds;
3469 struct mem_cgroup_threshold_ary *new;
3470 unsigned long usage;
3471 int i, j, size;
3472
3473 mutex_lock(&memcg->thresholds_lock);
3474
3475 if (type == _MEM) {
3476 thresholds = &memcg->thresholds;
3477 usage = mem_cgroup_usage(memcg, false);
3478 } else if (type == _MEMSWAP) {
3479 thresholds = &memcg->memsw_thresholds;
3480 usage = mem_cgroup_usage(memcg, true);
3481 } else
3482 BUG();
3483
3484 if (!thresholds->primary)
3485 goto unlock;
3486
3487 /* Check if a threshold crossed before removing */
3488 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3489
3490 /* Calculate new number of threshold */
3491 size = 0;
3492 for (i = 0; i < thresholds->primary->size; i++) {
3493 if (thresholds->primary->entries[i].eventfd != eventfd)
3494 size++;
3495 }
3496
3497 new = thresholds->spare;
3498
3499 /* Set thresholds array to NULL if we don't have thresholds */
3500 if (!size) {
3501 kfree(new);
3502 new = NULL;
3503 goto swap_buffers;
3504 }
3505
3506 new->size = size;
3507
3508 /* Copy thresholds and find current threshold */
3509 new->current_threshold = -1;
3510 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3511 if (thresholds->primary->entries[i].eventfd == eventfd)
3512 continue;
3513
3514 new->entries[j] = thresholds->primary->entries[i];
3515 if (new->entries[j].threshold <= usage) {
3516 /*
3517 * new->current_threshold will not be used
3518 * until rcu_assign_pointer(), so it's safe to increment
3519 * it here.
3520 */
3521 ++new->current_threshold;
3522 }
3523 j++;
3524 }
3525
3526 swap_buffers:
3527 /* Swap primary and spare array */
3528 thresholds->spare = thresholds->primary;
3529
3530 rcu_assign_pointer(thresholds->primary, new);
3531
3532 /* To be sure that nobody uses thresholds */
3533 synchronize_rcu();
3534
3535 /* If all events are unregistered, free the spare array */
3536 if (!new) {
3537 kfree(thresholds->spare);
3538 thresholds->spare = NULL;
3539 }
3540 unlock:
3541 mutex_unlock(&memcg->thresholds_lock);
3542 }
3543
3544 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3545 struct eventfd_ctx *eventfd)
3546 {
3547 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3548 }
3549
3550 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3551 struct eventfd_ctx *eventfd)
3552 {
3553 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3554 }
3555
3556 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3557 struct eventfd_ctx *eventfd, const char *args)
3558 {
3559 struct mem_cgroup_eventfd_list *event;
3560
3561 event = kmalloc(sizeof(*event), GFP_KERNEL);
3562 if (!event)
3563 return -ENOMEM;
3564
3565 spin_lock(&memcg_oom_lock);
3566
3567 event->eventfd = eventfd;
3568 list_add(&event->list, &memcg->oom_notify);
3569
3570 /* already in OOM ? */
3571 if (memcg->under_oom)
3572 eventfd_signal(eventfd, 1);
3573 spin_unlock(&memcg_oom_lock);
3574
3575 return 0;
3576 }
3577
3578 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3579 struct eventfd_ctx *eventfd)
3580 {
3581 struct mem_cgroup_eventfd_list *ev, *tmp;
3582
3583 spin_lock(&memcg_oom_lock);
3584
3585 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3586 if (ev->eventfd == eventfd) {
3587 list_del(&ev->list);
3588 kfree(ev);
3589 }
3590 }
3591
3592 spin_unlock(&memcg_oom_lock);
3593 }
3594
3595 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3596 {
3597 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3598
3599 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3600 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3601 return 0;
3602 }
3603
3604 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3605 struct cftype *cft, u64 val)
3606 {
3607 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3608
3609 /* cannot set to root cgroup and only 0 and 1 are allowed */
3610 if (!css->parent || !((val == 0) || (val == 1)))
3611 return -EINVAL;
3612
3613 memcg->oom_kill_disable = val;
3614 if (!val)
3615 memcg_oom_recover(memcg);
3616
3617 return 0;
3618 }
3619
3620 #ifdef CONFIG_CGROUP_WRITEBACK
3621
3622 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3623 {
3624 return &memcg->cgwb_list;
3625 }
3626
3627 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3628 {
3629 return wb_domain_init(&memcg->cgwb_domain, gfp);
3630 }
3631
3632 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3633 {
3634 wb_domain_exit(&memcg->cgwb_domain);
3635 }
3636
3637 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3638 {
3639 wb_domain_size_changed(&memcg->cgwb_domain);
3640 }
3641
3642 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3643 {
3644 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3645
3646 if (!memcg->css.parent)
3647 return NULL;
3648
3649 return &memcg->cgwb_domain;
3650 }
3651
3652 /**
3653 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3654 * @wb: bdi_writeback in question
3655 * @pfilepages: out parameter for number of file pages
3656 * @pheadroom: out parameter for number of allocatable pages according to memcg
3657 * @pdirty: out parameter for number of dirty pages
3658 * @pwriteback: out parameter for number of pages under writeback
3659 *
3660 * Determine the numbers of file, headroom, dirty, and writeback pages in
3661 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3662 * is a bit more involved.
3663 *
3664 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3665 * headroom is calculated as the lowest headroom of itself and the
3666 * ancestors. Note that this doesn't consider the actual amount of
3667 * available memory in the system. The caller should further cap
3668 * *@pheadroom accordingly.
3669 */
3670 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3671 unsigned long *pheadroom, unsigned long *pdirty,
3672 unsigned long *pwriteback)
3673 {
3674 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3675 struct mem_cgroup *parent;
3676
3677 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3678
3679 /* this should eventually include NR_UNSTABLE_NFS */
3680 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3681 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3682 (1 << LRU_ACTIVE_FILE));
3683 *pheadroom = PAGE_COUNTER_MAX;
3684
3685 while ((parent = parent_mem_cgroup(memcg))) {
3686 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3687 unsigned long used = page_counter_read(&memcg->memory);
3688
3689 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3690 memcg = parent;
3691 }
3692 }
3693
3694 #else /* CONFIG_CGROUP_WRITEBACK */
3695
3696 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3697 {
3698 return 0;
3699 }
3700
3701 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3702 {
3703 }
3704
3705 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3706 {
3707 }
3708
3709 #endif /* CONFIG_CGROUP_WRITEBACK */
3710
3711 /*
3712 * DO NOT USE IN NEW FILES.
3713 *
3714 * "cgroup.event_control" implementation.
3715 *
3716 * This is way over-engineered. It tries to support fully configurable
3717 * events for each user. Such level of flexibility is completely
3718 * unnecessary especially in the light of the planned unified hierarchy.
3719 *
3720 * Please deprecate this and replace with something simpler if at all
3721 * possible.
3722 */
3723
3724 /*
3725 * Unregister event and free resources.
3726 *
3727 * Gets called from workqueue.
3728 */
3729 static void memcg_event_remove(struct work_struct *work)
3730 {
3731 struct mem_cgroup_event *event =
3732 container_of(work, struct mem_cgroup_event, remove);
3733 struct mem_cgroup *memcg = event->memcg;
3734
3735 remove_wait_queue(event->wqh, &event->wait);
3736
3737 event->unregister_event(memcg, event->eventfd);
3738
3739 /* Notify userspace the event is going away. */
3740 eventfd_signal(event->eventfd, 1);
3741
3742 eventfd_ctx_put(event->eventfd);
3743 kfree(event);
3744 css_put(&memcg->css);
3745 }
3746
3747 /*
3748 * Gets called on POLLHUP on eventfd when user closes it.
3749 *
3750 * Called with wqh->lock held and interrupts disabled.
3751 */
3752 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3753 int sync, void *key)
3754 {
3755 struct mem_cgroup_event *event =
3756 container_of(wait, struct mem_cgroup_event, wait);
3757 struct mem_cgroup *memcg = event->memcg;
3758 unsigned long flags = (unsigned long)key;
3759
3760 if (flags & POLLHUP) {
3761 /*
3762 * If the event has been detached at cgroup removal, we
3763 * can simply return knowing the other side will cleanup
3764 * for us.
3765 *
3766 * We can't race against event freeing since the other
3767 * side will require wqh->lock via remove_wait_queue(),
3768 * which we hold.
3769 */
3770 spin_lock(&memcg->event_list_lock);
3771 if (!list_empty(&event->list)) {
3772 list_del_init(&event->list);
3773 /*
3774 * We are in atomic context, but cgroup_event_remove()
3775 * may sleep, so we have to call it in workqueue.
3776 */
3777 schedule_work(&event->remove);
3778 }
3779 spin_unlock(&memcg->event_list_lock);
3780 }
3781
3782 return 0;
3783 }
3784
3785 static void memcg_event_ptable_queue_proc(struct file *file,
3786 wait_queue_head_t *wqh, poll_table *pt)
3787 {
3788 struct mem_cgroup_event *event =
3789 container_of(pt, struct mem_cgroup_event, pt);
3790
3791 event->wqh = wqh;
3792 add_wait_queue(wqh, &event->wait);
3793 }
3794
3795 /*
3796 * DO NOT USE IN NEW FILES.
3797 *
3798 * Parse input and register new cgroup event handler.
3799 *
3800 * Input must be in format '<event_fd> <control_fd> <args>'.
3801 * Interpretation of args is defined by control file implementation.
3802 */
3803 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3804 char *buf, size_t nbytes, loff_t off)
3805 {
3806 struct cgroup_subsys_state *css = of_css(of);
3807 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3808 struct mem_cgroup_event *event;
3809 struct cgroup_subsys_state *cfile_css;
3810 unsigned int efd, cfd;
3811 struct fd efile;
3812 struct fd cfile;
3813 const char *name;
3814 char *endp;
3815 int ret;
3816
3817 buf = strstrip(buf);
3818
3819 efd = simple_strtoul(buf, &endp, 10);
3820 if (*endp != ' ')
3821 return -EINVAL;
3822 buf = endp + 1;
3823
3824 cfd = simple_strtoul(buf, &endp, 10);
3825 if ((*endp != ' ') && (*endp != '\0'))
3826 return -EINVAL;
3827 buf = endp + 1;
3828
3829 event = kzalloc(sizeof(*event), GFP_KERNEL);
3830 if (!event)
3831 return -ENOMEM;
3832
3833 event->memcg = memcg;
3834 INIT_LIST_HEAD(&event->list);
3835 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3836 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3837 INIT_WORK(&event->remove, memcg_event_remove);
3838
3839 efile = fdget(efd);
3840 if (!efile.file) {
3841 ret = -EBADF;
3842 goto out_kfree;
3843 }
3844
3845 event->eventfd = eventfd_ctx_fileget(efile.file);
3846 if (IS_ERR(event->eventfd)) {
3847 ret = PTR_ERR(event->eventfd);
3848 goto out_put_efile;
3849 }
3850
3851 cfile = fdget(cfd);
3852 if (!cfile.file) {
3853 ret = -EBADF;
3854 goto out_put_eventfd;
3855 }
3856
3857 /* the process need read permission on control file */
3858 /* AV: shouldn't we check that it's been opened for read instead? */
3859 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3860 if (ret < 0)
3861 goto out_put_cfile;
3862
3863 /*
3864 * Determine the event callbacks and set them in @event. This used
3865 * to be done via struct cftype but cgroup core no longer knows
3866 * about these events. The following is crude but the whole thing
3867 * is for compatibility anyway.
3868 *
3869 * DO NOT ADD NEW FILES.
3870 */
3871 name = cfile.file->f_path.dentry->d_name.name;
3872
3873 if (!strcmp(name, "memory.usage_in_bytes")) {
3874 event->register_event = mem_cgroup_usage_register_event;
3875 event->unregister_event = mem_cgroup_usage_unregister_event;
3876 } else if (!strcmp(name, "memory.oom_control")) {
3877 event->register_event = mem_cgroup_oom_register_event;
3878 event->unregister_event = mem_cgroup_oom_unregister_event;
3879 } else if (!strcmp(name, "memory.pressure_level")) {
3880 event->register_event = vmpressure_register_event;
3881 event->unregister_event = vmpressure_unregister_event;
3882 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3883 event->register_event = memsw_cgroup_usage_register_event;
3884 event->unregister_event = memsw_cgroup_usage_unregister_event;
3885 } else {
3886 ret = -EINVAL;
3887 goto out_put_cfile;
3888 }
3889
3890 /*
3891 * Verify @cfile should belong to @css. Also, remaining events are
3892 * automatically removed on cgroup destruction but the removal is
3893 * asynchronous, so take an extra ref on @css.
3894 */
3895 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3896 &memory_cgrp_subsys);
3897 ret = -EINVAL;
3898 if (IS_ERR(cfile_css))
3899 goto out_put_cfile;
3900 if (cfile_css != css) {
3901 css_put(cfile_css);
3902 goto out_put_cfile;
3903 }
3904
3905 ret = event->register_event(memcg, event->eventfd, buf);
3906 if (ret)
3907 goto out_put_css;
3908
3909 efile.file->f_op->poll(efile.file, &event->pt);
3910
3911 spin_lock(&memcg->event_list_lock);
3912 list_add(&event->list, &memcg->event_list);
3913 spin_unlock(&memcg->event_list_lock);
3914
3915 fdput(cfile);
3916 fdput(efile);
3917
3918 return nbytes;
3919
3920 out_put_css:
3921 css_put(css);
3922 out_put_cfile:
3923 fdput(cfile);
3924 out_put_eventfd:
3925 eventfd_ctx_put(event->eventfd);
3926 out_put_efile:
3927 fdput(efile);
3928 out_kfree:
3929 kfree(event);
3930
3931 return ret;
3932 }
3933
3934 static struct cftype mem_cgroup_legacy_files[] = {
3935 {
3936 .name = "usage_in_bytes",
3937 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3938 .read_u64 = mem_cgroup_read_u64,
3939 },
3940 {
3941 .name = "max_usage_in_bytes",
3942 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3943 .write = mem_cgroup_reset,
3944 .read_u64 = mem_cgroup_read_u64,
3945 },
3946 {
3947 .name = "limit_in_bytes",
3948 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3949 .write = mem_cgroup_write,
3950 .read_u64 = mem_cgroup_read_u64,
3951 },
3952 {
3953 .name = "soft_limit_in_bytes",
3954 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3955 .write = mem_cgroup_write,
3956 .read_u64 = mem_cgroup_read_u64,
3957 },
3958 {
3959 .name = "failcnt",
3960 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3961 .write = mem_cgroup_reset,
3962 .read_u64 = mem_cgroup_read_u64,
3963 },
3964 {
3965 .name = "stat",
3966 .seq_show = memcg_stat_show,
3967 },
3968 {
3969 .name = "force_empty",
3970 .write = mem_cgroup_force_empty_write,
3971 },
3972 {
3973 .name = "use_hierarchy",
3974 .write_u64 = mem_cgroup_hierarchy_write,
3975 .read_u64 = mem_cgroup_hierarchy_read,
3976 },
3977 {
3978 .name = "cgroup.event_control", /* XXX: for compat */
3979 .write = memcg_write_event_control,
3980 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3981 },
3982 {
3983 .name = "swappiness",
3984 .read_u64 = mem_cgroup_swappiness_read,
3985 .write_u64 = mem_cgroup_swappiness_write,
3986 },
3987 {
3988 .name = "move_charge_at_immigrate",
3989 .read_u64 = mem_cgroup_move_charge_read,
3990 .write_u64 = mem_cgroup_move_charge_write,
3991 },
3992 {
3993 .name = "oom_control",
3994 .seq_show = mem_cgroup_oom_control_read,
3995 .write_u64 = mem_cgroup_oom_control_write,
3996 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3997 },
3998 {
3999 .name = "pressure_level",
4000 },
4001 #ifdef CONFIG_NUMA
4002 {
4003 .name = "numa_stat",
4004 .seq_show = memcg_numa_stat_show,
4005 },
4006 #endif
4007 {
4008 .name = "kmem.limit_in_bytes",
4009 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4010 .write = mem_cgroup_write,
4011 .read_u64 = mem_cgroup_read_u64,
4012 },
4013 {
4014 .name = "kmem.usage_in_bytes",
4015 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4016 .read_u64 = mem_cgroup_read_u64,
4017 },
4018 {
4019 .name = "kmem.failcnt",
4020 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4021 .write = mem_cgroup_reset,
4022 .read_u64 = mem_cgroup_read_u64,
4023 },
4024 {
4025 .name = "kmem.max_usage_in_bytes",
4026 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4027 .write = mem_cgroup_reset,
4028 .read_u64 = mem_cgroup_read_u64,
4029 },
4030 #ifdef CONFIG_SLABINFO
4031 {
4032 .name = "kmem.slabinfo",
4033 .seq_start = slab_start,
4034 .seq_next = slab_next,
4035 .seq_stop = slab_stop,
4036 .seq_show = memcg_slab_show,
4037 },
4038 #endif
4039 {
4040 .name = "kmem.tcp.limit_in_bytes",
4041 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4042 .write = mem_cgroup_write,
4043 .read_u64 = mem_cgroup_read_u64,
4044 },
4045 {
4046 .name = "kmem.tcp.usage_in_bytes",
4047 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4048 .read_u64 = mem_cgroup_read_u64,
4049 },
4050 {
4051 .name = "kmem.tcp.failcnt",
4052 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4053 .write = mem_cgroup_reset,
4054 .read_u64 = mem_cgroup_read_u64,
4055 },
4056 {
4057 .name = "kmem.tcp.max_usage_in_bytes",
4058 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4059 .write = mem_cgroup_reset,
4060 .read_u64 = mem_cgroup_read_u64,
4061 },
4062 { }, /* terminate */
4063 };
4064
4065 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4066 {
4067 struct mem_cgroup_per_node *pn;
4068 struct mem_cgroup_per_zone *mz;
4069 int zone, tmp = node;
4070 /*
4071 * This routine is called against possible nodes.
4072 * But it's BUG to call kmalloc() against offline node.
4073 *
4074 * TODO: this routine can waste much memory for nodes which will
4075 * never be onlined. It's better to use memory hotplug callback
4076 * function.
4077 */
4078 if (!node_state(node, N_NORMAL_MEMORY))
4079 tmp = -1;
4080 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4081 if (!pn)
4082 return 1;
4083
4084 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4085 mz = &pn->zoneinfo[zone];
4086 lruvec_init(&mz->lruvec);
4087 mz->usage_in_excess = 0;
4088 mz->on_tree = false;
4089 mz->memcg = memcg;
4090 }
4091 memcg->nodeinfo[node] = pn;
4092 return 0;
4093 }
4094
4095 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4096 {
4097 kfree(memcg->nodeinfo[node]);
4098 }
4099
4100 static void mem_cgroup_free(struct mem_cgroup *memcg)
4101 {
4102 int node;
4103
4104 memcg_wb_domain_exit(memcg);
4105 for_each_node(node)
4106 free_mem_cgroup_per_zone_info(memcg, node);
4107 free_percpu(memcg->stat);
4108 kfree(memcg);
4109 }
4110
4111 static struct mem_cgroup *mem_cgroup_alloc(void)
4112 {
4113 struct mem_cgroup *memcg;
4114 size_t size;
4115 int node;
4116
4117 size = sizeof(struct mem_cgroup);
4118 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4119
4120 memcg = kzalloc(size, GFP_KERNEL);
4121 if (!memcg)
4122 return NULL;
4123
4124 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4125 if (!memcg->stat)
4126 goto fail;
4127
4128 for_each_node(node)
4129 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4130 goto fail;
4131
4132 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4133 goto fail;
4134
4135 INIT_WORK(&memcg->high_work, high_work_func);
4136 memcg->last_scanned_node = MAX_NUMNODES;
4137 INIT_LIST_HEAD(&memcg->oom_notify);
4138 mutex_init(&memcg->thresholds_lock);
4139 spin_lock_init(&memcg->move_lock);
4140 vmpressure_init(&memcg->vmpressure);
4141 INIT_LIST_HEAD(&memcg->event_list);
4142 spin_lock_init(&memcg->event_list_lock);
4143 memcg->socket_pressure = jiffies;
4144 #ifndef CONFIG_SLOB
4145 memcg->kmemcg_id = -1;
4146 #endif
4147 #ifdef CONFIG_CGROUP_WRITEBACK
4148 INIT_LIST_HEAD(&memcg->cgwb_list);
4149 #endif
4150 return memcg;
4151 fail:
4152 mem_cgroup_free(memcg);
4153 return NULL;
4154 }
4155
4156 static struct cgroup_subsys_state * __ref
4157 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4158 {
4159 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4160 struct mem_cgroup *memcg;
4161 long error = -ENOMEM;
4162
4163 memcg = mem_cgroup_alloc();
4164 if (!memcg)
4165 return ERR_PTR(error);
4166
4167 memcg->high = PAGE_COUNTER_MAX;
4168 memcg->soft_limit = PAGE_COUNTER_MAX;
4169 if (parent) {
4170 memcg->swappiness = mem_cgroup_swappiness(parent);
4171 memcg->oom_kill_disable = parent->oom_kill_disable;
4172 }
4173 if (parent && parent->use_hierarchy) {
4174 memcg->use_hierarchy = true;
4175 page_counter_init(&memcg->memory, &parent->memory);
4176 page_counter_init(&memcg->swap, &parent->swap);
4177 page_counter_init(&memcg->memsw, &parent->memsw);
4178 page_counter_init(&memcg->kmem, &parent->kmem);
4179 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4180 } else {
4181 page_counter_init(&memcg->memory, NULL);
4182 page_counter_init(&memcg->swap, NULL);
4183 page_counter_init(&memcg->memsw, NULL);
4184 page_counter_init(&memcg->kmem, NULL);
4185 page_counter_init(&memcg->tcpmem, NULL);
4186 /*
4187 * Deeper hierachy with use_hierarchy == false doesn't make
4188 * much sense so let cgroup subsystem know about this
4189 * unfortunate state in our controller.
4190 */
4191 if (parent != root_mem_cgroup)
4192 memory_cgrp_subsys.broken_hierarchy = true;
4193 }
4194
4195 /* The following stuff does not apply to the root */
4196 if (!parent) {
4197 root_mem_cgroup = memcg;
4198 return &memcg->css;
4199 }
4200
4201 error = memcg_propagate_kmem(parent, memcg);
4202 if (error)
4203 goto fail;
4204
4205 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4206 static_branch_inc(&memcg_sockets_enabled_key);
4207
4208 return &memcg->css;
4209 fail:
4210 mem_cgroup_free(memcg);
4211 return NULL;
4212 }
4213
4214 static int
4215 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4216 {
4217 if (css->id > MEM_CGROUP_ID_MAX)
4218 return -ENOSPC;
4219
4220 return 0;
4221 }
4222
4223 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4224 {
4225 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4226 struct mem_cgroup_event *event, *tmp;
4227
4228 /*
4229 * Unregister events and notify userspace.
4230 * Notify userspace about cgroup removing only after rmdir of cgroup
4231 * directory to avoid race between userspace and kernelspace.
4232 */
4233 spin_lock(&memcg->event_list_lock);
4234 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4235 list_del_init(&event->list);
4236 schedule_work(&event->remove);
4237 }
4238 spin_unlock(&memcg->event_list_lock);
4239
4240 memcg_offline_kmem(memcg);
4241 wb_memcg_offline(memcg);
4242 }
4243
4244 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4245 {
4246 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4247
4248 invalidate_reclaim_iterators(memcg);
4249 }
4250
4251 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4252 {
4253 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4254
4255 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4256 static_branch_dec(&memcg_sockets_enabled_key);
4257
4258 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4259 static_branch_dec(&memcg_sockets_enabled_key);
4260
4261 vmpressure_cleanup(&memcg->vmpressure);
4262 cancel_work_sync(&memcg->high_work);
4263 mem_cgroup_remove_from_trees(memcg);
4264 memcg_free_kmem(memcg);
4265 mem_cgroup_free(memcg);
4266 }
4267
4268 /**
4269 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4270 * @css: the target css
4271 *
4272 * Reset the states of the mem_cgroup associated with @css. This is
4273 * invoked when the userland requests disabling on the default hierarchy
4274 * but the memcg is pinned through dependency. The memcg should stop
4275 * applying policies and should revert to the vanilla state as it may be
4276 * made visible again.
4277 *
4278 * The current implementation only resets the essential configurations.
4279 * This needs to be expanded to cover all the visible parts.
4280 */
4281 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4282 {
4283 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4284
4285 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4286 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4287 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4288 memcg->low = 0;
4289 memcg->high = PAGE_COUNTER_MAX;
4290 memcg->soft_limit = PAGE_COUNTER_MAX;
4291 memcg_wb_domain_size_changed(memcg);
4292 }
4293
4294 #ifdef CONFIG_MMU
4295 /* Handlers for move charge at task migration. */
4296 static int mem_cgroup_do_precharge(unsigned long count)
4297 {
4298 int ret;
4299
4300 /* Try a single bulk charge without reclaim first, kswapd may wake */
4301 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4302 if (!ret) {
4303 mc.precharge += count;
4304 return ret;
4305 }
4306
4307 /* Try charges one by one with reclaim */
4308 while (count--) {
4309 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4310 if (ret)
4311 return ret;
4312 mc.precharge++;
4313 cond_resched();
4314 }
4315 return 0;
4316 }
4317
4318 /**
4319 * get_mctgt_type - get target type of moving charge
4320 * @vma: the vma the pte to be checked belongs
4321 * @addr: the address corresponding to the pte to be checked
4322 * @ptent: the pte to be checked
4323 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4324 *
4325 * Returns
4326 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4327 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4328 * move charge. if @target is not NULL, the page is stored in target->page
4329 * with extra refcnt got(Callers should handle it).
4330 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4331 * target for charge migration. if @target is not NULL, the entry is stored
4332 * in target->ent.
4333 *
4334 * Called with pte lock held.
4335 */
4336 union mc_target {
4337 struct page *page;
4338 swp_entry_t ent;
4339 };
4340
4341 enum mc_target_type {
4342 MC_TARGET_NONE = 0,
4343 MC_TARGET_PAGE,
4344 MC_TARGET_SWAP,
4345 };
4346
4347 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4348 unsigned long addr, pte_t ptent)
4349 {
4350 struct page *page = vm_normal_page(vma, addr, ptent);
4351
4352 if (!page || !page_mapped(page))
4353 return NULL;
4354 if (PageAnon(page)) {
4355 if (!(mc.flags & MOVE_ANON))
4356 return NULL;
4357 } else {
4358 if (!(mc.flags & MOVE_FILE))
4359 return NULL;
4360 }
4361 if (!get_page_unless_zero(page))
4362 return NULL;
4363
4364 return page;
4365 }
4366
4367 #ifdef CONFIG_SWAP
4368 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4369 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4370 {
4371 struct page *page = NULL;
4372 swp_entry_t ent = pte_to_swp_entry(ptent);
4373
4374 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4375 return NULL;
4376 /*
4377 * Because lookup_swap_cache() updates some statistics counter,
4378 * we call find_get_page() with swapper_space directly.
4379 */
4380 page = find_get_page(swap_address_space(ent), ent.val);
4381 if (do_memsw_account())
4382 entry->val = ent.val;
4383
4384 return page;
4385 }
4386 #else
4387 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4388 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4389 {
4390 return NULL;
4391 }
4392 #endif
4393
4394 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4395 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4396 {
4397 struct page *page = NULL;
4398 struct address_space *mapping;
4399 pgoff_t pgoff;
4400
4401 if (!vma->vm_file) /* anonymous vma */
4402 return NULL;
4403 if (!(mc.flags & MOVE_FILE))
4404 return NULL;
4405
4406 mapping = vma->vm_file->f_mapping;
4407 pgoff = linear_page_index(vma, addr);
4408
4409 /* page is moved even if it's not RSS of this task(page-faulted). */
4410 #ifdef CONFIG_SWAP
4411 /* shmem/tmpfs may report page out on swap: account for that too. */
4412 if (shmem_mapping(mapping)) {
4413 page = find_get_entry(mapping, pgoff);
4414 if (radix_tree_exceptional_entry(page)) {
4415 swp_entry_t swp = radix_to_swp_entry(page);
4416 if (do_memsw_account())
4417 *entry = swp;
4418 page = find_get_page(swap_address_space(swp), swp.val);
4419 }
4420 } else
4421 page = find_get_page(mapping, pgoff);
4422 #else
4423 page = find_get_page(mapping, pgoff);
4424 #endif
4425 return page;
4426 }
4427
4428 /**
4429 * mem_cgroup_move_account - move account of the page
4430 * @page: the page
4431 * @nr_pages: number of regular pages (>1 for huge pages)
4432 * @from: mem_cgroup which the page is moved from.
4433 * @to: mem_cgroup which the page is moved to. @from != @to.
4434 *
4435 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4436 *
4437 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4438 * from old cgroup.
4439 */
4440 static int mem_cgroup_move_account(struct page *page,
4441 bool compound,
4442 struct mem_cgroup *from,
4443 struct mem_cgroup *to)
4444 {
4445 unsigned long flags;
4446 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4447 int ret;
4448 bool anon;
4449
4450 VM_BUG_ON(from == to);
4451 VM_BUG_ON_PAGE(PageLRU(page), page);
4452 VM_BUG_ON(compound && !PageTransHuge(page));
4453
4454 /*
4455 * Prevent mem_cgroup_migrate() from looking at
4456 * page->mem_cgroup of its source page while we change it.
4457 */
4458 ret = -EBUSY;
4459 if (!trylock_page(page))
4460 goto out;
4461
4462 ret = -EINVAL;
4463 if (page->mem_cgroup != from)
4464 goto out_unlock;
4465
4466 anon = PageAnon(page);
4467
4468 spin_lock_irqsave(&from->move_lock, flags);
4469
4470 if (!anon && page_mapped(page)) {
4471 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4472 nr_pages);
4473 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4474 nr_pages);
4475 }
4476
4477 /*
4478 * move_lock grabbed above and caller set from->moving_account, so
4479 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4480 * So mapping should be stable for dirty pages.
4481 */
4482 if (!anon && PageDirty(page)) {
4483 struct address_space *mapping = page_mapping(page);
4484
4485 if (mapping_cap_account_dirty(mapping)) {
4486 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4487 nr_pages);
4488 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4489 nr_pages);
4490 }
4491 }
4492
4493 if (PageWriteback(page)) {
4494 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4495 nr_pages);
4496 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4497 nr_pages);
4498 }
4499
4500 /*
4501 * It is safe to change page->mem_cgroup here because the page
4502 * is referenced, charged, and isolated - we can't race with
4503 * uncharging, charging, migration, or LRU putback.
4504 */
4505
4506 /* caller should have done css_get */
4507 page->mem_cgroup = to;
4508 spin_unlock_irqrestore(&from->move_lock, flags);
4509
4510 ret = 0;
4511
4512 local_irq_disable();
4513 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4514 memcg_check_events(to, page);
4515 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4516 memcg_check_events(from, page);
4517 local_irq_enable();
4518 out_unlock:
4519 unlock_page(page);
4520 out:
4521 return ret;
4522 }
4523
4524 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4525 unsigned long addr, pte_t ptent, union mc_target *target)
4526 {
4527 struct page *page = NULL;
4528 enum mc_target_type ret = MC_TARGET_NONE;
4529 swp_entry_t ent = { .val = 0 };
4530
4531 if (pte_present(ptent))
4532 page = mc_handle_present_pte(vma, addr, ptent);
4533 else if (is_swap_pte(ptent))
4534 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4535 else if (pte_none(ptent))
4536 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4537
4538 if (!page && !ent.val)
4539 return ret;
4540 if (page) {
4541 /*
4542 * Do only loose check w/o serialization.
4543 * mem_cgroup_move_account() checks the page is valid or
4544 * not under LRU exclusion.
4545 */
4546 if (page->mem_cgroup == mc.from) {
4547 ret = MC_TARGET_PAGE;
4548 if (target)
4549 target->page = page;
4550 }
4551 if (!ret || !target)
4552 put_page(page);
4553 }
4554 /* There is a swap entry and a page doesn't exist or isn't charged */
4555 if (ent.val && !ret &&
4556 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4557 ret = MC_TARGET_SWAP;
4558 if (target)
4559 target->ent = ent;
4560 }
4561 return ret;
4562 }
4563
4564 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4565 /*
4566 * We don't consider swapping or file mapped pages because THP does not
4567 * support them for now.
4568 * Caller should make sure that pmd_trans_huge(pmd) is true.
4569 */
4570 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4571 unsigned long addr, pmd_t pmd, union mc_target *target)
4572 {
4573 struct page *page = NULL;
4574 enum mc_target_type ret = MC_TARGET_NONE;
4575
4576 page = pmd_page(pmd);
4577 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4578 if (!(mc.flags & MOVE_ANON))
4579 return ret;
4580 if (page->mem_cgroup == mc.from) {
4581 ret = MC_TARGET_PAGE;
4582 if (target) {
4583 get_page(page);
4584 target->page = page;
4585 }
4586 }
4587 return ret;
4588 }
4589 #else
4590 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4591 unsigned long addr, pmd_t pmd, union mc_target *target)
4592 {
4593 return MC_TARGET_NONE;
4594 }
4595 #endif
4596
4597 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4598 unsigned long addr, unsigned long end,
4599 struct mm_walk *walk)
4600 {
4601 struct vm_area_struct *vma = walk->vma;
4602 pte_t *pte;
4603 spinlock_t *ptl;
4604
4605 ptl = pmd_trans_huge_lock(pmd, vma);
4606 if (ptl) {
4607 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4608 mc.precharge += HPAGE_PMD_NR;
4609 spin_unlock(ptl);
4610 return 0;
4611 }
4612
4613 if (pmd_trans_unstable(pmd))
4614 return 0;
4615 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4616 for (; addr != end; pte++, addr += PAGE_SIZE)
4617 if (get_mctgt_type(vma, addr, *pte, NULL))
4618 mc.precharge++; /* increment precharge temporarily */
4619 pte_unmap_unlock(pte - 1, ptl);
4620 cond_resched();
4621
4622 return 0;
4623 }
4624
4625 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4626 {
4627 unsigned long precharge;
4628
4629 struct mm_walk mem_cgroup_count_precharge_walk = {
4630 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4631 .mm = mm,
4632 };
4633 down_read(&mm->mmap_sem);
4634 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4635 up_read(&mm->mmap_sem);
4636
4637 precharge = mc.precharge;
4638 mc.precharge = 0;
4639
4640 return precharge;
4641 }
4642
4643 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4644 {
4645 unsigned long precharge = mem_cgroup_count_precharge(mm);
4646
4647 VM_BUG_ON(mc.moving_task);
4648 mc.moving_task = current;
4649 return mem_cgroup_do_precharge(precharge);
4650 }
4651
4652 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4653 static void __mem_cgroup_clear_mc(void)
4654 {
4655 struct mem_cgroup *from = mc.from;
4656 struct mem_cgroup *to = mc.to;
4657
4658 /* we must uncharge all the leftover precharges from mc.to */
4659 if (mc.precharge) {
4660 cancel_charge(mc.to, mc.precharge);
4661 mc.precharge = 0;
4662 }
4663 /*
4664 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4665 * we must uncharge here.
4666 */
4667 if (mc.moved_charge) {
4668 cancel_charge(mc.from, mc.moved_charge);
4669 mc.moved_charge = 0;
4670 }
4671 /* we must fixup refcnts and charges */
4672 if (mc.moved_swap) {
4673 /* uncharge swap account from the old cgroup */
4674 if (!mem_cgroup_is_root(mc.from))
4675 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4676
4677 /*
4678 * we charged both to->memory and to->memsw, so we
4679 * should uncharge to->memory.
4680 */
4681 if (!mem_cgroup_is_root(mc.to))
4682 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4683
4684 css_put_many(&mc.from->css, mc.moved_swap);
4685
4686 /* we've already done css_get(mc.to) */
4687 mc.moved_swap = 0;
4688 }
4689 memcg_oom_recover(from);
4690 memcg_oom_recover(to);
4691 wake_up_all(&mc.waitq);
4692 }
4693
4694 static void mem_cgroup_clear_mc(void)
4695 {
4696 /*
4697 * we must clear moving_task before waking up waiters at the end of
4698 * task migration.
4699 */
4700 mc.moving_task = NULL;
4701 __mem_cgroup_clear_mc();
4702 spin_lock(&mc.lock);
4703 mc.from = NULL;
4704 mc.to = NULL;
4705 spin_unlock(&mc.lock);
4706 }
4707
4708 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4709 {
4710 struct cgroup_subsys_state *css;
4711 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4712 struct mem_cgroup *from;
4713 struct task_struct *leader, *p;
4714 struct mm_struct *mm;
4715 unsigned long move_flags;
4716 int ret = 0;
4717
4718 /* charge immigration isn't supported on the default hierarchy */
4719 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4720 return 0;
4721
4722 /*
4723 * Multi-process migrations only happen on the default hierarchy
4724 * where charge immigration is not used. Perform charge
4725 * immigration if @tset contains a leader and whine if there are
4726 * multiple.
4727 */
4728 p = NULL;
4729 cgroup_taskset_for_each_leader(leader, css, tset) {
4730 WARN_ON_ONCE(p);
4731 p = leader;
4732 memcg = mem_cgroup_from_css(css);
4733 }
4734 if (!p)
4735 return 0;
4736
4737 /*
4738 * We are now commited to this value whatever it is. Changes in this
4739 * tunable will only affect upcoming migrations, not the current one.
4740 * So we need to save it, and keep it going.
4741 */
4742 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4743 if (!move_flags)
4744 return 0;
4745
4746 from = mem_cgroup_from_task(p);
4747
4748 VM_BUG_ON(from == memcg);
4749
4750 mm = get_task_mm(p);
4751 if (!mm)
4752 return 0;
4753 /* We move charges only when we move a owner of the mm */
4754 if (mm->owner == p) {
4755 VM_BUG_ON(mc.from);
4756 VM_BUG_ON(mc.to);
4757 VM_BUG_ON(mc.precharge);
4758 VM_BUG_ON(mc.moved_charge);
4759 VM_BUG_ON(mc.moved_swap);
4760
4761 spin_lock(&mc.lock);
4762 mc.from = from;
4763 mc.to = memcg;
4764 mc.flags = move_flags;
4765 spin_unlock(&mc.lock);
4766 /* We set mc.moving_task later */
4767
4768 ret = mem_cgroup_precharge_mc(mm);
4769 if (ret)
4770 mem_cgroup_clear_mc();
4771 }
4772 mmput(mm);
4773 return ret;
4774 }
4775
4776 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4777 {
4778 if (mc.to)
4779 mem_cgroup_clear_mc();
4780 }
4781
4782 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4783 unsigned long addr, unsigned long end,
4784 struct mm_walk *walk)
4785 {
4786 int ret = 0;
4787 struct vm_area_struct *vma = walk->vma;
4788 pte_t *pte;
4789 spinlock_t *ptl;
4790 enum mc_target_type target_type;
4791 union mc_target target;
4792 struct page *page;
4793
4794 ptl = pmd_trans_huge_lock(pmd, vma);
4795 if (ptl) {
4796 if (mc.precharge < HPAGE_PMD_NR) {
4797 spin_unlock(ptl);
4798 return 0;
4799 }
4800 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4801 if (target_type == MC_TARGET_PAGE) {
4802 page = target.page;
4803 if (!isolate_lru_page(page)) {
4804 if (!mem_cgroup_move_account(page, true,
4805 mc.from, mc.to)) {
4806 mc.precharge -= HPAGE_PMD_NR;
4807 mc.moved_charge += HPAGE_PMD_NR;
4808 }
4809 putback_lru_page(page);
4810 }
4811 put_page(page);
4812 }
4813 spin_unlock(ptl);
4814 return 0;
4815 }
4816
4817 if (pmd_trans_unstable(pmd))
4818 return 0;
4819 retry:
4820 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4821 for (; addr != end; addr += PAGE_SIZE) {
4822 pte_t ptent = *(pte++);
4823 swp_entry_t ent;
4824
4825 if (!mc.precharge)
4826 break;
4827
4828 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4829 case MC_TARGET_PAGE:
4830 page = target.page;
4831 /*
4832 * We can have a part of the split pmd here. Moving it
4833 * can be done but it would be too convoluted so simply
4834 * ignore such a partial THP and keep it in original
4835 * memcg. There should be somebody mapping the head.
4836 */
4837 if (PageTransCompound(page))
4838 goto put;
4839 if (isolate_lru_page(page))
4840 goto put;
4841 if (!mem_cgroup_move_account(page, false,
4842 mc.from, mc.to)) {
4843 mc.precharge--;
4844 /* we uncharge from mc.from later. */
4845 mc.moved_charge++;
4846 }
4847 putback_lru_page(page);
4848 put: /* get_mctgt_type() gets the page */
4849 put_page(page);
4850 break;
4851 case MC_TARGET_SWAP:
4852 ent = target.ent;
4853 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4854 mc.precharge--;
4855 /* we fixup refcnts and charges later. */
4856 mc.moved_swap++;
4857 }
4858 break;
4859 default:
4860 break;
4861 }
4862 }
4863 pte_unmap_unlock(pte - 1, ptl);
4864 cond_resched();
4865
4866 if (addr != end) {
4867 /*
4868 * We have consumed all precharges we got in can_attach().
4869 * We try charge one by one, but don't do any additional
4870 * charges to mc.to if we have failed in charge once in attach()
4871 * phase.
4872 */
4873 ret = mem_cgroup_do_precharge(1);
4874 if (!ret)
4875 goto retry;
4876 }
4877
4878 return ret;
4879 }
4880
4881 static void mem_cgroup_move_charge(struct mm_struct *mm)
4882 {
4883 struct mm_walk mem_cgroup_move_charge_walk = {
4884 .pmd_entry = mem_cgroup_move_charge_pte_range,
4885 .mm = mm,
4886 };
4887
4888 lru_add_drain_all();
4889 /*
4890 * Signal lock_page_memcg() to take the memcg's move_lock
4891 * while we're moving its pages to another memcg. Then wait
4892 * for already started RCU-only updates to finish.
4893 */
4894 atomic_inc(&mc.from->moving_account);
4895 synchronize_rcu();
4896 retry:
4897 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4898 /*
4899 * Someone who are holding the mmap_sem might be waiting in
4900 * waitq. So we cancel all extra charges, wake up all waiters,
4901 * and retry. Because we cancel precharges, we might not be able
4902 * to move enough charges, but moving charge is a best-effort
4903 * feature anyway, so it wouldn't be a big problem.
4904 */
4905 __mem_cgroup_clear_mc();
4906 cond_resched();
4907 goto retry;
4908 }
4909 /*
4910 * When we have consumed all precharges and failed in doing
4911 * additional charge, the page walk just aborts.
4912 */
4913 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4914 up_read(&mm->mmap_sem);
4915 atomic_dec(&mc.from->moving_account);
4916 }
4917
4918 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
4919 {
4920 struct cgroup_subsys_state *css;
4921 struct task_struct *p = cgroup_taskset_first(tset, &css);
4922 struct mm_struct *mm = get_task_mm(p);
4923
4924 if (mm) {
4925 if (mc.to)
4926 mem_cgroup_move_charge(mm);
4927 mmput(mm);
4928 }
4929 if (mc.to)
4930 mem_cgroup_clear_mc();
4931 }
4932 #else /* !CONFIG_MMU */
4933 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4934 {
4935 return 0;
4936 }
4937 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4938 {
4939 }
4940 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
4941 {
4942 }
4943 #endif
4944
4945 /*
4946 * Cgroup retains root cgroups across [un]mount cycles making it necessary
4947 * to verify whether we're attached to the default hierarchy on each mount
4948 * attempt.
4949 */
4950 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4951 {
4952 /*
4953 * use_hierarchy is forced on the default hierarchy. cgroup core
4954 * guarantees that @root doesn't have any children, so turning it
4955 * on for the root memcg is enough.
4956 */
4957 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4958 root_mem_cgroup->use_hierarchy = true;
4959 else
4960 root_mem_cgroup->use_hierarchy = false;
4961 }
4962
4963 static u64 memory_current_read(struct cgroup_subsys_state *css,
4964 struct cftype *cft)
4965 {
4966 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4967
4968 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4969 }
4970
4971 static int memory_low_show(struct seq_file *m, void *v)
4972 {
4973 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4974 unsigned long low = READ_ONCE(memcg->low);
4975
4976 if (low == PAGE_COUNTER_MAX)
4977 seq_puts(m, "max\n");
4978 else
4979 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4980
4981 return 0;
4982 }
4983
4984 static ssize_t memory_low_write(struct kernfs_open_file *of,
4985 char *buf, size_t nbytes, loff_t off)
4986 {
4987 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4988 unsigned long low;
4989 int err;
4990
4991 buf = strstrip(buf);
4992 err = page_counter_memparse(buf, "max", &low);
4993 if (err)
4994 return err;
4995
4996 memcg->low = low;
4997
4998 return nbytes;
4999 }
5000
5001 static int memory_high_show(struct seq_file *m, void *v)
5002 {
5003 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5004 unsigned long high = READ_ONCE(memcg->high);
5005
5006 if (high == PAGE_COUNTER_MAX)
5007 seq_puts(m, "max\n");
5008 else
5009 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5010
5011 return 0;
5012 }
5013
5014 static ssize_t memory_high_write(struct kernfs_open_file *of,
5015 char *buf, size_t nbytes, loff_t off)
5016 {
5017 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5018 unsigned long high;
5019 int err;
5020
5021 buf = strstrip(buf);
5022 err = page_counter_memparse(buf, "max", &high);
5023 if (err)
5024 return err;
5025
5026 memcg->high = high;
5027
5028 memcg_wb_domain_size_changed(memcg);
5029 return nbytes;
5030 }
5031
5032 static int memory_max_show(struct seq_file *m, void *v)
5033 {
5034 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5035 unsigned long max = READ_ONCE(memcg->memory.limit);
5036
5037 if (max == PAGE_COUNTER_MAX)
5038 seq_puts(m, "max\n");
5039 else
5040 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5041
5042 return 0;
5043 }
5044
5045 static ssize_t memory_max_write(struct kernfs_open_file *of,
5046 char *buf, size_t nbytes, loff_t off)
5047 {
5048 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5049 unsigned long max;
5050 int err;
5051
5052 buf = strstrip(buf);
5053 err = page_counter_memparse(buf, "max", &max);
5054 if (err)
5055 return err;
5056
5057 err = mem_cgroup_resize_limit(memcg, max);
5058 if (err)
5059 return err;
5060
5061 memcg_wb_domain_size_changed(memcg);
5062 return nbytes;
5063 }
5064
5065 static int memory_events_show(struct seq_file *m, void *v)
5066 {
5067 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5068
5069 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5070 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5071 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5072 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5073
5074 return 0;
5075 }
5076
5077 static int memory_stat_show(struct seq_file *m, void *v)
5078 {
5079 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5080 int i;
5081
5082 /*
5083 * Provide statistics on the state of the memory subsystem as
5084 * well as cumulative event counters that show past behavior.
5085 *
5086 * This list is ordered following a combination of these gradients:
5087 * 1) generic big picture -> specifics and details
5088 * 2) reflecting userspace activity -> reflecting kernel heuristics
5089 *
5090 * Current memory state:
5091 */
5092
5093 seq_printf(m, "anon %llu\n",
5094 (u64)tree_stat(memcg, MEM_CGROUP_STAT_RSS) * PAGE_SIZE);
5095 seq_printf(m, "file %llu\n",
5096 (u64)tree_stat(memcg, MEM_CGROUP_STAT_CACHE) * PAGE_SIZE);
5097 seq_printf(m, "sock %llu\n",
5098 (u64)tree_stat(memcg, MEMCG_SOCK) * PAGE_SIZE);
5099
5100 seq_printf(m, "file_mapped %llu\n",
5101 (u64)tree_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED) *
5102 PAGE_SIZE);
5103 seq_printf(m, "file_dirty %llu\n",
5104 (u64)tree_stat(memcg, MEM_CGROUP_STAT_DIRTY) *
5105 PAGE_SIZE);
5106 seq_printf(m, "file_writeback %llu\n",
5107 (u64)tree_stat(memcg, MEM_CGROUP_STAT_WRITEBACK) *
5108 PAGE_SIZE);
5109
5110 for (i = 0; i < NR_LRU_LISTS; i++) {
5111 struct mem_cgroup *mi;
5112 unsigned long val = 0;
5113
5114 for_each_mem_cgroup_tree(mi, memcg)
5115 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5116 seq_printf(m, "%s %llu\n",
5117 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5118 }
5119
5120 /* Accumulated memory events */
5121
5122 seq_printf(m, "pgfault %lu\n",
5123 tree_events(memcg, MEM_CGROUP_EVENTS_PGFAULT));
5124 seq_printf(m, "pgmajfault %lu\n",
5125 tree_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT));
5126
5127 return 0;
5128 }
5129
5130 static struct cftype memory_files[] = {
5131 {
5132 .name = "current",
5133 .flags = CFTYPE_NOT_ON_ROOT,
5134 .read_u64 = memory_current_read,
5135 },
5136 {
5137 .name = "low",
5138 .flags = CFTYPE_NOT_ON_ROOT,
5139 .seq_show = memory_low_show,
5140 .write = memory_low_write,
5141 },
5142 {
5143 .name = "high",
5144 .flags = CFTYPE_NOT_ON_ROOT,
5145 .seq_show = memory_high_show,
5146 .write = memory_high_write,
5147 },
5148 {
5149 .name = "max",
5150 .flags = CFTYPE_NOT_ON_ROOT,
5151 .seq_show = memory_max_show,
5152 .write = memory_max_write,
5153 },
5154 {
5155 .name = "events",
5156 .flags = CFTYPE_NOT_ON_ROOT,
5157 .file_offset = offsetof(struct mem_cgroup, events_file),
5158 .seq_show = memory_events_show,
5159 },
5160 {
5161 .name = "stat",
5162 .flags = CFTYPE_NOT_ON_ROOT,
5163 .seq_show = memory_stat_show,
5164 },
5165 { } /* terminate */
5166 };
5167
5168 struct cgroup_subsys memory_cgrp_subsys = {
5169 .css_alloc = mem_cgroup_css_alloc,
5170 .css_online = mem_cgroup_css_online,
5171 .css_offline = mem_cgroup_css_offline,
5172 .css_released = mem_cgroup_css_released,
5173 .css_free = mem_cgroup_css_free,
5174 .css_reset = mem_cgroup_css_reset,
5175 .can_attach = mem_cgroup_can_attach,
5176 .cancel_attach = mem_cgroup_cancel_attach,
5177 .attach = mem_cgroup_move_task,
5178 .bind = mem_cgroup_bind,
5179 .dfl_cftypes = memory_files,
5180 .legacy_cftypes = mem_cgroup_legacy_files,
5181 .early_init = 0,
5182 };
5183
5184 /**
5185 * mem_cgroup_low - check if memory consumption is below the normal range
5186 * @root: the highest ancestor to consider
5187 * @memcg: the memory cgroup to check
5188 *
5189 * Returns %true if memory consumption of @memcg, and that of all
5190 * configurable ancestors up to @root, is below the normal range.
5191 */
5192 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5193 {
5194 if (mem_cgroup_disabled())
5195 return false;
5196
5197 /*
5198 * The toplevel group doesn't have a configurable range, so
5199 * it's never low when looked at directly, and it is not
5200 * considered an ancestor when assessing the hierarchy.
5201 */
5202
5203 if (memcg == root_mem_cgroup)
5204 return false;
5205
5206 if (page_counter_read(&memcg->memory) >= memcg->low)
5207 return false;
5208
5209 while (memcg != root) {
5210 memcg = parent_mem_cgroup(memcg);
5211
5212 if (memcg == root_mem_cgroup)
5213 break;
5214
5215 if (page_counter_read(&memcg->memory) >= memcg->low)
5216 return false;
5217 }
5218 return true;
5219 }
5220
5221 /**
5222 * mem_cgroup_try_charge - try charging a page
5223 * @page: page to charge
5224 * @mm: mm context of the victim
5225 * @gfp_mask: reclaim mode
5226 * @memcgp: charged memcg return
5227 *
5228 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5229 * pages according to @gfp_mask if necessary.
5230 *
5231 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5232 * Otherwise, an error code is returned.
5233 *
5234 * After page->mapping has been set up, the caller must finalize the
5235 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5236 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5237 */
5238 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5239 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5240 bool compound)
5241 {
5242 struct mem_cgroup *memcg = NULL;
5243 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5244 int ret = 0;
5245
5246 if (mem_cgroup_disabled())
5247 goto out;
5248
5249 if (PageSwapCache(page)) {
5250 /*
5251 * Every swap fault against a single page tries to charge the
5252 * page, bail as early as possible. shmem_unuse() encounters
5253 * already charged pages, too. The USED bit is protected by
5254 * the page lock, which serializes swap cache removal, which
5255 * in turn serializes uncharging.
5256 */
5257 VM_BUG_ON_PAGE(!PageLocked(page), page);
5258 if (page->mem_cgroup)
5259 goto out;
5260
5261 if (do_swap_account) {
5262 swp_entry_t ent = { .val = page_private(page), };
5263 unsigned short id = lookup_swap_cgroup_id(ent);
5264
5265 rcu_read_lock();
5266 memcg = mem_cgroup_from_id(id);
5267 if (memcg && !css_tryget_online(&memcg->css))
5268 memcg = NULL;
5269 rcu_read_unlock();
5270 }
5271 }
5272
5273 if (!memcg)
5274 memcg = get_mem_cgroup_from_mm(mm);
5275
5276 ret = try_charge(memcg, gfp_mask, nr_pages);
5277
5278 css_put(&memcg->css);
5279 out:
5280 *memcgp = memcg;
5281 return ret;
5282 }
5283
5284 /**
5285 * mem_cgroup_commit_charge - commit a page charge
5286 * @page: page to charge
5287 * @memcg: memcg to charge the page to
5288 * @lrucare: page might be on LRU already
5289 *
5290 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5291 * after page->mapping has been set up. This must happen atomically
5292 * as part of the page instantiation, i.e. under the page table lock
5293 * for anonymous pages, under the page lock for page and swap cache.
5294 *
5295 * In addition, the page must not be on the LRU during the commit, to
5296 * prevent racing with task migration. If it might be, use @lrucare.
5297 *
5298 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5299 */
5300 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5301 bool lrucare, bool compound)
5302 {
5303 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5304
5305 VM_BUG_ON_PAGE(!page->mapping, page);
5306 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5307
5308 if (mem_cgroup_disabled())
5309 return;
5310 /*
5311 * Swap faults will attempt to charge the same page multiple
5312 * times. But reuse_swap_page() might have removed the page
5313 * from swapcache already, so we can't check PageSwapCache().
5314 */
5315 if (!memcg)
5316 return;
5317
5318 commit_charge(page, memcg, lrucare);
5319
5320 local_irq_disable();
5321 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5322 memcg_check_events(memcg, page);
5323 local_irq_enable();
5324
5325 if (do_memsw_account() && PageSwapCache(page)) {
5326 swp_entry_t entry = { .val = page_private(page) };
5327 /*
5328 * The swap entry might not get freed for a long time,
5329 * let's not wait for it. The page already received a
5330 * memory+swap charge, drop the swap entry duplicate.
5331 */
5332 mem_cgroup_uncharge_swap(entry);
5333 }
5334 }
5335
5336 /**
5337 * mem_cgroup_cancel_charge - cancel a page charge
5338 * @page: page to charge
5339 * @memcg: memcg to charge the page to
5340 *
5341 * Cancel a charge transaction started by mem_cgroup_try_charge().
5342 */
5343 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5344 bool compound)
5345 {
5346 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5347
5348 if (mem_cgroup_disabled())
5349 return;
5350 /*
5351 * Swap faults will attempt to charge the same page multiple
5352 * times. But reuse_swap_page() might have removed the page
5353 * from swapcache already, so we can't check PageSwapCache().
5354 */
5355 if (!memcg)
5356 return;
5357
5358 cancel_charge(memcg, nr_pages);
5359 }
5360
5361 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5362 unsigned long nr_anon, unsigned long nr_file,
5363 unsigned long nr_huge, struct page *dummy_page)
5364 {
5365 unsigned long nr_pages = nr_anon + nr_file;
5366 unsigned long flags;
5367
5368 if (!mem_cgroup_is_root(memcg)) {
5369 page_counter_uncharge(&memcg->memory, nr_pages);
5370 if (do_memsw_account())
5371 page_counter_uncharge(&memcg->memsw, nr_pages);
5372 memcg_oom_recover(memcg);
5373 }
5374
5375 local_irq_save(flags);
5376 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5377 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5378 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5379 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5380 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5381 memcg_check_events(memcg, dummy_page);
5382 local_irq_restore(flags);
5383
5384 if (!mem_cgroup_is_root(memcg))
5385 css_put_many(&memcg->css, nr_pages);
5386 }
5387
5388 static void uncharge_list(struct list_head *page_list)
5389 {
5390 struct mem_cgroup *memcg = NULL;
5391 unsigned long nr_anon = 0;
5392 unsigned long nr_file = 0;
5393 unsigned long nr_huge = 0;
5394 unsigned long pgpgout = 0;
5395 struct list_head *next;
5396 struct page *page;
5397
5398 next = page_list->next;
5399 do {
5400 unsigned int nr_pages = 1;
5401
5402 page = list_entry(next, struct page, lru);
5403 next = page->lru.next;
5404
5405 VM_BUG_ON_PAGE(PageLRU(page), page);
5406 VM_BUG_ON_PAGE(page_count(page), page);
5407
5408 if (!page->mem_cgroup)
5409 continue;
5410
5411 /*
5412 * Nobody should be changing or seriously looking at
5413 * page->mem_cgroup at this point, we have fully
5414 * exclusive access to the page.
5415 */
5416
5417 if (memcg != page->mem_cgroup) {
5418 if (memcg) {
5419 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5420 nr_huge, page);
5421 pgpgout = nr_anon = nr_file = nr_huge = 0;
5422 }
5423 memcg = page->mem_cgroup;
5424 }
5425
5426 if (PageTransHuge(page)) {
5427 nr_pages <<= compound_order(page);
5428 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5429 nr_huge += nr_pages;
5430 }
5431
5432 if (PageAnon(page))
5433 nr_anon += nr_pages;
5434 else
5435 nr_file += nr_pages;
5436
5437 page->mem_cgroup = NULL;
5438
5439 pgpgout++;
5440 } while (next != page_list);
5441
5442 if (memcg)
5443 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5444 nr_huge, page);
5445 }
5446
5447 /**
5448 * mem_cgroup_uncharge - uncharge a page
5449 * @page: page to uncharge
5450 *
5451 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5452 * mem_cgroup_commit_charge().
5453 */
5454 void mem_cgroup_uncharge(struct page *page)
5455 {
5456 if (mem_cgroup_disabled())
5457 return;
5458
5459 /* Don't touch page->lru of any random page, pre-check: */
5460 if (!page->mem_cgroup)
5461 return;
5462
5463 INIT_LIST_HEAD(&page->lru);
5464 uncharge_list(&page->lru);
5465 }
5466
5467 /**
5468 * mem_cgroup_uncharge_list - uncharge a list of page
5469 * @page_list: list of pages to uncharge
5470 *
5471 * Uncharge a list of pages previously charged with
5472 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5473 */
5474 void mem_cgroup_uncharge_list(struct list_head *page_list)
5475 {
5476 if (mem_cgroup_disabled())
5477 return;
5478
5479 if (!list_empty(page_list))
5480 uncharge_list(page_list);
5481 }
5482
5483 /**
5484 * mem_cgroup_migrate - charge a page's replacement
5485 * @oldpage: currently circulating page
5486 * @newpage: replacement page
5487 *
5488 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5489 * be uncharged upon free.
5490 *
5491 * Both pages must be locked, @newpage->mapping must be set up.
5492 */
5493 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5494 {
5495 struct mem_cgroup *memcg;
5496 unsigned int nr_pages;
5497 bool compound;
5498
5499 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5500 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5501 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5502 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5503 newpage);
5504
5505 if (mem_cgroup_disabled())
5506 return;
5507
5508 /* Page cache replacement: new page already charged? */
5509 if (newpage->mem_cgroup)
5510 return;
5511
5512 /* Swapcache readahead pages can get replaced before being charged */
5513 memcg = oldpage->mem_cgroup;
5514 if (!memcg)
5515 return;
5516
5517 /* Force-charge the new page. The old one will be freed soon */
5518 compound = PageTransHuge(newpage);
5519 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5520
5521 page_counter_charge(&memcg->memory, nr_pages);
5522 if (do_memsw_account())
5523 page_counter_charge(&memcg->memsw, nr_pages);
5524 css_get_many(&memcg->css, nr_pages);
5525
5526 commit_charge(newpage, memcg, false);
5527
5528 local_irq_disable();
5529 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5530 memcg_check_events(memcg, newpage);
5531 local_irq_enable();
5532 }
5533
5534 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5535 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5536
5537 void sock_update_memcg(struct sock *sk)
5538 {
5539 struct mem_cgroup *memcg;
5540
5541 /* Socket cloning can throw us here with sk_cgrp already
5542 * filled. It won't however, necessarily happen from
5543 * process context. So the test for root memcg given
5544 * the current task's memcg won't help us in this case.
5545 *
5546 * Respecting the original socket's memcg is a better
5547 * decision in this case.
5548 */
5549 if (sk->sk_memcg) {
5550 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5551 css_get(&sk->sk_memcg->css);
5552 return;
5553 }
5554
5555 rcu_read_lock();
5556 memcg = mem_cgroup_from_task(current);
5557 if (memcg == root_mem_cgroup)
5558 goto out;
5559 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5560 goto out;
5561 if (css_tryget_online(&memcg->css))
5562 sk->sk_memcg = memcg;
5563 out:
5564 rcu_read_unlock();
5565 }
5566 EXPORT_SYMBOL(sock_update_memcg);
5567
5568 void sock_release_memcg(struct sock *sk)
5569 {
5570 WARN_ON(!sk->sk_memcg);
5571 css_put(&sk->sk_memcg->css);
5572 }
5573
5574 /**
5575 * mem_cgroup_charge_skmem - charge socket memory
5576 * @memcg: memcg to charge
5577 * @nr_pages: number of pages to charge
5578 *
5579 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5580 * @memcg's configured limit, %false if the charge had to be forced.
5581 */
5582 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5583 {
5584 gfp_t gfp_mask = GFP_KERNEL;
5585
5586 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5587 struct page_counter *fail;
5588
5589 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5590 memcg->tcpmem_pressure = 0;
5591 return true;
5592 }
5593 page_counter_charge(&memcg->tcpmem, nr_pages);
5594 memcg->tcpmem_pressure = 1;
5595 return false;
5596 }
5597
5598 /* Don't block in the packet receive path */
5599 if (in_softirq())
5600 gfp_mask = GFP_NOWAIT;
5601
5602 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5603
5604 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5605 return true;
5606
5607 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5608 return false;
5609 }
5610
5611 /**
5612 * mem_cgroup_uncharge_skmem - uncharge socket memory
5613 * @memcg - memcg to uncharge
5614 * @nr_pages - number of pages to uncharge
5615 */
5616 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5617 {
5618 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5619 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5620 return;
5621 }
5622
5623 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5624
5625 page_counter_uncharge(&memcg->memory, nr_pages);
5626 css_put_many(&memcg->css, nr_pages);
5627 }
5628
5629 static int __init cgroup_memory(char *s)
5630 {
5631 char *token;
5632
5633 while ((token = strsep(&s, ",")) != NULL) {
5634 if (!*token)
5635 continue;
5636 if (!strcmp(token, "nosocket"))
5637 cgroup_memory_nosocket = true;
5638 if (!strcmp(token, "nokmem"))
5639 cgroup_memory_nokmem = true;
5640 }
5641 return 0;
5642 }
5643 __setup("cgroup.memory=", cgroup_memory);
5644
5645 /*
5646 * subsys_initcall() for memory controller.
5647 *
5648 * Some parts like hotcpu_notifier() have to be initialized from this context
5649 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5650 * everything that doesn't depend on a specific mem_cgroup structure should
5651 * be initialized from here.
5652 */
5653 static int __init mem_cgroup_init(void)
5654 {
5655 int cpu, node;
5656
5657 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5658
5659 for_each_possible_cpu(cpu)
5660 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5661 drain_local_stock);
5662
5663 for_each_node(node) {
5664 struct mem_cgroup_tree_per_node *rtpn;
5665 int zone;
5666
5667 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5668 node_online(node) ? node : NUMA_NO_NODE);
5669
5670 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5671 struct mem_cgroup_tree_per_zone *rtpz;
5672
5673 rtpz = &rtpn->rb_tree_per_zone[zone];
5674 rtpz->rb_root = RB_ROOT;
5675 spin_lock_init(&rtpz->lock);
5676 }
5677 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5678 }
5679
5680 return 0;
5681 }
5682 subsys_initcall(mem_cgroup_init);
5683
5684 #ifdef CONFIG_MEMCG_SWAP
5685 /**
5686 * mem_cgroup_swapout - transfer a memsw charge to swap
5687 * @page: page whose memsw charge to transfer
5688 * @entry: swap entry to move the charge to
5689 *
5690 * Transfer the memsw charge of @page to @entry.
5691 */
5692 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5693 {
5694 struct mem_cgroup *memcg;
5695 unsigned short oldid;
5696
5697 VM_BUG_ON_PAGE(PageLRU(page), page);
5698 VM_BUG_ON_PAGE(page_count(page), page);
5699
5700 if (!do_memsw_account())
5701 return;
5702
5703 memcg = page->mem_cgroup;
5704
5705 /* Readahead page, never charged */
5706 if (!memcg)
5707 return;
5708
5709 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5710 VM_BUG_ON_PAGE(oldid, page);
5711 mem_cgroup_swap_statistics(memcg, true);
5712
5713 page->mem_cgroup = NULL;
5714
5715 if (!mem_cgroup_is_root(memcg))
5716 page_counter_uncharge(&memcg->memory, 1);
5717
5718 /*
5719 * Interrupts should be disabled here because the caller holds the
5720 * mapping->tree_lock lock which is taken with interrupts-off. It is
5721 * important here to have the interrupts disabled because it is the
5722 * only synchronisation we have for udpating the per-CPU variables.
5723 */
5724 VM_BUG_ON(!irqs_disabled());
5725 mem_cgroup_charge_statistics(memcg, page, false, -1);
5726 memcg_check_events(memcg, page);
5727 }
5728
5729 /*
5730 * mem_cgroup_try_charge_swap - try charging a swap entry
5731 * @page: page being added to swap
5732 * @entry: swap entry to charge
5733 *
5734 * Try to charge @entry to the memcg that @page belongs to.
5735 *
5736 * Returns 0 on success, -ENOMEM on failure.
5737 */
5738 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5739 {
5740 struct mem_cgroup *memcg;
5741 struct page_counter *counter;
5742 unsigned short oldid;
5743
5744 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5745 return 0;
5746
5747 memcg = page->mem_cgroup;
5748
5749 /* Readahead page, never charged */
5750 if (!memcg)
5751 return 0;
5752
5753 if (!mem_cgroup_is_root(memcg) &&
5754 !page_counter_try_charge(&memcg->swap, 1, &counter))
5755 return -ENOMEM;
5756
5757 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5758 VM_BUG_ON_PAGE(oldid, page);
5759 mem_cgroup_swap_statistics(memcg, true);
5760
5761 css_get(&memcg->css);
5762 return 0;
5763 }
5764
5765 /**
5766 * mem_cgroup_uncharge_swap - uncharge a swap entry
5767 * @entry: swap entry to uncharge
5768 *
5769 * Drop the swap charge associated with @entry.
5770 */
5771 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5772 {
5773 struct mem_cgroup *memcg;
5774 unsigned short id;
5775
5776 if (!do_swap_account)
5777 return;
5778
5779 id = swap_cgroup_record(entry, 0);
5780 rcu_read_lock();
5781 memcg = mem_cgroup_from_id(id);
5782 if (memcg) {
5783 if (!mem_cgroup_is_root(memcg)) {
5784 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5785 page_counter_uncharge(&memcg->swap, 1);
5786 else
5787 page_counter_uncharge(&memcg->memsw, 1);
5788 }
5789 mem_cgroup_swap_statistics(memcg, false);
5790 css_put(&memcg->css);
5791 }
5792 rcu_read_unlock();
5793 }
5794
5795 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5796 {
5797 long nr_swap_pages = get_nr_swap_pages();
5798
5799 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5800 return nr_swap_pages;
5801 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5802 nr_swap_pages = min_t(long, nr_swap_pages,
5803 READ_ONCE(memcg->swap.limit) -
5804 page_counter_read(&memcg->swap));
5805 return nr_swap_pages;
5806 }
5807
5808 bool mem_cgroup_swap_full(struct page *page)
5809 {
5810 struct mem_cgroup *memcg;
5811
5812 VM_BUG_ON_PAGE(!PageLocked(page), page);
5813
5814 if (vm_swap_full())
5815 return true;
5816 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5817 return false;
5818
5819 memcg = page->mem_cgroup;
5820 if (!memcg)
5821 return false;
5822
5823 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5824 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5825 return true;
5826
5827 return false;
5828 }
5829
5830 /* for remember boot option*/
5831 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5832 static int really_do_swap_account __initdata = 1;
5833 #else
5834 static int really_do_swap_account __initdata;
5835 #endif
5836
5837 static int __init enable_swap_account(char *s)
5838 {
5839 if (!strcmp(s, "1"))
5840 really_do_swap_account = 1;
5841 else if (!strcmp(s, "0"))
5842 really_do_swap_account = 0;
5843 return 1;
5844 }
5845 __setup("swapaccount=", enable_swap_account);
5846
5847 static u64 swap_current_read(struct cgroup_subsys_state *css,
5848 struct cftype *cft)
5849 {
5850 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5851
5852 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5853 }
5854
5855 static int swap_max_show(struct seq_file *m, void *v)
5856 {
5857 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5858 unsigned long max = READ_ONCE(memcg->swap.limit);
5859
5860 if (max == PAGE_COUNTER_MAX)
5861 seq_puts(m, "max\n");
5862 else
5863 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5864
5865 return 0;
5866 }
5867
5868 static ssize_t swap_max_write(struct kernfs_open_file *of,
5869 char *buf, size_t nbytes, loff_t off)
5870 {
5871 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5872 unsigned long max;
5873 int err;
5874
5875 buf = strstrip(buf);
5876 err = page_counter_memparse(buf, "max", &max);
5877 if (err)
5878 return err;
5879
5880 mutex_lock(&memcg_limit_mutex);
5881 err = page_counter_limit(&memcg->swap, max);
5882 mutex_unlock(&memcg_limit_mutex);
5883 if (err)
5884 return err;
5885
5886 return nbytes;
5887 }
5888
5889 static struct cftype swap_files[] = {
5890 {
5891 .name = "swap.current",
5892 .flags = CFTYPE_NOT_ON_ROOT,
5893 .read_u64 = swap_current_read,
5894 },
5895 {
5896 .name = "swap.max",
5897 .flags = CFTYPE_NOT_ON_ROOT,
5898 .seq_show = swap_max_show,
5899 .write = swap_max_write,
5900 },
5901 { } /* terminate */
5902 };
5903
5904 static struct cftype memsw_cgroup_files[] = {
5905 {
5906 .name = "memsw.usage_in_bytes",
5907 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5908 .read_u64 = mem_cgroup_read_u64,
5909 },
5910 {
5911 .name = "memsw.max_usage_in_bytes",
5912 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5913 .write = mem_cgroup_reset,
5914 .read_u64 = mem_cgroup_read_u64,
5915 },
5916 {
5917 .name = "memsw.limit_in_bytes",
5918 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5919 .write = mem_cgroup_write,
5920 .read_u64 = mem_cgroup_read_u64,
5921 },
5922 {
5923 .name = "memsw.failcnt",
5924 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5925 .write = mem_cgroup_reset,
5926 .read_u64 = mem_cgroup_read_u64,
5927 },
5928 { }, /* terminate */
5929 };
5930
5931 static int __init mem_cgroup_swap_init(void)
5932 {
5933 if (!mem_cgroup_disabled() && really_do_swap_account) {
5934 do_swap_account = 1;
5935 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5936 swap_files));
5937 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5938 memsw_cgroup_files));
5939 }
5940 return 0;
5941 }
5942 subsys_initcall(mem_cgroup_swap_init);
5943
5944 #endif /* CONFIG_MEMCG_SWAP */
This page took 0.140518 seconds and 6 git commands to generate.