cgroup: pass around cgroup_subsys_state instead of cgroup in subsystem methods
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/sort.h>
49 #include <linux/fs.h>
50 #include <linux/seq_file.h>
51 #include <linux/vmalloc.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include "internal.h"
58 #include <net/sock.h>
59 #include <net/ip.h>
60 #include <net/tcp_memcontrol.h>
61
62 #include <asm/uaccess.h>
63
64 #include <trace/events/vmscan.h>
65
66 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
67 EXPORT_SYMBOL(mem_cgroup_subsys);
68
69 #define MEM_CGROUP_RECLAIM_RETRIES 5
70 static struct mem_cgroup *root_mem_cgroup __read_mostly;
71
72 #ifdef CONFIG_MEMCG_SWAP
73 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
74 int do_swap_account __read_mostly;
75
76 /* for remember boot option*/
77 #ifdef CONFIG_MEMCG_SWAP_ENABLED
78 static int really_do_swap_account __initdata = 1;
79 #else
80 static int really_do_swap_account __initdata = 0;
81 #endif
82
83 #else
84 #define do_swap_account 0
85 #endif
86
87
88 /*
89 * Statistics for memory cgroup.
90 */
91 enum mem_cgroup_stat_index {
92 /*
93 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
94 */
95 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
96 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
97 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */
98 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
99 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
100 MEM_CGROUP_STAT_NSTATS,
101 };
102
103 static const char * const mem_cgroup_stat_names[] = {
104 "cache",
105 "rss",
106 "rss_huge",
107 "mapped_file",
108 "swap",
109 };
110
111 enum mem_cgroup_events_index {
112 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
113 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
114 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
115 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
116 MEM_CGROUP_EVENTS_NSTATS,
117 };
118
119 static const char * const mem_cgroup_events_names[] = {
120 "pgpgin",
121 "pgpgout",
122 "pgfault",
123 "pgmajfault",
124 };
125
126 static const char * const mem_cgroup_lru_names[] = {
127 "inactive_anon",
128 "active_anon",
129 "inactive_file",
130 "active_file",
131 "unevictable",
132 };
133
134 /*
135 * Per memcg event counter is incremented at every pagein/pageout. With THP,
136 * it will be incremated by the number of pages. This counter is used for
137 * for trigger some periodic events. This is straightforward and better
138 * than using jiffies etc. to handle periodic memcg event.
139 */
140 enum mem_cgroup_events_target {
141 MEM_CGROUP_TARGET_THRESH,
142 MEM_CGROUP_TARGET_SOFTLIMIT,
143 MEM_CGROUP_TARGET_NUMAINFO,
144 MEM_CGROUP_NTARGETS,
145 };
146 #define THRESHOLDS_EVENTS_TARGET 128
147 #define SOFTLIMIT_EVENTS_TARGET 1024
148 #define NUMAINFO_EVENTS_TARGET 1024
149
150 struct mem_cgroup_stat_cpu {
151 long count[MEM_CGROUP_STAT_NSTATS];
152 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
153 unsigned long nr_page_events;
154 unsigned long targets[MEM_CGROUP_NTARGETS];
155 };
156
157 struct mem_cgroup_reclaim_iter {
158 /*
159 * last scanned hierarchy member. Valid only if last_dead_count
160 * matches memcg->dead_count of the hierarchy root group.
161 */
162 struct mem_cgroup *last_visited;
163 unsigned long last_dead_count;
164
165 /* scan generation, increased every round-trip */
166 unsigned int generation;
167 };
168
169 /*
170 * per-zone information in memory controller.
171 */
172 struct mem_cgroup_per_zone {
173 struct lruvec lruvec;
174 unsigned long lru_size[NR_LRU_LISTS];
175
176 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
177
178 struct rb_node tree_node; /* RB tree node */
179 unsigned long long usage_in_excess;/* Set to the value by which */
180 /* the soft limit is exceeded*/
181 bool on_tree;
182 struct mem_cgroup *memcg; /* Back pointer, we cannot */
183 /* use container_of */
184 };
185
186 struct mem_cgroup_per_node {
187 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
188 };
189
190 /*
191 * Cgroups above their limits are maintained in a RB-Tree, independent of
192 * their hierarchy representation
193 */
194
195 struct mem_cgroup_tree_per_zone {
196 struct rb_root rb_root;
197 spinlock_t lock;
198 };
199
200 struct mem_cgroup_tree_per_node {
201 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
202 };
203
204 struct mem_cgroup_tree {
205 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
206 };
207
208 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
209
210 struct mem_cgroup_threshold {
211 struct eventfd_ctx *eventfd;
212 u64 threshold;
213 };
214
215 /* For threshold */
216 struct mem_cgroup_threshold_ary {
217 /* An array index points to threshold just below or equal to usage. */
218 int current_threshold;
219 /* Size of entries[] */
220 unsigned int size;
221 /* Array of thresholds */
222 struct mem_cgroup_threshold entries[0];
223 };
224
225 struct mem_cgroup_thresholds {
226 /* Primary thresholds array */
227 struct mem_cgroup_threshold_ary *primary;
228 /*
229 * Spare threshold array.
230 * This is needed to make mem_cgroup_unregister_event() "never fail".
231 * It must be able to store at least primary->size - 1 entries.
232 */
233 struct mem_cgroup_threshold_ary *spare;
234 };
235
236 /* for OOM */
237 struct mem_cgroup_eventfd_list {
238 struct list_head list;
239 struct eventfd_ctx *eventfd;
240 };
241
242 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
243 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
244
245 /*
246 * The memory controller data structure. The memory controller controls both
247 * page cache and RSS per cgroup. We would eventually like to provide
248 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
249 * to help the administrator determine what knobs to tune.
250 *
251 * TODO: Add a water mark for the memory controller. Reclaim will begin when
252 * we hit the water mark. May be even add a low water mark, such that
253 * no reclaim occurs from a cgroup at it's low water mark, this is
254 * a feature that will be implemented much later in the future.
255 */
256 struct mem_cgroup {
257 struct cgroup_subsys_state css;
258 /*
259 * the counter to account for memory usage
260 */
261 struct res_counter res;
262
263 /* vmpressure notifications */
264 struct vmpressure vmpressure;
265
266 /*
267 * the counter to account for mem+swap usage.
268 */
269 struct res_counter memsw;
270
271 /*
272 * the counter to account for kernel memory usage.
273 */
274 struct res_counter kmem;
275 /*
276 * Should the accounting and control be hierarchical, per subtree?
277 */
278 bool use_hierarchy;
279 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
280
281 bool oom_lock;
282 atomic_t under_oom;
283
284 int swappiness;
285 /* OOM-Killer disable */
286 int oom_kill_disable;
287
288 /* set when res.limit == memsw.limit */
289 bool memsw_is_minimum;
290
291 /* protect arrays of thresholds */
292 struct mutex thresholds_lock;
293
294 /* thresholds for memory usage. RCU-protected */
295 struct mem_cgroup_thresholds thresholds;
296
297 /* thresholds for mem+swap usage. RCU-protected */
298 struct mem_cgroup_thresholds memsw_thresholds;
299
300 /* For oom notifier event fd */
301 struct list_head oom_notify;
302
303 /*
304 * Should we move charges of a task when a task is moved into this
305 * mem_cgroup ? And what type of charges should we move ?
306 */
307 unsigned long move_charge_at_immigrate;
308 /*
309 * set > 0 if pages under this cgroup are moving to other cgroup.
310 */
311 atomic_t moving_account;
312 /* taken only while moving_account > 0 */
313 spinlock_t move_lock;
314 /*
315 * percpu counter.
316 */
317 struct mem_cgroup_stat_cpu __percpu *stat;
318 /*
319 * used when a cpu is offlined or other synchronizations
320 * See mem_cgroup_read_stat().
321 */
322 struct mem_cgroup_stat_cpu nocpu_base;
323 spinlock_t pcp_counter_lock;
324
325 atomic_t dead_count;
326 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
327 struct tcp_memcontrol tcp_mem;
328 #endif
329 #if defined(CONFIG_MEMCG_KMEM)
330 /* analogous to slab_common's slab_caches list. per-memcg */
331 struct list_head memcg_slab_caches;
332 /* Not a spinlock, we can take a lot of time walking the list */
333 struct mutex slab_caches_mutex;
334 /* Index in the kmem_cache->memcg_params->memcg_caches array */
335 int kmemcg_id;
336 #endif
337
338 int last_scanned_node;
339 #if MAX_NUMNODES > 1
340 nodemask_t scan_nodes;
341 atomic_t numainfo_events;
342 atomic_t numainfo_updating;
343 #endif
344
345 struct mem_cgroup_per_node *nodeinfo[0];
346 /* WARNING: nodeinfo must be the last member here */
347 };
348
349 static size_t memcg_size(void)
350 {
351 return sizeof(struct mem_cgroup) +
352 nr_node_ids * sizeof(struct mem_cgroup_per_node);
353 }
354
355 /* internal only representation about the status of kmem accounting. */
356 enum {
357 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
358 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
359 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
360 };
361
362 /* We account when limit is on, but only after call sites are patched */
363 #define KMEM_ACCOUNTED_MASK \
364 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
365
366 #ifdef CONFIG_MEMCG_KMEM
367 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
368 {
369 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
370 }
371
372 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
373 {
374 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
375 }
376
377 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
378 {
379 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
380 }
381
382 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
383 {
384 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
385 }
386
387 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
388 {
389 /*
390 * Our caller must use css_get() first, because memcg_uncharge_kmem()
391 * will call css_put() if it sees the memcg is dead.
392 */
393 smp_wmb();
394 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
395 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
396 }
397
398 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
399 {
400 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
401 &memcg->kmem_account_flags);
402 }
403 #endif
404
405 /* Stuffs for move charges at task migration. */
406 /*
407 * Types of charges to be moved. "move_charge_at_immitgrate" and
408 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
409 */
410 enum move_type {
411 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
412 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
413 NR_MOVE_TYPE,
414 };
415
416 /* "mc" and its members are protected by cgroup_mutex */
417 static struct move_charge_struct {
418 spinlock_t lock; /* for from, to */
419 struct mem_cgroup *from;
420 struct mem_cgroup *to;
421 unsigned long immigrate_flags;
422 unsigned long precharge;
423 unsigned long moved_charge;
424 unsigned long moved_swap;
425 struct task_struct *moving_task; /* a task moving charges */
426 wait_queue_head_t waitq; /* a waitq for other context */
427 } mc = {
428 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
429 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
430 };
431
432 static bool move_anon(void)
433 {
434 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
435 }
436
437 static bool move_file(void)
438 {
439 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
440 }
441
442 /*
443 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
444 * limit reclaim to prevent infinite loops, if they ever occur.
445 */
446 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
447 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
448
449 enum charge_type {
450 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
451 MEM_CGROUP_CHARGE_TYPE_ANON,
452 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
453 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
454 NR_CHARGE_TYPE,
455 };
456
457 /* for encoding cft->private value on file */
458 enum res_type {
459 _MEM,
460 _MEMSWAP,
461 _OOM_TYPE,
462 _KMEM,
463 };
464
465 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
466 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
467 #define MEMFILE_ATTR(val) ((val) & 0xffff)
468 /* Used for OOM nofiier */
469 #define OOM_CONTROL (0)
470
471 /*
472 * Reclaim flags for mem_cgroup_hierarchical_reclaim
473 */
474 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
475 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
476 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
477 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
478
479 /*
480 * The memcg_create_mutex will be held whenever a new cgroup is created.
481 * As a consequence, any change that needs to protect against new child cgroups
482 * appearing has to hold it as well.
483 */
484 static DEFINE_MUTEX(memcg_create_mutex);
485
486 static inline
487 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
488 {
489 return s ? container_of(s, struct mem_cgroup, css) : NULL;
490 }
491
492 /* Some nice accessors for the vmpressure. */
493 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
494 {
495 if (!memcg)
496 memcg = root_mem_cgroup;
497 return &memcg->vmpressure;
498 }
499
500 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
501 {
502 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
503 }
504
505 struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
506 {
507 return &mem_cgroup_from_css(css)->vmpressure;
508 }
509
510 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
511 {
512 return (memcg == root_mem_cgroup);
513 }
514
515 /* Writing them here to avoid exposing memcg's inner layout */
516 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
517
518 void sock_update_memcg(struct sock *sk)
519 {
520 if (mem_cgroup_sockets_enabled) {
521 struct mem_cgroup *memcg;
522 struct cg_proto *cg_proto;
523
524 BUG_ON(!sk->sk_prot->proto_cgroup);
525
526 /* Socket cloning can throw us here with sk_cgrp already
527 * filled. It won't however, necessarily happen from
528 * process context. So the test for root memcg given
529 * the current task's memcg won't help us in this case.
530 *
531 * Respecting the original socket's memcg is a better
532 * decision in this case.
533 */
534 if (sk->sk_cgrp) {
535 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
536 css_get(&sk->sk_cgrp->memcg->css);
537 return;
538 }
539
540 rcu_read_lock();
541 memcg = mem_cgroup_from_task(current);
542 cg_proto = sk->sk_prot->proto_cgroup(memcg);
543 if (!mem_cgroup_is_root(memcg) &&
544 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
545 sk->sk_cgrp = cg_proto;
546 }
547 rcu_read_unlock();
548 }
549 }
550 EXPORT_SYMBOL(sock_update_memcg);
551
552 void sock_release_memcg(struct sock *sk)
553 {
554 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
555 struct mem_cgroup *memcg;
556 WARN_ON(!sk->sk_cgrp->memcg);
557 memcg = sk->sk_cgrp->memcg;
558 css_put(&sk->sk_cgrp->memcg->css);
559 }
560 }
561
562 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
563 {
564 if (!memcg || mem_cgroup_is_root(memcg))
565 return NULL;
566
567 return &memcg->tcp_mem.cg_proto;
568 }
569 EXPORT_SYMBOL(tcp_proto_cgroup);
570
571 static void disarm_sock_keys(struct mem_cgroup *memcg)
572 {
573 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
574 return;
575 static_key_slow_dec(&memcg_socket_limit_enabled);
576 }
577 #else
578 static void disarm_sock_keys(struct mem_cgroup *memcg)
579 {
580 }
581 #endif
582
583 #ifdef CONFIG_MEMCG_KMEM
584 /*
585 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
586 * There are two main reasons for not using the css_id for this:
587 * 1) this works better in sparse environments, where we have a lot of memcgs,
588 * but only a few kmem-limited. Or also, if we have, for instance, 200
589 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
590 * 200 entry array for that.
591 *
592 * 2) In order not to violate the cgroup API, we would like to do all memory
593 * allocation in ->create(). At that point, we haven't yet allocated the
594 * css_id. Having a separate index prevents us from messing with the cgroup
595 * core for this
596 *
597 * The current size of the caches array is stored in
598 * memcg_limited_groups_array_size. It will double each time we have to
599 * increase it.
600 */
601 static DEFINE_IDA(kmem_limited_groups);
602 int memcg_limited_groups_array_size;
603
604 /*
605 * MIN_SIZE is different than 1, because we would like to avoid going through
606 * the alloc/free process all the time. In a small machine, 4 kmem-limited
607 * cgroups is a reasonable guess. In the future, it could be a parameter or
608 * tunable, but that is strictly not necessary.
609 *
610 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
611 * this constant directly from cgroup, but it is understandable that this is
612 * better kept as an internal representation in cgroup.c. In any case, the
613 * css_id space is not getting any smaller, and we don't have to necessarily
614 * increase ours as well if it increases.
615 */
616 #define MEMCG_CACHES_MIN_SIZE 4
617 #define MEMCG_CACHES_MAX_SIZE 65535
618
619 /*
620 * A lot of the calls to the cache allocation functions are expected to be
621 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
622 * conditional to this static branch, we'll have to allow modules that does
623 * kmem_cache_alloc and the such to see this symbol as well
624 */
625 struct static_key memcg_kmem_enabled_key;
626 EXPORT_SYMBOL(memcg_kmem_enabled_key);
627
628 static void disarm_kmem_keys(struct mem_cgroup *memcg)
629 {
630 if (memcg_kmem_is_active(memcg)) {
631 static_key_slow_dec(&memcg_kmem_enabled_key);
632 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
633 }
634 /*
635 * This check can't live in kmem destruction function,
636 * since the charges will outlive the cgroup
637 */
638 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
639 }
640 #else
641 static void disarm_kmem_keys(struct mem_cgroup *memcg)
642 {
643 }
644 #endif /* CONFIG_MEMCG_KMEM */
645
646 static void disarm_static_keys(struct mem_cgroup *memcg)
647 {
648 disarm_sock_keys(memcg);
649 disarm_kmem_keys(memcg);
650 }
651
652 static void drain_all_stock_async(struct mem_cgroup *memcg);
653
654 static struct mem_cgroup_per_zone *
655 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
656 {
657 VM_BUG_ON((unsigned)nid >= nr_node_ids);
658 return &memcg->nodeinfo[nid]->zoneinfo[zid];
659 }
660
661 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
662 {
663 return &memcg->css;
664 }
665
666 static struct mem_cgroup_per_zone *
667 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
668 {
669 int nid = page_to_nid(page);
670 int zid = page_zonenum(page);
671
672 return mem_cgroup_zoneinfo(memcg, nid, zid);
673 }
674
675 static struct mem_cgroup_tree_per_zone *
676 soft_limit_tree_node_zone(int nid, int zid)
677 {
678 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
679 }
680
681 static struct mem_cgroup_tree_per_zone *
682 soft_limit_tree_from_page(struct page *page)
683 {
684 int nid = page_to_nid(page);
685 int zid = page_zonenum(page);
686
687 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
688 }
689
690 static void
691 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
692 struct mem_cgroup_per_zone *mz,
693 struct mem_cgroup_tree_per_zone *mctz,
694 unsigned long long new_usage_in_excess)
695 {
696 struct rb_node **p = &mctz->rb_root.rb_node;
697 struct rb_node *parent = NULL;
698 struct mem_cgroup_per_zone *mz_node;
699
700 if (mz->on_tree)
701 return;
702
703 mz->usage_in_excess = new_usage_in_excess;
704 if (!mz->usage_in_excess)
705 return;
706 while (*p) {
707 parent = *p;
708 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
709 tree_node);
710 if (mz->usage_in_excess < mz_node->usage_in_excess)
711 p = &(*p)->rb_left;
712 /*
713 * We can't avoid mem cgroups that are over their soft
714 * limit by the same amount
715 */
716 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
717 p = &(*p)->rb_right;
718 }
719 rb_link_node(&mz->tree_node, parent, p);
720 rb_insert_color(&mz->tree_node, &mctz->rb_root);
721 mz->on_tree = true;
722 }
723
724 static void
725 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
726 struct mem_cgroup_per_zone *mz,
727 struct mem_cgroup_tree_per_zone *mctz)
728 {
729 if (!mz->on_tree)
730 return;
731 rb_erase(&mz->tree_node, &mctz->rb_root);
732 mz->on_tree = false;
733 }
734
735 static void
736 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
737 struct mem_cgroup_per_zone *mz,
738 struct mem_cgroup_tree_per_zone *mctz)
739 {
740 spin_lock(&mctz->lock);
741 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
742 spin_unlock(&mctz->lock);
743 }
744
745
746 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
747 {
748 unsigned long long excess;
749 struct mem_cgroup_per_zone *mz;
750 struct mem_cgroup_tree_per_zone *mctz;
751 int nid = page_to_nid(page);
752 int zid = page_zonenum(page);
753 mctz = soft_limit_tree_from_page(page);
754
755 /*
756 * Necessary to update all ancestors when hierarchy is used.
757 * because their event counter is not touched.
758 */
759 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
760 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
761 excess = res_counter_soft_limit_excess(&memcg->res);
762 /*
763 * We have to update the tree if mz is on RB-tree or
764 * mem is over its softlimit.
765 */
766 if (excess || mz->on_tree) {
767 spin_lock(&mctz->lock);
768 /* if on-tree, remove it */
769 if (mz->on_tree)
770 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
771 /*
772 * Insert again. mz->usage_in_excess will be updated.
773 * If excess is 0, no tree ops.
774 */
775 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
776 spin_unlock(&mctz->lock);
777 }
778 }
779 }
780
781 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
782 {
783 int node, zone;
784 struct mem_cgroup_per_zone *mz;
785 struct mem_cgroup_tree_per_zone *mctz;
786
787 for_each_node(node) {
788 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
789 mz = mem_cgroup_zoneinfo(memcg, node, zone);
790 mctz = soft_limit_tree_node_zone(node, zone);
791 mem_cgroup_remove_exceeded(memcg, mz, mctz);
792 }
793 }
794 }
795
796 static struct mem_cgroup_per_zone *
797 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
798 {
799 struct rb_node *rightmost = NULL;
800 struct mem_cgroup_per_zone *mz;
801
802 retry:
803 mz = NULL;
804 rightmost = rb_last(&mctz->rb_root);
805 if (!rightmost)
806 goto done; /* Nothing to reclaim from */
807
808 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
809 /*
810 * Remove the node now but someone else can add it back,
811 * we will to add it back at the end of reclaim to its correct
812 * position in the tree.
813 */
814 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
815 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
816 !css_tryget(&mz->memcg->css))
817 goto retry;
818 done:
819 return mz;
820 }
821
822 static struct mem_cgroup_per_zone *
823 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
824 {
825 struct mem_cgroup_per_zone *mz;
826
827 spin_lock(&mctz->lock);
828 mz = __mem_cgroup_largest_soft_limit_node(mctz);
829 spin_unlock(&mctz->lock);
830 return mz;
831 }
832
833 /*
834 * Implementation Note: reading percpu statistics for memcg.
835 *
836 * Both of vmstat[] and percpu_counter has threshold and do periodic
837 * synchronization to implement "quick" read. There are trade-off between
838 * reading cost and precision of value. Then, we may have a chance to implement
839 * a periodic synchronizion of counter in memcg's counter.
840 *
841 * But this _read() function is used for user interface now. The user accounts
842 * memory usage by memory cgroup and he _always_ requires exact value because
843 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
844 * have to visit all online cpus and make sum. So, for now, unnecessary
845 * synchronization is not implemented. (just implemented for cpu hotplug)
846 *
847 * If there are kernel internal actions which can make use of some not-exact
848 * value, and reading all cpu value can be performance bottleneck in some
849 * common workload, threashold and synchonization as vmstat[] should be
850 * implemented.
851 */
852 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
853 enum mem_cgroup_stat_index idx)
854 {
855 long val = 0;
856 int cpu;
857
858 get_online_cpus();
859 for_each_online_cpu(cpu)
860 val += per_cpu(memcg->stat->count[idx], cpu);
861 #ifdef CONFIG_HOTPLUG_CPU
862 spin_lock(&memcg->pcp_counter_lock);
863 val += memcg->nocpu_base.count[idx];
864 spin_unlock(&memcg->pcp_counter_lock);
865 #endif
866 put_online_cpus();
867 return val;
868 }
869
870 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
871 bool charge)
872 {
873 int val = (charge) ? 1 : -1;
874 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
875 }
876
877 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
878 enum mem_cgroup_events_index idx)
879 {
880 unsigned long val = 0;
881 int cpu;
882
883 for_each_online_cpu(cpu)
884 val += per_cpu(memcg->stat->events[idx], cpu);
885 #ifdef CONFIG_HOTPLUG_CPU
886 spin_lock(&memcg->pcp_counter_lock);
887 val += memcg->nocpu_base.events[idx];
888 spin_unlock(&memcg->pcp_counter_lock);
889 #endif
890 return val;
891 }
892
893 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
894 struct page *page,
895 bool anon, int nr_pages)
896 {
897 preempt_disable();
898
899 /*
900 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
901 * counted as CACHE even if it's on ANON LRU.
902 */
903 if (anon)
904 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
905 nr_pages);
906 else
907 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
908 nr_pages);
909
910 if (PageTransHuge(page))
911 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
912 nr_pages);
913
914 /* pagein of a big page is an event. So, ignore page size */
915 if (nr_pages > 0)
916 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
917 else {
918 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
919 nr_pages = -nr_pages; /* for event */
920 }
921
922 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
923
924 preempt_enable();
925 }
926
927 unsigned long
928 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
929 {
930 struct mem_cgroup_per_zone *mz;
931
932 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
933 return mz->lru_size[lru];
934 }
935
936 static unsigned long
937 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
938 unsigned int lru_mask)
939 {
940 struct mem_cgroup_per_zone *mz;
941 enum lru_list lru;
942 unsigned long ret = 0;
943
944 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
945
946 for_each_lru(lru) {
947 if (BIT(lru) & lru_mask)
948 ret += mz->lru_size[lru];
949 }
950 return ret;
951 }
952
953 static unsigned long
954 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
955 int nid, unsigned int lru_mask)
956 {
957 u64 total = 0;
958 int zid;
959
960 for (zid = 0; zid < MAX_NR_ZONES; zid++)
961 total += mem_cgroup_zone_nr_lru_pages(memcg,
962 nid, zid, lru_mask);
963
964 return total;
965 }
966
967 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
968 unsigned int lru_mask)
969 {
970 int nid;
971 u64 total = 0;
972
973 for_each_node_state(nid, N_MEMORY)
974 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
975 return total;
976 }
977
978 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
979 enum mem_cgroup_events_target target)
980 {
981 unsigned long val, next;
982
983 val = __this_cpu_read(memcg->stat->nr_page_events);
984 next = __this_cpu_read(memcg->stat->targets[target]);
985 /* from time_after() in jiffies.h */
986 if ((long)next - (long)val < 0) {
987 switch (target) {
988 case MEM_CGROUP_TARGET_THRESH:
989 next = val + THRESHOLDS_EVENTS_TARGET;
990 break;
991 case MEM_CGROUP_TARGET_SOFTLIMIT:
992 next = val + SOFTLIMIT_EVENTS_TARGET;
993 break;
994 case MEM_CGROUP_TARGET_NUMAINFO:
995 next = val + NUMAINFO_EVENTS_TARGET;
996 break;
997 default:
998 break;
999 }
1000 __this_cpu_write(memcg->stat->targets[target], next);
1001 return true;
1002 }
1003 return false;
1004 }
1005
1006 /*
1007 * Check events in order.
1008 *
1009 */
1010 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1011 {
1012 preempt_disable();
1013 /* threshold event is triggered in finer grain than soft limit */
1014 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1015 MEM_CGROUP_TARGET_THRESH))) {
1016 bool do_softlimit;
1017 bool do_numainfo __maybe_unused;
1018
1019 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1020 MEM_CGROUP_TARGET_SOFTLIMIT);
1021 #if MAX_NUMNODES > 1
1022 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1023 MEM_CGROUP_TARGET_NUMAINFO);
1024 #endif
1025 preempt_enable();
1026
1027 mem_cgroup_threshold(memcg);
1028 if (unlikely(do_softlimit))
1029 mem_cgroup_update_tree(memcg, page);
1030 #if MAX_NUMNODES > 1
1031 if (unlikely(do_numainfo))
1032 atomic_inc(&memcg->numainfo_events);
1033 #endif
1034 } else
1035 preempt_enable();
1036 }
1037
1038 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
1039 {
1040 return mem_cgroup_from_css(cgroup_css(cont, mem_cgroup_subsys_id));
1041 }
1042
1043 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1044 {
1045 /*
1046 * mm_update_next_owner() may clear mm->owner to NULL
1047 * if it races with swapoff, page migration, etc.
1048 * So this can be called with p == NULL.
1049 */
1050 if (unlikely(!p))
1051 return NULL;
1052
1053 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1054 }
1055
1056 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1057 {
1058 struct mem_cgroup *memcg = NULL;
1059
1060 if (!mm)
1061 return NULL;
1062 /*
1063 * Because we have no locks, mm->owner's may be being moved to other
1064 * cgroup. We use css_tryget() here even if this looks
1065 * pessimistic (rather than adding locks here).
1066 */
1067 rcu_read_lock();
1068 do {
1069 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1070 if (unlikely(!memcg))
1071 break;
1072 } while (!css_tryget(&memcg->css));
1073 rcu_read_unlock();
1074 return memcg;
1075 }
1076
1077 /*
1078 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1079 * ref. count) or NULL if the whole root's subtree has been visited.
1080 *
1081 * helper function to be used by mem_cgroup_iter
1082 */
1083 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1084 struct mem_cgroup *last_visited)
1085 {
1086 struct cgroup *prev_cgroup, *next_cgroup;
1087
1088 /*
1089 * Root is not visited by cgroup iterators so it needs an
1090 * explicit visit.
1091 */
1092 if (!last_visited)
1093 return root;
1094
1095 prev_cgroup = (last_visited == root) ? NULL
1096 : last_visited->css.cgroup;
1097 skip_node:
1098 next_cgroup = cgroup_next_descendant_pre(
1099 prev_cgroup, root->css.cgroup);
1100
1101 /*
1102 * Even if we found a group we have to make sure it is
1103 * alive. css && !memcg means that the groups should be
1104 * skipped and we should continue the tree walk.
1105 * last_visited css is safe to use because it is
1106 * protected by css_get and the tree walk is rcu safe.
1107 */
1108 if (next_cgroup) {
1109 struct mem_cgroup *mem = mem_cgroup_from_cont(
1110 next_cgroup);
1111 if (css_tryget(&mem->css))
1112 return mem;
1113 else {
1114 prev_cgroup = next_cgroup;
1115 goto skip_node;
1116 }
1117 }
1118
1119 return NULL;
1120 }
1121
1122 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1123 {
1124 /*
1125 * When a group in the hierarchy below root is destroyed, the
1126 * hierarchy iterator can no longer be trusted since it might
1127 * have pointed to the destroyed group. Invalidate it.
1128 */
1129 atomic_inc(&root->dead_count);
1130 }
1131
1132 static struct mem_cgroup *
1133 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1134 struct mem_cgroup *root,
1135 int *sequence)
1136 {
1137 struct mem_cgroup *position = NULL;
1138 /*
1139 * A cgroup destruction happens in two stages: offlining and
1140 * release. They are separated by a RCU grace period.
1141 *
1142 * If the iterator is valid, we may still race with an
1143 * offlining. The RCU lock ensures the object won't be
1144 * released, tryget will fail if we lost the race.
1145 */
1146 *sequence = atomic_read(&root->dead_count);
1147 if (iter->last_dead_count == *sequence) {
1148 smp_rmb();
1149 position = iter->last_visited;
1150 if (position && !css_tryget(&position->css))
1151 position = NULL;
1152 }
1153 return position;
1154 }
1155
1156 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1157 struct mem_cgroup *last_visited,
1158 struct mem_cgroup *new_position,
1159 int sequence)
1160 {
1161 if (last_visited)
1162 css_put(&last_visited->css);
1163 /*
1164 * We store the sequence count from the time @last_visited was
1165 * loaded successfully instead of rereading it here so that we
1166 * don't lose destruction events in between. We could have
1167 * raced with the destruction of @new_position after all.
1168 */
1169 iter->last_visited = new_position;
1170 smp_wmb();
1171 iter->last_dead_count = sequence;
1172 }
1173
1174 /**
1175 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1176 * @root: hierarchy root
1177 * @prev: previously returned memcg, NULL on first invocation
1178 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1179 *
1180 * Returns references to children of the hierarchy below @root, or
1181 * @root itself, or %NULL after a full round-trip.
1182 *
1183 * Caller must pass the return value in @prev on subsequent
1184 * invocations for reference counting, or use mem_cgroup_iter_break()
1185 * to cancel a hierarchy walk before the round-trip is complete.
1186 *
1187 * Reclaimers can specify a zone and a priority level in @reclaim to
1188 * divide up the memcgs in the hierarchy among all concurrent
1189 * reclaimers operating on the same zone and priority.
1190 */
1191 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1192 struct mem_cgroup *prev,
1193 struct mem_cgroup_reclaim_cookie *reclaim)
1194 {
1195 struct mem_cgroup *memcg = NULL;
1196 struct mem_cgroup *last_visited = NULL;
1197
1198 if (mem_cgroup_disabled())
1199 return NULL;
1200
1201 if (!root)
1202 root = root_mem_cgroup;
1203
1204 if (prev && !reclaim)
1205 last_visited = prev;
1206
1207 if (!root->use_hierarchy && root != root_mem_cgroup) {
1208 if (prev)
1209 goto out_css_put;
1210 return root;
1211 }
1212
1213 rcu_read_lock();
1214 while (!memcg) {
1215 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1216 int uninitialized_var(seq);
1217
1218 if (reclaim) {
1219 int nid = zone_to_nid(reclaim->zone);
1220 int zid = zone_idx(reclaim->zone);
1221 struct mem_cgroup_per_zone *mz;
1222
1223 mz = mem_cgroup_zoneinfo(root, nid, zid);
1224 iter = &mz->reclaim_iter[reclaim->priority];
1225 if (prev && reclaim->generation != iter->generation) {
1226 iter->last_visited = NULL;
1227 goto out_unlock;
1228 }
1229
1230 last_visited = mem_cgroup_iter_load(iter, root, &seq);
1231 }
1232
1233 memcg = __mem_cgroup_iter_next(root, last_visited);
1234
1235 if (reclaim) {
1236 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1237
1238 if (!memcg)
1239 iter->generation++;
1240 else if (!prev && memcg)
1241 reclaim->generation = iter->generation;
1242 }
1243
1244 if (prev && !memcg)
1245 goto out_unlock;
1246 }
1247 out_unlock:
1248 rcu_read_unlock();
1249 out_css_put:
1250 if (prev && prev != root)
1251 css_put(&prev->css);
1252
1253 return memcg;
1254 }
1255
1256 /**
1257 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1258 * @root: hierarchy root
1259 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1260 */
1261 void mem_cgroup_iter_break(struct mem_cgroup *root,
1262 struct mem_cgroup *prev)
1263 {
1264 if (!root)
1265 root = root_mem_cgroup;
1266 if (prev && prev != root)
1267 css_put(&prev->css);
1268 }
1269
1270 /*
1271 * Iteration constructs for visiting all cgroups (under a tree). If
1272 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1273 * be used for reference counting.
1274 */
1275 #define for_each_mem_cgroup_tree(iter, root) \
1276 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1277 iter != NULL; \
1278 iter = mem_cgroup_iter(root, iter, NULL))
1279
1280 #define for_each_mem_cgroup(iter) \
1281 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1282 iter != NULL; \
1283 iter = mem_cgroup_iter(NULL, iter, NULL))
1284
1285 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1286 {
1287 struct mem_cgroup *memcg;
1288
1289 rcu_read_lock();
1290 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1291 if (unlikely(!memcg))
1292 goto out;
1293
1294 switch (idx) {
1295 case PGFAULT:
1296 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1297 break;
1298 case PGMAJFAULT:
1299 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1300 break;
1301 default:
1302 BUG();
1303 }
1304 out:
1305 rcu_read_unlock();
1306 }
1307 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1308
1309 /**
1310 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1311 * @zone: zone of the wanted lruvec
1312 * @memcg: memcg of the wanted lruvec
1313 *
1314 * Returns the lru list vector holding pages for the given @zone and
1315 * @mem. This can be the global zone lruvec, if the memory controller
1316 * is disabled.
1317 */
1318 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1319 struct mem_cgroup *memcg)
1320 {
1321 struct mem_cgroup_per_zone *mz;
1322 struct lruvec *lruvec;
1323
1324 if (mem_cgroup_disabled()) {
1325 lruvec = &zone->lruvec;
1326 goto out;
1327 }
1328
1329 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1330 lruvec = &mz->lruvec;
1331 out:
1332 /*
1333 * Since a node can be onlined after the mem_cgroup was created,
1334 * we have to be prepared to initialize lruvec->zone here;
1335 * and if offlined then reonlined, we need to reinitialize it.
1336 */
1337 if (unlikely(lruvec->zone != zone))
1338 lruvec->zone = zone;
1339 return lruvec;
1340 }
1341
1342 /*
1343 * Following LRU functions are allowed to be used without PCG_LOCK.
1344 * Operations are called by routine of global LRU independently from memcg.
1345 * What we have to take care of here is validness of pc->mem_cgroup.
1346 *
1347 * Changes to pc->mem_cgroup happens when
1348 * 1. charge
1349 * 2. moving account
1350 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1351 * It is added to LRU before charge.
1352 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1353 * When moving account, the page is not on LRU. It's isolated.
1354 */
1355
1356 /**
1357 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1358 * @page: the page
1359 * @zone: zone of the page
1360 */
1361 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1362 {
1363 struct mem_cgroup_per_zone *mz;
1364 struct mem_cgroup *memcg;
1365 struct page_cgroup *pc;
1366 struct lruvec *lruvec;
1367
1368 if (mem_cgroup_disabled()) {
1369 lruvec = &zone->lruvec;
1370 goto out;
1371 }
1372
1373 pc = lookup_page_cgroup(page);
1374 memcg = pc->mem_cgroup;
1375
1376 /*
1377 * Surreptitiously switch any uncharged offlist page to root:
1378 * an uncharged page off lru does nothing to secure
1379 * its former mem_cgroup from sudden removal.
1380 *
1381 * Our caller holds lru_lock, and PageCgroupUsed is updated
1382 * under page_cgroup lock: between them, they make all uses
1383 * of pc->mem_cgroup safe.
1384 */
1385 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1386 pc->mem_cgroup = memcg = root_mem_cgroup;
1387
1388 mz = page_cgroup_zoneinfo(memcg, page);
1389 lruvec = &mz->lruvec;
1390 out:
1391 /*
1392 * Since a node can be onlined after the mem_cgroup was created,
1393 * we have to be prepared to initialize lruvec->zone here;
1394 * and if offlined then reonlined, we need to reinitialize it.
1395 */
1396 if (unlikely(lruvec->zone != zone))
1397 lruvec->zone = zone;
1398 return lruvec;
1399 }
1400
1401 /**
1402 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1403 * @lruvec: mem_cgroup per zone lru vector
1404 * @lru: index of lru list the page is sitting on
1405 * @nr_pages: positive when adding or negative when removing
1406 *
1407 * This function must be called when a page is added to or removed from an
1408 * lru list.
1409 */
1410 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1411 int nr_pages)
1412 {
1413 struct mem_cgroup_per_zone *mz;
1414 unsigned long *lru_size;
1415
1416 if (mem_cgroup_disabled())
1417 return;
1418
1419 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1420 lru_size = mz->lru_size + lru;
1421 *lru_size += nr_pages;
1422 VM_BUG_ON((long)(*lru_size) < 0);
1423 }
1424
1425 /*
1426 * Checks whether given mem is same or in the root_mem_cgroup's
1427 * hierarchy subtree
1428 */
1429 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1430 struct mem_cgroup *memcg)
1431 {
1432 if (root_memcg == memcg)
1433 return true;
1434 if (!root_memcg->use_hierarchy || !memcg)
1435 return false;
1436 return css_is_ancestor(&memcg->css, &root_memcg->css);
1437 }
1438
1439 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1440 struct mem_cgroup *memcg)
1441 {
1442 bool ret;
1443
1444 rcu_read_lock();
1445 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1446 rcu_read_unlock();
1447 return ret;
1448 }
1449
1450 bool task_in_mem_cgroup(struct task_struct *task,
1451 const struct mem_cgroup *memcg)
1452 {
1453 struct mem_cgroup *curr = NULL;
1454 struct task_struct *p;
1455 bool ret;
1456
1457 p = find_lock_task_mm(task);
1458 if (p) {
1459 curr = try_get_mem_cgroup_from_mm(p->mm);
1460 task_unlock(p);
1461 } else {
1462 /*
1463 * All threads may have already detached their mm's, but the oom
1464 * killer still needs to detect if they have already been oom
1465 * killed to prevent needlessly killing additional tasks.
1466 */
1467 rcu_read_lock();
1468 curr = mem_cgroup_from_task(task);
1469 if (curr)
1470 css_get(&curr->css);
1471 rcu_read_unlock();
1472 }
1473 if (!curr)
1474 return false;
1475 /*
1476 * We should check use_hierarchy of "memcg" not "curr". Because checking
1477 * use_hierarchy of "curr" here make this function true if hierarchy is
1478 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1479 * hierarchy(even if use_hierarchy is disabled in "memcg").
1480 */
1481 ret = mem_cgroup_same_or_subtree(memcg, curr);
1482 css_put(&curr->css);
1483 return ret;
1484 }
1485
1486 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1487 {
1488 unsigned long inactive_ratio;
1489 unsigned long inactive;
1490 unsigned long active;
1491 unsigned long gb;
1492
1493 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1494 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1495
1496 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1497 if (gb)
1498 inactive_ratio = int_sqrt(10 * gb);
1499 else
1500 inactive_ratio = 1;
1501
1502 return inactive * inactive_ratio < active;
1503 }
1504
1505 #define mem_cgroup_from_res_counter(counter, member) \
1506 container_of(counter, struct mem_cgroup, member)
1507
1508 /**
1509 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1510 * @memcg: the memory cgroup
1511 *
1512 * Returns the maximum amount of memory @mem can be charged with, in
1513 * pages.
1514 */
1515 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1516 {
1517 unsigned long long margin;
1518
1519 margin = res_counter_margin(&memcg->res);
1520 if (do_swap_account)
1521 margin = min(margin, res_counter_margin(&memcg->memsw));
1522 return margin >> PAGE_SHIFT;
1523 }
1524
1525 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1526 {
1527 /* root ? */
1528 if (!css_parent(&memcg->css))
1529 return vm_swappiness;
1530
1531 return memcg->swappiness;
1532 }
1533
1534 /*
1535 * memcg->moving_account is used for checking possibility that some thread is
1536 * calling move_account(). When a thread on CPU-A starts moving pages under
1537 * a memcg, other threads should check memcg->moving_account under
1538 * rcu_read_lock(), like this:
1539 *
1540 * CPU-A CPU-B
1541 * rcu_read_lock()
1542 * memcg->moving_account+1 if (memcg->mocing_account)
1543 * take heavy locks.
1544 * synchronize_rcu() update something.
1545 * rcu_read_unlock()
1546 * start move here.
1547 */
1548
1549 /* for quick checking without looking up memcg */
1550 atomic_t memcg_moving __read_mostly;
1551
1552 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1553 {
1554 atomic_inc(&memcg_moving);
1555 atomic_inc(&memcg->moving_account);
1556 synchronize_rcu();
1557 }
1558
1559 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1560 {
1561 /*
1562 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1563 * We check NULL in callee rather than caller.
1564 */
1565 if (memcg) {
1566 atomic_dec(&memcg_moving);
1567 atomic_dec(&memcg->moving_account);
1568 }
1569 }
1570
1571 /*
1572 * 2 routines for checking "mem" is under move_account() or not.
1573 *
1574 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1575 * is used for avoiding races in accounting. If true,
1576 * pc->mem_cgroup may be overwritten.
1577 *
1578 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1579 * under hierarchy of moving cgroups. This is for
1580 * waiting at hith-memory prressure caused by "move".
1581 */
1582
1583 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1584 {
1585 VM_BUG_ON(!rcu_read_lock_held());
1586 return atomic_read(&memcg->moving_account) > 0;
1587 }
1588
1589 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1590 {
1591 struct mem_cgroup *from;
1592 struct mem_cgroup *to;
1593 bool ret = false;
1594 /*
1595 * Unlike task_move routines, we access mc.to, mc.from not under
1596 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1597 */
1598 spin_lock(&mc.lock);
1599 from = mc.from;
1600 to = mc.to;
1601 if (!from)
1602 goto unlock;
1603
1604 ret = mem_cgroup_same_or_subtree(memcg, from)
1605 || mem_cgroup_same_or_subtree(memcg, to);
1606 unlock:
1607 spin_unlock(&mc.lock);
1608 return ret;
1609 }
1610
1611 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1612 {
1613 if (mc.moving_task && current != mc.moving_task) {
1614 if (mem_cgroup_under_move(memcg)) {
1615 DEFINE_WAIT(wait);
1616 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1617 /* moving charge context might have finished. */
1618 if (mc.moving_task)
1619 schedule();
1620 finish_wait(&mc.waitq, &wait);
1621 return true;
1622 }
1623 }
1624 return false;
1625 }
1626
1627 /*
1628 * Take this lock when
1629 * - a code tries to modify page's memcg while it's USED.
1630 * - a code tries to modify page state accounting in a memcg.
1631 * see mem_cgroup_stolen(), too.
1632 */
1633 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1634 unsigned long *flags)
1635 {
1636 spin_lock_irqsave(&memcg->move_lock, *flags);
1637 }
1638
1639 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1640 unsigned long *flags)
1641 {
1642 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1643 }
1644
1645 #define K(x) ((x) << (PAGE_SHIFT-10))
1646 /**
1647 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1648 * @memcg: The memory cgroup that went over limit
1649 * @p: Task that is going to be killed
1650 *
1651 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1652 * enabled
1653 */
1654 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1655 {
1656 struct cgroup *task_cgrp;
1657 struct cgroup *mem_cgrp;
1658 /*
1659 * Need a buffer in BSS, can't rely on allocations. The code relies
1660 * on the assumption that OOM is serialized for memory controller.
1661 * If this assumption is broken, revisit this code.
1662 */
1663 static char memcg_name[PATH_MAX];
1664 int ret;
1665 struct mem_cgroup *iter;
1666 unsigned int i;
1667
1668 if (!p)
1669 return;
1670
1671 rcu_read_lock();
1672
1673 mem_cgrp = memcg->css.cgroup;
1674 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1675
1676 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1677 if (ret < 0) {
1678 /*
1679 * Unfortunately, we are unable to convert to a useful name
1680 * But we'll still print out the usage information
1681 */
1682 rcu_read_unlock();
1683 goto done;
1684 }
1685 rcu_read_unlock();
1686
1687 pr_info("Task in %s killed", memcg_name);
1688
1689 rcu_read_lock();
1690 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1691 if (ret < 0) {
1692 rcu_read_unlock();
1693 goto done;
1694 }
1695 rcu_read_unlock();
1696
1697 /*
1698 * Continues from above, so we don't need an KERN_ level
1699 */
1700 pr_cont(" as a result of limit of %s\n", memcg_name);
1701 done:
1702
1703 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1704 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1705 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1706 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1707 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1708 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1709 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1710 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1711 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1712 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1713 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1714 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1715
1716 for_each_mem_cgroup_tree(iter, memcg) {
1717 pr_info("Memory cgroup stats");
1718
1719 rcu_read_lock();
1720 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1721 if (!ret)
1722 pr_cont(" for %s", memcg_name);
1723 rcu_read_unlock();
1724 pr_cont(":");
1725
1726 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1727 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1728 continue;
1729 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1730 K(mem_cgroup_read_stat(iter, i)));
1731 }
1732
1733 for (i = 0; i < NR_LRU_LISTS; i++)
1734 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1735 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1736
1737 pr_cont("\n");
1738 }
1739 }
1740
1741 /*
1742 * This function returns the number of memcg under hierarchy tree. Returns
1743 * 1(self count) if no children.
1744 */
1745 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1746 {
1747 int num = 0;
1748 struct mem_cgroup *iter;
1749
1750 for_each_mem_cgroup_tree(iter, memcg)
1751 num++;
1752 return num;
1753 }
1754
1755 /*
1756 * Return the memory (and swap, if configured) limit for a memcg.
1757 */
1758 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1759 {
1760 u64 limit;
1761
1762 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1763
1764 /*
1765 * Do not consider swap space if we cannot swap due to swappiness
1766 */
1767 if (mem_cgroup_swappiness(memcg)) {
1768 u64 memsw;
1769
1770 limit += total_swap_pages << PAGE_SHIFT;
1771 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1772
1773 /*
1774 * If memsw is finite and limits the amount of swap space
1775 * available to this memcg, return that limit.
1776 */
1777 limit = min(limit, memsw);
1778 }
1779
1780 return limit;
1781 }
1782
1783 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1784 int order)
1785 {
1786 struct mem_cgroup *iter;
1787 unsigned long chosen_points = 0;
1788 unsigned long totalpages;
1789 unsigned int points = 0;
1790 struct task_struct *chosen = NULL;
1791
1792 /*
1793 * If current has a pending SIGKILL or is exiting, then automatically
1794 * select it. The goal is to allow it to allocate so that it may
1795 * quickly exit and free its memory.
1796 */
1797 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1798 set_thread_flag(TIF_MEMDIE);
1799 return;
1800 }
1801
1802 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1803 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1804 for_each_mem_cgroup_tree(iter, memcg) {
1805 struct cgroup *cgroup = iter->css.cgroup;
1806 struct cgroup_iter it;
1807 struct task_struct *task;
1808
1809 cgroup_iter_start(cgroup, &it);
1810 while ((task = cgroup_iter_next(cgroup, &it))) {
1811 switch (oom_scan_process_thread(task, totalpages, NULL,
1812 false)) {
1813 case OOM_SCAN_SELECT:
1814 if (chosen)
1815 put_task_struct(chosen);
1816 chosen = task;
1817 chosen_points = ULONG_MAX;
1818 get_task_struct(chosen);
1819 /* fall through */
1820 case OOM_SCAN_CONTINUE:
1821 continue;
1822 case OOM_SCAN_ABORT:
1823 cgroup_iter_end(cgroup, &it);
1824 mem_cgroup_iter_break(memcg, iter);
1825 if (chosen)
1826 put_task_struct(chosen);
1827 return;
1828 case OOM_SCAN_OK:
1829 break;
1830 };
1831 points = oom_badness(task, memcg, NULL, totalpages);
1832 if (points > chosen_points) {
1833 if (chosen)
1834 put_task_struct(chosen);
1835 chosen = task;
1836 chosen_points = points;
1837 get_task_struct(chosen);
1838 }
1839 }
1840 cgroup_iter_end(cgroup, &it);
1841 }
1842
1843 if (!chosen)
1844 return;
1845 points = chosen_points * 1000 / totalpages;
1846 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1847 NULL, "Memory cgroup out of memory");
1848 }
1849
1850 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1851 gfp_t gfp_mask,
1852 unsigned long flags)
1853 {
1854 unsigned long total = 0;
1855 bool noswap = false;
1856 int loop;
1857
1858 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1859 noswap = true;
1860 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1861 noswap = true;
1862
1863 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1864 if (loop)
1865 drain_all_stock_async(memcg);
1866 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1867 /*
1868 * Allow limit shrinkers, which are triggered directly
1869 * by userspace, to catch signals and stop reclaim
1870 * after minimal progress, regardless of the margin.
1871 */
1872 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1873 break;
1874 if (mem_cgroup_margin(memcg))
1875 break;
1876 /*
1877 * If nothing was reclaimed after two attempts, there
1878 * may be no reclaimable pages in this hierarchy.
1879 */
1880 if (loop && !total)
1881 break;
1882 }
1883 return total;
1884 }
1885
1886 /**
1887 * test_mem_cgroup_node_reclaimable
1888 * @memcg: the target memcg
1889 * @nid: the node ID to be checked.
1890 * @noswap : specify true here if the user wants flle only information.
1891 *
1892 * This function returns whether the specified memcg contains any
1893 * reclaimable pages on a node. Returns true if there are any reclaimable
1894 * pages in the node.
1895 */
1896 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1897 int nid, bool noswap)
1898 {
1899 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1900 return true;
1901 if (noswap || !total_swap_pages)
1902 return false;
1903 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1904 return true;
1905 return false;
1906
1907 }
1908 #if MAX_NUMNODES > 1
1909
1910 /*
1911 * Always updating the nodemask is not very good - even if we have an empty
1912 * list or the wrong list here, we can start from some node and traverse all
1913 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1914 *
1915 */
1916 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1917 {
1918 int nid;
1919 /*
1920 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1921 * pagein/pageout changes since the last update.
1922 */
1923 if (!atomic_read(&memcg->numainfo_events))
1924 return;
1925 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1926 return;
1927
1928 /* make a nodemask where this memcg uses memory from */
1929 memcg->scan_nodes = node_states[N_MEMORY];
1930
1931 for_each_node_mask(nid, node_states[N_MEMORY]) {
1932
1933 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1934 node_clear(nid, memcg->scan_nodes);
1935 }
1936
1937 atomic_set(&memcg->numainfo_events, 0);
1938 atomic_set(&memcg->numainfo_updating, 0);
1939 }
1940
1941 /*
1942 * Selecting a node where we start reclaim from. Because what we need is just
1943 * reducing usage counter, start from anywhere is O,K. Considering
1944 * memory reclaim from current node, there are pros. and cons.
1945 *
1946 * Freeing memory from current node means freeing memory from a node which
1947 * we'll use or we've used. So, it may make LRU bad. And if several threads
1948 * hit limits, it will see a contention on a node. But freeing from remote
1949 * node means more costs for memory reclaim because of memory latency.
1950 *
1951 * Now, we use round-robin. Better algorithm is welcomed.
1952 */
1953 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1954 {
1955 int node;
1956
1957 mem_cgroup_may_update_nodemask(memcg);
1958 node = memcg->last_scanned_node;
1959
1960 node = next_node(node, memcg->scan_nodes);
1961 if (node == MAX_NUMNODES)
1962 node = first_node(memcg->scan_nodes);
1963 /*
1964 * We call this when we hit limit, not when pages are added to LRU.
1965 * No LRU may hold pages because all pages are UNEVICTABLE or
1966 * memcg is too small and all pages are not on LRU. In that case,
1967 * we use curret node.
1968 */
1969 if (unlikely(node == MAX_NUMNODES))
1970 node = numa_node_id();
1971
1972 memcg->last_scanned_node = node;
1973 return node;
1974 }
1975
1976 /*
1977 * Check all nodes whether it contains reclaimable pages or not.
1978 * For quick scan, we make use of scan_nodes. This will allow us to skip
1979 * unused nodes. But scan_nodes is lazily updated and may not cotain
1980 * enough new information. We need to do double check.
1981 */
1982 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1983 {
1984 int nid;
1985
1986 /*
1987 * quick check...making use of scan_node.
1988 * We can skip unused nodes.
1989 */
1990 if (!nodes_empty(memcg->scan_nodes)) {
1991 for (nid = first_node(memcg->scan_nodes);
1992 nid < MAX_NUMNODES;
1993 nid = next_node(nid, memcg->scan_nodes)) {
1994
1995 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1996 return true;
1997 }
1998 }
1999 /*
2000 * Check rest of nodes.
2001 */
2002 for_each_node_state(nid, N_MEMORY) {
2003 if (node_isset(nid, memcg->scan_nodes))
2004 continue;
2005 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2006 return true;
2007 }
2008 return false;
2009 }
2010
2011 #else
2012 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2013 {
2014 return 0;
2015 }
2016
2017 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2018 {
2019 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2020 }
2021 #endif
2022
2023 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2024 struct zone *zone,
2025 gfp_t gfp_mask,
2026 unsigned long *total_scanned)
2027 {
2028 struct mem_cgroup *victim = NULL;
2029 int total = 0;
2030 int loop = 0;
2031 unsigned long excess;
2032 unsigned long nr_scanned;
2033 struct mem_cgroup_reclaim_cookie reclaim = {
2034 .zone = zone,
2035 .priority = 0,
2036 };
2037
2038 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2039
2040 while (1) {
2041 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2042 if (!victim) {
2043 loop++;
2044 if (loop >= 2) {
2045 /*
2046 * If we have not been able to reclaim
2047 * anything, it might because there are
2048 * no reclaimable pages under this hierarchy
2049 */
2050 if (!total)
2051 break;
2052 /*
2053 * We want to do more targeted reclaim.
2054 * excess >> 2 is not to excessive so as to
2055 * reclaim too much, nor too less that we keep
2056 * coming back to reclaim from this cgroup
2057 */
2058 if (total >= (excess >> 2) ||
2059 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2060 break;
2061 }
2062 continue;
2063 }
2064 if (!mem_cgroup_reclaimable(victim, false))
2065 continue;
2066 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2067 zone, &nr_scanned);
2068 *total_scanned += nr_scanned;
2069 if (!res_counter_soft_limit_excess(&root_memcg->res))
2070 break;
2071 }
2072 mem_cgroup_iter_break(root_memcg, victim);
2073 return total;
2074 }
2075
2076 /*
2077 * Check OOM-Killer is already running under our hierarchy.
2078 * If someone is running, return false.
2079 * Has to be called with memcg_oom_lock
2080 */
2081 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
2082 {
2083 struct mem_cgroup *iter, *failed = NULL;
2084
2085 for_each_mem_cgroup_tree(iter, memcg) {
2086 if (iter->oom_lock) {
2087 /*
2088 * this subtree of our hierarchy is already locked
2089 * so we cannot give a lock.
2090 */
2091 failed = iter;
2092 mem_cgroup_iter_break(memcg, iter);
2093 break;
2094 } else
2095 iter->oom_lock = true;
2096 }
2097
2098 if (!failed)
2099 return true;
2100
2101 /*
2102 * OK, we failed to lock the whole subtree so we have to clean up
2103 * what we set up to the failing subtree
2104 */
2105 for_each_mem_cgroup_tree(iter, memcg) {
2106 if (iter == failed) {
2107 mem_cgroup_iter_break(memcg, iter);
2108 break;
2109 }
2110 iter->oom_lock = false;
2111 }
2112 return false;
2113 }
2114
2115 /*
2116 * Has to be called with memcg_oom_lock
2117 */
2118 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2119 {
2120 struct mem_cgroup *iter;
2121
2122 for_each_mem_cgroup_tree(iter, memcg)
2123 iter->oom_lock = false;
2124 return 0;
2125 }
2126
2127 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2128 {
2129 struct mem_cgroup *iter;
2130
2131 for_each_mem_cgroup_tree(iter, memcg)
2132 atomic_inc(&iter->under_oom);
2133 }
2134
2135 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2136 {
2137 struct mem_cgroup *iter;
2138
2139 /*
2140 * When a new child is created while the hierarchy is under oom,
2141 * mem_cgroup_oom_lock() may not be called. We have to use
2142 * atomic_add_unless() here.
2143 */
2144 for_each_mem_cgroup_tree(iter, memcg)
2145 atomic_add_unless(&iter->under_oom, -1, 0);
2146 }
2147
2148 static DEFINE_SPINLOCK(memcg_oom_lock);
2149 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2150
2151 struct oom_wait_info {
2152 struct mem_cgroup *memcg;
2153 wait_queue_t wait;
2154 };
2155
2156 static int memcg_oom_wake_function(wait_queue_t *wait,
2157 unsigned mode, int sync, void *arg)
2158 {
2159 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2160 struct mem_cgroup *oom_wait_memcg;
2161 struct oom_wait_info *oom_wait_info;
2162
2163 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2164 oom_wait_memcg = oom_wait_info->memcg;
2165
2166 /*
2167 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2168 * Then we can use css_is_ancestor without taking care of RCU.
2169 */
2170 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2171 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2172 return 0;
2173 return autoremove_wake_function(wait, mode, sync, arg);
2174 }
2175
2176 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2177 {
2178 /* for filtering, pass "memcg" as argument. */
2179 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2180 }
2181
2182 static void memcg_oom_recover(struct mem_cgroup *memcg)
2183 {
2184 if (memcg && atomic_read(&memcg->under_oom))
2185 memcg_wakeup_oom(memcg);
2186 }
2187
2188 /*
2189 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
2190 */
2191 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
2192 int order)
2193 {
2194 struct oom_wait_info owait;
2195 bool locked, need_to_kill;
2196
2197 owait.memcg = memcg;
2198 owait.wait.flags = 0;
2199 owait.wait.func = memcg_oom_wake_function;
2200 owait.wait.private = current;
2201 INIT_LIST_HEAD(&owait.wait.task_list);
2202 need_to_kill = true;
2203 mem_cgroup_mark_under_oom(memcg);
2204
2205 /* At first, try to OOM lock hierarchy under memcg.*/
2206 spin_lock(&memcg_oom_lock);
2207 locked = mem_cgroup_oom_lock(memcg);
2208 /*
2209 * Even if signal_pending(), we can't quit charge() loop without
2210 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
2211 * under OOM is always welcomed, use TASK_KILLABLE here.
2212 */
2213 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2214 if (!locked || memcg->oom_kill_disable)
2215 need_to_kill = false;
2216 if (locked)
2217 mem_cgroup_oom_notify(memcg);
2218 spin_unlock(&memcg_oom_lock);
2219
2220 if (need_to_kill) {
2221 finish_wait(&memcg_oom_waitq, &owait.wait);
2222 mem_cgroup_out_of_memory(memcg, mask, order);
2223 } else {
2224 schedule();
2225 finish_wait(&memcg_oom_waitq, &owait.wait);
2226 }
2227 spin_lock(&memcg_oom_lock);
2228 if (locked)
2229 mem_cgroup_oom_unlock(memcg);
2230 memcg_wakeup_oom(memcg);
2231 spin_unlock(&memcg_oom_lock);
2232
2233 mem_cgroup_unmark_under_oom(memcg);
2234
2235 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2236 return false;
2237 /* Give chance to dying process */
2238 schedule_timeout_uninterruptible(1);
2239 return true;
2240 }
2241
2242 /*
2243 * Currently used to update mapped file statistics, but the routine can be
2244 * generalized to update other statistics as well.
2245 *
2246 * Notes: Race condition
2247 *
2248 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2249 * it tends to be costly. But considering some conditions, we doesn't need
2250 * to do so _always_.
2251 *
2252 * Considering "charge", lock_page_cgroup() is not required because all
2253 * file-stat operations happen after a page is attached to radix-tree. There
2254 * are no race with "charge".
2255 *
2256 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2257 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2258 * if there are race with "uncharge". Statistics itself is properly handled
2259 * by flags.
2260 *
2261 * Considering "move", this is an only case we see a race. To make the race
2262 * small, we check mm->moving_account and detect there are possibility of race
2263 * If there is, we take a lock.
2264 */
2265
2266 void __mem_cgroup_begin_update_page_stat(struct page *page,
2267 bool *locked, unsigned long *flags)
2268 {
2269 struct mem_cgroup *memcg;
2270 struct page_cgroup *pc;
2271
2272 pc = lookup_page_cgroup(page);
2273 again:
2274 memcg = pc->mem_cgroup;
2275 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2276 return;
2277 /*
2278 * If this memory cgroup is not under account moving, we don't
2279 * need to take move_lock_mem_cgroup(). Because we already hold
2280 * rcu_read_lock(), any calls to move_account will be delayed until
2281 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2282 */
2283 if (!mem_cgroup_stolen(memcg))
2284 return;
2285
2286 move_lock_mem_cgroup(memcg, flags);
2287 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2288 move_unlock_mem_cgroup(memcg, flags);
2289 goto again;
2290 }
2291 *locked = true;
2292 }
2293
2294 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2295 {
2296 struct page_cgroup *pc = lookup_page_cgroup(page);
2297
2298 /*
2299 * It's guaranteed that pc->mem_cgroup never changes while
2300 * lock is held because a routine modifies pc->mem_cgroup
2301 * should take move_lock_mem_cgroup().
2302 */
2303 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2304 }
2305
2306 void mem_cgroup_update_page_stat(struct page *page,
2307 enum mem_cgroup_page_stat_item idx, int val)
2308 {
2309 struct mem_cgroup *memcg;
2310 struct page_cgroup *pc = lookup_page_cgroup(page);
2311 unsigned long uninitialized_var(flags);
2312
2313 if (mem_cgroup_disabled())
2314 return;
2315
2316 memcg = pc->mem_cgroup;
2317 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2318 return;
2319
2320 switch (idx) {
2321 case MEMCG_NR_FILE_MAPPED:
2322 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2323 break;
2324 default:
2325 BUG();
2326 }
2327
2328 this_cpu_add(memcg->stat->count[idx], val);
2329 }
2330
2331 /*
2332 * size of first charge trial. "32" comes from vmscan.c's magic value.
2333 * TODO: maybe necessary to use big numbers in big irons.
2334 */
2335 #define CHARGE_BATCH 32U
2336 struct memcg_stock_pcp {
2337 struct mem_cgroup *cached; /* this never be root cgroup */
2338 unsigned int nr_pages;
2339 struct work_struct work;
2340 unsigned long flags;
2341 #define FLUSHING_CACHED_CHARGE 0
2342 };
2343 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2344 static DEFINE_MUTEX(percpu_charge_mutex);
2345
2346 /**
2347 * consume_stock: Try to consume stocked charge on this cpu.
2348 * @memcg: memcg to consume from.
2349 * @nr_pages: how many pages to charge.
2350 *
2351 * The charges will only happen if @memcg matches the current cpu's memcg
2352 * stock, and at least @nr_pages are available in that stock. Failure to
2353 * service an allocation will refill the stock.
2354 *
2355 * returns true if successful, false otherwise.
2356 */
2357 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2358 {
2359 struct memcg_stock_pcp *stock;
2360 bool ret = true;
2361
2362 if (nr_pages > CHARGE_BATCH)
2363 return false;
2364
2365 stock = &get_cpu_var(memcg_stock);
2366 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2367 stock->nr_pages -= nr_pages;
2368 else /* need to call res_counter_charge */
2369 ret = false;
2370 put_cpu_var(memcg_stock);
2371 return ret;
2372 }
2373
2374 /*
2375 * Returns stocks cached in percpu to res_counter and reset cached information.
2376 */
2377 static void drain_stock(struct memcg_stock_pcp *stock)
2378 {
2379 struct mem_cgroup *old = stock->cached;
2380
2381 if (stock->nr_pages) {
2382 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2383
2384 res_counter_uncharge(&old->res, bytes);
2385 if (do_swap_account)
2386 res_counter_uncharge(&old->memsw, bytes);
2387 stock->nr_pages = 0;
2388 }
2389 stock->cached = NULL;
2390 }
2391
2392 /*
2393 * This must be called under preempt disabled or must be called by
2394 * a thread which is pinned to local cpu.
2395 */
2396 static void drain_local_stock(struct work_struct *dummy)
2397 {
2398 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2399 drain_stock(stock);
2400 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2401 }
2402
2403 static void __init memcg_stock_init(void)
2404 {
2405 int cpu;
2406
2407 for_each_possible_cpu(cpu) {
2408 struct memcg_stock_pcp *stock =
2409 &per_cpu(memcg_stock, cpu);
2410 INIT_WORK(&stock->work, drain_local_stock);
2411 }
2412 }
2413
2414 /*
2415 * Cache charges(val) which is from res_counter, to local per_cpu area.
2416 * This will be consumed by consume_stock() function, later.
2417 */
2418 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2419 {
2420 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2421
2422 if (stock->cached != memcg) { /* reset if necessary */
2423 drain_stock(stock);
2424 stock->cached = memcg;
2425 }
2426 stock->nr_pages += nr_pages;
2427 put_cpu_var(memcg_stock);
2428 }
2429
2430 /*
2431 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2432 * of the hierarchy under it. sync flag says whether we should block
2433 * until the work is done.
2434 */
2435 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2436 {
2437 int cpu, curcpu;
2438
2439 /* Notify other cpus that system-wide "drain" is running */
2440 get_online_cpus();
2441 curcpu = get_cpu();
2442 for_each_online_cpu(cpu) {
2443 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2444 struct mem_cgroup *memcg;
2445
2446 memcg = stock->cached;
2447 if (!memcg || !stock->nr_pages)
2448 continue;
2449 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2450 continue;
2451 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2452 if (cpu == curcpu)
2453 drain_local_stock(&stock->work);
2454 else
2455 schedule_work_on(cpu, &stock->work);
2456 }
2457 }
2458 put_cpu();
2459
2460 if (!sync)
2461 goto out;
2462
2463 for_each_online_cpu(cpu) {
2464 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2465 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2466 flush_work(&stock->work);
2467 }
2468 out:
2469 put_online_cpus();
2470 }
2471
2472 /*
2473 * Tries to drain stocked charges in other cpus. This function is asynchronous
2474 * and just put a work per cpu for draining localy on each cpu. Caller can
2475 * expects some charges will be back to res_counter later but cannot wait for
2476 * it.
2477 */
2478 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2479 {
2480 /*
2481 * If someone calls draining, avoid adding more kworker runs.
2482 */
2483 if (!mutex_trylock(&percpu_charge_mutex))
2484 return;
2485 drain_all_stock(root_memcg, false);
2486 mutex_unlock(&percpu_charge_mutex);
2487 }
2488
2489 /* This is a synchronous drain interface. */
2490 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2491 {
2492 /* called when force_empty is called */
2493 mutex_lock(&percpu_charge_mutex);
2494 drain_all_stock(root_memcg, true);
2495 mutex_unlock(&percpu_charge_mutex);
2496 }
2497
2498 /*
2499 * This function drains percpu counter value from DEAD cpu and
2500 * move it to local cpu. Note that this function can be preempted.
2501 */
2502 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2503 {
2504 int i;
2505
2506 spin_lock(&memcg->pcp_counter_lock);
2507 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2508 long x = per_cpu(memcg->stat->count[i], cpu);
2509
2510 per_cpu(memcg->stat->count[i], cpu) = 0;
2511 memcg->nocpu_base.count[i] += x;
2512 }
2513 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2514 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2515
2516 per_cpu(memcg->stat->events[i], cpu) = 0;
2517 memcg->nocpu_base.events[i] += x;
2518 }
2519 spin_unlock(&memcg->pcp_counter_lock);
2520 }
2521
2522 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2523 unsigned long action,
2524 void *hcpu)
2525 {
2526 int cpu = (unsigned long)hcpu;
2527 struct memcg_stock_pcp *stock;
2528 struct mem_cgroup *iter;
2529
2530 if (action == CPU_ONLINE)
2531 return NOTIFY_OK;
2532
2533 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2534 return NOTIFY_OK;
2535
2536 for_each_mem_cgroup(iter)
2537 mem_cgroup_drain_pcp_counter(iter, cpu);
2538
2539 stock = &per_cpu(memcg_stock, cpu);
2540 drain_stock(stock);
2541 return NOTIFY_OK;
2542 }
2543
2544
2545 /* See __mem_cgroup_try_charge() for details */
2546 enum {
2547 CHARGE_OK, /* success */
2548 CHARGE_RETRY, /* need to retry but retry is not bad */
2549 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2550 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2551 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2552 };
2553
2554 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2555 unsigned int nr_pages, unsigned int min_pages,
2556 bool oom_check)
2557 {
2558 unsigned long csize = nr_pages * PAGE_SIZE;
2559 struct mem_cgroup *mem_over_limit;
2560 struct res_counter *fail_res;
2561 unsigned long flags = 0;
2562 int ret;
2563
2564 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2565
2566 if (likely(!ret)) {
2567 if (!do_swap_account)
2568 return CHARGE_OK;
2569 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2570 if (likely(!ret))
2571 return CHARGE_OK;
2572
2573 res_counter_uncharge(&memcg->res, csize);
2574 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2575 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2576 } else
2577 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2578 /*
2579 * Never reclaim on behalf of optional batching, retry with a
2580 * single page instead.
2581 */
2582 if (nr_pages > min_pages)
2583 return CHARGE_RETRY;
2584
2585 if (!(gfp_mask & __GFP_WAIT))
2586 return CHARGE_WOULDBLOCK;
2587
2588 if (gfp_mask & __GFP_NORETRY)
2589 return CHARGE_NOMEM;
2590
2591 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2592 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2593 return CHARGE_RETRY;
2594 /*
2595 * Even though the limit is exceeded at this point, reclaim
2596 * may have been able to free some pages. Retry the charge
2597 * before killing the task.
2598 *
2599 * Only for regular pages, though: huge pages are rather
2600 * unlikely to succeed so close to the limit, and we fall back
2601 * to regular pages anyway in case of failure.
2602 */
2603 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2604 return CHARGE_RETRY;
2605
2606 /*
2607 * At task move, charge accounts can be doubly counted. So, it's
2608 * better to wait until the end of task_move if something is going on.
2609 */
2610 if (mem_cgroup_wait_acct_move(mem_over_limit))
2611 return CHARGE_RETRY;
2612
2613 /* If we don't need to call oom-killer at el, return immediately */
2614 if (!oom_check)
2615 return CHARGE_NOMEM;
2616 /* check OOM */
2617 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2618 return CHARGE_OOM_DIE;
2619
2620 return CHARGE_RETRY;
2621 }
2622
2623 /*
2624 * __mem_cgroup_try_charge() does
2625 * 1. detect memcg to be charged against from passed *mm and *ptr,
2626 * 2. update res_counter
2627 * 3. call memory reclaim if necessary.
2628 *
2629 * In some special case, if the task is fatal, fatal_signal_pending() or
2630 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2631 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2632 * as possible without any hazards. 2: all pages should have a valid
2633 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2634 * pointer, that is treated as a charge to root_mem_cgroup.
2635 *
2636 * So __mem_cgroup_try_charge() will return
2637 * 0 ... on success, filling *ptr with a valid memcg pointer.
2638 * -ENOMEM ... charge failure because of resource limits.
2639 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2640 *
2641 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2642 * the oom-killer can be invoked.
2643 */
2644 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2645 gfp_t gfp_mask,
2646 unsigned int nr_pages,
2647 struct mem_cgroup **ptr,
2648 bool oom)
2649 {
2650 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2651 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2652 struct mem_cgroup *memcg = NULL;
2653 int ret;
2654
2655 /*
2656 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2657 * in system level. So, allow to go ahead dying process in addition to
2658 * MEMDIE process.
2659 */
2660 if (unlikely(test_thread_flag(TIF_MEMDIE)
2661 || fatal_signal_pending(current)))
2662 goto bypass;
2663
2664 /*
2665 * We always charge the cgroup the mm_struct belongs to.
2666 * The mm_struct's mem_cgroup changes on task migration if the
2667 * thread group leader migrates. It's possible that mm is not
2668 * set, if so charge the root memcg (happens for pagecache usage).
2669 */
2670 if (!*ptr && !mm)
2671 *ptr = root_mem_cgroup;
2672 again:
2673 if (*ptr) { /* css should be a valid one */
2674 memcg = *ptr;
2675 if (mem_cgroup_is_root(memcg))
2676 goto done;
2677 if (consume_stock(memcg, nr_pages))
2678 goto done;
2679 css_get(&memcg->css);
2680 } else {
2681 struct task_struct *p;
2682
2683 rcu_read_lock();
2684 p = rcu_dereference(mm->owner);
2685 /*
2686 * Because we don't have task_lock(), "p" can exit.
2687 * In that case, "memcg" can point to root or p can be NULL with
2688 * race with swapoff. Then, we have small risk of mis-accouning.
2689 * But such kind of mis-account by race always happens because
2690 * we don't have cgroup_mutex(). It's overkill and we allo that
2691 * small race, here.
2692 * (*) swapoff at el will charge against mm-struct not against
2693 * task-struct. So, mm->owner can be NULL.
2694 */
2695 memcg = mem_cgroup_from_task(p);
2696 if (!memcg)
2697 memcg = root_mem_cgroup;
2698 if (mem_cgroup_is_root(memcg)) {
2699 rcu_read_unlock();
2700 goto done;
2701 }
2702 if (consume_stock(memcg, nr_pages)) {
2703 /*
2704 * It seems dagerous to access memcg without css_get().
2705 * But considering how consume_stok works, it's not
2706 * necessary. If consume_stock success, some charges
2707 * from this memcg are cached on this cpu. So, we
2708 * don't need to call css_get()/css_tryget() before
2709 * calling consume_stock().
2710 */
2711 rcu_read_unlock();
2712 goto done;
2713 }
2714 /* after here, we may be blocked. we need to get refcnt */
2715 if (!css_tryget(&memcg->css)) {
2716 rcu_read_unlock();
2717 goto again;
2718 }
2719 rcu_read_unlock();
2720 }
2721
2722 do {
2723 bool oom_check;
2724
2725 /* If killed, bypass charge */
2726 if (fatal_signal_pending(current)) {
2727 css_put(&memcg->css);
2728 goto bypass;
2729 }
2730
2731 oom_check = false;
2732 if (oom && !nr_oom_retries) {
2733 oom_check = true;
2734 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2735 }
2736
2737 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2738 oom_check);
2739 switch (ret) {
2740 case CHARGE_OK:
2741 break;
2742 case CHARGE_RETRY: /* not in OOM situation but retry */
2743 batch = nr_pages;
2744 css_put(&memcg->css);
2745 memcg = NULL;
2746 goto again;
2747 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2748 css_put(&memcg->css);
2749 goto nomem;
2750 case CHARGE_NOMEM: /* OOM routine works */
2751 if (!oom) {
2752 css_put(&memcg->css);
2753 goto nomem;
2754 }
2755 /* If oom, we never return -ENOMEM */
2756 nr_oom_retries--;
2757 break;
2758 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2759 css_put(&memcg->css);
2760 goto bypass;
2761 }
2762 } while (ret != CHARGE_OK);
2763
2764 if (batch > nr_pages)
2765 refill_stock(memcg, batch - nr_pages);
2766 css_put(&memcg->css);
2767 done:
2768 *ptr = memcg;
2769 return 0;
2770 nomem:
2771 *ptr = NULL;
2772 return -ENOMEM;
2773 bypass:
2774 *ptr = root_mem_cgroup;
2775 return -EINTR;
2776 }
2777
2778 /*
2779 * Somemtimes we have to undo a charge we got by try_charge().
2780 * This function is for that and do uncharge, put css's refcnt.
2781 * gotten by try_charge().
2782 */
2783 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2784 unsigned int nr_pages)
2785 {
2786 if (!mem_cgroup_is_root(memcg)) {
2787 unsigned long bytes = nr_pages * PAGE_SIZE;
2788
2789 res_counter_uncharge(&memcg->res, bytes);
2790 if (do_swap_account)
2791 res_counter_uncharge(&memcg->memsw, bytes);
2792 }
2793 }
2794
2795 /*
2796 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2797 * This is useful when moving usage to parent cgroup.
2798 */
2799 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2800 unsigned int nr_pages)
2801 {
2802 unsigned long bytes = nr_pages * PAGE_SIZE;
2803
2804 if (mem_cgroup_is_root(memcg))
2805 return;
2806
2807 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2808 if (do_swap_account)
2809 res_counter_uncharge_until(&memcg->memsw,
2810 memcg->memsw.parent, bytes);
2811 }
2812
2813 /*
2814 * A helper function to get mem_cgroup from ID. must be called under
2815 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2816 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2817 * called against removed memcg.)
2818 */
2819 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2820 {
2821 struct cgroup_subsys_state *css;
2822
2823 /* ID 0 is unused ID */
2824 if (!id)
2825 return NULL;
2826 css = css_lookup(&mem_cgroup_subsys, id);
2827 if (!css)
2828 return NULL;
2829 return mem_cgroup_from_css(css);
2830 }
2831
2832 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2833 {
2834 struct mem_cgroup *memcg = NULL;
2835 struct page_cgroup *pc;
2836 unsigned short id;
2837 swp_entry_t ent;
2838
2839 VM_BUG_ON(!PageLocked(page));
2840
2841 pc = lookup_page_cgroup(page);
2842 lock_page_cgroup(pc);
2843 if (PageCgroupUsed(pc)) {
2844 memcg = pc->mem_cgroup;
2845 if (memcg && !css_tryget(&memcg->css))
2846 memcg = NULL;
2847 } else if (PageSwapCache(page)) {
2848 ent.val = page_private(page);
2849 id = lookup_swap_cgroup_id(ent);
2850 rcu_read_lock();
2851 memcg = mem_cgroup_lookup(id);
2852 if (memcg && !css_tryget(&memcg->css))
2853 memcg = NULL;
2854 rcu_read_unlock();
2855 }
2856 unlock_page_cgroup(pc);
2857 return memcg;
2858 }
2859
2860 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2861 struct page *page,
2862 unsigned int nr_pages,
2863 enum charge_type ctype,
2864 bool lrucare)
2865 {
2866 struct page_cgroup *pc = lookup_page_cgroup(page);
2867 struct zone *uninitialized_var(zone);
2868 struct lruvec *lruvec;
2869 bool was_on_lru = false;
2870 bool anon;
2871
2872 lock_page_cgroup(pc);
2873 VM_BUG_ON(PageCgroupUsed(pc));
2874 /*
2875 * we don't need page_cgroup_lock about tail pages, becase they are not
2876 * accessed by any other context at this point.
2877 */
2878
2879 /*
2880 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2881 * may already be on some other mem_cgroup's LRU. Take care of it.
2882 */
2883 if (lrucare) {
2884 zone = page_zone(page);
2885 spin_lock_irq(&zone->lru_lock);
2886 if (PageLRU(page)) {
2887 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2888 ClearPageLRU(page);
2889 del_page_from_lru_list(page, lruvec, page_lru(page));
2890 was_on_lru = true;
2891 }
2892 }
2893
2894 pc->mem_cgroup = memcg;
2895 /*
2896 * We access a page_cgroup asynchronously without lock_page_cgroup().
2897 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2898 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2899 * before USED bit, we need memory barrier here.
2900 * See mem_cgroup_add_lru_list(), etc.
2901 */
2902 smp_wmb();
2903 SetPageCgroupUsed(pc);
2904
2905 if (lrucare) {
2906 if (was_on_lru) {
2907 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2908 VM_BUG_ON(PageLRU(page));
2909 SetPageLRU(page);
2910 add_page_to_lru_list(page, lruvec, page_lru(page));
2911 }
2912 spin_unlock_irq(&zone->lru_lock);
2913 }
2914
2915 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2916 anon = true;
2917 else
2918 anon = false;
2919
2920 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2921 unlock_page_cgroup(pc);
2922
2923 /*
2924 * "charge_statistics" updated event counter. Then, check it.
2925 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2926 * if they exceeds softlimit.
2927 */
2928 memcg_check_events(memcg, page);
2929 }
2930
2931 static DEFINE_MUTEX(set_limit_mutex);
2932
2933 #ifdef CONFIG_MEMCG_KMEM
2934 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2935 {
2936 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2937 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2938 }
2939
2940 /*
2941 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2942 * in the memcg_cache_params struct.
2943 */
2944 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2945 {
2946 struct kmem_cache *cachep;
2947
2948 VM_BUG_ON(p->is_root_cache);
2949 cachep = p->root_cache;
2950 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2951 }
2952
2953 #ifdef CONFIG_SLABINFO
2954 static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
2955 struct seq_file *m)
2956 {
2957 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2958 struct memcg_cache_params *params;
2959
2960 if (!memcg_can_account_kmem(memcg))
2961 return -EIO;
2962
2963 print_slabinfo_header(m);
2964
2965 mutex_lock(&memcg->slab_caches_mutex);
2966 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2967 cache_show(memcg_params_to_cache(params), m);
2968 mutex_unlock(&memcg->slab_caches_mutex);
2969
2970 return 0;
2971 }
2972 #endif
2973
2974 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2975 {
2976 struct res_counter *fail_res;
2977 struct mem_cgroup *_memcg;
2978 int ret = 0;
2979 bool may_oom;
2980
2981 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2982 if (ret)
2983 return ret;
2984
2985 /*
2986 * Conditions under which we can wait for the oom_killer. Those are
2987 * the same conditions tested by the core page allocator
2988 */
2989 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2990
2991 _memcg = memcg;
2992 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2993 &_memcg, may_oom);
2994
2995 if (ret == -EINTR) {
2996 /*
2997 * __mem_cgroup_try_charge() chosed to bypass to root due to
2998 * OOM kill or fatal signal. Since our only options are to
2999 * either fail the allocation or charge it to this cgroup, do
3000 * it as a temporary condition. But we can't fail. From a
3001 * kmem/slab perspective, the cache has already been selected,
3002 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3003 * our minds.
3004 *
3005 * This condition will only trigger if the task entered
3006 * memcg_charge_kmem in a sane state, but was OOM-killed during
3007 * __mem_cgroup_try_charge() above. Tasks that were already
3008 * dying when the allocation triggers should have been already
3009 * directed to the root cgroup in memcontrol.h
3010 */
3011 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3012 if (do_swap_account)
3013 res_counter_charge_nofail(&memcg->memsw, size,
3014 &fail_res);
3015 ret = 0;
3016 } else if (ret)
3017 res_counter_uncharge(&memcg->kmem, size);
3018
3019 return ret;
3020 }
3021
3022 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3023 {
3024 res_counter_uncharge(&memcg->res, size);
3025 if (do_swap_account)
3026 res_counter_uncharge(&memcg->memsw, size);
3027
3028 /* Not down to 0 */
3029 if (res_counter_uncharge(&memcg->kmem, size))
3030 return;
3031
3032 /*
3033 * Releases a reference taken in kmem_cgroup_css_offline in case
3034 * this last uncharge is racing with the offlining code or it is
3035 * outliving the memcg existence.
3036 *
3037 * The memory barrier imposed by test&clear is paired with the
3038 * explicit one in memcg_kmem_mark_dead().
3039 */
3040 if (memcg_kmem_test_and_clear_dead(memcg))
3041 css_put(&memcg->css);
3042 }
3043
3044 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3045 {
3046 if (!memcg)
3047 return;
3048
3049 mutex_lock(&memcg->slab_caches_mutex);
3050 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3051 mutex_unlock(&memcg->slab_caches_mutex);
3052 }
3053
3054 /*
3055 * helper for acessing a memcg's index. It will be used as an index in the
3056 * child cache array in kmem_cache, and also to derive its name. This function
3057 * will return -1 when this is not a kmem-limited memcg.
3058 */
3059 int memcg_cache_id(struct mem_cgroup *memcg)
3060 {
3061 return memcg ? memcg->kmemcg_id : -1;
3062 }
3063
3064 /*
3065 * This ends up being protected by the set_limit mutex, during normal
3066 * operation, because that is its main call site.
3067 *
3068 * But when we create a new cache, we can call this as well if its parent
3069 * is kmem-limited. That will have to hold set_limit_mutex as well.
3070 */
3071 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3072 {
3073 int num, ret;
3074
3075 num = ida_simple_get(&kmem_limited_groups,
3076 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3077 if (num < 0)
3078 return num;
3079 /*
3080 * After this point, kmem_accounted (that we test atomically in
3081 * the beginning of this conditional), is no longer 0. This
3082 * guarantees only one process will set the following boolean
3083 * to true. We don't need test_and_set because we're protected
3084 * by the set_limit_mutex anyway.
3085 */
3086 memcg_kmem_set_activated(memcg);
3087
3088 ret = memcg_update_all_caches(num+1);
3089 if (ret) {
3090 ida_simple_remove(&kmem_limited_groups, num);
3091 memcg_kmem_clear_activated(memcg);
3092 return ret;
3093 }
3094
3095 memcg->kmemcg_id = num;
3096 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3097 mutex_init(&memcg->slab_caches_mutex);
3098 return 0;
3099 }
3100
3101 static size_t memcg_caches_array_size(int num_groups)
3102 {
3103 ssize_t size;
3104 if (num_groups <= 0)
3105 return 0;
3106
3107 size = 2 * num_groups;
3108 if (size < MEMCG_CACHES_MIN_SIZE)
3109 size = MEMCG_CACHES_MIN_SIZE;
3110 else if (size > MEMCG_CACHES_MAX_SIZE)
3111 size = MEMCG_CACHES_MAX_SIZE;
3112
3113 return size;
3114 }
3115
3116 /*
3117 * We should update the current array size iff all caches updates succeed. This
3118 * can only be done from the slab side. The slab mutex needs to be held when
3119 * calling this.
3120 */
3121 void memcg_update_array_size(int num)
3122 {
3123 if (num > memcg_limited_groups_array_size)
3124 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3125 }
3126
3127 static void kmem_cache_destroy_work_func(struct work_struct *w);
3128
3129 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3130 {
3131 struct memcg_cache_params *cur_params = s->memcg_params;
3132
3133 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3134
3135 if (num_groups > memcg_limited_groups_array_size) {
3136 int i;
3137 ssize_t size = memcg_caches_array_size(num_groups);
3138
3139 size *= sizeof(void *);
3140 size += sizeof(struct memcg_cache_params);
3141
3142 s->memcg_params = kzalloc(size, GFP_KERNEL);
3143 if (!s->memcg_params) {
3144 s->memcg_params = cur_params;
3145 return -ENOMEM;
3146 }
3147
3148 s->memcg_params->is_root_cache = true;
3149
3150 /*
3151 * There is the chance it will be bigger than
3152 * memcg_limited_groups_array_size, if we failed an allocation
3153 * in a cache, in which case all caches updated before it, will
3154 * have a bigger array.
3155 *
3156 * But if that is the case, the data after
3157 * memcg_limited_groups_array_size is certainly unused
3158 */
3159 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3160 if (!cur_params->memcg_caches[i])
3161 continue;
3162 s->memcg_params->memcg_caches[i] =
3163 cur_params->memcg_caches[i];
3164 }
3165
3166 /*
3167 * Ideally, we would wait until all caches succeed, and only
3168 * then free the old one. But this is not worth the extra
3169 * pointer per-cache we'd have to have for this.
3170 *
3171 * It is not a big deal if some caches are left with a size
3172 * bigger than the others. And all updates will reset this
3173 * anyway.
3174 */
3175 kfree(cur_params);
3176 }
3177 return 0;
3178 }
3179
3180 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3181 struct kmem_cache *root_cache)
3182 {
3183 size_t size = sizeof(struct memcg_cache_params);
3184
3185 if (!memcg_kmem_enabled())
3186 return 0;
3187
3188 if (!memcg)
3189 size += memcg_limited_groups_array_size * sizeof(void *);
3190
3191 s->memcg_params = kzalloc(size, GFP_KERNEL);
3192 if (!s->memcg_params)
3193 return -ENOMEM;
3194
3195 INIT_WORK(&s->memcg_params->destroy,
3196 kmem_cache_destroy_work_func);
3197 if (memcg) {
3198 s->memcg_params->memcg = memcg;
3199 s->memcg_params->root_cache = root_cache;
3200 } else
3201 s->memcg_params->is_root_cache = true;
3202
3203 return 0;
3204 }
3205
3206 void memcg_release_cache(struct kmem_cache *s)
3207 {
3208 struct kmem_cache *root;
3209 struct mem_cgroup *memcg;
3210 int id;
3211
3212 /*
3213 * This happens, for instance, when a root cache goes away before we
3214 * add any memcg.
3215 */
3216 if (!s->memcg_params)
3217 return;
3218
3219 if (s->memcg_params->is_root_cache)
3220 goto out;
3221
3222 memcg = s->memcg_params->memcg;
3223 id = memcg_cache_id(memcg);
3224
3225 root = s->memcg_params->root_cache;
3226 root->memcg_params->memcg_caches[id] = NULL;
3227
3228 mutex_lock(&memcg->slab_caches_mutex);
3229 list_del(&s->memcg_params->list);
3230 mutex_unlock(&memcg->slab_caches_mutex);
3231
3232 css_put(&memcg->css);
3233 out:
3234 kfree(s->memcg_params);
3235 }
3236
3237 /*
3238 * During the creation a new cache, we need to disable our accounting mechanism
3239 * altogether. This is true even if we are not creating, but rather just
3240 * enqueing new caches to be created.
3241 *
3242 * This is because that process will trigger allocations; some visible, like
3243 * explicit kmallocs to auxiliary data structures, name strings and internal
3244 * cache structures; some well concealed, like INIT_WORK() that can allocate
3245 * objects during debug.
3246 *
3247 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3248 * to it. This may not be a bounded recursion: since the first cache creation
3249 * failed to complete (waiting on the allocation), we'll just try to create the
3250 * cache again, failing at the same point.
3251 *
3252 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3253 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3254 * inside the following two functions.
3255 */
3256 static inline void memcg_stop_kmem_account(void)
3257 {
3258 VM_BUG_ON(!current->mm);
3259 current->memcg_kmem_skip_account++;
3260 }
3261
3262 static inline void memcg_resume_kmem_account(void)
3263 {
3264 VM_BUG_ON(!current->mm);
3265 current->memcg_kmem_skip_account--;
3266 }
3267
3268 static void kmem_cache_destroy_work_func(struct work_struct *w)
3269 {
3270 struct kmem_cache *cachep;
3271 struct memcg_cache_params *p;
3272
3273 p = container_of(w, struct memcg_cache_params, destroy);
3274
3275 cachep = memcg_params_to_cache(p);
3276
3277 /*
3278 * If we get down to 0 after shrink, we could delete right away.
3279 * However, memcg_release_pages() already puts us back in the workqueue
3280 * in that case. If we proceed deleting, we'll get a dangling
3281 * reference, and removing the object from the workqueue in that case
3282 * is unnecessary complication. We are not a fast path.
3283 *
3284 * Note that this case is fundamentally different from racing with
3285 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3286 * kmem_cache_shrink, not only we would be reinserting a dead cache
3287 * into the queue, but doing so from inside the worker racing to
3288 * destroy it.
3289 *
3290 * So if we aren't down to zero, we'll just schedule a worker and try
3291 * again
3292 */
3293 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3294 kmem_cache_shrink(cachep);
3295 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3296 return;
3297 } else
3298 kmem_cache_destroy(cachep);
3299 }
3300
3301 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3302 {
3303 if (!cachep->memcg_params->dead)
3304 return;
3305
3306 /*
3307 * There are many ways in which we can get here.
3308 *
3309 * We can get to a memory-pressure situation while the delayed work is
3310 * still pending to run. The vmscan shrinkers can then release all
3311 * cache memory and get us to destruction. If this is the case, we'll
3312 * be executed twice, which is a bug (the second time will execute over
3313 * bogus data). In this case, cancelling the work should be fine.
3314 *
3315 * But we can also get here from the worker itself, if
3316 * kmem_cache_shrink is enough to shake all the remaining objects and
3317 * get the page count to 0. In this case, we'll deadlock if we try to
3318 * cancel the work (the worker runs with an internal lock held, which
3319 * is the same lock we would hold for cancel_work_sync().)
3320 *
3321 * Since we can't possibly know who got us here, just refrain from
3322 * running if there is already work pending
3323 */
3324 if (work_pending(&cachep->memcg_params->destroy))
3325 return;
3326 /*
3327 * We have to defer the actual destroying to a workqueue, because
3328 * we might currently be in a context that cannot sleep.
3329 */
3330 schedule_work(&cachep->memcg_params->destroy);
3331 }
3332
3333 /*
3334 * This lock protects updaters, not readers. We want readers to be as fast as
3335 * they can, and they will either see NULL or a valid cache value. Our model
3336 * allow them to see NULL, in which case the root memcg will be selected.
3337 *
3338 * We need this lock because multiple allocations to the same cache from a non
3339 * will span more than one worker. Only one of them can create the cache.
3340 */
3341 static DEFINE_MUTEX(memcg_cache_mutex);
3342
3343 /*
3344 * Called with memcg_cache_mutex held
3345 */
3346 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3347 struct kmem_cache *s)
3348 {
3349 struct kmem_cache *new;
3350 static char *tmp_name = NULL;
3351
3352 lockdep_assert_held(&memcg_cache_mutex);
3353
3354 /*
3355 * kmem_cache_create_memcg duplicates the given name and
3356 * cgroup_name for this name requires RCU context.
3357 * This static temporary buffer is used to prevent from
3358 * pointless shortliving allocation.
3359 */
3360 if (!tmp_name) {
3361 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3362 if (!tmp_name)
3363 return NULL;
3364 }
3365
3366 rcu_read_lock();
3367 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3368 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3369 rcu_read_unlock();
3370
3371 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3372 (s->flags & ~SLAB_PANIC), s->ctor, s);
3373
3374 if (new)
3375 new->allocflags |= __GFP_KMEMCG;
3376
3377 return new;
3378 }
3379
3380 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3381 struct kmem_cache *cachep)
3382 {
3383 struct kmem_cache *new_cachep;
3384 int idx;
3385
3386 BUG_ON(!memcg_can_account_kmem(memcg));
3387
3388 idx = memcg_cache_id(memcg);
3389
3390 mutex_lock(&memcg_cache_mutex);
3391 new_cachep = cachep->memcg_params->memcg_caches[idx];
3392 if (new_cachep) {
3393 css_put(&memcg->css);
3394 goto out;
3395 }
3396
3397 new_cachep = kmem_cache_dup(memcg, cachep);
3398 if (new_cachep == NULL) {
3399 new_cachep = cachep;
3400 css_put(&memcg->css);
3401 goto out;
3402 }
3403
3404 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3405
3406 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3407 /*
3408 * the readers won't lock, make sure everybody sees the updated value,
3409 * so they won't put stuff in the queue again for no reason
3410 */
3411 wmb();
3412 out:
3413 mutex_unlock(&memcg_cache_mutex);
3414 return new_cachep;
3415 }
3416
3417 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3418 {
3419 struct kmem_cache *c;
3420 int i;
3421
3422 if (!s->memcg_params)
3423 return;
3424 if (!s->memcg_params->is_root_cache)
3425 return;
3426
3427 /*
3428 * If the cache is being destroyed, we trust that there is no one else
3429 * requesting objects from it. Even if there are, the sanity checks in
3430 * kmem_cache_destroy should caught this ill-case.
3431 *
3432 * Still, we don't want anyone else freeing memcg_caches under our
3433 * noses, which can happen if a new memcg comes to life. As usual,
3434 * we'll take the set_limit_mutex to protect ourselves against this.
3435 */
3436 mutex_lock(&set_limit_mutex);
3437 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3438 c = s->memcg_params->memcg_caches[i];
3439 if (!c)
3440 continue;
3441
3442 /*
3443 * We will now manually delete the caches, so to avoid races
3444 * we need to cancel all pending destruction workers and
3445 * proceed with destruction ourselves.
3446 *
3447 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3448 * and that could spawn the workers again: it is likely that
3449 * the cache still have active pages until this very moment.
3450 * This would lead us back to mem_cgroup_destroy_cache.
3451 *
3452 * But that will not execute at all if the "dead" flag is not
3453 * set, so flip it down to guarantee we are in control.
3454 */
3455 c->memcg_params->dead = false;
3456 cancel_work_sync(&c->memcg_params->destroy);
3457 kmem_cache_destroy(c);
3458 }
3459 mutex_unlock(&set_limit_mutex);
3460 }
3461
3462 struct create_work {
3463 struct mem_cgroup *memcg;
3464 struct kmem_cache *cachep;
3465 struct work_struct work;
3466 };
3467
3468 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3469 {
3470 struct kmem_cache *cachep;
3471 struct memcg_cache_params *params;
3472
3473 if (!memcg_kmem_is_active(memcg))
3474 return;
3475
3476 mutex_lock(&memcg->slab_caches_mutex);
3477 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3478 cachep = memcg_params_to_cache(params);
3479 cachep->memcg_params->dead = true;
3480 schedule_work(&cachep->memcg_params->destroy);
3481 }
3482 mutex_unlock(&memcg->slab_caches_mutex);
3483 }
3484
3485 static void memcg_create_cache_work_func(struct work_struct *w)
3486 {
3487 struct create_work *cw;
3488
3489 cw = container_of(w, struct create_work, work);
3490 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3491 kfree(cw);
3492 }
3493
3494 /*
3495 * Enqueue the creation of a per-memcg kmem_cache.
3496 */
3497 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3498 struct kmem_cache *cachep)
3499 {
3500 struct create_work *cw;
3501
3502 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3503 if (cw == NULL) {
3504 css_put(&memcg->css);
3505 return;
3506 }
3507
3508 cw->memcg = memcg;
3509 cw->cachep = cachep;
3510
3511 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3512 schedule_work(&cw->work);
3513 }
3514
3515 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3516 struct kmem_cache *cachep)
3517 {
3518 /*
3519 * We need to stop accounting when we kmalloc, because if the
3520 * corresponding kmalloc cache is not yet created, the first allocation
3521 * in __memcg_create_cache_enqueue will recurse.
3522 *
3523 * However, it is better to enclose the whole function. Depending on
3524 * the debugging options enabled, INIT_WORK(), for instance, can
3525 * trigger an allocation. This too, will make us recurse. Because at
3526 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3527 * the safest choice is to do it like this, wrapping the whole function.
3528 */
3529 memcg_stop_kmem_account();
3530 __memcg_create_cache_enqueue(memcg, cachep);
3531 memcg_resume_kmem_account();
3532 }
3533 /*
3534 * Return the kmem_cache we're supposed to use for a slab allocation.
3535 * We try to use the current memcg's version of the cache.
3536 *
3537 * If the cache does not exist yet, if we are the first user of it,
3538 * we either create it immediately, if possible, or create it asynchronously
3539 * in a workqueue.
3540 * In the latter case, we will let the current allocation go through with
3541 * the original cache.
3542 *
3543 * Can't be called in interrupt context or from kernel threads.
3544 * This function needs to be called with rcu_read_lock() held.
3545 */
3546 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3547 gfp_t gfp)
3548 {
3549 struct mem_cgroup *memcg;
3550 int idx;
3551
3552 VM_BUG_ON(!cachep->memcg_params);
3553 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3554
3555 if (!current->mm || current->memcg_kmem_skip_account)
3556 return cachep;
3557
3558 rcu_read_lock();
3559 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3560
3561 if (!memcg_can_account_kmem(memcg))
3562 goto out;
3563
3564 idx = memcg_cache_id(memcg);
3565
3566 /*
3567 * barrier to mare sure we're always seeing the up to date value. The
3568 * code updating memcg_caches will issue a write barrier to match this.
3569 */
3570 read_barrier_depends();
3571 if (likely(cachep->memcg_params->memcg_caches[idx])) {
3572 cachep = cachep->memcg_params->memcg_caches[idx];
3573 goto out;
3574 }
3575
3576 /* The corresponding put will be done in the workqueue. */
3577 if (!css_tryget(&memcg->css))
3578 goto out;
3579 rcu_read_unlock();
3580
3581 /*
3582 * If we are in a safe context (can wait, and not in interrupt
3583 * context), we could be be predictable and return right away.
3584 * This would guarantee that the allocation being performed
3585 * already belongs in the new cache.
3586 *
3587 * However, there are some clashes that can arrive from locking.
3588 * For instance, because we acquire the slab_mutex while doing
3589 * kmem_cache_dup, this means no further allocation could happen
3590 * with the slab_mutex held.
3591 *
3592 * Also, because cache creation issue get_online_cpus(), this
3593 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3594 * that ends up reversed during cpu hotplug. (cpuset allocates
3595 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3596 * better to defer everything.
3597 */
3598 memcg_create_cache_enqueue(memcg, cachep);
3599 return cachep;
3600 out:
3601 rcu_read_unlock();
3602 return cachep;
3603 }
3604 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3605
3606 /*
3607 * We need to verify if the allocation against current->mm->owner's memcg is
3608 * possible for the given order. But the page is not allocated yet, so we'll
3609 * need a further commit step to do the final arrangements.
3610 *
3611 * It is possible for the task to switch cgroups in this mean time, so at
3612 * commit time, we can't rely on task conversion any longer. We'll then use
3613 * the handle argument to return to the caller which cgroup we should commit
3614 * against. We could also return the memcg directly and avoid the pointer
3615 * passing, but a boolean return value gives better semantics considering
3616 * the compiled-out case as well.
3617 *
3618 * Returning true means the allocation is possible.
3619 */
3620 bool
3621 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3622 {
3623 struct mem_cgroup *memcg;
3624 int ret;
3625
3626 *_memcg = NULL;
3627
3628 /*
3629 * Disabling accounting is only relevant for some specific memcg
3630 * internal allocations. Therefore we would initially not have such
3631 * check here, since direct calls to the page allocator that are marked
3632 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3633 * concerned with cache allocations, and by having this test at
3634 * memcg_kmem_get_cache, we are already able to relay the allocation to
3635 * the root cache and bypass the memcg cache altogether.
3636 *
3637 * There is one exception, though: the SLUB allocator does not create
3638 * large order caches, but rather service large kmallocs directly from
3639 * the page allocator. Therefore, the following sequence when backed by
3640 * the SLUB allocator:
3641 *
3642 * memcg_stop_kmem_account();
3643 * kmalloc(<large_number>)
3644 * memcg_resume_kmem_account();
3645 *
3646 * would effectively ignore the fact that we should skip accounting,
3647 * since it will drive us directly to this function without passing
3648 * through the cache selector memcg_kmem_get_cache. Such large
3649 * allocations are extremely rare but can happen, for instance, for the
3650 * cache arrays. We bring this test here.
3651 */
3652 if (!current->mm || current->memcg_kmem_skip_account)
3653 return true;
3654
3655 memcg = try_get_mem_cgroup_from_mm(current->mm);
3656
3657 /*
3658 * very rare case described in mem_cgroup_from_task. Unfortunately there
3659 * isn't much we can do without complicating this too much, and it would
3660 * be gfp-dependent anyway. Just let it go
3661 */
3662 if (unlikely(!memcg))
3663 return true;
3664
3665 if (!memcg_can_account_kmem(memcg)) {
3666 css_put(&memcg->css);
3667 return true;
3668 }
3669
3670 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3671 if (!ret)
3672 *_memcg = memcg;
3673
3674 css_put(&memcg->css);
3675 return (ret == 0);
3676 }
3677
3678 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3679 int order)
3680 {
3681 struct page_cgroup *pc;
3682
3683 VM_BUG_ON(mem_cgroup_is_root(memcg));
3684
3685 /* The page allocation failed. Revert */
3686 if (!page) {
3687 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3688 return;
3689 }
3690
3691 pc = lookup_page_cgroup(page);
3692 lock_page_cgroup(pc);
3693 pc->mem_cgroup = memcg;
3694 SetPageCgroupUsed(pc);
3695 unlock_page_cgroup(pc);
3696 }
3697
3698 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3699 {
3700 struct mem_cgroup *memcg = NULL;
3701 struct page_cgroup *pc;
3702
3703
3704 pc = lookup_page_cgroup(page);
3705 /*
3706 * Fast unlocked return. Theoretically might have changed, have to
3707 * check again after locking.
3708 */
3709 if (!PageCgroupUsed(pc))
3710 return;
3711
3712 lock_page_cgroup(pc);
3713 if (PageCgroupUsed(pc)) {
3714 memcg = pc->mem_cgroup;
3715 ClearPageCgroupUsed(pc);
3716 }
3717 unlock_page_cgroup(pc);
3718
3719 /*
3720 * We trust that only if there is a memcg associated with the page, it
3721 * is a valid allocation
3722 */
3723 if (!memcg)
3724 return;
3725
3726 VM_BUG_ON(mem_cgroup_is_root(memcg));
3727 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3728 }
3729 #else
3730 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3731 {
3732 }
3733 #endif /* CONFIG_MEMCG_KMEM */
3734
3735 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3736
3737 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3738 /*
3739 * Because tail pages are not marked as "used", set it. We're under
3740 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3741 * charge/uncharge will be never happen and move_account() is done under
3742 * compound_lock(), so we don't have to take care of races.
3743 */
3744 void mem_cgroup_split_huge_fixup(struct page *head)
3745 {
3746 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3747 struct page_cgroup *pc;
3748 struct mem_cgroup *memcg;
3749 int i;
3750
3751 if (mem_cgroup_disabled())
3752 return;
3753
3754 memcg = head_pc->mem_cgroup;
3755 for (i = 1; i < HPAGE_PMD_NR; i++) {
3756 pc = head_pc + i;
3757 pc->mem_cgroup = memcg;
3758 smp_wmb();/* see __commit_charge() */
3759 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3760 }
3761 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3762 HPAGE_PMD_NR);
3763 }
3764 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3765
3766 /**
3767 * mem_cgroup_move_account - move account of the page
3768 * @page: the page
3769 * @nr_pages: number of regular pages (>1 for huge pages)
3770 * @pc: page_cgroup of the page.
3771 * @from: mem_cgroup which the page is moved from.
3772 * @to: mem_cgroup which the page is moved to. @from != @to.
3773 *
3774 * The caller must confirm following.
3775 * - page is not on LRU (isolate_page() is useful.)
3776 * - compound_lock is held when nr_pages > 1
3777 *
3778 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3779 * from old cgroup.
3780 */
3781 static int mem_cgroup_move_account(struct page *page,
3782 unsigned int nr_pages,
3783 struct page_cgroup *pc,
3784 struct mem_cgroup *from,
3785 struct mem_cgroup *to)
3786 {
3787 unsigned long flags;
3788 int ret;
3789 bool anon = PageAnon(page);
3790
3791 VM_BUG_ON(from == to);
3792 VM_BUG_ON(PageLRU(page));
3793 /*
3794 * The page is isolated from LRU. So, collapse function
3795 * will not handle this page. But page splitting can happen.
3796 * Do this check under compound_page_lock(). The caller should
3797 * hold it.
3798 */
3799 ret = -EBUSY;
3800 if (nr_pages > 1 && !PageTransHuge(page))
3801 goto out;
3802
3803 lock_page_cgroup(pc);
3804
3805 ret = -EINVAL;
3806 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3807 goto unlock;
3808
3809 move_lock_mem_cgroup(from, &flags);
3810
3811 if (!anon && page_mapped(page)) {
3812 /* Update mapped_file data for mem_cgroup */
3813 preempt_disable();
3814 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3815 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3816 preempt_enable();
3817 }
3818 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3819
3820 /* caller should have done css_get */
3821 pc->mem_cgroup = to;
3822 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3823 move_unlock_mem_cgroup(from, &flags);
3824 ret = 0;
3825 unlock:
3826 unlock_page_cgroup(pc);
3827 /*
3828 * check events
3829 */
3830 memcg_check_events(to, page);
3831 memcg_check_events(from, page);
3832 out:
3833 return ret;
3834 }
3835
3836 /**
3837 * mem_cgroup_move_parent - moves page to the parent group
3838 * @page: the page to move
3839 * @pc: page_cgroup of the page
3840 * @child: page's cgroup
3841 *
3842 * move charges to its parent or the root cgroup if the group has no
3843 * parent (aka use_hierarchy==0).
3844 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3845 * mem_cgroup_move_account fails) the failure is always temporary and
3846 * it signals a race with a page removal/uncharge or migration. In the
3847 * first case the page is on the way out and it will vanish from the LRU
3848 * on the next attempt and the call should be retried later.
3849 * Isolation from the LRU fails only if page has been isolated from
3850 * the LRU since we looked at it and that usually means either global
3851 * reclaim or migration going on. The page will either get back to the
3852 * LRU or vanish.
3853 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3854 * (!PageCgroupUsed) or moved to a different group. The page will
3855 * disappear in the next attempt.
3856 */
3857 static int mem_cgroup_move_parent(struct page *page,
3858 struct page_cgroup *pc,
3859 struct mem_cgroup *child)
3860 {
3861 struct mem_cgroup *parent;
3862 unsigned int nr_pages;
3863 unsigned long uninitialized_var(flags);
3864 int ret;
3865
3866 VM_BUG_ON(mem_cgroup_is_root(child));
3867
3868 ret = -EBUSY;
3869 if (!get_page_unless_zero(page))
3870 goto out;
3871 if (isolate_lru_page(page))
3872 goto put;
3873
3874 nr_pages = hpage_nr_pages(page);
3875
3876 parent = parent_mem_cgroup(child);
3877 /*
3878 * If no parent, move charges to root cgroup.
3879 */
3880 if (!parent)
3881 parent = root_mem_cgroup;
3882
3883 if (nr_pages > 1) {
3884 VM_BUG_ON(!PageTransHuge(page));
3885 flags = compound_lock_irqsave(page);
3886 }
3887
3888 ret = mem_cgroup_move_account(page, nr_pages,
3889 pc, child, parent);
3890 if (!ret)
3891 __mem_cgroup_cancel_local_charge(child, nr_pages);
3892
3893 if (nr_pages > 1)
3894 compound_unlock_irqrestore(page, flags);
3895 putback_lru_page(page);
3896 put:
3897 put_page(page);
3898 out:
3899 return ret;
3900 }
3901
3902 /*
3903 * Charge the memory controller for page usage.
3904 * Return
3905 * 0 if the charge was successful
3906 * < 0 if the cgroup is over its limit
3907 */
3908 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3909 gfp_t gfp_mask, enum charge_type ctype)
3910 {
3911 struct mem_cgroup *memcg = NULL;
3912 unsigned int nr_pages = 1;
3913 bool oom = true;
3914 int ret;
3915
3916 if (PageTransHuge(page)) {
3917 nr_pages <<= compound_order(page);
3918 VM_BUG_ON(!PageTransHuge(page));
3919 /*
3920 * Never OOM-kill a process for a huge page. The
3921 * fault handler will fall back to regular pages.
3922 */
3923 oom = false;
3924 }
3925
3926 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3927 if (ret == -ENOMEM)
3928 return ret;
3929 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3930 return 0;
3931 }
3932
3933 int mem_cgroup_newpage_charge(struct page *page,
3934 struct mm_struct *mm, gfp_t gfp_mask)
3935 {
3936 if (mem_cgroup_disabled())
3937 return 0;
3938 VM_BUG_ON(page_mapped(page));
3939 VM_BUG_ON(page->mapping && !PageAnon(page));
3940 VM_BUG_ON(!mm);
3941 return mem_cgroup_charge_common(page, mm, gfp_mask,
3942 MEM_CGROUP_CHARGE_TYPE_ANON);
3943 }
3944
3945 /*
3946 * While swap-in, try_charge -> commit or cancel, the page is locked.
3947 * And when try_charge() successfully returns, one refcnt to memcg without
3948 * struct page_cgroup is acquired. This refcnt will be consumed by
3949 * "commit()" or removed by "cancel()"
3950 */
3951 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3952 struct page *page,
3953 gfp_t mask,
3954 struct mem_cgroup **memcgp)
3955 {
3956 struct mem_cgroup *memcg;
3957 struct page_cgroup *pc;
3958 int ret;
3959
3960 pc = lookup_page_cgroup(page);
3961 /*
3962 * Every swap fault against a single page tries to charge the
3963 * page, bail as early as possible. shmem_unuse() encounters
3964 * already charged pages, too. The USED bit is protected by
3965 * the page lock, which serializes swap cache removal, which
3966 * in turn serializes uncharging.
3967 */
3968 if (PageCgroupUsed(pc))
3969 return 0;
3970 if (!do_swap_account)
3971 goto charge_cur_mm;
3972 memcg = try_get_mem_cgroup_from_page(page);
3973 if (!memcg)
3974 goto charge_cur_mm;
3975 *memcgp = memcg;
3976 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3977 css_put(&memcg->css);
3978 if (ret == -EINTR)
3979 ret = 0;
3980 return ret;
3981 charge_cur_mm:
3982 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3983 if (ret == -EINTR)
3984 ret = 0;
3985 return ret;
3986 }
3987
3988 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3989 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3990 {
3991 *memcgp = NULL;
3992 if (mem_cgroup_disabled())
3993 return 0;
3994 /*
3995 * A racing thread's fault, or swapoff, may have already
3996 * updated the pte, and even removed page from swap cache: in
3997 * those cases unuse_pte()'s pte_same() test will fail; but
3998 * there's also a KSM case which does need to charge the page.
3999 */
4000 if (!PageSwapCache(page)) {
4001 int ret;
4002
4003 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4004 if (ret == -EINTR)
4005 ret = 0;
4006 return ret;
4007 }
4008 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4009 }
4010
4011 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4012 {
4013 if (mem_cgroup_disabled())
4014 return;
4015 if (!memcg)
4016 return;
4017 __mem_cgroup_cancel_charge(memcg, 1);
4018 }
4019
4020 static void
4021 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
4022 enum charge_type ctype)
4023 {
4024 if (mem_cgroup_disabled())
4025 return;
4026 if (!memcg)
4027 return;
4028
4029 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4030 /*
4031 * Now swap is on-memory. This means this page may be
4032 * counted both as mem and swap....double count.
4033 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4034 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4035 * may call delete_from_swap_cache() before reach here.
4036 */
4037 if (do_swap_account && PageSwapCache(page)) {
4038 swp_entry_t ent = {.val = page_private(page)};
4039 mem_cgroup_uncharge_swap(ent);
4040 }
4041 }
4042
4043 void mem_cgroup_commit_charge_swapin(struct page *page,
4044 struct mem_cgroup *memcg)
4045 {
4046 __mem_cgroup_commit_charge_swapin(page, memcg,
4047 MEM_CGROUP_CHARGE_TYPE_ANON);
4048 }
4049
4050 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4051 gfp_t gfp_mask)
4052 {
4053 struct mem_cgroup *memcg = NULL;
4054 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4055 int ret;
4056
4057 if (mem_cgroup_disabled())
4058 return 0;
4059 if (PageCompound(page))
4060 return 0;
4061
4062 if (!PageSwapCache(page))
4063 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4064 else { /* page is swapcache/shmem */
4065 ret = __mem_cgroup_try_charge_swapin(mm, page,
4066 gfp_mask, &memcg);
4067 if (!ret)
4068 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4069 }
4070 return ret;
4071 }
4072
4073 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4074 unsigned int nr_pages,
4075 const enum charge_type ctype)
4076 {
4077 struct memcg_batch_info *batch = NULL;
4078 bool uncharge_memsw = true;
4079
4080 /* If swapout, usage of swap doesn't decrease */
4081 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4082 uncharge_memsw = false;
4083
4084 batch = &current->memcg_batch;
4085 /*
4086 * In usual, we do css_get() when we remember memcg pointer.
4087 * But in this case, we keep res->usage until end of a series of
4088 * uncharges. Then, it's ok to ignore memcg's refcnt.
4089 */
4090 if (!batch->memcg)
4091 batch->memcg = memcg;
4092 /*
4093 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4094 * In those cases, all pages freed continuously can be expected to be in
4095 * the same cgroup and we have chance to coalesce uncharges.
4096 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4097 * because we want to do uncharge as soon as possible.
4098 */
4099
4100 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4101 goto direct_uncharge;
4102
4103 if (nr_pages > 1)
4104 goto direct_uncharge;
4105
4106 /*
4107 * In typical case, batch->memcg == mem. This means we can
4108 * merge a series of uncharges to an uncharge of res_counter.
4109 * If not, we uncharge res_counter ony by one.
4110 */
4111 if (batch->memcg != memcg)
4112 goto direct_uncharge;
4113 /* remember freed charge and uncharge it later */
4114 batch->nr_pages++;
4115 if (uncharge_memsw)
4116 batch->memsw_nr_pages++;
4117 return;
4118 direct_uncharge:
4119 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4120 if (uncharge_memsw)
4121 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4122 if (unlikely(batch->memcg != memcg))
4123 memcg_oom_recover(memcg);
4124 }
4125
4126 /*
4127 * uncharge if !page_mapped(page)
4128 */
4129 static struct mem_cgroup *
4130 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4131 bool end_migration)
4132 {
4133 struct mem_cgroup *memcg = NULL;
4134 unsigned int nr_pages = 1;
4135 struct page_cgroup *pc;
4136 bool anon;
4137
4138 if (mem_cgroup_disabled())
4139 return NULL;
4140
4141 if (PageTransHuge(page)) {
4142 nr_pages <<= compound_order(page);
4143 VM_BUG_ON(!PageTransHuge(page));
4144 }
4145 /*
4146 * Check if our page_cgroup is valid
4147 */
4148 pc = lookup_page_cgroup(page);
4149 if (unlikely(!PageCgroupUsed(pc)))
4150 return NULL;
4151
4152 lock_page_cgroup(pc);
4153
4154 memcg = pc->mem_cgroup;
4155
4156 if (!PageCgroupUsed(pc))
4157 goto unlock_out;
4158
4159 anon = PageAnon(page);
4160
4161 switch (ctype) {
4162 case MEM_CGROUP_CHARGE_TYPE_ANON:
4163 /*
4164 * Generally PageAnon tells if it's the anon statistics to be
4165 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4166 * used before page reached the stage of being marked PageAnon.
4167 */
4168 anon = true;
4169 /* fallthrough */
4170 case MEM_CGROUP_CHARGE_TYPE_DROP:
4171 /* See mem_cgroup_prepare_migration() */
4172 if (page_mapped(page))
4173 goto unlock_out;
4174 /*
4175 * Pages under migration may not be uncharged. But
4176 * end_migration() /must/ be the one uncharging the
4177 * unused post-migration page and so it has to call
4178 * here with the migration bit still set. See the
4179 * res_counter handling below.
4180 */
4181 if (!end_migration && PageCgroupMigration(pc))
4182 goto unlock_out;
4183 break;
4184 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4185 if (!PageAnon(page)) { /* Shared memory */
4186 if (page->mapping && !page_is_file_cache(page))
4187 goto unlock_out;
4188 } else if (page_mapped(page)) /* Anon */
4189 goto unlock_out;
4190 break;
4191 default:
4192 break;
4193 }
4194
4195 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4196
4197 ClearPageCgroupUsed(pc);
4198 /*
4199 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4200 * freed from LRU. This is safe because uncharged page is expected not
4201 * to be reused (freed soon). Exception is SwapCache, it's handled by
4202 * special functions.
4203 */
4204
4205 unlock_page_cgroup(pc);
4206 /*
4207 * even after unlock, we have memcg->res.usage here and this memcg
4208 * will never be freed, so it's safe to call css_get().
4209 */
4210 memcg_check_events(memcg, page);
4211 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4212 mem_cgroup_swap_statistics(memcg, true);
4213 css_get(&memcg->css);
4214 }
4215 /*
4216 * Migration does not charge the res_counter for the
4217 * replacement page, so leave it alone when phasing out the
4218 * page that is unused after the migration.
4219 */
4220 if (!end_migration && !mem_cgroup_is_root(memcg))
4221 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4222
4223 return memcg;
4224
4225 unlock_out:
4226 unlock_page_cgroup(pc);
4227 return NULL;
4228 }
4229
4230 void mem_cgroup_uncharge_page(struct page *page)
4231 {
4232 /* early check. */
4233 if (page_mapped(page))
4234 return;
4235 VM_BUG_ON(page->mapping && !PageAnon(page));
4236 /*
4237 * If the page is in swap cache, uncharge should be deferred
4238 * to the swap path, which also properly accounts swap usage
4239 * and handles memcg lifetime.
4240 *
4241 * Note that this check is not stable and reclaim may add the
4242 * page to swap cache at any time after this. However, if the
4243 * page is not in swap cache by the time page->mapcount hits
4244 * 0, there won't be any page table references to the swap
4245 * slot, and reclaim will free it and not actually write the
4246 * page to disk.
4247 */
4248 if (PageSwapCache(page))
4249 return;
4250 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4251 }
4252
4253 void mem_cgroup_uncharge_cache_page(struct page *page)
4254 {
4255 VM_BUG_ON(page_mapped(page));
4256 VM_BUG_ON(page->mapping);
4257 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4258 }
4259
4260 /*
4261 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4262 * In that cases, pages are freed continuously and we can expect pages
4263 * are in the same memcg. All these calls itself limits the number of
4264 * pages freed at once, then uncharge_start/end() is called properly.
4265 * This may be called prural(2) times in a context,
4266 */
4267
4268 void mem_cgroup_uncharge_start(void)
4269 {
4270 current->memcg_batch.do_batch++;
4271 /* We can do nest. */
4272 if (current->memcg_batch.do_batch == 1) {
4273 current->memcg_batch.memcg = NULL;
4274 current->memcg_batch.nr_pages = 0;
4275 current->memcg_batch.memsw_nr_pages = 0;
4276 }
4277 }
4278
4279 void mem_cgroup_uncharge_end(void)
4280 {
4281 struct memcg_batch_info *batch = &current->memcg_batch;
4282
4283 if (!batch->do_batch)
4284 return;
4285
4286 batch->do_batch--;
4287 if (batch->do_batch) /* If stacked, do nothing. */
4288 return;
4289
4290 if (!batch->memcg)
4291 return;
4292 /*
4293 * This "batch->memcg" is valid without any css_get/put etc...
4294 * bacause we hide charges behind us.
4295 */
4296 if (batch->nr_pages)
4297 res_counter_uncharge(&batch->memcg->res,
4298 batch->nr_pages * PAGE_SIZE);
4299 if (batch->memsw_nr_pages)
4300 res_counter_uncharge(&batch->memcg->memsw,
4301 batch->memsw_nr_pages * PAGE_SIZE);
4302 memcg_oom_recover(batch->memcg);
4303 /* forget this pointer (for sanity check) */
4304 batch->memcg = NULL;
4305 }
4306
4307 #ifdef CONFIG_SWAP
4308 /*
4309 * called after __delete_from_swap_cache() and drop "page" account.
4310 * memcg information is recorded to swap_cgroup of "ent"
4311 */
4312 void
4313 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4314 {
4315 struct mem_cgroup *memcg;
4316 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4317
4318 if (!swapout) /* this was a swap cache but the swap is unused ! */
4319 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4320
4321 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4322
4323 /*
4324 * record memcg information, if swapout && memcg != NULL,
4325 * css_get() was called in uncharge().
4326 */
4327 if (do_swap_account && swapout && memcg)
4328 swap_cgroup_record(ent, css_id(&memcg->css));
4329 }
4330 #endif
4331
4332 #ifdef CONFIG_MEMCG_SWAP
4333 /*
4334 * called from swap_entry_free(). remove record in swap_cgroup and
4335 * uncharge "memsw" account.
4336 */
4337 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4338 {
4339 struct mem_cgroup *memcg;
4340 unsigned short id;
4341
4342 if (!do_swap_account)
4343 return;
4344
4345 id = swap_cgroup_record(ent, 0);
4346 rcu_read_lock();
4347 memcg = mem_cgroup_lookup(id);
4348 if (memcg) {
4349 /*
4350 * We uncharge this because swap is freed.
4351 * This memcg can be obsolete one. We avoid calling css_tryget
4352 */
4353 if (!mem_cgroup_is_root(memcg))
4354 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4355 mem_cgroup_swap_statistics(memcg, false);
4356 css_put(&memcg->css);
4357 }
4358 rcu_read_unlock();
4359 }
4360
4361 /**
4362 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4363 * @entry: swap entry to be moved
4364 * @from: mem_cgroup which the entry is moved from
4365 * @to: mem_cgroup which the entry is moved to
4366 *
4367 * It succeeds only when the swap_cgroup's record for this entry is the same
4368 * as the mem_cgroup's id of @from.
4369 *
4370 * Returns 0 on success, -EINVAL on failure.
4371 *
4372 * The caller must have charged to @to, IOW, called res_counter_charge() about
4373 * both res and memsw, and called css_get().
4374 */
4375 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4376 struct mem_cgroup *from, struct mem_cgroup *to)
4377 {
4378 unsigned short old_id, new_id;
4379
4380 old_id = css_id(&from->css);
4381 new_id = css_id(&to->css);
4382
4383 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4384 mem_cgroup_swap_statistics(from, false);
4385 mem_cgroup_swap_statistics(to, true);
4386 /*
4387 * This function is only called from task migration context now.
4388 * It postpones res_counter and refcount handling till the end
4389 * of task migration(mem_cgroup_clear_mc()) for performance
4390 * improvement. But we cannot postpone css_get(to) because if
4391 * the process that has been moved to @to does swap-in, the
4392 * refcount of @to might be decreased to 0.
4393 *
4394 * We are in attach() phase, so the cgroup is guaranteed to be
4395 * alive, so we can just call css_get().
4396 */
4397 css_get(&to->css);
4398 return 0;
4399 }
4400 return -EINVAL;
4401 }
4402 #else
4403 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4404 struct mem_cgroup *from, struct mem_cgroup *to)
4405 {
4406 return -EINVAL;
4407 }
4408 #endif
4409
4410 /*
4411 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4412 * page belongs to.
4413 */
4414 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4415 struct mem_cgroup **memcgp)
4416 {
4417 struct mem_cgroup *memcg = NULL;
4418 unsigned int nr_pages = 1;
4419 struct page_cgroup *pc;
4420 enum charge_type ctype;
4421
4422 *memcgp = NULL;
4423
4424 if (mem_cgroup_disabled())
4425 return;
4426
4427 if (PageTransHuge(page))
4428 nr_pages <<= compound_order(page);
4429
4430 pc = lookup_page_cgroup(page);
4431 lock_page_cgroup(pc);
4432 if (PageCgroupUsed(pc)) {
4433 memcg = pc->mem_cgroup;
4434 css_get(&memcg->css);
4435 /*
4436 * At migrating an anonymous page, its mapcount goes down
4437 * to 0 and uncharge() will be called. But, even if it's fully
4438 * unmapped, migration may fail and this page has to be
4439 * charged again. We set MIGRATION flag here and delay uncharge
4440 * until end_migration() is called
4441 *
4442 * Corner Case Thinking
4443 * A)
4444 * When the old page was mapped as Anon and it's unmap-and-freed
4445 * while migration was ongoing.
4446 * If unmap finds the old page, uncharge() of it will be delayed
4447 * until end_migration(). If unmap finds a new page, it's
4448 * uncharged when it make mapcount to be 1->0. If unmap code
4449 * finds swap_migration_entry, the new page will not be mapped
4450 * and end_migration() will find it(mapcount==0).
4451 *
4452 * B)
4453 * When the old page was mapped but migraion fails, the kernel
4454 * remaps it. A charge for it is kept by MIGRATION flag even
4455 * if mapcount goes down to 0. We can do remap successfully
4456 * without charging it again.
4457 *
4458 * C)
4459 * The "old" page is under lock_page() until the end of
4460 * migration, so, the old page itself will not be swapped-out.
4461 * If the new page is swapped out before end_migraton, our
4462 * hook to usual swap-out path will catch the event.
4463 */
4464 if (PageAnon(page))
4465 SetPageCgroupMigration(pc);
4466 }
4467 unlock_page_cgroup(pc);
4468 /*
4469 * If the page is not charged at this point,
4470 * we return here.
4471 */
4472 if (!memcg)
4473 return;
4474
4475 *memcgp = memcg;
4476 /*
4477 * We charge new page before it's used/mapped. So, even if unlock_page()
4478 * is called before end_migration, we can catch all events on this new
4479 * page. In the case new page is migrated but not remapped, new page's
4480 * mapcount will be finally 0 and we call uncharge in end_migration().
4481 */
4482 if (PageAnon(page))
4483 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4484 else
4485 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4486 /*
4487 * The page is committed to the memcg, but it's not actually
4488 * charged to the res_counter since we plan on replacing the
4489 * old one and only one page is going to be left afterwards.
4490 */
4491 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4492 }
4493
4494 /* remove redundant charge if migration failed*/
4495 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4496 struct page *oldpage, struct page *newpage, bool migration_ok)
4497 {
4498 struct page *used, *unused;
4499 struct page_cgroup *pc;
4500 bool anon;
4501
4502 if (!memcg)
4503 return;
4504
4505 if (!migration_ok) {
4506 used = oldpage;
4507 unused = newpage;
4508 } else {
4509 used = newpage;
4510 unused = oldpage;
4511 }
4512 anon = PageAnon(used);
4513 __mem_cgroup_uncharge_common(unused,
4514 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4515 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4516 true);
4517 css_put(&memcg->css);
4518 /*
4519 * We disallowed uncharge of pages under migration because mapcount
4520 * of the page goes down to zero, temporarly.
4521 * Clear the flag and check the page should be charged.
4522 */
4523 pc = lookup_page_cgroup(oldpage);
4524 lock_page_cgroup(pc);
4525 ClearPageCgroupMigration(pc);
4526 unlock_page_cgroup(pc);
4527
4528 /*
4529 * If a page is a file cache, radix-tree replacement is very atomic
4530 * and we can skip this check. When it was an Anon page, its mapcount
4531 * goes down to 0. But because we added MIGRATION flage, it's not
4532 * uncharged yet. There are several case but page->mapcount check
4533 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4534 * check. (see prepare_charge() also)
4535 */
4536 if (anon)
4537 mem_cgroup_uncharge_page(used);
4538 }
4539
4540 /*
4541 * At replace page cache, newpage is not under any memcg but it's on
4542 * LRU. So, this function doesn't touch res_counter but handles LRU
4543 * in correct way. Both pages are locked so we cannot race with uncharge.
4544 */
4545 void mem_cgroup_replace_page_cache(struct page *oldpage,
4546 struct page *newpage)
4547 {
4548 struct mem_cgroup *memcg = NULL;
4549 struct page_cgroup *pc;
4550 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4551
4552 if (mem_cgroup_disabled())
4553 return;
4554
4555 pc = lookup_page_cgroup(oldpage);
4556 /* fix accounting on old pages */
4557 lock_page_cgroup(pc);
4558 if (PageCgroupUsed(pc)) {
4559 memcg = pc->mem_cgroup;
4560 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4561 ClearPageCgroupUsed(pc);
4562 }
4563 unlock_page_cgroup(pc);
4564
4565 /*
4566 * When called from shmem_replace_page(), in some cases the
4567 * oldpage has already been charged, and in some cases not.
4568 */
4569 if (!memcg)
4570 return;
4571 /*
4572 * Even if newpage->mapping was NULL before starting replacement,
4573 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4574 * LRU while we overwrite pc->mem_cgroup.
4575 */
4576 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4577 }
4578
4579 #ifdef CONFIG_DEBUG_VM
4580 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4581 {
4582 struct page_cgroup *pc;
4583
4584 pc = lookup_page_cgroup(page);
4585 /*
4586 * Can be NULL while feeding pages into the page allocator for
4587 * the first time, i.e. during boot or memory hotplug;
4588 * or when mem_cgroup_disabled().
4589 */
4590 if (likely(pc) && PageCgroupUsed(pc))
4591 return pc;
4592 return NULL;
4593 }
4594
4595 bool mem_cgroup_bad_page_check(struct page *page)
4596 {
4597 if (mem_cgroup_disabled())
4598 return false;
4599
4600 return lookup_page_cgroup_used(page) != NULL;
4601 }
4602
4603 void mem_cgroup_print_bad_page(struct page *page)
4604 {
4605 struct page_cgroup *pc;
4606
4607 pc = lookup_page_cgroup_used(page);
4608 if (pc) {
4609 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4610 pc, pc->flags, pc->mem_cgroup);
4611 }
4612 }
4613 #endif
4614
4615 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4616 unsigned long long val)
4617 {
4618 int retry_count;
4619 u64 memswlimit, memlimit;
4620 int ret = 0;
4621 int children = mem_cgroup_count_children(memcg);
4622 u64 curusage, oldusage;
4623 int enlarge;
4624
4625 /*
4626 * For keeping hierarchical_reclaim simple, how long we should retry
4627 * is depends on callers. We set our retry-count to be function
4628 * of # of children which we should visit in this loop.
4629 */
4630 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4631
4632 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4633
4634 enlarge = 0;
4635 while (retry_count) {
4636 if (signal_pending(current)) {
4637 ret = -EINTR;
4638 break;
4639 }
4640 /*
4641 * Rather than hide all in some function, I do this in
4642 * open coded manner. You see what this really does.
4643 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4644 */
4645 mutex_lock(&set_limit_mutex);
4646 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4647 if (memswlimit < val) {
4648 ret = -EINVAL;
4649 mutex_unlock(&set_limit_mutex);
4650 break;
4651 }
4652
4653 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4654 if (memlimit < val)
4655 enlarge = 1;
4656
4657 ret = res_counter_set_limit(&memcg->res, val);
4658 if (!ret) {
4659 if (memswlimit == val)
4660 memcg->memsw_is_minimum = true;
4661 else
4662 memcg->memsw_is_minimum = false;
4663 }
4664 mutex_unlock(&set_limit_mutex);
4665
4666 if (!ret)
4667 break;
4668
4669 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4670 MEM_CGROUP_RECLAIM_SHRINK);
4671 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4672 /* Usage is reduced ? */
4673 if (curusage >= oldusage)
4674 retry_count--;
4675 else
4676 oldusage = curusage;
4677 }
4678 if (!ret && enlarge)
4679 memcg_oom_recover(memcg);
4680
4681 return ret;
4682 }
4683
4684 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4685 unsigned long long val)
4686 {
4687 int retry_count;
4688 u64 memlimit, memswlimit, oldusage, curusage;
4689 int children = mem_cgroup_count_children(memcg);
4690 int ret = -EBUSY;
4691 int enlarge = 0;
4692
4693 /* see mem_cgroup_resize_res_limit */
4694 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4695 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4696 while (retry_count) {
4697 if (signal_pending(current)) {
4698 ret = -EINTR;
4699 break;
4700 }
4701 /*
4702 * Rather than hide all in some function, I do this in
4703 * open coded manner. You see what this really does.
4704 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4705 */
4706 mutex_lock(&set_limit_mutex);
4707 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4708 if (memlimit > val) {
4709 ret = -EINVAL;
4710 mutex_unlock(&set_limit_mutex);
4711 break;
4712 }
4713 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4714 if (memswlimit < val)
4715 enlarge = 1;
4716 ret = res_counter_set_limit(&memcg->memsw, val);
4717 if (!ret) {
4718 if (memlimit == val)
4719 memcg->memsw_is_minimum = true;
4720 else
4721 memcg->memsw_is_minimum = false;
4722 }
4723 mutex_unlock(&set_limit_mutex);
4724
4725 if (!ret)
4726 break;
4727
4728 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4729 MEM_CGROUP_RECLAIM_NOSWAP |
4730 MEM_CGROUP_RECLAIM_SHRINK);
4731 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4732 /* Usage is reduced ? */
4733 if (curusage >= oldusage)
4734 retry_count--;
4735 else
4736 oldusage = curusage;
4737 }
4738 if (!ret && enlarge)
4739 memcg_oom_recover(memcg);
4740 return ret;
4741 }
4742
4743 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4744 gfp_t gfp_mask,
4745 unsigned long *total_scanned)
4746 {
4747 unsigned long nr_reclaimed = 0;
4748 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4749 unsigned long reclaimed;
4750 int loop = 0;
4751 struct mem_cgroup_tree_per_zone *mctz;
4752 unsigned long long excess;
4753 unsigned long nr_scanned;
4754
4755 if (order > 0)
4756 return 0;
4757
4758 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4759 /*
4760 * This loop can run a while, specially if mem_cgroup's continuously
4761 * keep exceeding their soft limit and putting the system under
4762 * pressure
4763 */
4764 do {
4765 if (next_mz)
4766 mz = next_mz;
4767 else
4768 mz = mem_cgroup_largest_soft_limit_node(mctz);
4769 if (!mz)
4770 break;
4771
4772 nr_scanned = 0;
4773 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4774 gfp_mask, &nr_scanned);
4775 nr_reclaimed += reclaimed;
4776 *total_scanned += nr_scanned;
4777 spin_lock(&mctz->lock);
4778
4779 /*
4780 * If we failed to reclaim anything from this memory cgroup
4781 * it is time to move on to the next cgroup
4782 */
4783 next_mz = NULL;
4784 if (!reclaimed) {
4785 do {
4786 /*
4787 * Loop until we find yet another one.
4788 *
4789 * By the time we get the soft_limit lock
4790 * again, someone might have aded the
4791 * group back on the RB tree. Iterate to
4792 * make sure we get a different mem.
4793 * mem_cgroup_largest_soft_limit_node returns
4794 * NULL if no other cgroup is present on
4795 * the tree
4796 */
4797 next_mz =
4798 __mem_cgroup_largest_soft_limit_node(mctz);
4799 if (next_mz == mz)
4800 css_put(&next_mz->memcg->css);
4801 else /* next_mz == NULL or other memcg */
4802 break;
4803 } while (1);
4804 }
4805 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4806 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4807 /*
4808 * One school of thought says that we should not add
4809 * back the node to the tree if reclaim returns 0.
4810 * But our reclaim could return 0, simply because due
4811 * to priority we are exposing a smaller subset of
4812 * memory to reclaim from. Consider this as a longer
4813 * term TODO.
4814 */
4815 /* If excess == 0, no tree ops */
4816 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4817 spin_unlock(&mctz->lock);
4818 css_put(&mz->memcg->css);
4819 loop++;
4820 /*
4821 * Could not reclaim anything and there are no more
4822 * mem cgroups to try or we seem to be looping without
4823 * reclaiming anything.
4824 */
4825 if (!nr_reclaimed &&
4826 (next_mz == NULL ||
4827 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4828 break;
4829 } while (!nr_reclaimed);
4830 if (next_mz)
4831 css_put(&next_mz->memcg->css);
4832 return nr_reclaimed;
4833 }
4834
4835 /**
4836 * mem_cgroup_force_empty_list - clears LRU of a group
4837 * @memcg: group to clear
4838 * @node: NUMA node
4839 * @zid: zone id
4840 * @lru: lru to to clear
4841 *
4842 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4843 * reclaim the pages page themselves - pages are moved to the parent (or root)
4844 * group.
4845 */
4846 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4847 int node, int zid, enum lru_list lru)
4848 {
4849 struct lruvec *lruvec;
4850 unsigned long flags;
4851 struct list_head *list;
4852 struct page *busy;
4853 struct zone *zone;
4854
4855 zone = &NODE_DATA(node)->node_zones[zid];
4856 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4857 list = &lruvec->lists[lru];
4858
4859 busy = NULL;
4860 do {
4861 struct page_cgroup *pc;
4862 struct page *page;
4863
4864 spin_lock_irqsave(&zone->lru_lock, flags);
4865 if (list_empty(list)) {
4866 spin_unlock_irqrestore(&zone->lru_lock, flags);
4867 break;
4868 }
4869 page = list_entry(list->prev, struct page, lru);
4870 if (busy == page) {
4871 list_move(&page->lru, list);
4872 busy = NULL;
4873 spin_unlock_irqrestore(&zone->lru_lock, flags);
4874 continue;
4875 }
4876 spin_unlock_irqrestore(&zone->lru_lock, flags);
4877
4878 pc = lookup_page_cgroup(page);
4879
4880 if (mem_cgroup_move_parent(page, pc, memcg)) {
4881 /* found lock contention or "pc" is obsolete. */
4882 busy = page;
4883 cond_resched();
4884 } else
4885 busy = NULL;
4886 } while (!list_empty(list));
4887 }
4888
4889 /*
4890 * make mem_cgroup's charge to be 0 if there is no task by moving
4891 * all the charges and pages to the parent.
4892 * This enables deleting this mem_cgroup.
4893 *
4894 * Caller is responsible for holding css reference on the memcg.
4895 */
4896 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4897 {
4898 int node, zid;
4899 u64 usage;
4900
4901 do {
4902 /* This is for making all *used* pages to be on LRU. */
4903 lru_add_drain_all();
4904 drain_all_stock_sync(memcg);
4905 mem_cgroup_start_move(memcg);
4906 for_each_node_state(node, N_MEMORY) {
4907 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4908 enum lru_list lru;
4909 for_each_lru(lru) {
4910 mem_cgroup_force_empty_list(memcg,
4911 node, zid, lru);
4912 }
4913 }
4914 }
4915 mem_cgroup_end_move(memcg);
4916 memcg_oom_recover(memcg);
4917 cond_resched();
4918
4919 /*
4920 * Kernel memory may not necessarily be trackable to a specific
4921 * process. So they are not migrated, and therefore we can't
4922 * expect their value to drop to 0 here.
4923 * Having res filled up with kmem only is enough.
4924 *
4925 * This is a safety check because mem_cgroup_force_empty_list
4926 * could have raced with mem_cgroup_replace_page_cache callers
4927 * so the lru seemed empty but the page could have been added
4928 * right after the check. RES_USAGE should be safe as we always
4929 * charge before adding to the LRU.
4930 */
4931 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4932 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4933 } while (usage > 0);
4934 }
4935
4936 /*
4937 * This mainly exists for tests during the setting of set of use_hierarchy.
4938 * Since this is the very setting we are changing, the current hierarchy value
4939 * is meaningless
4940 */
4941 static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4942 {
4943 struct cgroup *pos;
4944
4945 /* bounce at first found */
4946 cgroup_for_each_child(pos, memcg->css.cgroup)
4947 return true;
4948 return false;
4949 }
4950
4951 /*
4952 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4953 * to be already dead (as in mem_cgroup_force_empty, for instance). This is
4954 * from mem_cgroup_count_children(), in the sense that we don't really care how
4955 * many children we have; we only need to know if we have any. It also counts
4956 * any memcg without hierarchy as infertile.
4957 */
4958 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4959 {
4960 return memcg->use_hierarchy && __memcg_has_children(memcg);
4961 }
4962
4963 /*
4964 * Reclaims as many pages from the given memcg as possible and moves
4965 * the rest to the parent.
4966 *
4967 * Caller is responsible for holding css reference for memcg.
4968 */
4969 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4970 {
4971 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4972 struct cgroup *cgrp = memcg->css.cgroup;
4973
4974 /* returns EBUSY if there is a task or if we come here twice. */
4975 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4976 return -EBUSY;
4977
4978 /* we call try-to-free pages for make this cgroup empty */
4979 lru_add_drain_all();
4980 /* try to free all pages in this cgroup */
4981 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4982 int progress;
4983
4984 if (signal_pending(current))
4985 return -EINTR;
4986
4987 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4988 false);
4989 if (!progress) {
4990 nr_retries--;
4991 /* maybe some writeback is necessary */
4992 congestion_wait(BLK_RW_ASYNC, HZ/10);
4993 }
4994
4995 }
4996 lru_add_drain();
4997 mem_cgroup_reparent_charges(memcg);
4998
4999 return 0;
5000 }
5001
5002 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
5003 {
5004 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5005 int ret;
5006
5007 if (mem_cgroup_is_root(memcg))
5008 return -EINVAL;
5009 css_get(&memcg->css);
5010 ret = mem_cgroup_force_empty(memcg);
5011 css_put(&memcg->css);
5012
5013 return ret;
5014 }
5015
5016
5017 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
5018 {
5019 return mem_cgroup_from_cont(cont)->use_hierarchy;
5020 }
5021
5022 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
5023 u64 val)
5024 {
5025 int retval = 0;
5026 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5027 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5028
5029 mutex_lock(&memcg_create_mutex);
5030
5031 if (memcg->use_hierarchy == val)
5032 goto out;
5033
5034 /*
5035 * If parent's use_hierarchy is set, we can't make any modifications
5036 * in the child subtrees. If it is unset, then the change can
5037 * occur, provided the current cgroup has no children.
5038 *
5039 * For the root cgroup, parent_mem is NULL, we allow value to be
5040 * set if there are no children.
5041 */
5042 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5043 (val == 1 || val == 0)) {
5044 if (!__memcg_has_children(memcg))
5045 memcg->use_hierarchy = val;
5046 else
5047 retval = -EBUSY;
5048 } else
5049 retval = -EINVAL;
5050
5051 out:
5052 mutex_unlock(&memcg_create_mutex);
5053
5054 return retval;
5055 }
5056
5057
5058 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5059 enum mem_cgroup_stat_index idx)
5060 {
5061 struct mem_cgroup *iter;
5062 long val = 0;
5063
5064 /* Per-cpu values can be negative, use a signed accumulator */
5065 for_each_mem_cgroup_tree(iter, memcg)
5066 val += mem_cgroup_read_stat(iter, idx);
5067
5068 if (val < 0) /* race ? */
5069 val = 0;
5070 return val;
5071 }
5072
5073 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5074 {
5075 u64 val;
5076
5077 if (!mem_cgroup_is_root(memcg)) {
5078 if (!swap)
5079 return res_counter_read_u64(&memcg->res, RES_USAGE);
5080 else
5081 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5082 }
5083
5084 /*
5085 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5086 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5087 */
5088 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5089 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5090
5091 if (swap)
5092 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5093
5094 return val << PAGE_SHIFT;
5095 }
5096
5097 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
5098 struct file *file, char __user *buf,
5099 size_t nbytes, loff_t *ppos)
5100 {
5101 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5102 char str[64];
5103 u64 val;
5104 int name, len;
5105 enum res_type type;
5106
5107 type = MEMFILE_TYPE(cft->private);
5108 name = MEMFILE_ATTR(cft->private);
5109
5110 switch (type) {
5111 case _MEM:
5112 if (name == RES_USAGE)
5113 val = mem_cgroup_usage(memcg, false);
5114 else
5115 val = res_counter_read_u64(&memcg->res, name);
5116 break;
5117 case _MEMSWAP:
5118 if (name == RES_USAGE)
5119 val = mem_cgroup_usage(memcg, true);
5120 else
5121 val = res_counter_read_u64(&memcg->memsw, name);
5122 break;
5123 case _KMEM:
5124 val = res_counter_read_u64(&memcg->kmem, name);
5125 break;
5126 default:
5127 BUG();
5128 }
5129
5130 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5131 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
5132 }
5133
5134 static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
5135 {
5136 int ret = -EINVAL;
5137 #ifdef CONFIG_MEMCG_KMEM
5138 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5139 /*
5140 * For simplicity, we won't allow this to be disabled. It also can't
5141 * be changed if the cgroup has children already, or if tasks had
5142 * already joined.
5143 *
5144 * If tasks join before we set the limit, a person looking at
5145 * kmem.usage_in_bytes will have no way to determine when it took
5146 * place, which makes the value quite meaningless.
5147 *
5148 * After it first became limited, changes in the value of the limit are
5149 * of course permitted.
5150 */
5151 mutex_lock(&memcg_create_mutex);
5152 mutex_lock(&set_limit_mutex);
5153 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
5154 if (cgroup_task_count(cont) || memcg_has_children(memcg)) {
5155 ret = -EBUSY;
5156 goto out;
5157 }
5158 ret = res_counter_set_limit(&memcg->kmem, val);
5159 VM_BUG_ON(ret);
5160
5161 ret = memcg_update_cache_sizes(memcg);
5162 if (ret) {
5163 res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
5164 goto out;
5165 }
5166 static_key_slow_inc(&memcg_kmem_enabled_key);
5167 /*
5168 * setting the active bit after the inc will guarantee no one
5169 * starts accounting before all call sites are patched
5170 */
5171 memcg_kmem_set_active(memcg);
5172 } else
5173 ret = res_counter_set_limit(&memcg->kmem, val);
5174 out:
5175 mutex_unlock(&set_limit_mutex);
5176 mutex_unlock(&memcg_create_mutex);
5177 #endif
5178 return ret;
5179 }
5180
5181 #ifdef CONFIG_MEMCG_KMEM
5182 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5183 {
5184 int ret = 0;
5185 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5186 if (!parent)
5187 goto out;
5188
5189 memcg->kmem_account_flags = parent->kmem_account_flags;
5190 /*
5191 * When that happen, we need to disable the static branch only on those
5192 * memcgs that enabled it. To achieve this, we would be forced to
5193 * complicate the code by keeping track of which memcgs were the ones
5194 * that actually enabled limits, and which ones got it from its
5195 * parents.
5196 *
5197 * It is a lot simpler just to do static_key_slow_inc() on every child
5198 * that is accounted.
5199 */
5200 if (!memcg_kmem_is_active(memcg))
5201 goto out;
5202
5203 /*
5204 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5205 * memcg is active already. If the later initialization fails then the
5206 * cgroup core triggers the cleanup so we do not have to do it here.
5207 */
5208 static_key_slow_inc(&memcg_kmem_enabled_key);
5209
5210 mutex_lock(&set_limit_mutex);
5211 memcg_stop_kmem_account();
5212 ret = memcg_update_cache_sizes(memcg);
5213 memcg_resume_kmem_account();
5214 mutex_unlock(&set_limit_mutex);
5215 out:
5216 return ret;
5217 }
5218 #endif /* CONFIG_MEMCG_KMEM */
5219
5220 /*
5221 * The user of this function is...
5222 * RES_LIMIT.
5223 */
5224 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
5225 const char *buffer)
5226 {
5227 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5228 enum res_type type;
5229 int name;
5230 unsigned long long val;
5231 int ret;
5232
5233 type = MEMFILE_TYPE(cft->private);
5234 name = MEMFILE_ATTR(cft->private);
5235
5236 switch (name) {
5237 case RES_LIMIT:
5238 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5239 ret = -EINVAL;
5240 break;
5241 }
5242 /* This function does all necessary parse...reuse it */
5243 ret = res_counter_memparse_write_strategy(buffer, &val);
5244 if (ret)
5245 break;
5246 if (type == _MEM)
5247 ret = mem_cgroup_resize_limit(memcg, val);
5248 else if (type == _MEMSWAP)
5249 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5250 else if (type == _KMEM)
5251 ret = memcg_update_kmem_limit(cont, val);
5252 else
5253 return -EINVAL;
5254 break;
5255 case RES_SOFT_LIMIT:
5256 ret = res_counter_memparse_write_strategy(buffer, &val);
5257 if (ret)
5258 break;
5259 /*
5260 * For memsw, soft limits are hard to implement in terms
5261 * of semantics, for now, we support soft limits for
5262 * control without swap
5263 */
5264 if (type == _MEM)
5265 ret = res_counter_set_soft_limit(&memcg->res, val);
5266 else
5267 ret = -EINVAL;
5268 break;
5269 default:
5270 ret = -EINVAL; /* should be BUG() ? */
5271 break;
5272 }
5273 return ret;
5274 }
5275
5276 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5277 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5278 {
5279 unsigned long long min_limit, min_memsw_limit, tmp;
5280
5281 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5282 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5283 if (!memcg->use_hierarchy)
5284 goto out;
5285
5286 while (css_parent(&memcg->css)) {
5287 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5288 if (!memcg->use_hierarchy)
5289 break;
5290 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5291 min_limit = min(min_limit, tmp);
5292 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5293 min_memsw_limit = min(min_memsw_limit, tmp);
5294 }
5295 out:
5296 *mem_limit = min_limit;
5297 *memsw_limit = min_memsw_limit;
5298 }
5299
5300 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
5301 {
5302 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5303 int name;
5304 enum res_type type;
5305
5306 type = MEMFILE_TYPE(event);
5307 name = MEMFILE_ATTR(event);
5308
5309 switch (name) {
5310 case RES_MAX_USAGE:
5311 if (type == _MEM)
5312 res_counter_reset_max(&memcg->res);
5313 else if (type == _MEMSWAP)
5314 res_counter_reset_max(&memcg->memsw);
5315 else if (type == _KMEM)
5316 res_counter_reset_max(&memcg->kmem);
5317 else
5318 return -EINVAL;
5319 break;
5320 case RES_FAILCNT:
5321 if (type == _MEM)
5322 res_counter_reset_failcnt(&memcg->res);
5323 else if (type == _MEMSWAP)
5324 res_counter_reset_failcnt(&memcg->memsw);
5325 else if (type == _KMEM)
5326 res_counter_reset_failcnt(&memcg->kmem);
5327 else
5328 return -EINVAL;
5329 break;
5330 }
5331
5332 return 0;
5333 }
5334
5335 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
5336 struct cftype *cft)
5337 {
5338 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
5339 }
5340
5341 #ifdef CONFIG_MMU
5342 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5343 struct cftype *cft, u64 val)
5344 {
5345 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5346
5347 if (val >= (1 << NR_MOVE_TYPE))
5348 return -EINVAL;
5349
5350 /*
5351 * No kind of locking is needed in here, because ->can_attach() will
5352 * check this value once in the beginning of the process, and then carry
5353 * on with stale data. This means that changes to this value will only
5354 * affect task migrations starting after the change.
5355 */
5356 memcg->move_charge_at_immigrate = val;
5357 return 0;
5358 }
5359 #else
5360 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5361 struct cftype *cft, u64 val)
5362 {
5363 return -ENOSYS;
5364 }
5365 #endif
5366
5367 #ifdef CONFIG_NUMA
5368 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
5369 struct seq_file *m)
5370 {
5371 int nid;
5372 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5373 unsigned long node_nr;
5374 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5375
5376 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5377 seq_printf(m, "total=%lu", total_nr);
5378 for_each_node_state(nid, N_MEMORY) {
5379 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5380 seq_printf(m, " N%d=%lu", nid, node_nr);
5381 }
5382 seq_putc(m, '\n');
5383
5384 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5385 seq_printf(m, "file=%lu", file_nr);
5386 for_each_node_state(nid, N_MEMORY) {
5387 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5388 LRU_ALL_FILE);
5389 seq_printf(m, " N%d=%lu", nid, node_nr);
5390 }
5391 seq_putc(m, '\n');
5392
5393 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5394 seq_printf(m, "anon=%lu", anon_nr);
5395 for_each_node_state(nid, N_MEMORY) {
5396 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5397 LRU_ALL_ANON);
5398 seq_printf(m, " N%d=%lu", nid, node_nr);
5399 }
5400 seq_putc(m, '\n');
5401
5402 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5403 seq_printf(m, "unevictable=%lu", unevictable_nr);
5404 for_each_node_state(nid, N_MEMORY) {
5405 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5406 BIT(LRU_UNEVICTABLE));
5407 seq_printf(m, " N%d=%lu", nid, node_nr);
5408 }
5409 seq_putc(m, '\n');
5410 return 0;
5411 }
5412 #endif /* CONFIG_NUMA */
5413
5414 static inline void mem_cgroup_lru_names_not_uptodate(void)
5415 {
5416 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5417 }
5418
5419 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
5420 struct seq_file *m)
5421 {
5422 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5423 struct mem_cgroup *mi;
5424 unsigned int i;
5425
5426 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5427 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5428 continue;
5429 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5430 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5431 }
5432
5433 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5434 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5435 mem_cgroup_read_events(memcg, i));
5436
5437 for (i = 0; i < NR_LRU_LISTS; i++)
5438 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5439 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5440
5441 /* Hierarchical information */
5442 {
5443 unsigned long long limit, memsw_limit;
5444 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5445 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5446 if (do_swap_account)
5447 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5448 memsw_limit);
5449 }
5450
5451 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5452 long long val = 0;
5453
5454 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5455 continue;
5456 for_each_mem_cgroup_tree(mi, memcg)
5457 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5458 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5459 }
5460
5461 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5462 unsigned long long val = 0;
5463
5464 for_each_mem_cgroup_tree(mi, memcg)
5465 val += mem_cgroup_read_events(mi, i);
5466 seq_printf(m, "total_%s %llu\n",
5467 mem_cgroup_events_names[i], val);
5468 }
5469
5470 for (i = 0; i < NR_LRU_LISTS; i++) {
5471 unsigned long long val = 0;
5472
5473 for_each_mem_cgroup_tree(mi, memcg)
5474 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5475 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5476 }
5477
5478 #ifdef CONFIG_DEBUG_VM
5479 {
5480 int nid, zid;
5481 struct mem_cgroup_per_zone *mz;
5482 struct zone_reclaim_stat *rstat;
5483 unsigned long recent_rotated[2] = {0, 0};
5484 unsigned long recent_scanned[2] = {0, 0};
5485
5486 for_each_online_node(nid)
5487 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5488 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5489 rstat = &mz->lruvec.reclaim_stat;
5490
5491 recent_rotated[0] += rstat->recent_rotated[0];
5492 recent_rotated[1] += rstat->recent_rotated[1];
5493 recent_scanned[0] += rstat->recent_scanned[0];
5494 recent_scanned[1] += rstat->recent_scanned[1];
5495 }
5496 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5497 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5498 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5499 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5500 }
5501 #endif
5502
5503 return 0;
5504 }
5505
5506 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
5507 {
5508 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5509
5510 return mem_cgroup_swappiness(memcg);
5511 }
5512
5513 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
5514 u64 val)
5515 {
5516 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5517 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5518
5519 if (val > 100 || !parent)
5520 return -EINVAL;
5521
5522 mutex_lock(&memcg_create_mutex);
5523
5524 /* If under hierarchy, only empty-root can set this value */
5525 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5526 mutex_unlock(&memcg_create_mutex);
5527 return -EINVAL;
5528 }
5529
5530 memcg->swappiness = val;
5531
5532 mutex_unlock(&memcg_create_mutex);
5533
5534 return 0;
5535 }
5536
5537 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5538 {
5539 struct mem_cgroup_threshold_ary *t;
5540 u64 usage;
5541 int i;
5542
5543 rcu_read_lock();
5544 if (!swap)
5545 t = rcu_dereference(memcg->thresholds.primary);
5546 else
5547 t = rcu_dereference(memcg->memsw_thresholds.primary);
5548
5549 if (!t)
5550 goto unlock;
5551
5552 usage = mem_cgroup_usage(memcg, swap);
5553
5554 /*
5555 * current_threshold points to threshold just below or equal to usage.
5556 * If it's not true, a threshold was crossed after last
5557 * call of __mem_cgroup_threshold().
5558 */
5559 i = t->current_threshold;
5560
5561 /*
5562 * Iterate backward over array of thresholds starting from
5563 * current_threshold and check if a threshold is crossed.
5564 * If none of thresholds below usage is crossed, we read
5565 * only one element of the array here.
5566 */
5567 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5568 eventfd_signal(t->entries[i].eventfd, 1);
5569
5570 /* i = current_threshold + 1 */
5571 i++;
5572
5573 /*
5574 * Iterate forward over array of thresholds starting from
5575 * current_threshold+1 and check if a threshold is crossed.
5576 * If none of thresholds above usage is crossed, we read
5577 * only one element of the array here.
5578 */
5579 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5580 eventfd_signal(t->entries[i].eventfd, 1);
5581
5582 /* Update current_threshold */
5583 t->current_threshold = i - 1;
5584 unlock:
5585 rcu_read_unlock();
5586 }
5587
5588 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5589 {
5590 while (memcg) {
5591 __mem_cgroup_threshold(memcg, false);
5592 if (do_swap_account)
5593 __mem_cgroup_threshold(memcg, true);
5594
5595 memcg = parent_mem_cgroup(memcg);
5596 }
5597 }
5598
5599 static int compare_thresholds(const void *a, const void *b)
5600 {
5601 const struct mem_cgroup_threshold *_a = a;
5602 const struct mem_cgroup_threshold *_b = b;
5603
5604 return _a->threshold - _b->threshold;
5605 }
5606
5607 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5608 {
5609 struct mem_cgroup_eventfd_list *ev;
5610
5611 list_for_each_entry(ev, &memcg->oom_notify, list)
5612 eventfd_signal(ev->eventfd, 1);
5613 return 0;
5614 }
5615
5616 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5617 {
5618 struct mem_cgroup *iter;
5619
5620 for_each_mem_cgroup_tree(iter, memcg)
5621 mem_cgroup_oom_notify_cb(iter);
5622 }
5623
5624 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
5625 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5626 {
5627 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5628 struct mem_cgroup_thresholds *thresholds;
5629 struct mem_cgroup_threshold_ary *new;
5630 enum res_type type = MEMFILE_TYPE(cft->private);
5631 u64 threshold, usage;
5632 int i, size, ret;
5633
5634 ret = res_counter_memparse_write_strategy(args, &threshold);
5635 if (ret)
5636 return ret;
5637
5638 mutex_lock(&memcg->thresholds_lock);
5639
5640 if (type == _MEM)
5641 thresholds = &memcg->thresholds;
5642 else if (type == _MEMSWAP)
5643 thresholds = &memcg->memsw_thresholds;
5644 else
5645 BUG();
5646
5647 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5648
5649 /* Check if a threshold crossed before adding a new one */
5650 if (thresholds->primary)
5651 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5652
5653 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5654
5655 /* Allocate memory for new array of thresholds */
5656 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5657 GFP_KERNEL);
5658 if (!new) {
5659 ret = -ENOMEM;
5660 goto unlock;
5661 }
5662 new->size = size;
5663
5664 /* Copy thresholds (if any) to new array */
5665 if (thresholds->primary) {
5666 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5667 sizeof(struct mem_cgroup_threshold));
5668 }
5669
5670 /* Add new threshold */
5671 new->entries[size - 1].eventfd = eventfd;
5672 new->entries[size - 1].threshold = threshold;
5673
5674 /* Sort thresholds. Registering of new threshold isn't time-critical */
5675 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5676 compare_thresholds, NULL);
5677
5678 /* Find current threshold */
5679 new->current_threshold = -1;
5680 for (i = 0; i < size; i++) {
5681 if (new->entries[i].threshold <= usage) {
5682 /*
5683 * new->current_threshold will not be used until
5684 * rcu_assign_pointer(), so it's safe to increment
5685 * it here.
5686 */
5687 ++new->current_threshold;
5688 } else
5689 break;
5690 }
5691
5692 /* Free old spare buffer and save old primary buffer as spare */
5693 kfree(thresholds->spare);
5694 thresholds->spare = thresholds->primary;
5695
5696 rcu_assign_pointer(thresholds->primary, new);
5697
5698 /* To be sure that nobody uses thresholds */
5699 synchronize_rcu();
5700
5701 unlock:
5702 mutex_unlock(&memcg->thresholds_lock);
5703
5704 return ret;
5705 }
5706
5707 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
5708 struct cftype *cft, struct eventfd_ctx *eventfd)
5709 {
5710 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5711 struct mem_cgroup_thresholds *thresholds;
5712 struct mem_cgroup_threshold_ary *new;
5713 enum res_type type = MEMFILE_TYPE(cft->private);
5714 u64 usage;
5715 int i, j, size;
5716
5717 mutex_lock(&memcg->thresholds_lock);
5718 if (type == _MEM)
5719 thresholds = &memcg->thresholds;
5720 else if (type == _MEMSWAP)
5721 thresholds = &memcg->memsw_thresholds;
5722 else
5723 BUG();
5724
5725 if (!thresholds->primary)
5726 goto unlock;
5727
5728 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5729
5730 /* Check if a threshold crossed before removing */
5731 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5732
5733 /* Calculate new number of threshold */
5734 size = 0;
5735 for (i = 0; i < thresholds->primary->size; i++) {
5736 if (thresholds->primary->entries[i].eventfd != eventfd)
5737 size++;
5738 }
5739
5740 new = thresholds->spare;
5741
5742 /* Set thresholds array to NULL if we don't have thresholds */
5743 if (!size) {
5744 kfree(new);
5745 new = NULL;
5746 goto swap_buffers;
5747 }
5748
5749 new->size = size;
5750
5751 /* Copy thresholds and find current threshold */
5752 new->current_threshold = -1;
5753 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5754 if (thresholds->primary->entries[i].eventfd == eventfd)
5755 continue;
5756
5757 new->entries[j] = thresholds->primary->entries[i];
5758 if (new->entries[j].threshold <= usage) {
5759 /*
5760 * new->current_threshold will not be used
5761 * until rcu_assign_pointer(), so it's safe to increment
5762 * it here.
5763 */
5764 ++new->current_threshold;
5765 }
5766 j++;
5767 }
5768
5769 swap_buffers:
5770 /* Swap primary and spare array */
5771 thresholds->spare = thresholds->primary;
5772 /* If all events are unregistered, free the spare array */
5773 if (!new) {
5774 kfree(thresholds->spare);
5775 thresholds->spare = NULL;
5776 }
5777
5778 rcu_assign_pointer(thresholds->primary, new);
5779
5780 /* To be sure that nobody uses thresholds */
5781 synchronize_rcu();
5782 unlock:
5783 mutex_unlock(&memcg->thresholds_lock);
5784 }
5785
5786 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
5787 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5788 {
5789 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5790 struct mem_cgroup_eventfd_list *event;
5791 enum res_type type = MEMFILE_TYPE(cft->private);
5792
5793 BUG_ON(type != _OOM_TYPE);
5794 event = kmalloc(sizeof(*event), GFP_KERNEL);
5795 if (!event)
5796 return -ENOMEM;
5797
5798 spin_lock(&memcg_oom_lock);
5799
5800 event->eventfd = eventfd;
5801 list_add(&event->list, &memcg->oom_notify);
5802
5803 /* already in OOM ? */
5804 if (atomic_read(&memcg->under_oom))
5805 eventfd_signal(eventfd, 1);
5806 spin_unlock(&memcg_oom_lock);
5807
5808 return 0;
5809 }
5810
5811 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
5812 struct cftype *cft, struct eventfd_ctx *eventfd)
5813 {
5814 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5815 struct mem_cgroup_eventfd_list *ev, *tmp;
5816 enum res_type type = MEMFILE_TYPE(cft->private);
5817
5818 BUG_ON(type != _OOM_TYPE);
5819
5820 spin_lock(&memcg_oom_lock);
5821
5822 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5823 if (ev->eventfd == eventfd) {
5824 list_del(&ev->list);
5825 kfree(ev);
5826 }
5827 }
5828
5829 spin_unlock(&memcg_oom_lock);
5830 }
5831
5832 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
5833 struct cftype *cft, struct cgroup_map_cb *cb)
5834 {
5835 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5836
5837 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5838
5839 if (atomic_read(&memcg->under_oom))
5840 cb->fill(cb, "under_oom", 1);
5841 else
5842 cb->fill(cb, "under_oom", 0);
5843 return 0;
5844 }
5845
5846 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
5847 struct cftype *cft, u64 val)
5848 {
5849 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5850 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5851
5852 /* cannot set to root cgroup and only 0 and 1 are allowed */
5853 if (!parent || !((val == 0) || (val == 1)))
5854 return -EINVAL;
5855
5856 mutex_lock(&memcg_create_mutex);
5857 /* oom-kill-disable is a flag for subhierarchy. */
5858 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5859 mutex_unlock(&memcg_create_mutex);
5860 return -EINVAL;
5861 }
5862 memcg->oom_kill_disable = val;
5863 if (!val)
5864 memcg_oom_recover(memcg);
5865 mutex_unlock(&memcg_create_mutex);
5866 return 0;
5867 }
5868
5869 #ifdef CONFIG_MEMCG_KMEM
5870 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5871 {
5872 int ret;
5873
5874 memcg->kmemcg_id = -1;
5875 ret = memcg_propagate_kmem(memcg);
5876 if (ret)
5877 return ret;
5878
5879 return mem_cgroup_sockets_init(memcg, ss);
5880 }
5881
5882 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5883 {
5884 mem_cgroup_sockets_destroy(memcg);
5885 }
5886
5887 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5888 {
5889 if (!memcg_kmem_is_active(memcg))
5890 return;
5891
5892 /*
5893 * kmem charges can outlive the cgroup. In the case of slab
5894 * pages, for instance, a page contain objects from various
5895 * processes. As we prevent from taking a reference for every
5896 * such allocation we have to be careful when doing uncharge
5897 * (see memcg_uncharge_kmem) and here during offlining.
5898 *
5899 * The idea is that that only the _last_ uncharge which sees
5900 * the dead memcg will drop the last reference. An additional
5901 * reference is taken here before the group is marked dead
5902 * which is then paired with css_put during uncharge resp. here.
5903 *
5904 * Although this might sound strange as this path is called from
5905 * css_offline() when the referencemight have dropped down to 0
5906 * and shouldn't be incremented anymore (css_tryget would fail)
5907 * we do not have other options because of the kmem allocations
5908 * lifetime.
5909 */
5910 css_get(&memcg->css);
5911
5912 memcg_kmem_mark_dead(memcg);
5913
5914 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5915 return;
5916
5917 if (memcg_kmem_test_and_clear_dead(memcg))
5918 css_put(&memcg->css);
5919 }
5920 #else
5921 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5922 {
5923 return 0;
5924 }
5925
5926 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5927 {
5928 }
5929
5930 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5931 {
5932 }
5933 #endif
5934
5935 static struct cftype mem_cgroup_files[] = {
5936 {
5937 .name = "usage_in_bytes",
5938 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5939 .read = mem_cgroup_read,
5940 .register_event = mem_cgroup_usage_register_event,
5941 .unregister_event = mem_cgroup_usage_unregister_event,
5942 },
5943 {
5944 .name = "max_usage_in_bytes",
5945 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5946 .trigger = mem_cgroup_reset,
5947 .read = mem_cgroup_read,
5948 },
5949 {
5950 .name = "limit_in_bytes",
5951 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5952 .write_string = mem_cgroup_write,
5953 .read = mem_cgroup_read,
5954 },
5955 {
5956 .name = "soft_limit_in_bytes",
5957 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5958 .write_string = mem_cgroup_write,
5959 .read = mem_cgroup_read,
5960 },
5961 {
5962 .name = "failcnt",
5963 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5964 .trigger = mem_cgroup_reset,
5965 .read = mem_cgroup_read,
5966 },
5967 {
5968 .name = "stat",
5969 .read_seq_string = memcg_stat_show,
5970 },
5971 {
5972 .name = "force_empty",
5973 .trigger = mem_cgroup_force_empty_write,
5974 },
5975 {
5976 .name = "use_hierarchy",
5977 .flags = CFTYPE_INSANE,
5978 .write_u64 = mem_cgroup_hierarchy_write,
5979 .read_u64 = mem_cgroup_hierarchy_read,
5980 },
5981 {
5982 .name = "swappiness",
5983 .read_u64 = mem_cgroup_swappiness_read,
5984 .write_u64 = mem_cgroup_swappiness_write,
5985 },
5986 {
5987 .name = "move_charge_at_immigrate",
5988 .read_u64 = mem_cgroup_move_charge_read,
5989 .write_u64 = mem_cgroup_move_charge_write,
5990 },
5991 {
5992 .name = "oom_control",
5993 .read_map = mem_cgroup_oom_control_read,
5994 .write_u64 = mem_cgroup_oom_control_write,
5995 .register_event = mem_cgroup_oom_register_event,
5996 .unregister_event = mem_cgroup_oom_unregister_event,
5997 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5998 },
5999 {
6000 .name = "pressure_level",
6001 .register_event = vmpressure_register_event,
6002 .unregister_event = vmpressure_unregister_event,
6003 },
6004 #ifdef CONFIG_NUMA
6005 {
6006 .name = "numa_stat",
6007 .read_seq_string = memcg_numa_stat_show,
6008 },
6009 #endif
6010 #ifdef CONFIG_MEMCG_KMEM
6011 {
6012 .name = "kmem.limit_in_bytes",
6013 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6014 .write_string = mem_cgroup_write,
6015 .read = mem_cgroup_read,
6016 },
6017 {
6018 .name = "kmem.usage_in_bytes",
6019 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6020 .read = mem_cgroup_read,
6021 },
6022 {
6023 .name = "kmem.failcnt",
6024 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6025 .trigger = mem_cgroup_reset,
6026 .read = mem_cgroup_read,
6027 },
6028 {
6029 .name = "kmem.max_usage_in_bytes",
6030 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6031 .trigger = mem_cgroup_reset,
6032 .read = mem_cgroup_read,
6033 },
6034 #ifdef CONFIG_SLABINFO
6035 {
6036 .name = "kmem.slabinfo",
6037 .read_seq_string = mem_cgroup_slabinfo_read,
6038 },
6039 #endif
6040 #endif
6041 { }, /* terminate */
6042 };
6043
6044 #ifdef CONFIG_MEMCG_SWAP
6045 static struct cftype memsw_cgroup_files[] = {
6046 {
6047 .name = "memsw.usage_in_bytes",
6048 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6049 .read = mem_cgroup_read,
6050 .register_event = mem_cgroup_usage_register_event,
6051 .unregister_event = mem_cgroup_usage_unregister_event,
6052 },
6053 {
6054 .name = "memsw.max_usage_in_bytes",
6055 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6056 .trigger = mem_cgroup_reset,
6057 .read = mem_cgroup_read,
6058 },
6059 {
6060 .name = "memsw.limit_in_bytes",
6061 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6062 .write_string = mem_cgroup_write,
6063 .read = mem_cgroup_read,
6064 },
6065 {
6066 .name = "memsw.failcnt",
6067 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6068 .trigger = mem_cgroup_reset,
6069 .read = mem_cgroup_read,
6070 },
6071 { }, /* terminate */
6072 };
6073 #endif
6074 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6075 {
6076 struct mem_cgroup_per_node *pn;
6077 struct mem_cgroup_per_zone *mz;
6078 int zone, tmp = node;
6079 /*
6080 * This routine is called against possible nodes.
6081 * But it's BUG to call kmalloc() against offline node.
6082 *
6083 * TODO: this routine can waste much memory for nodes which will
6084 * never be onlined. It's better to use memory hotplug callback
6085 * function.
6086 */
6087 if (!node_state(node, N_NORMAL_MEMORY))
6088 tmp = -1;
6089 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6090 if (!pn)
6091 return 1;
6092
6093 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6094 mz = &pn->zoneinfo[zone];
6095 lruvec_init(&mz->lruvec);
6096 mz->usage_in_excess = 0;
6097 mz->on_tree = false;
6098 mz->memcg = memcg;
6099 }
6100 memcg->nodeinfo[node] = pn;
6101 return 0;
6102 }
6103
6104 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6105 {
6106 kfree(memcg->nodeinfo[node]);
6107 }
6108
6109 static struct mem_cgroup *mem_cgroup_alloc(void)
6110 {
6111 struct mem_cgroup *memcg;
6112 size_t size = memcg_size();
6113
6114 /* Can be very big if nr_node_ids is very big */
6115 if (size < PAGE_SIZE)
6116 memcg = kzalloc(size, GFP_KERNEL);
6117 else
6118 memcg = vzalloc(size);
6119
6120 if (!memcg)
6121 return NULL;
6122
6123 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6124 if (!memcg->stat)
6125 goto out_free;
6126 spin_lock_init(&memcg->pcp_counter_lock);
6127 return memcg;
6128
6129 out_free:
6130 if (size < PAGE_SIZE)
6131 kfree(memcg);
6132 else
6133 vfree(memcg);
6134 return NULL;
6135 }
6136
6137 /*
6138 * At destroying mem_cgroup, references from swap_cgroup can remain.
6139 * (scanning all at force_empty is too costly...)
6140 *
6141 * Instead of clearing all references at force_empty, we remember
6142 * the number of reference from swap_cgroup and free mem_cgroup when
6143 * it goes down to 0.
6144 *
6145 * Removal of cgroup itself succeeds regardless of refs from swap.
6146 */
6147
6148 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6149 {
6150 int node;
6151 size_t size = memcg_size();
6152
6153 mem_cgroup_remove_from_trees(memcg);
6154 free_css_id(&mem_cgroup_subsys, &memcg->css);
6155
6156 for_each_node(node)
6157 free_mem_cgroup_per_zone_info(memcg, node);
6158
6159 free_percpu(memcg->stat);
6160
6161 /*
6162 * We need to make sure that (at least for now), the jump label
6163 * destruction code runs outside of the cgroup lock. This is because
6164 * get_online_cpus(), which is called from the static_branch update,
6165 * can't be called inside the cgroup_lock. cpusets are the ones
6166 * enforcing this dependency, so if they ever change, we might as well.
6167 *
6168 * schedule_work() will guarantee this happens. Be careful if you need
6169 * to move this code around, and make sure it is outside
6170 * the cgroup_lock.
6171 */
6172 disarm_static_keys(memcg);
6173 if (size < PAGE_SIZE)
6174 kfree(memcg);
6175 else
6176 vfree(memcg);
6177 }
6178
6179 /*
6180 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6181 */
6182 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6183 {
6184 if (!memcg->res.parent)
6185 return NULL;
6186 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6187 }
6188 EXPORT_SYMBOL(parent_mem_cgroup);
6189
6190 static void __init mem_cgroup_soft_limit_tree_init(void)
6191 {
6192 struct mem_cgroup_tree_per_node *rtpn;
6193 struct mem_cgroup_tree_per_zone *rtpz;
6194 int tmp, node, zone;
6195
6196 for_each_node(node) {
6197 tmp = node;
6198 if (!node_state(node, N_NORMAL_MEMORY))
6199 tmp = -1;
6200 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6201 BUG_ON(!rtpn);
6202
6203 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6204
6205 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6206 rtpz = &rtpn->rb_tree_per_zone[zone];
6207 rtpz->rb_root = RB_ROOT;
6208 spin_lock_init(&rtpz->lock);
6209 }
6210 }
6211 }
6212
6213 static struct cgroup_subsys_state * __ref
6214 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6215 {
6216 struct mem_cgroup *memcg;
6217 long error = -ENOMEM;
6218 int node;
6219
6220 memcg = mem_cgroup_alloc();
6221 if (!memcg)
6222 return ERR_PTR(error);
6223
6224 for_each_node(node)
6225 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6226 goto free_out;
6227
6228 /* root ? */
6229 if (parent_css == NULL) {
6230 root_mem_cgroup = memcg;
6231 res_counter_init(&memcg->res, NULL);
6232 res_counter_init(&memcg->memsw, NULL);
6233 res_counter_init(&memcg->kmem, NULL);
6234 }
6235
6236 memcg->last_scanned_node = MAX_NUMNODES;
6237 INIT_LIST_HEAD(&memcg->oom_notify);
6238 memcg->move_charge_at_immigrate = 0;
6239 mutex_init(&memcg->thresholds_lock);
6240 spin_lock_init(&memcg->move_lock);
6241 vmpressure_init(&memcg->vmpressure);
6242
6243 return &memcg->css;
6244
6245 free_out:
6246 __mem_cgroup_free(memcg);
6247 return ERR_PTR(error);
6248 }
6249
6250 static int
6251 mem_cgroup_css_online(struct cgroup_subsys_state *css)
6252 {
6253 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6254 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6255 int error = 0;
6256
6257 if (!parent)
6258 return 0;
6259
6260 mutex_lock(&memcg_create_mutex);
6261
6262 memcg->use_hierarchy = parent->use_hierarchy;
6263 memcg->oom_kill_disable = parent->oom_kill_disable;
6264 memcg->swappiness = mem_cgroup_swappiness(parent);
6265
6266 if (parent->use_hierarchy) {
6267 res_counter_init(&memcg->res, &parent->res);
6268 res_counter_init(&memcg->memsw, &parent->memsw);
6269 res_counter_init(&memcg->kmem, &parent->kmem);
6270
6271 /*
6272 * No need to take a reference to the parent because cgroup
6273 * core guarantees its existence.
6274 */
6275 } else {
6276 res_counter_init(&memcg->res, NULL);
6277 res_counter_init(&memcg->memsw, NULL);
6278 res_counter_init(&memcg->kmem, NULL);
6279 /*
6280 * Deeper hierachy with use_hierarchy == false doesn't make
6281 * much sense so let cgroup subsystem know about this
6282 * unfortunate state in our controller.
6283 */
6284 if (parent != root_mem_cgroup)
6285 mem_cgroup_subsys.broken_hierarchy = true;
6286 }
6287
6288 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6289 mutex_unlock(&memcg_create_mutex);
6290 return error;
6291 }
6292
6293 /*
6294 * Announce all parents that a group from their hierarchy is gone.
6295 */
6296 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6297 {
6298 struct mem_cgroup *parent = memcg;
6299
6300 while ((parent = parent_mem_cgroup(parent)))
6301 mem_cgroup_iter_invalidate(parent);
6302
6303 /*
6304 * if the root memcg is not hierarchical we have to check it
6305 * explicitely.
6306 */
6307 if (!root_mem_cgroup->use_hierarchy)
6308 mem_cgroup_iter_invalidate(root_mem_cgroup);
6309 }
6310
6311 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6312 {
6313 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6314
6315 kmem_cgroup_css_offline(memcg);
6316
6317 mem_cgroup_invalidate_reclaim_iterators(memcg);
6318 mem_cgroup_reparent_charges(memcg);
6319 mem_cgroup_destroy_all_caches(memcg);
6320 }
6321
6322 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6323 {
6324 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6325
6326 memcg_destroy_kmem(memcg);
6327 __mem_cgroup_free(memcg);
6328 }
6329
6330 #ifdef CONFIG_MMU
6331 /* Handlers for move charge at task migration. */
6332 #define PRECHARGE_COUNT_AT_ONCE 256
6333 static int mem_cgroup_do_precharge(unsigned long count)
6334 {
6335 int ret = 0;
6336 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6337 struct mem_cgroup *memcg = mc.to;
6338
6339 if (mem_cgroup_is_root(memcg)) {
6340 mc.precharge += count;
6341 /* we don't need css_get for root */
6342 return ret;
6343 }
6344 /* try to charge at once */
6345 if (count > 1) {
6346 struct res_counter *dummy;
6347 /*
6348 * "memcg" cannot be under rmdir() because we've already checked
6349 * by cgroup_lock_live_cgroup() that it is not removed and we
6350 * are still under the same cgroup_mutex. So we can postpone
6351 * css_get().
6352 */
6353 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6354 goto one_by_one;
6355 if (do_swap_account && res_counter_charge(&memcg->memsw,
6356 PAGE_SIZE * count, &dummy)) {
6357 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6358 goto one_by_one;
6359 }
6360 mc.precharge += count;
6361 return ret;
6362 }
6363 one_by_one:
6364 /* fall back to one by one charge */
6365 while (count--) {
6366 if (signal_pending(current)) {
6367 ret = -EINTR;
6368 break;
6369 }
6370 if (!batch_count--) {
6371 batch_count = PRECHARGE_COUNT_AT_ONCE;
6372 cond_resched();
6373 }
6374 ret = __mem_cgroup_try_charge(NULL,
6375 GFP_KERNEL, 1, &memcg, false);
6376 if (ret)
6377 /* mem_cgroup_clear_mc() will do uncharge later */
6378 return ret;
6379 mc.precharge++;
6380 }
6381 return ret;
6382 }
6383
6384 /**
6385 * get_mctgt_type - get target type of moving charge
6386 * @vma: the vma the pte to be checked belongs
6387 * @addr: the address corresponding to the pte to be checked
6388 * @ptent: the pte to be checked
6389 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6390 *
6391 * Returns
6392 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6393 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6394 * move charge. if @target is not NULL, the page is stored in target->page
6395 * with extra refcnt got(Callers should handle it).
6396 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6397 * target for charge migration. if @target is not NULL, the entry is stored
6398 * in target->ent.
6399 *
6400 * Called with pte lock held.
6401 */
6402 union mc_target {
6403 struct page *page;
6404 swp_entry_t ent;
6405 };
6406
6407 enum mc_target_type {
6408 MC_TARGET_NONE = 0,
6409 MC_TARGET_PAGE,
6410 MC_TARGET_SWAP,
6411 };
6412
6413 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6414 unsigned long addr, pte_t ptent)
6415 {
6416 struct page *page = vm_normal_page(vma, addr, ptent);
6417
6418 if (!page || !page_mapped(page))
6419 return NULL;
6420 if (PageAnon(page)) {
6421 /* we don't move shared anon */
6422 if (!move_anon())
6423 return NULL;
6424 } else if (!move_file())
6425 /* we ignore mapcount for file pages */
6426 return NULL;
6427 if (!get_page_unless_zero(page))
6428 return NULL;
6429
6430 return page;
6431 }
6432
6433 #ifdef CONFIG_SWAP
6434 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6435 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6436 {
6437 struct page *page = NULL;
6438 swp_entry_t ent = pte_to_swp_entry(ptent);
6439
6440 if (!move_anon() || non_swap_entry(ent))
6441 return NULL;
6442 /*
6443 * Because lookup_swap_cache() updates some statistics counter,
6444 * we call find_get_page() with swapper_space directly.
6445 */
6446 page = find_get_page(swap_address_space(ent), ent.val);
6447 if (do_swap_account)
6448 entry->val = ent.val;
6449
6450 return page;
6451 }
6452 #else
6453 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6454 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6455 {
6456 return NULL;
6457 }
6458 #endif
6459
6460 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6461 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6462 {
6463 struct page *page = NULL;
6464 struct address_space *mapping;
6465 pgoff_t pgoff;
6466
6467 if (!vma->vm_file) /* anonymous vma */
6468 return NULL;
6469 if (!move_file())
6470 return NULL;
6471
6472 mapping = vma->vm_file->f_mapping;
6473 if (pte_none(ptent))
6474 pgoff = linear_page_index(vma, addr);
6475 else /* pte_file(ptent) is true */
6476 pgoff = pte_to_pgoff(ptent);
6477
6478 /* page is moved even if it's not RSS of this task(page-faulted). */
6479 page = find_get_page(mapping, pgoff);
6480
6481 #ifdef CONFIG_SWAP
6482 /* shmem/tmpfs may report page out on swap: account for that too. */
6483 if (radix_tree_exceptional_entry(page)) {
6484 swp_entry_t swap = radix_to_swp_entry(page);
6485 if (do_swap_account)
6486 *entry = swap;
6487 page = find_get_page(swap_address_space(swap), swap.val);
6488 }
6489 #endif
6490 return page;
6491 }
6492
6493 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6494 unsigned long addr, pte_t ptent, union mc_target *target)
6495 {
6496 struct page *page = NULL;
6497 struct page_cgroup *pc;
6498 enum mc_target_type ret = MC_TARGET_NONE;
6499 swp_entry_t ent = { .val = 0 };
6500
6501 if (pte_present(ptent))
6502 page = mc_handle_present_pte(vma, addr, ptent);
6503 else if (is_swap_pte(ptent))
6504 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6505 else if (pte_none(ptent) || pte_file(ptent))
6506 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6507
6508 if (!page && !ent.val)
6509 return ret;
6510 if (page) {
6511 pc = lookup_page_cgroup(page);
6512 /*
6513 * Do only loose check w/o page_cgroup lock.
6514 * mem_cgroup_move_account() checks the pc is valid or not under
6515 * the lock.
6516 */
6517 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6518 ret = MC_TARGET_PAGE;
6519 if (target)
6520 target->page = page;
6521 }
6522 if (!ret || !target)
6523 put_page(page);
6524 }
6525 /* There is a swap entry and a page doesn't exist or isn't charged */
6526 if (ent.val && !ret &&
6527 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6528 ret = MC_TARGET_SWAP;
6529 if (target)
6530 target->ent = ent;
6531 }
6532 return ret;
6533 }
6534
6535 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6536 /*
6537 * We don't consider swapping or file mapped pages because THP does not
6538 * support them for now.
6539 * Caller should make sure that pmd_trans_huge(pmd) is true.
6540 */
6541 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6542 unsigned long addr, pmd_t pmd, union mc_target *target)
6543 {
6544 struct page *page = NULL;
6545 struct page_cgroup *pc;
6546 enum mc_target_type ret = MC_TARGET_NONE;
6547
6548 page = pmd_page(pmd);
6549 VM_BUG_ON(!page || !PageHead(page));
6550 if (!move_anon())
6551 return ret;
6552 pc = lookup_page_cgroup(page);
6553 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6554 ret = MC_TARGET_PAGE;
6555 if (target) {
6556 get_page(page);
6557 target->page = page;
6558 }
6559 }
6560 return ret;
6561 }
6562 #else
6563 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6564 unsigned long addr, pmd_t pmd, union mc_target *target)
6565 {
6566 return MC_TARGET_NONE;
6567 }
6568 #endif
6569
6570 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6571 unsigned long addr, unsigned long end,
6572 struct mm_walk *walk)
6573 {
6574 struct vm_area_struct *vma = walk->private;
6575 pte_t *pte;
6576 spinlock_t *ptl;
6577
6578 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6579 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6580 mc.precharge += HPAGE_PMD_NR;
6581 spin_unlock(&vma->vm_mm->page_table_lock);
6582 return 0;
6583 }
6584
6585 if (pmd_trans_unstable(pmd))
6586 return 0;
6587 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6588 for (; addr != end; pte++, addr += PAGE_SIZE)
6589 if (get_mctgt_type(vma, addr, *pte, NULL))
6590 mc.precharge++; /* increment precharge temporarily */
6591 pte_unmap_unlock(pte - 1, ptl);
6592 cond_resched();
6593
6594 return 0;
6595 }
6596
6597 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6598 {
6599 unsigned long precharge;
6600 struct vm_area_struct *vma;
6601
6602 down_read(&mm->mmap_sem);
6603 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6604 struct mm_walk mem_cgroup_count_precharge_walk = {
6605 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6606 .mm = mm,
6607 .private = vma,
6608 };
6609 if (is_vm_hugetlb_page(vma))
6610 continue;
6611 walk_page_range(vma->vm_start, vma->vm_end,
6612 &mem_cgroup_count_precharge_walk);
6613 }
6614 up_read(&mm->mmap_sem);
6615
6616 precharge = mc.precharge;
6617 mc.precharge = 0;
6618
6619 return precharge;
6620 }
6621
6622 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6623 {
6624 unsigned long precharge = mem_cgroup_count_precharge(mm);
6625
6626 VM_BUG_ON(mc.moving_task);
6627 mc.moving_task = current;
6628 return mem_cgroup_do_precharge(precharge);
6629 }
6630
6631 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6632 static void __mem_cgroup_clear_mc(void)
6633 {
6634 struct mem_cgroup *from = mc.from;
6635 struct mem_cgroup *to = mc.to;
6636 int i;
6637
6638 /* we must uncharge all the leftover precharges from mc.to */
6639 if (mc.precharge) {
6640 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6641 mc.precharge = 0;
6642 }
6643 /*
6644 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6645 * we must uncharge here.
6646 */
6647 if (mc.moved_charge) {
6648 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6649 mc.moved_charge = 0;
6650 }
6651 /* we must fixup refcnts and charges */
6652 if (mc.moved_swap) {
6653 /* uncharge swap account from the old cgroup */
6654 if (!mem_cgroup_is_root(mc.from))
6655 res_counter_uncharge(&mc.from->memsw,
6656 PAGE_SIZE * mc.moved_swap);
6657
6658 for (i = 0; i < mc.moved_swap; i++)
6659 css_put(&mc.from->css);
6660
6661 if (!mem_cgroup_is_root(mc.to)) {
6662 /*
6663 * we charged both to->res and to->memsw, so we should
6664 * uncharge to->res.
6665 */
6666 res_counter_uncharge(&mc.to->res,
6667 PAGE_SIZE * mc.moved_swap);
6668 }
6669 /* we've already done css_get(mc.to) */
6670 mc.moved_swap = 0;
6671 }
6672 memcg_oom_recover(from);
6673 memcg_oom_recover(to);
6674 wake_up_all(&mc.waitq);
6675 }
6676
6677 static void mem_cgroup_clear_mc(void)
6678 {
6679 struct mem_cgroup *from = mc.from;
6680
6681 /*
6682 * we must clear moving_task before waking up waiters at the end of
6683 * task migration.
6684 */
6685 mc.moving_task = NULL;
6686 __mem_cgroup_clear_mc();
6687 spin_lock(&mc.lock);
6688 mc.from = NULL;
6689 mc.to = NULL;
6690 spin_unlock(&mc.lock);
6691 mem_cgroup_end_move(from);
6692 }
6693
6694 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6695 struct cgroup_taskset *tset)
6696 {
6697 struct task_struct *p = cgroup_taskset_first(tset);
6698 int ret = 0;
6699 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6700 unsigned long move_charge_at_immigrate;
6701
6702 /*
6703 * We are now commited to this value whatever it is. Changes in this
6704 * tunable will only affect upcoming migrations, not the current one.
6705 * So we need to save it, and keep it going.
6706 */
6707 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6708 if (move_charge_at_immigrate) {
6709 struct mm_struct *mm;
6710 struct mem_cgroup *from = mem_cgroup_from_task(p);
6711
6712 VM_BUG_ON(from == memcg);
6713
6714 mm = get_task_mm(p);
6715 if (!mm)
6716 return 0;
6717 /* We move charges only when we move a owner of the mm */
6718 if (mm->owner == p) {
6719 VM_BUG_ON(mc.from);
6720 VM_BUG_ON(mc.to);
6721 VM_BUG_ON(mc.precharge);
6722 VM_BUG_ON(mc.moved_charge);
6723 VM_BUG_ON(mc.moved_swap);
6724 mem_cgroup_start_move(from);
6725 spin_lock(&mc.lock);
6726 mc.from = from;
6727 mc.to = memcg;
6728 mc.immigrate_flags = move_charge_at_immigrate;
6729 spin_unlock(&mc.lock);
6730 /* We set mc.moving_task later */
6731
6732 ret = mem_cgroup_precharge_mc(mm);
6733 if (ret)
6734 mem_cgroup_clear_mc();
6735 }
6736 mmput(mm);
6737 }
6738 return ret;
6739 }
6740
6741 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6742 struct cgroup_taskset *tset)
6743 {
6744 mem_cgroup_clear_mc();
6745 }
6746
6747 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6748 unsigned long addr, unsigned long end,
6749 struct mm_walk *walk)
6750 {
6751 int ret = 0;
6752 struct vm_area_struct *vma = walk->private;
6753 pte_t *pte;
6754 spinlock_t *ptl;
6755 enum mc_target_type target_type;
6756 union mc_target target;
6757 struct page *page;
6758 struct page_cgroup *pc;
6759
6760 /*
6761 * We don't take compound_lock() here but no race with splitting thp
6762 * happens because:
6763 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6764 * under splitting, which means there's no concurrent thp split,
6765 * - if another thread runs into split_huge_page() just after we
6766 * entered this if-block, the thread must wait for page table lock
6767 * to be unlocked in __split_huge_page_splitting(), where the main
6768 * part of thp split is not executed yet.
6769 */
6770 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6771 if (mc.precharge < HPAGE_PMD_NR) {
6772 spin_unlock(&vma->vm_mm->page_table_lock);
6773 return 0;
6774 }
6775 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6776 if (target_type == MC_TARGET_PAGE) {
6777 page = target.page;
6778 if (!isolate_lru_page(page)) {
6779 pc = lookup_page_cgroup(page);
6780 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6781 pc, mc.from, mc.to)) {
6782 mc.precharge -= HPAGE_PMD_NR;
6783 mc.moved_charge += HPAGE_PMD_NR;
6784 }
6785 putback_lru_page(page);
6786 }
6787 put_page(page);
6788 }
6789 spin_unlock(&vma->vm_mm->page_table_lock);
6790 return 0;
6791 }
6792
6793 if (pmd_trans_unstable(pmd))
6794 return 0;
6795 retry:
6796 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6797 for (; addr != end; addr += PAGE_SIZE) {
6798 pte_t ptent = *(pte++);
6799 swp_entry_t ent;
6800
6801 if (!mc.precharge)
6802 break;
6803
6804 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6805 case MC_TARGET_PAGE:
6806 page = target.page;
6807 if (isolate_lru_page(page))
6808 goto put;
6809 pc = lookup_page_cgroup(page);
6810 if (!mem_cgroup_move_account(page, 1, pc,
6811 mc.from, mc.to)) {
6812 mc.precharge--;
6813 /* we uncharge from mc.from later. */
6814 mc.moved_charge++;
6815 }
6816 putback_lru_page(page);
6817 put: /* get_mctgt_type() gets the page */
6818 put_page(page);
6819 break;
6820 case MC_TARGET_SWAP:
6821 ent = target.ent;
6822 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6823 mc.precharge--;
6824 /* we fixup refcnts and charges later. */
6825 mc.moved_swap++;
6826 }
6827 break;
6828 default:
6829 break;
6830 }
6831 }
6832 pte_unmap_unlock(pte - 1, ptl);
6833 cond_resched();
6834
6835 if (addr != end) {
6836 /*
6837 * We have consumed all precharges we got in can_attach().
6838 * We try charge one by one, but don't do any additional
6839 * charges to mc.to if we have failed in charge once in attach()
6840 * phase.
6841 */
6842 ret = mem_cgroup_do_precharge(1);
6843 if (!ret)
6844 goto retry;
6845 }
6846
6847 return ret;
6848 }
6849
6850 static void mem_cgroup_move_charge(struct mm_struct *mm)
6851 {
6852 struct vm_area_struct *vma;
6853
6854 lru_add_drain_all();
6855 retry:
6856 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6857 /*
6858 * Someone who are holding the mmap_sem might be waiting in
6859 * waitq. So we cancel all extra charges, wake up all waiters,
6860 * and retry. Because we cancel precharges, we might not be able
6861 * to move enough charges, but moving charge is a best-effort
6862 * feature anyway, so it wouldn't be a big problem.
6863 */
6864 __mem_cgroup_clear_mc();
6865 cond_resched();
6866 goto retry;
6867 }
6868 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6869 int ret;
6870 struct mm_walk mem_cgroup_move_charge_walk = {
6871 .pmd_entry = mem_cgroup_move_charge_pte_range,
6872 .mm = mm,
6873 .private = vma,
6874 };
6875 if (is_vm_hugetlb_page(vma))
6876 continue;
6877 ret = walk_page_range(vma->vm_start, vma->vm_end,
6878 &mem_cgroup_move_charge_walk);
6879 if (ret)
6880 /*
6881 * means we have consumed all precharges and failed in
6882 * doing additional charge. Just abandon here.
6883 */
6884 break;
6885 }
6886 up_read(&mm->mmap_sem);
6887 }
6888
6889 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6890 struct cgroup_taskset *tset)
6891 {
6892 struct task_struct *p = cgroup_taskset_first(tset);
6893 struct mm_struct *mm = get_task_mm(p);
6894
6895 if (mm) {
6896 if (mc.to)
6897 mem_cgroup_move_charge(mm);
6898 mmput(mm);
6899 }
6900 if (mc.to)
6901 mem_cgroup_clear_mc();
6902 }
6903 #else /* !CONFIG_MMU */
6904 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6905 struct cgroup_taskset *tset)
6906 {
6907 return 0;
6908 }
6909 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6910 struct cgroup_taskset *tset)
6911 {
6912 }
6913 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6914 struct cgroup_taskset *tset)
6915 {
6916 }
6917 #endif
6918
6919 /*
6920 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6921 * to verify sane_behavior flag on each mount attempt.
6922 */
6923 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6924 {
6925 /*
6926 * use_hierarchy is forced with sane_behavior. cgroup core
6927 * guarantees that @root doesn't have any children, so turning it
6928 * on for the root memcg is enough.
6929 */
6930 if (cgroup_sane_behavior(root_css->cgroup))
6931 mem_cgroup_from_css(root_css)->use_hierarchy = true;
6932 }
6933
6934 struct cgroup_subsys mem_cgroup_subsys = {
6935 .name = "memory",
6936 .subsys_id = mem_cgroup_subsys_id,
6937 .css_alloc = mem_cgroup_css_alloc,
6938 .css_online = mem_cgroup_css_online,
6939 .css_offline = mem_cgroup_css_offline,
6940 .css_free = mem_cgroup_css_free,
6941 .can_attach = mem_cgroup_can_attach,
6942 .cancel_attach = mem_cgroup_cancel_attach,
6943 .attach = mem_cgroup_move_task,
6944 .bind = mem_cgroup_bind,
6945 .base_cftypes = mem_cgroup_files,
6946 .early_init = 0,
6947 .use_id = 1,
6948 };
6949
6950 #ifdef CONFIG_MEMCG_SWAP
6951 static int __init enable_swap_account(char *s)
6952 {
6953 /* consider enabled if no parameter or 1 is given */
6954 if (!strcmp(s, "1"))
6955 really_do_swap_account = 1;
6956 else if (!strcmp(s, "0"))
6957 really_do_swap_account = 0;
6958 return 1;
6959 }
6960 __setup("swapaccount=", enable_swap_account);
6961
6962 static void __init memsw_file_init(void)
6963 {
6964 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6965 }
6966
6967 static void __init enable_swap_cgroup(void)
6968 {
6969 if (!mem_cgroup_disabled() && really_do_swap_account) {
6970 do_swap_account = 1;
6971 memsw_file_init();
6972 }
6973 }
6974
6975 #else
6976 static void __init enable_swap_cgroup(void)
6977 {
6978 }
6979 #endif
6980
6981 /*
6982 * subsys_initcall() for memory controller.
6983 *
6984 * Some parts like hotcpu_notifier() have to be initialized from this context
6985 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6986 * everything that doesn't depend on a specific mem_cgroup structure should
6987 * be initialized from here.
6988 */
6989 static int __init mem_cgroup_init(void)
6990 {
6991 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6992 enable_swap_cgroup();
6993 mem_cgroup_soft_limit_tree_init();
6994 memcg_stock_init();
6995 return 0;
6996 }
6997 subsys_initcall(mem_cgroup_init);
This page took 0.282665 seconds and 6 git commands to generate.