memory-failure: export page_type and action result
[deliverable/linux.git] / mm / memory-failure.c
1 /*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11 * failure.
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
15 *
16 * Handles page cache pages in various states. The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * It can be very tempting to add handling for obscure cases here.
25 * In general any code for handling new cases should only be added iff:
26 * - You know how to test it.
27 * - You have a test that can be added to mce-test
28 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29 * - The case actually shows up as a frequent (top 10) page state in
30 * tools/vm/page-types when running a real workload.
31 *
32 * There are several operations here with exponential complexity because
33 * of unsuitable VM data structures. For example the operation to map back
34 * from RMAP chains to processes has to walk the complete process list and
35 * has non linear complexity with the number. But since memory corruptions
36 * are rare we hope to get away with this. This avoids impacting the core
37 * VM.
38 */
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched.h>
44 #include <linux/ksm.h>
45 #include <linux/rmap.h>
46 #include <linux/export.h>
47 #include <linux/pagemap.h>
48 #include <linux/swap.h>
49 #include <linux/backing-dev.h>
50 #include <linux/migrate.h>
51 #include <linux/page-isolation.h>
52 #include <linux/suspend.h>
53 #include <linux/slab.h>
54 #include <linux/swapops.h>
55 #include <linux/hugetlb.h>
56 #include <linux/memory_hotplug.h>
57 #include <linux/mm_inline.h>
58 #include <linux/kfifo.h>
59 #include "internal.h"
60
61 int sysctl_memory_failure_early_kill __read_mostly = 0;
62
63 int sysctl_memory_failure_recovery __read_mostly = 1;
64
65 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
66
67 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
68
69 u32 hwpoison_filter_enable = 0;
70 u32 hwpoison_filter_dev_major = ~0U;
71 u32 hwpoison_filter_dev_minor = ~0U;
72 u64 hwpoison_filter_flags_mask;
73 u64 hwpoison_filter_flags_value;
74 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
75 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
76 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
78 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
79
80 static int hwpoison_filter_dev(struct page *p)
81 {
82 struct address_space *mapping;
83 dev_t dev;
84
85 if (hwpoison_filter_dev_major == ~0U &&
86 hwpoison_filter_dev_minor == ~0U)
87 return 0;
88
89 /*
90 * page_mapping() does not accept slab pages.
91 */
92 if (PageSlab(p))
93 return -EINVAL;
94
95 mapping = page_mapping(p);
96 if (mapping == NULL || mapping->host == NULL)
97 return -EINVAL;
98
99 dev = mapping->host->i_sb->s_dev;
100 if (hwpoison_filter_dev_major != ~0U &&
101 hwpoison_filter_dev_major != MAJOR(dev))
102 return -EINVAL;
103 if (hwpoison_filter_dev_minor != ~0U &&
104 hwpoison_filter_dev_minor != MINOR(dev))
105 return -EINVAL;
106
107 return 0;
108 }
109
110 static int hwpoison_filter_flags(struct page *p)
111 {
112 if (!hwpoison_filter_flags_mask)
113 return 0;
114
115 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
116 hwpoison_filter_flags_value)
117 return 0;
118 else
119 return -EINVAL;
120 }
121
122 /*
123 * This allows stress tests to limit test scope to a collection of tasks
124 * by putting them under some memcg. This prevents killing unrelated/important
125 * processes such as /sbin/init. Note that the target task may share clean
126 * pages with init (eg. libc text), which is harmless. If the target task
127 * share _dirty_ pages with another task B, the test scheme must make sure B
128 * is also included in the memcg. At last, due to race conditions this filter
129 * can only guarantee that the page either belongs to the memcg tasks, or is
130 * a freed page.
131 */
132 #ifdef CONFIG_MEMCG_SWAP
133 u64 hwpoison_filter_memcg;
134 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
135 static int hwpoison_filter_task(struct page *p)
136 {
137 struct mem_cgroup *mem;
138 struct cgroup_subsys_state *css;
139 unsigned long ino;
140
141 if (!hwpoison_filter_memcg)
142 return 0;
143
144 mem = try_get_mem_cgroup_from_page(p);
145 if (!mem)
146 return -EINVAL;
147
148 css = mem_cgroup_css(mem);
149 ino = cgroup_ino(css->cgroup);
150 css_put(css);
151
152 if (ino != hwpoison_filter_memcg)
153 return -EINVAL;
154
155 return 0;
156 }
157 #else
158 static int hwpoison_filter_task(struct page *p) { return 0; }
159 #endif
160
161 int hwpoison_filter(struct page *p)
162 {
163 if (!hwpoison_filter_enable)
164 return 0;
165
166 if (hwpoison_filter_dev(p))
167 return -EINVAL;
168
169 if (hwpoison_filter_flags(p))
170 return -EINVAL;
171
172 if (hwpoison_filter_task(p))
173 return -EINVAL;
174
175 return 0;
176 }
177 #else
178 int hwpoison_filter(struct page *p)
179 {
180 return 0;
181 }
182 #endif
183
184 EXPORT_SYMBOL_GPL(hwpoison_filter);
185
186 /*
187 * Send all the processes who have the page mapped a signal.
188 * ``action optional'' if they are not immediately affected by the error
189 * ``action required'' if error happened in current execution context
190 */
191 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
192 unsigned long pfn, struct page *page, int flags)
193 {
194 struct siginfo si;
195 int ret;
196
197 printk(KERN_ERR
198 "MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
199 pfn, t->comm, t->pid);
200 si.si_signo = SIGBUS;
201 si.si_errno = 0;
202 si.si_addr = (void *)addr;
203 #ifdef __ARCH_SI_TRAPNO
204 si.si_trapno = trapno;
205 #endif
206 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
207
208 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
209 si.si_code = BUS_MCEERR_AR;
210 ret = force_sig_info(SIGBUS, &si, current);
211 } else {
212 /*
213 * Don't use force here, it's convenient if the signal
214 * can be temporarily blocked.
215 * This could cause a loop when the user sets SIGBUS
216 * to SIG_IGN, but hopefully no one will do that?
217 */
218 si.si_code = BUS_MCEERR_AO;
219 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
220 }
221 if (ret < 0)
222 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
223 t->comm, t->pid, ret);
224 return ret;
225 }
226
227 /*
228 * When a unknown page type is encountered drain as many buffers as possible
229 * in the hope to turn the page into a LRU or free page, which we can handle.
230 */
231 void shake_page(struct page *p, int access)
232 {
233 if (!PageSlab(p)) {
234 lru_add_drain_all();
235 if (PageLRU(p))
236 return;
237 drain_all_pages(page_zone(p));
238 if (PageLRU(p) || is_free_buddy_page(p))
239 return;
240 }
241
242 /*
243 * Only call shrink_node_slabs here (which would also shrink
244 * other caches) if access is not potentially fatal.
245 */
246 if (access)
247 drop_slab_node(page_to_nid(p));
248 }
249 EXPORT_SYMBOL_GPL(shake_page);
250
251 /*
252 * Kill all processes that have a poisoned page mapped and then isolate
253 * the page.
254 *
255 * General strategy:
256 * Find all processes having the page mapped and kill them.
257 * But we keep a page reference around so that the page is not
258 * actually freed yet.
259 * Then stash the page away
260 *
261 * There's no convenient way to get back to mapped processes
262 * from the VMAs. So do a brute-force search over all
263 * running processes.
264 *
265 * Remember that machine checks are not common (or rather
266 * if they are common you have other problems), so this shouldn't
267 * be a performance issue.
268 *
269 * Also there are some races possible while we get from the
270 * error detection to actually handle it.
271 */
272
273 struct to_kill {
274 struct list_head nd;
275 struct task_struct *tsk;
276 unsigned long addr;
277 char addr_valid;
278 };
279
280 /*
281 * Failure handling: if we can't find or can't kill a process there's
282 * not much we can do. We just print a message and ignore otherwise.
283 */
284
285 /*
286 * Schedule a process for later kill.
287 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
288 * TBD would GFP_NOIO be enough?
289 */
290 static void add_to_kill(struct task_struct *tsk, struct page *p,
291 struct vm_area_struct *vma,
292 struct list_head *to_kill,
293 struct to_kill **tkc)
294 {
295 struct to_kill *tk;
296
297 if (*tkc) {
298 tk = *tkc;
299 *tkc = NULL;
300 } else {
301 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
302 if (!tk) {
303 printk(KERN_ERR
304 "MCE: Out of memory while machine check handling\n");
305 return;
306 }
307 }
308 tk->addr = page_address_in_vma(p, vma);
309 tk->addr_valid = 1;
310
311 /*
312 * In theory we don't have to kill when the page was
313 * munmaped. But it could be also a mremap. Since that's
314 * likely very rare kill anyways just out of paranoia, but use
315 * a SIGKILL because the error is not contained anymore.
316 */
317 if (tk->addr == -EFAULT) {
318 pr_info("MCE: Unable to find user space address %lx in %s\n",
319 page_to_pfn(p), tsk->comm);
320 tk->addr_valid = 0;
321 }
322 get_task_struct(tsk);
323 tk->tsk = tsk;
324 list_add_tail(&tk->nd, to_kill);
325 }
326
327 /*
328 * Kill the processes that have been collected earlier.
329 *
330 * Only do anything when DOIT is set, otherwise just free the list
331 * (this is used for clean pages which do not need killing)
332 * Also when FAIL is set do a force kill because something went
333 * wrong earlier.
334 */
335 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
336 int fail, struct page *page, unsigned long pfn,
337 int flags)
338 {
339 struct to_kill *tk, *next;
340
341 list_for_each_entry_safe (tk, next, to_kill, nd) {
342 if (forcekill) {
343 /*
344 * In case something went wrong with munmapping
345 * make sure the process doesn't catch the
346 * signal and then access the memory. Just kill it.
347 */
348 if (fail || tk->addr_valid == 0) {
349 printk(KERN_ERR
350 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
351 pfn, tk->tsk->comm, tk->tsk->pid);
352 force_sig(SIGKILL, tk->tsk);
353 }
354
355 /*
356 * In theory the process could have mapped
357 * something else on the address in-between. We could
358 * check for that, but we need to tell the
359 * process anyways.
360 */
361 else if (kill_proc(tk->tsk, tk->addr, trapno,
362 pfn, page, flags) < 0)
363 printk(KERN_ERR
364 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
365 pfn, tk->tsk->comm, tk->tsk->pid);
366 }
367 put_task_struct(tk->tsk);
368 kfree(tk);
369 }
370 }
371
372 /*
373 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
374 * on behalf of the thread group. Return task_struct of the (first found)
375 * dedicated thread if found, and return NULL otherwise.
376 *
377 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
378 * have to call rcu_read_lock/unlock() in this function.
379 */
380 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
381 {
382 struct task_struct *t;
383
384 for_each_thread(tsk, t)
385 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
386 return t;
387 return NULL;
388 }
389
390 /*
391 * Determine whether a given process is "early kill" process which expects
392 * to be signaled when some page under the process is hwpoisoned.
393 * Return task_struct of the dedicated thread (main thread unless explicitly
394 * specified) if the process is "early kill," and otherwise returns NULL.
395 */
396 static struct task_struct *task_early_kill(struct task_struct *tsk,
397 int force_early)
398 {
399 struct task_struct *t;
400 if (!tsk->mm)
401 return NULL;
402 if (force_early)
403 return tsk;
404 t = find_early_kill_thread(tsk);
405 if (t)
406 return t;
407 if (sysctl_memory_failure_early_kill)
408 return tsk;
409 return NULL;
410 }
411
412 /*
413 * Collect processes when the error hit an anonymous page.
414 */
415 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
416 struct to_kill **tkc, int force_early)
417 {
418 struct vm_area_struct *vma;
419 struct task_struct *tsk;
420 struct anon_vma *av;
421 pgoff_t pgoff;
422
423 av = page_lock_anon_vma_read(page);
424 if (av == NULL) /* Not actually mapped anymore */
425 return;
426
427 pgoff = page_to_pgoff(page);
428 read_lock(&tasklist_lock);
429 for_each_process (tsk) {
430 struct anon_vma_chain *vmac;
431 struct task_struct *t = task_early_kill(tsk, force_early);
432
433 if (!t)
434 continue;
435 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
436 pgoff, pgoff) {
437 vma = vmac->vma;
438 if (!page_mapped_in_vma(page, vma))
439 continue;
440 if (vma->vm_mm == t->mm)
441 add_to_kill(t, page, vma, to_kill, tkc);
442 }
443 }
444 read_unlock(&tasklist_lock);
445 page_unlock_anon_vma_read(av);
446 }
447
448 /*
449 * Collect processes when the error hit a file mapped page.
450 */
451 static void collect_procs_file(struct page *page, struct list_head *to_kill,
452 struct to_kill **tkc, int force_early)
453 {
454 struct vm_area_struct *vma;
455 struct task_struct *tsk;
456 struct address_space *mapping = page->mapping;
457
458 i_mmap_lock_read(mapping);
459 read_lock(&tasklist_lock);
460 for_each_process(tsk) {
461 pgoff_t pgoff = page_to_pgoff(page);
462 struct task_struct *t = task_early_kill(tsk, force_early);
463
464 if (!t)
465 continue;
466 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
467 pgoff) {
468 /*
469 * Send early kill signal to tasks where a vma covers
470 * the page but the corrupted page is not necessarily
471 * mapped it in its pte.
472 * Assume applications who requested early kill want
473 * to be informed of all such data corruptions.
474 */
475 if (vma->vm_mm == t->mm)
476 add_to_kill(t, page, vma, to_kill, tkc);
477 }
478 }
479 read_unlock(&tasklist_lock);
480 i_mmap_unlock_read(mapping);
481 }
482
483 /*
484 * Collect the processes who have the corrupted page mapped to kill.
485 * This is done in two steps for locking reasons.
486 * First preallocate one tokill structure outside the spin locks,
487 * so that we can kill at least one process reasonably reliable.
488 */
489 static void collect_procs(struct page *page, struct list_head *tokill,
490 int force_early)
491 {
492 struct to_kill *tk;
493
494 if (!page->mapping)
495 return;
496
497 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
498 if (!tk)
499 return;
500 if (PageAnon(page))
501 collect_procs_anon(page, tokill, &tk, force_early);
502 else
503 collect_procs_file(page, tokill, &tk, force_early);
504 kfree(tk);
505 }
506
507 static const char *action_name[] = {
508 [MF_IGNORED] = "Ignored",
509 [MF_FAILED] = "Failed",
510 [MF_DELAYED] = "Delayed",
511 [MF_RECOVERED] = "Recovered",
512 };
513
514 static const char * const action_page_types[] = {
515 [MF_MSG_KERNEL] = "reserved kernel page",
516 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
517 [MF_MSG_SLAB] = "kernel slab page",
518 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
519 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
520 [MF_MSG_HUGE] = "huge page",
521 [MF_MSG_FREE_HUGE] = "free huge page",
522 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
523 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
524 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
525 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
526 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
527 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
528 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
529 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
530 [MF_MSG_CLEAN_LRU] = "clean LRU page",
531 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
532 [MF_MSG_BUDDY] = "free buddy page",
533 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
534 [MF_MSG_UNKNOWN] = "unknown page",
535 };
536
537 /*
538 * XXX: It is possible that a page is isolated from LRU cache,
539 * and then kept in swap cache or failed to remove from page cache.
540 * The page count will stop it from being freed by unpoison.
541 * Stress tests should be aware of this memory leak problem.
542 */
543 static int delete_from_lru_cache(struct page *p)
544 {
545 if (!isolate_lru_page(p)) {
546 /*
547 * Clear sensible page flags, so that the buddy system won't
548 * complain when the page is unpoison-and-freed.
549 */
550 ClearPageActive(p);
551 ClearPageUnevictable(p);
552 /*
553 * drop the page count elevated by isolate_lru_page()
554 */
555 page_cache_release(p);
556 return 0;
557 }
558 return -EIO;
559 }
560
561 /*
562 * Error hit kernel page.
563 * Do nothing, try to be lucky and not touch this instead. For a few cases we
564 * could be more sophisticated.
565 */
566 static int me_kernel(struct page *p, unsigned long pfn)
567 {
568 return MF_IGNORED;
569 }
570
571 /*
572 * Page in unknown state. Do nothing.
573 */
574 static int me_unknown(struct page *p, unsigned long pfn)
575 {
576 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
577 return MF_FAILED;
578 }
579
580 /*
581 * Clean (or cleaned) page cache page.
582 */
583 static int me_pagecache_clean(struct page *p, unsigned long pfn)
584 {
585 int err;
586 int ret = MF_FAILED;
587 struct address_space *mapping;
588
589 delete_from_lru_cache(p);
590
591 /*
592 * For anonymous pages we're done the only reference left
593 * should be the one m_f() holds.
594 */
595 if (PageAnon(p))
596 return MF_RECOVERED;
597
598 /*
599 * Now truncate the page in the page cache. This is really
600 * more like a "temporary hole punch"
601 * Don't do this for block devices when someone else
602 * has a reference, because it could be file system metadata
603 * and that's not safe to truncate.
604 */
605 mapping = page_mapping(p);
606 if (!mapping) {
607 /*
608 * Page has been teared down in the meanwhile
609 */
610 return MF_FAILED;
611 }
612
613 /*
614 * Truncation is a bit tricky. Enable it per file system for now.
615 *
616 * Open: to take i_mutex or not for this? Right now we don't.
617 */
618 if (mapping->a_ops->error_remove_page) {
619 err = mapping->a_ops->error_remove_page(mapping, p);
620 if (err != 0) {
621 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
622 pfn, err);
623 } else if (page_has_private(p) &&
624 !try_to_release_page(p, GFP_NOIO)) {
625 pr_info("MCE %#lx: failed to release buffers\n", pfn);
626 } else {
627 ret = MF_RECOVERED;
628 }
629 } else {
630 /*
631 * If the file system doesn't support it just invalidate
632 * This fails on dirty or anything with private pages
633 */
634 if (invalidate_inode_page(p))
635 ret = MF_RECOVERED;
636 else
637 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
638 pfn);
639 }
640 return ret;
641 }
642
643 /*
644 * Dirty pagecache page
645 * Issues: when the error hit a hole page the error is not properly
646 * propagated.
647 */
648 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
649 {
650 struct address_space *mapping = page_mapping(p);
651
652 SetPageError(p);
653 /* TBD: print more information about the file. */
654 if (mapping) {
655 /*
656 * IO error will be reported by write(), fsync(), etc.
657 * who check the mapping.
658 * This way the application knows that something went
659 * wrong with its dirty file data.
660 *
661 * There's one open issue:
662 *
663 * The EIO will be only reported on the next IO
664 * operation and then cleared through the IO map.
665 * Normally Linux has two mechanisms to pass IO error
666 * first through the AS_EIO flag in the address space
667 * and then through the PageError flag in the page.
668 * Since we drop pages on memory failure handling the
669 * only mechanism open to use is through AS_AIO.
670 *
671 * This has the disadvantage that it gets cleared on
672 * the first operation that returns an error, while
673 * the PageError bit is more sticky and only cleared
674 * when the page is reread or dropped. If an
675 * application assumes it will always get error on
676 * fsync, but does other operations on the fd before
677 * and the page is dropped between then the error
678 * will not be properly reported.
679 *
680 * This can already happen even without hwpoisoned
681 * pages: first on metadata IO errors (which only
682 * report through AS_EIO) or when the page is dropped
683 * at the wrong time.
684 *
685 * So right now we assume that the application DTRT on
686 * the first EIO, but we're not worse than other parts
687 * of the kernel.
688 */
689 mapping_set_error(mapping, EIO);
690 }
691
692 return me_pagecache_clean(p, pfn);
693 }
694
695 /*
696 * Clean and dirty swap cache.
697 *
698 * Dirty swap cache page is tricky to handle. The page could live both in page
699 * cache and swap cache(ie. page is freshly swapped in). So it could be
700 * referenced concurrently by 2 types of PTEs:
701 * normal PTEs and swap PTEs. We try to handle them consistently by calling
702 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
703 * and then
704 * - clear dirty bit to prevent IO
705 * - remove from LRU
706 * - but keep in the swap cache, so that when we return to it on
707 * a later page fault, we know the application is accessing
708 * corrupted data and shall be killed (we installed simple
709 * interception code in do_swap_page to catch it).
710 *
711 * Clean swap cache pages can be directly isolated. A later page fault will
712 * bring in the known good data from disk.
713 */
714 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
715 {
716 ClearPageDirty(p);
717 /* Trigger EIO in shmem: */
718 ClearPageUptodate(p);
719
720 if (!delete_from_lru_cache(p))
721 return MF_DELAYED;
722 else
723 return MF_FAILED;
724 }
725
726 static int me_swapcache_clean(struct page *p, unsigned long pfn)
727 {
728 delete_from_swap_cache(p);
729
730 if (!delete_from_lru_cache(p))
731 return MF_RECOVERED;
732 else
733 return MF_FAILED;
734 }
735
736 /*
737 * Huge pages. Needs work.
738 * Issues:
739 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
740 * To narrow down kill region to one page, we need to break up pmd.
741 */
742 static int me_huge_page(struct page *p, unsigned long pfn)
743 {
744 int res = 0;
745 struct page *hpage = compound_head(p);
746
747 if (!PageHuge(hpage))
748 return MF_DELAYED;
749
750 /*
751 * We can safely recover from error on free or reserved (i.e.
752 * not in-use) hugepage by dequeuing it from freelist.
753 * To check whether a hugepage is in-use or not, we can't use
754 * page->lru because it can be used in other hugepage operations,
755 * such as __unmap_hugepage_range() and gather_surplus_pages().
756 * So instead we use page_mapping() and PageAnon().
757 * We assume that this function is called with page lock held,
758 * so there is no race between isolation and mapping/unmapping.
759 */
760 if (!(page_mapping(hpage) || PageAnon(hpage))) {
761 res = dequeue_hwpoisoned_huge_page(hpage);
762 if (!res)
763 return MF_RECOVERED;
764 }
765 return MF_DELAYED;
766 }
767
768 /*
769 * Various page states we can handle.
770 *
771 * A page state is defined by its current page->flags bits.
772 * The table matches them in order and calls the right handler.
773 *
774 * This is quite tricky because we can access page at any time
775 * in its live cycle, so all accesses have to be extremely careful.
776 *
777 * This is not complete. More states could be added.
778 * For any missing state don't attempt recovery.
779 */
780
781 #define dirty (1UL << PG_dirty)
782 #define sc (1UL << PG_swapcache)
783 #define unevict (1UL << PG_unevictable)
784 #define mlock (1UL << PG_mlocked)
785 #define writeback (1UL << PG_writeback)
786 #define lru (1UL << PG_lru)
787 #define swapbacked (1UL << PG_swapbacked)
788 #define head (1UL << PG_head)
789 #define tail (1UL << PG_tail)
790 #define compound (1UL << PG_compound)
791 #define slab (1UL << PG_slab)
792 #define reserved (1UL << PG_reserved)
793
794 static struct page_state {
795 unsigned long mask;
796 unsigned long res;
797 enum mf_action_page_type type;
798 int (*action)(struct page *p, unsigned long pfn);
799 } error_states[] = {
800 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
801 /*
802 * free pages are specially detected outside this table:
803 * PG_buddy pages only make a small fraction of all free pages.
804 */
805
806 /*
807 * Could in theory check if slab page is free or if we can drop
808 * currently unused objects without touching them. But just
809 * treat it as standard kernel for now.
810 */
811 { slab, slab, MF_MSG_SLAB, me_kernel },
812
813 #ifdef CONFIG_PAGEFLAGS_EXTENDED
814 { head, head, MF_MSG_HUGE, me_huge_page },
815 { tail, tail, MF_MSG_HUGE, me_huge_page },
816 #else
817 { compound, compound, MF_MSG_HUGE, me_huge_page },
818 #endif
819
820 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
821 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
822
823 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
824 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
825
826 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
827 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
828
829 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
830 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
831
832 /*
833 * Catchall entry: must be at end.
834 */
835 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
836 };
837
838 #undef dirty
839 #undef sc
840 #undef unevict
841 #undef mlock
842 #undef writeback
843 #undef lru
844 #undef swapbacked
845 #undef head
846 #undef tail
847 #undef compound
848 #undef slab
849 #undef reserved
850
851 /*
852 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
853 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
854 */
855 static void action_result(unsigned long pfn, enum mf_action_page_type type, int result)
856 {
857 pr_err("MCE %#lx: recovery action for %s: %s\n",
858 pfn, action_page_types[type], action_name[result]);
859 }
860
861 static int page_action(struct page_state *ps, struct page *p,
862 unsigned long pfn)
863 {
864 int result;
865 int count;
866
867 result = ps->action(p, pfn);
868
869 count = page_count(p) - 1;
870 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
871 count--;
872 if (count != 0) {
873 printk(KERN_ERR
874 "MCE %#lx: %s still referenced by %d users\n",
875 pfn, action_page_types[ps->type], count);
876 result = MF_FAILED;
877 }
878 action_result(pfn, ps->type, result);
879
880 /* Could do more checks here if page looks ok */
881 /*
882 * Could adjust zone counters here to correct for the missing page.
883 */
884
885 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
886 }
887
888 /**
889 * get_hwpoison_page() - Get refcount for memory error handling:
890 * @page: raw error page (hit by memory error)
891 *
892 * Return: return 0 if failed to grab the refcount, otherwise true (some
893 * non-zero value.)
894 */
895 int get_hwpoison_page(struct page *page)
896 {
897 struct page *head = compound_head(page);
898
899 if (PageHuge(head))
900 return get_page_unless_zero(head);
901
902 /*
903 * Thp tail page has special refcounting rule (refcount of tail pages
904 * is stored in ->_mapcount,) so we can't call get_page_unless_zero()
905 * directly for tail pages.
906 */
907 if (PageTransHuge(head)) {
908 if (get_page_unless_zero(head)) {
909 if (PageTail(page))
910 get_page(page);
911 return 1;
912 } else {
913 return 0;
914 }
915 }
916
917 return get_page_unless_zero(page);
918 }
919 EXPORT_SYMBOL_GPL(get_hwpoison_page);
920
921 /*
922 * Do all that is necessary to remove user space mappings. Unmap
923 * the pages and send SIGBUS to the processes if the data was dirty.
924 */
925 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
926 int trapno, int flags, struct page **hpagep)
927 {
928 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
929 struct address_space *mapping;
930 LIST_HEAD(tokill);
931 int ret;
932 int kill = 1, forcekill;
933 struct page *hpage = *hpagep;
934
935 /*
936 * Here we are interested only in user-mapped pages, so skip any
937 * other types of pages.
938 */
939 if (PageReserved(p) || PageSlab(p))
940 return SWAP_SUCCESS;
941 if (!(PageLRU(hpage) || PageHuge(p)))
942 return SWAP_SUCCESS;
943
944 /*
945 * This check implies we don't kill processes if their pages
946 * are in the swap cache early. Those are always late kills.
947 */
948 if (!page_mapped(hpage))
949 return SWAP_SUCCESS;
950
951 if (PageKsm(p)) {
952 pr_err("MCE %#lx: can't handle KSM pages.\n", pfn);
953 return SWAP_FAIL;
954 }
955
956 if (PageSwapCache(p)) {
957 printk(KERN_ERR
958 "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
959 ttu |= TTU_IGNORE_HWPOISON;
960 }
961
962 /*
963 * Propagate the dirty bit from PTEs to struct page first, because we
964 * need this to decide if we should kill or just drop the page.
965 * XXX: the dirty test could be racy: set_page_dirty() may not always
966 * be called inside page lock (it's recommended but not enforced).
967 */
968 mapping = page_mapping(hpage);
969 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
970 mapping_cap_writeback_dirty(mapping)) {
971 if (page_mkclean(hpage)) {
972 SetPageDirty(hpage);
973 } else {
974 kill = 0;
975 ttu |= TTU_IGNORE_HWPOISON;
976 printk(KERN_INFO
977 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
978 pfn);
979 }
980 }
981
982 /*
983 * First collect all the processes that have the page
984 * mapped in dirty form. This has to be done before try_to_unmap,
985 * because ttu takes the rmap data structures down.
986 *
987 * Error handling: We ignore errors here because
988 * there's nothing that can be done.
989 */
990 if (kill)
991 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
992
993 ret = try_to_unmap(hpage, ttu);
994 if (ret != SWAP_SUCCESS)
995 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
996 pfn, page_mapcount(hpage));
997
998 /*
999 * Now that the dirty bit has been propagated to the
1000 * struct page and all unmaps done we can decide if
1001 * killing is needed or not. Only kill when the page
1002 * was dirty or the process is not restartable,
1003 * otherwise the tokill list is merely
1004 * freed. When there was a problem unmapping earlier
1005 * use a more force-full uncatchable kill to prevent
1006 * any accesses to the poisoned memory.
1007 */
1008 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1009 kill_procs(&tokill, forcekill, trapno,
1010 ret != SWAP_SUCCESS, p, pfn, flags);
1011
1012 return ret;
1013 }
1014
1015 static void set_page_hwpoison_huge_page(struct page *hpage)
1016 {
1017 int i;
1018 int nr_pages = 1 << compound_order(hpage);
1019 for (i = 0; i < nr_pages; i++)
1020 SetPageHWPoison(hpage + i);
1021 }
1022
1023 static void clear_page_hwpoison_huge_page(struct page *hpage)
1024 {
1025 int i;
1026 int nr_pages = 1 << compound_order(hpage);
1027 for (i = 0; i < nr_pages; i++)
1028 ClearPageHWPoison(hpage + i);
1029 }
1030
1031 /**
1032 * memory_failure - Handle memory failure of a page.
1033 * @pfn: Page Number of the corrupted page
1034 * @trapno: Trap number reported in the signal to user space.
1035 * @flags: fine tune action taken
1036 *
1037 * This function is called by the low level machine check code
1038 * of an architecture when it detects hardware memory corruption
1039 * of a page. It tries its best to recover, which includes
1040 * dropping pages, killing processes etc.
1041 *
1042 * The function is primarily of use for corruptions that
1043 * happen outside the current execution context (e.g. when
1044 * detected by a background scrubber)
1045 *
1046 * Must run in process context (e.g. a work queue) with interrupts
1047 * enabled and no spinlocks hold.
1048 */
1049 int memory_failure(unsigned long pfn, int trapno, int flags)
1050 {
1051 struct page_state *ps;
1052 struct page *p;
1053 struct page *hpage;
1054 struct page *orig_head;
1055 int res;
1056 unsigned int nr_pages;
1057 unsigned long page_flags;
1058
1059 if (!sysctl_memory_failure_recovery)
1060 panic("Memory failure from trap %d on page %lx", trapno, pfn);
1061
1062 if (!pfn_valid(pfn)) {
1063 printk(KERN_ERR
1064 "MCE %#lx: memory outside kernel control\n",
1065 pfn);
1066 return -ENXIO;
1067 }
1068
1069 p = pfn_to_page(pfn);
1070 orig_head = hpage = compound_head(p);
1071 if (TestSetPageHWPoison(p)) {
1072 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1073 return 0;
1074 }
1075
1076 /*
1077 * Currently errors on hugetlbfs pages are measured in hugepage units,
1078 * so nr_pages should be 1 << compound_order. OTOH when errors are on
1079 * transparent hugepages, they are supposed to be split and error
1080 * measurement is done in normal page units. So nr_pages should be one
1081 * in this case.
1082 */
1083 if (PageHuge(p))
1084 nr_pages = 1 << compound_order(hpage);
1085 else /* normal page or thp */
1086 nr_pages = 1;
1087 atomic_long_add(nr_pages, &num_poisoned_pages);
1088
1089 /*
1090 * We need/can do nothing about count=0 pages.
1091 * 1) it's a free page, and therefore in safe hand:
1092 * prep_new_page() will be the gate keeper.
1093 * 2) it's a free hugepage, which is also safe:
1094 * an affected hugepage will be dequeued from hugepage freelist,
1095 * so there's no concern about reusing it ever after.
1096 * 3) it's part of a non-compound high order page.
1097 * Implies some kernel user: cannot stop them from
1098 * R/W the page; let's pray that the page has been
1099 * used and will be freed some time later.
1100 * In fact it's dangerous to directly bump up page count from 0,
1101 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1102 */
1103 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1104 if (is_free_buddy_page(p)) {
1105 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1106 return 0;
1107 } else if (PageHuge(hpage)) {
1108 /*
1109 * Check "filter hit" and "race with other subpage."
1110 */
1111 lock_page(hpage);
1112 if (PageHWPoison(hpage)) {
1113 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1114 || (p != hpage && TestSetPageHWPoison(hpage))) {
1115 atomic_long_sub(nr_pages, &num_poisoned_pages);
1116 unlock_page(hpage);
1117 return 0;
1118 }
1119 }
1120 set_page_hwpoison_huge_page(hpage);
1121 res = dequeue_hwpoisoned_huge_page(hpage);
1122 action_result(pfn, MF_MSG_FREE_HUGE,
1123 res ? MF_IGNORED : MF_DELAYED);
1124 unlock_page(hpage);
1125 return res;
1126 } else {
1127 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1128 return -EBUSY;
1129 }
1130 }
1131
1132 if (!PageHuge(p) && PageTransHuge(hpage)) {
1133 if (!PageAnon(hpage)) {
1134 pr_err("MCE: %#lx: non anonymous thp\n", pfn);
1135 if (TestClearPageHWPoison(p))
1136 atomic_long_sub(nr_pages, &num_poisoned_pages);
1137 put_page(p);
1138 if (p != hpage)
1139 put_page(hpage);
1140 return -EBUSY;
1141 }
1142 if (unlikely(split_huge_page(hpage))) {
1143 pr_err("MCE: %#lx: thp split failed\n", pfn);
1144 if (TestClearPageHWPoison(p))
1145 atomic_long_sub(nr_pages, &num_poisoned_pages);
1146 put_page(p);
1147 if (p != hpage)
1148 put_page(hpage);
1149 return -EBUSY;
1150 }
1151 VM_BUG_ON_PAGE(!page_count(p), p);
1152 hpage = compound_head(p);
1153 }
1154
1155 /*
1156 * We ignore non-LRU pages for good reasons.
1157 * - PG_locked is only well defined for LRU pages and a few others
1158 * - to avoid races with __set_page_locked()
1159 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1160 * The check (unnecessarily) ignores LRU pages being isolated and
1161 * walked by the page reclaim code, however that's not a big loss.
1162 */
1163 if (!PageHuge(p)) {
1164 if (!PageLRU(p))
1165 shake_page(p, 0);
1166 if (!PageLRU(p)) {
1167 /*
1168 * shake_page could have turned it free.
1169 */
1170 if (is_free_buddy_page(p)) {
1171 if (flags & MF_COUNT_INCREASED)
1172 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1173 else
1174 action_result(pfn, MF_MSG_BUDDY_2ND,
1175 MF_DELAYED);
1176 return 0;
1177 }
1178 }
1179 }
1180
1181 lock_page(hpage);
1182
1183 /*
1184 * The page could have changed compound pages during the locking.
1185 * If this happens just bail out.
1186 */
1187 if (PageCompound(p) && compound_head(p) != orig_head) {
1188 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1189 res = -EBUSY;
1190 goto out;
1191 }
1192
1193 /*
1194 * We use page flags to determine what action should be taken, but
1195 * the flags can be modified by the error containment action. One
1196 * example is an mlocked page, where PG_mlocked is cleared by
1197 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1198 * correctly, we save a copy of the page flags at this time.
1199 */
1200 page_flags = p->flags;
1201
1202 /*
1203 * unpoison always clear PG_hwpoison inside page lock
1204 */
1205 if (!PageHWPoison(p)) {
1206 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1207 atomic_long_sub(nr_pages, &num_poisoned_pages);
1208 put_page(hpage);
1209 res = 0;
1210 goto out;
1211 }
1212 if (hwpoison_filter(p)) {
1213 if (TestClearPageHWPoison(p))
1214 atomic_long_sub(nr_pages, &num_poisoned_pages);
1215 unlock_page(hpage);
1216 put_page(hpage);
1217 return 0;
1218 }
1219
1220 if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1221 goto identify_page_state;
1222
1223 /*
1224 * For error on the tail page, we should set PG_hwpoison
1225 * on the head page to show that the hugepage is hwpoisoned
1226 */
1227 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1228 action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED);
1229 unlock_page(hpage);
1230 put_page(hpage);
1231 return 0;
1232 }
1233 /*
1234 * Set PG_hwpoison on all pages in an error hugepage,
1235 * because containment is done in hugepage unit for now.
1236 * Since we have done TestSetPageHWPoison() for the head page with
1237 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1238 */
1239 if (PageHuge(p))
1240 set_page_hwpoison_huge_page(hpage);
1241
1242 /*
1243 * It's very difficult to mess with pages currently under IO
1244 * and in many cases impossible, so we just avoid it here.
1245 */
1246 wait_on_page_writeback(p);
1247
1248 /*
1249 * Now take care of user space mappings.
1250 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1251 *
1252 * When the raw error page is thp tail page, hpage points to the raw
1253 * page after thp split.
1254 */
1255 if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1256 != SWAP_SUCCESS) {
1257 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1258 res = -EBUSY;
1259 goto out;
1260 }
1261
1262 /*
1263 * Torn down by someone else?
1264 */
1265 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1266 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1267 res = -EBUSY;
1268 goto out;
1269 }
1270
1271 identify_page_state:
1272 res = -EBUSY;
1273 /*
1274 * The first check uses the current page flags which may not have any
1275 * relevant information. The second check with the saved page flagss is
1276 * carried out only if the first check can't determine the page status.
1277 */
1278 for (ps = error_states;; ps++)
1279 if ((p->flags & ps->mask) == ps->res)
1280 break;
1281
1282 page_flags |= (p->flags & (1UL << PG_dirty));
1283
1284 if (!ps->mask)
1285 for (ps = error_states;; ps++)
1286 if ((page_flags & ps->mask) == ps->res)
1287 break;
1288 res = page_action(ps, p, pfn);
1289 out:
1290 unlock_page(hpage);
1291 return res;
1292 }
1293 EXPORT_SYMBOL_GPL(memory_failure);
1294
1295 #define MEMORY_FAILURE_FIFO_ORDER 4
1296 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1297
1298 struct memory_failure_entry {
1299 unsigned long pfn;
1300 int trapno;
1301 int flags;
1302 };
1303
1304 struct memory_failure_cpu {
1305 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1306 MEMORY_FAILURE_FIFO_SIZE);
1307 spinlock_t lock;
1308 struct work_struct work;
1309 };
1310
1311 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1312
1313 /**
1314 * memory_failure_queue - Schedule handling memory failure of a page.
1315 * @pfn: Page Number of the corrupted page
1316 * @trapno: Trap number reported in the signal to user space.
1317 * @flags: Flags for memory failure handling
1318 *
1319 * This function is called by the low level hardware error handler
1320 * when it detects hardware memory corruption of a page. It schedules
1321 * the recovering of error page, including dropping pages, killing
1322 * processes etc.
1323 *
1324 * The function is primarily of use for corruptions that
1325 * happen outside the current execution context (e.g. when
1326 * detected by a background scrubber)
1327 *
1328 * Can run in IRQ context.
1329 */
1330 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1331 {
1332 struct memory_failure_cpu *mf_cpu;
1333 unsigned long proc_flags;
1334 struct memory_failure_entry entry = {
1335 .pfn = pfn,
1336 .trapno = trapno,
1337 .flags = flags,
1338 };
1339
1340 mf_cpu = &get_cpu_var(memory_failure_cpu);
1341 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1342 if (kfifo_put(&mf_cpu->fifo, entry))
1343 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1344 else
1345 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1346 pfn);
1347 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1348 put_cpu_var(memory_failure_cpu);
1349 }
1350 EXPORT_SYMBOL_GPL(memory_failure_queue);
1351
1352 static void memory_failure_work_func(struct work_struct *work)
1353 {
1354 struct memory_failure_cpu *mf_cpu;
1355 struct memory_failure_entry entry = { 0, };
1356 unsigned long proc_flags;
1357 int gotten;
1358
1359 mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1360 for (;;) {
1361 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1362 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1363 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1364 if (!gotten)
1365 break;
1366 if (entry.flags & MF_SOFT_OFFLINE)
1367 soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1368 else
1369 memory_failure(entry.pfn, entry.trapno, entry.flags);
1370 }
1371 }
1372
1373 static int __init memory_failure_init(void)
1374 {
1375 struct memory_failure_cpu *mf_cpu;
1376 int cpu;
1377
1378 for_each_possible_cpu(cpu) {
1379 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1380 spin_lock_init(&mf_cpu->lock);
1381 INIT_KFIFO(mf_cpu->fifo);
1382 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1383 }
1384
1385 return 0;
1386 }
1387 core_initcall(memory_failure_init);
1388
1389 /**
1390 * unpoison_memory - Unpoison a previously poisoned page
1391 * @pfn: Page number of the to be unpoisoned page
1392 *
1393 * Software-unpoison a page that has been poisoned by
1394 * memory_failure() earlier.
1395 *
1396 * This is only done on the software-level, so it only works
1397 * for linux injected failures, not real hardware failures
1398 *
1399 * Returns 0 for success, otherwise -errno.
1400 */
1401 int unpoison_memory(unsigned long pfn)
1402 {
1403 struct page *page;
1404 struct page *p;
1405 int freeit = 0;
1406 unsigned int nr_pages;
1407
1408 if (!pfn_valid(pfn))
1409 return -ENXIO;
1410
1411 p = pfn_to_page(pfn);
1412 page = compound_head(p);
1413
1414 if (!PageHWPoison(p)) {
1415 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1416 return 0;
1417 }
1418
1419 /*
1420 * unpoison_memory() can encounter thp only when the thp is being
1421 * worked by memory_failure() and the page lock is not held yet.
1422 * In such case, we yield to memory_failure() and make unpoison fail.
1423 */
1424 if (!PageHuge(page) && PageTransHuge(page)) {
1425 pr_info("MCE: Memory failure is now running on %#lx\n", pfn);
1426 return 0;
1427 }
1428
1429 nr_pages = 1 << compound_order(page);
1430
1431 if (!get_hwpoison_page(p)) {
1432 /*
1433 * Since HWPoisoned hugepage should have non-zero refcount,
1434 * race between memory failure and unpoison seems to happen.
1435 * In such case unpoison fails and memory failure runs
1436 * to the end.
1437 */
1438 if (PageHuge(page)) {
1439 pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1440 return 0;
1441 }
1442 if (TestClearPageHWPoison(p))
1443 atomic_long_dec(&num_poisoned_pages);
1444 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1445 return 0;
1446 }
1447
1448 lock_page(page);
1449 /*
1450 * This test is racy because PG_hwpoison is set outside of page lock.
1451 * That's acceptable because that won't trigger kernel panic. Instead,
1452 * the PG_hwpoison page will be caught and isolated on the entrance to
1453 * the free buddy page pool.
1454 */
1455 if (TestClearPageHWPoison(page)) {
1456 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1457 atomic_long_sub(nr_pages, &num_poisoned_pages);
1458 freeit = 1;
1459 if (PageHuge(page))
1460 clear_page_hwpoison_huge_page(page);
1461 }
1462 unlock_page(page);
1463
1464 put_page(page);
1465 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1466 put_page(page);
1467
1468 return 0;
1469 }
1470 EXPORT_SYMBOL(unpoison_memory);
1471
1472 static struct page *new_page(struct page *p, unsigned long private, int **x)
1473 {
1474 int nid = page_to_nid(p);
1475 if (PageHuge(p))
1476 return alloc_huge_page_node(page_hstate(compound_head(p)),
1477 nid);
1478 else
1479 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1480 }
1481
1482 /*
1483 * Safely get reference count of an arbitrary page.
1484 * Returns 0 for a free page, -EIO for a zero refcount page
1485 * that is not free, and 1 for any other page type.
1486 * For 1 the page is returned with increased page count, otherwise not.
1487 */
1488 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1489 {
1490 int ret;
1491
1492 if (flags & MF_COUNT_INCREASED)
1493 return 1;
1494
1495 /*
1496 * When the target page is a free hugepage, just remove it
1497 * from free hugepage list.
1498 */
1499 if (!get_hwpoison_page(p)) {
1500 if (PageHuge(p)) {
1501 pr_info("%s: %#lx free huge page\n", __func__, pfn);
1502 ret = 0;
1503 } else if (is_free_buddy_page(p)) {
1504 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1505 ret = 0;
1506 } else {
1507 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1508 __func__, pfn, p->flags);
1509 ret = -EIO;
1510 }
1511 } else {
1512 /* Not a free page */
1513 ret = 1;
1514 }
1515 return ret;
1516 }
1517
1518 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1519 {
1520 int ret = __get_any_page(page, pfn, flags);
1521
1522 if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1523 /*
1524 * Try to free it.
1525 */
1526 put_page(page);
1527 shake_page(page, 1);
1528
1529 /*
1530 * Did it turn free?
1531 */
1532 ret = __get_any_page(page, pfn, 0);
1533 if (!PageLRU(page)) {
1534 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1535 pfn, page->flags);
1536 return -EIO;
1537 }
1538 }
1539 return ret;
1540 }
1541
1542 static int soft_offline_huge_page(struct page *page, int flags)
1543 {
1544 int ret;
1545 unsigned long pfn = page_to_pfn(page);
1546 struct page *hpage = compound_head(page);
1547 LIST_HEAD(pagelist);
1548
1549 /*
1550 * This double-check of PageHWPoison is to avoid the race with
1551 * memory_failure(). See also comment in __soft_offline_page().
1552 */
1553 lock_page(hpage);
1554 if (PageHWPoison(hpage)) {
1555 unlock_page(hpage);
1556 put_page(hpage);
1557 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1558 return -EBUSY;
1559 }
1560 unlock_page(hpage);
1561
1562 ret = isolate_huge_page(hpage, &pagelist);
1563 if (ret) {
1564 /*
1565 * get_any_page() and isolate_huge_page() takes a refcount each,
1566 * so need to drop one here.
1567 */
1568 put_page(hpage);
1569 } else {
1570 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1571 return -EBUSY;
1572 }
1573
1574 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1575 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1576 if (ret) {
1577 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1578 pfn, ret, page->flags);
1579 /*
1580 * We know that soft_offline_huge_page() tries to migrate
1581 * only one hugepage pointed to by hpage, so we need not
1582 * run through the pagelist here.
1583 */
1584 putback_active_hugepage(hpage);
1585 if (ret > 0)
1586 ret = -EIO;
1587 } else {
1588 /* overcommit hugetlb page will be freed to buddy */
1589 if (PageHuge(page)) {
1590 set_page_hwpoison_huge_page(hpage);
1591 dequeue_hwpoisoned_huge_page(hpage);
1592 atomic_long_add(1 << compound_order(hpage),
1593 &num_poisoned_pages);
1594 } else {
1595 SetPageHWPoison(page);
1596 atomic_long_inc(&num_poisoned_pages);
1597 }
1598 }
1599 return ret;
1600 }
1601
1602 static int __soft_offline_page(struct page *page, int flags)
1603 {
1604 int ret;
1605 unsigned long pfn = page_to_pfn(page);
1606
1607 /*
1608 * Check PageHWPoison again inside page lock because PageHWPoison
1609 * is set by memory_failure() outside page lock. Note that
1610 * memory_failure() also double-checks PageHWPoison inside page lock,
1611 * so there's no race between soft_offline_page() and memory_failure().
1612 */
1613 lock_page(page);
1614 wait_on_page_writeback(page);
1615 if (PageHWPoison(page)) {
1616 unlock_page(page);
1617 put_page(page);
1618 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1619 return -EBUSY;
1620 }
1621 /*
1622 * Try to invalidate first. This should work for
1623 * non dirty unmapped page cache pages.
1624 */
1625 ret = invalidate_inode_page(page);
1626 unlock_page(page);
1627 /*
1628 * RED-PEN would be better to keep it isolated here, but we
1629 * would need to fix isolation locking first.
1630 */
1631 if (ret == 1) {
1632 put_page(page);
1633 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1634 SetPageHWPoison(page);
1635 atomic_long_inc(&num_poisoned_pages);
1636 return 0;
1637 }
1638
1639 /*
1640 * Simple invalidation didn't work.
1641 * Try to migrate to a new page instead. migrate.c
1642 * handles a large number of cases for us.
1643 */
1644 ret = isolate_lru_page(page);
1645 /*
1646 * Drop page reference which is came from get_any_page()
1647 * successful isolate_lru_page() already took another one.
1648 */
1649 put_page(page);
1650 if (!ret) {
1651 LIST_HEAD(pagelist);
1652 inc_zone_page_state(page, NR_ISOLATED_ANON +
1653 page_is_file_cache(page));
1654 list_add(&page->lru, &pagelist);
1655 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1656 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1657 if (ret) {
1658 if (!list_empty(&pagelist)) {
1659 list_del(&page->lru);
1660 dec_zone_page_state(page, NR_ISOLATED_ANON +
1661 page_is_file_cache(page));
1662 putback_lru_page(page);
1663 }
1664
1665 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1666 pfn, ret, page->flags);
1667 if (ret > 0)
1668 ret = -EIO;
1669 } else {
1670 SetPageHWPoison(page);
1671 atomic_long_inc(&num_poisoned_pages);
1672 }
1673 } else {
1674 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1675 pfn, ret, page_count(page), page->flags);
1676 }
1677 return ret;
1678 }
1679
1680 /**
1681 * soft_offline_page - Soft offline a page.
1682 * @page: page to offline
1683 * @flags: flags. Same as memory_failure().
1684 *
1685 * Returns 0 on success, otherwise negated errno.
1686 *
1687 * Soft offline a page, by migration or invalidation,
1688 * without killing anything. This is for the case when
1689 * a page is not corrupted yet (so it's still valid to access),
1690 * but has had a number of corrected errors and is better taken
1691 * out.
1692 *
1693 * The actual policy on when to do that is maintained by
1694 * user space.
1695 *
1696 * This should never impact any application or cause data loss,
1697 * however it might take some time.
1698 *
1699 * This is not a 100% solution for all memory, but tries to be
1700 * ``good enough'' for the majority of memory.
1701 */
1702 int soft_offline_page(struct page *page, int flags)
1703 {
1704 int ret;
1705 unsigned long pfn = page_to_pfn(page);
1706 struct page *hpage = compound_head(page);
1707
1708 if (PageHWPoison(page)) {
1709 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1710 return -EBUSY;
1711 }
1712 if (!PageHuge(page) && PageTransHuge(hpage)) {
1713 if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
1714 pr_info("soft offline: %#lx: failed to split THP\n",
1715 pfn);
1716 return -EBUSY;
1717 }
1718 }
1719
1720 get_online_mems();
1721
1722 ret = get_any_page(page, pfn, flags);
1723 put_online_mems();
1724 if (ret > 0) { /* for in-use pages */
1725 if (PageHuge(page))
1726 ret = soft_offline_huge_page(page, flags);
1727 else
1728 ret = __soft_offline_page(page, flags);
1729 } else if (ret == 0) { /* for free pages */
1730 if (PageHuge(page)) {
1731 set_page_hwpoison_huge_page(hpage);
1732 if (!dequeue_hwpoisoned_huge_page(hpage))
1733 atomic_long_add(1 << compound_order(hpage),
1734 &num_poisoned_pages);
1735 } else {
1736 if (!TestSetPageHWPoison(page))
1737 atomic_long_inc(&num_poisoned_pages);
1738 }
1739 }
1740 return ret;
1741 }
This page took 0.190287 seconds and 5 git commands to generate.