HWPOISON: Add soft page offline support
[deliverable/linux.git] / mm / memory-failure.c
1 /*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a 2bit ECC memory or cache
11 * failure.
12 *
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronous to other VM
15 * users, because memory failures could happen anytime and anywhere,
16 * possibly violating some of their assumptions. This is why this code
17 * has to be extremely careful. Generally it tries to use normal locking
18 * rules, as in get the standard locks, even if that means the
19 * error handling takes potentially a long time.
20 *
21 * The operation to map back from RMAP chains to processes has to walk
22 * the complete process list and has non linear complexity with the number
23 * mappings. In short it can be quite slow. But since memory corruptions
24 * are rare we hope to get away with this.
25 */
26
27 /*
28 * Notebook:
29 * - hugetlb needs more code
30 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
31 * - pass bad pages to kdump next kernel
32 */
33 #define DEBUG 1 /* remove me in 2.6.34 */
34 #include <linux/kernel.h>
35 #include <linux/mm.h>
36 #include <linux/page-flags.h>
37 #include <linux/kernel-page-flags.h>
38 #include <linux/sched.h>
39 #include <linux/ksm.h>
40 #include <linux/rmap.h>
41 #include <linux/pagemap.h>
42 #include <linux/swap.h>
43 #include <linux/backing-dev.h>
44 #include <linux/migrate.h>
45 #include <linux/page-isolation.h>
46 #include <linux/suspend.h>
47 #include "internal.h"
48
49 int sysctl_memory_failure_early_kill __read_mostly = 0;
50
51 int sysctl_memory_failure_recovery __read_mostly = 1;
52
53 atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
54
55 u32 hwpoison_filter_enable = 0;
56 u32 hwpoison_filter_dev_major = ~0U;
57 u32 hwpoison_filter_dev_minor = ~0U;
58 u64 hwpoison_filter_flags_mask;
59 u64 hwpoison_filter_flags_value;
60 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
61 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
62 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
63 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
64 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
65
66 static int hwpoison_filter_dev(struct page *p)
67 {
68 struct address_space *mapping;
69 dev_t dev;
70
71 if (hwpoison_filter_dev_major == ~0U &&
72 hwpoison_filter_dev_minor == ~0U)
73 return 0;
74
75 /*
76 * page_mapping() does not accept slab page
77 */
78 if (PageSlab(p))
79 return -EINVAL;
80
81 mapping = page_mapping(p);
82 if (mapping == NULL || mapping->host == NULL)
83 return -EINVAL;
84
85 dev = mapping->host->i_sb->s_dev;
86 if (hwpoison_filter_dev_major != ~0U &&
87 hwpoison_filter_dev_major != MAJOR(dev))
88 return -EINVAL;
89 if (hwpoison_filter_dev_minor != ~0U &&
90 hwpoison_filter_dev_minor != MINOR(dev))
91 return -EINVAL;
92
93 return 0;
94 }
95
96 static int hwpoison_filter_flags(struct page *p)
97 {
98 if (!hwpoison_filter_flags_mask)
99 return 0;
100
101 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
102 hwpoison_filter_flags_value)
103 return 0;
104 else
105 return -EINVAL;
106 }
107
108 /*
109 * This allows stress tests to limit test scope to a collection of tasks
110 * by putting them under some memcg. This prevents killing unrelated/important
111 * processes such as /sbin/init. Note that the target task may share clean
112 * pages with init (eg. libc text), which is harmless. If the target task
113 * share _dirty_ pages with another task B, the test scheme must make sure B
114 * is also included in the memcg. At last, due to race conditions this filter
115 * can only guarantee that the page either belongs to the memcg tasks, or is
116 * a freed page.
117 */
118 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
119 u64 hwpoison_filter_memcg;
120 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
121 static int hwpoison_filter_task(struct page *p)
122 {
123 struct mem_cgroup *mem;
124 struct cgroup_subsys_state *css;
125 unsigned long ino;
126
127 if (!hwpoison_filter_memcg)
128 return 0;
129
130 mem = try_get_mem_cgroup_from_page(p);
131 if (!mem)
132 return -EINVAL;
133
134 css = mem_cgroup_css(mem);
135 /* root_mem_cgroup has NULL dentries */
136 if (!css->cgroup->dentry)
137 return -EINVAL;
138
139 ino = css->cgroup->dentry->d_inode->i_ino;
140 css_put(css);
141
142 if (ino != hwpoison_filter_memcg)
143 return -EINVAL;
144
145 return 0;
146 }
147 #else
148 static int hwpoison_filter_task(struct page *p) { return 0; }
149 #endif
150
151 int hwpoison_filter(struct page *p)
152 {
153 if (!hwpoison_filter_enable)
154 return 0;
155
156 if (hwpoison_filter_dev(p))
157 return -EINVAL;
158
159 if (hwpoison_filter_flags(p))
160 return -EINVAL;
161
162 if (hwpoison_filter_task(p))
163 return -EINVAL;
164
165 return 0;
166 }
167 EXPORT_SYMBOL_GPL(hwpoison_filter);
168
169 /*
170 * Send all the processes who have the page mapped an ``action optional''
171 * signal.
172 */
173 static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
174 unsigned long pfn)
175 {
176 struct siginfo si;
177 int ret;
178
179 printk(KERN_ERR
180 "MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
181 pfn, t->comm, t->pid);
182 si.si_signo = SIGBUS;
183 si.si_errno = 0;
184 si.si_code = BUS_MCEERR_AO;
185 si.si_addr = (void *)addr;
186 #ifdef __ARCH_SI_TRAPNO
187 si.si_trapno = trapno;
188 #endif
189 si.si_addr_lsb = PAGE_SHIFT;
190 /*
191 * Don't use force here, it's convenient if the signal
192 * can be temporarily blocked.
193 * This could cause a loop when the user sets SIGBUS
194 * to SIG_IGN, but hopefully noone will do that?
195 */
196 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
197 if (ret < 0)
198 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
199 t->comm, t->pid, ret);
200 return ret;
201 }
202
203 /*
204 * When a unknown page type is encountered drain as many buffers as possible
205 * in the hope to turn the page into a LRU or free page, which we can handle.
206 */
207 void shake_page(struct page *p, int access)
208 {
209 if (!PageSlab(p)) {
210 lru_add_drain_all();
211 if (PageLRU(p))
212 return;
213 drain_all_pages();
214 if (PageLRU(p) || is_free_buddy_page(p))
215 return;
216 }
217
218 /*
219 * Only all shrink_slab here (which would also
220 * shrink other caches) if access is not potentially fatal.
221 */
222 if (access) {
223 int nr;
224 do {
225 nr = shrink_slab(1000, GFP_KERNEL, 1000);
226 if (page_count(p) == 0)
227 break;
228 } while (nr > 10);
229 }
230 }
231 EXPORT_SYMBOL_GPL(shake_page);
232
233 /*
234 * Kill all processes that have a poisoned page mapped and then isolate
235 * the page.
236 *
237 * General strategy:
238 * Find all processes having the page mapped and kill them.
239 * But we keep a page reference around so that the page is not
240 * actually freed yet.
241 * Then stash the page away
242 *
243 * There's no convenient way to get back to mapped processes
244 * from the VMAs. So do a brute-force search over all
245 * running processes.
246 *
247 * Remember that machine checks are not common (or rather
248 * if they are common you have other problems), so this shouldn't
249 * be a performance issue.
250 *
251 * Also there are some races possible while we get from the
252 * error detection to actually handle it.
253 */
254
255 struct to_kill {
256 struct list_head nd;
257 struct task_struct *tsk;
258 unsigned long addr;
259 unsigned addr_valid:1;
260 };
261
262 /*
263 * Failure handling: if we can't find or can't kill a process there's
264 * not much we can do. We just print a message and ignore otherwise.
265 */
266
267 /*
268 * Schedule a process for later kill.
269 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
270 * TBD would GFP_NOIO be enough?
271 */
272 static void add_to_kill(struct task_struct *tsk, struct page *p,
273 struct vm_area_struct *vma,
274 struct list_head *to_kill,
275 struct to_kill **tkc)
276 {
277 struct to_kill *tk;
278
279 if (*tkc) {
280 tk = *tkc;
281 *tkc = NULL;
282 } else {
283 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
284 if (!tk) {
285 printk(KERN_ERR
286 "MCE: Out of memory while machine check handling\n");
287 return;
288 }
289 }
290 tk->addr = page_address_in_vma(p, vma);
291 tk->addr_valid = 1;
292
293 /*
294 * In theory we don't have to kill when the page was
295 * munmaped. But it could be also a mremap. Since that's
296 * likely very rare kill anyways just out of paranoia, but use
297 * a SIGKILL because the error is not contained anymore.
298 */
299 if (tk->addr == -EFAULT) {
300 pr_debug("MCE: Unable to find user space address %lx in %s\n",
301 page_to_pfn(p), tsk->comm);
302 tk->addr_valid = 0;
303 }
304 get_task_struct(tsk);
305 tk->tsk = tsk;
306 list_add_tail(&tk->nd, to_kill);
307 }
308
309 /*
310 * Kill the processes that have been collected earlier.
311 *
312 * Only do anything when DOIT is set, otherwise just free the list
313 * (this is used for clean pages which do not need killing)
314 * Also when FAIL is set do a force kill because something went
315 * wrong earlier.
316 */
317 static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
318 int fail, unsigned long pfn)
319 {
320 struct to_kill *tk, *next;
321
322 list_for_each_entry_safe (tk, next, to_kill, nd) {
323 if (doit) {
324 /*
325 * In case something went wrong with munmapping
326 * make sure the process doesn't catch the
327 * signal and then access the memory. Just kill it.
328 * the signal handlers
329 */
330 if (fail || tk->addr_valid == 0) {
331 printk(KERN_ERR
332 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
333 pfn, tk->tsk->comm, tk->tsk->pid);
334 force_sig(SIGKILL, tk->tsk);
335 }
336
337 /*
338 * In theory the process could have mapped
339 * something else on the address in-between. We could
340 * check for that, but we need to tell the
341 * process anyways.
342 */
343 else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
344 pfn) < 0)
345 printk(KERN_ERR
346 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
347 pfn, tk->tsk->comm, tk->tsk->pid);
348 }
349 put_task_struct(tk->tsk);
350 kfree(tk);
351 }
352 }
353
354 static int task_early_kill(struct task_struct *tsk)
355 {
356 if (!tsk->mm)
357 return 0;
358 if (tsk->flags & PF_MCE_PROCESS)
359 return !!(tsk->flags & PF_MCE_EARLY);
360 return sysctl_memory_failure_early_kill;
361 }
362
363 /*
364 * Collect processes when the error hit an anonymous page.
365 */
366 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
367 struct to_kill **tkc)
368 {
369 struct vm_area_struct *vma;
370 struct task_struct *tsk;
371 struct anon_vma *av;
372
373 read_lock(&tasklist_lock);
374 av = page_lock_anon_vma(page);
375 if (av == NULL) /* Not actually mapped anymore */
376 goto out;
377 for_each_process (tsk) {
378 if (!task_early_kill(tsk))
379 continue;
380 list_for_each_entry (vma, &av->head, anon_vma_node) {
381 if (!page_mapped_in_vma(page, vma))
382 continue;
383 if (vma->vm_mm == tsk->mm)
384 add_to_kill(tsk, page, vma, to_kill, tkc);
385 }
386 }
387 page_unlock_anon_vma(av);
388 out:
389 read_unlock(&tasklist_lock);
390 }
391
392 /*
393 * Collect processes when the error hit a file mapped page.
394 */
395 static void collect_procs_file(struct page *page, struct list_head *to_kill,
396 struct to_kill **tkc)
397 {
398 struct vm_area_struct *vma;
399 struct task_struct *tsk;
400 struct prio_tree_iter iter;
401 struct address_space *mapping = page->mapping;
402
403 /*
404 * A note on the locking order between the two locks.
405 * We don't rely on this particular order.
406 * If you have some other code that needs a different order
407 * feel free to switch them around. Or add a reverse link
408 * from mm_struct to task_struct, then this could be all
409 * done without taking tasklist_lock and looping over all tasks.
410 */
411
412 read_lock(&tasklist_lock);
413 spin_lock(&mapping->i_mmap_lock);
414 for_each_process(tsk) {
415 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
416
417 if (!task_early_kill(tsk))
418 continue;
419
420 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
421 pgoff) {
422 /*
423 * Send early kill signal to tasks where a vma covers
424 * the page but the corrupted page is not necessarily
425 * mapped it in its pte.
426 * Assume applications who requested early kill want
427 * to be informed of all such data corruptions.
428 */
429 if (vma->vm_mm == tsk->mm)
430 add_to_kill(tsk, page, vma, to_kill, tkc);
431 }
432 }
433 spin_unlock(&mapping->i_mmap_lock);
434 read_unlock(&tasklist_lock);
435 }
436
437 /*
438 * Collect the processes who have the corrupted page mapped to kill.
439 * This is done in two steps for locking reasons.
440 * First preallocate one tokill structure outside the spin locks,
441 * so that we can kill at least one process reasonably reliable.
442 */
443 static void collect_procs(struct page *page, struct list_head *tokill)
444 {
445 struct to_kill *tk;
446
447 if (!page->mapping)
448 return;
449
450 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
451 if (!tk)
452 return;
453 if (PageAnon(page))
454 collect_procs_anon(page, tokill, &tk);
455 else
456 collect_procs_file(page, tokill, &tk);
457 kfree(tk);
458 }
459
460 /*
461 * Error handlers for various types of pages.
462 */
463
464 enum outcome {
465 IGNORED, /* Error: cannot be handled */
466 FAILED, /* Error: handling failed */
467 DELAYED, /* Will be handled later */
468 RECOVERED, /* Successfully recovered */
469 };
470
471 static const char *action_name[] = {
472 [IGNORED] = "Ignored",
473 [FAILED] = "Failed",
474 [DELAYED] = "Delayed",
475 [RECOVERED] = "Recovered",
476 };
477
478 /*
479 * XXX: It is possible that a page is isolated from LRU cache,
480 * and then kept in swap cache or failed to remove from page cache.
481 * The page count will stop it from being freed by unpoison.
482 * Stress tests should be aware of this memory leak problem.
483 */
484 static int delete_from_lru_cache(struct page *p)
485 {
486 if (!isolate_lru_page(p)) {
487 /*
488 * Clear sensible page flags, so that the buddy system won't
489 * complain when the page is unpoison-and-freed.
490 */
491 ClearPageActive(p);
492 ClearPageUnevictable(p);
493 /*
494 * drop the page count elevated by isolate_lru_page()
495 */
496 page_cache_release(p);
497 return 0;
498 }
499 return -EIO;
500 }
501
502 /*
503 * Error hit kernel page.
504 * Do nothing, try to be lucky and not touch this instead. For a few cases we
505 * could be more sophisticated.
506 */
507 static int me_kernel(struct page *p, unsigned long pfn)
508 {
509 return IGNORED;
510 }
511
512 /*
513 * Page in unknown state. Do nothing.
514 */
515 static int me_unknown(struct page *p, unsigned long pfn)
516 {
517 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
518 return FAILED;
519 }
520
521 /*
522 * Clean (or cleaned) page cache page.
523 */
524 static int me_pagecache_clean(struct page *p, unsigned long pfn)
525 {
526 int err;
527 int ret = FAILED;
528 struct address_space *mapping;
529
530 delete_from_lru_cache(p);
531
532 /*
533 * For anonymous pages we're done the only reference left
534 * should be the one m_f() holds.
535 */
536 if (PageAnon(p))
537 return RECOVERED;
538
539 /*
540 * Now truncate the page in the page cache. This is really
541 * more like a "temporary hole punch"
542 * Don't do this for block devices when someone else
543 * has a reference, because it could be file system metadata
544 * and that's not safe to truncate.
545 */
546 mapping = page_mapping(p);
547 if (!mapping) {
548 /*
549 * Page has been teared down in the meanwhile
550 */
551 return FAILED;
552 }
553
554 /*
555 * Truncation is a bit tricky. Enable it per file system for now.
556 *
557 * Open: to take i_mutex or not for this? Right now we don't.
558 */
559 if (mapping->a_ops->error_remove_page) {
560 err = mapping->a_ops->error_remove_page(mapping, p);
561 if (err != 0) {
562 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
563 pfn, err);
564 } else if (page_has_private(p) &&
565 !try_to_release_page(p, GFP_NOIO)) {
566 pr_debug("MCE %#lx: failed to release buffers\n", pfn);
567 } else {
568 ret = RECOVERED;
569 }
570 } else {
571 /*
572 * If the file system doesn't support it just invalidate
573 * This fails on dirty or anything with private pages
574 */
575 if (invalidate_inode_page(p))
576 ret = RECOVERED;
577 else
578 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
579 pfn);
580 }
581 return ret;
582 }
583
584 /*
585 * Dirty cache page page
586 * Issues: when the error hit a hole page the error is not properly
587 * propagated.
588 */
589 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
590 {
591 struct address_space *mapping = page_mapping(p);
592
593 SetPageError(p);
594 /* TBD: print more information about the file. */
595 if (mapping) {
596 /*
597 * IO error will be reported by write(), fsync(), etc.
598 * who check the mapping.
599 * This way the application knows that something went
600 * wrong with its dirty file data.
601 *
602 * There's one open issue:
603 *
604 * The EIO will be only reported on the next IO
605 * operation and then cleared through the IO map.
606 * Normally Linux has two mechanisms to pass IO error
607 * first through the AS_EIO flag in the address space
608 * and then through the PageError flag in the page.
609 * Since we drop pages on memory failure handling the
610 * only mechanism open to use is through AS_AIO.
611 *
612 * This has the disadvantage that it gets cleared on
613 * the first operation that returns an error, while
614 * the PageError bit is more sticky and only cleared
615 * when the page is reread or dropped. If an
616 * application assumes it will always get error on
617 * fsync, but does other operations on the fd before
618 * and the page is dropped inbetween then the error
619 * will not be properly reported.
620 *
621 * This can already happen even without hwpoisoned
622 * pages: first on metadata IO errors (which only
623 * report through AS_EIO) or when the page is dropped
624 * at the wrong time.
625 *
626 * So right now we assume that the application DTRT on
627 * the first EIO, but we're not worse than other parts
628 * of the kernel.
629 */
630 mapping_set_error(mapping, EIO);
631 }
632
633 return me_pagecache_clean(p, pfn);
634 }
635
636 /*
637 * Clean and dirty swap cache.
638 *
639 * Dirty swap cache page is tricky to handle. The page could live both in page
640 * cache and swap cache(ie. page is freshly swapped in). So it could be
641 * referenced concurrently by 2 types of PTEs:
642 * normal PTEs and swap PTEs. We try to handle them consistently by calling
643 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
644 * and then
645 * - clear dirty bit to prevent IO
646 * - remove from LRU
647 * - but keep in the swap cache, so that when we return to it on
648 * a later page fault, we know the application is accessing
649 * corrupted data and shall be killed (we installed simple
650 * interception code in do_swap_page to catch it).
651 *
652 * Clean swap cache pages can be directly isolated. A later page fault will
653 * bring in the known good data from disk.
654 */
655 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
656 {
657 ClearPageDirty(p);
658 /* Trigger EIO in shmem: */
659 ClearPageUptodate(p);
660
661 if (!delete_from_lru_cache(p))
662 return DELAYED;
663 else
664 return FAILED;
665 }
666
667 static int me_swapcache_clean(struct page *p, unsigned long pfn)
668 {
669 delete_from_swap_cache(p);
670
671 if (!delete_from_lru_cache(p))
672 return RECOVERED;
673 else
674 return FAILED;
675 }
676
677 /*
678 * Huge pages. Needs work.
679 * Issues:
680 * No rmap support so we cannot find the original mapper. In theory could walk
681 * all MMs and look for the mappings, but that would be non atomic and racy.
682 * Need rmap for hugepages for this. Alternatively we could employ a heuristic,
683 * like just walking the current process and hoping it has it mapped (that
684 * should be usually true for the common "shared database cache" case)
685 * Should handle free huge pages and dequeue them too, but this needs to
686 * handle huge page accounting correctly.
687 */
688 static int me_huge_page(struct page *p, unsigned long pfn)
689 {
690 return FAILED;
691 }
692
693 /*
694 * Various page states we can handle.
695 *
696 * A page state is defined by its current page->flags bits.
697 * The table matches them in order and calls the right handler.
698 *
699 * This is quite tricky because we can access page at any time
700 * in its live cycle, so all accesses have to be extremly careful.
701 *
702 * This is not complete. More states could be added.
703 * For any missing state don't attempt recovery.
704 */
705
706 #define dirty (1UL << PG_dirty)
707 #define sc (1UL << PG_swapcache)
708 #define unevict (1UL << PG_unevictable)
709 #define mlock (1UL << PG_mlocked)
710 #define writeback (1UL << PG_writeback)
711 #define lru (1UL << PG_lru)
712 #define swapbacked (1UL << PG_swapbacked)
713 #define head (1UL << PG_head)
714 #define tail (1UL << PG_tail)
715 #define compound (1UL << PG_compound)
716 #define slab (1UL << PG_slab)
717 #define reserved (1UL << PG_reserved)
718
719 static struct page_state {
720 unsigned long mask;
721 unsigned long res;
722 char *msg;
723 int (*action)(struct page *p, unsigned long pfn);
724 } error_states[] = {
725 { reserved, reserved, "reserved kernel", me_kernel },
726 /*
727 * free pages are specially detected outside this table:
728 * PG_buddy pages only make a small fraction of all free pages.
729 */
730
731 /*
732 * Could in theory check if slab page is free or if we can drop
733 * currently unused objects without touching them. But just
734 * treat it as standard kernel for now.
735 */
736 { slab, slab, "kernel slab", me_kernel },
737
738 #ifdef CONFIG_PAGEFLAGS_EXTENDED
739 { head, head, "huge", me_huge_page },
740 { tail, tail, "huge", me_huge_page },
741 #else
742 { compound, compound, "huge", me_huge_page },
743 #endif
744
745 { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty },
746 { sc|dirty, sc, "swapcache", me_swapcache_clean },
747
748 { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty},
749 { unevict, unevict, "unevictable LRU", me_pagecache_clean},
750
751 { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty },
752 { mlock, mlock, "mlocked LRU", me_pagecache_clean },
753
754 { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty },
755 { lru|dirty, lru, "clean LRU", me_pagecache_clean },
756
757 /*
758 * Catchall entry: must be at end.
759 */
760 { 0, 0, "unknown page state", me_unknown },
761 };
762
763 #undef dirty
764 #undef sc
765 #undef unevict
766 #undef mlock
767 #undef writeback
768 #undef lru
769 #undef swapbacked
770 #undef head
771 #undef tail
772 #undef compound
773 #undef slab
774 #undef reserved
775
776 static void action_result(unsigned long pfn, char *msg, int result)
777 {
778 struct page *page = pfn_to_page(pfn);
779
780 printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
781 pfn,
782 PageDirty(page) ? "dirty " : "",
783 msg, action_name[result]);
784 }
785
786 static int page_action(struct page_state *ps, struct page *p,
787 unsigned long pfn)
788 {
789 int result;
790 int count;
791
792 result = ps->action(p, pfn);
793 action_result(pfn, ps->msg, result);
794
795 count = page_count(p) - 1;
796 if (ps->action == me_swapcache_dirty && result == DELAYED)
797 count--;
798 if (count != 0) {
799 printk(KERN_ERR
800 "MCE %#lx: %s page still referenced by %d users\n",
801 pfn, ps->msg, count);
802 result = FAILED;
803 }
804
805 /* Could do more checks here if page looks ok */
806 /*
807 * Could adjust zone counters here to correct for the missing page.
808 */
809
810 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
811 }
812
813 #define N_UNMAP_TRIES 5
814
815 /*
816 * Do all that is necessary to remove user space mappings. Unmap
817 * the pages and send SIGBUS to the processes if the data was dirty.
818 */
819 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
820 int trapno)
821 {
822 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
823 struct address_space *mapping;
824 LIST_HEAD(tokill);
825 int ret;
826 int i;
827 int kill = 1;
828
829 if (PageReserved(p) || PageSlab(p))
830 return SWAP_SUCCESS;
831
832 /*
833 * This check implies we don't kill processes if their pages
834 * are in the swap cache early. Those are always late kills.
835 */
836 if (!page_mapped(p))
837 return SWAP_SUCCESS;
838
839 if (PageCompound(p) || PageKsm(p))
840 return SWAP_FAIL;
841
842 if (PageSwapCache(p)) {
843 printk(KERN_ERR
844 "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
845 ttu |= TTU_IGNORE_HWPOISON;
846 }
847
848 /*
849 * Propagate the dirty bit from PTEs to struct page first, because we
850 * need this to decide if we should kill or just drop the page.
851 * XXX: the dirty test could be racy: set_page_dirty() may not always
852 * be called inside page lock (it's recommended but not enforced).
853 */
854 mapping = page_mapping(p);
855 if (!PageDirty(p) && mapping && mapping_cap_writeback_dirty(mapping)) {
856 if (page_mkclean(p)) {
857 SetPageDirty(p);
858 } else {
859 kill = 0;
860 ttu |= TTU_IGNORE_HWPOISON;
861 printk(KERN_INFO
862 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
863 pfn);
864 }
865 }
866
867 /*
868 * First collect all the processes that have the page
869 * mapped in dirty form. This has to be done before try_to_unmap,
870 * because ttu takes the rmap data structures down.
871 *
872 * Error handling: We ignore errors here because
873 * there's nothing that can be done.
874 */
875 if (kill)
876 collect_procs(p, &tokill);
877
878 /*
879 * try_to_unmap can fail temporarily due to races.
880 * Try a few times (RED-PEN better strategy?)
881 */
882 for (i = 0; i < N_UNMAP_TRIES; i++) {
883 ret = try_to_unmap(p, ttu);
884 if (ret == SWAP_SUCCESS)
885 break;
886 pr_debug("MCE %#lx: try_to_unmap retry needed %d\n", pfn, ret);
887 }
888
889 if (ret != SWAP_SUCCESS)
890 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
891 pfn, page_mapcount(p));
892
893 /*
894 * Now that the dirty bit has been propagated to the
895 * struct page and all unmaps done we can decide if
896 * killing is needed or not. Only kill when the page
897 * was dirty, otherwise the tokill list is merely
898 * freed. When there was a problem unmapping earlier
899 * use a more force-full uncatchable kill to prevent
900 * any accesses to the poisoned memory.
901 */
902 kill_procs_ao(&tokill, !!PageDirty(p), trapno,
903 ret != SWAP_SUCCESS, pfn);
904
905 return ret;
906 }
907
908 int __memory_failure(unsigned long pfn, int trapno, int flags)
909 {
910 struct page_state *ps;
911 struct page *p;
912 int res;
913
914 if (!sysctl_memory_failure_recovery)
915 panic("Memory failure from trap %d on page %lx", trapno, pfn);
916
917 if (!pfn_valid(pfn)) {
918 printk(KERN_ERR
919 "MCE %#lx: memory outside kernel control\n",
920 pfn);
921 return -ENXIO;
922 }
923
924 p = pfn_to_page(pfn);
925 if (TestSetPageHWPoison(p)) {
926 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
927 return 0;
928 }
929
930 atomic_long_add(1, &mce_bad_pages);
931
932 /*
933 * We need/can do nothing about count=0 pages.
934 * 1) it's a free page, and therefore in safe hand:
935 * prep_new_page() will be the gate keeper.
936 * 2) it's part of a non-compound high order page.
937 * Implies some kernel user: cannot stop them from
938 * R/W the page; let's pray that the page has been
939 * used and will be freed some time later.
940 * In fact it's dangerous to directly bump up page count from 0,
941 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
942 */
943 if (!(flags & MF_COUNT_INCREASED) &&
944 !get_page_unless_zero(compound_head(p))) {
945 if (is_free_buddy_page(p)) {
946 action_result(pfn, "free buddy", DELAYED);
947 return 0;
948 } else {
949 action_result(pfn, "high order kernel", IGNORED);
950 return -EBUSY;
951 }
952 }
953
954 /*
955 * We ignore non-LRU pages for good reasons.
956 * - PG_locked is only well defined for LRU pages and a few others
957 * - to avoid races with __set_page_locked()
958 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
959 * The check (unnecessarily) ignores LRU pages being isolated and
960 * walked by the page reclaim code, however that's not a big loss.
961 */
962 if (!PageLRU(p))
963 shake_page(p, 0);
964 if (!PageLRU(p)) {
965 /*
966 * shake_page could have turned it free.
967 */
968 if (is_free_buddy_page(p)) {
969 action_result(pfn, "free buddy, 2nd try", DELAYED);
970 return 0;
971 }
972 action_result(pfn, "non LRU", IGNORED);
973 put_page(p);
974 return -EBUSY;
975 }
976
977 /*
978 * Lock the page and wait for writeback to finish.
979 * It's very difficult to mess with pages currently under IO
980 * and in many cases impossible, so we just avoid it here.
981 */
982 lock_page_nosync(p);
983
984 /*
985 * unpoison always clear PG_hwpoison inside page lock
986 */
987 if (!PageHWPoison(p)) {
988 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
989 res = 0;
990 goto out;
991 }
992 if (hwpoison_filter(p)) {
993 if (TestClearPageHWPoison(p))
994 atomic_long_dec(&mce_bad_pages);
995 unlock_page(p);
996 put_page(p);
997 return 0;
998 }
999
1000 wait_on_page_writeback(p);
1001
1002 /*
1003 * Now take care of user space mappings.
1004 * Abort on fail: __remove_from_page_cache() assumes unmapped page.
1005 */
1006 if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) {
1007 printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1008 res = -EBUSY;
1009 goto out;
1010 }
1011
1012 /*
1013 * Torn down by someone else?
1014 */
1015 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1016 action_result(pfn, "already truncated LRU", IGNORED);
1017 res = -EBUSY;
1018 goto out;
1019 }
1020
1021 res = -EBUSY;
1022 for (ps = error_states;; ps++) {
1023 if ((p->flags & ps->mask) == ps->res) {
1024 res = page_action(ps, p, pfn);
1025 break;
1026 }
1027 }
1028 out:
1029 unlock_page(p);
1030 return res;
1031 }
1032 EXPORT_SYMBOL_GPL(__memory_failure);
1033
1034 /**
1035 * memory_failure - Handle memory failure of a page.
1036 * @pfn: Page Number of the corrupted page
1037 * @trapno: Trap number reported in the signal to user space.
1038 *
1039 * This function is called by the low level machine check code
1040 * of an architecture when it detects hardware memory corruption
1041 * of a page. It tries its best to recover, which includes
1042 * dropping pages, killing processes etc.
1043 *
1044 * The function is primarily of use for corruptions that
1045 * happen outside the current execution context (e.g. when
1046 * detected by a background scrubber)
1047 *
1048 * Must run in process context (e.g. a work queue) with interrupts
1049 * enabled and no spinlocks hold.
1050 */
1051 void memory_failure(unsigned long pfn, int trapno)
1052 {
1053 __memory_failure(pfn, trapno, 0);
1054 }
1055
1056 /**
1057 * unpoison_memory - Unpoison a previously poisoned page
1058 * @pfn: Page number of the to be unpoisoned page
1059 *
1060 * Software-unpoison a page that has been poisoned by
1061 * memory_failure() earlier.
1062 *
1063 * This is only done on the software-level, so it only works
1064 * for linux injected failures, not real hardware failures
1065 *
1066 * Returns 0 for success, otherwise -errno.
1067 */
1068 int unpoison_memory(unsigned long pfn)
1069 {
1070 struct page *page;
1071 struct page *p;
1072 int freeit = 0;
1073
1074 if (!pfn_valid(pfn))
1075 return -ENXIO;
1076
1077 p = pfn_to_page(pfn);
1078 page = compound_head(p);
1079
1080 if (!PageHWPoison(p)) {
1081 pr_debug("MCE: Page was already unpoisoned %#lx\n", pfn);
1082 return 0;
1083 }
1084
1085 if (!get_page_unless_zero(page)) {
1086 if (TestClearPageHWPoison(p))
1087 atomic_long_dec(&mce_bad_pages);
1088 pr_debug("MCE: Software-unpoisoned free page %#lx\n", pfn);
1089 return 0;
1090 }
1091
1092 lock_page_nosync(page);
1093 /*
1094 * This test is racy because PG_hwpoison is set outside of page lock.
1095 * That's acceptable because that won't trigger kernel panic. Instead,
1096 * the PG_hwpoison page will be caught and isolated on the entrance to
1097 * the free buddy page pool.
1098 */
1099 if (TestClearPageHWPoison(p)) {
1100 pr_debug("MCE: Software-unpoisoned page %#lx\n", pfn);
1101 atomic_long_dec(&mce_bad_pages);
1102 freeit = 1;
1103 }
1104 unlock_page(page);
1105
1106 put_page(page);
1107 if (freeit)
1108 put_page(page);
1109
1110 return 0;
1111 }
1112 EXPORT_SYMBOL(unpoison_memory);
1113
1114 static struct page *new_page(struct page *p, unsigned long private, int **x)
1115 {
1116 return alloc_pages(GFP_HIGHUSER_MOVABLE, 0);
1117 }
1118
1119 /*
1120 * Safely get reference count of an arbitrary page.
1121 * Returns 0 for a free page, -EIO for a zero refcount page
1122 * that is not free, and 1 for any other page type.
1123 * For 1 the page is returned with increased page count, otherwise not.
1124 */
1125 static int get_any_page(struct page *p, unsigned long pfn, int flags)
1126 {
1127 int ret;
1128
1129 if (flags & MF_COUNT_INCREASED)
1130 return 1;
1131
1132 /*
1133 * The lock_system_sleep prevents a race with memory hotplug,
1134 * because the isolation assumes there's only a single user.
1135 * This is a big hammer, a better would be nicer.
1136 */
1137 lock_system_sleep();
1138
1139 /*
1140 * Isolate the page, so that it doesn't get reallocated if it
1141 * was free.
1142 */
1143 set_migratetype_isolate(p);
1144 if (!get_page_unless_zero(compound_head(p))) {
1145 if (is_free_buddy_page(p)) {
1146 pr_debug("get_any_page: %#lx free buddy page\n", pfn);
1147 /* Set hwpoison bit while page is still isolated */
1148 SetPageHWPoison(p);
1149 ret = 0;
1150 } else {
1151 pr_debug("get_any_page: %#lx: unknown zero refcount page type %lx\n",
1152 pfn, p->flags);
1153 ret = -EIO;
1154 }
1155 } else {
1156 /* Not a free page */
1157 ret = 1;
1158 }
1159 unset_migratetype_isolate(p);
1160 unlock_system_sleep();
1161 return ret;
1162 }
1163
1164 /**
1165 * soft_offline_page - Soft offline a page.
1166 * @page: page to offline
1167 * @flags: flags. Same as memory_failure().
1168 *
1169 * Returns 0 on success, otherwise negated errno.
1170 *
1171 * Soft offline a page, by migration or invalidation,
1172 * without killing anything. This is for the case when
1173 * a page is not corrupted yet (so it's still valid to access),
1174 * but has had a number of corrected errors and is better taken
1175 * out.
1176 *
1177 * The actual policy on when to do that is maintained by
1178 * user space.
1179 *
1180 * This should never impact any application or cause data loss,
1181 * however it might take some time.
1182 *
1183 * This is not a 100% solution for all memory, but tries to be
1184 * ``good enough'' for the majority of memory.
1185 */
1186 int soft_offline_page(struct page *page, int flags)
1187 {
1188 int ret;
1189 unsigned long pfn = page_to_pfn(page);
1190
1191 ret = get_any_page(page, pfn, flags);
1192 if (ret < 0)
1193 return ret;
1194 if (ret == 0)
1195 goto done;
1196
1197 /*
1198 * Page cache page we can handle?
1199 */
1200 if (!PageLRU(page)) {
1201 /*
1202 * Try to free it.
1203 */
1204 put_page(page);
1205 shake_page(page, 1);
1206
1207 /*
1208 * Did it turn free?
1209 */
1210 ret = get_any_page(page, pfn, 0);
1211 if (ret < 0)
1212 return ret;
1213 if (ret == 0)
1214 goto done;
1215 }
1216 if (!PageLRU(page)) {
1217 pr_debug("soft_offline: %#lx: unknown non LRU page type %lx\n",
1218 pfn, page->flags);
1219 return -EIO;
1220 }
1221
1222 lock_page(page);
1223 wait_on_page_writeback(page);
1224
1225 /*
1226 * Synchronized using the page lock with memory_failure()
1227 */
1228 if (PageHWPoison(page)) {
1229 unlock_page(page);
1230 put_page(page);
1231 pr_debug("soft offline: %#lx page already poisoned\n", pfn);
1232 return -EBUSY;
1233 }
1234
1235 /*
1236 * Try to invalidate first. This should work for
1237 * non dirty unmapped page cache pages.
1238 */
1239 ret = invalidate_inode_page(page);
1240 unlock_page(page);
1241
1242 /*
1243 * Drop count because page migration doesn't like raised
1244 * counts. The page could get re-allocated, but if it becomes
1245 * LRU the isolation will just fail.
1246 * RED-PEN would be better to keep it isolated here, but we
1247 * would need to fix isolation locking first.
1248 */
1249 put_page(page);
1250 if (ret == 1) {
1251 ret = 0;
1252 pr_debug("soft_offline: %#lx: invalidated\n", pfn);
1253 goto done;
1254 }
1255
1256 /*
1257 * Simple invalidation didn't work.
1258 * Try to migrate to a new page instead. migrate.c
1259 * handles a large number of cases for us.
1260 */
1261 ret = isolate_lru_page(page);
1262 if (!ret) {
1263 LIST_HEAD(pagelist);
1264
1265 list_add(&page->lru, &pagelist);
1266 ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0);
1267 if (ret) {
1268 pr_debug("soft offline: %#lx: migration failed %d, type %lx\n",
1269 pfn, ret, page->flags);
1270 if (ret > 0)
1271 ret = -EIO;
1272 }
1273 } else {
1274 pr_debug("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1275 pfn, ret, page_count(page), page->flags);
1276 }
1277 if (ret)
1278 return ret;
1279
1280 done:
1281 atomic_long_add(1, &mce_bad_pages);
1282 SetPageHWPoison(page);
1283 /* keep elevated page count for bad page */
1284 return ret;
1285 }
This page took 0.072345 seconds and 5 git commands to generate.