mm, hotplug: fix error handling in mem_online_node()
[deliverable/linux.git] / mm / memory-failure.c
1 /*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11 * failure.
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
15 *
16 * Handles page cache pages in various states. The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * There are several operations here with exponential complexity because
25 * of unsuitable VM data structures. For example the operation to map back
26 * from RMAP chains to processes has to walk the complete process list and
27 * has non linear complexity with the number. But since memory corruptions
28 * are rare we hope to get away with this. This avoids impacting the core
29 * VM.
30 */
31
32 /*
33 * Notebook:
34 * - hugetlb needs more code
35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36 * - pass bad pages to kdump next kernel
37 */
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/page-flags.h>
41 #include <linux/kernel-page-flags.h>
42 #include <linux/sched.h>
43 #include <linux/ksm.h>
44 #include <linux/rmap.h>
45 #include <linux/pagemap.h>
46 #include <linux/swap.h>
47 #include <linux/backing-dev.h>
48 #include <linux/migrate.h>
49 #include <linux/page-isolation.h>
50 #include <linux/suspend.h>
51 #include <linux/slab.h>
52 #include <linux/swapops.h>
53 #include <linux/hugetlb.h>
54 #include <linux/memory_hotplug.h>
55 #include <linux/mm_inline.h>
56 #include "internal.h"
57
58 int sysctl_memory_failure_early_kill __read_mostly = 0;
59
60 int sysctl_memory_failure_recovery __read_mostly = 1;
61
62 atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
63
64 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
65
66 u32 hwpoison_filter_enable = 0;
67 u32 hwpoison_filter_dev_major = ~0U;
68 u32 hwpoison_filter_dev_minor = ~0U;
69 u64 hwpoison_filter_flags_mask;
70 u64 hwpoison_filter_flags_value;
71 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
72 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
73 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
74 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
75 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
76
77 static int hwpoison_filter_dev(struct page *p)
78 {
79 struct address_space *mapping;
80 dev_t dev;
81
82 if (hwpoison_filter_dev_major == ~0U &&
83 hwpoison_filter_dev_minor == ~0U)
84 return 0;
85
86 /*
87 * page_mapping() does not accept slab pages.
88 */
89 if (PageSlab(p))
90 return -EINVAL;
91
92 mapping = page_mapping(p);
93 if (mapping == NULL || mapping->host == NULL)
94 return -EINVAL;
95
96 dev = mapping->host->i_sb->s_dev;
97 if (hwpoison_filter_dev_major != ~0U &&
98 hwpoison_filter_dev_major != MAJOR(dev))
99 return -EINVAL;
100 if (hwpoison_filter_dev_minor != ~0U &&
101 hwpoison_filter_dev_minor != MINOR(dev))
102 return -EINVAL;
103
104 return 0;
105 }
106
107 static int hwpoison_filter_flags(struct page *p)
108 {
109 if (!hwpoison_filter_flags_mask)
110 return 0;
111
112 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
113 hwpoison_filter_flags_value)
114 return 0;
115 else
116 return -EINVAL;
117 }
118
119 /*
120 * This allows stress tests to limit test scope to a collection of tasks
121 * by putting them under some memcg. This prevents killing unrelated/important
122 * processes such as /sbin/init. Note that the target task may share clean
123 * pages with init (eg. libc text), which is harmless. If the target task
124 * share _dirty_ pages with another task B, the test scheme must make sure B
125 * is also included in the memcg. At last, due to race conditions this filter
126 * can only guarantee that the page either belongs to the memcg tasks, or is
127 * a freed page.
128 */
129 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
130 u64 hwpoison_filter_memcg;
131 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
132 static int hwpoison_filter_task(struct page *p)
133 {
134 struct mem_cgroup *mem;
135 struct cgroup_subsys_state *css;
136 unsigned long ino;
137
138 if (!hwpoison_filter_memcg)
139 return 0;
140
141 mem = try_get_mem_cgroup_from_page(p);
142 if (!mem)
143 return -EINVAL;
144
145 css = mem_cgroup_css(mem);
146 /* root_mem_cgroup has NULL dentries */
147 if (!css->cgroup->dentry)
148 return -EINVAL;
149
150 ino = css->cgroup->dentry->d_inode->i_ino;
151 css_put(css);
152
153 if (ino != hwpoison_filter_memcg)
154 return -EINVAL;
155
156 return 0;
157 }
158 #else
159 static int hwpoison_filter_task(struct page *p) { return 0; }
160 #endif
161
162 int hwpoison_filter(struct page *p)
163 {
164 if (!hwpoison_filter_enable)
165 return 0;
166
167 if (hwpoison_filter_dev(p))
168 return -EINVAL;
169
170 if (hwpoison_filter_flags(p))
171 return -EINVAL;
172
173 if (hwpoison_filter_task(p))
174 return -EINVAL;
175
176 return 0;
177 }
178 #else
179 int hwpoison_filter(struct page *p)
180 {
181 return 0;
182 }
183 #endif
184
185 EXPORT_SYMBOL_GPL(hwpoison_filter);
186
187 /*
188 * Send all the processes who have the page mapped an ``action optional''
189 * signal.
190 */
191 static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
192 unsigned long pfn, struct page *page)
193 {
194 struct siginfo si;
195 int ret;
196
197 printk(KERN_ERR
198 "MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
199 pfn, t->comm, t->pid);
200 si.si_signo = SIGBUS;
201 si.si_errno = 0;
202 si.si_code = BUS_MCEERR_AO;
203 si.si_addr = (void *)addr;
204 #ifdef __ARCH_SI_TRAPNO
205 si.si_trapno = trapno;
206 #endif
207 si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT;
208 /*
209 * Don't use force here, it's convenient if the signal
210 * can be temporarily blocked.
211 * This could cause a loop when the user sets SIGBUS
212 * to SIG_IGN, but hopefully no one will do that?
213 */
214 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
215 if (ret < 0)
216 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
217 t->comm, t->pid, ret);
218 return ret;
219 }
220
221 /*
222 * When a unknown page type is encountered drain as many buffers as possible
223 * in the hope to turn the page into a LRU or free page, which we can handle.
224 */
225 void shake_page(struct page *p, int access)
226 {
227 if (!PageSlab(p)) {
228 lru_add_drain_all();
229 if (PageLRU(p))
230 return;
231 drain_all_pages();
232 if (PageLRU(p) || is_free_buddy_page(p))
233 return;
234 }
235
236 /*
237 * Only call shrink_slab here (which would also shrink other caches) if
238 * access is not potentially fatal.
239 */
240 if (access) {
241 int nr;
242 do {
243 struct shrink_control shrink = {
244 .gfp_mask = GFP_KERNEL,
245 };
246
247 nr = shrink_slab(&shrink, 1000, 1000);
248 if (page_count(p) == 1)
249 break;
250 } while (nr > 10);
251 }
252 }
253 EXPORT_SYMBOL_GPL(shake_page);
254
255 /*
256 * Kill all processes that have a poisoned page mapped and then isolate
257 * the page.
258 *
259 * General strategy:
260 * Find all processes having the page mapped and kill them.
261 * But we keep a page reference around so that the page is not
262 * actually freed yet.
263 * Then stash the page away
264 *
265 * There's no convenient way to get back to mapped processes
266 * from the VMAs. So do a brute-force search over all
267 * running processes.
268 *
269 * Remember that machine checks are not common (or rather
270 * if they are common you have other problems), so this shouldn't
271 * be a performance issue.
272 *
273 * Also there are some races possible while we get from the
274 * error detection to actually handle it.
275 */
276
277 struct to_kill {
278 struct list_head nd;
279 struct task_struct *tsk;
280 unsigned long addr;
281 char addr_valid;
282 };
283
284 /*
285 * Failure handling: if we can't find or can't kill a process there's
286 * not much we can do. We just print a message and ignore otherwise.
287 */
288
289 /*
290 * Schedule a process for later kill.
291 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
292 * TBD would GFP_NOIO be enough?
293 */
294 static void add_to_kill(struct task_struct *tsk, struct page *p,
295 struct vm_area_struct *vma,
296 struct list_head *to_kill,
297 struct to_kill **tkc)
298 {
299 struct to_kill *tk;
300
301 if (*tkc) {
302 tk = *tkc;
303 *tkc = NULL;
304 } else {
305 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
306 if (!tk) {
307 printk(KERN_ERR
308 "MCE: Out of memory while machine check handling\n");
309 return;
310 }
311 }
312 tk->addr = page_address_in_vma(p, vma);
313 tk->addr_valid = 1;
314
315 /*
316 * In theory we don't have to kill when the page was
317 * munmaped. But it could be also a mremap. Since that's
318 * likely very rare kill anyways just out of paranoia, but use
319 * a SIGKILL because the error is not contained anymore.
320 */
321 if (tk->addr == -EFAULT) {
322 pr_info("MCE: Unable to find user space address %lx in %s\n",
323 page_to_pfn(p), tsk->comm);
324 tk->addr_valid = 0;
325 }
326 get_task_struct(tsk);
327 tk->tsk = tsk;
328 list_add_tail(&tk->nd, to_kill);
329 }
330
331 /*
332 * Kill the processes that have been collected earlier.
333 *
334 * Only do anything when DOIT is set, otherwise just free the list
335 * (this is used for clean pages which do not need killing)
336 * Also when FAIL is set do a force kill because something went
337 * wrong earlier.
338 */
339 static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
340 int fail, struct page *page, unsigned long pfn)
341 {
342 struct to_kill *tk, *next;
343
344 list_for_each_entry_safe (tk, next, to_kill, nd) {
345 if (doit) {
346 /*
347 * In case something went wrong with munmapping
348 * make sure the process doesn't catch the
349 * signal and then access the memory. Just kill it.
350 */
351 if (fail || tk->addr_valid == 0) {
352 printk(KERN_ERR
353 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
354 pfn, tk->tsk->comm, tk->tsk->pid);
355 force_sig(SIGKILL, tk->tsk);
356 }
357
358 /*
359 * In theory the process could have mapped
360 * something else on the address in-between. We could
361 * check for that, but we need to tell the
362 * process anyways.
363 */
364 else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
365 pfn, page) < 0)
366 printk(KERN_ERR
367 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
368 pfn, tk->tsk->comm, tk->tsk->pid);
369 }
370 put_task_struct(tk->tsk);
371 kfree(tk);
372 }
373 }
374
375 static int task_early_kill(struct task_struct *tsk)
376 {
377 if (!tsk->mm)
378 return 0;
379 if (tsk->flags & PF_MCE_PROCESS)
380 return !!(tsk->flags & PF_MCE_EARLY);
381 return sysctl_memory_failure_early_kill;
382 }
383
384 /*
385 * Collect processes when the error hit an anonymous page.
386 */
387 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
388 struct to_kill **tkc)
389 {
390 struct vm_area_struct *vma;
391 struct task_struct *tsk;
392 struct anon_vma *av;
393
394 read_lock(&tasklist_lock);
395 av = page_lock_anon_vma(page);
396 if (av == NULL) /* Not actually mapped anymore */
397 goto out;
398 for_each_process (tsk) {
399 struct anon_vma_chain *vmac;
400
401 if (!task_early_kill(tsk))
402 continue;
403 list_for_each_entry(vmac, &av->head, same_anon_vma) {
404 vma = vmac->vma;
405 if (!page_mapped_in_vma(page, vma))
406 continue;
407 if (vma->vm_mm == tsk->mm)
408 add_to_kill(tsk, page, vma, to_kill, tkc);
409 }
410 }
411 page_unlock_anon_vma(av);
412 out:
413 read_unlock(&tasklist_lock);
414 }
415
416 /*
417 * Collect processes when the error hit a file mapped page.
418 */
419 static void collect_procs_file(struct page *page, struct list_head *to_kill,
420 struct to_kill **tkc)
421 {
422 struct vm_area_struct *vma;
423 struct task_struct *tsk;
424 struct prio_tree_iter iter;
425 struct address_space *mapping = page->mapping;
426
427 /*
428 * A note on the locking order between the two locks.
429 * We don't rely on this particular order.
430 * If you have some other code that needs a different order
431 * feel free to switch them around. Or add a reverse link
432 * from mm_struct to task_struct, then this could be all
433 * done without taking tasklist_lock and looping over all tasks.
434 */
435
436 read_lock(&tasklist_lock);
437 mutex_lock(&mapping->i_mmap_mutex);
438 for_each_process(tsk) {
439 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
440
441 if (!task_early_kill(tsk))
442 continue;
443
444 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
445 pgoff) {
446 /*
447 * Send early kill signal to tasks where a vma covers
448 * the page but the corrupted page is not necessarily
449 * mapped it in its pte.
450 * Assume applications who requested early kill want
451 * to be informed of all such data corruptions.
452 */
453 if (vma->vm_mm == tsk->mm)
454 add_to_kill(tsk, page, vma, to_kill, tkc);
455 }
456 }
457 mutex_unlock(&mapping->i_mmap_mutex);
458 read_unlock(&tasklist_lock);
459 }
460
461 /*
462 * Collect the processes who have the corrupted page mapped to kill.
463 * This is done in two steps for locking reasons.
464 * First preallocate one tokill structure outside the spin locks,
465 * so that we can kill at least one process reasonably reliable.
466 */
467 static void collect_procs(struct page *page, struct list_head *tokill)
468 {
469 struct to_kill *tk;
470
471 if (!page->mapping)
472 return;
473
474 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
475 if (!tk)
476 return;
477 if (PageAnon(page))
478 collect_procs_anon(page, tokill, &tk);
479 else
480 collect_procs_file(page, tokill, &tk);
481 kfree(tk);
482 }
483
484 /*
485 * Error handlers for various types of pages.
486 */
487
488 enum outcome {
489 IGNORED, /* Error: cannot be handled */
490 FAILED, /* Error: handling failed */
491 DELAYED, /* Will be handled later */
492 RECOVERED, /* Successfully recovered */
493 };
494
495 static const char *action_name[] = {
496 [IGNORED] = "Ignored",
497 [FAILED] = "Failed",
498 [DELAYED] = "Delayed",
499 [RECOVERED] = "Recovered",
500 };
501
502 /*
503 * XXX: It is possible that a page is isolated from LRU cache,
504 * and then kept in swap cache or failed to remove from page cache.
505 * The page count will stop it from being freed by unpoison.
506 * Stress tests should be aware of this memory leak problem.
507 */
508 static int delete_from_lru_cache(struct page *p)
509 {
510 if (!isolate_lru_page(p)) {
511 /*
512 * Clear sensible page flags, so that the buddy system won't
513 * complain when the page is unpoison-and-freed.
514 */
515 ClearPageActive(p);
516 ClearPageUnevictable(p);
517 /*
518 * drop the page count elevated by isolate_lru_page()
519 */
520 page_cache_release(p);
521 return 0;
522 }
523 return -EIO;
524 }
525
526 /*
527 * Error hit kernel page.
528 * Do nothing, try to be lucky and not touch this instead. For a few cases we
529 * could be more sophisticated.
530 */
531 static int me_kernel(struct page *p, unsigned long pfn)
532 {
533 return IGNORED;
534 }
535
536 /*
537 * Page in unknown state. Do nothing.
538 */
539 static int me_unknown(struct page *p, unsigned long pfn)
540 {
541 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
542 return FAILED;
543 }
544
545 /*
546 * Clean (or cleaned) page cache page.
547 */
548 static int me_pagecache_clean(struct page *p, unsigned long pfn)
549 {
550 int err;
551 int ret = FAILED;
552 struct address_space *mapping;
553
554 delete_from_lru_cache(p);
555
556 /*
557 * For anonymous pages we're done the only reference left
558 * should be the one m_f() holds.
559 */
560 if (PageAnon(p))
561 return RECOVERED;
562
563 /*
564 * Now truncate the page in the page cache. This is really
565 * more like a "temporary hole punch"
566 * Don't do this for block devices when someone else
567 * has a reference, because it could be file system metadata
568 * and that's not safe to truncate.
569 */
570 mapping = page_mapping(p);
571 if (!mapping) {
572 /*
573 * Page has been teared down in the meanwhile
574 */
575 return FAILED;
576 }
577
578 /*
579 * Truncation is a bit tricky. Enable it per file system for now.
580 *
581 * Open: to take i_mutex or not for this? Right now we don't.
582 */
583 if (mapping->a_ops->error_remove_page) {
584 err = mapping->a_ops->error_remove_page(mapping, p);
585 if (err != 0) {
586 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
587 pfn, err);
588 } else if (page_has_private(p) &&
589 !try_to_release_page(p, GFP_NOIO)) {
590 pr_info("MCE %#lx: failed to release buffers\n", pfn);
591 } else {
592 ret = RECOVERED;
593 }
594 } else {
595 /*
596 * If the file system doesn't support it just invalidate
597 * This fails on dirty or anything with private pages
598 */
599 if (invalidate_inode_page(p))
600 ret = RECOVERED;
601 else
602 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
603 pfn);
604 }
605 return ret;
606 }
607
608 /*
609 * Dirty cache page page
610 * Issues: when the error hit a hole page the error is not properly
611 * propagated.
612 */
613 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
614 {
615 struct address_space *mapping = page_mapping(p);
616
617 SetPageError(p);
618 /* TBD: print more information about the file. */
619 if (mapping) {
620 /*
621 * IO error will be reported by write(), fsync(), etc.
622 * who check the mapping.
623 * This way the application knows that something went
624 * wrong with its dirty file data.
625 *
626 * There's one open issue:
627 *
628 * The EIO will be only reported on the next IO
629 * operation and then cleared through the IO map.
630 * Normally Linux has two mechanisms to pass IO error
631 * first through the AS_EIO flag in the address space
632 * and then through the PageError flag in the page.
633 * Since we drop pages on memory failure handling the
634 * only mechanism open to use is through AS_AIO.
635 *
636 * This has the disadvantage that it gets cleared on
637 * the first operation that returns an error, while
638 * the PageError bit is more sticky and only cleared
639 * when the page is reread or dropped. If an
640 * application assumes it will always get error on
641 * fsync, but does other operations on the fd before
642 * and the page is dropped between then the error
643 * will not be properly reported.
644 *
645 * This can already happen even without hwpoisoned
646 * pages: first on metadata IO errors (which only
647 * report through AS_EIO) or when the page is dropped
648 * at the wrong time.
649 *
650 * So right now we assume that the application DTRT on
651 * the first EIO, but we're not worse than other parts
652 * of the kernel.
653 */
654 mapping_set_error(mapping, EIO);
655 }
656
657 return me_pagecache_clean(p, pfn);
658 }
659
660 /*
661 * Clean and dirty swap cache.
662 *
663 * Dirty swap cache page is tricky to handle. The page could live both in page
664 * cache and swap cache(ie. page is freshly swapped in). So it could be
665 * referenced concurrently by 2 types of PTEs:
666 * normal PTEs and swap PTEs. We try to handle them consistently by calling
667 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
668 * and then
669 * - clear dirty bit to prevent IO
670 * - remove from LRU
671 * - but keep in the swap cache, so that when we return to it on
672 * a later page fault, we know the application is accessing
673 * corrupted data and shall be killed (we installed simple
674 * interception code in do_swap_page to catch it).
675 *
676 * Clean swap cache pages can be directly isolated. A later page fault will
677 * bring in the known good data from disk.
678 */
679 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
680 {
681 ClearPageDirty(p);
682 /* Trigger EIO in shmem: */
683 ClearPageUptodate(p);
684
685 if (!delete_from_lru_cache(p))
686 return DELAYED;
687 else
688 return FAILED;
689 }
690
691 static int me_swapcache_clean(struct page *p, unsigned long pfn)
692 {
693 delete_from_swap_cache(p);
694
695 if (!delete_from_lru_cache(p))
696 return RECOVERED;
697 else
698 return FAILED;
699 }
700
701 /*
702 * Huge pages. Needs work.
703 * Issues:
704 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
705 * To narrow down kill region to one page, we need to break up pmd.
706 */
707 static int me_huge_page(struct page *p, unsigned long pfn)
708 {
709 int res = 0;
710 struct page *hpage = compound_head(p);
711 /*
712 * We can safely recover from error on free or reserved (i.e.
713 * not in-use) hugepage by dequeuing it from freelist.
714 * To check whether a hugepage is in-use or not, we can't use
715 * page->lru because it can be used in other hugepage operations,
716 * such as __unmap_hugepage_range() and gather_surplus_pages().
717 * So instead we use page_mapping() and PageAnon().
718 * We assume that this function is called with page lock held,
719 * so there is no race between isolation and mapping/unmapping.
720 */
721 if (!(page_mapping(hpage) || PageAnon(hpage))) {
722 res = dequeue_hwpoisoned_huge_page(hpage);
723 if (!res)
724 return RECOVERED;
725 }
726 return DELAYED;
727 }
728
729 /*
730 * Various page states we can handle.
731 *
732 * A page state is defined by its current page->flags bits.
733 * The table matches them in order and calls the right handler.
734 *
735 * This is quite tricky because we can access page at any time
736 * in its live cycle, so all accesses have to be extremely careful.
737 *
738 * This is not complete. More states could be added.
739 * For any missing state don't attempt recovery.
740 */
741
742 #define dirty (1UL << PG_dirty)
743 #define sc (1UL << PG_swapcache)
744 #define unevict (1UL << PG_unevictable)
745 #define mlock (1UL << PG_mlocked)
746 #define writeback (1UL << PG_writeback)
747 #define lru (1UL << PG_lru)
748 #define swapbacked (1UL << PG_swapbacked)
749 #define head (1UL << PG_head)
750 #define tail (1UL << PG_tail)
751 #define compound (1UL << PG_compound)
752 #define slab (1UL << PG_slab)
753 #define reserved (1UL << PG_reserved)
754
755 static struct page_state {
756 unsigned long mask;
757 unsigned long res;
758 char *msg;
759 int (*action)(struct page *p, unsigned long pfn);
760 } error_states[] = {
761 { reserved, reserved, "reserved kernel", me_kernel },
762 /*
763 * free pages are specially detected outside this table:
764 * PG_buddy pages only make a small fraction of all free pages.
765 */
766
767 /*
768 * Could in theory check if slab page is free or if we can drop
769 * currently unused objects without touching them. But just
770 * treat it as standard kernel for now.
771 */
772 { slab, slab, "kernel slab", me_kernel },
773
774 #ifdef CONFIG_PAGEFLAGS_EXTENDED
775 { head, head, "huge", me_huge_page },
776 { tail, tail, "huge", me_huge_page },
777 #else
778 { compound, compound, "huge", me_huge_page },
779 #endif
780
781 { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty },
782 { sc|dirty, sc, "swapcache", me_swapcache_clean },
783
784 { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty},
785 { unevict, unevict, "unevictable LRU", me_pagecache_clean},
786
787 { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty },
788 { mlock, mlock, "mlocked LRU", me_pagecache_clean },
789
790 { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty },
791 { lru|dirty, lru, "clean LRU", me_pagecache_clean },
792
793 /*
794 * Catchall entry: must be at end.
795 */
796 { 0, 0, "unknown page state", me_unknown },
797 };
798
799 #undef dirty
800 #undef sc
801 #undef unevict
802 #undef mlock
803 #undef writeback
804 #undef lru
805 #undef swapbacked
806 #undef head
807 #undef tail
808 #undef compound
809 #undef slab
810 #undef reserved
811
812 static void action_result(unsigned long pfn, char *msg, int result)
813 {
814 struct page *page = pfn_to_page(pfn);
815
816 printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
817 pfn,
818 PageDirty(page) ? "dirty " : "",
819 msg, action_name[result]);
820 }
821
822 static int page_action(struct page_state *ps, struct page *p,
823 unsigned long pfn)
824 {
825 int result;
826 int count;
827
828 result = ps->action(p, pfn);
829 action_result(pfn, ps->msg, result);
830
831 count = page_count(p) - 1;
832 if (ps->action == me_swapcache_dirty && result == DELAYED)
833 count--;
834 if (count != 0) {
835 printk(KERN_ERR
836 "MCE %#lx: %s page still referenced by %d users\n",
837 pfn, ps->msg, count);
838 result = FAILED;
839 }
840
841 /* Could do more checks here if page looks ok */
842 /*
843 * Could adjust zone counters here to correct for the missing page.
844 */
845
846 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
847 }
848
849 /*
850 * Do all that is necessary to remove user space mappings. Unmap
851 * the pages and send SIGBUS to the processes if the data was dirty.
852 */
853 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
854 int trapno)
855 {
856 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
857 struct address_space *mapping;
858 LIST_HEAD(tokill);
859 int ret;
860 int kill = 1;
861 struct page *hpage = compound_head(p);
862 struct page *ppage;
863
864 if (PageReserved(p) || PageSlab(p))
865 return SWAP_SUCCESS;
866
867 /*
868 * This check implies we don't kill processes if their pages
869 * are in the swap cache early. Those are always late kills.
870 */
871 if (!page_mapped(hpage))
872 return SWAP_SUCCESS;
873
874 if (PageKsm(p))
875 return SWAP_FAIL;
876
877 if (PageSwapCache(p)) {
878 printk(KERN_ERR
879 "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
880 ttu |= TTU_IGNORE_HWPOISON;
881 }
882
883 /*
884 * Propagate the dirty bit from PTEs to struct page first, because we
885 * need this to decide if we should kill or just drop the page.
886 * XXX: the dirty test could be racy: set_page_dirty() may not always
887 * be called inside page lock (it's recommended but not enforced).
888 */
889 mapping = page_mapping(hpage);
890 if (!PageDirty(hpage) && mapping &&
891 mapping_cap_writeback_dirty(mapping)) {
892 if (page_mkclean(hpage)) {
893 SetPageDirty(hpage);
894 } else {
895 kill = 0;
896 ttu |= TTU_IGNORE_HWPOISON;
897 printk(KERN_INFO
898 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
899 pfn);
900 }
901 }
902
903 /*
904 * ppage: poisoned page
905 * if p is regular page(4k page)
906 * ppage == real poisoned page;
907 * else p is hugetlb or THP, ppage == head page.
908 */
909 ppage = hpage;
910
911 if (PageTransHuge(hpage)) {
912 /*
913 * Verify that this isn't a hugetlbfs head page, the check for
914 * PageAnon is just for avoid tripping a split_huge_page
915 * internal debug check, as split_huge_page refuses to deal with
916 * anything that isn't an anon page. PageAnon can't go away fro
917 * under us because we hold a refcount on the hpage, without a
918 * refcount on the hpage. split_huge_page can't be safely called
919 * in the first place, having a refcount on the tail isn't
920 * enough * to be safe.
921 */
922 if (!PageHuge(hpage) && PageAnon(hpage)) {
923 if (unlikely(split_huge_page(hpage))) {
924 /*
925 * FIXME: if splitting THP is failed, it is
926 * better to stop the following operation rather
927 * than causing panic by unmapping. System might
928 * survive if the page is freed later.
929 */
930 printk(KERN_INFO
931 "MCE %#lx: failed to split THP\n", pfn);
932
933 BUG_ON(!PageHWPoison(p));
934 return SWAP_FAIL;
935 }
936 /* THP is split, so ppage should be the real poisoned page. */
937 ppage = p;
938 }
939 }
940
941 /*
942 * First collect all the processes that have the page
943 * mapped in dirty form. This has to be done before try_to_unmap,
944 * because ttu takes the rmap data structures down.
945 *
946 * Error handling: We ignore errors here because
947 * there's nothing that can be done.
948 */
949 if (kill)
950 collect_procs(ppage, &tokill);
951
952 if (hpage != ppage)
953 lock_page(ppage);
954
955 ret = try_to_unmap(ppage, ttu);
956 if (ret != SWAP_SUCCESS)
957 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
958 pfn, page_mapcount(ppage));
959
960 if (hpage != ppage)
961 unlock_page(ppage);
962
963 /*
964 * Now that the dirty bit has been propagated to the
965 * struct page and all unmaps done we can decide if
966 * killing is needed or not. Only kill when the page
967 * was dirty, otherwise the tokill list is merely
968 * freed. When there was a problem unmapping earlier
969 * use a more force-full uncatchable kill to prevent
970 * any accesses to the poisoned memory.
971 */
972 kill_procs_ao(&tokill, !!PageDirty(ppage), trapno,
973 ret != SWAP_SUCCESS, p, pfn);
974
975 return ret;
976 }
977
978 static void set_page_hwpoison_huge_page(struct page *hpage)
979 {
980 int i;
981 int nr_pages = 1 << compound_trans_order(hpage);
982 for (i = 0; i < nr_pages; i++)
983 SetPageHWPoison(hpage + i);
984 }
985
986 static void clear_page_hwpoison_huge_page(struct page *hpage)
987 {
988 int i;
989 int nr_pages = 1 << compound_trans_order(hpage);
990 for (i = 0; i < nr_pages; i++)
991 ClearPageHWPoison(hpage + i);
992 }
993
994 int __memory_failure(unsigned long pfn, int trapno, int flags)
995 {
996 struct page_state *ps;
997 struct page *p;
998 struct page *hpage;
999 int res;
1000 unsigned int nr_pages;
1001
1002 if (!sysctl_memory_failure_recovery)
1003 panic("Memory failure from trap %d on page %lx", trapno, pfn);
1004
1005 if (!pfn_valid(pfn)) {
1006 printk(KERN_ERR
1007 "MCE %#lx: memory outside kernel control\n",
1008 pfn);
1009 return -ENXIO;
1010 }
1011
1012 p = pfn_to_page(pfn);
1013 hpage = compound_head(p);
1014 if (TestSetPageHWPoison(p)) {
1015 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1016 return 0;
1017 }
1018
1019 nr_pages = 1 << compound_trans_order(hpage);
1020 atomic_long_add(nr_pages, &mce_bad_pages);
1021
1022 /*
1023 * We need/can do nothing about count=0 pages.
1024 * 1) it's a free page, and therefore in safe hand:
1025 * prep_new_page() will be the gate keeper.
1026 * 2) it's a free hugepage, which is also safe:
1027 * an affected hugepage will be dequeued from hugepage freelist,
1028 * so there's no concern about reusing it ever after.
1029 * 3) it's part of a non-compound high order page.
1030 * Implies some kernel user: cannot stop them from
1031 * R/W the page; let's pray that the page has been
1032 * used and will be freed some time later.
1033 * In fact it's dangerous to directly bump up page count from 0,
1034 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1035 */
1036 if (!(flags & MF_COUNT_INCREASED) &&
1037 !get_page_unless_zero(hpage)) {
1038 if (is_free_buddy_page(p)) {
1039 action_result(pfn, "free buddy", DELAYED);
1040 return 0;
1041 } else if (PageHuge(hpage)) {
1042 /*
1043 * Check "just unpoisoned", "filter hit", and
1044 * "race with other subpage."
1045 */
1046 lock_page(hpage);
1047 if (!PageHWPoison(hpage)
1048 || (hwpoison_filter(p) && TestClearPageHWPoison(p))
1049 || (p != hpage && TestSetPageHWPoison(hpage))) {
1050 atomic_long_sub(nr_pages, &mce_bad_pages);
1051 return 0;
1052 }
1053 set_page_hwpoison_huge_page(hpage);
1054 res = dequeue_hwpoisoned_huge_page(hpage);
1055 action_result(pfn, "free huge",
1056 res ? IGNORED : DELAYED);
1057 unlock_page(hpage);
1058 return res;
1059 } else {
1060 action_result(pfn, "high order kernel", IGNORED);
1061 return -EBUSY;
1062 }
1063 }
1064
1065 /*
1066 * We ignore non-LRU pages for good reasons.
1067 * - PG_locked is only well defined for LRU pages and a few others
1068 * - to avoid races with __set_page_locked()
1069 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1070 * The check (unnecessarily) ignores LRU pages being isolated and
1071 * walked by the page reclaim code, however that's not a big loss.
1072 */
1073 if (!PageHuge(p) && !PageTransCompound(p)) {
1074 if (!PageLRU(p))
1075 shake_page(p, 0);
1076 if (!PageLRU(p)) {
1077 /*
1078 * shake_page could have turned it free.
1079 */
1080 if (is_free_buddy_page(p)) {
1081 action_result(pfn, "free buddy, 2nd try",
1082 DELAYED);
1083 return 0;
1084 }
1085 action_result(pfn, "non LRU", IGNORED);
1086 put_page(p);
1087 return -EBUSY;
1088 }
1089 }
1090
1091 /*
1092 * Lock the page and wait for writeback to finish.
1093 * It's very difficult to mess with pages currently under IO
1094 * and in many cases impossible, so we just avoid it here.
1095 */
1096 lock_page(hpage);
1097
1098 /*
1099 * unpoison always clear PG_hwpoison inside page lock
1100 */
1101 if (!PageHWPoison(p)) {
1102 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1103 res = 0;
1104 goto out;
1105 }
1106 if (hwpoison_filter(p)) {
1107 if (TestClearPageHWPoison(p))
1108 atomic_long_sub(nr_pages, &mce_bad_pages);
1109 unlock_page(hpage);
1110 put_page(hpage);
1111 return 0;
1112 }
1113
1114 /*
1115 * For error on the tail page, we should set PG_hwpoison
1116 * on the head page to show that the hugepage is hwpoisoned
1117 */
1118 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1119 action_result(pfn, "hugepage already hardware poisoned",
1120 IGNORED);
1121 unlock_page(hpage);
1122 put_page(hpage);
1123 return 0;
1124 }
1125 /*
1126 * Set PG_hwpoison on all pages in an error hugepage,
1127 * because containment is done in hugepage unit for now.
1128 * Since we have done TestSetPageHWPoison() for the head page with
1129 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1130 */
1131 if (PageHuge(p))
1132 set_page_hwpoison_huge_page(hpage);
1133
1134 wait_on_page_writeback(p);
1135
1136 /*
1137 * Now take care of user space mappings.
1138 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1139 */
1140 if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) {
1141 printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1142 res = -EBUSY;
1143 goto out;
1144 }
1145
1146 /*
1147 * Torn down by someone else?
1148 */
1149 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1150 action_result(pfn, "already truncated LRU", IGNORED);
1151 res = -EBUSY;
1152 goto out;
1153 }
1154
1155 res = -EBUSY;
1156 for (ps = error_states;; ps++) {
1157 if ((p->flags & ps->mask) == ps->res) {
1158 res = page_action(ps, p, pfn);
1159 break;
1160 }
1161 }
1162 out:
1163 unlock_page(hpage);
1164 return res;
1165 }
1166 EXPORT_SYMBOL_GPL(__memory_failure);
1167
1168 /**
1169 * memory_failure - Handle memory failure of a page.
1170 * @pfn: Page Number of the corrupted page
1171 * @trapno: Trap number reported in the signal to user space.
1172 *
1173 * This function is called by the low level machine check code
1174 * of an architecture when it detects hardware memory corruption
1175 * of a page. It tries its best to recover, which includes
1176 * dropping pages, killing processes etc.
1177 *
1178 * The function is primarily of use for corruptions that
1179 * happen outside the current execution context (e.g. when
1180 * detected by a background scrubber)
1181 *
1182 * Must run in process context (e.g. a work queue) with interrupts
1183 * enabled and no spinlocks hold.
1184 */
1185 void memory_failure(unsigned long pfn, int trapno)
1186 {
1187 __memory_failure(pfn, trapno, 0);
1188 }
1189
1190 /**
1191 * unpoison_memory - Unpoison a previously poisoned page
1192 * @pfn: Page number of the to be unpoisoned page
1193 *
1194 * Software-unpoison a page that has been poisoned by
1195 * memory_failure() earlier.
1196 *
1197 * This is only done on the software-level, so it only works
1198 * for linux injected failures, not real hardware failures
1199 *
1200 * Returns 0 for success, otherwise -errno.
1201 */
1202 int unpoison_memory(unsigned long pfn)
1203 {
1204 struct page *page;
1205 struct page *p;
1206 int freeit = 0;
1207 unsigned int nr_pages;
1208
1209 if (!pfn_valid(pfn))
1210 return -ENXIO;
1211
1212 p = pfn_to_page(pfn);
1213 page = compound_head(p);
1214
1215 if (!PageHWPoison(p)) {
1216 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1217 return 0;
1218 }
1219
1220 nr_pages = 1 << compound_trans_order(page);
1221
1222 if (!get_page_unless_zero(page)) {
1223 /*
1224 * Since HWPoisoned hugepage should have non-zero refcount,
1225 * race between memory failure and unpoison seems to happen.
1226 * In such case unpoison fails and memory failure runs
1227 * to the end.
1228 */
1229 if (PageHuge(page)) {
1230 pr_debug("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1231 return 0;
1232 }
1233 if (TestClearPageHWPoison(p))
1234 atomic_long_sub(nr_pages, &mce_bad_pages);
1235 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1236 return 0;
1237 }
1238
1239 lock_page(page);
1240 /*
1241 * This test is racy because PG_hwpoison is set outside of page lock.
1242 * That's acceptable because that won't trigger kernel panic. Instead,
1243 * the PG_hwpoison page will be caught and isolated on the entrance to
1244 * the free buddy page pool.
1245 */
1246 if (TestClearPageHWPoison(page)) {
1247 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1248 atomic_long_sub(nr_pages, &mce_bad_pages);
1249 freeit = 1;
1250 if (PageHuge(page))
1251 clear_page_hwpoison_huge_page(page);
1252 }
1253 unlock_page(page);
1254
1255 put_page(page);
1256 if (freeit)
1257 put_page(page);
1258
1259 return 0;
1260 }
1261 EXPORT_SYMBOL(unpoison_memory);
1262
1263 static struct page *new_page(struct page *p, unsigned long private, int **x)
1264 {
1265 int nid = page_to_nid(p);
1266 if (PageHuge(p))
1267 return alloc_huge_page_node(page_hstate(compound_head(p)),
1268 nid);
1269 else
1270 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1271 }
1272
1273 /*
1274 * Safely get reference count of an arbitrary page.
1275 * Returns 0 for a free page, -EIO for a zero refcount page
1276 * that is not free, and 1 for any other page type.
1277 * For 1 the page is returned with increased page count, otherwise not.
1278 */
1279 static int get_any_page(struct page *p, unsigned long pfn, int flags)
1280 {
1281 int ret;
1282
1283 if (flags & MF_COUNT_INCREASED)
1284 return 1;
1285
1286 /*
1287 * The lock_memory_hotplug prevents a race with memory hotplug.
1288 * This is a big hammer, a better would be nicer.
1289 */
1290 lock_memory_hotplug();
1291
1292 /*
1293 * Isolate the page, so that it doesn't get reallocated if it
1294 * was free.
1295 */
1296 set_migratetype_isolate(p);
1297 /*
1298 * When the target page is a free hugepage, just remove it
1299 * from free hugepage list.
1300 */
1301 if (!get_page_unless_zero(compound_head(p))) {
1302 if (PageHuge(p)) {
1303 pr_info("get_any_page: %#lx free huge page\n", pfn);
1304 ret = dequeue_hwpoisoned_huge_page(compound_head(p));
1305 } else if (is_free_buddy_page(p)) {
1306 pr_info("get_any_page: %#lx free buddy page\n", pfn);
1307 /* Set hwpoison bit while page is still isolated */
1308 SetPageHWPoison(p);
1309 ret = 0;
1310 } else {
1311 pr_info("get_any_page: %#lx: unknown zero refcount page type %lx\n",
1312 pfn, p->flags);
1313 ret = -EIO;
1314 }
1315 } else {
1316 /* Not a free page */
1317 ret = 1;
1318 }
1319 unset_migratetype_isolate(p);
1320 unlock_memory_hotplug();
1321 return ret;
1322 }
1323
1324 static int soft_offline_huge_page(struct page *page, int flags)
1325 {
1326 int ret;
1327 unsigned long pfn = page_to_pfn(page);
1328 struct page *hpage = compound_head(page);
1329 LIST_HEAD(pagelist);
1330
1331 ret = get_any_page(page, pfn, flags);
1332 if (ret < 0)
1333 return ret;
1334 if (ret == 0)
1335 goto done;
1336
1337 if (PageHWPoison(hpage)) {
1338 put_page(hpage);
1339 pr_debug("soft offline: %#lx hugepage already poisoned\n", pfn);
1340 return -EBUSY;
1341 }
1342
1343 /* Keep page count to indicate a given hugepage is isolated. */
1344
1345 list_add(&hpage->lru, &pagelist);
1346 ret = migrate_huge_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0,
1347 true);
1348 if (ret) {
1349 struct page *page1, *page2;
1350 list_for_each_entry_safe(page1, page2, &pagelist, lru)
1351 put_page(page1);
1352
1353 pr_debug("soft offline: %#lx: migration failed %d, type %lx\n",
1354 pfn, ret, page->flags);
1355 if (ret > 0)
1356 ret = -EIO;
1357 return ret;
1358 }
1359 done:
1360 if (!PageHWPoison(hpage))
1361 atomic_long_add(1 << compound_trans_order(hpage), &mce_bad_pages);
1362 set_page_hwpoison_huge_page(hpage);
1363 dequeue_hwpoisoned_huge_page(hpage);
1364 /* keep elevated page count for bad page */
1365 return ret;
1366 }
1367
1368 /**
1369 * soft_offline_page - Soft offline a page.
1370 * @page: page to offline
1371 * @flags: flags. Same as memory_failure().
1372 *
1373 * Returns 0 on success, otherwise negated errno.
1374 *
1375 * Soft offline a page, by migration or invalidation,
1376 * without killing anything. This is for the case when
1377 * a page is not corrupted yet (so it's still valid to access),
1378 * but has had a number of corrected errors and is better taken
1379 * out.
1380 *
1381 * The actual policy on when to do that is maintained by
1382 * user space.
1383 *
1384 * This should never impact any application or cause data loss,
1385 * however it might take some time.
1386 *
1387 * This is not a 100% solution for all memory, but tries to be
1388 * ``good enough'' for the majority of memory.
1389 */
1390 int soft_offline_page(struct page *page, int flags)
1391 {
1392 int ret;
1393 unsigned long pfn = page_to_pfn(page);
1394
1395 if (PageHuge(page))
1396 return soft_offline_huge_page(page, flags);
1397
1398 ret = get_any_page(page, pfn, flags);
1399 if (ret < 0)
1400 return ret;
1401 if (ret == 0)
1402 goto done;
1403
1404 /*
1405 * Page cache page we can handle?
1406 */
1407 if (!PageLRU(page)) {
1408 /*
1409 * Try to free it.
1410 */
1411 put_page(page);
1412 shake_page(page, 1);
1413
1414 /*
1415 * Did it turn free?
1416 */
1417 ret = get_any_page(page, pfn, 0);
1418 if (ret < 0)
1419 return ret;
1420 if (ret == 0)
1421 goto done;
1422 }
1423 if (!PageLRU(page)) {
1424 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1425 pfn, page->flags);
1426 return -EIO;
1427 }
1428
1429 lock_page(page);
1430 wait_on_page_writeback(page);
1431
1432 /*
1433 * Synchronized using the page lock with memory_failure()
1434 */
1435 if (PageHWPoison(page)) {
1436 unlock_page(page);
1437 put_page(page);
1438 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1439 return -EBUSY;
1440 }
1441
1442 /*
1443 * Try to invalidate first. This should work for
1444 * non dirty unmapped page cache pages.
1445 */
1446 ret = invalidate_inode_page(page);
1447 unlock_page(page);
1448 /*
1449 * RED-PEN would be better to keep it isolated here, but we
1450 * would need to fix isolation locking first.
1451 */
1452 if (ret == 1) {
1453 put_page(page);
1454 ret = 0;
1455 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1456 goto done;
1457 }
1458
1459 /*
1460 * Simple invalidation didn't work.
1461 * Try to migrate to a new page instead. migrate.c
1462 * handles a large number of cases for us.
1463 */
1464 ret = isolate_lru_page(page);
1465 /*
1466 * Drop page reference which is came from get_any_page()
1467 * successful isolate_lru_page() already took another one.
1468 */
1469 put_page(page);
1470 if (!ret) {
1471 LIST_HEAD(pagelist);
1472 inc_zone_page_state(page, NR_ISOLATED_ANON +
1473 page_is_file_cache(page));
1474 list_add(&page->lru, &pagelist);
1475 ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
1476 0, true);
1477 if (ret) {
1478 putback_lru_pages(&pagelist);
1479 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1480 pfn, ret, page->flags);
1481 if (ret > 0)
1482 ret = -EIO;
1483 }
1484 } else {
1485 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1486 pfn, ret, page_count(page), page->flags);
1487 }
1488 if (ret)
1489 return ret;
1490
1491 done:
1492 atomic_long_add(1, &mce_bad_pages);
1493 SetPageHWPoison(page);
1494 /* keep elevated page count for bad page */
1495 return ret;
1496 }
This page took 0.074492 seconds and 5 git commands to generate.