mlock: do not hold mmap_sem for extended periods of time
[deliverable/linux.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
67
68 #include "internal.h"
69
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
74
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
78
79 unsigned long num_physpages;
80 /*
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85 * and ZONE_HIGHMEM.
86 */
87 void * high_memory;
88
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
91
92 /*
93 * Randomize the address space (stacks, mmaps, brk, etc.).
94 *
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 * as ancient (libc5 based) binaries can segfault. )
97 */
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
100 1;
101 #else
102 2;
103 #endif
104
105 static int __init disable_randmaps(char *s)
106 {
107 randomize_va_space = 0;
108 return 1;
109 }
110 __setup("norandmaps", disable_randmaps);
111
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
114
115 /*
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117 */
118 static int __init init_zero_pfn(void)
119 {
120 zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 return 0;
122 }
123 core_initcall(init_zero_pfn);
124
125
126 #if defined(SPLIT_RSS_COUNTING)
127
128 static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
129 {
130 int i;
131
132 for (i = 0; i < NR_MM_COUNTERS; i++) {
133 if (task->rss_stat.count[i]) {
134 add_mm_counter(mm, i, task->rss_stat.count[i]);
135 task->rss_stat.count[i] = 0;
136 }
137 }
138 task->rss_stat.events = 0;
139 }
140
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142 {
143 struct task_struct *task = current;
144
145 if (likely(task->mm == mm))
146 task->rss_stat.count[member] += val;
147 else
148 add_mm_counter(mm, member, val);
149 }
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH (64)
155 static void check_sync_rss_stat(struct task_struct *task)
156 {
157 if (unlikely(task != current))
158 return;
159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160 __sync_task_rss_stat(task, task->mm);
161 }
162
163 unsigned long get_mm_counter(struct mm_struct *mm, int member)
164 {
165 long val = 0;
166
167 /*
168 * Don't use task->mm here...for avoiding to use task_get_mm()..
169 * The caller must guarantee task->mm is not invalid.
170 */
171 val = atomic_long_read(&mm->rss_stat.count[member]);
172 /*
173 * counter is updated in asynchronous manner and may go to minus.
174 * But it's never be expected number for users.
175 */
176 if (val < 0)
177 return 0;
178 return (unsigned long)val;
179 }
180
181 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
182 {
183 __sync_task_rss_stat(task, mm);
184 }
185 #else
186
187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
189
190 static void check_sync_rss_stat(struct task_struct *task)
191 {
192 }
193
194 #endif
195
196 /*
197 * If a p?d_bad entry is found while walking page tables, report
198 * the error, before resetting entry to p?d_none. Usually (but
199 * very seldom) called out from the p?d_none_or_clear_bad macros.
200 */
201
202 void pgd_clear_bad(pgd_t *pgd)
203 {
204 pgd_ERROR(*pgd);
205 pgd_clear(pgd);
206 }
207
208 void pud_clear_bad(pud_t *pud)
209 {
210 pud_ERROR(*pud);
211 pud_clear(pud);
212 }
213
214 void pmd_clear_bad(pmd_t *pmd)
215 {
216 pmd_ERROR(*pmd);
217 pmd_clear(pmd);
218 }
219
220 /*
221 * Note: this doesn't free the actual pages themselves. That
222 * has been handled earlier when unmapping all the memory regions.
223 */
224 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
225 unsigned long addr)
226 {
227 pgtable_t token = pmd_pgtable(*pmd);
228 pmd_clear(pmd);
229 pte_free_tlb(tlb, token, addr);
230 tlb->mm->nr_ptes--;
231 }
232
233 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
234 unsigned long addr, unsigned long end,
235 unsigned long floor, unsigned long ceiling)
236 {
237 pmd_t *pmd;
238 unsigned long next;
239 unsigned long start;
240
241 start = addr;
242 pmd = pmd_offset(pud, addr);
243 do {
244 next = pmd_addr_end(addr, end);
245 if (pmd_none_or_clear_bad(pmd))
246 continue;
247 free_pte_range(tlb, pmd, addr);
248 } while (pmd++, addr = next, addr != end);
249
250 start &= PUD_MASK;
251 if (start < floor)
252 return;
253 if (ceiling) {
254 ceiling &= PUD_MASK;
255 if (!ceiling)
256 return;
257 }
258 if (end - 1 > ceiling - 1)
259 return;
260
261 pmd = pmd_offset(pud, start);
262 pud_clear(pud);
263 pmd_free_tlb(tlb, pmd, start);
264 }
265
266 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
267 unsigned long addr, unsigned long end,
268 unsigned long floor, unsigned long ceiling)
269 {
270 pud_t *pud;
271 unsigned long next;
272 unsigned long start;
273
274 start = addr;
275 pud = pud_offset(pgd, addr);
276 do {
277 next = pud_addr_end(addr, end);
278 if (pud_none_or_clear_bad(pud))
279 continue;
280 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
281 } while (pud++, addr = next, addr != end);
282
283 start &= PGDIR_MASK;
284 if (start < floor)
285 return;
286 if (ceiling) {
287 ceiling &= PGDIR_MASK;
288 if (!ceiling)
289 return;
290 }
291 if (end - 1 > ceiling - 1)
292 return;
293
294 pud = pud_offset(pgd, start);
295 pgd_clear(pgd);
296 pud_free_tlb(tlb, pud, start);
297 }
298
299 /*
300 * This function frees user-level page tables of a process.
301 *
302 * Must be called with pagetable lock held.
303 */
304 void free_pgd_range(struct mmu_gather *tlb,
305 unsigned long addr, unsigned long end,
306 unsigned long floor, unsigned long ceiling)
307 {
308 pgd_t *pgd;
309 unsigned long next;
310
311 /*
312 * The next few lines have given us lots of grief...
313 *
314 * Why are we testing PMD* at this top level? Because often
315 * there will be no work to do at all, and we'd prefer not to
316 * go all the way down to the bottom just to discover that.
317 *
318 * Why all these "- 1"s? Because 0 represents both the bottom
319 * of the address space and the top of it (using -1 for the
320 * top wouldn't help much: the masks would do the wrong thing).
321 * The rule is that addr 0 and floor 0 refer to the bottom of
322 * the address space, but end 0 and ceiling 0 refer to the top
323 * Comparisons need to use "end - 1" and "ceiling - 1" (though
324 * that end 0 case should be mythical).
325 *
326 * Wherever addr is brought up or ceiling brought down, we must
327 * be careful to reject "the opposite 0" before it confuses the
328 * subsequent tests. But what about where end is brought down
329 * by PMD_SIZE below? no, end can't go down to 0 there.
330 *
331 * Whereas we round start (addr) and ceiling down, by different
332 * masks at different levels, in order to test whether a table
333 * now has no other vmas using it, so can be freed, we don't
334 * bother to round floor or end up - the tests don't need that.
335 */
336
337 addr &= PMD_MASK;
338 if (addr < floor) {
339 addr += PMD_SIZE;
340 if (!addr)
341 return;
342 }
343 if (ceiling) {
344 ceiling &= PMD_MASK;
345 if (!ceiling)
346 return;
347 }
348 if (end - 1 > ceiling - 1)
349 end -= PMD_SIZE;
350 if (addr > end - 1)
351 return;
352
353 pgd = pgd_offset(tlb->mm, addr);
354 do {
355 next = pgd_addr_end(addr, end);
356 if (pgd_none_or_clear_bad(pgd))
357 continue;
358 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
359 } while (pgd++, addr = next, addr != end);
360 }
361
362 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
363 unsigned long floor, unsigned long ceiling)
364 {
365 while (vma) {
366 struct vm_area_struct *next = vma->vm_next;
367 unsigned long addr = vma->vm_start;
368
369 /*
370 * Hide vma from rmap and truncate_pagecache before freeing
371 * pgtables
372 */
373 unlink_anon_vmas(vma);
374 unlink_file_vma(vma);
375
376 if (is_vm_hugetlb_page(vma)) {
377 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
378 floor, next? next->vm_start: ceiling);
379 } else {
380 /*
381 * Optimization: gather nearby vmas into one call down
382 */
383 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
384 && !is_vm_hugetlb_page(next)) {
385 vma = next;
386 next = vma->vm_next;
387 unlink_anon_vmas(vma);
388 unlink_file_vma(vma);
389 }
390 free_pgd_range(tlb, addr, vma->vm_end,
391 floor, next? next->vm_start: ceiling);
392 }
393 vma = next;
394 }
395 }
396
397 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
398 {
399 pgtable_t new = pte_alloc_one(mm, address);
400 if (!new)
401 return -ENOMEM;
402
403 /*
404 * Ensure all pte setup (eg. pte page lock and page clearing) are
405 * visible before the pte is made visible to other CPUs by being
406 * put into page tables.
407 *
408 * The other side of the story is the pointer chasing in the page
409 * table walking code (when walking the page table without locking;
410 * ie. most of the time). Fortunately, these data accesses consist
411 * of a chain of data-dependent loads, meaning most CPUs (alpha
412 * being the notable exception) will already guarantee loads are
413 * seen in-order. See the alpha page table accessors for the
414 * smp_read_barrier_depends() barriers in page table walking code.
415 */
416 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
417
418 spin_lock(&mm->page_table_lock);
419 if (!pmd_present(*pmd)) { /* Has another populated it ? */
420 mm->nr_ptes++;
421 pmd_populate(mm, pmd, new);
422 new = NULL;
423 }
424 spin_unlock(&mm->page_table_lock);
425 if (new)
426 pte_free(mm, new);
427 return 0;
428 }
429
430 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
431 {
432 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
433 if (!new)
434 return -ENOMEM;
435
436 smp_wmb(); /* See comment in __pte_alloc */
437
438 spin_lock(&init_mm.page_table_lock);
439 if (!pmd_present(*pmd)) { /* Has another populated it ? */
440 pmd_populate_kernel(&init_mm, pmd, new);
441 new = NULL;
442 }
443 spin_unlock(&init_mm.page_table_lock);
444 if (new)
445 pte_free_kernel(&init_mm, new);
446 return 0;
447 }
448
449 static inline void init_rss_vec(int *rss)
450 {
451 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
452 }
453
454 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
455 {
456 int i;
457
458 if (current->mm == mm)
459 sync_mm_rss(current, mm);
460 for (i = 0; i < NR_MM_COUNTERS; i++)
461 if (rss[i])
462 add_mm_counter(mm, i, rss[i]);
463 }
464
465 /*
466 * This function is called to print an error when a bad pte
467 * is found. For example, we might have a PFN-mapped pte in
468 * a region that doesn't allow it.
469 *
470 * The calling function must still handle the error.
471 */
472 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
473 pte_t pte, struct page *page)
474 {
475 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
476 pud_t *pud = pud_offset(pgd, addr);
477 pmd_t *pmd = pmd_offset(pud, addr);
478 struct address_space *mapping;
479 pgoff_t index;
480 static unsigned long resume;
481 static unsigned long nr_shown;
482 static unsigned long nr_unshown;
483
484 /*
485 * Allow a burst of 60 reports, then keep quiet for that minute;
486 * or allow a steady drip of one report per second.
487 */
488 if (nr_shown == 60) {
489 if (time_before(jiffies, resume)) {
490 nr_unshown++;
491 return;
492 }
493 if (nr_unshown) {
494 printk(KERN_ALERT
495 "BUG: Bad page map: %lu messages suppressed\n",
496 nr_unshown);
497 nr_unshown = 0;
498 }
499 nr_shown = 0;
500 }
501 if (nr_shown++ == 0)
502 resume = jiffies + 60 * HZ;
503
504 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
505 index = linear_page_index(vma, addr);
506
507 printk(KERN_ALERT
508 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
509 current->comm,
510 (long long)pte_val(pte), (long long)pmd_val(*pmd));
511 if (page)
512 dump_page(page);
513 printk(KERN_ALERT
514 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
515 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
516 /*
517 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
518 */
519 if (vma->vm_ops)
520 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
521 (unsigned long)vma->vm_ops->fault);
522 if (vma->vm_file && vma->vm_file->f_op)
523 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
524 (unsigned long)vma->vm_file->f_op->mmap);
525 dump_stack();
526 add_taint(TAINT_BAD_PAGE);
527 }
528
529 static inline int is_cow_mapping(unsigned int flags)
530 {
531 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
532 }
533
534 #ifndef is_zero_pfn
535 static inline int is_zero_pfn(unsigned long pfn)
536 {
537 return pfn == zero_pfn;
538 }
539 #endif
540
541 #ifndef my_zero_pfn
542 static inline unsigned long my_zero_pfn(unsigned long addr)
543 {
544 return zero_pfn;
545 }
546 #endif
547
548 /*
549 * vm_normal_page -- This function gets the "struct page" associated with a pte.
550 *
551 * "Special" mappings do not wish to be associated with a "struct page" (either
552 * it doesn't exist, or it exists but they don't want to touch it). In this
553 * case, NULL is returned here. "Normal" mappings do have a struct page.
554 *
555 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
556 * pte bit, in which case this function is trivial. Secondly, an architecture
557 * may not have a spare pte bit, which requires a more complicated scheme,
558 * described below.
559 *
560 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
561 * special mapping (even if there are underlying and valid "struct pages").
562 * COWed pages of a VM_PFNMAP are always normal.
563 *
564 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
565 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
566 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
567 * mapping will always honor the rule
568 *
569 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
570 *
571 * And for normal mappings this is false.
572 *
573 * This restricts such mappings to be a linear translation from virtual address
574 * to pfn. To get around this restriction, we allow arbitrary mappings so long
575 * as the vma is not a COW mapping; in that case, we know that all ptes are
576 * special (because none can have been COWed).
577 *
578 *
579 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
580 *
581 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
582 * page" backing, however the difference is that _all_ pages with a struct
583 * page (that is, those where pfn_valid is true) are refcounted and considered
584 * normal pages by the VM. The disadvantage is that pages are refcounted
585 * (which can be slower and simply not an option for some PFNMAP users). The
586 * advantage is that we don't have to follow the strict linearity rule of
587 * PFNMAP mappings in order to support COWable mappings.
588 *
589 */
590 #ifdef __HAVE_ARCH_PTE_SPECIAL
591 # define HAVE_PTE_SPECIAL 1
592 #else
593 # define HAVE_PTE_SPECIAL 0
594 #endif
595 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
596 pte_t pte)
597 {
598 unsigned long pfn = pte_pfn(pte);
599
600 if (HAVE_PTE_SPECIAL) {
601 if (likely(!pte_special(pte)))
602 goto check_pfn;
603 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
604 return NULL;
605 if (!is_zero_pfn(pfn))
606 print_bad_pte(vma, addr, pte, NULL);
607 return NULL;
608 }
609
610 /* !HAVE_PTE_SPECIAL case follows: */
611
612 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
613 if (vma->vm_flags & VM_MIXEDMAP) {
614 if (!pfn_valid(pfn))
615 return NULL;
616 goto out;
617 } else {
618 unsigned long off;
619 off = (addr - vma->vm_start) >> PAGE_SHIFT;
620 if (pfn == vma->vm_pgoff + off)
621 return NULL;
622 if (!is_cow_mapping(vma->vm_flags))
623 return NULL;
624 }
625 }
626
627 if (is_zero_pfn(pfn))
628 return NULL;
629 check_pfn:
630 if (unlikely(pfn > highest_memmap_pfn)) {
631 print_bad_pte(vma, addr, pte, NULL);
632 return NULL;
633 }
634
635 /*
636 * NOTE! We still have PageReserved() pages in the page tables.
637 * eg. VDSO mappings can cause them to exist.
638 */
639 out:
640 return pfn_to_page(pfn);
641 }
642
643 /*
644 * copy one vm_area from one task to the other. Assumes the page tables
645 * already present in the new task to be cleared in the whole range
646 * covered by this vma.
647 */
648
649 static inline unsigned long
650 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
651 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
652 unsigned long addr, int *rss)
653 {
654 unsigned long vm_flags = vma->vm_flags;
655 pte_t pte = *src_pte;
656 struct page *page;
657
658 /* pte contains position in swap or file, so copy. */
659 if (unlikely(!pte_present(pte))) {
660 if (!pte_file(pte)) {
661 swp_entry_t entry = pte_to_swp_entry(pte);
662
663 if (swap_duplicate(entry) < 0)
664 return entry.val;
665
666 /* make sure dst_mm is on swapoff's mmlist. */
667 if (unlikely(list_empty(&dst_mm->mmlist))) {
668 spin_lock(&mmlist_lock);
669 if (list_empty(&dst_mm->mmlist))
670 list_add(&dst_mm->mmlist,
671 &src_mm->mmlist);
672 spin_unlock(&mmlist_lock);
673 }
674 if (likely(!non_swap_entry(entry)))
675 rss[MM_SWAPENTS]++;
676 else if (is_write_migration_entry(entry) &&
677 is_cow_mapping(vm_flags)) {
678 /*
679 * COW mappings require pages in both parent
680 * and child to be set to read.
681 */
682 make_migration_entry_read(&entry);
683 pte = swp_entry_to_pte(entry);
684 set_pte_at(src_mm, addr, src_pte, pte);
685 }
686 }
687 goto out_set_pte;
688 }
689
690 /*
691 * If it's a COW mapping, write protect it both
692 * in the parent and the child
693 */
694 if (is_cow_mapping(vm_flags)) {
695 ptep_set_wrprotect(src_mm, addr, src_pte);
696 pte = pte_wrprotect(pte);
697 }
698
699 /*
700 * If it's a shared mapping, mark it clean in
701 * the child
702 */
703 if (vm_flags & VM_SHARED)
704 pte = pte_mkclean(pte);
705 pte = pte_mkold(pte);
706
707 page = vm_normal_page(vma, addr, pte);
708 if (page) {
709 get_page(page);
710 page_dup_rmap(page);
711 if (PageAnon(page))
712 rss[MM_ANONPAGES]++;
713 else
714 rss[MM_FILEPAGES]++;
715 }
716
717 out_set_pte:
718 set_pte_at(dst_mm, addr, dst_pte, pte);
719 return 0;
720 }
721
722 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
723 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
724 unsigned long addr, unsigned long end)
725 {
726 pte_t *orig_src_pte, *orig_dst_pte;
727 pte_t *src_pte, *dst_pte;
728 spinlock_t *src_ptl, *dst_ptl;
729 int progress = 0;
730 int rss[NR_MM_COUNTERS];
731 swp_entry_t entry = (swp_entry_t){0};
732
733 again:
734 init_rss_vec(rss);
735
736 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
737 if (!dst_pte)
738 return -ENOMEM;
739 src_pte = pte_offset_map(src_pmd, addr);
740 src_ptl = pte_lockptr(src_mm, src_pmd);
741 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
742 orig_src_pte = src_pte;
743 orig_dst_pte = dst_pte;
744 arch_enter_lazy_mmu_mode();
745
746 do {
747 /*
748 * We are holding two locks at this point - either of them
749 * could generate latencies in another task on another CPU.
750 */
751 if (progress >= 32) {
752 progress = 0;
753 if (need_resched() ||
754 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
755 break;
756 }
757 if (pte_none(*src_pte)) {
758 progress++;
759 continue;
760 }
761 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
762 vma, addr, rss);
763 if (entry.val)
764 break;
765 progress += 8;
766 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
767
768 arch_leave_lazy_mmu_mode();
769 spin_unlock(src_ptl);
770 pte_unmap(orig_src_pte);
771 add_mm_rss_vec(dst_mm, rss);
772 pte_unmap_unlock(orig_dst_pte, dst_ptl);
773 cond_resched();
774
775 if (entry.val) {
776 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
777 return -ENOMEM;
778 progress = 0;
779 }
780 if (addr != end)
781 goto again;
782 return 0;
783 }
784
785 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
786 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
787 unsigned long addr, unsigned long end)
788 {
789 pmd_t *src_pmd, *dst_pmd;
790 unsigned long next;
791
792 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
793 if (!dst_pmd)
794 return -ENOMEM;
795 src_pmd = pmd_offset(src_pud, addr);
796 do {
797 next = pmd_addr_end(addr, end);
798 if (pmd_none_or_clear_bad(src_pmd))
799 continue;
800 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
801 vma, addr, next))
802 return -ENOMEM;
803 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
804 return 0;
805 }
806
807 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
808 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
809 unsigned long addr, unsigned long end)
810 {
811 pud_t *src_pud, *dst_pud;
812 unsigned long next;
813
814 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
815 if (!dst_pud)
816 return -ENOMEM;
817 src_pud = pud_offset(src_pgd, addr);
818 do {
819 next = pud_addr_end(addr, end);
820 if (pud_none_or_clear_bad(src_pud))
821 continue;
822 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
823 vma, addr, next))
824 return -ENOMEM;
825 } while (dst_pud++, src_pud++, addr = next, addr != end);
826 return 0;
827 }
828
829 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
830 struct vm_area_struct *vma)
831 {
832 pgd_t *src_pgd, *dst_pgd;
833 unsigned long next;
834 unsigned long addr = vma->vm_start;
835 unsigned long end = vma->vm_end;
836 int ret;
837
838 /*
839 * Don't copy ptes where a page fault will fill them correctly.
840 * Fork becomes much lighter when there are big shared or private
841 * readonly mappings. The tradeoff is that copy_page_range is more
842 * efficient than faulting.
843 */
844 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
845 if (!vma->anon_vma)
846 return 0;
847 }
848
849 if (is_vm_hugetlb_page(vma))
850 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
851
852 if (unlikely(is_pfn_mapping(vma))) {
853 /*
854 * We do not free on error cases below as remove_vma
855 * gets called on error from higher level routine
856 */
857 ret = track_pfn_vma_copy(vma);
858 if (ret)
859 return ret;
860 }
861
862 /*
863 * We need to invalidate the secondary MMU mappings only when
864 * there could be a permission downgrade on the ptes of the
865 * parent mm. And a permission downgrade will only happen if
866 * is_cow_mapping() returns true.
867 */
868 if (is_cow_mapping(vma->vm_flags))
869 mmu_notifier_invalidate_range_start(src_mm, addr, end);
870
871 ret = 0;
872 dst_pgd = pgd_offset(dst_mm, addr);
873 src_pgd = pgd_offset(src_mm, addr);
874 do {
875 next = pgd_addr_end(addr, end);
876 if (pgd_none_or_clear_bad(src_pgd))
877 continue;
878 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
879 vma, addr, next))) {
880 ret = -ENOMEM;
881 break;
882 }
883 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
884
885 if (is_cow_mapping(vma->vm_flags))
886 mmu_notifier_invalidate_range_end(src_mm,
887 vma->vm_start, end);
888 return ret;
889 }
890
891 static unsigned long zap_pte_range(struct mmu_gather *tlb,
892 struct vm_area_struct *vma, pmd_t *pmd,
893 unsigned long addr, unsigned long end,
894 long *zap_work, struct zap_details *details)
895 {
896 struct mm_struct *mm = tlb->mm;
897 pte_t *pte;
898 spinlock_t *ptl;
899 int rss[NR_MM_COUNTERS];
900
901 init_rss_vec(rss);
902
903 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
904 arch_enter_lazy_mmu_mode();
905 do {
906 pte_t ptent = *pte;
907 if (pte_none(ptent)) {
908 (*zap_work)--;
909 continue;
910 }
911
912 (*zap_work) -= PAGE_SIZE;
913
914 if (pte_present(ptent)) {
915 struct page *page;
916
917 page = vm_normal_page(vma, addr, ptent);
918 if (unlikely(details) && page) {
919 /*
920 * unmap_shared_mapping_pages() wants to
921 * invalidate cache without truncating:
922 * unmap shared but keep private pages.
923 */
924 if (details->check_mapping &&
925 details->check_mapping != page->mapping)
926 continue;
927 /*
928 * Each page->index must be checked when
929 * invalidating or truncating nonlinear.
930 */
931 if (details->nonlinear_vma &&
932 (page->index < details->first_index ||
933 page->index > details->last_index))
934 continue;
935 }
936 ptent = ptep_get_and_clear_full(mm, addr, pte,
937 tlb->fullmm);
938 tlb_remove_tlb_entry(tlb, pte, addr);
939 if (unlikely(!page))
940 continue;
941 if (unlikely(details) && details->nonlinear_vma
942 && linear_page_index(details->nonlinear_vma,
943 addr) != page->index)
944 set_pte_at(mm, addr, pte,
945 pgoff_to_pte(page->index));
946 if (PageAnon(page))
947 rss[MM_ANONPAGES]--;
948 else {
949 if (pte_dirty(ptent))
950 set_page_dirty(page);
951 if (pte_young(ptent) &&
952 likely(!VM_SequentialReadHint(vma)))
953 mark_page_accessed(page);
954 rss[MM_FILEPAGES]--;
955 }
956 page_remove_rmap(page);
957 if (unlikely(page_mapcount(page) < 0))
958 print_bad_pte(vma, addr, ptent, page);
959 tlb_remove_page(tlb, page);
960 continue;
961 }
962 /*
963 * If details->check_mapping, we leave swap entries;
964 * if details->nonlinear_vma, we leave file entries.
965 */
966 if (unlikely(details))
967 continue;
968 if (pte_file(ptent)) {
969 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
970 print_bad_pte(vma, addr, ptent, NULL);
971 } else {
972 swp_entry_t entry = pte_to_swp_entry(ptent);
973
974 if (!non_swap_entry(entry))
975 rss[MM_SWAPENTS]--;
976 if (unlikely(!free_swap_and_cache(entry)))
977 print_bad_pte(vma, addr, ptent, NULL);
978 }
979 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
980 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
981
982 add_mm_rss_vec(mm, rss);
983 arch_leave_lazy_mmu_mode();
984 pte_unmap_unlock(pte - 1, ptl);
985
986 return addr;
987 }
988
989 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
990 struct vm_area_struct *vma, pud_t *pud,
991 unsigned long addr, unsigned long end,
992 long *zap_work, struct zap_details *details)
993 {
994 pmd_t *pmd;
995 unsigned long next;
996
997 pmd = pmd_offset(pud, addr);
998 do {
999 next = pmd_addr_end(addr, end);
1000 if (pmd_none_or_clear_bad(pmd)) {
1001 (*zap_work)--;
1002 continue;
1003 }
1004 next = zap_pte_range(tlb, vma, pmd, addr, next,
1005 zap_work, details);
1006 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
1007
1008 return addr;
1009 }
1010
1011 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1012 struct vm_area_struct *vma, pgd_t *pgd,
1013 unsigned long addr, unsigned long end,
1014 long *zap_work, struct zap_details *details)
1015 {
1016 pud_t *pud;
1017 unsigned long next;
1018
1019 pud = pud_offset(pgd, addr);
1020 do {
1021 next = pud_addr_end(addr, end);
1022 if (pud_none_or_clear_bad(pud)) {
1023 (*zap_work)--;
1024 continue;
1025 }
1026 next = zap_pmd_range(tlb, vma, pud, addr, next,
1027 zap_work, details);
1028 } while (pud++, addr = next, (addr != end && *zap_work > 0));
1029
1030 return addr;
1031 }
1032
1033 static unsigned long unmap_page_range(struct mmu_gather *tlb,
1034 struct vm_area_struct *vma,
1035 unsigned long addr, unsigned long end,
1036 long *zap_work, struct zap_details *details)
1037 {
1038 pgd_t *pgd;
1039 unsigned long next;
1040
1041 if (details && !details->check_mapping && !details->nonlinear_vma)
1042 details = NULL;
1043
1044 BUG_ON(addr >= end);
1045 mem_cgroup_uncharge_start();
1046 tlb_start_vma(tlb, vma);
1047 pgd = pgd_offset(vma->vm_mm, addr);
1048 do {
1049 next = pgd_addr_end(addr, end);
1050 if (pgd_none_or_clear_bad(pgd)) {
1051 (*zap_work)--;
1052 continue;
1053 }
1054 next = zap_pud_range(tlb, vma, pgd, addr, next,
1055 zap_work, details);
1056 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
1057 tlb_end_vma(tlb, vma);
1058 mem_cgroup_uncharge_end();
1059
1060 return addr;
1061 }
1062
1063 #ifdef CONFIG_PREEMPT
1064 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
1065 #else
1066 /* No preempt: go for improved straight-line efficiency */
1067 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
1068 #endif
1069
1070 /**
1071 * unmap_vmas - unmap a range of memory covered by a list of vma's
1072 * @tlbp: address of the caller's struct mmu_gather
1073 * @vma: the starting vma
1074 * @start_addr: virtual address at which to start unmapping
1075 * @end_addr: virtual address at which to end unmapping
1076 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1077 * @details: details of nonlinear truncation or shared cache invalidation
1078 *
1079 * Returns the end address of the unmapping (restart addr if interrupted).
1080 *
1081 * Unmap all pages in the vma list.
1082 *
1083 * We aim to not hold locks for too long (for scheduling latency reasons).
1084 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1085 * return the ending mmu_gather to the caller.
1086 *
1087 * Only addresses between `start' and `end' will be unmapped.
1088 *
1089 * The VMA list must be sorted in ascending virtual address order.
1090 *
1091 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1092 * range after unmap_vmas() returns. So the only responsibility here is to
1093 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1094 * drops the lock and schedules.
1095 */
1096 unsigned long unmap_vmas(struct mmu_gather **tlbp,
1097 struct vm_area_struct *vma, unsigned long start_addr,
1098 unsigned long end_addr, unsigned long *nr_accounted,
1099 struct zap_details *details)
1100 {
1101 long zap_work = ZAP_BLOCK_SIZE;
1102 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
1103 int tlb_start_valid = 0;
1104 unsigned long start = start_addr;
1105 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
1106 int fullmm = (*tlbp)->fullmm;
1107 struct mm_struct *mm = vma->vm_mm;
1108
1109 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1110 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1111 unsigned long end;
1112
1113 start = max(vma->vm_start, start_addr);
1114 if (start >= vma->vm_end)
1115 continue;
1116 end = min(vma->vm_end, end_addr);
1117 if (end <= vma->vm_start)
1118 continue;
1119
1120 if (vma->vm_flags & VM_ACCOUNT)
1121 *nr_accounted += (end - start) >> PAGE_SHIFT;
1122
1123 if (unlikely(is_pfn_mapping(vma)))
1124 untrack_pfn_vma(vma, 0, 0);
1125
1126 while (start != end) {
1127 if (!tlb_start_valid) {
1128 tlb_start = start;
1129 tlb_start_valid = 1;
1130 }
1131
1132 if (unlikely(is_vm_hugetlb_page(vma))) {
1133 /*
1134 * It is undesirable to test vma->vm_file as it
1135 * should be non-null for valid hugetlb area.
1136 * However, vm_file will be NULL in the error
1137 * cleanup path of do_mmap_pgoff. When
1138 * hugetlbfs ->mmap method fails,
1139 * do_mmap_pgoff() nullifies vma->vm_file
1140 * before calling this function to clean up.
1141 * Since no pte has actually been setup, it is
1142 * safe to do nothing in this case.
1143 */
1144 if (vma->vm_file) {
1145 unmap_hugepage_range(vma, start, end, NULL);
1146 zap_work -= (end - start) /
1147 pages_per_huge_page(hstate_vma(vma));
1148 }
1149
1150 start = end;
1151 } else
1152 start = unmap_page_range(*tlbp, vma,
1153 start, end, &zap_work, details);
1154
1155 if (zap_work > 0) {
1156 BUG_ON(start != end);
1157 break;
1158 }
1159
1160 tlb_finish_mmu(*tlbp, tlb_start, start);
1161
1162 if (need_resched() ||
1163 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1164 if (i_mmap_lock) {
1165 *tlbp = NULL;
1166 goto out;
1167 }
1168 cond_resched();
1169 }
1170
1171 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1172 tlb_start_valid = 0;
1173 zap_work = ZAP_BLOCK_SIZE;
1174 }
1175 }
1176 out:
1177 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1178 return start; /* which is now the end (or restart) address */
1179 }
1180
1181 /**
1182 * zap_page_range - remove user pages in a given range
1183 * @vma: vm_area_struct holding the applicable pages
1184 * @address: starting address of pages to zap
1185 * @size: number of bytes to zap
1186 * @details: details of nonlinear truncation or shared cache invalidation
1187 */
1188 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1189 unsigned long size, struct zap_details *details)
1190 {
1191 struct mm_struct *mm = vma->vm_mm;
1192 struct mmu_gather *tlb;
1193 unsigned long end = address + size;
1194 unsigned long nr_accounted = 0;
1195
1196 lru_add_drain();
1197 tlb = tlb_gather_mmu(mm, 0);
1198 update_hiwater_rss(mm);
1199 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1200 if (tlb)
1201 tlb_finish_mmu(tlb, address, end);
1202 return end;
1203 }
1204
1205 /**
1206 * zap_vma_ptes - remove ptes mapping the vma
1207 * @vma: vm_area_struct holding ptes to be zapped
1208 * @address: starting address of pages to zap
1209 * @size: number of bytes to zap
1210 *
1211 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1212 *
1213 * The entire address range must be fully contained within the vma.
1214 *
1215 * Returns 0 if successful.
1216 */
1217 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1218 unsigned long size)
1219 {
1220 if (address < vma->vm_start || address + size > vma->vm_end ||
1221 !(vma->vm_flags & VM_PFNMAP))
1222 return -1;
1223 zap_page_range(vma, address, size, NULL);
1224 return 0;
1225 }
1226 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1227
1228 /**
1229 * follow_page - look up a page descriptor from a user-virtual address
1230 * @vma: vm_area_struct mapping @address
1231 * @address: virtual address to look up
1232 * @flags: flags modifying lookup behaviour
1233 *
1234 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1235 *
1236 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1237 * an error pointer if there is a mapping to something not represented
1238 * by a page descriptor (see also vm_normal_page()).
1239 */
1240 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1241 unsigned int flags)
1242 {
1243 pgd_t *pgd;
1244 pud_t *pud;
1245 pmd_t *pmd;
1246 pte_t *ptep, pte;
1247 spinlock_t *ptl;
1248 struct page *page;
1249 struct mm_struct *mm = vma->vm_mm;
1250
1251 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1252 if (!IS_ERR(page)) {
1253 BUG_ON(flags & FOLL_GET);
1254 goto out;
1255 }
1256
1257 page = NULL;
1258 pgd = pgd_offset(mm, address);
1259 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1260 goto no_page_table;
1261
1262 pud = pud_offset(pgd, address);
1263 if (pud_none(*pud))
1264 goto no_page_table;
1265 if (pud_huge(*pud)) {
1266 BUG_ON(flags & FOLL_GET);
1267 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1268 goto out;
1269 }
1270 if (unlikely(pud_bad(*pud)))
1271 goto no_page_table;
1272
1273 pmd = pmd_offset(pud, address);
1274 if (pmd_none(*pmd))
1275 goto no_page_table;
1276 if (pmd_huge(*pmd)) {
1277 BUG_ON(flags & FOLL_GET);
1278 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1279 goto out;
1280 }
1281 if (unlikely(pmd_bad(*pmd)))
1282 goto no_page_table;
1283
1284 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1285
1286 pte = *ptep;
1287 if (!pte_present(pte))
1288 goto no_page;
1289 if ((flags & FOLL_WRITE) && !pte_write(pte))
1290 goto unlock;
1291
1292 page = vm_normal_page(vma, address, pte);
1293 if (unlikely(!page)) {
1294 if ((flags & FOLL_DUMP) ||
1295 !is_zero_pfn(pte_pfn(pte)))
1296 goto bad_page;
1297 page = pte_page(pte);
1298 }
1299
1300 if (flags & FOLL_GET)
1301 get_page(page);
1302 if (flags & FOLL_TOUCH) {
1303 if ((flags & FOLL_WRITE) &&
1304 !pte_dirty(pte) && !PageDirty(page))
1305 set_page_dirty(page);
1306 /*
1307 * pte_mkyoung() would be more correct here, but atomic care
1308 * is needed to avoid losing the dirty bit: it is easier to use
1309 * mark_page_accessed().
1310 */
1311 mark_page_accessed(page);
1312 }
1313 if (flags & FOLL_MLOCK) {
1314 /*
1315 * The preliminary mapping check is mainly to avoid the
1316 * pointless overhead of lock_page on the ZERO_PAGE
1317 * which might bounce very badly if there is contention.
1318 *
1319 * If the page is already locked, we don't need to
1320 * handle it now - vmscan will handle it later if and
1321 * when it attempts to reclaim the page.
1322 */
1323 if (page->mapping && trylock_page(page)) {
1324 lru_add_drain(); /* push cached pages to LRU */
1325 /*
1326 * Because we lock page here and migration is
1327 * blocked by the pte's page reference, we need
1328 * only check for file-cache page truncation.
1329 */
1330 if (page->mapping)
1331 mlock_vma_page(page);
1332 unlock_page(page);
1333 }
1334 }
1335 unlock:
1336 pte_unmap_unlock(ptep, ptl);
1337 out:
1338 return page;
1339
1340 bad_page:
1341 pte_unmap_unlock(ptep, ptl);
1342 return ERR_PTR(-EFAULT);
1343
1344 no_page:
1345 pte_unmap_unlock(ptep, ptl);
1346 if (!pte_none(pte))
1347 return page;
1348
1349 no_page_table:
1350 /*
1351 * When core dumping an enormous anonymous area that nobody
1352 * has touched so far, we don't want to allocate unnecessary pages or
1353 * page tables. Return error instead of NULL to skip handle_mm_fault,
1354 * then get_dump_page() will return NULL to leave a hole in the dump.
1355 * But we can only make this optimization where a hole would surely
1356 * be zero-filled if handle_mm_fault() actually did handle it.
1357 */
1358 if ((flags & FOLL_DUMP) &&
1359 (!vma->vm_ops || !vma->vm_ops->fault))
1360 return ERR_PTR(-EFAULT);
1361 return page;
1362 }
1363
1364 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1365 unsigned long start, int nr_pages, unsigned int gup_flags,
1366 struct page **pages, struct vm_area_struct **vmas,
1367 int *nonblocking)
1368 {
1369 int i;
1370 unsigned long vm_flags;
1371
1372 if (nr_pages <= 0)
1373 return 0;
1374
1375 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1376
1377 /*
1378 * Require read or write permissions.
1379 * If FOLL_FORCE is set, we only require the "MAY" flags.
1380 */
1381 vm_flags = (gup_flags & FOLL_WRITE) ?
1382 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1383 vm_flags &= (gup_flags & FOLL_FORCE) ?
1384 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1385 i = 0;
1386
1387 do {
1388 struct vm_area_struct *vma;
1389
1390 vma = find_extend_vma(mm, start);
1391 if (!vma && in_gate_area(tsk, start)) {
1392 unsigned long pg = start & PAGE_MASK;
1393 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1394 pgd_t *pgd;
1395 pud_t *pud;
1396 pmd_t *pmd;
1397 pte_t *pte;
1398
1399 /* user gate pages are read-only */
1400 if (gup_flags & FOLL_WRITE)
1401 return i ? : -EFAULT;
1402 if (pg > TASK_SIZE)
1403 pgd = pgd_offset_k(pg);
1404 else
1405 pgd = pgd_offset_gate(mm, pg);
1406 BUG_ON(pgd_none(*pgd));
1407 pud = pud_offset(pgd, pg);
1408 BUG_ON(pud_none(*pud));
1409 pmd = pmd_offset(pud, pg);
1410 if (pmd_none(*pmd))
1411 return i ? : -EFAULT;
1412 pte = pte_offset_map(pmd, pg);
1413 if (pte_none(*pte)) {
1414 pte_unmap(pte);
1415 return i ? : -EFAULT;
1416 }
1417 if (pages) {
1418 struct page *page;
1419
1420 page = vm_normal_page(gate_vma, start, *pte);
1421 if (!page) {
1422 if (!(gup_flags & FOLL_DUMP) &&
1423 is_zero_pfn(pte_pfn(*pte)))
1424 page = pte_page(*pte);
1425 else {
1426 pte_unmap(pte);
1427 return i ? : -EFAULT;
1428 }
1429 }
1430 pages[i] = page;
1431 get_page(page);
1432 }
1433 pte_unmap(pte);
1434 if (vmas)
1435 vmas[i] = gate_vma;
1436 i++;
1437 start += PAGE_SIZE;
1438 nr_pages--;
1439 continue;
1440 }
1441
1442 if (!vma ||
1443 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1444 !(vm_flags & vma->vm_flags))
1445 return i ? : -EFAULT;
1446
1447 if (is_vm_hugetlb_page(vma)) {
1448 i = follow_hugetlb_page(mm, vma, pages, vmas,
1449 &start, &nr_pages, i, gup_flags);
1450 continue;
1451 }
1452
1453 do {
1454 struct page *page;
1455 unsigned int foll_flags = gup_flags;
1456
1457 /*
1458 * If we have a pending SIGKILL, don't keep faulting
1459 * pages and potentially allocating memory.
1460 */
1461 if (unlikely(fatal_signal_pending(current)))
1462 return i ? i : -ERESTARTSYS;
1463
1464 cond_resched();
1465 while (!(page = follow_page(vma, start, foll_flags))) {
1466 int ret;
1467 unsigned int fault_flags = 0;
1468
1469 if (foll_flags & FOLL_WRITE)
1470 fault_flags |= FAULT_FLAG_WRITE;
1471 if (nonblocking)
1472 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1473
1474 ret = handle_mm_fault(mm, vma, start,
1475 fault_flags);
1476
1477 if (ret & VM_FAULT_ERROR) {
1478 if (ret & VM_FAULT_OOM)
1479 return i ? i : -ENOMEM;
1480 if (ret &
1481 (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE|
1482 VM_FAULT_SIGBUS))
1483 return i ? i : -EFAULT;
1484 BUG();
1485 }
1486 if (ret & VM_FAULT_MAJOR)
1487 tsk->maj_flt++;
1488 else
1489 tsk->min_flt++;
1490
1491 if (ret & VM_FAULT_RETRY) {
1492 *nonblocking = 0;
1493 return i;
1494 }
1495
1496 /*
1497 * The VM_FAULT_WRITE bit tells us that
1498 * do_wp_page has broken COW when necessary,
1499 * even if maybe_mkwrite decided not to set
1500 * pte_write. We can thus safely do subsequent
1501 * page lookups as if they were reads. But only
1502 * do so when looping for pte_write is futile:
1503 * in some cases userspace may also be wanting
1504 * to write to the gotten user page, which a
1505 * read fault here might prevent (a readonly
1506 * page might get reCOWed by userspace write).
1507 */
1508 if ((ret & VM_FAULT_WRITE) &&
1509 !(vma->vm_flags & VM_WRITE))
1510 foll_flags &= ~FOLL_WRITE;
1511
1512 cond_resched();
1513 }
1514 if (IS_ERR(page))
1515 return i ? i : PTR_ERR(page);
1516 if (pages) {
1517 pages[i] = page;
1518
1519 flush_anon_page(vma, page, start);
1520 flush_dcache_page(page);
1521 }
1522 if (vmas)
1523 vmas[i] = vma;
1524 i++;
1525 start += PAGE_SIZE;
1526 nr_pages--;
1527 } while (nr_pages && start < vma->vm_end);
1528 } while (nr_pages);
1529 return i;
1530 }
1531
1532 /**
1533 * get_user_pages() - pin user pages in memory
1534 * @tsk: task_struct of target task
1535 * @mm: mm_struct of target mm
1536 * @start: starting user address
1537 * @nr_pages: number of pages from start to pin
1538 * @write: whether pages will be written to by the caller
1539 * @force: whether to force write access even if user mapping is
1540 * readonly. This will result in the page being COWed even
1541 * in MAP_SHARED mappings. You do not want this.
1542 * @pages: array that receives pointers to the pages pinned.
1543 * Should be at least nr_pages long. Or NULL, if caller
1544 * only intends to ensure the pages are faulted in.
1545 * @vmas: array of pointers to vmas corresponding to each page.
1546 * Or NULL if the caller does not require them.
1547 *
1548 * Returns number of pages pinned. This may be fewer than the number
1549 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1550 * were pinned, returns -errno. Each page returned must be released
1551 * with a put_page() call when it is finished with. vmas will only
1552 * remain valid while mmap_sem is held.
1553 *
1554 * Must be called with mmap_sem held for read or write.
1555 *
1556 * get_user_pages walks a process's page tables and takes a reference to
1557 * each struct page that each user address corresponds to at a given
1558 * instant. That is, it takes the page that would be accessed if a user
1559 * thread accesses the given user virtual address at that instant.
1560 *
1561 * This does not guarantee that the page exists in the user mappings when
1562 * get_user_pages returns, and there may even be a completely different
1563 * page there in some cases (eg. if mmapped pagecache has been invalidated
1564 * and subsequently re faulted). However it does guarantee that the page
1565 * won't be freed completely. And mostly callers simply care that the page
1566 * contains data that was valid *at some point in time*. Typically, an IO
1567 * or similar operation cannot guarantee anything stronger anyway because
1568 * locks can't be held over the syscall boundary.
1569 *
1570 * If write=0, the page must not be written to. If the page is written to,
1571 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1572 * after the page is finished with, and before put_page is called.
1573 *
1574 * get_user_pages is typically used for fewer-copy IO operations, to get a
1575 * handle on the memory by some means other than accesses via the user virtual
1576 * addresses. The pages may be submitted for DMA to devices or accessed via
1577 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1578 * use the correct cache flushing APIs.
1579 *
1580 * See also get_user_pages_fast, for performance critical applications.
1581 */
1582 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1583 unsigned long start, int nr_pages, int write, int force,
1584 struct page **pages, struct vm_area_struct **vmas)
1585 {
1586 int flags = FOLL_TOUCH;
1587
1588 if (pages)
1589 flags |= FOLL_GET;
1590 if (write)
1591 flags |= FOLL_WRITE;
1592 if (force)
1593 flags |= FOLL_FORCE;
1594
1595 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1596 NULL);
1597 }
1598 EXPORT_SYMBOL(get_user_pages);
1599
1600 /**
1601 * get_dump_page() - pin user page in memory while writing it to core dump
1602 * @addr: user address
1603 *
1604 * Returns struct page pointer of user page pinned for dump,
1605 * to be freed afterwards by page_cache_release() or put_page().
1606 *
1607 * Returns NULL on any kind of failure - a hole must then be inserted into
1608 * the corefile, to preserve alignment with its headers; and also returns
1609 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1610 * allowing a hole to be left in the corefile to save diskspace.
1611 *
1612 * Called without mmap_sem, but after all other threads have been killed.
1613 */
1614 #ifdef CONFIG_ELF_CORE
1615 struct page *get_dump_page(unsigned long addr)
1616 {
1617 struct vm_area_struct *vma;
1618 struct page *page;
1619
1620 if (__get_user_pages(current, current->mm, addr, 1,
1621 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1622 NULL) < 1)
1623 return NULL;
1624 flush_cache_page(vma, addr, page_to_pfn(page));
1625 return page;
1626 }
1627 #endif /* CONFIG_ELF_CORE */
1628
1629 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1630 spinlock_t **ptl)
1631 {
1632 pgd_t * pgd = pgd_offset(mm, addr);
1633 pud_t * pud = pud_alloc(mm, pgd, addr);
1634 if (pud) {
1635 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1636 if (pmd)
1637 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1638 }
1639 return NULL;
1640 }
1641
1642 /*
1643 * This is the old fallback for page remapping.
1644 *
1645 * For historical reasons, it only allows reserved pages. Only
1646 * old drivers should use this, and they needed to mark their
1647 * pages reserved for the old functions anyway.
1648 */
1649 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1650 struct page *page, pgprot_t prot)
1651 {
1652 struct mm_struct *mm = vma->vm_mm;
1653 int retval;
1654 pte_t *pte;
1655 spinlock_t *ptl;
1656
1657 retval = -EINVAL;
1658 if (PageAnon(page))
1659 goto out;
1660 retval = -ENOMEM;
1661 flush_dcache_page(page);
1662 pte = get_locked_pte(mm, addr, &ptl);
1663 if (!pte)
1664 goto out;
1665 retval = -EBUSY;
1666 if (!pte_none(*pte))
1667 goto out_unlock;
1668
1669 /* Ok, finally just insert the thing.. */
1670 get_page(page);
1671 inc_mm_counter_fast(mm, MM_FILEPAGES);
1672 page_add_file_rmap(page);
1673 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1674
1675 retval = 0;
1676 pte_unmap_unlock(pte, ptl);
1677 return retval;
1678 out_unlock:
1679 pte_unmap_unlock(pte, ptl);
1680 out:
1681 return retval;
1682 }
1683
1684 /**
1685 * vm_insert_page - insert single page into user vma
1686 * @vma: user vma to map to
1687 * @addr: target user address of this page
1688 * @page: source kernel page
1689 *
1690 * This allows drivers to insert individual pages they've allocated
1691 * into a user vma.
1692 *
1693 * The page has to be a nice clean _individual_ kernel allocation.
1694 * If you allocate a compound page, you need to have marked it as
1695 * such (__GFP_COMP), or manually just split the page up yourself
1696 * (see split_page()).
1697 *
1698 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1699 * took an arbitrary page protection parameter. This doesn't allow
1700 * that. Your vma protection will have to be set up correctly, which
1701 * means that if you want a shared writable mapping, you'd better
1702 * ask for a shared writable mapping!
1703 *
1704 * The page does not need to be reserved.
1705 */
1706 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1707 struct page *page)
1708 {
1709 if (addr < vma->vm_start || addr >= vma->vm_end)
1710 return -EFAULT;
1711 if (!page_count(page))
1712 return -EINVAL;
1713 vma->vm_flags |= VM_INSERTPAGE;
1714 return insert_page(vma, addr, page, vma->vm_page_prot);
1715 }
1716 EXPORT_SYMBOL(vm_insert_page);
1717
1718 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1719 unsigned long pfn, pgprot_t prot)
1720 {
1721 struct mm_struct *mm = vma->vm_mm;
1722 int retval;
1723 pte_t *pte, entry;
1724 spinlock_t *ptl;
1725
1726 retval = -ENOMEM;
1727 pte = get_locked_pte(mm, addr, &ptl);
1728 if (!pte)
1729 goto out;
1730 retval = -EBUSY;
1731 if (!pte_none(*pte))
1732 goto out_unlock;
1733
1734 /* Ok, finally just insert the thing.. */
1735 entry = pte_mkspecial(pfn_pte(pfn, prot));
1736 set_pte_at(mm, addr, pte, entry);
1737 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1738
1739 retval = 0;
1740 out_unlock:
1741 pte_unmap_unlock(pte, ptl);
1742 out:
1743 return retval;
1744 }
1745
1746 /**
1747 * vm_insert_pfn - insert single pfn into user vma
1748 * @vma: user vma to map to
1749 * @addr: target user address of this page
1750 * @pfn: source kernel pfn
1751 *
1752 * Similar to vm_inert_page, this allows drivers to insert individual pages
1753 * they've allocated into a user vma. Same comments apply.
1754 *
1755 * This function should only be called from a vm_ops->fault handler, and
1756 * in that case the handler should return NULL.
1757 *
1758 * vma cannot be a COW mapping.
1759 *
1760 * As this is called only for pages that do not currently exist, we
1761 * do not need to flush old virtual caches or the TLB.
1762 */
1763 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1764 unsigned long pfn)
1765 {
1766 int ret;
1767 pgprot_t pgprot = vma->vm_page_prot;
1768 /*
1769 * Technically, architectures with pte_special can avoid all these
1770 * restrictions (same for remap_pfn_range). However we would like
1771 * consistency in testing and feature parity among all, so we should
1772 * try to keep these invariants in place for everybody.
1773 */
1774 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1775 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1776 (VM_PFNMAP|VM_MIXEDMAP));
1777 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1778 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1779
1780 if (addr < vma->vm_start || addr >= vma->vm_end)
1781 return -EFAULT;
1782 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1783 return -EINVAL;
1784
1785 ret = insert_pfn(vma, addr, pfn, pgprot);
1786
1787 if (ret)
1788 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1789
1790 return ret;
1791 }
1792 EXPORT_SYMBOL(vm_insert_pfn);
1793
1794 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1795 unsigned long pfn)
1796 {
1797 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1798
1799 if (addr < vma->vm_start || addr >= vma->vm_end)
1800 return -EFAULT;
1801
1802 /*
1803 * If we don't have pte special, then we have to use the pfn_valid()
1804 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1805 * refcount the page if pfn_valid is true (hence insert_page rather
1806 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1807 * without pte special, it would there be refcounted as a normal page.
1808 */
1809 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1810 struct page *page;
1811
1812 page = pfn_to_page(pfn);
1813 return insert_page(vma, addr, page, vma->vm_page_prot);
1814 }
1815 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1816 }
1817 EXPORT_SYMBOL(vm_insert_mixed);
1818
1819 /*
1820 * maps a range of physical memory into the requested pages. the old
1821 * mappings are removed. any references to nonexistent pages results
1822 * in null mappings (currently treated as "copy-on-access")
1823 */
1824 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1825 unsigned long addr, unsigned long end,
1826 unsigned long pfn, pgprot_t prot)
1827 {
1828 pte_t *pte;
1829 spinlock_t *ptl;
1830
1831 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1832 if (!pte)
1833 return -ENOMEM;
1834 arch_enter_lazy_mmu_mode();
1835 do {
1836 BUG_ON(!pte_none(*pte));
1837 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1838 pfn++;
1839 } while (pte++, addr += PAGE_SIZE, addr != end);
1840 arch_leave_lazy_mmu_mode();
1841 pte_unmap_unlock(pte - 1, ptl);
1842 return 0;
1843 }
1844
1845 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1846 unsigned long addr, unsigned long end,
1847 unsigned long pfn, pgprot_t prot)
1848 {
1849 pmd_t *pmd;
1850 unsigned long next;
1851
1852 pfn -= addr >> PAGE_SHIFT;
1853 pmd = pmd_alloc(mm, pud, addr);
1854 if (!pmd)
1855 return -ENOMEM;
1856 do {
1857 next = pmd_addr_end(addr, end);
1858 if (remap_pte_range(mm, pmd, addr, next,
1859 pfn + (addr >> PAGE_SHIFT), prot))
1860 return -ENOMEM;
1861 } while (pmd++, addr = next, addr != end);
1862 return 0;
1863 }
1864
1865 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1866 unsigned long addr, unsigned long end,
1867 unsigned long pfn, pgprot_t prot)
1868 {
1869 pud_t *pud;
1870 unsigned long next;
1871
1872 pfn -= addr >> PAGE_SHIFT;
1873 pud = pud_alloc(mm, pgd, addr);
1874 if (!pud)
1875 return -ENOMEM;
1876 do {
1877 next = pud_addr_end(addr, end);
1878 if (remap_pmd_range(mm, pud, addr, next,
1879 pfn + (addr >> PAGE_SHIFT), prot))
1880 return -ENOMEM;
1881 } while (pud++, addr = next, addr != end);
1882 return 0;
1883 }
1884
1885 /**
1886 * remap_pfn_range - remap kernel memory to userspace
1887 * @vma: user vma to map to
1888 * @addr: target user address to start at
1889 * @pfn: physical address of kernel memory
1890 * @size: size of map area
1891 * @prot: page protection flags for this mapping
1892 *
1893 * Note: this is only safe if the mm semaphore is held when called.
1894 */
1895 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1896 unsigned long pfn, unsigned long size, pgprot_t prot)
1897 {
1898 pgd_t *pgd;
1899 unsigned long next;
1900 unsigned long end = addr + PAGE_ALIGN(size);
1901 struct mm_struct *mm = vma->vm_mm;
1902 int err;
1903
1904 /*
1905 * Physically remapped pages are special. Tell the
1906 * rest of the world about it:
1907 * VM_IO tells people not to look at these pages
1908 * (accesses can have side effects).
1909 * VM_RESERVED is specified all over the place, because
1910 * in 2.4 it kept swapout's vma scan off this vma; but
1911 * in 2.6 the LRU scan won't even find its pages, so this
1912 * flag means no more than count its pages in reserved_vm,
1913 * and omit it from core dump, even when VM_IO turned off.
1914 * VM_PFNMAP tells the core MM that the base pages are just
1915 * raw PFN mappings, and do not have a "struct page" associated
1916 * with them.
1917 *
1918 * There's a horrible special case to handle copy-on-write
1919 * behaviour that some programs depend on. We mark the "original"
1920 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1921 */
1922 if (addr == vma->vm_start && end == vma->vm_end) {
1923 vma->vm_pgoff = pfn;
1924 vma->vm_flags |= VM_PFN_AT_MMAP;
1925 } else if (is_cow_mapping(vma->vm_flags))
1926 return -EINVAL;
1927
1928 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1929
1930 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
1931 if (err) {
1932 /*
1933 * To indicate that track_pfn related cleanup is not
1934 * needed from higher level routine calling unmap_vmas
1935 */
1936 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
1937 vma->vm_flags &= ~VM_PFN_AT_MMAP;
1938 return -EINVAL;
1939 }
1940
1941 BUG_ON(addr >= end);
1942 pfn -= addr >> PAGE_SHIFT;
1943 pgd = pgd_offset(mm, addr);
1944 flush_cache_range(vma, addr, end);
1945 do {
1946 next = pgd_addr_end(addr, end);
1947 err = remap_pud_range(mm, pgd, addr, next,
1948 pfn + (addr >> PAGE_SHIFT), prot);
1949 if (err)
1950 break;
1951 } while (pgd++, addr = next, addr != end);
1952
1953 if (err)
1954 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1955
1956 return err;
1957 }
1958 EXPORT_SYMBOL(remap_pfn_range);
1959
1960 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1961 unsigned long addr, unsigned long end,
1962 pte_fn_t fn, void *data)
1963 {
1964 pte_t *pte;
1965 int err;
1966 pgtable_t token;
1967 spinlock_t *uninitialized_var(ptl);
1968
1969 pte = (mm == &init_mm) ?
1970 pte_alloc_kernel(pmd, addr) :
1971 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1972 if (!pte)
1973 return -ENOMEM;
1974
1975 BUG_ON(pmd_huge(*pmd));
1976
1977 arch_enter_lazy_mmu_mode();
1978
1979 token = pmd_pgtable(*pmd);
1980
1981 do {
1982 err = fn(pte++, token, addr, data);
1983 if (err)
1984 break;
1985 } while (addr += PAGE_SIZE, addr != end);
1986
1987 arch_leave_lazy_mmu_mode();
1988
1989 if (mm != &init_mm)
1990 pte_unmap_unlock(pte-1, ptl);
1991 return err;
1992 }
1993
1994 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1995 unsigned long addr, unsigned long end,
1996 pte_fn_t fn, void *data)
1997 {
1998 pmd_t *pmd;
1999 unsigned long next;
2000 int err;
2001
2002 BUG_ON(pud_huge(*pud));
2003
2004 pmd = pmd_alloc(mm, pud, addr);
2005 if (!pmd)
2006 return -ENOMEM;
2007 do {
2008 next = pmd_addr_end(addr, end);
2009 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2010 if (err)
2011 break;
2012 } while (pmd++, addr = next, addr != end);
2013 return err;
2014 }
2015
2016 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2017 unsigned long addr, unsigned long end,
2018 pte_fn_t fn, void *data)
2019 {
2020 pud_t *pud;
2021 unsigned long next;
2022 int err;
2023
2024 pud = pud_alloc(mm, pgd, addr);
2025 if (!pud)
2026 return -ENOMEM;
2027 do {
2028 next = pud_addr_end(addr, end);
2029 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2030 if (err)
2031 break;
2032 } while (pud++, addr = next, addr != end);
2033 return err;
2034 }
2035
2036 /*
2037 * Scan a region of virtual memory, filling in page tables as necessary
2038 * and calling a provided function on each leaf page table.
2039 */
2040 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2041 unsigned long size, pte_fn_t fn, void *data)
2042 {
2043 pgd_t *pgd;
2044 unsigned long next;
2045 unsigned long end = addr + size;
2046 int err;
2047
2048 BUG_ON(addr >= end);
2049 pgd = pgd_offset(mm, addr);
2050 do {
2051 next = pgd_addr_end(addr, end);
2052 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2053 if (err)
2054 break;
2055 } while (pgd++, addr = next, addr != end);
2056
2057 return err;
2058 }
2059 EXPORT_SYMBOL_GPL(apply_to_page_range);
2060
2061 /*
2062 * handle_pte_fault chooses page fault handler according to an entry
2063 * which was read non-atomically. Before making any commitment, on
2064 * those architectures or configurations (e.g. i386 with PAE) which
2065 * might give a mix of unmatched parts, do_swap_page and do_file_page
2066 * must check under lock before unmapping the pte and proceeding
2067 * (but do_wp_page is only called after already making such a check;
2068 * and do_anonymous_page and do_no_page can safely check later on).
2069 */
2070 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2071 pte_t *page_table, pte_t orig_pte)
2072 {
2073 int same = 1;
2074 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2075 if (sizeof(pte_t) > sizeof(unsigned long)) {
2076 spinlock_t *ptl = pte_lockptr(mm, pmd);
2077 spin_lock(ptl);
2078 same = pte_same(*page_table, orig_pte);
2079 spin_unlock(ptl);
2080 }
2081 #endif
2082 pte_unmap(page_table);
2083 return same;
2084 }
2085
2086 /*
2087 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
2088 * servicing faults for write access. In the normal case, do always want
2089 * pte_mkwrite. But get_user_pages can cause write faults for mappings
2090 * that do not have writing enabled, when used by access_process_vm.
2091 */
2092 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
2093 {
2094 if (likely(vma->vm_flags & VM_WRITE))
2095 pte = pte_mkwrite(pte);
2096 return pte;
2097 }
2098
2099 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2100 {
2101 /*
2102 * If the source page was a PFN mapping, we don't have
2103 * a "struct page" for it. We do a best-effort copy by
2104 * just copying from the original user address. If that
2105 * fails, we just zero-fill it. Live with it.
2106 */
2107 if (unlikely(!src)) {
2108 void *kaddr = kmap_atomic(dst, KM_USER0);
2109 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2110
2111 /*
2112 * This really shouldn't fail, because the page is there
2113 * in the page tables. But it might just be unreadable,
2114 * in which case we just give up and fill the result with
2115 * zeroes.
2116 */
2117 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2118 clear_page(kaddr);
2119 kunmap_atomic(kaddr, KM_USER0);
2120 flush_dcache_page(dst);
2121 } else
2122 copy_user_highpage(dst, src, va, vma);
2123 }
2124
2125 /*
2126 * This routine handles present pages, when users try to write
2127 * to a shared page. It is done by copying the page to a new address
2128 * and decrementing the shared-page counter for the old page.
2129 *
2130 * Note that this routine assumes that the protection checks have been
2131 * done by the caller (the low-level page fault routine in most cases).
2132 * Thus we can safely just mark it writable once we've done any necessary
2133 * COW.
2134 *
2135 * We also mark the page dirty at this point even though the page will
2136 * change only once the write actually happens. This avoids a few races,
2137 * and potentially makes it more efficient.
2138 *
2139 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2140 * but allow concurrent faults), with pte both mapped and locked.
2141 * We return with mmap_sem still held, but pte unmapped and unlocked.
2142 */
2143 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2144 unsigned long address, pte_t *page_table, pmd_t *pmd,
2145 spinlock_t *ptl, pte_t orig_pte)
2146 __releases(ptl)
2147 {
2148 struct page *old_page, *new_page;
2149 pte_t entry;
2150 int ret = 0;
2151 int page_mkwrite = 0;
2152 struct page *dirty_page = NULL;
2153
2154 old_page = vm_normal_page(vma, address, orig_pte);
2155 if (!old_page) {
2156 /*
2157 * VM_MIXEDMAP !pfn_valid() case
2158 *
2159 * We should not cow pages in a shared writeable mapping.
2160 * Just mark the pages writable as we can't do any dirty
2161 * accounting on raw pfn maps.
2162 */
2163 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2164 (VM_WRITE|VM_SHARED))
2165 goto reuse;
2166 goto gotten;
2167 }
2168
2169 /*
2170 * Take out anonymous pages first, anonymous shared vmas are
2171 * not dirty accountable.
2172 */
2173 if (PageAnon(old_page) && !PageKsm(old_page)) {
2174 if (!trylock_page(old_page)) {
2175 page_cache_get(old_page);
2176 pte_unmap_unlock(page_table, ptl);
2177 lock_page(old_page);
2178 page_table = pte_offset_map_lock(mm, pmd, address,
2179 &ptl);
2180 if (!pte_same(*page_table, orig_pte)) {
2181 unlock_page(old_page);
2182 page_cache_release(old_page);
2183 goto unlock;
2184 }
2185 page_cache_release(old_page);
2186 }
2187 if (reuse_swap_page(old_page)) {
2188 /*
2189 * The page is all ours. Move it to our anon_vma so
2190 * the rmap code will not search our parent or siblings.
2191 * Protected against the rmap code by the page lock.
2192 */
2193 page_move_anon_rmap(old_page, vma, address);
2194 unlock_page(old_page);
2195 goto reuse;
2196 }
2197 unlock_page(old_page);
2198 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2199 (VM_WRITE|VM_SHARED))) {
2200 /*
2201 * Only catch write-faults on shared writable pages,
2202 * read-only shared pages can get COWed by
2203 * get_user_pages(.write=1, .force=1).
2204 */
2205 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2206 struct vm_fault vmf;
2207 int tmp;
2208
2209 vmf.virtual_address = (void __user *)(address &
2210 PAGE_MASK);
2211 vmf.pgoff = old_page->index;
2212 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2213 vmf.page = old_page;
2214
2215 /*
2216 * Notify the address space that the page is about to
2217 * become writable so that it can prohibit this or wait
2218 * for the page to get into an appropriate state.
2219 *
2220 * We do this without the lock held, so that it can
2221 * sleep if it needs to.
2222 */
2223 page_cache_get(old_page);
2224 pte_unmap_unlock(page_table, ptl);
2225
2226 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2227 if (unlikely(tmp &
2228 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2229 ret = tmp;
2230 goto unwritable_page;
2231 }
2232 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2233 lock_page(old_page);
2234 if (!old_page->mapping) {
2235 ret = 0; /* retry the fault */
2236 unlock_page(old_page);
2237 goto unwritable_page;
2238 }
2239 } else
2240 VM_BUG_ON(!PageLocked(old_page));
2241
2242 /*
2243 * Since we dropped the lock we need to revalidate
2244 * the PTE as someone else may have changed it. If
2245 * they did, we just return, as we can count on the
2246 * MMU to tell us if they didn't also make it writable.
2247 */
2248 page_table = pte_offset_map_lock(mm, pmd, address,
2249 &ptl);
2250 if (!pte_same(*page_table, orig_pte)) {
2251 unlock_page(old_page);
2252 page_cache_release(old_page);
2253 goto unlock;
2254 }
2255
2256 page_mkwrite = 1;
2257 }
2258 dirty_page = old_page;
2259 get_page(dirty_page);
2260
2261 reuse:
2262 flush_cache_page(vma, address, pte_pfn(orig_pte));
2263 entry = pte_mkyoung(orig_pte);
2264 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2265 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2266 update_mmu_cache(vma, address, page_table);
2267 pte_unmap_unlock(page_table, ptl);
2268 ret |= VM_FAULT_WRITE;
2269
2270 if (!dirty_page)
2271 return ret;
2272
2273 /*
2274 * Yes, Virginia, this is actually required to prevent a race
2275 * with clear_page_dirty_for_io() from clearing the page dirty
2276 * bit after it clear all dirty ptes, but before a racing
2277 * do_wp_page installs a dirty pte.
2278 *
2279 * do_no_page is protected similarly.
2280 */
2281 if (!page_mkwrite) {
2282 wait_on_page_locked(dirty_page);
2283 set_page_dirty_balance(dirty_page, page_mkwrite);
2284 }
2285 put_page(dirty_page);
2286 if (page_mkwrite) {
2287 struct address_space *mapping = dirty_page->mapping;
2288
2289 set_page_dirty(dirty_page);
2290 unlock_page(dirty_page);
2291 page_cache_release(dirty_page);
2292 if (mapping) {
2293 /*
2294 * Some device drivers do not set page.mapping
2295 * but still dirty their pages
2296 */
2297 balance_dirty_pages_ratelimited(mapping);
2298 }
2299 }
2300
2301 /* file_update_time outside page_lock */
2302 if (vma->vm_file)
2303 file_update_time(vma->vm_file);
2304
2305 return ret;
2306 }
2307
2308 /*
2309 * Ok, we need to copy. Oh, well..
2310 */
2311 page_cache_get(old_page);
2312 gotten:
2313 pte_unmap_unlock(page_table, ptl);
2314
2315 if (unlikely(anon_vma_prepare(vma)))
2316 goto oom;
2317
2318 if (is_zero_pfn(pte_pfn(orig_pte))) {
2319 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2320 if (!new_page)
2321 goto oom;
2322 } else {
2323 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2324 if (!new_page)
2325 goto oom;
2326 cow_user_page(new_page, old_page, address, vma);
2327 }
2328 __SetPageUptodate(new_page);
2329
2330 /*
2331 * Don't let another task, with possibly unlocked vma,
2332 * keep the mlocked page.
2333 */
2334 if ((vma->vm_flags & VM_LOCKED) && old_page) {
2335 lock_page(old_page); /* for LRU manipulation */
2336 clear_page_mlock(old_page);
2337 unlock_page(old_page);
2338 }
2339
2340 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2341 goto oom_free_new;
2342
2343 /*
2344 * Re-check the pte - we dropped the lock
2345 */
2346 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2347 if (likely(pte_same(*page_table, orig_pte))) {
2348 if (old_page) {
2349 if (!PageAnon(old_page)) {
2350 dec_mm_counter_fast(mm, MM_FILEPAGES);
2351 inc_mm_counter_fast(mm, MM_ANONPAGES);
2352 }
2353 } else
2354 inc_mm_counter_fast(mm, MM_ANONPAGES);
2355 flush_cache_page(vma, address, pte_pfn(orig_pte));
2356 entry = mk_pte(new_page, vma->vm_page_prot);
2357 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2358 /*
2359 * Clear the pte entry and flush it first, before updating the
2360 * pte with the new entry. This will avoid a race condition
2361 * seen in the presence of one thread doing SMC and another
2362 * thread doing COW.
2363 */
2364 ptep_clear_flush(vma, address, page_table);
2365 page_add_new_anon_rmap(new_page, vma, address);
2366 /*
2367 * We call the notify macro here because, when using secondary
2368 * mmu page tables (such as kvm shadow page tables), we want the
2369 * new page to be mapped directly into the secondary page table.
2370 */
2371 set_pte_at_notify(mm, address, page_table, entry);
2372 update_mmu_cache(vma, address, page_table);
2373 if (old_page) {
2374 /*
2375 * Only after switching the pte to the new page may
2376 * we remove the mapcount here. Otherwise another
2377 * process may come and find the rmap count decremented
2378 * before the pte is switched to the new page, and
2379 * "reuse" the old page writing into it while our pte
2380 * here still points into it and can be read by other
2381 * threads.
2382 *
2383 * The critical issue is to order this
2384 * page_remove_rmap with the ptp_clear_flush above.
2385 * Those stores are ordered by (if nothing else,)
2386 * the barrier present in the atomic_add_negative
2387 * in page_remove_rmap.
2388 *
2389 * Then the TLB flush in ptep_clear_flush ensures that
2390 * no process can access the old page before the
2391 * decremented mapcount is visible. And the old page
2392 * cannot be reused until after the decremented
2393 * mapcount is visible. So transitively, TLBs to
2394 * old page will be flushed before it can be reused.
2395 */
2396 page_remove_rmap(old_page);
2397 }
2398
2399 /* Free the old page.. */
2400 new_page = old_page;
2401 ret |= VM_FAULT_WRITE;
2402 } else
2403 mem_cgroup_uncharge_page(new_page);
2404
2405 if (new_page)
2406 page_cache_release(new_page);
2407 if (old_page)
2408 page_cache_release(old_page);
2409 unlock:
2410 pte_unmap_unlock(page_table, ptl);
2411 return ret;
2412 oom_free_new:
2413 page_cache_release(new_page);
2414 oom:
2415 if (old_page) {
2416 if (page_mkwrite) {
2417 unlock_page(old_page);
2418 page_cache_release(old_page);
2419 }
2420 page_cache_release(old_page);
2421 }
2422 return VM_FAULT_OOM;
2423
2424 unwritable_page:
2425 page_cache_release(old_page);
2426 return ret;
2427 }
2428
2429 /*
2430 * Helper functions for unmap_mapping_range().
2431 *
2432 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2433 *
2434 * We have to restart searching the prio_tree whenever we drop the lock,
2435 * since the iterator is only valid while the lock is held, and anyway
2436 * a later vma might be split and reinserted earlier while lock dropped.
2437 *
2438 * The list of nonlinear vmas could be handled more efficiently, using
2439 * a placeholder, but handle it in the same way until a need is shown.
2440 * It is important to search the prio_tree before nonlinear list: a vma
2441 * may become nonlinear and be shifted from prio_tree to nonlinear list
2442 * while the lock is dropped; but never shifted from list to prio_tree.
2443 *
2444 * In order to make forward progress despite restarting the search,
2445 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2446 * quickly skip it next time around. Since the prio_tree search only
2447 * shows us those vmas affected by unmapping the range in question, we
2448 * can't efficiently keep all vmas in step with mapping->truncate_count:
2449 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2450 * mapping->truncate_count and vma->vm_truncate_count are protected by
2451 * i_mmap_lock.
2452 *
2453 * In order to make forward progress despite repeatedly restarting some
2454 * large vma, note the restart_addr from unmap_vmas when it breaks out:
2455 * and restart from that address when we reach that vma again. It might
2456 * have been split or merged, shrunk or extended, but never shifted: so
2457 * restart_addr remains valid so long as it remains in the vma's range.
2458 * unmap_mapping_range forces truncate_count to leap over page-aligned
2459 * values so we can save vma's restart_addr in its truncate_count field.
2460 */
2461 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2462
2463 static void reset_vma_truncate_counts(struct address_space *mapping)
2464 {
2465 struct vm_area_struct *vma;
2466 struct prio_tree_iter iter;
2467
2468 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2469 vma->vm_truncate_count = 0;
2470 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2471 vma->vm_truncate_count = 0;
2472 }
2473
2474 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2475 unsigned long start_addr, unsigned long end_addr,
2476 struct zap_details *details)
2477 {
2478 unsigned long restart_addr;
2479 int need_break;
2480
2481 /*
2482 * files that support invalidating or truncating portions of the
2483 * file from under mmaped areas must have their ->fault function
2484 * return a locked page (and set VM_FAULT_LOCKED in the return).
2485 * This provides synchronisation against concurrent unmapping here.
2486 */
2487
2488 again:
2489 restart_addr = vma->vm_truncate_count;
2490 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2491 start_addr = restart_addr;
2492 if (start_addr >= end_addr) {
2493 /* Top of vma has been split off since last time */
2494 vma->vm_truncate_count = details->truncate_count;
2495 return 0;
2496 }
2497 }
2498
2499 restart_addr = zap_page_range(vma, start_addr,
2500 end_addr - start_addr, details);
2501 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2502
2503 if (restart_addr >= end_addr) {
2504 /* We have now completed this vma: mark it so */
2505 vma->vm_truncate_count = details->truncate_count;
2506 if (!need_break)
2507 return 0;
2508 } else {
2509 /* Note restart_addr in vma's truncate_count field */
2510 vma->vm_truncate_count = restart_addr;
2511 if (!need_break)
2512 goto again;
2513 }
2514
2515 spin_unlock(details->i_mmap_lock);
2516 cond_resched();
2517 spin_lock(details->i_mmap_lock);
2518 return -EINTR;
2519 }
2520
2521 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2522 struct zap_details *details)
2523 {
2524 struct vm_area_struct *vma;
2525 struct prio_tree_iter iter;
2526 pgoff_t vba, vea, zba, zea;
2527
2528 restart:
2529 vma_prio_tree_foreach(vma, &iter, root,
2530 details->first_index, details->last_index) {
2531 /* Skip quickly over those we have already dealt with */
2532 if (vma->vm_truncate_count == details->truncate_count)
2533 continue;
2534
2535 vba = vma->vm_pgoff;
2536 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2537 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2538 zba = details->first_index;
2539 if (zba < vba)
2540 zba = vba;
2541 zea = details->last_index;
2542 if (zea > vea)
2543 zea = vea;
2544
2545 if (unmap_mapping_range_vma(vma,
2546 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2547 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2548 details) < 0)
2549 goto restart;
2550 }
2551 }
2552
2553 static inline void unmap_mapping_range_list(struct list_head *head,
2554 struct zap_details *details)
2555 {
2556 struct vm_area_struct *vma;
2557
2558 /*
2559 * In nonlinear VMAs there is no correspondence between virtual address
2560 * offset and file offset. So we must perform an exhaustive search
2561 * across *all* the pages in each nonlinear VMA, not just the pages
2562 * whose virtual address lies outside the file truncation point.
2563 */
2564 restart:
2565 list_for_each_entry(vma, head, shared.vm_set.list) {
2566 /* Skip quickly over those we have already dealt with */
2567 if (vma->vm_truncate_count == details->truncate_count)
2568 continue;
2569 details->nonlinear_vma = vma;
2570 if (unmap_mapping_range_vma(vma, vma->vm_start,
2571 vma->vm_end, details) < 0)
2572 goto restart;
2573 }
2574 }
2575
2576 /**
2577 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2578 * @mapping: the address space containing mmaps to be unmapped.
2579 * @holebegin: byte in first page to unmap, relative to the start of
2580 * the underlying file. This will be rounded down to a PAGE_SIZE
2581 * boundary. Note that this is different from truncate_pagecache(), which
2582 * must keep the partial page. In contrast, we must get rid of
2583 * partial pages.
2584 * @holelen: size of prospective hole in bytes. This will be rounded
2585 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2586 * end of the file.
2587 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2588 * but 0 when invalidating pagecache, don't throw away private data.
2589 */
2590 void unmap_mapping_range(struct address_space *mapping,
2591 loff_t const holebegin, loff_t const holelen, int even_cows)
2592 {
2593 struct zap_details details;
2594 pgoff_t hba = holebegin >> PAGE_SHIFT;
2595 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2596
2597 /* Check for overflow. */
2598 if (sizeof(holelen) > sizeof(hlen)) {
2599 long long holeend =
2600 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2601 if (holeend & ~(long long)ULONG_MAX)
2602 hlen = ULONG_MAX - hba + 1;
2603 }
2604
2605 details.check_mapping = even_cows? NULL: mapping;
2606 details.nonlinear_vma = NULL;
2607 details.first_index = hba;
2608 details.last_index = hba + hlen - 1;
2609 if (details.last_index < details.first_index)
2610 details.last_index = ULONG_MAX;
2611 details.i_mmap_lock = &mapping->i_mmap_lock;
2612
2613 spin_lock(&mapping->i_mmap_lock);
2614
2615 /* Protect against endless unmapping loops */
2616 mapping->truncate_count++;
2617 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2618 if (mapping->truncate_count == 0)
2619 reset_vma_truncate_counts(mapping);
2620 mapping->truncate_count++;
2621 }
2622 details.truncate_count = mapping->truncate_count;
2623
2624 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2625 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2626 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2627 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2628 spin_unlock(&mapping->i_mmap_lock);
2629 }
2630 EXPORT_SYMBOL(unmap_mapping_range);
2631
2632 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2633 {
2634 struct address_space *mapping = inode->i_mapping;
2635
2636 /*
2637 * If the underlying filesystem is not going to provide
2638 * a way to truncate a range of blocks (punch a hole) -
2639 * we should return failure right now.
2640 */
2641 if (!inode->i_op->truncate_range)
2642 return -ENOSYS;
2643
2644 mutex_lock(&inode->i_mutex);
2645 down_write(&inode->i_alloc_sem);
2646 unmap_mapping_range(mapping, offset, (end - offset), 1);
2647 truncate_inode_pages_range(mapping, offset, end);
2648 unmap_mapping_range(mapping, offset, (end - offset), 1);
2649 inode->i_op->truncate_range(inode, offset, end);
2650 up_write(&inode->i_alloc_sem);
2651 mutex_unlock(&inode->i_mutex);
2652
2653 return 0;
2654 }
2655
2656 /*
2657 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2658 * but allow concurrent faults), and pte mapped but not yet locked.
2659 * We return with mmap_sem still held, but pte unmapped and unlocked.
2660 */
2661 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2662 unsigned long address, pte_t *page_table, pmd_t *pmd,
2663 unsigned int flags, pte_t orig_pte)
2664 {
2665 spinlock_t *ptl;
2666 struct page *page, *swapcache = NULL;
2667 swp_entry_t entry;
2668 pte_t pte;
2669 int locked;
2670 struct mem_cgroup *ptr = NULL;
2671 int exclusive = 0;
2672 int ret = 0;
2673
2674 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2675 goto out;
2676
2677 entry = pte_to_swp_entry(orig_pte);
2678 if (unlikely(non_swap_entry(entry))) {
2679 if (is_migration_entry(entry)) {
2680 migration_entry_wait(mm, pmd, address);
2681 } else if (is_hwpoison_entry(entry)) {
2682 ret = VM_FAULT_HWPOISON;
2683 } else {
2684 print_bad_pte(vma, address, orig_pte, NULL);
2685 ret = VM_FAULT_SIGBUS;
2686 }
2687 goto out;
2688 }
2689 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2690 page = lookup_swap_cache(entry);
2691 if (!page) {
2692 grab_swap_token(mm); /* Contend for token _before_ read-in */
2693 page = swapin_readahead(entry,
2694 GFP_HIGHUSER_MOVABLE, vma, address);
2695 if (!page) {
2696 /*
2697 * Back out if somebody else faulted in this pte
2698 * while we released the pte lock.
2699 */
2700 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2701 if (likely(pte_same(*page_table, orig_pte)))
2702 ret = VM_FAULT_OOM;
2703 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2704 goto unlock;
2705 }
2706
2707 /* Had to read the page from swap area: Major fault */
2708 ret = VM_FAULT_MAJOR;
2709 count_vm_event(PGMAJFAULT);
2710 } else if (PageHWPoison(page)) {
2711 /*
2712 * hwpoisoned dirty swapcache pages are kept for killing
2713 * owner processes (which may be unknown at hwpoison time)
2714 */
2715 ret = VM_FAULT_HWPOISON;
2716 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2717 goto out_release;
2718 }
2719
2720 locked = lock_page_or_retry(page, mm, flags);
2721 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2722 if (!locked) {
2723 ret |= VM_FAULT_RETRY;
2724 goto out_release;
2725 }
2726
2727 /*
2728 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2729 * release the swapcache from under us. The page pin, and pte_same
2730 * test below, are not enough to exclude that. Even if it is still
2731 * swapcache, we need to check that the page's swap has not changed.
2732 */
2733 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2734 goto out_page;
2735
2736 if (ksm_might_need_to_copy(page, vma, address)) {
2737 swapcache = page;
2738 page = ksm_does_need_to_copy(page, vma, address);
2739
2740 if (unlikely(!page)) {
2741 ret = VM_FAULT_OOM;
2742 page = swapcache;
2743 swapcache = NULL;
2744 goto out_page;
2745 }
2746 }
2747
2748 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2749 ret = VM_FAULT_OOM;
2750 goto out_page;
2751 }
2752
2753 /*
2754 * Back out if somebody else already faulted in this pte.
2755 */
2756 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2757 if (unlikely(!pte_same(*page_table, orig_pte)))
2758 goto out_nomap;
2759
2760 if (unlikely(!PageUptodate(page))) {
2761 ret = VM_FAULT_SIGBUS;
2762 goto out_nomap;
2763 }
2764
2765 /*
2766 * The page isn't present yet, go ahead with the fault.
2767 *
2768 * Be careful about the sequence of operations here.
2769 * To get its accounting right, reuse_swap_page() must be called
2770 * while the page is counted on swap but not yet in mapcount i.e.
2771 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2772 * must be called after the swap_free(), or it will never succeed.
2773 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2774 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2775 * in page->private. In this case, a record in swap_cgroup is silently
2776 * discarded at swap_free().
2777 */
2778
2779 inc_mm_counter_fast(mm, MM_ANONPAGES);
2780 dec_mm_counter_fast(mm, MM_SWAPENTS);
2781 pte = mk_pte(page, vma->vm_page_prot);
2782 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2783 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2784 flags &= ~FAULT_FLAG_WRITE;
2785 ret |= VM_FAULT_WRITE;
2786 exclusive = 1;
2787 }
2788 flush_icache_page(vma, page);
2789 set_pte_at(mm, address, page_table, pte);
2790 do_page_add_anon_rmap(page, vma, address, exclusive);
2791 /* It's better to call commit-charge after rmap is established */
2792 mem_cgroup_commit_charge_swapin(page, ptr);
2793
2794 swap_free(entry);
2795 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2796 try_to_free_swap(page);
2797 unlock_page(page);
2798 if (swapcache) {
2799 /*
2800 * Hold the lock to avoid the swap entry to be reused
2801 * until we take the PT lock for the pte_same() check
2802 * (to avoid false positives from pte_same). For
2803 * further safety release the lock after the swap_free
2804 * so that the swap count won't change under a
2805 * parallel locked swapcache.
2806 */
2807 unlock_page(swapcache);
2808 page_cache_release(swapcache);
2809 }
2810
2811 if (flags & FAULT_FLAG_WRITE) {
2812 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2813 if (ret & VM_FAULT_ERROR)
2814 ret &= VM_FAULT_ERROR;
2815 goto out;
2816 }
2817
2818 /* No need to invalidate - it was non-present before */
2819 update_mmu_cache(vma, address, page_table);
2820 unlock:
2821 pte_unmap_unlock(page_table, ptl);
2822 out:
2823 return ret;
2824 out_nomap:
2825 mem_cgroup_cancel_charge_swapin(ptr);
2826 pte_unmap_unlock(page_table, ptl);
2827 out_page:
2828 unlock_page(page);
2829 out_release:
2830 page_cache_release(page);
2831 if (swapcache) {
2832 unlock_page(swapcache);
2833 page_cache_release(swapcache);
2834 }
2835 return ret;
2836 }
2837
2838 /*
2839 * This is like a special single-page "expand_{down|up}wards()",
2840 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2841 * doesn't hit another vma.
2842 */
2843 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2844 {
2845 address &= PAGE_MASK;
2846 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2847 struct vm_area_struct *prev = vma->vm_prev;
2848
2849 /*
2850 * Is there a mapping abutting this one below?
2851 *
2852 * That's only ok if it's the same stack mapping
2853 * that has gotten split..
2854 */
2855 if (prev && prev->vm_end == address)
2856 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2857
2858 expand_stack(vma, address - PAGE_SIZE);
2859 }
2860 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2861 struct vm_area_struct *next = vma->vm_next;
2862
2863 /* As VM_GROWSDOWN but s/below/above/ */
2864 if (next && next->vm_start == address + PAGE_SIZE)
2865 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2866
2867 expand_upwards(vma, address + PAGE_SIZE);
2868 }
2869 return 0;
2870 }
2871
2872 /*
2873 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2874 * but allow concurrent faults), and pte mapped but not yet locked.
2875 * We return with mmap_sem still held, but pte unmapped and unlocked.
2876 */
2877 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2878 unsigned long address, pte_t *page_table, pmd_t *pmd,
2879 unsigned int flags)
2880 {
2881 struct page *page;
2882 spinlock_t *ptl;
2883 pte_t entry;
2884
2885 pte_unmap(page_table);
2886
2887 /* Check if we need to add a guard page to the stack */
2888 if (check_stack_guard_page(vma, address) < 0)
2889 return VM_FAULT_SIGBUS;
2890
2891 /* Use the zero-page for reads */
2892 if (!(flags & FAULT_FLAG_WRITE)) {
2893 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2894 vma->vm_page_prot));
2895 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2896 if (!pte_none(*page_table))
2897 goto unlock;
2898 goto setpte;
2899 }
2900
2901 /* Allocate our own private page. */
2902 if (unlikely(anon_vma_prepare(vma)))
2903 goto oom;
2904 page = alloc_zeroed_user_highpage_movable(vma, address);
2905 if (!page)
2906 goto oom;
2907 __SetPageUptodate(page);
2908
2909 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
2910 goto oom_free_page;
2911
2912 entry = mk_pte(page, vma->vm_page_prot);
2913 if (vma->vm_flags & VM_WRITE)
2914 entry = pte_mkwrite(pte_mkdirty(entry));
2915
2916 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2917 if (!pte_none(*page_table))
2918 goto release;
2919
2920 inc_mm_counter_fast(mm, MM_ANONPAGES);
2921 page_add_new_anon_rmap(page, vma, address);
2922 setpte:
2923 set_pte_at(mm, address, page_table, entry);
2924
2925 /* No need to invalidate - it was non-present before */
2926 update_mmu_cache(vma, address, page_table);
2927 unlock:
2928 pte_unmap_unlock(page_table, ptl);
2929 return 0;
2930 release:
2931 mem_cgroup_uncharge_page(page);
2932 page_cache_release(page);
2933 goto unlock;
2934 oom_free_page:
2935 page_cache_release(page);
2936 oom:
2937 return VM_FAULT_OOM;
2938 }
2939
2940 /*
2941 * __do_fault() tries to create a new page mapping. It aggressively
2942 * tries to share with existing pages, but makes a separate copy if
2943 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2944 * the next page fault.
2945 *
2946 * As this is called only for pages that do not currently exist, we
2947 * do not need to flush old virtual caches or the TLB.
2948 *
2949 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2950 * but allow concurrent faults), and pte neither mapped nor locked.
2951 * We return with mmap_sem still held, but pte unmapped and unlocked.
2952 */
2953 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2954 unsigned long address, pmd_t *pmd,
2955 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2956 {
2957 pte_t *page_table;
2958 spinlock_t *ptl;
2959 struct page *page;
2960 pte_t entry;
2961 int anon = 0;
2962 int charged = 0;
2963 struct page *dirty_page = NULL;
2964 struct vm_fault vmf;
2965 int ret;
2966 int page_mkwrite = 0;
2967
2968 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2969 vmf.pgoff = pgoff;
2970 vmf.flags = flags;
2971 vmf.page = NULL;
2972
2973 ret = vma->vm_ops->fault(vma, &vmf);
2974 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
2975 VM_FAULT_RETRY)))
2976 return ret;
2977
2978 if (unlikely(PageHWPoison(vmf.page))) {
2979 if (ret & VM_FAULT_LOCKED)
2980 unlock_page(vmf.page);
2981 return VM_FAULT_HWPOISON;
2982 }
2983
2984 /*
2985 * For consistency in subsequent calls, make the faulted page always
2986 * locked.
2987 */
2988 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2989 lock_page(vmf.page);
2990 else
2991 VM_BUG_ON(!PageLocked(vmf.page));
2992
2993 /*
2994 * Should we do an early C-O-W break?
2995 */
2996 page = vmf.page;
2997 if (flags & FAULT_FLAG_WRITE) {
2998 if (!(vma->vm_flags & VM_SHARED)) {
2999 anon = 1;
3000 if (unlikely(anon_vma_prepare(vma))) {
3001 ret = VM_FAULT_OOM;
3002 goto out;
3003 }
3004 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
3005 vma, address);
3006 if (!page) {
3007 ret = VM_FAULT_OOM;
3008 goto out;
3009 }
3010 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
3011 ret = VM_FAULT_OOM;
3012 page_cache_release(page);
3013 goto out;
3014 }
3015 charged = 1;
3016 /*
3017 * Don't let another task, with possibly unlocked vma,
3018 * keep the mlocked page.
3019 */
3020 if (vma->vm_flags & VM_LOCKED)
3021 clear_page_mlock(vmf.page);
3022 copy_user_highpage(page, vmf.page, address, vma);
3023 __SetPageUptodate(page);
3024 } else {
3025 /*
3026 * If the page will be shareable, see if the backing
3027 * address space wants to know that the page is about
3028 * to become writable
3029 */
3030 if (vma->vm_ops->page_mkwrite) {
3031 int tmp;
3032
3033 unlock_page(page);
3034 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3035 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3036 if (unlikely(tmp &
3037 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3038 ret = tmp;
3039 goto unwritable_page;
3040 }
3041 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3042 lock_page(page);
3043 if (!page->mapping) {
3044 ret = 0; /* retry the fault */
3045 unlock_page(page);
3046 goto unwritable_page;
3047 }
3048 } else
3049 VM_BUG_ON(!PageLocked(page));
3050 page_mkwrite = 1;
3051 }
3052 }
3053
3054 }
3055
3056 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3057
3058 /*
3059 * This silly early PAGE_DIRTY setting removes a race
3060 * due to the bad i386 page protection. But it's valid
3061 * for other architectures too.
3062 *
3063 * Note that if FAULT_FLAG_WRITE is set, we either now have
3064 * an exclusive copy of the page, or this is a shared mapping,
3065 * so we can make it writable and dirty to avoid having to
3066 * handle that later.
3067 */
3068 /* Only go through if we didn't race with anybody else... */
3069 if (likely(pte_same(*page_table, orig_pte))) {
3070 flush_icache_page(vma, page);
3071 entry = mk_pte(page, vma->vm_page_prot);
3072 if (flags & FAULT_FLAG_WRITE)
3073 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3074 if (anon) {
3075 inc_mm_counter_fast(mm, MM_ANONPAGES);
3076 page_add_new_anon_rmap(page, vma, address);
3077 } else {
3078 inc_mm_counter_fast(mm, MM_FILEPAGES);
3079 page_add_file_rmap(page);
3080 if (flags & FAULT_FLAG_WRITE) {
3081 dirty_page = page;
3082 get_page(dirty_page);
3083 }
3084 }
3085 set_pte_at(mm, address, page_table, entry);
3086
3087 /* no need to invalidate: a not-present page won't be cached */
3088 update_mmu_cache(vma, address, page_table);
3089 } else {
3090 if (charged)
3091 mem_cgroup_uncharge_page(page);
3092 if (anon)
3093 page_cache_release(page);
3094 else
3095 anon = 1; /* no anon but release faulted_page */
3096 }
3097
3098 pte_unmap_unlock(page_table, ptl);
3099
3100 out:
3101 if (dirty_page) {
3102 struct address_space *mapping = page->mapping;
3103
3104 if (set_page_dirty(dirty_page))
3105 page_mkwrite = 1;
3106 unlock_page(dirty_page);
3107 put_page(dirty_page);
3108 if (page_mkwrite && mapping) {
3109 /*
3110 * Some device drivers do not set page.mapping but still
3111 * dirty their pages
3112 */
3113 balance_dirty_pages_ratelimited(mapping);
3114 }
3115
3116 /* file_update_time outside page_lock */
3117 if (vma->vm_file)
3118 file_update_time(vma->vm_file);
3119 } else {
3120 unlock_page(vmf.page);
3121 if (anon)
3122 page_cache_release(vmf.page);
3123 }
3124
3125 return ret;
3126
3127 unwritable_page:
3128 page_cache_release(page);
3129 return ret;
3130 }
3131
3132 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3133 unsigned long address, pte_t *page_table, pmd_t *pmd,
3134 unsigned int flags, pte_t orig_pte)
3135 {
3136 pgoff_t pgoff = (((address & PAGE_MASK)
3137 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3138
3139 pte_unmap(page_table);
3140 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3141 }
3142
3143 /*
3144 * Fault of a previously existing named mapping. Repopulate the pte
3145 * from the encoded file_pte if possible. This enables swappable
3146 * nonlinear vmas.
3147 *
3148 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3149 * but allow concurrent faults), and pte mapped but not yet locked.
3150 * We return with mmap_sem still held, but pte unmapped and unlocked.
3151 */
3152 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3153 unsigned long address, pte_t *page_table, pmd_t *pmd,
3154 unsigned int flags, pte_t orig_pte)
3155 {
3156 pgoff_t pgoff;
3157
3158 flags |= FAULT_FLAG_NONLINEAR;
3159
3160 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3161 return 0;
3162
3163 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3164 /*
3165 * Page table corrupted: show pte and kill process.
3166 */
3167 print_bad_pte(vma, address, orig_pte, NULL);
3168 return VM_FAULT_SIGBUS;
3169 }
3170
3171 pgoff = pte_to_pgoff(orig_pte);
3172 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3173 }
3174
3175 /*
3176 * These routines also need to handle stuff like marking pages dirty
3177 * and/or accessed for architectures that don't do it in hardware (most
3178 * RISC architectures). The early dirtying is also good on the i386.
3179 *
3180 * There is also a hook called "update_mmu_cache()" that architectures
3181 * with external mmu caches can use to update those (ie the Sparc or
3182 * PowerPC hashed page tables that act as extended TLBs).
3183 *
3184 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3185 * but allow concurrent faults), and pte mapped but not yet locked.
3186 * We return with mmap_sem still held, but pte unmapped and unlocked.
3187 */
3188 static inline int handle_pte_fault(struct mm_struct *mm,
3189 struct vm_area_struct *vma, unsigned long address,
3190 pte_t *pte, pmd_t *pmd, unsigned int flags)
3191 {
3192 pte_t entry;
3193 spinlock_t *ptl;
3194
3195 entry = *pte;
3196 if (!pte_present(entry)) {
3197 if (pte_none(entry)) {
3198 if (vma->vm_ops) {
3199 if (likely(vma->vm_ops->fault))
3200 return do_linear_fault(mm, vma, address,
3201 pte, pmd, flags, entry);
3202 }
3203 return do_anonymous_page(mm, vma, address,
3204 pte, pmd, flags);
3205 }
3206 if (pte_file(entry))
3207 return do_nonlinear_fault(mm, vma, address,
3208 pte, pmd, flags, entry);
3209 return do_swap_page(mm, vma, address,
3210 pte, pmd, flags, entry);
3211 }
3212
3213 ptl = pte_lockptr(mm, pmd);
3214 spin_lock(ptl);
3215 if (unlikely(!pte_same(*pte, entry)))
3216 goto unlock;
3217 if (flags & FAULT_FLAG_WRITE) {
3218 if (!pte_write(entry))
3219 return do_wp_page(mm, vma, address,
3220 pte, pmd, ptl, entry);
3221 entry = pte_mkdirty(entry);
3222 }
3223 entry = pte_mkyoung(entry);
3224 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3225 update_mmu_cache(vma, address, pte);
3226 } else {
3227 /*
3228 * This is needed only for protection faults but the arch code
3229 * is not yet telling us if this is a protection fault or not.
3230 * This still avoids useless tlb flushes for .text page faults
3231 * with threads.
3232 */
3233 if (flags & FAULT_FLAG_WRITE)
3234 flush_tlb_fix_spurious_fault(vma, address);
3235 }
3236 unlock:
3237 pte_unmap_unlock(pte, ptl);
3238 return 0;
3239 }
3240
3241 /*
3242 * By the time we get here, we already hold the mm semaphore
3243 */
3244 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3245 unsigned long address, unsigned int flags)
3246 {
3247 pgd_t *pgd;
3248 pud_t *pud;
3249 pmd_t *pmd;
3250 pte_t *pte;
3251
3252 __set_current_state(TASK_RUNNING);
3253
3254 count_vm_event(PGFAULT);
3255
3256 /* do counter updates before entering really critical section. */
3257 check_sync_rss_stat(current);
3258
3259 if (unlikely(is_vm_hugetlb_page(vma)))
3260 return hugetlb_fault(mm, vma, address, flags);
3261
3262 pgd = pgd_offset(mm, address);
3263 pud = pud_alloc(mm, pgd, address);
3264 if (!pud)
3265 return VM_FAULT_OOM;
3266 pmd = pmd_alloc(mm, pud, address);
3267 if (!pmd)
3268 return VM_FAULT_OOM;
3269 pte = pte_alloc_map(mm, pmd, address);
3270 if (!pte)
3271 return VM_FAULT_OOM;
3272
3273 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3274 }
3275
3276 #ifndef __PAGETABLE_PUD_FOLDED
3277 /*
3278 * Allocate page upper directory.
3279 * We've already handled the fast-path in-line.
3280 */
3281 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3282 {
3283 pud_t *new = pud_alloc_one(mm, address);
3284 if (!new)
3285 return -ENOMEM;
3286
3287 smp_wmb(); /* See comment in __pte_alloc */
3288
3289 spin_lock(&mm->page_table_lock);
3290 if (pgd_present(*pgd)) /* Another has populated it */
3291 pud_free(mm, new);
3292 else
3293 pgd_populate(mm, pgd, new);
3294 spin_unlock(&mm->page_table_lock);
3295 return 0;
3296 }
3297 #endif /* __PAGETABLE_PUD_FOLDED */
3298
3299 #ifndef __PAGETABLE_PMD_FOLDED
3300 /*
3301 * Allocate page middle directory.
3302 * We've already handled the fast-path in-line.
3303 */
3304 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3305 {
3306 pmd_t *new = pmd_alloc_one(mm, address);
3307 if (!new)
3308 return -ENOMEM;
3309
3310 smp_wmb(); /* See comment in __pte_alloc */
3311
3312 spin_lock(&mm->page_table_lock);
3313 #ifndef __ARCH_HAS_4LEVEL_HACK
3314 if (pud_present(*pud)) /* Another has populated it */
3315 pmd_free(mm, new);
3316 else
3317 pud_populate(mm, pud, new);
3318 #else
3319 if (pgd_present(*pud)) /* Another has populated it */
3320 pmd_free(mm, new);
3321 else
3322 pgd_populate(mm, pud, new);
3323 #endif /* __ARCH_HAS_4LEVEL_HACK */
3324 spin_unlock(&mm->page_table_lock);
3325 return 0;
3326 }
3327 #endif /* __PAGETABLE_PMD_FOLDED */
3328
3329 int make_pages_present(unsigned long addr, unsigned long end)
3330 {
3331 int ret, len, write;
3332 struct vm_area_struct * vma;
3333
3334 vma = find_vma(current->mm, addr);
3335 if (!vma)
3336 return -ENOMEM;
3337 /*
3338 * We want to touch writable mappings with a write fault in order
3339 * to break COW, except for shared mappings because these don't COW
3340 * and we would not want to dirty them for nothing.
3341 */
3342 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3343 BUG_ON(addr >= end);
3344 BUG_ON(end > vma->vm_end);
3345 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3346 ret = get_user_pages(current, current->mm, addr,
3347 len, write, 0, NULL, NULL);
3348 if (ret < 0)
3349 return ret;
3350 return ret == len ? 0 : -EFAULT;
3351 }
3352
3353 #if !defined(__HAVE_ARCH_GATE_AREA)
3354
3355 #if defined(AT_SYSINFO_EHDR)
3356 static struct vm_area_struct gate_vma;
3357
3358 static int __init gate_vma_init(void)
3359 {
3360 gate_vma.vm_mm = NULL;
3361 gate_vma.vm_start = FIXADDR_USER_START;
3362 gate_vma.vm_end = FIXADDR_USER_END;
3363 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3364 gate_vma.vm_page_prot = __P101;
3365 /*
3366 * Make sure the vDSO gets into every core dump.
3367 * Dumping its contents makes post-mortem fully interpretable later
3368 * without matching up the same kernel and hardware config to see
3369 * what PC values meant.
3370 */
3371 gate_vma.vm_flags |= VM_ALWAYSDUMP;
3372 return 0;
3373 }
3374 __initcall(gate_vma_init);
3375 #endif
3376
3377 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
3378 {
3379 #ifdef AT_SYSINFO_EHDR
3380 return &gate_vma;
3381 #else
3382 return NULL;
3383 #endif
3384 }
3385
3386 int in_gate_area_no_task(unsigned long addr)
3387 {
3388 #ifdef AT_SYSINFO_EHDR
3389 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3390 return 1;
3391 #endif
3392 return 0;
3393 }
3394
3395 #endif /* __HAVE_ARCH_GATE_AREA */
3396
3397 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3398 pte_t **ptepp, spinlock_t **ptlp)
3399 {
3400 pgd_t *pgd;
3401 pud_t *pud;
3402 pmd_t *pmd;
3403 pte_t *ptep;
3404
3405 pgd = pgd_offset(mm, address);
3406 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3407 goto out;
3408
3409 pud = pud_offset(pgd, address);
3410 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3411 goto out;
3412
3413 pmd = pmd_offset(pud, address);
3414 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3415 goto out;
3416
3417 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3418 if (pmd_huge(*pmd))
3419 goto out;
3420
3421 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3422 if (!ptep)
3423 goto out;
3424 if (!pte_present(*ptep))
3425 goto unlock;
3426 *ptepp = ptep;
3427 return 0;
3428 unlock:
3429 pte_unmap_unlock(ptep, *ptlp);
3430 out:
3431 return -EINVAL;
3432 }
3433
3434 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3435 pte_t **ptepp, spinlock_t **ptlp)
3436 {
3437 int res;
3438
3439 /* (void) is needed to make gcc happy */
3440 (void) __cond_lock(*ptlp,
3441 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3442 return res;
3443 }
3444
3445 /**
3446 * follow_pfn - look up PFN at a user virtual address
3447 * @vma: memory mapping
3448 * @address: user virtual address
3449 * @pfn: location to store found PFN
3450 *
3451 * Only IO mappings and raw PFN mappings are allowed.
3452 *
3453 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3454 */
3455 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3456 unsigned long *pfn)
3457 {
3458 int ret = -EINVAL;
3459 spinlock_t *ptl;
3460 pte_t *ptep;
3461
3462 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3463 return ret;
3464
3465 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3466 if (ret)
3467 return ret;
3468 *pfn = pte_pfn(*ptep);
3469 pte_unmap_unlock(ptep, ptl);
3470 return 0;
3471 }
3472 EXPORT_SYMBOL(follow_pfn);
3473
3474 #ifdef CONFIG_HAVE_IOREMAP_PROT
3475 int follow_phys(struct vm_area_struct *vma,
3476 unsigned long address, unsigned int flags,
3477 unsigned long *prot, resource_size_t *phys)
3478 {
3479 int ret = -EINVAL;
3480 pte_t *ptep, pte;
3481 spinlock_t *ptl;
3482
3483 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3484 goto out;
3485
3486 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3487 goto out;
3488 pte = *ptep;
3489
3490 if ((flags & FOLL_WRITE) && !pte_write(pte))
3491 goto unlock;
3492
3493 *prot = pgprot_val(pte_pgprot(pte));
3494 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3495
3496 ret = 0;
3497 unlock:
3498 pte_unmap_unlock(ptep, ptl);
3499 out:
3500 return ret;
3501 }
3502
3503 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3504 void *buf, int len, int write)
3505 {
3506 resource_size_t phys_addr;
3507 unsigned long prot = 0;
3508 void __iomem *maddr;
3509 int offset = addr & (PAGE_SIZE-1);
3510
3511 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3512 return -EINVAL;
3513
3514 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3515 if (write)
3516 memcpy_toio(maddr + offset, buf, len);
3517 else
3518 memcpy_fromio(buf, maddr + offset, len);
3519 iounmap(maddr);
3520
3521 return len;
3522 }
3523 #endif
3524
3525 /*
3526 * Access another process' address space.
3527 * Source/target buffer must be kernel space,
3528 * Do not walk the page table directly, use get_user_pages
3529 */
3530 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3531 {
3532 struct mm_struct *mm;
3533 struct vm_area_struct *vma;
3534 void *old_buf = buf;
3535
3536 mm = get_task_mm(tsk);
3537 if (!mm)
3538 return 0;
3539
3540 down_read(&mm->mmap_sem);
3541 /* ignore errors, just check how much was successfully transferred */
3542 while (len) {
3543 int bytes, ret, offset;
3544 void *maddr;
3545 struct page *page = NULL;
3546
3547 ret = get_user_pages(tsk, mm, addr, 1,
3548 write, 1, &page, &vma);
3549 if (ret <= 0) {
3550 /*
3551 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3552 * we can access using slightly different code.
3553 */
3554 #ifdef CONFIG_HAVE_IOREMAP_PROT
3555 vma = find_vma(mm, addr);
3556 if (!vma)
3557 break;
3558 if (vma->vm_ops && vma->vm_ops->access)
3559 ret = vma->vm_ops->access(vma, addr, buf,
3560 len, write);
3561 if (ret <= 0)
3562 #endif
3563 break;
3564 bytes = ret;
3565 } else {
3566 bytes = len;
3567 offset = addr & (PAGE_SIZE-1);
3568 if (bytes > PAGE_SIZE-offset)
3569 bytes = PAGE_SIZE-offset;
3570
3571 maddr = kmap(page);
3572 if (write) {
3573 copy_to_user_page(vma, page, addr,
3574 maddr + offset, buf, bytes);
3575 set_page_dirty_lock(page);
3576 } else {
3577 copy_from_user_page(vma, page, addr,
3578 buf, maddr + offset, bytes);
3579 }
3580 kunmap(page);
3581 page_cache_release(page);
3582 }
3583 len -= bytes;
3584 buf += bytes;
3585 addr += bytes;
3586 }
3587 up_read(&mm->mmap_sem);
3588 mmput(mm);
3589
3590 return buf - old_buf;
3591 }
3592
3593 /*
3594 * Print the name of a VMA.
3595 */
3596 void print_vma_addr(char *prefix, unsigned long ip)
3597 {
3598 struct mm_struct *mm = current->mm;
3599 struct vm_area_struct *vma;
3600
3601 /*
3602 * Do not print if we are in atomic
3603 * contexts (in exception stacks, etc.):
3604 */
3605 if (preempt_count())
3606 return;
3607
3608 down_read(&mm->mmap_sem);
3609 vma = find_vma(mm, ip);
3610 if (vma && vma->vm_file) {
3611 struct file *f = vma->vm_file;
3612 char *buf = (char *)__get_free_page(GFP_KERNEL);
3613 if (buf) {
3614 char *p, *s;
3615
3616 p = d_path(&f->f_path, buf, PAGE_SIZE);
3617 if (IS_ERR(p))
3618 p = "?";
3619 s = strrchr(p, '/');
3620 if (s)
3621 p = s+1;
3622 printk("%s%s[%lx+%lx]", prefix, p,
3623 vma->vm_start,
3624 vma->vm_end - vma->vm_start);
3625 free_page((unsigned long)buf);
3626 }
3627 }
3628 up_read(&current->mm->mmap_sem);
3629 }
3630
3631 #ifdef CONFIG_PROVE_LOCKING
3632 void might_fault(void)
3633 {
3634 /*
3635 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3636 * holding the mmap_sem, this is safe because kernel memory doesn't
3637 * get paged out, therefore we'll never actually fault, and the
3638 * below annotations will generate false positives.
3639 */
3640 if (segment_eq(get_fs(), KERNEL_DS))
3641 return;
3642
3643 might_sleep();
3644 /*
3645 * it would be nicer only to annotate paths which are not under
3646 * pagefault_disable, however that requires a larger audit and
3647 * providing helpers like get_user_atomic.
3648 */
3649 if (!in_atomic() && current->mm)
3650 might_lock_read(&current->mm->mmap_sem);
3651 }
3652 EXPORT_SYMBOL(might_fault);
3653 #endif
This page took 0.108079 seconds and 5 git commands to generate.