PCI: use %pF instead of print_fn_descriptor_symbol() in quirks.c
[deliverable/linux.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
54 #include <linux/mmu_notifier.h>
55
56 #include <asm/pgalloc.h>
57 #include <asm/uaccess.h>
58 #include <asm/tlb.h>
59 #include <asm/tlbflush.h>
60 #include <asm/pgtable.h>
61
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64
65 #include "internal.h"
66
67 #include "internal.h"
68
69 #ifndef CONFIG_NEED_MULTIPLE_NODES
70 /* use the per-pgdat data instead for discontigmem - mbligh */
71 unsigned long max_mapnr;
72 struct page *mem_map;
73
74 EXPORT_SYMBOL(max_mapnr);
75 EXPORT_SYMBOL(mem_map);
76 #endif
77
78 unsigned long num_physpages;
79 /*
80 * A number of key systems in x86 including ioremap() rely on the assumption
81 * that high_memory defines the upper bound on direct map memory, then end
82 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
83 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
84 * and ZONE_HIGHMEM.
85 */
86 void * high_memory;
87
88 EXPORT_SYMBOL(num_physpages);
89 EXPORT_SYMBOL(high_memory);
90
91 /*
92 * Randomize the address space (stacks, mmaps, brk, etc.).
93 *
94 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
95 * as ancient (libc5 based) binaries can segfault. )
96 */
97 int randomize_va_space __read_mostly =
98 #ifdef CONFIG_COMPAT_BRK
99 1;
100 #else
101 2;
102 #endif
103
104 static int __init disable_randmaps(char *s)
105 {
106 randomize_va_space = 0;
107 return 1;
108 }
109 __setup("norandmaps", disable_randmaps);
110
111
112 /*
113 * If a p?d_bad entry is found while walking page tables, report
114 * the error, before resetting entry to p?d_none. Usually (but
115 * very seldom) called out from the p?d_none_or_clear_bad macros.
116 */
117
118 void pgd_clear_bad(pgd_t *pgd)
119 {
120 pgd_ERROR(*pgd);
121 pgd_clear(pgd);
122 }
123
124 void pud_clear_bad(pud_t *pud)
125 {
126 pud_ERROR(*pud);
127 pud_clear(pud);
128 }
129
130 void pmd_clear_bad(pmd_t *pmd)
131 {
132 pmd_ERROR(*pmd);
133 pmd_clear(pmd);
134 }
135
136 /*
137 * Note: this doesn't free the actual pages themselves. That
138 * has been handled earlier when unmapping all the memory regions.
139 */
140 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
141 {
142 pgtable_t token = pmd_pgtable(*pmd);
143 pmd_clear(pmd);
144 pte_free_tlb(tlb, token);
145 tlb->mm->nr_ptes--;
146 }
147
148 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
149 unsigned long addr, unsigned long end,
150 unsigned long floor, unsigned long ceiling)
151 {
152 pmd_t *pmd;
153 unsigned long next;
154 unsigned long start;
155
156 start = addr;
157 pmd = pmd_offset(pud, addr);
158 do {
159 next = pmd_addr_end(addr, end);
160 if (pmd_none_or_clear_bad(pmd))
161 continue;
162 free_pte_range(tlb, pmd);
163 } while (pmd++, addr = next, addr != end);
164
165 start &= PUD_MASK;
166 if (start < floor)
167 return;
168 if (ceiling) {
169 ceiling &= PUD_MASK;
170 if (!ceiling)
171 return;
172 }
173 if (end - 1 > ceiling - 1)
174 return;
175
176 pmd = pmd_offset(pud, start);
177 pud_clear(pud);
178 pmd_free_tlb(tlb, pmd);
179 }
180
181 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
182 unsigned long addr, unsigned long end,
183 unsigned long floor, unsigned long ceiling)
184 {
185 pud_t *pud;
186 unsigned long next;
187 unsigned long start;
188
189 start = addr;
190 pud = pud_offset(pgd, addr);
191 do {
192 next = pud_addr_end(addr, end);
193 if (pud_none_or_clear_bad(pud))
194 continue;
195 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
196 } while (pud++, addr = next, addr != end);
197
198 start &= PGDIR_MASK;
199 if (start < floor)
200 return;
201 if (ceiling) {
202 ceiling &= PGDIR_MASK;
203 if (!ceiling)
204 return;
205 }
206 if (end - 1 > ceiling - 1)
207 return;
208
209 pud = pud_offset(pgd, start);
210 pgd_clear(pgd);
211 pud_free_tlb(tlb, pud);
212 }
213
214 /*
215 * This function frees user-level page tables of a process.
216 *
217 * Must be called with pagetable lock held.
218 */
219 void free_pgd_range(struct mmu_gather *tlb,
220 unsigned long addr, unsigned long end,
221 unsigned long floor, unsigned long ceiling)
222 {
223 pgd_t *pgd;
224 unsigned long next;
225 unsigned long start;
226
227 /*
228 * The next few lines have given us lots of grief...
229 *
230 * Why are we testing PMD* at this top level? Because often
231 * there will be no work to do at all, and we'd prefer not to
232 * go all the way down to the bottom just to discover that.
233 *
234 * Why all these "- 1"s? Because 0 represents both the bottom
235 * of the address space and the top of it (using -1 for the
236 * top wouldn't help much: the masks would do the wrong thing).
237 * The rule is that addr 0 and floor 0 refer to the bottom of
238 * the address space, but end 0 and ceiling 0 refer to the top
239 * Comparisons need to use "end - 1" and "ceiling - 1" (though
240 * that end 0 case should be mythical).
241 *
242 * Wherever addr is brought up or ceiling brought down, we must
243 * be careful to reject "the opposite 0" before it confuses the
244 * subsequent tests. But what about where end is brought down
245 * by PMD_SIZE below? no, end can't go down to 0 there.
246 *
247 * Whereas we round start (addr) and ceiling down, by different
248 * masks at different levels, in order to test whether a table
249 * now has no other vmas using it, so can be freed, we don't
250 * bother to round floor or end up - the tests don't need that.
251 */
252
253 addr &= PMD_MASK;
254 if (addr < floor) {
255 addr += PMD_SIZE;
256 if (!addr)
257 return;
258 }
259 if (ceiling) {
260 ceiling &= PMD_MASK;
261 if (!ceiling)
262 return;
263 }
264 if (end - 1 > ceiling - 1)
265 end -= PMD_SIZE;
266 if (addr > end - 1)
267 return;
268
269 start = addr;
270 pgd = pgd_offset(tlb->mm, addr);
271 do {
272 next = pgd_addr_end(addr, end);
273 if (pgd_none_or_clear_bad(pgd))
274 continue;
275 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
276 } while (pgd++, addr = next, addr != end);
277 }
278
279 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
280 unsigned long floor, unsigned long ceiling)
281 {
282 while (vma) {
283 struct vm_area_struct *next = vma->vm_next;
284 unsigned long addr = vma->vm_start;
285
286 /*
287 * Hide vma from rmap and vmtruncate before freeing pgtables
288 */
289 anon_vma_unlink(vma);
290 unlink_file_vma(vma);
291
292 if (is_vm_hugetlb_page(vma)) {
293 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
294 floor, next? next->vm_start: ceiling);
295 } else {
296 /*
297 * Optimization: gather nearby vmas into one call down
298 */
299 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
300 && !is_vm_hugetlb_page(next)) {
301 vma = next;
302 next = vma->vm_next;
303 anon_vma_unlink(vma);
304 unlink_file_vma(vma);
305 }
306 free_pgd_range(tlb, addr, vma->vm_end,
307 floor, next? next->vm_start: ceiling);
308 }
309 vma = next;
310 }
311 }
312
313 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
314 {
315 pgtable_t new = pte_alloc_one(mm, address);
316 if (!new)
317 return -ENOMEM;
318
319 /*
320 * Ensure all pte setup (eg. pte page lock and page clearing) are
321 * visible before the pte is made visible to other CPUs by being
322 * put into page tables.
323 *
324 * The other side of the story is the pointer chasing in the page
325 * table walking code (when walking the page table without locking;
326 * ie. most of the time). Fortunately, these data accesses consist
327 * of a chain of data-dependent loads, meaning most CPUs (alpha
328 * being the notable exception) will already guarantee loads are
329 * seen in-order. See the alpha page table accessors for the
330 * smp_read_barrier_depends() barriers in page table walking code.
331 */
332 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
333
334 spin_lock(&mm->page_table_lock);
335 if (!pmd_present(*pmd)) { /* Has another populated it ? */
336 mm->nr_ptes++;
337 pmd_populate(mm, pmd, new);
338 new = NULL;
339 }
340 spin_unlock(&mm->page_table_lock);
341 if (new)
342 pte_free(mm, new);
343 return 0;
344 }
345
346 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
347 {
348 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
349 if (!new)
350 return -ENOMEM;
351
352 smp_wmb(); /* See comment in __pte_alloc */
353
354 spin_lock(&init_mm.page_table_lock);
355 if (!pmd_present(*pmd)) { /* Has another populated it ? */
356 pmd_populate_kernel(&init_mm, pmd, new);
357 new = NULL;
358 }
359 spin_unlock(&init_mm.page_table_lock);
360 if (new)
361 pte_free_kernel(&init_mm, new);
362 return 0;
363 }
364
365 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
366 {
367 if (file_rss)
368 add_mm_counter(mm, file_rss, file_rss);
369 if (anon_rss)
370 add_mm_counter(mm, anon_rss, anon_rss);
371 }
372
373 /*
374 * This function is called to print an error when a bad pte
375 * is found. For example, we might have a PFN-mapped pte in
376 * a region that doesn't allow it.
377 *
378 * The calling function must still handle the error.
379 */
380 static void print_bad_pte(struct vm_area_struct *vma, pte_t pte,
381 unsigned long vaddr)
382 {
383 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
384 "vm_flags = %lx, vaddr = %lx\n",
385 (long long)pte_val(pte),
386 (vma->vm_mm == current->mm ? current->comm : "???"),
387 vma->vm_flags, vaddr);
388 dump_stack();
389 }
390
391 static inline int is_cow_mapping(unsigned int flags)
392 {
393 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
394 }
395
396 /*
397 * vm_normal_page -- This function gets the "struct page" associated with a pte.
398 *
399 * "Special" mappings do not wish to be associated with a "struct page" (either
400 * it doesn't exist, or it exists but they don't want to touch it). In this
401 * case, NULL is returned here. "Normal" mappings do have a struct page.
402 *
403 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
404 * pte bit, in which case this function is trivial. Secondly, an architecture
405 * may not have a spare pte bit, which requires a more complicated scheme,
406 * described below.
407 *
408 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
409 * special mapping (even if there are underlying and valid "struct pages").
410 * COWed pages of a VM_PFNMAP are always normal.
411 *
412 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
413 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
414 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
415 * mapping will always honor the rule
416 *
417 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
418 *
419 * And for normal mappings this is false.
420 *
421 * This restricts such mappings to be a linear translation from virtual address
422 * to pfn. To get around this restriction, we allow arbitrary mappings so long
423 * as the vma is not a COW mapping; in that case, we know that all ptes are
424 * special (because none can have been COWed).
425 *
426 *
427 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
428 *
429 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
430 * page" backing, however the difference is that _all_ pages with a struct
431 * page (that is, those where pfn_valid is true) are refcounted and considered
432 * normal pages by the VM. The disadvantage is that pages are refcounted
433 * (which can be slower and simply not an option for some PFNMAP users). The
434 * advantage is that we don't have to follow the strict linearity rule of
435 * PFNMAP mappings in order to support COWable mappings.
436 *
437 */
438 #ifdef __HAVE_ARCH_PTE_SPECIAL
439 # define HAVE_PTE_SPECIAL 1
440 #else
441 # define HAVE_PTE_SPECIAL 0
442 #endif
443 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
444 pte_t pte)
445 {
446 unsigned long pfn;
447
448 if (HAVE_PTE_SPECIAL) {
449 if (likely(!pte_special(pte))) {
450 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
451 return pte_page(pte);
452 }
453 VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
454 return NULL;
455 }
456
457 /* !HAVE_PTE_SPECIAL case follows: */
458
459 pfn = pte_pfn(pte);
460
461 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
462 if (vma->vm_flags & VM_MIXEDMAP) {
463 if (!pfn_valid(pfn))
464 return NULL;
465 goto out;
466 } else {
467 unsigned long off;
468 off = (addr - vma->vm_start) >> PAGE_SHIFT;
469 if (pfn == vma->vm_pgoff + off)
470 return NULL;
471 if (!is_cow_mapping(vma->vm_flags))
472 return NULL;
473 }
474 }
475
476 VM_BUG_ON(!pfn_valid(pfn));
477
478 /*
479 * NOTE! We still have PageReserved() pages in the page tables.
480 *
481 * eg. VDSO mappings can cause them to exist.
482 */
483 out:
484 return pfn_to_page(pfn);
485 }
486
487 /*
488 * copy one vm_area from one task to the other. Assumes the page tables
489 * already present in the new task to be cleared in the whole range
490 * covered by this vma.
491 */
492
493 static inline void
494 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
495 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
496 unsigned long addr, int *rss)
497 {
498 unsigned long vm_flags = vma->vm_flags;
499 pte_t pte = *src_pte;
500 struct page *page;
501
502 /* pte contains position in swap or file, so copy. */
503 if (unlikely(!pte_present(pte))) {
504 if (!pte_file(pte)) {
505 swp_entry_t entry = pte_to_swp_entry(pte);
506
507 swap_duplicate(entry);
508 /* make sure dst_mm is on swapoff's mmlist. */
509 if (unlikely(list_empty(&dst_mm->mmlist))) {
510 spin_lock(&mmlist_lock);
511 if (list_empty(&dst_mm->mmlist))
512 list_add(&dst_mm->mmlist,
513 &src_mm->mmlist);
514 spin_unlock(&mmlist_lock);
515 }
516 if (is_write_migration_entry(entry) &&
517 is_cow_mapping(vm_flags)) {
518 /*
519 * COW mappings require pages in both parent
520 * and child to be set to read.
521 */
522 make_migration_entry_read(&entry);
523 pte = swp_entry_to_pte(entry);
524 set_pte_at(src_mm, addr, src_pte, pte);
525 }
526 }
527 goto out_set_pte;
528 }
529
530 /*
531 * If it's a COW mapping, write protect it both
532 * in the parent and the child
533 */
534 if (is_cow_mapping(vm_flags)) {
535 ptep_set_wrprotect(src_mm, addr, src_pte);
536 pte = pte_wrprotect(pte);
537 }
538
539 /*
540 * If it's a shared mapping, mark it clean in
541 * the child
542 */
543 if (vm_flags & VM_SHARED)
544 pte = pte_mkclean(pte);
545 pte = pte_mkold(pte);
546
547 page = vm_normal_page(vma, addr, pte);
548 if (page) {
549 get_page(page);
550 page_dup_rmap(page, vma, addr);
551 rss[!!PageAnon(page)]++;
552 }
553
554 out_set_pte:
555 set_pte_at(dst_mm, addr, dst_pte, pte);
556 }
557
558 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
559 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
560 unsigned long addr, unsigned long end)
561 {
562 pte_t *src_pte, *dst_pte;
563 spinlock_t *src_ptl, *dst_ptl;
564 int progress = 0;
565 int rss[2];
566
567 again:
568 rss[1] = rss[0] = 0;
569 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
570 if (!dst_pte)
571 return -ENOMEM;
572 src_pte = pte_offset_map_nested(src_pmd, addr);
573 src_ptl = pte_lockptr(src_mm, src_pmd);
574 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
575 arch_enter_lazy_mmu_mode();
576
577 do {
578 /*
579 * We are holding two locks at this point - either of them
580 * could generate latencies in another task on another CPU.
581 */
582 if (progress >= 32) {
583 progress = 0;
584 if (need_resched() ||
585 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
586 break;
587 }
588 if (pte_none(*src_pte)) {
589 progress++;
590 continue;
591 }
592 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
593 progress += 8;
594 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
595
596 arch_leave_lazy_mmu_mode();
597 spin_unlock(src_ptl);
598 pte_unmap_nested(src_pte - 1);
599 add_mm_rss(dst_mm, rss[0], rss[1]);
600 pte_unmap_unlock(dst_pte - 1, dst_ptl);
601 cond_resched();
602 if (addr != end)
603 goto again;
604 return 0;
605 }
606
607 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
608 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
609 unsigned long addr, unsigned long end)
610 {
611 pmd_t *src_pmd, *dst_pmd;
612 unsigned long next;
613
614 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
615 if (!dst_pmd)
616 return -ENOMEM;
617 src_pmd = pmd_offset(src_pud, addr);
618 do {
619 next = pmd_addr_end(addr, end);
620 if (pmd_none_or_clear_bad(src_pmd))
621 continue;
622 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
623 vma, addr, next))
624 return -ENOMEM;
625 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
626 return 0;
627 }
628
629 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
630 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
631 unsigned long addr, unsigned long end)
632 {
633 pud_t *src_pud, *dst_pud;
634 unsigned long next;
635
636 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
637 if (!dst_pud)
638 return -ENOMEM;
639 src_pud = pud_offset(src_pgd, addr);
640 do {
641 next = pud_addr_end(addr, end);
642 if (pud_none_or_clear_bad(src_pud))
643 continue;
644 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
645 vma, addr, next))
646 return -ENOMEM;
647 } while (dst_pud++, src_pud++, addr = next, addr != end);
648 return 0;
649 }
650
651 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
652 struct vm_area_struct *vma)
653 {
654 pgd_t *src_pgd, *dst_pgd;
655 unsigned long next;
656 unsigned long addr = vma->vm_start;
657 unsigned long end = vma->vm_end;
658 int ret;
659
660 /*
661 * Don't copy ptes where a page fault will fill them correctly.
662 * Fork becomes much lighter when there are big shared or private
663 * readonly mappings. The tradeoff is that copy_page_range is more
664 * efficient than faulting.
665 */
666 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
667 if (!vma->anon_vma)
668 return 0;
669 }
670
671 if (is_vm_hugetlb_page(vma))
672 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
673
674 /*
675 * We need to invalidate the secondary MMU mappings only when
676 * there could be a permission downgrade on the ptes of the
677 * parent mm. And a permission downgrade will only happen if
678 * is_cow_mapping() returns true.
679 */
680 if (is_cow_mapping(vma->vm_flags))
681 mmu_notifier_invalidate_range_start(src_mm, addr, end);
682
683 ret = 0;
684 dst_pgd = pgd_offset(dst_mm, addr);
685 src_pgd = pgd_offset(src_mm, addr);
686 do {
687 next = pgd_addr_end(addr, end);
688 if (pgd_none_or_clear_bad(src_pgd))
689 continue;
690 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
691 vma, addr, next))) {
692 ret = -ENOMEM;
693 break;
694 }
695 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
696
697 if (is_cow_mapping(vma->vm_flags))
698 mmu_notifier_invalidate_range_end(src_mm,
699 vma->vm_start, end);
700 return ret;
701 }
702
703 static unsigned long zap_pte_range(struct mmu_gather *tlb,
704 struct vm_area_struct *vma, pmd_t *pmd,
705 unsigned long addr, unsigned long end,
706 long *zap_work, struct zap_details *details)
707 {
708 struct mm_struct *mm = tlb->mm;
709 pte_t *pte;
710 spinlock_t *ptl;
711 int file_rss = 0;
712 int anon_rss = 0;
713
714 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
715 arch_enter_lazy_mmu_mode();
716 do {
717 pte_t ptent = *pte;
718 if (pte_none(ptent)) {
719 (*zap_work)--;
720 continue;
721 }
722
723 (*zap_work) -= PAGE_SIZE;
724
725 if (pte_present(ptent)) {
726 struct page *page;
727
728 page = vm_normal_page(vma, addr, ptent);
729 if (unlikely(details) && page) {
730 /*
731 * unmap_shared_mapping_pages() wants to
732 * invalidate cache without truncating:
733 * unmap shared but keep private pages.
734 */
735 if (details->check_mapping &&
736 details->check_mapping != page->mapping)
737 continue;
738 /*
739 * Each page->index must be checked when
740 * invalidating or truncating nonlinear.
741 */
742 if (details->nonlinear_vma &&
743 (page->index < details->first_index ||
744 page->index > details->last_index))
745 continue;
746 }
747 ptent = ptep_get_and_clear_full(mm, addr, pte,
748 tlb->fullmm);
749 tlb_remove_tlb_entry(tlb, pte, addr);
750 if (unlikely(!page))
751 continue;
752 if (unlikely(details) && details->nonlinear_vma
753 && linear_page_index(details->nonlinear_vma,
754 addr) != page->index)
755 set_pte_at(mm, addr, pte,
756 pgoff_to_pte(page->index));
757 if (PageAnon(page))
758 anon_rss--;
759 else {
760 if (pte_dirty(ptent))
761 set_page_dirty(page);
762 if (pte_young(ptent))
763 SetPageReferenced(page);
764 file_rss--;
765 }
766 page_remove_rmap(page, vma);
767 tlb_remove_page(tlb, page);
768 continue;
769 }
770 /*
771 * If details->check_mapping, we leave swap entries;
772 * if details->nonlinear_vma, we leave file entries.
773 */
774 if (unlikely(details))
775 continue;
776 if (!pte_file(ptent))
777 free_swap_and_cache(pte_to_swp_entry(ptent));
778 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
779 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
780
781 add_mm_rss(mm, file_rss, anon_rss);
782 arch_leave_lazy_mmu_mode();
783 pte_unmap_unlock(pte - 1, ptl);
784
785 return addr;
786 }
787
788 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
789 struct vm_area_struct *vma, pud_t *pud,
790 unsigned long addr, unsigned long end,
791 long *zap_work, struct zap_details *details)
792 {
793 pmd_t *pmd;
794 unsigned long next;
795
796 pmd = pmd_offset(pud, addr);
797 do {
798 next = pmd_addr_end(addr, end);
799 if (pmd_none_or_clear_bad(pmd)) {
800 (*zap_work)--;
801 continue;
802 }
803 next = zap_pte_range(tlb, vma, pmd, addr, next,
804 zap_work, details);
805 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
806
807 return addr;
808 }
809
810 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
811 struct vm_area_struct *vma, pgd_t *pgd,
812 unsigned long addr, unsigned long end,
813 long *zap_work, struct zap_details *details)
814 {
815 pud_t *pud;
816 unsigned long next;
817
818 pud = pud_offset(pgd, addr);
819 do {
820 next = pud_addr_end(addr, end);
821 if (pud_none_or_clear_bad(pud)) {
822 (*zap_work)--;
823 continue;
824 }
825 next = zap_pmd_range(tlb, vma, pud, addr, next,
826 zap_work, details);
827 } while (pud++, addr = next, (addr != end && *zap_work > 0));
828
829 return addr;
830 }
831
832 static unsigned long unmap_page_range(struct mmu_gather *tlb,
833 struct vm_area_struct *vma,
834 unsigned long addr, unsigned long end,
835 long *zap_work, struct zap_details *details)
836 {
837 pgd_t *pgd;
838 unsigned long next;
839
840 if (details && !details->check_mapping && !details->nonlinear_vma)
841 details = NULL;
842
843 BUG_ON(addr >= end);
844 tlb_start_vma(tlb, vma);
845 pgd = pgd_offset(vma->vm_mm, addr);
846 do {
847 next = pgd_addr_end(addr, end);
848 if (pgd_none_or_clear_bad(pgd)) {
849 (*zap_work)--;
850 continue;
851 }
852 next = zap_pud_range(tlb, vma, pgd, addr, next,
853 zap_work, details);
854 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
855 tlb_end_vma(tlb, vma);
856
857 return addr;
858 }
859
860 #ifdef CONFIG_PREEMPT
861 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
862 #else
863 /* No preempt: go for improved straight-line efficiency */
864 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
865 #endif
866
867 /**
868 * unmap_vmas - unmap a range of memory covered by a list of vma's
869 * @tlbp: address of the caller's struct mmu_gather
870 * @vma: the starting vma
871 * @start_addr: virtual address at which to start unmapping
872 * @end_addr: virtual address at which to end unmapping
873 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
874 * @details: details of nonlinear truncation or shared cache invalidation
875 *
876 * Returns the end address of the unmapping (restart addr if interrupted).
877 *
878 * Unmap all pages in the vma list.
879 *
880 * We aim to not hold locks for too long (for scheduling latency reasons).
881 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
882 * return the ending mmu_gather to the caller.
883 *
884 * Only addresses between `start' and `end' will be unmapped.
885 *
886 * The VMA list must be sorted in ascending virtual address order.
887 *
888 * unmap_vmas() assumes that the caller will flush the whole unmapped address
889 * range after unmap_vmas() returns. So the only responsibility here is to
890 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
891 * drops the lock and schedules.
892 */
893 unsigned long unmap_vmas(struct mmu_gather **tlbp,
894 struct vm_area_struct *vma, unsigned long start_addr,
895 unsigned long end_addr, unsigned long *nr_accounted,
896 struct zap_details *details)
897 {
898 long zap_work = ZAP_BLOCK_SIZE;
899 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
900 int tlb_start_valid = 0;
901 unsigned long start = start_addr;
902 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
903 int fullmm = (*tlbp)->fullmm;
904 struct mm_struct *mm = vma->vm_mm;
905
906 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
907 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
908 unsigned long end;
909
910 start = max(vma->vm_start, start_addr);
911 if (start >= vma->vm_end)
912 continue;
913 end = min(vma->vm_end, end_addr);
914 if (end <= vma->vm_start)
915 continue;
916
917 if (vma->vm_flags & VM_ACCOUNT)
918 *nr_accounted += (end - start) >> PAGE_SHIFT;
919
920 while (start != end) {
921 if (!tlb_start_valid) {
922 tlb_start = start;
923 tlb_start_valid = 1;
924 }
925
926 if (unlikely(is_vm_hugetlb_page(vma))) {
927 /*
928 * It is undesirable to test vma->vm_file as it
929 * should be non-null for valid hugetlb area.
930 * However, vm_file will be NULL in the error
931 * cleanup path of do_mmap_pgoff. When
932 * hugetlbfs ->mmap method fails,
933 * do_mmap_pgoff() nullifies vma->vm_file
934 * before calling this function to clean up.
935 * Since no pte has actually been setup, it is
936 * safe to do nothing in this case.
937 */
938 if (vma->vm_file) {
939 unmap_hugepage_range(vma, start, end, NULL);
940 zap_work -= (end - start) /
941 pages_per_huge_page(hstate_vma(vma));
942 }
943
944 start = end;
945 } else
946 start = unmap_page_range(*tlbp, vma,
947 start, end, &zap_work, details);
948
949 if (zap_work > 0) {
950 BUG_ON(start != end);
951 break;
952 }
953
954 tlb_finish_mmu(*tlbp, tlb_start, start);
955
956 if (need_resched() ||
957 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
958 if (i_mmap_lock) {
959 *tlbp = NULL;
960 goto out;
961 }
962 cond_resched();
963 }
964
965 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
966 tlb_start_valid = 0;
967 zap_work = ZAP_BLOCK_SIZE;
968 }
969 }
970 out:
971 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
972 return start; /* which is now the end (or restart) address */
973 }
974
975 /**
976 * zap_page_range - remove user pages in a given range
977 * @vma: vm_area_struct holding the applicable pages
978 * @address: starting address of pages to zap
979 * @size: number of bytes to zap
980 * @details: details of nonlinear truncation or shared cache invalidation
981 */
982 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
983 unsigned long size, struct zap_details *details)
984 {
985 struct mm_struct *mm = vma->vm_mm;
986 struct mmu_gather *tlb;
987 unsigned long end = address + size;
988 unsigned long nr_accounted = 0;
989
990 lru_add_drain();
991 tlb = tlb_gather_mmu(mm, 0);
992 update_hiwater_rss(mm);
993 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
994 if (tlb)
995 tlb_finish_mmu(tlb, address, end);
996 return end;
997 }
998
999 /**
1000 * zap_vma_ptes - remove ptes mapping the vma
1001 * @vma: vm_area_struct holding ptes to be zapped
1002 * @address: starting address of pages to zap
1003 * @size: number of bytes to zap
1004 *
1005 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1006 *
1007 * The entire address range must be fully contained within the vma.
1008 *
1009 * Returns 0 if successful.
1010 */
1011 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1012 unsigned long size)
1013 {
1014 if (address < vma->vm_start || address + size > vma->vm_end ||
1015 !(vma->vm_flags & VM_PFNMAP))
1016 return -1;
1017 zap_page_range(vma, address, size, NULL);
1018 return 0;
1019 }
1020 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1021
1022 /*
1023 * Do a quick page-table lookup for a single page.
1024 */
1025 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1026 unsigned int flags)
1027 {
1028 pgd_t *pgd;
1029 pud_t *pud;
1030 pmd_t *pmd;
1031 pte_t *ptep, pte;
1032 spinlock_t *ptl;
1033 struct page *page;
1034 struct mm_struct *mm = vma->vm_mm;
1035
1036 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1037 if (!IS_ERR(page)) {
1038 BUG_ON(flags & FOLL_GET);
1039 goto out;
1040 }
1041
1042 page = NULL;
1043 pgd = pgd_offset(mm, address);
1044 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1045 goto no_page_table;
1046
1047 pud = pud_offset(pgd, address);
1048 if (pud_none(*pud))
1049 goto no_page_table;
1050 if (pud_huge(*pud)) {
1051 BUG_ON(flags & FOLL_GET);
1052 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1053 goto out;
1054 }
1055 if (unlikely(pud_bad(*pud)))
1056 goto no_page_table;
1057
1058 pmd = pmd_offset(pud, address);
1059 if (pmd_none(*pmd))
1060 goto no_page_table;
1061 if (pmd_huge(*pmd)) {
1062 BUG_ON(flags & FOLL_GET);
1063 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1064 goto out;
1065 }
1066 if (unlikely(pmd_bad(*pmd)))
1067 goto no_page_table;
1068
1069 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1070
1071 pte = *ptep;
1072 if (!pte_present(pte))
1073 goto no_page;
1074 if ((flags & FOLL_WRITE) && !pte_write(pte))
1075 goto unlock;
1076 page = vm_normal_page(vma, address, pte);
1077 if (unlikely(!page))
1078 goto bad_page;
1079
1080 if (flags & FOLL_GET)
1081 get_page(page);
1082 if (flags & FOLL_TOUCH) {
1083 if ((flags & FOLL_WRITE) &&
1084 !pte_dirty(pte) && !PageDirty(page))
1085 set_page_dirty(page);
1086 mark_page_accessed(page);
1087 }
1088 unlock:
1089 pte_unmap_unlock(ptep, ptl);
1090 out:
1091 return page;
1092
1093 bad_page:
1094 pte_unmap_unlock(ptep, ptl);
1095 return ERR_PTR(-EFAULT);
1096
1097 no_page:
1098 pte_unmap_unlock(ptep, ptl);
1099 if (!pte_none(pte))
1100 return page;
1101 /* Fall through to ZERO_PAGE handling */
1102 no_page_table:
1103 /*
1104 * When core dumping an enormous anonymous area that nobody
1105 * has touched so far, we don't want to allocate page tables.
1106 */
1107 if (flags & FOLL_ANON) {
1108 page = ZERO_PAGE(0);
1109 if (flags & FOLL_GET)
1110 get_page(page);
1111 BUG_ON(flags & FOLL_WRITE);
1112 }
1113 return page;
1114 }
1115
1116 /* Can we do the FOLL_ANON optimization? */
1117 static inline int use_zero_page(struct vm_area_struct *vma)
1118 {
1119 /*
1120 * We don't want to optimize FOLL_ANON for make_pages_present()
1121 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1122 * we want to get the page from the page tables to make sure
1123 * that we serialize and update with any other user of that
1124 * mapping.
1125 */
1126 if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1127 return 0;
1128 /*
1129 * And if we have a fault routine, it's not an anonymous region.
1130 */
1131 return !vma->vm_ops || !vma->vm_ops->fault;
1132 }
1133
1134
1135
1136 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1137 unsigned long start, int len, int flags,
1138 struct page **pages, struct vm_area_struct **vmas)
1139 {
1140 int i;
1141 unsigned int vm_flags = 0;
1142 int write = !!(flags & GUP_FLAGS_WRITE);
1143 int force = !!(flags & GUP_FLAGS_FORCE);
1144 int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
1145
1146 if (len <= 0)
1147 return 0;
1148 /*
1149 * Require read or write permissions.
1150 * If 'force' is set, we only require the "MAY" flags.
1151 */
1152 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1153 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1154 i = 0;
1155
1156 do {
1157 struct vm_area_struct *vma;
1158 unsigned int foll_flags;
1159
1160 vma = find_extend_vma(mm, start);
1161 if (!vma && in_gate_area(tsk, start)) {
1162 unsigned long pg = start & PAGE_MASK;
1163 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1164 pgd_t *pgd;
1165 pud_t *pud;
1166 pmd_t *pmd;
1167 pte_t *pte;
1168
1169 /* user gate pages are read-only */
1170 if (!ignore && write)
1171 return i ? : -EFAULT;
1172 if (pg > TASK_SIZE)
1173 pgd = pgd_offset_k(pg);
1174 else
1175 pgd = pgd_offset_gate(mm, pg);
1176 BUG_ON(pgd_none(*pgd));
1177 pud = pud_offset(pgd, pg);
1178 BUG_ON(pud_none(*pud));
1179 pmd = pmd_offset(pud, pg);
1180 if (pmd_none(*pmd))
1181 return i ? : -EFAULT;
1182 pte = pte_offset_map(pmd, pg);
1183 if (pte_none(*pte)) {
1184 pte_unmap(pte);
1185 return i ? : -EFAULT;
1186 }
1187 if (pages) {
1188 struct page *page = vm_normal_page(gate_vma, start, *pte);
1189 pages[i] = page;
1190 if (page)
1191 get_page(page);
1192 }
1193 pte_unmap(pte);
1194 if (vmas)
1195 vmas[i] = gate_vma;
1196 i++;
1197 start += PAGE_SIZE;
1198 len--;
1199 continue;
1200 }
1201
1202 if (!vma ||
1203 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1204 (!ignore && !(vm_flags & vma->vm_flags)))
1205 return i ? : -EFAULT;
1206
1207 if (is_vm_hugetlb_page(vma)) {
1208 i = follow_hugetlb_page(mm, vma, pages, vmas,
1209 &start, &len, i, write);
1210 continue;
1211 }
1212
1213 foll_flags = FOLL_TOUCH;
1214 if (pages)
1215 foll_flags |= FOLL_GET;
1216 if (!write && use_zero_page(vma))
1217 foll_flags |= FOLL_ANON;
1218
1219 do {
1220 struct page *page;
1221
1222 /*
1223 * If tsk is ooming, cut off its access to large memory
1224 * allocations. It has a pending SIGKILL, but it can't
1225 * be processed until returning to user space.
1226 */
1227 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1228 return i ? i : -ENOMEM;
1229
1230 if (write)
1231 foll_flags |= FOLL_WRITE;
1232
1233 cond_resched();
1234 while (!(page = follow_page(vma, start, foll_flags))) {
1235 int ret;
1236 ret = handle_mm_fault(mm, vma, start,
1237 foll_flags & FOLL_WRITE);
1238 if (ret & VM_FAULT_ERROR) {
1239 if (ret & VM_FAULT_OOM)
1240 return i ? i : -ENOMEM;
1241 else if (ret & VM_FAULT_SIGBUS)
1242 return i ? i : -EFAULT;
1243 BUG();
1244 }
1245 if (ret & VM_FAULT_MAJOR)
1246 tsk->maj_flt++;
1247 else
1248 tsk->min_flt++;
1249
1250 /*
1251 * The VM_FAULT_WRITE bit tells us that
1252 * do_wp_page has broken COW when necessary,
1253 * even if maybe_mkwrite decided not to set
1254 * pte_write. We can thus safely do subsequent
1255 * page lookups as if they were reads.
1256 */
1257 if (ret & VM_FAULT_WRITE)
1258 foll_flags &= ~FOLL_WRITE;
1259
1260 cond_resched();
1261 }
1262 if (IS_ERR(page))
1263 return i ? i : PTR_ERR(page);
1264 if (pages) {
1265 pages[i] = page;
1266
1267 flush_anon_page(vma, page, start);
1268 flush_dcache_page(page);
1269 }
1270 if (vmas)
1271 vmas[i] = vma;
1272 i++;
1273 start += PAGE_SIZE;
1274 len--;
1275 } while (len && start < vma->vm_end);
1276 } while (len);
1277 return i;
1278 }
1279
1280 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1281 unsigned long start, int len, int write, int force,
1282 struct page **pages, struct vm_area_struct **vmas)
1283 {
1284 int flags = 0;
1285
1286 if (write)
1287 flags |= GUP_FLAGS_WRITE;
1288 if (force)
1289 flags |= GUP_FLAGS_FORCE;
1290
1291 return __get_user_pages(tsk, mm,
1292 start, len, flags,
1293 pages, vmas);
1294 }
1295
1296 EXPORT_SYMBOL(get_user_pages);
1297
1298 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1299 spinlock_t **ptl)
1300 {
1301 pgd_t * pgd = pgd_offset(mm, addr);
1302 pud_t * pud = pud_alloc(mm, pgd, addr);
1303 if (pud) {
1304 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1305 if (pmd)
1306 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1307 }
1308 return NULL;
1309 }
1310
1311 /*
1312 * This is the old fallback for page remapping.
1313 *
1314 * For historical reasons, it only allows reserved pages. Only
1315 * old drivers should use this, and they needed to mark their
1316 * pages reserved for the old functions anyway.
1317 */
1318 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1319 struct page *page, pgprot_t prot)
1320 {
1321 struct mm_struct *mm = vma->vm_mm;
1322 int retval;
1323 pte_t *pte;
1324 spinlock_t *ptl;
1325
1326 retval = -EINVAL;
1327 if (PageAnon(page))
1328 goto out;
1329 retval = -ENOMEM;
1330 flush_dcache_page(page);
1331 pte = get_locked_pte(mm, addr, &ptl);
1332 if (!pte)
1333 goto out;
1334 retval = -EBUSY;
1335 if (!pte_none(*pte))
1336 goto out_unlock;
1337
1338 /* Ok, finally just insert the thing.. */
1339 get_page(page);
1340 inc_mm_counter(mm, file_rss);
1341 page_add_file_rmap(page);
1342 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1343
1344 retval = 0;
1345 pte_unmap_unlock(pte, ptl);
1346 return retval;
1347 out_unlock:
1348 pte_unmap_unlock(pte, ptl);
1349 out:
1350 return retval;
1351 }
1352
1353 /**
1354 * vm_insert_page - insert single page into user vma
1355 * @vma: user vma to map to
1356 * @addr: target user address of this page
1357 * @page: source kernel page
1358 *
1359 * This allows drivers to insert individual pages they've allocated
1360 * into a user vma.
1361 *
1362 * The page has to be a nice clean _individual_ kernel allocation.
1363 * If you allocate a compound page, you need to have marked it as
1364 * such (__GFP_COMP), or manually just split the page up yourself
1365 * (see split_page()).
1366 *
1367 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1368 * took an arbitrary page protection parameter. This doesn't allow
1369 * that. Your vma protection will have to be set up correctly, which
1370 * means that if you want a shared writable mapping, you'd better
1371 * ask for a shared writable mapping!
1372 *
1373 * The page does not need to be reserved.
1374 */
1375 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1376 struct page *page)
1377 {
1378 if (addr < vma->vm_start || addr >= vma->vm_end)
1379 return -EFAULT;
1380 if (!page_count(page))
1381 return -EINVAL;
1382 vma->vm_flags |= VM_INSERTPAGE;
1383 return insert_page(vma, addr, page, vma->vm_page_prot);
1384 }
1385 EXPORT_SYMBOL(vm_insert_page);
1386
1387 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1388 unsigned long pfn, pgprot_t prot)
1389 {
1390 struct mm_struct *mm = vma->vm_mm;
1391 int retval;
1392 pte_t *pte, entry;
1393 spinlock_t *ptl;
1394
1395 retval = -ENOMEM;
1396 pte = get_locked_pte(mm, addr, &ptl);
1397 if (!pte)
1398 goto out;
1399 retval = -EBUSY;
1400 if (!pte_none(*pte))
1401 goto out_unlock;
1402
1403 /* Ok, finally just insert the thing.. */
1404 entry = pte_mkspecial(pfn_pte(pfn, prot));
1405 set_pte_at(mm, addr, pte, entry);
1406 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1407
1408 retval = 0;
1409 out_unlock:
1410 pte_unmap_unlock(pte, ptl);
1411 out:
1412 return retval;
1413 }
1414
1415 /**
1416 * vm_insert_pfn - insert single pfn into user vma
1417 * @vma: user vma to map to
1418 * @addr: target user address of this page
1419 * @pfn: source kernel pfn
1420 *
1421 * Similar to vm_inert_page, this allows drivers to insert individual pages
1422 * they've allocated into a user vma. Same comments apply.
1423 *
1424 * This function should only be called from a vm_ops->fault handler, and
1425 * in that case the handler should return NULL.
1426 *
1427 * vma cannot be a COW mapping.
1428 *
1429 * As this is called only for pages that do not currently exist, we
1430 * do not need to flush old virtual caches or the TLB.
1431 */
1432 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1433 unsigned long pfn)
1434 {
1435 /*
1436 * Technically, architectures with pte_special can avoid all these
1437 * restrictions (same for remap_pfn_range). However we would like
1438 * consistency in testing and feature parity among all, so we should
1439 * try to keep these invariants in place for everybody.
1440 */
1441 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1442 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1443 (VM_PFNMAP|VM_MIXEDMAP));
1444 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1445 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1446
1447 if (addr < vma->vm_start || addr >= vma->vm_end)
1448 return -EFAULT;
1449 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1450 }
1451 EXPORT_SYMBOL(vm_insert_pfn);
1452
1453 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1454 unsigned long pfn)
1455 {
1456 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1457
1458 if (addr < vma->vm_start || addr >= vma->vm_end)
1459 return -EFAULT;
1460
1461 /*
1462 * If we don't have pte special, then we have to use the pfn_valid()
1463 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1464 * refcount the page if pfn_valid is true (hence insert_page rather
1465 * than insert_pfn).
1466 */
1467 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1468 struct page *page;
1469
1470 page = pfn_to_page(pfn);
1471 return insert_page(vma, addr, page, vma->vm_page_prot);
1472 }
1473 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1474 }
1475 EXPORT_SYMBOL(vm_insert_mixed);
1476
1477 /*
1478 * maps a range of physical memory into the requested pages. the old
1479 * mappings are removed. any references to nonexistent pages results
1480 * in null mappings (currently treated as "copy-on-access")
1481 */
1482 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1483 unsigned long addr, unsigned long end,
1484 unsigned long pfn, pgprot_t prot)
1485 {
1486 pte_t *pte;
1487 spinlock_t *ptl;
1488
1489 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1490 if (!pte)
1491 return -ENOMEM;
1492 arch_enter_lazy_mmu_mode();
1493 do {
1494 BUG_ON(!pte_none(*pte));
1495 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1496 pfn++;
1497 } while (pte++, addr += PAGE_SIZE, addr != end);
1498 arch_leave_lazy_mmu_mode();
1499 pte_unmap_unlock(pte - 1, ptl);
1500 return 0;
1501 }
1502
1503 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1504 unsigned long addr, unsigned long end,
1505 unsigned long pfn, pgprot_t prot)
1506 {
1507 pmd_t *pmd;
1508 unsigned long next;
1509
1510 pfn -= addr >> PAGE_SHIFT;
1511 pmd = pmd_alloc(mm, pud, addr);
1512 if (!pmd)
1513 return -ENOMEM;
1514 do {
1515 next = pmd_addr_end(addr, end);
1516 if (remap_pte_range(mm, pmd, addr, next,
1517 pfn + (addr >> PAGE_SHIFT), prot))
1518 return -ENOMEM;
1519 } while (pmd++, addr = next, addr != end);
1520 return 0;
1521 }
1522
1523 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1524 unsigned long addr, unsigned long end,
1525 unsigned long pfn, pgprot_t prot)
1526 {
1527 pud_t *pud;
1528 unsigned long next;
1529
1530 pfn -= addr >> PAGE_SHIFT;
1531 pud = pud_alloc(mm, pgd, addr);
1532 if (!pud)
1533 return -ENOMEM;
1534 do {
1535 next = pud_addr_end(addr, end);
1536 if (remap_pmd_range(mm, pud, addr, next,
1537 pfn + (addr >> PAGE_SHIFT), prot))
1538 return -ENOMEM;
1539 } while (pud++, addr = next, addr != end);
1540 return 0;
1541 }
1542
1543 /**
1544 * remap_pfn_range - remap kernel memory to userspace
1545 * @vma: user vma to map to
1546 * @addr: target user address to start at
1547 * @pfn: physical address of kernel memory
1548 * @size: size of map area
1549 * @prot: page protection flags for this mapping
1550 *
1551 * Note: this is only safe if the mm semaphore is held when called.
1552 */
1553 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1554 unsigned long pfn, unsigned long size, pgprot_t prot)
1555 {
1556 pgd_t *pgd;
1557 unsigned long next;
1558 unsigned long end = addr + PAGE_ALIGN(size);
1559 struct mm_struct *mm = vma->vm_mm;
1560 int err;
1561
1562 /*
1563 * Physically remapped pages are special. Tell the
1564 * rest of the world about it:
1565 * VM_IO tells people not to look at these pages
1566 * (accesses can have side effects).
1567 * VM_RESERVED is specified all over the place, because
1568 * in 2.4 it kept swapout's vma scan off this vma; but
1569 * in 2.6 the LRU scan won't even find its pages, so this
1570 * flag means no more than count its pages in reserved_vm,
1571 * and omit it from core dump, even when VM_IO turned off.
1572 * VM_PFNMAP tells the core MM that the base pages are just
1573 * raw PFN mappings, and do not have a "struct page" associated
1574 * with them.
1575 *
1576 * There's a horrible special case to handle copy-on-write
1577 * behaviour that some programs depend on. We mark the "original"
1578 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1579 */
1580 if (is_cow_mapping(vma->vm_flags)) {
1581 if (addr != vma->vm_start || end != vma->vm_end)
1582 return -EINVAL;
1583 vma->vm_pgoff = pfn;
1584 }
1585
1586 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1587
1588 BUG_ON(addr >= end);
1589 pfn -= addr >> PAGE_SHIFT;
1590 pgd = pgd_offset(mm, addr);
1591 flush_cache_range(vma, addr, end);
1592 do {
1593 next = pgd_addr_end(addr, end);
1594 err = remap_pud_range(mm, pgd, addr, next,
1595 pfn + (addr >> PAGE_SHIFT), prot);
1596 if (err)
1597 break;
1598 } while (pgd++, addr = next, addr != end);
1599 return err;
1600 }
1601 EXPORT_SYMBOL(remap_pfn_range);
1602
1603 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1604 unsigned long addr, unsigned long end,
1605 pte_fn_t fn, void *data)
1606 {
1607 pte_t *pte;
1608 int err;
1609 pgtable_t token;
1610 spinlock_t *uninitialized_var(ptl);
1611
1612 pte = (mm == &init_mm) ?
1613 pte_alloc_kernel(pmd, addr) :
1614 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1615 if (!pte)
1616 return -ENOMEM;
1617
1618 BUG_ON(pmd_huge(*pmd));
1619
1620 token = pmd_pgtable(*pmd);
1621
1622 do {
1623 err = fn(pte, token, addr, data);
1624 if (err)
1625 break;
1626 } while (pte++, addr += PAGE_SIZE, addr != end);
1627
1628 if (mm != &init_mm)
1629 pte_unmap_unlock(pte-1, ptl);
1630 return err;
1631 }
1632
1633 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1634 unsigned long addr, unsigned long end,
1635 pte_fn_t fn, void *data)
1636 {
1637 pmd_t *pmd;
1638 unsigned long next;
1639 int err;
1640
1641 BUG_ON(pud_huge(*pud));
1642
1643 pmd = pmd_alloc(mm, pud, addr);
1644 if (!pmd)
1645 return -ENOMEM;
1646 do {
1647 next = pmd_addr_end(addr, end);
1648 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1649 if (err)
1650 break;
1651 } while (pmd++, addr = next, addr != end);
1652 return err;
1653 }
1654
1655 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1656 unsigned long addr, unsigned long end,
1657 pte_fn_t fn, void *data)
1658 {
1659 pud_t *pud;
1660 unsigned long next;
1661 int err;
1662
1663 pud = pud_alloc(mm, pgd, addr);
1664 if (!pud)
1665 return -ENOMEM;
1666 do {
1667 next = pud_addr_end(addr, end);
1668 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1669 if (err)
1670 break;
1671 } while (pud++, addr = next, addr != end);
1672 return err;
1673 }
1674
1675 /*
1676 * Scan a region of virtual memory, filling in page tables as necessary
1677 * and calling a provided function on each leaf page table.
1678 */
1679 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1680 unsigned long size, pte_fn_t fn, void *data)
1681 {
1682 pgd_t *pgd;
1683 unsigned long next;
1684 unsigned long start = addr, end = addr + size;
1685 int err;
1686
1687 BUG_ON(addr >= end);
1688 mmu_notifier_invalidate_range_start(mm, start, end);
1689 pgd = pgd_offset(mm, addr);
1690 do {
1691 next = pgd_addr_end(addr, end);
1692 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1693 if (err)
1694 break;
1695 } while (pgd++, addr = next, addr != end);
1696 mmu_notifier_invalidate_range_end(mm, start, end);
1697 return err;
1698 }
1699 EXPORT_SYMBOL_GPL(apply_to_page_range);
1700
1701 /*
1702 * handle_pte_fault chooses page fault handler according to an entry
1703 * which was read non-atomically. Before making any commitment, on
1704 * those architectures or configurations (e.g. i386 with PAE) which
1705 * might give a mix of unmatched parts, do_swap_page and do_file_page
1706 * must check under lock before unmapping the pte and proceeding
1707 * (but do_wp_page is only called after already making such a check;
1708 * and do_anonymous_page and do_no_page can safely check later on).
1709 */
1710 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1711 pte_t *page_table, pte_t orig_pte)
1712 {
1713 int same = 1;
1714 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1715 if (sizeof(pte_t) > sizeof(unsigned long)) {
1716 spinlock_t *ptl = pte_lockptr(mm, pmd);
1717 spin_lock(ptl);
1718 same = pte_same(*page_table, orig_pte);
1719 spin_unlock(ptl);
1720 }
1721 #endif
1722 pte_unmap(page_table);
1723 return same;
1724 }
1725
1726 /*
1727 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1728 * servicing faults for write access. In the normal case, do always want
1729 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1730 * that do not have writing enabled, when used by access_process_vm.
1731 */
1732 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1733 {
1734 if (likely(vma->vm_flags & VM_WRITE))
1735 pte = pte_mkwrite(pte);
1736 return pte;
1737 }
1738
1739 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1740 {
1741 /*
1742 * If the source page was a PFN mapping, we don't have
1743 * a "struct page" for it. We do a best-effort copy by
1744 * just copying from the original user address. If that
1745 * fails, we just zero-fill it. Live with it.
1746 */
1747 if (unlikely(!src)) {
1748 void *kaddr = kmap_atomic(dst, KM_USER0);
1749 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1750
1751 /*
1752 * This really shouldn't fail, because the page is there
1753 * in the page tables. But it might just be unreadable,
1754 * in which case we just give up and fill the result with
1755 * zeroes.
1756 */
1757 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1758 memset(kaddr, 0, PAGE_SIZE);
1759 kunmap_atomic(kaddr, KM_USER0);
1760 flush_dcache_page(dst);
1761 } else
1762 copy_user_highpage(dst, src, va, vma);
1763 }
1764
1765 /*
1766 * This routine handles present pages, when users try to write
1767 * to a shared page. It is done by copying the page to a new address
1768 * and decrementing the shared-page counter for the old page.
1769 *
1770 * Note that this routine assumes that the protection checks have been
1771 * done by the caller (the low-level page fault routine in most cases).
1772 * Thus we can safely just mark it writable once we've done any necessary
1773 * COW.
1774 *
1775 * We also mark the page dirty at this point even though the page will
1776 * change only once the write actually happens. This avoids a few races,
1777 * and potentially makes it more efficient.
1778 *
1779 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1780 * but allow concurrent faults), with pte both mapped and locked.
1781 * We return with mmap_sem still held, but pte unmapped and unlocked.
1782 */
1783 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1784 unsigned long address, pte_t *page_table, pmd_t *pmd,
1785 spinlock_t *ptl, pte_t orig_pte)
1786 {
1787 struct page *old_page, *new_page;
1788 pte_t entry;
1789 int reuse = 0, ret = 0;
1790 int page_mkwrite = 0;
1791 struct page *dirty_page = NULL;
1792
1793 old_page = vm_normal_page(vma, address, orig_pte);
1794 if (!old_page) {
1795 /*
1796 * VM_MIXEDMAP !pfn_valid() case
1797 *
1798 * We should not cow pages in a shared writeable mapping.
1799 * Just mark the pages writable as we can't do any dirty
1800 * accounting on raw pfn maps.
1801 */
1802 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1803 (VM_WRITE|VM_SHARED))
1804 goto reuse;
1805 goto gotten;
1806 }
1807
1808 /*
1809 * Take out anonymous pages first, anonymous shared vmas are
1810 * not dirty accountable.
1811 */
1812 if (PageAnon(old_page)) {
1813 if (trylock_page(old_page)) {
1814 reuse = can_share_swap_page(old_page);
1815 unlock_page(old_page);
1816 }
1817 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1818 (VM_WRITE|VM_SHARED))) {
1819 /*
1820 * Only catch write-faults on shared writable pages,
1821 * read-only shared pages can get COWed by
1822 * get_user_pages(.write=1, .force=1).
1823 */
1824 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1825 /*
1826 * Notify the address space that the page is about to
1827 * become writable so that it can prohibit this or wait
1828 * for the page to get into an appropriate state.
1829 *
1830 * We do this without the lock held, so that it can
1831 * sleep if it needs to.
1832 */
1833 page_cache_get(old_page);
1834 pte_unmap_unlock(page_table, ptl);
1835
1836 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1837 goto unwritable_page;
1838
1839 /*
1840 * Since we dropped the lock we need to revalidate
1841 * the PTE as someone else may have changed it. If
1842 * they did, we just return, as we can count on the
1843 * MMU to tell us if they didn't also make it writable.
1844 */
1845 page_table = pte_offset_map_lock(mm, pmd, address,
1846 &ptl);
1847 page_cache_release(old_page);
1848 if (!pte_same(*page_table, orig_pte))
1849 goto unlock;
1850
1851 page_mkwrite = 1;
1852 }
1853 dirty_page = old_page;
1854 get_page(dirty_page);
1855 reuse = 1;
1856 }
1857
1858 if (reuse) {
1859 reuse:
1860 flush_cache_page(vma, address, pte_pfn(orig_pte));
1861 entry = pte_mkyoung(orig_pte);
1862 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1863 if (ptep_set_access_flags(vma, address, page_table, entry,1))
1864 update_mmu_cache(vma, address, entry);
1865 ret |= VM_FAULT_WRITE;
1866 goto unlock;
1867 }
1868
1869 /*
1870 * Ok, we need to copy. Oh, well..
1871 */
1872 page_cache_get(old_page);
1873 gotten:
1874 pte_unmap_unlock(page_table, ptl);
1875
1876 if (unlikely(anon_vma_prepare(vma)))
1877 goto oom;
1878 VM_BUG_ON(old_page == ZERO_PAGE(0));
1879 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1880 if (!new_page)
1881 goto oom;
1882 /*
1883 * Don't let another task, with possibly unlocked vma,
1884 * keep the mlocked page.
1885 */
1886 if (vma->vm_flags & VM_LOCKED) {
1887 lock_page(old_page); /* for LRU manipulation */
1888 clear_page_mlock(old_page);
1889 unlock_page(old_page);
1890 }
1891 cow_user_page(new_page, old_page, address, vma);
1892 __SetPageUptodate(new_page);
1893
1894 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
1895 goto oom_free_new;
1896
1897 /*
1898 * Re-check the pte - we dropped the lock
1899 */
1900 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1901 if (likely(pte_same(*page_table, orig_pte))) {
1902 if (old_page) {
1903 if (!PageAnon(old_page)) {
1904 dec_mm_counter(mm, file_rss);
1905 inc_mm_counter(mm, anon_rss);
1906 }
1907 } else
1908 inc_mm_counter(mm, anon_rss);
1909 flush_cache_page(vma, address, pte_pfn(orig_pte));
1910 entry = mk_pte(new_page, vma->vm_page_prot);
1911 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1912 /*
1913 * Clear the pte entry and flush it first, before updating the
1914 * pte with the new entry. This will avoid a race condition
1915 * seen in the presence of one thread doing SMC and another
1916 * thread doing COW.
1917 */
1918 ptep_clear_flush_notify(vma, address, page_table);
1919 SetPageSwapBacked(new_page);
1920 lru_cache_add_active_or_unevictable(new_page, vma);
1921 page_add_new_anon_rmap(new_page, vma, address);
1922
1923 //TODO: is this safe? do_anonymous_page() does it this way.
1924 set_pte_at(mm, address, page_table, entry);
1925 update_mmu_cache(vma, address, entry);
1926 if (old_page) {
1927 /*
1928 * Only after switching the pte to the new page may
1929 * we remove the mapcount here. Otherwise another
1930 * process may come and find the rmap count decremented
1931 * before the pte is switched to the new page, and
1932 * "reuse" the old page writing into it while our pte
1933 * here still points into it and can be read by other
1934 * threads.
1935 *
1936 * The critical issue is to order this
1937 * page_remove_rmap with the ptp_clear_flush above.
1938 * Those stores are ordered by (if nothing else,)
1939 * the barrier present in the atomic_add_negative
1940 * in page_remove_rmap.
1941 *
1942 * Then the TLB flush in ptep_clear_flush ensures that
1943 * no process can access the old page before the
1944 * decremented mapcount is visible. And the old page
1945 * cannot be reused until after the decremented
1946 * mapcount is visible. So transitively, TLBs to
1947 * old page will be flushed before it can be reused.
1948 */
1949 page_remove_rmap(old_page, vma);
1950 }
1951
1952 /* Free the old page.. */
1953 new_page = old_page;
1954 ret |= VM_FAULT_WRITE;
1955 } else
1956 mem_cgroup_uncharge_page(new_page);
1957
1958 if (new_page)
1959 page_cache_release(new_page);
1960 if (old_page)
1961 page_cache_release(old_page);
1962 unlock:
1963 pte_unmap_unlock(page_table, ptl);
1964 if (dirty_page) {
1965 if (vma->vm_file)
1966 file_update_time(vma->vm_file);
1967
1968 /*
1969 * Yes, Virginia, this is actually required to prevent a race
1970 * with clear_page_dirty_for_io() from clearing the page dirty
1971 * bit after it clear all dirty ptes, but before a racing
1972 * do_wp_page installs a dirty pte.
1973 *
1974 * do_no_page is protected similarly.
1975 */
1976 wait_on_page_locked(dirty_page);
1977 set_page_dirty_balance(dirty_page, page_mkwrite);
1978 put_page(dirty_page);
1979 }
1980 return ret;
1981 oom_free_new:
1982 page_cache_release(new_page);
1983 oom:
1984 if (old_page)
1985 page_cache_release(old_page);
1986 return VM_FAULT_OOM;
1987
1988 unwritable_page:
1989 page_cache_release(old_page);
1990 return VM_FAULT_SIGBUS;
1991 }
1992
1993 /*
1994 * Helper functions for unmap_mapping_range().
1995 *
1996 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1997 *
1998 * We have to restart searching the prio_tree whenever we drop the lock,
1999 * since the iterator is only valid while the lock is held, and anyway
2000 * a later vma might be split and reinserted earlier while lock dropped.
2001 *
2002 * The list of nonlinear vmas could be handled more efficiently, using
2003 * a placeholder, but handle it in the same way until a need is shown.
2004 * It is important to search the prio_tree before nonlinear list: a vma
2005 * may become nonlinear and be shifted from prio_tree to nonlinear list
2006 * while the lock is dropped; but never shifted from list to prio_tree.
2007 *
2008 * In order to make forward progress despite restarting the search,
2009 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2010 * quickly skip it next time around. Since the prio_tree search only
2011 * shows us those vmas affected by unmapping the range in question, we
2012 * can't efficiently keep all vmas in step with mapping->truncate_count:
2013 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2014 * mapping->truncate_count and vma->vm_truncate_count are protected by
2015 * i_mmap_lock.
2016 *
2017 * In order to make forward progress despite repeatedly restarting some
2018 * large vma, note the restart_addr from unmap_vmas when it breaks out:
2019 * and restart from that address when we reach that vma again. It might
2020 * have been split or merged, shrunk or extended, but never shifted: so
2021 * restart_addr remains valid so long as it remains in the vma's range.
2022 * unmap_mapping_range forces truncate_count to leap over page-aligned
2023 * values so we can save vma's restart_addr in its truncate_count field.
2024 */
2025 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2026
2027 static void reset_vma_truncate_counts(struct address_space *mapping)
2028 {
2029 struct vm_area_struct *vma;
2030 struct prio_tree_iter iter;
2031
2032 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2033 vma->vm_truncate_count = 0;
2034 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2035 vma->vm_truncate_count = 0;
2036 }
2037
2038 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2039 unsigned long start_addr, unsigned long end_addr,
2040 struct zap_details *details)
2041 {
2042 unsigned long restart_addr;
2043 int need_break;
2044
2045 /*
2046 * files that support invalidating or truncating portions of the
2047 * file from under mmaped areas must have their ->fault function
2048 * return a locked page (and set VM_FAULT_LOCKED in the return).
2049 * This provides synchronisation against concurrent unmapping here.
2050 */
2051
2052 again:
2053 restart_addr = vma->vm_truncate_count;
2054 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2055 start_addr = restart_addr;
2056 if (start_addr >= end_addr) {
2057 /* Top of vma has been split off since last time */
2058 vma->vm_truncate_count = details->truncate_count;
2059 return 0;
2060 }
2061 }
2062
2063 restart_addr = zap_page_range(vma, start_addr,
2064 end_addr - start_addr, details);
2065 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2066
2067 if (restart_addr >= end_addr) {
2068 /* We have now completed this vma: mark it so */
2069 vma->vm_truncate_count = details->truncate_count;
2070 if (!need_break)
2071 return 0;
2072 } else {
2073 /* Note restart_addr in vma's truncate_count field */
2074 vma->vm_truncate_count = restart_addr;
2075 if (!need_break)
2076 goto again;
2077 }
2078
2079 spin_unlock(details->i_mmap_lock);
2080 cond_resched();
2081 spin_lock(details->i_mmap_lock);
2082 return -EINTR;
2083 }
2084
2085 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2086 struct zap_details *details)
2087 {
2088 struct vm_area_struct *vma;
2089 struct prio_tree_iter iter;
2090 pgoff_t vba, vea, zba, zea;
2091
2092 restart:
2093 vma_prio_tree_foreach(vma, &iter, root,
2094 details->first_index, details->last_index) {
2095 /* Skip quickly over those we have already dealt with */
2096 if (vma->vm_truncate_count == details->truncate_count)
2097 continue;
2098
2099 vba = vma->vm_pgoff;
2100 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2101 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2102 zba = details->first_index;
2103 if (zba < vba)
2104 zba = vba;
2105 zea = details->last_index;
2106 if (zea > vea)
2107 zea = vea;
2108
2109 if (unmap_mapping_range_vma(vma,
2110 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2111 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2112 details) < 0)
2113 goto restart;
2114 }
2115 }
2116
2117 static inline void unmap_mapping_range_list(struct list_head *head,
2118 struct zap_details *details)
2119 {
2120 struct vm_area_struct *vma;
2121
2122 /*
2123 * In nonlinear VMAs there is no correspondence between virtual address
2124 * offset and file offset. So we must perform an exhaustive search
2125 * across *all* the pages in each nonlinear VMA, not just the pages
2126 * whose virtual address lies outside the file truncation point.
2127 */
2128 restart:
2129 list_for_each_entry(vma, head, shared.vm_set.list) {
2130 /* Skip quickly over those we have already dealt with */
2131 if (vma->vm_truncate_count == details->truncate_count)
2132 continue;
2133 details->nonlinear_vma = vma;
2134 if (unmap_mapping_range_vma(vma, vma->vm_start,
2135 vma->vm_end, details) < 0)
2136 goto restart;
2137 }
2138 }
2139
2140 /**
2141 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2142 * @mapping: the address space containing mmaps to be unmapped.
2143 * @holebegin: byte in first page to unmap, relative to the start of
2144 * the underlying file. This will be rounded down to a PAGE_SIZE
2145 * boundary. Note that this is different from vmtruncate(), which
2146 * must keep the partial page. In contrast, we must get rid of
2147 * partial pages.
2148 * @holelen: size of prospective hole in bytes. This will be rounded
2149 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2150 * end of the file.
2151 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2152 * but 0 when invalidating pagecache, don't throw away private data.
2153 */
2154 void unmap_mapping_range(struct address_space *mapping,
2155 loff_t const holebegin, loff_t const holelen, int even_cows)
2156 {
2157 struct zap_details details;
2158 pgoff_t hba = holebegin >> PAGE_SHIFT;
2159 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2160
2161 /* Check for overflow. */
2162 if (sizeof(holelen) > sizeof(hlen)) {
2163 long long holeend =
2164 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2165 if (holeend & ~(long long)ULONG_MAX)
2166 hlen = ULONG_MAX - hba + 1;
2167 }
2168
2169 details.check_mapping = even_cows? NULL: mapping;
2170 details.nonlinear_vma = NULL;
2171 details.first_index = hba;
2172 details.last_index = hba + hlen - 1;
2173 if (details.last_index < details.first_index)
2174 details.last_index = ULONG_MAX;
2175 details.i_mmap_lock = &mapping->i_mmap_lock;
2176
2177 spin_lock(&mapping->i_mmap_lock);
2178
2179 /* Protect against endless unmapping loops */
2180 mapping->truncate_count++;
2181 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2182 if (mapping->truncate_count == 0)
2183 reset_vma_truncate_counts(mapping);
2184 mapping->truncate_count++;
2185 }
2186 details.truncate_count = mapping->truncate_count;
2187
2188 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2189 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2190 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2191 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2192 spin_unlock(&mapping->i_mmap_lock);
2193 }
2194 EXPORT_SYMBOL(unmap_mapping_range);
2195
2196 /**
2197 * vmtruncate - unmap mappings "freed" by truncate() syscall
2198 * @inode: inode of the file used
2199 * @offset: file offset to start truncating
2200 *
2201 * NOTE! We have to be ready to update the memory sharing
2202 * between the file and the memory map for a potential last
2203 * incomplete page. Ugly, but necessary.
2204 */
2205 int vmtruncate(struct inode * inode, loff_t offset)
2206 {
2207 if (inode->i_size < offset) {
2208 unsigned long limit;
2209
2210 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2211 if (limit != RLIM_INFINITY && offset > limit)
2212 goto out_sig;
2213 if (offset > inode->i_sb->s_maxbytes)
2214 goto out_big;
2215 i_size_write(inode, offset);
2216 } else {
2217 struct address_space *mapping = inode->i_mapping;
2218
2219 /*
2220 * truncation of in-use swapfiles is disallowed - it would
2221 * cause subsequent swapout to scribble on the now-freed
2222 * blocks.
2223 */
2224 if (IS_SWAPFILE(inode))
2225 return -ETXTBSY;
2226 i_size_write(inode, offset);
2227
2228 /*
2229 * unmap_mapping_range is called twice, first simply for
2230 * efficiency so that truncate_inode_pages does fewer
2231 * single-page unmaps. However after this first call, and
2232 * before truncate_inode_pages finishes, it is possible for
2233 * private pages to be COWed, which remain after
2234 * truncate_inode_pages finishes, hence the second
2235 * unmap_mapping_range call must be made for correctness.
2236 */
2237 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2238 truncate_inode_pages(mapping, offset);
2239 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2240 }
2241
2242 if (inode->i_op && inode->i_op->truncate)
2243 inode->i_op->truncate(inode);
2244 return 0;
2245
2246 out_sig:
2247 send_sig(SIGXFSZ, current, 0);
2248 out_big:
2249 return -EFBIG;
2250 }
2251 EXPORT_SYMBOL(vmtruncate);
2252
2253 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2254 {
2255 struct address_space *mapping = inode->i_mapping;
2256
2257 /*
2258 * If the underlying filesystem is not going to provide
2259 * a way to truncate a range of blocks (punch a hole) -
2260 * we should return failure right now.
2261 */
2262 if (!inode->i_op || !inode->i_op->truncate_range)
2263 return -ENOSYS;
2264
2265 mutex_lock(&inode->i_mutex);
2266 down_write(&inode->i_alloc_sem);
2267 unmap_mapping_range(mapping, offset, (end - offset), 1);
2268 truncate_inode_pages_range(mapping, offset, end);
2269 unmap_mapping_range(mapping, offset, (end - offset), 1);
2270 inode->i_op->truncate_range(inode, offset, end);
2271 up_write(&inode->i_alloc_sem);
2272 mutex_unlock(&inode->i_mutex);
2273
2274 return 0;
2275 }
2276
2277 /*
2278 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2279 * but allow concurrent faults), and pte mapped but not yet locked.
2280 * We return with mmap_sem still held, but pte unmapped and unlocked.
2281 */
2282 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2283 unsigned long address, pte_t *page_table, pmd_t *pmd,
2284 int write_access, pte_t orig_pte)
2285 {
2286 spinlock_t *ptl;
2287 struct page *page;
2288 swp_entry_t entry;
2289 pte_t pte;
2290 int ret = 0;
2291
2292 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2293 goto out;
2294
2295 entry = pte_to_swp_entry(orig_pte);
2296 if (is_migration_entry(entry)) {
2297 migration_entry_wait(mm, pmd, address);
2298 goto out;
2299 }
2300 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2301 page = lookup_swap_cache(entry);
2302 if (!page) {
2303 grab_swap_token(); /* Contend for token _before_ read-in */
2304 page = swapin_readahead(entry,
2305 GFP_HIGHUSER_MOVABLE, vma, address);
2306 if (!page) {
2307 /*
2308 * Back out if somebody else faulted in this pte
2309 * while we released the pte lock.
2310 */
2311 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2312 if (likely(pte_same(*page_table, orig_pte)))
2313 ret = VM_FAULT_OOM;
2314 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2315 goto unlock;
2316 }
2317
2318 /* Had to read the page from swap area: Major fault */
2319 ret = VM_FAULT_MAJOR;
2320 count_vm_event(PGMAJFAULT);
2321 }
2322
2323 mark_page_accessed(page);
2324
2325 lock_page(page);
2326 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2327
2328 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2329 ret = VM_FAULT_OOM;
2330 unlock_page(page);
2331 goto out;
2332 }
2333
2334 /*
2335 * Back out if somebody else already faulted in this pte.
2336 */
2337 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2338 if (unlikely(!pte_same(*page_table, orig_pte)))
2339 goto out_nomap;
2340
2341 if (unlikely(!PageUptodate(page))) {
2342 ret = VM_FAULT_SIGBUS;
2343 goto out_nomap;
2344 }
2345
2346 /* The page isn't present yet, go ahead with the fault. */
2347
2348 inc_mm_counter(mm, anon_rss);
2349 pte = mk_pte(page, vma->vm_page_prot);
2350 if (write_access && can_share_swap_page(page)) {
2351 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2352 write_access = 0;
2353 }
2354
2355 flush_icache_page(vma, page);
2356 set_pte_at(mm, address, page_table, pte);
2357 page_add_anon_rmap(page, vma, address);
2358
2359 swap_free(entry);
2360 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2361 remove_exclusive_swap_page(page);
2362 unlock_page(page);
2363
2364 if (write_access) {
2365 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2366 if (ret & VM_FAULT_ERROR)
2367 ret &= VM_FAULT_ERROR;
2368 goto out;
2369 }
2370
2371 /* No need to invalidate - it was non-present before */
2372 update_mmu_cache(vma, address, pte);
2373 unlock:
2374 pte_unmap_unlock(page_table, ptl);
2375 out:
2376 return ret;
2377 out_nomap:
2378 mem_cgroup_uncharge_page(page);
2379 pte_unmap_unlock(page_table, ptl);
2380 unlock_page(page);
2381 page_cache_release(page);
2382 return ret;
2383 }
2384
2385 /*
2386 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2387 * but allow concurrent faults), and pte mapped but not yet locked.
2388 * We return with mmap_sem still held, but pte unmapped and unlocked.
2389 */
2390 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2391 unsigned long address, pte_t *page_table, pmd_t *pmd,
2392 int write_access)
2393 {
2394 struct page *page;
2395 spinlock_t *ptl;
2396 pte_t entry;
2397
2398 /* Allocate our own private page. */
2399 pte_unmap(page_table);
2400
2401 if (unlikely(anon_vma_prepare(vma)))
2402 goto oom;
2403 page = alloc_zeroed_user_highpage_movable(vma, address);
2404 if (!page)
2405 goto oom;
2406 __SetPageUptodate(page);
2407
2408 if (mem_cgroup_charge(page, mm, GFP_KERNEL))
2409 goto oom_free_page;
2410
2411 entry = mk_pte(page, vma->vm_page_prot);
2412 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2413
2414 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2415 if (!pte_none(*page_table))
2416 goto release;
2417 inc_mm_counter(mm, anon_rss);
2418 SetPageSwapBacked(page);
2419 lru_cache_add_active_or_unevictable(page, vma);
2420 page_add_new_anon_rmap(page, vma, address);
2421 set_pte_at(mm, address, page_table, entry);
2422
2423 /* No need to invalidate - it was non-present before */
2424 update_mmu_cache(vma, address, entry);
2425 unlock:
2426 pte_unmap_unlock(page_table, ptl);
2427 return 0;
2428 release:
2429 mem_cgroup_uncharge_page(page);
2430 page_cache_release(page);
2431 goto unlock;
2432 oom_free_page:
2433 page_cache_release(page);
2434 oom:
2435 return VM_FAULT_OOM;
2436 }
2437
2438 /*
2439 * __do_fault() tries to create a new page mapping. It aggressively
2440 * tries to share with existing pages, but makes a separate copy if
2441 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2442 * the next page fault.
2443 *
2444 * As this is called only for pages that do not currently exist, we
2445 * do not need to flush old virtual caches or the TLB.
2446 *
2447 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2448 * but allow concurrent faults), and pte neither mapped nor locked.
2449 * We return with mmap_sem still held, but pte unmapped and unlocked.
2450 */
2451 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2452 unsigned long address, pmd_t *pmd,
2453 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2454 {
2455 pte_t *page_table;
2456 spinlock_t *ptl;
2457 struct page *page;
2458 pte_t entry;
2459 int anon = 0;
2460 int charged = 0;
2461 struct page *dirty_page = NULL;
2462 struct vm_fault vmf;
2463 int ret;
2464 int page_mkwrite = 0;
2465
2466 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2467 vmf.pgoff = pgoff;
2468 vmf.flags = flags;
2469 vmf.page = NULL;
2470
2471 ret = vma->vm_ops->fault(vma, &vmf);
2472 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2473 return ret;
2474
2475 /*
2476 * For consistency in subsequent calls, make the faulted page always
2477 * locked.
2478 */
2479 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2480 lock_page(vmf.page);
2481 else
2482 VM_BUG_ON(!PageLocked(vmf.page));
2483
2484 /*
2485 * Should we do an early C-O-W break?
2486 */
2487 page = vmf.page;
2488 if (flags & FAULT_FLAG_WRITE) {
2489 if (!(vma->vm_flags & VM_SHARED)) {
2490 anon = 1;
2491 if (unlikely(anon_vma_prepare(vma))) {
2492 ret = VM_FAULT_OOM;
2493 goto out;
2494 }
2495 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2496 vma, address);
2497 if (!page) {
2498 ret = VM_FAULT_OOM;
2499 goto out;
2500 }
2501 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2502 ret = VM_FAULT_OOM;
2503 page_cache_release(page);
2504 goto out;
2505 }
2506 charged = 1;
2507 /*
2508 * Don't let another task, with possibly unlocked vma,
2509 * keep the mlocked page.
2510 */
2511 if (vma->vm_flags & VM_LOCKED)
2512 clear_page_mlock(vmf.page);
2513 copy_user_highpage(page, vmf.page, address, vma);
2514 __SetPageUptodate(page);
2515 } else {
2516 /*
2517 * If the page will be shareable, see if the backing
2518 * address space wants to know that the page is about
2519 * to become writable
2520 */
2521 if (vma->vm_ops->page_mkwrite) {
2522 unlock_page(page);
2523 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2524 ret = VM_FAULT_SIGBUS;
2525 anon = 1; /* no anon but release vmf.page */
2526 goto out_unlocked;
2527 }
2528 lock_page(page);
2529 /*
2530 * XXX: this is not quite right (racy vs
2531 * invalidate) to unlock and relock the page
2532 * like this, however a better fix requires
2533 * reworking page_mkwrite locking API, which
2534 * is better done later.
2535 */
2536 if (!page->mapping) {
2537 ret = 0;
2538 anon = 1; /* no anon but release vmf.page */
2539 goto out;
2540 }
2541 page_mkwrite = 1;
2542 }
2543 }
2544
2545 }
2546
2547 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2548
2549 /*
2550 * This silly early PAGE_DIRTY setting removes a race
2551 * due to the bad i386 page protection. But it's valid
2552 * for other architectures too.
2553 *
2554 * Note that if write_access is true, we either now have
2555 * an exclusive copy of the page, or this is a shared mapping,
2556 * so we can make it writable and dirty to avoid having to
2557 * handle that later.
2558 */
2559 /* Only go through if we didn't race with anybody else... */
2560 if (likely(pte_same(*page_table, orig_pte))) {
2561 flush_icache_page(vma, page);
2562 entry = mk_pte(page, vma->vm_page_prot);
2563 if (flags & FAULT_FLAG_WRITE)
2564 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2565 if (anon) {
2566 inc_mm_counter(mm, anon_rss);
2567 SetPageSwapBacked(page);
2568 lru_cache_add_active_or_unevictable(page, vma);
2569 page_add_new_anon_rmap(page, vma, address);
2570 } else {
2571 inc_mm_counter(mm, file_rss);
2572 page_add_file_rmap(page);
2573 if (flags & FAULT_FLAG_WRITE) {
2574 dirty_page = page;
2575 get_page(dirty_page);
2576 }
2577 }
2578 //TODO: is this safe? do_anonymous_page() does it this way.
2579 set_pte_at(mm, address, page_table, entry);
2580
2581 /* no need to invalidate: a not-present page won't be cached */
2582 update_mmu_cache(vma, address, entry);
2583 } else {
2584 if (charged)
2585 mem_cgroup_uncharge_page(page);
2586 if (anon)
2587 page_cache_release(page);
2588 else
2589 anon = 1; /* no anon but release faulted_page */
2590 }
2591
2592 pte_unmap_unlock(page_table, ptl);
2593
2594 out:
2595 unlock_page(vmf.page);
2596 out_unlocked:
2597 if (anon)
2598 page_cache_release(vmf.page);
2599 else if (dirty_page) {
2600 if (vma->vm_file)
2601 file_update_time(vma->vm_file);
2602
2603 set_page_dirty_balance(dirty_page, page_mkwrite);
2604 put_page(dirty_page);
2605 }
2606
2607 return ret;
2608 }
2609
2610 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2611 unsigned long address, pte_t *page_table, pmd_t *pmd,
2612 int write_access, pte_t orig_pte)
2613 {
2614 pgoff_t pgoff = (((address & PAGE_MASK)
2615 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2616 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2617
2618 pte_unmap(page_table);
2619 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2620 }
2621
2622 /*
2623 * Fault of a previously existing named mapping. Repopulate the pte
2624 * from the encoded file_pte if possible. This enables swappable
2625 * nonlinear vmas.
2626 *
2627 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2628 * but allow concurrent faults), and pte mapped but not yet locked.
2629 * We return with mmap_sem still held, but pte unmapped and unlocked.
2630 */
2631 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2632 unsigned long address, pte_t *page_table, pmd_t *pmd,
2633 int write_access, pte_t orig_pte)
2634 {
2635 unsigned int flags = FAULT_FLAG_NONLINEAR |
2636 (write_access ? FAULT_FLAG_WRITE : 0);
2637 pgoff_t pgoff;
2638
2639 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2640 return 0;
2641
2642 if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2643 !(vma->vm_flags & VM_CAN_NONLINEAR))) {
2644 /*
2645 * Page table corrupted: show pte and kill process.
2646 */
2647 print_bad_pte(vma, orig_pte, address);
2648 return VM_FAULT_OOM;
2649 }
2650
2651 pgoff = pte_to_pgoff(orig_pte);
2652 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2653 }
2654
2655 /*
2656 * These routines also need to handle stuff like marking pages dirty
2657 * and/or accessed for architectures that don't do it in hardware (most
2658 * RISC architectures). The early dirtying is also good on the i386.
2659 *
2660 * There is also a hook called "update_mmu_cache()" that architectures
2661 * with external mmu caches can use to update those (ie the Sparc or
2662 * PowerPC hashed page tables that act as extended TLBs).
2663 *
2664 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2665 * but allow concurrent faults), and pte mapped but not yet locked.
2666 * We return with mmap_sem still held, but pte unmapped and unlocked.
2667 */
2668 static inline int handle_pte_fault(struct mm_struct *mm,
2669 struct vm_area_struct *vma, unsigned long address,
2670 pte_t *pte, pmd_t *pmd, int write_access)
2671 {
2672 pte_t entry;
2673 spinlock_t *ptl;
2674
2675 entry = *pte;
2676 if (!pte_present(entry)) {
2677 if (pte_none(entry)) {
2678 if (vma->vm_ops) {
2679 if (likely(vma->vm_ops->fault))
2680 return do_linear_fault(mm, vma, address,
2681 pte, pmd, write_access, entry);
2682 }
2683 return do_anonymous_page(mm, vma, address,
2684 pte, pmd, write_access);
2685 }
2686 if (pte_file(entry))
2687 return do_nonlinear_fault(mm, vma, address,
2688 pte, pmd, write_access, entry);
2689 return do_swap_page(mm, vma, address,
2690 pte, pmd, write_access, entry);
2691 }
2692
2693 ptl = pte_lockptr(mm, pmd);
2694 spin_lock(ptl);
2695 if (unlikely(!pte_same(*pte, entry)))
2696 goto unlock;
2697 if (write_access) {
2698 if (!pte_write(entry))
2699 return do_wp_page(mm, vma, address,
2700 pte, pmd, ptl, entry);
2701 entry = pte_mkdirty(entry);
2702 }
2703 entry = pte_mkyoung(entry);
2704 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2705 update_mmu_cache(vma, address, entry);
2706 } else {
2707 /*
2708 * This is needed only for protection faults but the arch code
2709 * is not yet telling us if this is a protection fault or not.
2710 * This still avoids useless tlb flushes for .text page faults
2711 * with threads.
2712 */
2713 if (write_access)
2714 flush_tlb_page(vma, address);
2715 }
2716 unlock:
2717 pte_unmap_unlock(pte, ptl);
2718 return 0;
2719 }
2720
2721 /*
2722 * By the time we get here, we already hold the mm semaphore
2723 */
2724 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2725 unsigned long address, int write_access)
2726 {
2727 pgd_t *pgd;
2728 pud_t *pud;
2729 pmd_t *pmd;
2730 pte_t *pte;
2731
2732 __set_current_state(TASK_RUNNING);
2733
2734 count_vm_event(PGFAULT);
2735
2736 if (unlikely(is_vm_hugetlb_page(vma)))
2737 return hugetlb_fault(mm, vma, address, write_access);
2738
2739 pgd = pgd_offset(mm, address);
2740 pud = pud_alloc(mm, pgd, address);
2741 if (!pud)
2742 return VM_FAULT_OOM;
2743 pmd = pmd_alloc(mm, pud, address);
2744 if (!pmd)
2745 return VM_FAULT_OOM;
2746 pte = pte_alloc_map(mm, pmd, address);
2747 if (!pte)
2748 return VM_FAULT_OOM;
2749
2750 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2751 }
2752
2753 #ifndef __PAGETABLE_PUD_FOLDED
2754 /*
2755 * Allocate page upper directory.
2756 * We've already handled the fast-path in-line.
2757 */
2758 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2759 {
2760 pud_t *new = pud_alloc_one(mm, address);
2761 if (!new)
2762 return -ENOMEM;
2763
2764 smp_wmb(); /* See comment in __pte_alloc */
2765
2766 spin_lock(&mm->page_table_lock);
2767 if (pgd_present(*pgd)) /* Another has populated it */
2768 pud_free(mm, new);
2769 else
2770 pgd_populate(mm, pgd, new);
2771 spin_unlock(&mm->page_table_lock);
2772 return 0;
2773 }
2774 #endif /* __PAGETABLE_PUD_FOLDED */
2775
2776 #ifndef __PAGETABLE_PMD_FOLDED
2777 /*
2778 * Allocate page middle directory.
2779 * We've already handled the fast-path in-line.
2780 */
2781 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2782 {
2783 pmd_t *new = pmd_alloc_one(mm, address);
2784 if (!new)
2785 return -ENOMEM;
2786
2787 smp_wmb(); /* See comment in __pte_alloc */
2788
2789 spin_lock(&mm->page_table_lock);
2790 #ifndef __ARCH_HAS_4LEVEL_HACK
2791 if (pud_present(*pud)) /* Another has populated it */
2792 pmd_free(mm, new);
2793 else
2794 pud_populate(mm, pud, new);
2795 #else
2796 if (pgd_present(*pud)) /* Another has populated it */
2797 pmd_free(mm, new);
2798 else
2799 pgd_populate(mm, pud, new);
2800 #endif /* __ARCH_HAS_4LEVEL_HACK */
2801 spin_unlock(&mm->page_table_lock);
2802 return 0;
2803 }
2804 #endif /* __PAGETABLE_PMD_FOLDED */
2805
2806 int make_pages_present(unsigned long addr, unsigned long end)
2807 {
2808 int ret, len, write;
2809 struct vm_area_struct * vma;
2810
2811 vma = find_vma(current->mm, addr);
2812 if (!vma)
2813 return -ENOMEM;
2814 write = (vma->vm_flags & VM_WRITE) != 0;
2815 BUG_ON(addr >= end);
2816 BUG_ON(end > vma->vm_end);
2817 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2818 ret = get_user_pages(current, current->mm, addr,
2819 len, write, 0, NULL, NULL);
2820 if (ret < 0)
2821 return ret;
2822 return ret == len ? 0 : -EFAULT;
2823 }
2824
2825 #if !defined(__HAVE_ARCH_GATE_AREA)
2826
2827 #if defined(AT_SYSINFO_EHDR)
2828 static struct vm_area_struct gate_vma;
2829
2830 static int __init gate_vma_init(void)
2831 {
2832 gate_vma.vm_mm = NULL;
2833 gate_vma.vm_start = FIXADDR_USER_START;
2834 gate_vma.vm_end = FIXADDR_USER_END;
2835 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2836 gate_vma.vm_page_prot = __P101;
2837 /*
2838 * Make sure the vDSO gets into every core dump.
2839 * Dumping its contents makes post-mortem fully interpretable later
2840 * without matching up the same kernel and hardware config to see
2841 * what PC values meant.
2842 */
2843 gate_vma.vm_flags |= VM_ALWAYSDUMP;
2844 return 0;
2845 }
2846 __initcall(gate_vma_init);
2847 #endif
2848
2849 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2850 {
2851 #ifdef AT_SYSINFO_EHDR
2852 return &gate_vma;
2853 #else
2854 return NULL;
2855 #endif
2856 }
2857
2858 int in_gate_area_no_task(unsigned long addr)
2859 {
2860 #ifdef AT_SYSINFO_EHDR
2861 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2862 return 1;
2863 #endif
2864 return 0;
2865 }
2866
2867 #endif /* __HAVE_ARCH_GATE_AREA */
2868
2869 #ifdef CONFIG_HAVE_IOREMAP_PROT
2870 static resource_size_t follow_phys(struct vm_area_struct *vma,
2871 unsigned long address, unsigned int flags,
2872 unsigned long *prot)
2873 {
2874 pgd_t *pgd;
2875 pud_t *pud;
2876 pmd_t *pmd;
2877 pte_t *ptep, pte;
2878 spinlock_t *ptl;
2879 resource_size_t phys_addr = 0;
2880 struct mm_struct *mm = vma->vm_mm;
2881
2882 VM_BUG_ON(!(vma->vm_flags & (VM_IO | VM_PFNMAP)));
2883
2884 pgd = pgd_offset(mm, address);
2885 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
2886 goto no_page_table;
2887
2888 pud = pud_offset(pgd, address);
2889 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
2890 goto no_page_table;
2891
2892 pmd = pmd_offset(pud, address);
2893 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
2894 goto no_page_table;
2895
2896 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
2897 if (pmd_huge(*pmd))
2898 goto no_page_table;
2899
2900 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
2901 if (!ptep)
2902 goto out;
2903
2904 pte = *ptep;
2905 if (!pte_present(pte))
2906 goto unlock;
2907 if ((flags & FOLL_WRITE) && !pte_write(pte))
2908 goto unlock;
2909 phys_addr = pte_pfn(pte);
2910 phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
2911
2912 *prot = pgprot_val(pte_pgprot(pte));
2913
2914 unlock:
2915 pte_unmap_unlock(ptep, ptl);
2916 out:
2917 return phys_addr;
2918 no_page_table:
2919 return 0;
2920 }
2921
2922 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2923 void *buf, int len, int write)
2924 {
2925 resource_size_t phys_addr;
2926 unsigned long prot = 0;
2927 void *maddr;
2928 int offset = addr & (PAGE_SIZE-1);
2929
2930 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
2931 return -EINVAL;
2932
2933 phys_addr = follow_phys(vma, addr, write, &prot);
2934
2935 if (!phys_addr)
2936 return -EINVAL;
2937
2938 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
2939 if (write)
2940 memcpy_toio(maddr + offset, buf, len);
2941 else
2942 memcpy_fromio(buf, maddr + offset, len);
2943 iounmap(maddr);
2944
2945 return len;
2946 }
2947 #endif
2948
2949 /*
2950 * Access another process' address space.
2951 * Source/target buffer must be kernel space,
2952 * Do not walk the page table directly, use get_user_pages
2953 */
2954 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2955 {
2956 struct mm_struct *mm;
2957 struct vm_area_struct *vma;
2958 void *old_buf = buf;
2959
2960 mm = get_task_mm(tsk);
2961 if (!mm)
2962 return 0;
2963
2964 down_read(&mm->mmap_sem);
2965 /* ignore errors, just check how much was successfully transferred */
2966 while (len) {
2967 int bytes, ret, offset;
2968 void *maddr;
2969 struct page *page = NULL;
2970
2971 ret = get_user_pages(tsk, mm, addr, 1,
2972 write, 1, &page, &vma);
2973 if (ret <= 0) {
2974 /*
2975 * Check if this is a VM_IO | VM_PFNMAP VMA, which
2976 * we can access using slightly different code.
2977 */
2978 #ifdef CONFIG_HAVE_IOREMAP_PROT
2979 vma = find_vma(mm, addr);
2980 if (!vma)
2981 break;
2982 if (vma->vm_ops && vma->vm_ops->access)
2983 ret = vma->vm_ops->access(vma, addr, buf,
2984 len, write);
2985 if (ret <= 0)
2986 #endif
2987 break;
2988 bytes = ret;
2989 } else {
2990 bytes = len;
2991 offset = addr & (PAGE_SIZE-1);
2992 if (bytes > PAGE_SIZE-offset)
2993 bytes = PAGE_SIZE-offset;
2994
2995 maddr = kmap(page);
2996 if (write) {
2997 copy_to_user_page(vma, page, addr,
2998 maddr + offset, buf, bytes);
2999 set_page_dirty_lock(page);
3000 } else {
3001 copy_from_user_page(vma, page, addr,
3002 buf, maddr + offset, bytes);
3003 }
3004 kunmap(page);
3005 page_cache_release(page);
3006 }
3007 len -= bytes;
3008 buf += bytes;
3009 addr += bytes;
3010 }
3011 up_read(&mm->mmap_sem);
3012 mmput(mm);
3013
3014 return buf - old_buf;
3015 }
3016
3017 /*
3018 * Print the name of a VMA.
3019 */
3020 void print_vma_addr(char *prefix, unsigned long ip)
3021 {
3022 struct mm_struct *mm = current->mm;
3023 struct vm_area_struct *vma;
3024
3025 /*
3026 * Do not print if we are in atomic
3027 * contexts (in exception stacks, etc.):
3028 */
3029 if (preempt_count())
3030 return;
3031
3032 down_read(&mm->mmap_sem);
3033 vma = find_vma(mm, ip);
3034 if (vma && vma->vm_file) {
3035 struct file *f = vma->vm_file;
3036 char *buf = (char *)__get_free_page(GFP_KERNEL);
3037 if (buf) {
3038 char *p, *s;
3039
3040 p = d_path(&f->f_path, buf, PAGE_SIZE);
3041 if (IS_ERR(p))
3042 p = "?";
3043 s = strrchr(p, '/');
3044 if (s)
3045 p = s+1;
3046 printk("%s%s[%lx+%lx]", prefix, p,
3047 vma->vm_start,
3048 vma->vm_end - vma->vm_start);
3049 free_page((unsigned long)buf);
3050 }
3051 }
3052 up_read(&current->mm->mmap_sem);
3053 }
This page took 0.112651 seconds and 5 git commands to generate.