Fix ZERO_PAGE breakage with vmware
[deliverable/linux.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
54
55 #include <asm/pgalloc.h>
56 #include <asm/uaccess.h>
57 #include <asm/tlb.h>
58 #include <asm/tlbflush.h>
59 #include <asm/pgtable.h>
60
61 #include <linux/swapops.h>
62 #include <linux/elf.h>
63
64 #ifndef CONFIG_NEED_MULTIPLE_NODES
65 /* use the per-pgdat data instead for discontigmem - mbligh */
66 unsigned long max_mapnr;
67 struct page *mem_map;
68
69 EXPORT_SYMBOL(max_mapnr);
70 EXPORT_SYMBOL(mem_map);
71 #endif
72
73 unsigned long num_physpages;
74 /*
75 * A number of key systems in x86 including ioremap() rely on the assumption
76 * that high_memory defines the upper bound on direct map memory, then end
77 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
78 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
79 * and ZONE_HIGHMEM.
80 */
81 void * high_memory;
82
83 EXPORT_SYMBOL(num_physpages);
84 EXPORT_SYMBOL(high_memory);
85
86 /*
87 * Randomize the address space (stacks, mmaps, brk, etc.).
88 *
89 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
90 * as ancient (libc5 based) binaries can segfault. )
91 */
92 int randomize_va_space __read_mostly =
93 #ifdef CONFIG_COMPAT_BRK
94 1;
95 #else
96 2;
97 #endif
98
99 static int __init disable_randmaps(char *s)
100 {
101 randomize_va_space = 0;
102 return 1;
103 }
104 __setup("norandmaps", disable_randmaps);
105
106
107 /*
108 * If a p?d_bad entry is found while walking page tables, report
109 * the error, before resetting entry to p?d_none. Usually (but
110 * very seldom) called out from the p?d_none_or_clear_bad macros.
111 */
112
113 void pgd_clear_bad(pgd_t *pgd)
114 {
115 pgd_ERROR(*pgd);
116 pgd_clear(pgd);
117 }
118
119 void pud_clear_bad(pud_t *pud)
120 {
121 pud_ERROR(*pud);
122 pud_clear(pud);
123 }
124
125 void pmd_clear_bad(pmd_t *pmd)
126 {
127 pmd_ERROR(*pmd);
128 pmd_clear(pmd);
129 }
130
131 /*
132 * Note: this doesn't free the actual pages themselves. That
133 * has been handled earlier when unmapping all the memory regions.
134 */
135 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
136 {
137 pgtable_t token = pmd_pgtable(*pmd);
138 pmd_clear(pmd);
139 pte_free_tlb(tlb, token);
140 tlb->mm->nr_ptes--;
141 }
142
143 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
144 unsigned long addr, unsigned long end,
145 unsigned long floor, unsigned long ceiling)
146 {
147 pmd_t *pmd;
148 unsigned long next;
149 unsigned long start;
150
151 start = addr;
152 pmd = pmd_offset(pud, addr);
153 do {
154 next = pmd_addr_end(addr, end);
155 if (pmd_none_or_clear_bad(pmd))
156 continue;
157 free_pte_range(tlb, pmd);
158 } while (pmd++, addr = next, addr != end);
159
160 start &= PUD_MASK;
161 if (start < floor)
162 return;
163 if (ceiling) {
164 ceiling &= PUD_MASK;
165 if (!ceiling)
166 return;
167 }
168 if (end - 1 > ceiling - 1)
169 return;
170
171 pmd = pmd_offset(pud, start);
172 pud_clear(pud);
173 pmd_free_tlb(tlb, pmd);
174 }
175
176 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
177 unsigned long addr, unsigned long end,
178 unsigned long floor, unsigned long ceiling)
179 {
180 pud_t *pud;
181 unsigned long next;
182 unsigned long start;
183
184 start = addr;
185 pud = pud_offset(pgd, addr);
186 do {
187 next = pud_addr_end(addr, end);
188 if (pud_none_or_clear_bad(pud))
189 continue;
190 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
191 } while (pud++, addr = next, addr != end);
192
193 start &= PGDIR_MASK;
194 if (start < floor)
195 return;
196 if (ceiling) {
197 ceiling &= PGDIR_MASK;
198 if (!ceiling)
199 return;
200 }
201 if (end - 1 > ceiling - 1)
202 return;
203
204 pud = pud_offset(pgd, start);
205 pgd_clear(pgd);
206 pud_free_tlb(tlb, pud);
207 }
208
209 /*
210 * This function frees user-level page tables of a process.
211 *
212 * Must be called with pagetable lock held.
213 */
214 void free_pgd_range(struct mmu_gather **tlb,
215 unsigned long addr, unsigned long end,
216 unsigned long floor, unsigned long ceiling)
217 {
218 pgd_t *pgd;
219 unsigned long next;
220 unsigned long start;
221
222 /*
223 * The next few lines have given us lots of grief...
224 *
225 * Why are we testing PMD* at this top level? Because often
226 * there will be no work to do at all, and we'd prefer not to
227 * go all the way down to the bottom just to discover that.
228 *
229 * Why all these "- 1"s? Because 0 represents both the bottom
230 * of the address space and the top of it (using -1 for the
231 * top wouldn't help much: the masks would do the wrong thing).
232 * The rule is that addr 0 and floor 0 refer to the bottom of
233 * the address space, but end 0 and ceiling 0 refer to the top
234 * Comparisons need to use "end - 1" and "ceiling - 1" (though
235 * that end 0 case should be mythical).
236 *
237 * Wherever addr is brought up or ceiling brought down, we must
238 * be careful to reject "the opposite 0" before it confuses the
239 * subsequent tests. But what about where end is brought down
240 * by PMD_SIZE below? no, end can't go down to 0 there.
241 *
242 * Whereas we round start (addr) and ceiling down, by different
243 * masks at different levels, in order to test whether a table
244 * now has no other vmas using it, so can be freed, we don't
245 * bother to round floor or end up - the tests don't need that.
246 */
247
248 addr &= PMD_MASK;
249 if (addr < floor) {
250 addr += PMD_SIZE;
251 if (!addr)
252 return;
253 }
254 if (ceiling) {
255 ceiling &= PMD_MASK;
256 if (!ceiling)
257 return;
258 }
259 if (end - 1 > ceiling - 1)
260 end -= PMD_SIZE;
261 if (addr > end - 1)
262 return;
263
264 start = addr;
265 pgd = pgd_offset((*tlb)->mm, addr);
266 do {
267 next = pgd_addr_end(addr, end);
268 if (pgd_none_or_clear_bad(pgd))
269 continue;
270 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
271 } while (pgd++, addr = next, addr != end);
272 }
273
274 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
275 unsigned long floor, unsigned long ceiling)
276 {
277 while (vma) {
278 struct vm_area_struct *next = vma->vm_next;
279 unsigned long addr = vma->vm_start;
280
281 /*
282 * Hide vma from rmap and vmtruncate before freeing pgtables
283 */
284 anon_vma_unlink(vma);
285 unlink_file_vma(vma);
286
287 if (is_vm_hugetlb_page(vma)) {
288 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
289 floor, next? next->vm_start: ceiling);
290 } else {
291 /*
292 * Optimization: gather nearby vmas into one call down
293 */
294 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
295 && !is_vm_hugetlb_page(next)) {
296 vma = next;
297 next = vma->vm_next;
298 anon_vma_unlink(vma);
299 unlink_file_vma(vma);
300 }
301 free_pgd_range(tlb, addr, vma->vm_end,
302 floor, next? next->vm_start: ceiling);
303 }
304 vma = next;
305 }
306 }
307
308 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
309 {
310 pgtable_t new = pte_alloc_one(mm, address);
311 if (!new)
312 return -ENOMEM;
313
314 /*
315 * Ensure all pte setup (eg. pte page lock and page clearing) are
316 * visible before the pte is made visible to other CPUs by being
317 * put into page tables.
318 *
319 * The other side of the story is the pointer chasing in the page
320 * table walking code (when walking the page table without locking;
321 * ie. most of the time). Fortunately, these data accesses consist
322 * of a chain of data-dependent loads, meaning most CPUs (alpha
323 * being the notable exception) will already guarantee loads are
324 * seen in-order. See the alpha page table accessors for the
325 * smp_read_barrier_depends() barriers in page table walking code.
326 */
327 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
328
329 spin_lock(&mm->page_table_lock);
330 if (!pmd_present(*pmd)) { /* Has another populated it ? */
331 mm->nr_ptes++;
332 pmd_populate(mm, pmd, new);
333 new = NULL;
334 }
335 spin_unlock(&mm->page_table_lock);
336 if (new)
337 pte_free(mm, new);
338 return 0;
339 }
340
341 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
342 {
343 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
344 if (!new)
345 return -ENOMEM;
346
347 smp_wmb(); /* See comment in __pte_alloc */
348
349 spin_lock(&init_mm.page_table_lock);
350 if (!pmd_present(*pmd)) { /* Has another populated it ? */
351 pmd_populate_kernel(&init_mm, pmd, new);
352 new = NULL;
353 }
354 spin_unlock(&init_mm.page_table_lock);
355 if (new)
356 pte_free_kernel(&init_mm, new);
357 return 0;
358 }
359
360 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
361 {
362 if (file_rss)
363 add_mm_counter(mm, file_rss, file_rss);
364 if (anon_rss)
365 add_mm_counter(mm, anon_rss, anon_rss);
366 }
367
368 /*
369 * This function is called to print an error when a bad pte
370 * is found. For example, we might have a PFN-mapped pte in
371 * a region that doesn't allow it.
372 *
373 * The calling function must still handle the error.
374 */
375 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
376 {
377 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
378 "vm_flags = %lx, vaddr = %lx\n",
379 (long long)pte_val(pte),
380 (vma->vm_mm == current->mm ? current->comm : "???"),
381 vma->vm_flags, vaddr);
382 dump_stack();
383 }
384
385 static inline int is_cow_mapping(unsigned int flags)
386 {
387 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
388 }
389
390 /*
391 * vm_normal_page -- This function gets the "struct page" associated with a pte.
392 *
393 * "Special" mappings do not wish to be associated with a "struct page" (either
394 * it doesn't exist, or it exists but they don't want to touch it). In this
395 * case, NULL is returned here. "Normal" mappings do have a struct page.
396 *
397 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
398 * pte bit, in which case this function is trivial. Secondly, an architecture
399 * may not have a spare pte bit, which requires a more complicated scheme,
400 * described below.
401 *
402 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
403 * special mapping (even if there are underlying and valid "struct pages").
404 * COWed pages of a VM_PFNMAP are always normal.
405 *
406 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
407 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
408 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
409 * mapping will always honor the rule
410 *
411 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
412 *
413 * And for normal mappings this is false.
414 *
415 * This restricts such mappings to be a linear translation from virtual address
416 * to pfn. To get around this restriction, we allow arbitrary mappings so long
417 * as the vma is not a COW mapping; in that case, we know that all ptes are
418 * special (because none can have been COWed).
419 *
420 *
421 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
422 *
423 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
424 * page" backing, however the difference is that _all_ pages with a struct
425 * page (that is, those where pfn_valid is true) are refcounted and considered
426 * normal pages by the VM. The disadvantage is that pages are refcounted
427 * (which can be slower and simply not an option for some PFNMAP users). The
428 * advantage is that we don't have to follow the strict linearity rule of
429 * PFNMAP mappings in order to support COWable mappings.
430 *
431 */
432 #ifdef __HAVE_ARCH_PTE_SPECIAL
433 # define HAVE_PTE_SPECIAL 1
434 #else
435 # define HAVE_PTE_SPECIAL 0
436 #endif
437 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
438 pte_t pte)
439 {
440 unsigned long pfn;
441
442 if (HAVE_PTE_SPECIAL) {
443 if (likely(!pte_special(pte))) {
444 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
445 return pte_page(pte);
446 }
447 VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
448 return NULL;
449 }
450
451 /* !HAVE_PTE_SPECIAL case follows: */
452
453 pfn = pte_pfn(pte);
454
455 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
456 if (vma->vm_flags & VM_MIXEDMAP) {
457 if (!pfn_valid(pfn))
458 return NULL;
459 goto out;
460 } else {
461 unsigned long off;
462 off = (addr - vma->vm_start) >> PAGE_SHIFT;
463 if (pfn == vma->vm_pgoff + off)
464 return NULL;
465 if (!is_cow_mapping(vma->vm_flags))
466 return NULL;
467 }
468 }
469
470 VM_BUG_ON(!pfn_valid(pfn));
471
472 /*
473 * NOTE! We still have PageReserved() pages in the page tables.
474 *
475 * eg. VDSO mappings can cause them to exist.
476 */
477 out:
478 return pfn_to_page(pfn);
479 }
480
481 /*
482 * copy one vm_area from one task to the other. Assumes the page tables
483 * already present in the new task to be cleared in the whole range
484 * covered by this vma.
485 */
486
487 static inline void
488 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
489 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
490 unsigned long addr, int *rss)
491 {
492 unsigned long vm_flags = vma->vm_flags;
493 pte_t pte = *src_pte;
494 struct page *page;
495
496 /* pte contains position in swap or file, so copy. */
497 if (unlikely(!pte_present(pte))) {
498 if (!pte_file(pte)) {
499 swp_entry_t entry = pte_to_swp_entry(pte);
500
501 swap_duplicate(entry);
502 /* make sure dst_mm is on swapoff's mmlist. */
503 if (unlikely(list_empty(&dst_mm->mmlist))) {
504 spin_lock(&mmlist_lock);
505 if (list_empty(&dst_mm->mmlist))
506 list_add(&dst_mm->mmlist,
507 &src_mm->mmlist);
508 spin_unlock(&mmlist_lock);
509 }
510 if (is_write_migration_entry(entry) &&
511 is_cow_mapping(vm_flags)) {
512 /*
513 * COW mappings require pages in both parent
514 * and child to be set to read.
515 */
516 make_migration_entry_read(&entry);
517 pte = swp_entry_to_pte(entry);
518 set_pte_at(src_mm, addr, src_pte, pte);
519 }
520 }
521 goto out_set_pte;
522 }
523
524 /*
525 * If it's a COW mapping, write protect it both
526 * in the parent and the child
527 */
528 if (is_cow_mapping(vm_flags)) {
529 ptep_set_wrprotect(src_mm, addr, src_pte);
530 pte = pte_wrprotect(pte);
531 }
532
533 /*
534 * If it's a shared mapping, mark it clean in
535 * the child
536 */
537 if (vm_flags & VM_SHARED)
538 pte = pte_mkclean(pte);
539 pte = pte_mkold(pte);
540
541 page = vm_normal_page(vma, addr, pte);
542 if (page) {
543 get_page(page);
544 page_dup_rmap(page, vma, addr);
545 rss[!!PageAnon(page)]++;
546 }
547
548 out_set_pte:
549 set_pte_at(dst_mm, addr, dst_pte, pte);
550 }
551
552 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
553 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
554 unsigned long addr, unsigned long end)
555 {
556 pte_t *src_pte, *dst_pte;
557 spinlock_t *src_ptl, *dst_ptl;
558 int progress = 0;
559 int rss[2];
560
561 again:
562 rss[1] = rss[0] = 0;
563 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
564 if (!dst_pte)
565 return -ENOMEM;
566 src_pte = pte_offset_map_nested(src_pmd, addr);
567 src_ptl = pte_lockptr(src_mm, src_pmd);
568 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
569 arch_enter_lazy_mmu_mode();
570
571 do {
572 /*
573 * We are holding two locks at this point - either of them
574 * could generate latencies in another task on another CPU.
575 */
576 if (progress >= 32) {
577 progress = 0;
578 if (need_resched() ||
579 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
580 break;
581 }
582 if (pte_none(*src_pte)) {
583 progress++;
584 continue;
585 }
586 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
587 progress += 8;
588 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
589
590 arch_leave_lazy_mmu_mode();
591 spin_unlock(src_ptl);
592 pte_unmap_nested(src_pte - 1);
593 add_mm_rss(dst_mm, rss[0], rss[1]);
594 pte_unmap_unlock(dst_pte - 1, dst_ptl);
595 cond_resched();
596 if (addr != end)
597 goto again;
598 return 0;
599 }
600
601 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
602 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
603 unsigned long addr, unsigned long end)
604 {
605 pmd_t *src_pmd, *dst_pmd;
606 unsigned long next;
607
608 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
609 if (!dst_pmd)
610 return -ENOMEM;
611 src_pmd = pmd_offset(src_pud, addr);
612 do {
613 next = pmd_addr_end(addr, end);
614 if (pmd_none_or_clear_bad(src_pmd))
615 continue;
616 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
617 vma, addr, next))
618 return -ENOMEM;
619 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
620 return 0;
621 }
622
623 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
624 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
625 unsigned long addr, unsigned long end)
626 {
627 pud_t *src_pud, *dst_pud;
628 unsigned long next;
629
630 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
631 if (!dst_pud)
632 return -ENOMEM;
633 src_pud = pud_offset(src_pgd, addr);
634 do {
635 next = pud_addr_end(addr, end);
636 if (pud_none_or_clear_bad(src_pud))
637 continue;
638 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
639 vma, addr, next))
640 return -ENOMEM;
641 } while (dst_pud++, src_pud++, addr = next, addr != end);
642 return 0;
643 }
644
645 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
646 struct vm_area_struct *vma)
647 {
648 pgd_t *src_pgd, *dst_pgd;
649 unsigned long next;
650 unsigned long addr = vma->vm_start;
651 unsigned long end = vma->vm_end;
652
653 /*
654 * Don't copy ptes where a page fault will fill them correctly.
655 * Fork becomes much lighter when there are big shared or private
656 * readonly mappings. The tradeoff is that copy_page_range is more
657 * efficient than faulting.
658 */
659 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
660 if (!vma->anon_vma)
661 return 0;
662 }
663
664 if (is_vm_hugetlb_page(vma))
665 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
666
667 dst_pgd = pgd_offset(dst_mm, addr);
668 src_pgd = pgd_offset(src_mm, addr);
669 do {
670 next = pgd_addr_end(addr, end);
671 if (pgd_none_or_clear_bad(src_pgd))
672 continue;
673 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
674 vma, addr, next))
675 return -ENOMEM;
676 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
677 return 0;
678 }
679
680 static unsigned long zap_pte_range(struct mmu_gather *tlb,
681 struct vm_area_struct *vma, pmd_t *pmd,
682 unsigned long addr, unsigned long end,
683 long *zap_work, struct zap_details *details)
684 {
685 struct mm_struct *mm = tlb->mm;
686 pte_t *pte;
687 spinlock_t *ptl;
688 int file_rss = 0;
689 int anon_rss = 0;
690
691 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
692 arch_enter_lazy_mmu_mode();
693 do {
694 pte_t ptent = *pte;
695 if (pte_none(ptent)) {
696 (*zap_work)--;
697 continue;
698 }
699
700 (*zap_work) -= PAGE_SIZE;
701
702 if (pte_present(ptent)) {
703 struct page *page;
704
705 page = vm_normal_page(vma, addr, ptent);
706 if (unlikely(details) && page) {
707 /*
708 * unmap_shared_mapping_pages() wants to
709 * invalidate cache without truncating:
710 * unmap shared but keep private pages.
711 */
712 if (details->check_mapping &&
713 details->check_mapping != page->mapping)
714 continue;
715 /*
716 * Each page->index must be checked when
717 * invalidating or truncating nonlinear.
718 */
719 if (details->nonlinear_vma &&
720 (page->index < details->first_index ||
721 page->index > details->last_index))
722 continue;
723 }
724 ptent = ptep_get_and_clear_full(mm, addr, pte,
725 tlb->fullmm);
726 tlb_remove_tlb_entry(tlb, pte, addr);
727 if (unlikely(!page))
728 continue;
729 if (unlikely(details) && details->nonlinear_vma
730 && linear_page_index(details->nonlinear_vma,
731 addr) != page->index)
732 set_pte_at(mm, addr, pte,
733 pgoff_to_pte(page->index));
734 if (PageAnon(page))
735 anon_rss--;
736 else {
737 if (pte_dirty(ptent))
738 set_page_dirty(page);
739 if (pte_young(ptent))
740 SetPageReferenced(page);
741 file_rss--;
742 }
743 page_remove_rmap(page, vma);
744 tlb_remove_page(tlb, page);
745 continue;
746 }
747 /*
748 * If details->check_mapping, we leave swap entries;
749 * if details->nonlinear_vma, we leave file entries.
750 */
751 if (unlikely(details))
752 continue;
753 if (!pte_file(ptent))
754 free_swap_and_cache(pte_to_swp_entry(ptent));
755 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
756 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
757
758 add_mm_rss(mm, file_rss, anon_rss);
759 arch_leave_lazy_mmu_mode();
760 pte_unmap_unlock(pte - 1, ptl);
761
762 return addr;
763 }
764
765 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
766 struct vm_area_struct *vma, pud_t *pud,
767 unsigned long addr, unsigned long end,
768 long *zap_work, struct zap_details *details)
769 {
770 pmd_t *pmd;
771 unsigned long next;
772
773 pmd = pmd_offset(pud, addr);
774 do {
775 next = pmd_addr_end(addr, end);
776 if (pmd_none_or_clear_bad(pmd)) {
777 (*zap_work)--;
778 continue;
779 }
780 next = zap_pte_range(tlb, vma, pmd, addr, next,
781 zap_work, details);
782 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
783
784 return addr;
785 }
786
787 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
788 struct vm_area_struct *vma, pgd_t *pgd,
789 unsigned long addr, unsigned long end,
790 long *zap_work, struct zap_details *details)
791 {
792 pud_t *pud;
793 unsigned long next;
794
795 pud = pud_offset(pgd, addr);
796 do {
797 next = pud_addr_end(addr, end);
798 if (pud_none_or_clear_bad(pud)) {
799 (*zap_work)--;
800 continue;
801 }
802 next = zap_pmd_range(tlb, vma, pud, addr, next,
803 zap_work, details);
804 } while (pud++, addr = next, (addr != end && *zap_work > 0));
805
806 return addr;
807 }
808
809 static unsigned long unmap_page_range(struct mmu_gather *tlb,
810 struct vm_area_struct *vma,
811 unsigned long addr, unsigned long end,
812 long *zap_work, struct zap_details *details)
813 {
814 pgd_t *pgd;
815 unsigned long next;
816
817 if (details && !details->check_mapping && !details->nonlinear_vma)
818 details = NULL;
819
820 BUG_ON(addr >= end);
821 tlb_start_vma(tlb, vma);
822 pgd = pgd_offset(vma->vm_mm, addr);
823 do {
824 next = pgd_addr_end(addr, end);
825 if (pgd_none_or_clear_bad(pgd)) {
826 (*zap_work)--;
827 continue;
828 }
829 next = zap_pud_range(tlb, vma, pgd, addr, next,
830 zap_work, details);
831 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
832 tlb_end_vma(tlb, vma);
833
834 return addr;
835 }
836
837 #ifdef CONFIG_PREEMPT
838 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
839 #else
840 /* No preempt: go for improved straight-line efficiency */
841 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
842 #endif
843
844 /**
845 * unmap_vmas - unmap a range of memory covered by a list of vma's
846 * @tlbp: address of the caller's struct mmu_gather
847 * @vma: the starting vma
848 * @start_addr: virtual address at which to start unmapping
849 * @end_addr: virtual address at which to end unmapping
850 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
851 * @details: details of nonlinear truncation or shared cache invalidation
852 *
853 * Returns the end address of the unmapping (restart addr if interrupted).
854 *
855 * Unmap all pages in the vma list.
856 *
857 * We aim to not hold locks for too long (for scheduling latency reasons).
858 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
859 * return the ending mmu_gather to the caller.
860 *
861 * Only addresses between `start' and `end' will be unmapped.
862 *
863 * The VMA list must be sorted in ascending virtual address order.
864 *
865 * unmap_vmas() assumes that the caller will flush the whole unmapped address
866 * range after unmap_vmas() returns. So the only responsibility here is to
867 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
868 * drops the lock and schedules.
869 */
870 unsigned long unmap_vmas(struct mmu_gather **tlbp,
871 struct vm_area_struct *vma, unsigned long start_addr,
872 unsigned long end_addr, unsigned long *nr_accounted,
873 struct zap_details *details)
874 {
875 long zap_work = ZAP_BLOCK_SIZE;
876 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
877 int tlb_start_valid = 0;
878 unsigned long start = start_addr;
879 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
880 int fullmm = (*tlbp)->fullmm;
881
882 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
883 unsigned long end;
884
885 start = max(vma->vm_start, start_addr);
886 if (start >= vma->vm_end)
887 continue;
888 end = min(vma->vm_end, end_addr);
889 if (end <= vma->vm_start)
890 continue;
891
892 if (vma->vm_flags & VM_ACCOUNT)
893 *nr_accounted += (end - start) >> PAGE_SHIFT;
894
895 while (start != end) {
896 if (!tlb_start_valid) {
897 tlb_start = start;
898 tlb_start_valid = 1;
899 }
900
901 if (unlikely(is_vm_hugetlb_page(vma))) {
902 unmap_hugepage_range(vma, start, end);
903 zap_work -= (end - start) /
904 (HPAGE_SIZE / PAGE_SIZE);
905 start = end;
906 } else
907 start = unmap_page_range(*tlbp, vma,
908 start, end, &zap_work, details);
909
910 if (zap_work > 0) {
911 BUG_ON(start != end);
912 break;
913 }
914
915 tlb_finish_mmu(*tlbp, tlb_start, start);
916
917 if (need_resched() ||
918 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
919 if (i_mmap_lock) {
920 *tlbp = NULL;
921 goto out;
922 }
923 cond_resched();
924 }
925
926 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
927 tlb_start_valid = 0;
928 zap_work = ZAP_BLOCK_SIZE;
929 }
930 }
931 out:
932 return start; /* which is now the end (or restart) address */
933 }
934
935 /**
936 * zap_page_range - remove user pages in a given range
937 * @vma: vm_area_struct holding the applicable pages
938 * @address: starting address of pages to zap
939 * @size: number of bytes to zap
940 * @details: details of nonlinear truncation or shared cache invalidation
941 */
942 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
943 unsigned long size, struct zap_details *details)
944 {
945 struct mm_struct *mm = vma->vm_mm;
946 struct mmu_gather *tlb;
947 unsigned long end = address + size;
948 unsigned long nr_accounted = 0;
949
950 lru_add_drain();
951 tlb = tlb_gather_mmu(mm, 0);
952 update_hiwater_rss(mm);
953 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
954 if (tlb)
955 tlb_finish_mmu(tlb, address, end);
956 return end;
957 }
958
959 /*
960 * Do a quick page-table lookup for a single page.
961 */
962 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
963 unsigned int flags)
964 {
965 pgd_t *pgd;
966 pud_t *pud;
967 pmd_t *pmd;
968 pte_t *ptep, pte;
969 spinlock_t *ptl;
970 struct page *page;
971 struct mm_struct *mm = vma->vm_mm;
972
973 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
974 if (!IS_ERR(page)) {
975 BUG_ON(flags & FOLL_GET);
976 goto out;
977 }
978
979 page = NULL;
980 pgd = pgd_offset(mm, address);
981 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
982 goto no_page_table;
983
984 pud = pud_offset(pgd, address);
985 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
986 goto no_page_table;
987
988 pmd = pmd_offset(pud, address);
989 if (pmd_none(*pmd))
990 goto no_page_table;
991
992 if (pmd_huge(*pmd)) {
993 BUG_ON(flags & FOLL_GET);
994 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
995 goto out;
996 }
997
998 if (unlikely(pmd_bad(*pmd)))
999 goto no_page_table;
1000
1001 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1002
1003 pte = *ptep;
1004 if (!pte_present(pte))
1005 goto no_page;
1006 if ((flags & FOLL_WRITE) && !pte_write(pte))
1007 goto unlock;
1008 page = vm_normal_page(vma, address, pte);
1009 if (unlikely(!page))
1010 goto bad_page;
1011
1012 if (flags & FOLL_GET)
1013 get_page(page);
1014 if (flags & FOLL_TOUCH) {
1015 if ((flags & FOLL_WRITE) &&
1016 !pte_dirty(pte) && !PageDirty(page))
1017 set_page_dirty(page);
1018 mark_page_accessed(page);
1019 }
1020 unlock:
1021 pte_unmap_unlock(ptep, ptl);
1022 out:
1023 return page;
1024
1025 bad_page:
1026 pte_unmap_unlock(ptep, ptl);
1027 return ERR_PTR(-EFAULT);
1028
1029 no_page:
1030 pte_unmap_unlock(ptep, ptl);
1031 if (!pte_none(pte))
1032 return page;
1033 /* Fall through to ZERO_PAGE handling */
1034 no_page_table:
1035 /*
1036 * When core dumping an enormous anonymous area that nobody
1037 * has touched so far, we don't want to allocate page tables.
1038 */
1039 if (flags & FOLL_ANON) {
1040 page = ZERO_PAGE(0);
1041 if (flags & FOLL_GET)
1042 get_page(page);
1043 BUG_ON(flags & FOLL_WRITE);
1044 }
1045 return page;
1046 }
1047
1048 /* Can we do the FOLL_ANON optimization? */
1049 static inline int use_zero_page(struct vm_area_struct *vma)
1050 {
1051 /*
1052 * We don't want to optimize FOLL_ANON for make_pages_present()
1053 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1054 * we want to get the page from the page tables to make sure
1055 * that we serialize and update with any other user of that
1056 * mapping.
1057 */
1058 if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1059 return 0;
1060 /*
1061 * And if we have a fault or a nopfn routine, it's not an
1062 * anonymous region.
1063 */
1064 return !vma->vm_ops ||
1065 (!vma->vm_ops->fault && !vma->vm_ops->nopfn);
1066 }
1067
1068 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1069 unsigned long start, int len, int write, int force,
1070 struct page **pages, struct vm_area_struct **vmas)
1071 {
1072 int i;
1073 unsigned int vm_flags;
1074
1075 if (len <= 0)
1076 return 0;
1077 /*
1078 * Require read or write permissions.
1079 * If 'force' is set, we only require the "MAY" flags.
1080 */
1081 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1082 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1083 i = 0;
1084
1085 do {
1086 struct vm_area_struct *vma;
1087 unsigned int foll_flags;
1088
1089 vma = find_extend_vma(mm, start);
1090 if (!vma && in_gate_area(tsk, start)) {
1091 unsigned long pg = start & PAGE_MASK;
1092 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1093 pgd_t *pgd;
1094 pud_t *pud;
1095 pmd_t *pmd;
1096 pte_t *pte;
1097 if (write) /* user gate pages are read-only */
1098 return i ? : -EFAULT;
1099 if (pg > TASK_SIZE)
1100 pgd = pgd_offset_k(pg);
1101 else
1102 pgd = pgd_offset_gate(mm, pg);
1103 BUG_ON(pgd_none(*pgd));
1104 pud = pud_offset(pgd, pg);
1105 BUG_ON(pud_none(*pud));
1106 pmd = pmd_offset(pud, pg);
1107 if (pmd_none(*pmd))
1108 return i ? : -EFAULT;
1109 pte = pte_offset_map(pmd, pg);
1110 if (pte_none(*pte)) {
1111 pte_unmap(pte);
1112 return i ? : -EFAULT;
1113 }
1114 if (pages) {
1115 struct page *page = vm_normal_page(gate_vma, start, *pte);
1116 pages[i] = page;
1117 if (page)
1118 get_page(page);
1119 }
1120 pte_unmap(pte);
1121 if (vmas)
1122 vmas[i] = gate_vma;
1123 i++;
1124 start += PAGE_SIZE;
1125 len--;
1126 continue;
1127 }
1128
1129 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1130 || !(vm_flags & vma->vm_flags))
1131 return i ? : -EFAULT;
1132
1133 if (is_vm_hugetlb_page(vma)) {
1134 i = follow_hugetlb_page(mm, vma, pages, vmas,
1135 &start, &len, i, write);
1136 continue;
1137 }
1138
1139 foll_flags = FOLL_TOUCH;
1140 if (pages)
1141 foll_flags |= FOLL_GET;
1142 if (!write && use_zero_page(vma))
1143 foll_flags |= FOLL_ANON;
1144
1145 do {
1146 struct page *page;
1147
1148 /*
1149 * If tsk is ooming, cut off its access to large memory
1150 * allocations. It has a pending SIGKILL, but it can't
1151 * be processed until returning to user space.
1152 */
1153 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1154 return -ENOMEM;
1155
1156 if (write)
1157 foll_flags |= FOLL_WRITE;
1158
1159 cond_resched();
1160 while (!(page = follow_page(vma, start, foll_flags))) {
1161 int ret;
1162 ret = handle_mm_fault(mm, vma, start,
1163 foll_flags & FOLL_WRITE);
1164 if (ret & VM_FAULT_ERROR) {
1165 if (ret & VM_FAULT_OOM)
1166 return i ? i : -ENOMEM;
1167 else if (ret & VM_FAULT_SIGBUS)
1168 return i ? i : -EFAULT;
1169 BUG();
1170 }
1171 if (ret & VM_FAULT_MAJOR)
1172 tsk->maj_flt++;
1173 else
1174 tsk->min_flt++;
1175
1176 /*
1177 * The VM_FAULT_WRITE bit tells us that
1178 * do_wp_page has broken COW when necessary,
1179 * even if maybe_mkwrite decided not to set
1180 * pte_write. We can thus safely do subsequent
1181 * page lookups as if they were reads.
1182 */
1183 if (ret & VM_FAULT_WRITE)
1184 foll_flags &= ~FOLL_WRITE;
1185
1186 cond_resched();
1187 }
1188 if (IS_ERR(page))
1189 return i ? i : PTR_ERR(page);
1190 if (pages) {
1191 pages[i] = page;
1192
1193 flush_anon_page(vma, page, start);
1194 flush_dcache_page(page);
1195 }
1196 if (vmas)
1197 vmas[i] = vma;
1198 i++;
1199 start += PAGE_SIZE;
1200 len--;
1201 } while (len && start < vma->vm_end);
1202 } while (len);
1203 return i;
1204 }
1205 EXPORT_SYMBOL(get_user_pages);
1206
1207 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1208 spinlock_t **ptl)
1209 {
1210 pgd_t * pgd = pgd_offset(mm, addr);
1211 pud_t * pud = pud_alloc(mm, pgd, addr);
1212 if (pud) {
1213 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1214 if (pmd)
1215 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1216 }
1217 return NULL;
1218 }
1219
1220 /*
1221 * This is the old fallback for page remapping.
1222 *
1223 * For historical reasons, it only allows reserved pages. Only
1224 * old drivers should use this, and they needed to mark their
1225 * pages reserved for the old functions anyway.
1226 */
1227 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1228 struct page *page, pgprot_t prot)
1229 {
1230 struct mm_struct *mm = vma->vm_mm;
1231 int retval;
1232 pte_t *pte;
1233 spinlock_t *ptl;
1234
1235 retval = mem_cgroup_charge(page, mm, GFP_KERNEL);
1236 if (retval)
1237 goto out;
1238
1239 retval = -EINVAL;
1240 if (PageAnon(page))
1241 goto out_uncharge;
1242 retval = -ENOMEM;
1243 flush_dcache_page(page);
1244 pte = get_locked_pte(mm, addr, &ptl);
1245 if (!pte)
1246 goto out_uncharge;
1247 retval = -EBUSY;
1248 if (!pte_none(*pte))
1249 goto out_unlock;
1250
1251 /* Ok, finally just insert the thing.. */
1252 get_page(page);
1253 inc_mm_counter(mm, file_rss);
1254 page_add_file_rmap(page);
1255 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1256
1257 retval = 0;
1258 pte_unmap_unlock(pte, ptl);
1259 return retval;
1260 out_unlock:
1261 pte_unmap_unlock(pte, ptl);
1262 out_uncharge:
1263 mem_cgroup_uncharge_page(page);
1264 out:
1265 return retval;
1266 }
1267
1268 /**
1269 * vm_insert_page - insert single page into user vma
1270 * @vma: user vma to map to
1271 * @addr: target user address of this page
1272 * @page: source kernel page
1273 *
1274 * This allows drivers to insert individual pages they've allocated
1275 * into a user vma.
1276 *
1277 * The page has to be a nice clean _individual_ kernel allocation.
1278 * If you allocate a compound page, you need to have marked it as
1279 * such (__GFP_COMP), or manually just split the page up yourself
1280 * (see split_page()).
1281 *
1282 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1283 * took an arbitrary page protection parameter. This doesn't allow
1284 * that. Your vma protection will have to be set up correctly, which
1285 * means that if you want a shared writable mapping, you'd better
1286 * ask for a shared writable mapping!
1287 *
1288 * The page does not need to be reserved.
1289 */
1290 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1291 struct page *page)
1292 {
1293 if (addr < vma->vm_start || addr >= vma->vm_end)
1294 return -EFAULT;
1295 if (!page_count(page))
1296 return -EINVAL;
1297 vma->vm_flags |= VM_INSERTPAGE;
1298 return insert_page(vma, addr, page, vma->vm_page_prot);
1299 }
1300 EXPORT_SYMBOL(vm_insert_page);
1301
1302 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1303 unsigned long pfn, pgprot_t prot)
1304 {
1305 struct mm_struct *mm = vma->vm_mm;
1306 int retval;
1307 pte_t *pte, entry;
1308 spinlock_t *ptl;
1309
1310 retval = -ENOMEM;
1311 pte = get_locked_pte(mm, addr, &ptl);
1312 if (!pte)
1313 goto out;
1314 retval = -EBUSY;
1315 if (!pte_none(*pte))
1316 goto out_unlock;
1317
1318 /* Ok, finally just insert the thing.. */
1319 entry = pte_mkspecial(pfn_pte(pfn, prot));
1320 set_pte_at(mm, addr, pte, entry);
1321 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1322
1323 retval = 0;
1324 out_unlock:
1325 pte_unmap_unlock(pte, ptl);
1326 out:
1327 return retval;
1328 }
1329
1330 /**
1331 * vm_insert_pfn - insert single pfn into user vma
1332 * @vma: user vma to map to
1333 * @addr: target user address of this page
1334 * @pfn: source kernel pfn
1335 *
1336 * Similar to vm_inert_page, this allows drivers to insert individual pages
1337 * they've allocated into a user vma. Same comments apply.
1338 *
1339 * This function should only be called from a vm_ops->fault handler, and
1340 * in that case the handler should return NULL.
1341 */
1342 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1343 unsigned long pfn)
1344 {
1345 /*
1346 * Technically, architectures with pte_special can avoid all these
1347 * restrictions (same for remap_pfn_range). However we would like
1348 * consistency in testing and feature parity among all, so we should
1349 * try to keep these invariants in place for everybody.
1350 */
1351 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1352 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1353 (VM_PFNMAP|VM_MIXEDMAP));
1354 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1355 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1356
1357 if (addr < vma->vm_start || addr >= vma->vm_end)
1358 return -EFAULT;
1359 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1360 }
1361 EXPORT_SYMBOL(vm_insert_pfn);
1362
1363 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1364 unsigned long pfn)
1365 {
1366 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1367
1368 if (addr < vma->vm_start || addr >= vma->vm_end)
1369 return -EFAULT;
1370
1371 /*
1372 * If we don't have pte special, then we have to use the pfn_valid()
1373 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1374 * refcount the page if pfn_valid is true (hence insert_page rather
1375 * than insert_pfn).
1376 */
1377 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1378 struct page *page;
1379
1380 page = pfn_to_page(pfn);
1381 return insert_page(vma, addr, page, vma->vm_page_prot);
1382 }
1383 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1384 }
1385 EXPORT_SYMBOL(vm_insert_mixed);
1386
1387 /*
1388 * maps a range of physical memory into the requested pages. the old
1389 * mappings are removed. any references to nonexistent pages results
1390 * in null mappings (currently treated as "copy-on-access")
1391 */
1392 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1393 unsigned long addr, unsigned long end,
1394 unsigned long pfn, pgprot_t prot)
1395 {
1396 pte_t *pte;
1397 spinlock_t *ptl;
1398
1399 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1400 if (!pte)
1401 return -ENOMEM;
1402 arch_enter_lazy_mmu_mode();
1403 do {
1404 BUG_ON(!pte_none(*pte));
1405 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1406 pfn++;
1407 } while (pte++, addr += PAGE_SIZE, addr != end);
1408 arch_leave_lazy_mmu_mode();
1409 pte_unmap_unlock(pte - 1, ptl);
1410 return 0;
1411 }
1412
1413 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1414 unsigned long addr, unsigned long end,
1415 unsigned long pfn, pgprot_t prot)
1416 {
1417 pmd_t *pmd;
1418 unsigned long next;
1419
1420 pfn -= addr >> PAGE_SHIFT;
1421 pmd = pmd_alloc(mm, pud, addr);
1422 if (!pmd)
1423 return -ENOMEM;
1424 do {
1425 next = pmd_addr_end(addr, end);
1426 if (remap_pte_range(mm, pmd, addr, next,
1427 pfn + (addr >> PAGE_SHIFT), prot))
1428 return -ENOMEM;
1429 } while (pmd++, addr = next, addr != end);
1430 return 0;
1431 }
1432
1433 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1434 unsigned long addr, unsigned long end,
1435 unsigned long pfn, pgprot_t prot)
1436 {
1437 pud_t *pud;
1438 unsigned long next;
1439
1440 pfn -= addr >> PAGE_SHIFT;
1441 pud = pud_alloc(mm, pgd, addr);
1442 if (!pud)
1443 return -ENOMEM;
1444 do {
1445 next = pud_addr_end(addr, end);
1446 if (remap_pmd_range(mm, pud, addr, next,
1447 pfn + (addr >> PAGE_SHIFT), prot))
1448 return -ENOMEM;
1449 } while (pud++, addr = next, addr != end);
1450 return 0;
1451 }
1452
1453 /**
1454 * remap_pfn_range - remap kernel memory to userspace
1455 * @vma: user vma to map to
1456 * @addr: target user address to start at
1457 * @pfn: physical address of kernel memory
1458 * @size: size of map area
1459 * @prot: page protection flags for this mapping
1460 *
1461 * Note: this is only safe if the mm semaphore is held when called.
1462 */
1463 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1464 unsigned long pfn, unsigned long size, pgprot_t prot)
1465 {
1466 pgd_t *pgd;
1467 unsigned long next;
1468 unsigned long end = addr + PAGE_ALIGN(size);
1469 struct mm_struct *mm = vma->vm_mm;
1470 int err;
1471
1472 /*
1473 * Physically remapped pages are special. Tell the
1474 * rest of the world about it:
1475 * VM_IO tells people not to look at these pages
1476 * (accesses can have side effects).
1477 * VM_RESERVED is specified all over the place, because
1478 * in 2.4 it kept swapout's vma scan off this vma; but
1479 * in 2.6 the LRU scan won't even find its pages, so this
1480 * flag means no more than count its pages in reserved_vm,
1481 * and omit it from core dump, even when VM_IO turned off.
1482 * VM_PFNMAP tells the core MM that the base pages are just
1483 * raw PFN mappings, and do not have a "struct page" associated
1484 * with them.
1485 *
1486 * There's a horrible special case to handle copy-on-write
1487 * behaviour that some programs depend on. We mark the "original"
1488 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1489 */
1490 if (is_cow_mapping(vma->vm_flags)) {
1491 if (addr != vma->vm_start || end != vma->vm_end)
1492 return -EINVAL;
1493 vma->vm_pgoff = pfn;
1494 }
1495
1496 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1497
1498 BUG_ON(addr >= end);
1499 pfn -= addr >> PAGE_SHIFT;
1500 pgd = pgd_offset(mm, addr);
1501 flush_cache_range(vma, addr, end);
1502 do {
1503 next = pgd_addr_end(addr, end);
1504 err = remap_pud_range(mm, pgd, addr, next,
1505 pfn + (addr >> PAGE_SHIFT), prot);
1506 if (err)
1507 break;
1508 } while (pgd++, addr = next, addr != end);
1509 return err;
1510 }
1511 EXPORT_SYMBOL(remap_pfn_range);
1512
1513 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1514 unsigned long addr, unsigned long end,
1515 pte_fn_t fn, void *data)
1516 {
1517 pte_t *pte;
1518 int err;
1519 pgtable_t token;
1520 spinlock_t *uninitialized_var(ptl);
1521
1522 pte = (mm == &init_mm) ?
1523 pte_alloc_kernel(pmd, addr) :
1524 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1525 if (!pte)
1526 return -ENOMEM;
1527
1528 BUG_ON(pmd_huge(*pmd));
1529
1530 token = pmd_pgtable(*pmd);
1531
1532 do {
1533 err = fn(pte, token, addr, data);
1534 if (err)
1535 break;
1536 } while (pte++, addr += PAGE_SIZE, addr != end);
1537
1538 if (mm != &init_mm)
1539 pte_unmap_unlock(pte-1, ptl);
1540 return err;
1541 }
1542
1543 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1544 unsigned long addr, unsigned long end,
1545 pte_fn_t fn, void *data)
1546 {
1547 pmd_t *pmd;
1548 unsigned long next;
1549 int err;
1550
1551 pmd = pmd_alloc(mm, pud, addr);
1552 if (!pmd)
1553 return -ENOMEM;
1554 do {
1555 next = pmd_addr_end(addr, end);
1556 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1557 if (err)
1558 break;
1559 } while (pmd++, addr = next, addr != end);
1560 return err;
1561 }
1562
1563 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1564 unsigned long addr, unsigned long end,
1565 pte_fn_t fn, void *data)
1566 {
1567 pud_t *pud;
1568 unsigned long next;
1569 int err;
1570
1571 pud = pud_alloc(mm, pgd, addr);
1572 if (!pud)
1573 return -ENOMEM;
1574 do {
1575 next = pud_addr_end(addr, end);
1576 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1577 if (err)
1578 break;
1579 } while (pud++, addr = next, addr != end);
1580 return err;
1581 }
1582
1583 /*
1584 * Scan a region of virtual memory, filling in page tables as necessary
1585 * and calling a provided function on each leaf page table.
1586 */
1587 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1588 unsigned long size, pte_fn_t fn, void *data)
1589 {
1590 pgd_t *pgd;
1591 unsigned long next;
1592 unsigned long end = addr + size;
1593 int err;
1594
1595 BUG_ON(addr >= end);
1596 pgd = pgd_offset(mm, addr);
1597 do {
1598 next = pgd_addr_end(addr, end);
1599 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1600 if (err)
1601 break;
1602 } while (pgd++, addr = next, addr != end);
1603 return err;
1604 }
1605 EXPORT_SYMBOL_GPL(apply_to_page_range);
1606
1607 /*
1608 * handle_pte_fault chooses page fault handler according to an entry
1609 * which was read non-atomically. Before making any commitment, on
1610 * those architectures or configurations (e.g. i386 with PAE) which
1611 * might give a mix of unmatched parts, do_swap_page and do_file_page
1612 * must check under lock before unmapping the pte and proceeding
1613 * (but do_wp_page is only called after already making such a check;
1614 * and do_anonymous_page and do_no_page can safely check later on).
1615 */
1616 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1617 pte_t *page_table, pte_t orig_pte)
1618 {
1619 int same = 1;
1620 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1621 if (sizeof(pte_t) > sizeof(unsigned long)) {
1622 spinlock_t *ptl = pte_lockptr(mm, pmd);
1623 spin_lock(ptl);
1624 same = pte_same(*page_table, orig_pte);
1625 spin_unlock(ptl);
1626 }
1627 #endif
1628 pte_unmap(page_table);
1629 return same;
1630 }
1631
1632 /*
1633 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1634 * servicing faults for write access. In the normal case, do always want
1635 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1636 * that do not have writing enabled, when used by access_process_vm.
1637 */
1638 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1639 {
1640 if (likely(vma->vm_flags & VM_WRITE))
1641 pte = pte_mkwrite(pte);
1642 return pte;
1643 }
1644
1645 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1646 {
1647 /*
1648 * If the source page was a PFN mapping, we don't have
1649 * a "struct page" for it. We do a best-effort copy by
1650 * just copying from the original user address. If that
1651 * fails, we just zero-fill it. Live with it.
1652 */
1653 if (unlikely(!src)) {
1654 void *kaddr = kmap_atomic(dst, KM_USER0);
1655 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1656
1657 /*
1658 * This really shouldn't fail, because the page is there
1659 * in the page tables. But it might just be unreadable,
1660 * in which case we just give up and fill the result with
1661 * zeroes.
1662 */
1663 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1664 memset(kaddr, 0, PAGE_SIZE);
1665 kunmap_atomic(kaddr, KM_USER0);
1666 flush_dcache_page(dst);
1667 } else
1668 copy_user_highpage(dst, src, va, vma);
1669 }
1670
1671 /*
1672 * This routine handles present pages, when users try to write
1673 * to a shared page. It is done by copying the page to a new address
1674 * and decrementing the shared-page counter for the old page.
1675 *
1676 * Note that this routine assumes that the protection checks have been
1677 * done by the caller (the low-level page fault routine in most cases).
1678 * Thus we can safely just mark it writable once we've done any necessary
1679 * COW.
1680 *
1681 * We also mark the page dirty at this point even though the page will
1682 * change only once the write actually happens. This avoids a few races,
1683 * and potentially makes it more efficient.
1684 *
1685 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1686 * but allow concurrent faults), with pte both mapped and locked.
1687 * We return with mmap_sem still held, but pte unmapped and unlocked.
1688 */
1689 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1690 unsigned long address, pte_t *page_table, pmd_t *pmd,
1691 spinlock_t *ptl, pte_t orig_pte)
1692 {
1693 struct page *old_page, *new_page;
1694 pte_t entry;
1695 int reuse = 0, ret = 0;
1696 int page_mkwrite = 0;
1697 struct page *dirty_page = NULL;
1698
1699 old_page = vm_normal_page(vma, address, orig_pte);
1700 if (!old_page)
1701 goto gotten;
1702
1703 /*
1704 * Take out anonymous pages first, anonymous shared vmas are
1705 * not dirty accountable.
1706 */
1707 if (PageAnon(old_page)) {
1708 if (!TestSetPageLocked(old_page)) {
1709 reuse = can_share_swap_page(old_page);
1710 unlock_page(old_page);
1711 }
1712 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1713 (VM_WRITE|VM_SHARED))) {
1714 /*
1715 * Only catch write-faults on shared writable pages,
1716 * read-only shared pages can get COWed by
1717 * get_user_pages(.write=1, .force=1).
1718 */
1719 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1720 /*
1721 * Notify the address space that the page is about to
1722 * become writable so that it can prohibit this or wait
1723 * for the page to get into an appropriate state.
1724 *
1725 * We do this without the lock held, so that it can
1726 * sleep if it needs to.
1727 */
1728 page_cache_get(old_page);
1729 pte_unmap_unlock(page_table, ptl);
1730
1731 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1732 goto unwritable_page;
1733
1734 /*
1735 * Since we dropped the lock we need to revalidate
1736 * the PTE as someone else may have changed it. If
1737 * they did, we just return, as we can count on the
1738 * MMU to tell us if they didn't also make it writable.
1739 */
1740 page_table = pte_offset_map_lock(mm, pmd, address,
1741 &ptl);
1742 page_cache_release(old_page);
1743 if (!pte_same(*page_table, orig_pte))
1744 goto unlock;
1745
1746 page_mkwrite = 1;
1747 }
1748 dirty_page = old_page;
1749 get_page(dirty_page);
1750 reuse = 1;
1751 }
1752
1753 if (reuse) {
1754 flush_cache_page(vma, address, pte_pfn(orig_pte));
1755 entry = pte_mkyoung(orig_pte);
1756 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1757 if (ptep_set_access_flags(vma, address, page_table, entry,1))
1758 update_mmu_cache(vma, address, entry);
1759 ret |= VM_FAULT_WRITE;
1760 goto unlock;
1761 }
1762
1763 /*
1764 * Ok, we need to copy. Oh, well..
1765 */
1766 page_cache_get(old_page);
1767 gotten:
1768 pte_unmap_unlock(page_table, ptl);
1769
1770 if (unlikely(anon_vma_prepare(vma)))
1771 goto oom;
1772 VM_BUG_ON(old_page == ZERO_PAGE(0));
1773 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1774 if (!new_page)
1775 goto oom;
1776 cow_user_page(new_page, old_page, address, vma);
1777 __SetPageUptodate(new_page);
1778
1779 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
1780 goto oom_free_new;
1781
1782 /*
1783 * Re-check the pte - we dropped the lock
1784 */
1785 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1786 if (likely(pte_same(*page_table, orig_pte))) {
1787 if (old_page) {
1788 page_remove_rmap(old_page, vma);
1789 if (!PageAnon(old_page)) {
1790 dec_mm_counter(mm, file_rss);
1791 inc_mm_counter(mm, anon_rss);
1792 }
1793 } else
1794 inc_mm_counter(mm, anon_rss);
1795 flush_cache_page(vma, address, pte_pfn(orig_pte));
1796 entry = mk_pte(new_page, vma->vm_page_prot);
1797 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1798 /*
1799 * Clear the pte entry and flush it first, before updating the
1800 * pte with the new entry. This will avoid a race condition
1801 * seen in the presence of one thread doing SMC and another
1802 * thread doing COW.
1803 */
1804 ptep_clear_flush(vma, address, page_table);
1805 set_pte_at(mm, address, page_table, entry);
1806 update_mmu_cache(vma, address, entry);
1807 lru_cache_add_active(new_page);
1808 page_add_new_anon_rmap(new_page, vma, address);
1809
1810 /* Free the old page.. */
1811 new_page = old_page;
1812 ret |= VM_FAULT_WRITE;
1813 } else
1814 mem_cgroup_uncharge_page(new_page);
1815
1816 if (new_page)
1817 page_cache_release(new_page);
1818 if (old_page)
1819 page_cache_release(old_page);
1820 unlock:
1821 pte_unmap_unlock(page_table, ptl);
1822 if (dirty_page) {
1823 if (vma->vm_file)
1824 file_update_time(vma->vm_file);
1825
1826 /*
1827 * Yes, Virginia, this is actually required to prevent a race
1828 * with clear_page_dirty_for_io() from clearing the page dirty
1829 * bit after it clear all dirty ptes, but before a racing
1830 * do_wp_page installs a dirty pte.
1831 *
1832 * do_no_page is protected similarly.
1833 */
1834 wait_on_page_locked(dirty_page);
1835 set_page_dirty_balance(dirty_page, page_mkwrite);
1836 put_page(dirty_page);
1837 }
1838 return ret;
1839 oom_free_new:
1840 page_cache_release(new_page);
1841 oom:
1842 if (old_page)
1843 page_cache_release(old_page);
1844 return VM_FAULT_OOM;
1845
1846 unwritable_page:
1847 page_cache_release(old_page);
1848 return VM_FAULT_SIGBUS;
1849 }
1850
1851 /*
1852 * Helper functions for unmap_mapping_range().
1853 *
1854 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1855 *
1856 * We have to restart searching the prio_tree whenever we drop the lock,
1857 * since the iterator is only valid while the lock is held, and anyway
1858 * a later vma might be split and reinserted earlier while lock dropped.
1859 *
1860 * The list of nonlinear vmas could be handled more efficiently, using
1861 * a placeholder, but handle it in the same way until a need is shown.
1862 * It is important to search the prio_tree before nonlinear list: a vma
1863 * may become nonlinear and be shifted from prio_tree to nonlinear list
1864 * while the lock is dropped; but never shifted from list to prio_tree.
1865 *
1866 * In order to make forward progress despite restarting the search,
1867 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1868 * quickly skip it next time around. Since the prio_tree search only
1869 * shows us those vmas affected by unmapping the range in question, we
1870 * can't efficiently keep all vmas in step with mapping->truncate_count:
1871 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1872 * mapping->truncate_count and vma->vm_truncate_count are protected by
1873 * i_mmap_lock.
1874 *
1875 * In order to make forward progress despite repeatedly restarting some
1876 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1877 * and restart from that address when we reach that vma again. It might
1878 * have been split or merged, shrunk or extended, but never shifted: so
1879 * restart_addr remains valid so long as it remains in the vma's range.
1880 * unmap_mapping_range forces truncate_count to leap over page-aligned
1881 * values so we can save vma's restart_addr in its truncate_count field.
1882 */
1883 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1884
1885 static void reset_vma_truncate_counts(struct address_space *mapping)
1886 {
1887 struct vm_area_struct *vma;
1888 struct prio_tree_iter iter;
1889
1890 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1891 vma->vm_truncate_count = 0;
1892 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1893 vma->vm_truncate_count = 0;
1894 }
1895
1896 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1897 unsigned long start_addr, unsigned long end_addr,
1898 struct zap_details *details)
1899 {
1900 unsigned long restart_addr;
1901 int need_break;
1902
1903 /*
1904 * files that support invalidating or truncating portions of the
1905 * file from under mmaped areas must have their ->fault function
1906 * return a locked page (and set VM_FAULT_LOCKED in the return).
1907 * This provides synchronisation against concurrent unmapping here.
1908 */
1909
1910 again:
1911 restart_addr = vma->vm_truncate_count;
1912 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1913 start_addr = restart_addr;
1914 if (start_addr >= end_addr) {
1915 /* Top of vma has been split off since last time */
1916 vma->vm_truncate_count = details->truncate_count;
1917 return 0;
1918 }
1919 }
1920
1921 restart_addr = zap_page_range(vma, start_addr,
1922 end_addr - start_addr, details);
1923 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1924
1925 if (restart_addr >= end_addr) {
1926 /* We have now completed this vma: mark it so */
1927 vma->vm_truncate_count = details->truncate_count;
1928 if (!need_break)
1929 return 0;
1930 } else {
1931 /* Note restart_addr in vma's truncate_count field */
1932 vma->vm_truncate_count = restart_addr;
1933 if (!need_break)
1934 goto again;
1935 }
1936
1937 spin_unlock(details->i_mmap_lock);
1938 cond_resched();
1939 spin_lock(details->i_mmap_lock);
1940 return -EINTR;
1941 }
1942
1943 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1944 struct zap_details *details)
1945 {
1946 struct vm_area_struct *vma;
1947 struct prio_tree_iter iter;
1948 pgoff_t vba, vea, zba, zea;
1949
1950 restart:
1951 vma_prio_tree_foreach(vma, &iter, root,
1952 details->first_index, details->last_index) {
1953 /* Skip quickly over those we have already dealt with */
1954 if (vma->vm_truncate_count == details->truncate_count)
1955 continue;
1956
1957 vba = vma->vm_pgoff;
1958 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1959 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1960 zba = details->first_index;
1961 if (zba < vba)
1962 zba = vba;
1963 zea = details->last_index;
1964 if (zea > vea)
1965 zea = vea;
1966
1967 if (unmap_mapping_range_vma(vma,
1968 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1969 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1970 details) < 0)
1971 goto restart;
1972 }
1973 }
1974
1975 static inline void unmap_mapping_range_list(struct list_head *head,
1976 struct zap_details *details)
1977 {
1978 struct vm_area_struct *vma;
1979
1980 /*
1981 * In nonlinear VMAs there is no correspondence between virtual address
1982 * offset and file offset. So we must perform an exhaustive search
1983 * across *all* the pages in each nonlinear VMA, not just the pages
1984 * whose virtual address lies outside the file truncation point.
1985 */
1986 restart:
1987 list_for_each_entry(vma, head, shared.vm_set.list) {
1988 /* Skip quickly over those we have already dealt with */
1989 if (vma->vm_truncate_count == details->truncate_count)
1990 continue;
1991 details->nonlinear_vma = vma;
1992 if (unmap_mapping_range_vma(vma, vma->vm_start,
1993 vma->vm_end, details) < 0)
1994 goto restart;
1995 }
1996 }
1997
1998 /**
1999 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2000 * @mapping: the address space containing mmaps to be unmapped.
2001 * @holebegin: byte in first page to unmap, relative to the start of
2002 * the underlying file. This will be rounded down to a PAGE_SIZE
2003 * boundary. Note that this is different from vmtruncate(), which
2004 * must keep the partial page. In contrast, we must get rid of
2005 * partial pages.
2006 * @holelen: size of prospective hole in bytes. This will be rounded
2007 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2008 * end of the file.
2009 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2010 * but 0 when invalidating pagecache, don't throw away private data.
2011 */
2012 void unmap_mapping_range(struct address_space *mapping,
2013 loff_t const holebegin, loff_t const holelen, int even_cows)
2014 {
2015 struct zap_details details;
2016 pgoff_t hba = holebegin >> PAGE_SHIFT;
2017 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2018
2019 /* Check for overflow. */
2020 if (sizeof(holelen) > sizeof(hlen)) {
2021 long long holeend =
2022 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2023 if (holeend & ~(long long)ULONG_MAX)
2024 hlen = ULONG_MAX - hba + 1;
2025 }
2026
2027 details.check_mapping = even_cows? NULL: mapping;
2028 details.nonlinear_vma = NULL;
2029 details.first_index = hba;
2030 details.last_index = hba + hlen - 1;
2031 if (details.last_index < details.first_index)
2032 details.last_index = ULONG_MAX;
2033 details.i_mmap_lock = &mapping->i_mmap_lock;
2034
2035 spin_lock(&mapping->i_mmap_lock);
2036
2037 /* Protect against endless unmapping loops */
2038 mapping->truncate_count++;
2039 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2040 if (mapping->truncate_count == 0)
2041 reset_vma_truncate_counts(mapping);
2042 mapping->truncate_count++;
2043 }
2044 details.truncate_count = mapping->truncate_count;
2045
2046 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2047 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2048 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2049 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2050 spin_unlock(&mapping->i_mmap_lock);
2051 }
2052 EXPORT_SYMBOL(unmap_mapping_range);
2053
2054 /**
2055 * vmtruncate - unmap mappings "freed" by truncate() syscall
2056 * @inode: inode of the file used
2057 * @offset: file offset to start truncating
2058 *
2059 * NOTE! We have to be ready to update the memory sharing
2060 * between the file and the memory map for a potential last
2061 * incomplete page. Ugly, but necessary.
2062 */
2063 int vmtruncate(struct inode * inode, loff_t offset)
2064 {
2065 if (inode->i_size < offset) {
2066 unsigned long limit;
2067
2068 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2069 if (limit != RLIM_INFINITY && offset > limit)
2070 goto out_sig;
2071 if (offset > inode->i_sb->s_maxbytes)
2072 goto out_big;
2073 i_size_write(inode, offset);
2074 } else {
2075 struct address_space *mapping = inode->i_mapping;
2076
2077 /*
2078 * truncation of in-use swapfiles is disallowed - it would
2079 * cause subsequent swapout to scribble on the now-freed
2080 * blocks.
2081 */
2082 if (IS_SWAPFILE(inode))
2083 return -ETXTBSY;
2084 i_size_write(inode, offset);
2085
2086 /*
2087 * unmap_mapping_range is called twice, first simply for
2088 * efficiency so that truncate_inode_pages does fewer
2089 * single-page unmaps. However after this first call, and
2090 * before truncate_inode_pages finishes, it is possible for
2091 * private pages to be COWed, which remain after
2092 * truncate_inode_pages finishes, hence the second
2093 * unmap_mapping_range call must be made for correctness.
2094 */
2095 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2096 truncate_inode_pages(mapping, offset);
2097 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2098 }
2099
2100 if (inode->i_op && inode->i_op->truncate)
2101 inode->i_op->truncate(inode);
2102 return 0;
2103
2104 out_sig:
2105 send_sig(SIGXFSZ, current, 0);
2106 out_big:
2107 return -EFBIG;
2108 }
2109 EXPORT_SYMBOL(vmtruncate);
2110
2111 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2112 {
2113 struct address_space *mapping = inode->i_mapping;
2114
2115 /*
2116 * If the underlying filesystem is not going to provide
2117 * a way to truncate a range of blocks (punch a hole) -
2118 * we should return failure right now.
2119 */
2120 if (!inode->i_op || !inode->i_op->truncate_range)
2121 return -ENOSYS;
2122
2123 mutex_lock(&inode->i_mutex);
2124 down_write(&inode->i_alloc_sem);
2125 unmap_mapping_range(mapping, offset, (end - offset), 1);
2126 truncate_inode_pages_range(mapping, offset, end);
2127 unmap_mapping_range(mapping, offset, (end - offset), 1);
2128 inode->i_op->truncate_range(inode, offset, end);
2129 up_write(&inode->i_alloc_sem);
2130 mutex_unlock(&inode->i_mutex);
2131
2132 return 0;
2133 }
2134
2135 /*
2136 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2137 * but allow concurrent faults), and pte mapped but not yet locked.
2138 * We return with mmap_sem still held, but pte unmapped and unlocked.
2139 */
2140 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2141 unsigned long address, pte_t *page_table, pmd_t *pmd,
2142 int write_access, pte_t orig_pte)
2143 {
2144 spinlock_t *ptl;
2145 struct page *page;
2146 swp_entry_t entry;
2147 pte_t pte;
2148 int ret = 0;
2149
2150 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2151 goto out;
2152
2153 entry = pte_to_swp_entry(orig_pte);
2154 if (is_migration_entry(entry)) {
2155 migration_entry_wait(mm, pmd, address);
2156 goto out;
2157 }
2158 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2159 page = lookup_swap_cache(entry);
2160 if (!page) {
2161 grab_swap_token(); /* Contend for token _before_ read-in */
2162 page = swapin_readahead(entry,
2163 GFP_HIGHUSER_MOVABLE, vma, address);
2164 if (!page) {
2165 /*
2166 * Back out if somebody else faulted in this pte
2167 * while we released the pte lock.
2168 */
2169 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2170 if (likely(pte_same(*page_table, orig_pte)))
2171 ret = VM_FAULT_OOM;
2172 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2173 goto unlock;
2174 }
2175
2176 /* Had to read the page from swap area: Major fault */
2177 ret = VM_FAULT_MAJOR;
2178 count_vm_event(PGMAJFAULT);
2179 }
2180
2181 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2182 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2183 ret = VM_FAULT_OOM;
2184 goto out;
2185 }
2186
2187 mark_page_accessed(page);
2188 lock_page(page);
2189 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2190
2191 /*
2192 * Back out if somebody else already faulted in this pte.
2193 */
2194 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2195 if (unlikely(!pte_same(*page_table, orig_pte)))
2196 goto out_nomap;
2197
2198 if (unlikely(!PageUptodate(page))) {
2199 ret = VM_FAULT_SIGBUS;
2200 goto out_nomap;
2201 }
2202
2203 /* The page isn't present yet, go ahead with the fault. */
2204
2205 inc_mm_counter(mm, anon_rss);
2206 pte = mk_pte(page, vma->vm_page_prot);
2207 if (write_access && can_share_swap_page(page)) {
2208 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2209 write_access = 0;
2210 }
2211
2212 flush_icache_page(vma, page);
2213 set_pte_at(mm, address, page_table, pte);
2214 page_add_anon_rmap(page, vma, address);
2215
2216 swap_free(entry);
2217 if (vm_swap_full())
2218 remove_exclusive_swap_page(page);
2219 unlock_page(page);
2220
2221 if (write_access) {
2222 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2223 if (ret & VM_FAULT_ERROR)
2224 ret &= VM_FAULT_ERROR;
2225 goto out;
2226 }
2227
2228 /* No need to invalidate - it was non-present before */
2229 update_mmu_cache(vma, address, pte);
2230 unlock:
2231 pte_unmap_unlock(page_table, ptl);
2232 out:
2233 return ret;
2234 out_nomap:
2235 mem_cgroup_uncharge_page(page);
2236 pte_unmap_unlock(page_table, ptl);
2237 unlock_page(page);
2238 page_cache_release(page);
2239 return ret;
2240 }
2241
2242 /*
2243 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2244 * but allow concurrent faults), and pte mapped but not yet locked.
2245 * We return with mmap_sem still held, but pte unmapped and unlocked.
2246 */
2247 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2248 unsigned long address, pte_t *page_table, pmd_t *pmd,
2249 int write_access)
2250 {
2251 struct page *page;
2252 spinlock_t *ptl;
2253 pte_t entry;
2254
2255 /* Allocate our own private page. */
2256 pte_unmap(page_table);
2257
2258 if (unlikely(anon_vma_prepare(vma)))
2259 goto oom;
2260 page = alloc_zeroed_user_highpage_movable(vma, address);
2261 if (!page)
2262 goto oom;
2263 __SetPageUptodate(page);
2264
2265 if (mem_cgroup_charge(page, mm, GFP_KERNEL))
2266 goto oom_free_page;
2267
2268 entry = mk_pte(page, vma->vm_page_prot);
2269 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2270
2271 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2272 if (!pte_none(*page_table))
2273 goto release;
2274 inc_mm_counter(mm, anon_rss);
2275 lru_cache_add_active(page);
2276 page_add_new_anon_rmap(page, vma, address);
2277 set_pte_at(mm, address, page_table, entry);
2278
2279 /* No need to invalidate - it was non-present before */
2280 update_mmu_cache(vma, address, entry);
2281 unlock:
2282 pte_unmap_unlock(page_table, ptl);
2283 return 0;
2284 release:
2285 mem_cgroup_uncharge_page(page);
2286 page_cache_release(page);
2287 goto unlock;
2288 oom_free_page:
2289 page_cache_release(page);
2290 oom:
2291 return VM_FAULT_OOM;
2292 }
2293
2294 /*
2295 * __do_fault() tries to create a new page mapping. It aggressively
2296 * tries to share with existing pages, but makes a separate copy if
2297 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2298 * the next page fault.
2299 *
2300 * As this is called only for pages that do not currently exist, we
2301 * do not need to flush old virtual caches or the TLB.
2302 *
2303 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2304 * but allow concurrent faults), and pte neither mapped nor locked.
2305 * We return with mmap_sem still held, but pte unmapped and unlocked.
2306 */
2307 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2308 unsigned long address, pmd_t *pmd,
2309 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2310 {
2311 pte_t *page_table;
2312 spinlock_t *ptl;
2313 struct page *page;
2314 pte_t entry;
2315 int anon = 0;
2316 struct page *dirty_page = NULL;
2317 struct vm_fault vmf;
2318 int ret;
2319 int page_mkwrite = 0;
2320
2321 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2322 vmf.pgoff = pgoff;
2323 vmf.flags = flags;
2324 vmf.page = NULL;
2325
2326 ret = vma->vm_ops->fault(vma, &vmf);
2327 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2328 return ret;
2329
2330 /*
2331 * For consistency in subsequent calls, make the faulted page always
2332 * locked.
2333 */
2334 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2335 lock_page(vmf.page);
2336 else
2337 VM_BUG_ON(!PageLocked(vmf.page));
2338
2339 /*
2340 * Should we do an early C-O-W break?
2341 */
2342 page = vmf.page;
2343 if (flags & FAULT_FLAG_WRITE) {
2344 if (!(vma->vm_flags & VM_SHARED)) {
2345 anon = 1;
2346 if (unlikely(anon_vma_prepare(vma))) {
2347 ret = VM_FAULT_OOM;
2348 goto out;
2349 }
2350 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2351 vma, address);
2352 if (!page) {
2353 ret = VM_FAULT_OOM;
2354 goto out;
2355 }
2356 copy_user_highpage(page, vmf.page, address, vma);
2357 __SetPageUptodate(page);
2358 } else {
2359 /*
2360 * If the page will be shareable, see if the backing
2361 * address space wants to know that the page is about
2362 * to become writable
2363 */
2364 if (vma->vm_ops->page_mkwrite) {
2365 unlock_page(page);
2366 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2367 ret = VM_FAULT_SIGBUS;
2368 anon = 1; /* no anon but release vmf.page */
2369 goto out_unlocked;
2370 }
2371 lock_page(page);
2372 /*
2373 * XXX: this is not quite right (racy vs
2374 * invalidate) to unlock and relock the page
2375 * like this, however a better fix requires
2376 * reworking page_mkwrite locking API, which
2377 * is better done later.
2378 */
2379 if (!page->mapping) {
2380 ret = 0;
2381 anon = 1; /* no anon but release vmf.page */
2382 goto out;
2383 }
2384 page_mkwrite = 1;
2385 }
2386 }
2387
2388 }
2389
2390 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2391 ret = VM_FAULT_OOM;
2392 goto out;
2393 }
2394
2395 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2396
2397 /*
2398 * This silly early PAGE_DIRTY setting removes a race
2399 * due to the bad i386 page protection. But it's valid
2400 * for other architectures too.
2401 *
2402 * Note that if write_access is true, we either now have
2403 * an exclusive copy of the page, or this is a shared mapping,
2404 * so we can make it writable and dirty to avoid having to
2405 * handle that later.
2406 */
2407 /* Only go through if we didn't race with anybody else... */
2408 if (likely(pte_same(*page_table, orig_pte))) {
2409 flush_icache_page(vma, page);
2410 entry = mk_pte(page, vma->vm_page_prot);
2411 if (flags & FAULT_FLAG_WRITE)
2412 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2413 set_pte_at(mm, address, page_table, entry);
2414 if (anon) {
2415 inc_mm_counter(mm, anon_rss);
2416 lru_cache_add_active(page);
2417 page_add_new_anon_rmap(page, vma, address);
2418 } else {
2419 inc_mm_counter(mm, file_rss);
2420 page_add_file_rmap(page);
2421 if (flags & FAULT_FLAG_WRITE) {
2422 dirty_page = page;
2423 get_page(dirty_page);
2424 }
2425 }
2426
2427 /* no need to invalidate: a not-present page won't be cached */
2428 update_mmu_cache(vma, address, entry);
2429 } else {
2430 mem_cgroup_uncharge_page(page);
2431 if (anon)
2432 page_cache_release(page);
2433 else
2434 anon = 1; /* no anon but release faulted_page */
2435 }
2436
2437 pte_unmap_unlock(page_table, ptl);
2438
2439 out:
2440 unlock_page(vmf.page);
2441 out_unlocked:
2442 if (anon)
2443 page_cache_release(vmf.page);
2444 else if (dirty_page) {
2445 if (vma->vm_file)
2446 file_update_time(vma->vm_file);
2447
2448 set_page_dirty_balance(dirty_page, page_mkwrite);
2449 put_page(dirty_page);
2450 }
2451
2452 return ret;
2453 }
2454
2455 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2456 unsigned long address, pte_t *page_table, pmd_t *pmd,
2457 int write_access, pte_t orig_pte)
2458 {
2459 pgoff_t pgoff = (((address & PAGE_MASK)
2460 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2461 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2462
2463 pte_unmap(page_table);
2464 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2465 }
2466
2467
2468 /*
2469 * do_no_pfn() tries to create a new page mapping for a page without
2470 * a struct_page backing it
2471 *
2472 * As this is called only for pages that do not currently exist, we
2473 * do not need to flush old virtual caches or the TLB.
2474 *
2475 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2476 * but allow concurrent faults), and pte mapped but not yet locked.
2477 * We return with mmap_sem still held, but pte unmapped and unlocked.
2478 *
2479 * It is expected that the ->nopfn handler always returns the same pfn
2480 * for a given virtual mapping.
2481 *
2482 * Mark this `noinline' to prevent it from bloating the main pagefault code.
2483 */
2484 static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
2485 unsigned long address, pte_t *page_table, pmd_t *pmd,
2486 int write_access)
2487 {
2488 spinlock_t *ptl;
2489 pte_t entry;
2490 unsigned long pfn;
2491
2492 pte_unmap(page_table);
2493 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2494 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2495
2496 pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
2497
2498 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2499
2500 if (unlikely(pfn == NOPFN_OOM))
2501 return VM_FAULT_OOM;
2502 else if (unlikely(pfn == NOPFN_SIGBUS))
2503 return VM_FAULT_SIGBUS;
2504 else if (unlikely(pfn == NOPFN_REFAULT))
2505 return 0;
2506
2507 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2508
2509 /* Only go through if we didn't race with anybody else... */
2510 if (pte_none(*page_table)) {
2511 entry = pfn_pte(pfn, vma->vm_page_prot);
2512 if (write_access)
2513 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2514 set_pte_at(mm, address, page_table, entry);
2515 }
2516 pte_unmap_unlock(page_table, ptl);
2517 return 0;
2518 }
2519
2520 /*
2521 * Fault of a previously existing named mapping. Repopulate the pte
2522 * from the encoded file_pte if possible. This enables swappable
2523 * nonlinear vmas.
2524 *
2525 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2526 * but allow concurrent faults), and pte mapped but not yet locked.
2527 * We return with mmap_sem still held, but pte unmapped and unlocked.
2528 */
2529 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2530 unsigned long address, pte_t *page_table, pmd_t *pmd,
2531 int write_access, pte_t orig_pte)
2532 {
2533 unsigned int flags = FAULT_FLAG_NONLINEAR |
2534 (write_access ? FAULT_FLAG_WRITE : 0);
2535 pgoff_t pgoff;
2536
2537 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2538 return 0;
2539
2540 if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2541 !(vma->vm_flags & VM_CAN_NONLINEAR))) {
2542 /*
2543 * Page table corrupted: show pte and kill process.
2544 */
2545 print_bad_pte(vma, orig_pte, address);
2546 return VM_FAULT_OOM;
2547 }
2548
2549 pgoff = pte_to_pgoff(orig_pte);
2550 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2551 }
2552
2553 /*
2554 * These routines also need to handle stuff like marking pages dirty
2555 * and/or accessed for architectures that don't do it in hardware (most
2556 * RISC architectures). The early dirtying is also good on the i386.
2557 *
2558 * There is also a hook called "update_mmu_cache()" that architectures
2559 * with external mmu caches can use to update those (ie the Sparc or
2560 * PowerPC hashed page tables that act as extended TLBs).
2561 *
2562 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2563 * but allow concurrent faults), and pte mapped but not yet locked.
2564 * We return with mmap_sem still held, but pte unmapped and unlocked.
2565 */
2566 static inline int handle_pte_fault(struct mm_struct *mm,
2567 struct vm_area_struct *vma, unsigned long address,
2568 pte_t *pte, pmd_t *pmd, int write_access)
2569 {
2570 pte_t entry;
2571 spinlock_t *ptl;
2572
2573 entry = *pte;
2574 if (!pte_present(entry)) {
2575 if (pte_none(entry)) {
2576 if (vma->vm_ops) {
2577 if (likely(vma->vm_ops->fault))
2578 return do_linear_fault(mm, vma, address,
2579 pte, pmd, write_access, entry);
2580 if (unlikely(vma->vm_ops->nopfn))
2581 return do_no_pfn(mm, vma, address, pte,
2582 pmd, write_access);
2583 }
2584 return do_anonymous_page(mm, vma, address,
2585 pte, pmd, write_access);
2586 }
2587 if (pte_file(entry))
2588 return do_nonlinear_fault(mm, vma, address,
2589 pte, pmd, write_access, entry);
2590 return do_swap_page(mm, vma, address,
2591 pte, pmd, write_access, entry);
2592 }
2593
2594 ptl = pte_lockptr(mm, pmd);
2595 spin_lock(ptl);
2596 if (unlikely(!pte_same(*pte, entry)))
2597 goto unlock;
2598 if (write_access) {
2599 if (!pte_write(entry))
2600 return do_wp_page(mm, vma, address,
2601 pte, pmd, ptl, entry);
2602 entry = pte_mkdirty(entry);
2603 }
2604 entry = pte_mkyoung(entry);
2605 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2606 update_mmu_cache(vma, address, entry);
2607 } else {
2608 /*
2609 * This is needed only for protection faults but the arch code
2610 * is not yet telling us if this is a protection fault or not.
2611 * This still avoids useless tlb flushes for .text page faults
2612 * with threads.
2613 */
2614 if (write_access)
2615 flush_tlb_page(vma, address);
2616 }
2617 unlock:
2618 pte_unmap_unlock(pte, ptl);
2619 return 0;
2620 }
2621
2622 /*
2623 * By the time we get here, we already hold the mm semaphore
2624 */
2625 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2626 unsigned long address, int write_access)
2627 {
2628 pgd_t *pgd;
2629 pud_t *pud;
2630 pmd_t *pmd;
2631 pte_t *pte;
2632
2633 __set_current_state(TASK_RUNNING);
2634
2635 count_vm_event(PGFAULT);
2636
2637 if (unlikely(is_vm_hugetlb_page(vma)))
2638 return hugetlb_fault(mm, vma, address, write_access);
2639
2640 pgd = pgd_offset(mm, address);
2641 pud = pud_alloc(mm, pgd, address);
2642 if (!pud)
2643 return VM_FAULT_OOM;
2644 pmd = pmd_alloc(mm, pud, address);
2645 if (!pmd)
2646 return VM_FAULT_OOM;
2647 pte = pte_alloc_map(mm, pmd, address);
2648 if (!pte)
2649 return VM_FAULT_OOM;
2650
2651 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2652 }
2653
2654 #ifndef __PAGETABLE_PUD_FOLDED
2655 /*
2656 * Allocate page upper directory.
2657 * We've already handled the fast-path in-line.
2658 */
2659 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2660 {
2661 pud_t *new = pud_alloc_one(mm, address);
2662 if (!new)
2663 return -ENOMEM;
2664
2665 smp_wmb(); /* See comment in __pte_alloc */
2666
2667 spin_lock(&mm->page_table_lock);
2668 if (pgd_present(*pgd)) /* Another has populated it */
2669 pud_free(mm, new);
2670 else
2671 pgd_populate(mm, pgd, new);
2672 spin_unlock(&mm->page_table_lock);
2673 return 0;
2674 }
2675 #endif /* __PAGETABLE_PUD_FOLDED */
2676
2677 #ifndef __PAGETABLE_PMD_FOLDED
2678 /*
2679 * Allocate page middle directory.
2680 * We've already handled the fast-path in-line.
2681 */
2682 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2683 {
2684 pmd_t *new = pmd_alloc_one(mm, address);
2685 if (!new)
2686 return -ENOMEM;
2687
2688 smp_wmb(); /* See comment in __pte_alloc */
2689
2690 spin_lock(&mm->page_table_lock);
2691 #ifndef __ARCH_HAS_4LEVEL_HACK
2692 if (pud_present(*pud)) /* Another has populated it */
2693 pmd_free(mm, new);
2694 else
2695 pud_populate(mm, pud, new);
2696 #else
2697 if (pgd_present(*pud)) /* Another has populated it */
2698 pmd_free(mm, new);
2699 else
2700 pgd_populate(mm, pud, new);
2701 #endif /* __ARCH_HAS_4LEVEL_HACK */
2702 spin_unlock(&mm->page_table_lock);
2703 return 0;
2704 }
2705 #endif /* __PAGETABLE_PMD_FOLDED */
2706
2707 int make_pages_present(unsigned long addr, unsigned long end)
2708 {
2709 int ret, len, write;
2710 struct vm_area_struct * vma;
2711
2712 vma = find_vma(current->mm, addr);
2713 if (!vma)
2714 return -1;
2715 write = (vma->vm_flags & VM_WRITE) != 0;
2716 BUG_ON(addr >= end);
2717 BUG_ON(end > vma->vm_end);
2718 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2719 ret = get_user_pages(current, current->mm, addr,
2720 len, write, 0, NULL, NULL);
2721 if (ret < 0)
2722 return ret;
2723 return ret == len ? 0 : -1;
2724 }
2725
2726 #if !defined(__HAVE_ARCH_GATE_AREA)
2727
2728 #if defined(AT_SYSINFO_EHDR)
2729 static struct vm_area_struct gate_vma;
2730
2731 static int __init gate_vma_init(void)
2732 {
2733 gate_vma.vm_mm = NULL;
2734 gate_vma.vm_start = FIXADDR_USER_START;
2735 gate_vma.vm_end = FIXADDR_USER_END;
2736 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2737 gate_vma.vm_page_prot = __P101;
2738 /*
2739 * Make sure the vDSO gets into every core dump.
2740 * Dumping its contents makes post-mortem fully interpretable later
2741 * without matching up the same kernel and hardware config to see
2742 * what PC values meant.
2743 */
2744 gate_vma.vm_flags |= VM_ALWAYSDUMP;
2745 return 0;
2746 }
2747 __initcall(gate_vma_init);
2748 #endif
2749
2750 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2751 {
2752 #ifdef AT_SYSINFO_EHDR
2753 return &gate_vma;
2754 #else
2755 return NULL;
2756 #endif
2757 }
2758
2759 int in_gate_area_no_task(unsigned long addr)
2760 {
2761 #ifdef AT_SYSINFO_EHDR
2762 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2763 return 1;
2764 #endif
2765 return 0;
2766 }
2767
2768 #endif /* __HAVE_ARCH_GATE_AREA */
2769
2770 /*
2771 * Access another process' address space.
2772 * Source/target buffer must be kernel space,
2773 * Do not walk the page table directly, use get_user_pages
2774 */
2775 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2776 {
2777 struct mm_struct *mm;
2778 struct vm_area_struct *vma;
2779 struct page *page;
2780 void *old_buf = buf;
2781
2782 mm = get_task_mm(tsk);
2783 if (!mm)
2784 return 0;
2785
2786 down_read(&mm->mmap_sem);
2787 /* ignore errors, just check how much was successfully transferred */
2788 while (len) {
2789 int bytes, ret, offset;
2790 void *maddr;
2791
2792 ret = get_user_pages(tsk, mm, addr, 1,
2793 write, 1, &page, &vma);
2794 if (ret <= 0)
2795 break;
2796
2797 bytes = len;
2798 offset = addr & (PAGE_SIZE-1);
2799 if (bytes > PAGE_SIZE-offset)
2800 bytes = PAGE_SIZE-offset;
2801
2802 maddr = kmap(page);
2803 if (write) {
2804 copy_to_user_page(vma, page, addr,
2805 maddr + offset, buf, bytes);
2806 set_page_dirty_lock(page);
2807 } else {
2808 copy_from_user_page(vma, page, addr,
2809 buf, maddr + offset, bytes);
2810 }
2811 kunmap(page);
2812 page_cache_release(page);
2813 len -= bytes;
2814 buf += bytes;
2815 addr += bytes;
2816 }
2817 up_read(&mm->mmap_sem);
2818 mmput(mm);
2819
2820 return buf - old_buf;
2821 }
2822
2823 /*
2824 * Print the name of a VMA.
2825 */
2826 void print_vma_addr(char *prefix, unsigned long ip)
2827 {
2828 struct mm_struct *mm = current->mm;
2829 struct vm_area_struct *vma;
2830
2831 /*
2832 * Do not print if we are in atomic
2833 * contexts (in exception stacks, etc.):
2834 */
2835 if (preempt_count())
2836 return;
2837
2838 down_read(&mm->mmap_sem);
2839 vma = find_vma(mm, ip);
2840 if (vma && vma->vm_file) {
2841 struct file *f = vma->vm_file;
2842 char *buf = (char *)__get_free_page(GFP_KERNEL);
2843 if (buf) {
2844 char *p, *s;
2845
2846 p = d_path(&f->f_path, buf, PAGE_SIZE);
2847 if (IS_ERR(p))
2848 p = "?";
2849 s = strrchr(p, '/');
2850 if (s)
2851 p = s+1;
2852 printk("%s%s[%lx+%lx]", prefix, p,
2853 vma->vm_start,
2854 vma->vm_end - vma->vm_start);
2855 free_page((unsigned long)buf);
2856 }
2857 }
2858 up_read(&current->mm->mmap_sem);
2859 }
This page took 0.147954 seconds and 5 git commands to generate.