mm: replace vma->sharead.linear with vma->shared
[deliverable/linux.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
64
65 #include <asm/io.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
68 #include <asm/tlb.h>
69 #include <asm/tlbflush.h>
70 #include <asm/pgtable.h>
71
72 #include "internal.h"
73
74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
76 #endif
77
78 #ifndef CONFIG_NEED_MULTIPLE_NODES
79 /* use the per-pgdat data instead for discontigmem - mbligh */
80 unsigned long max_mapnr;
81 struct page *mem_map;
82
83 EXPORT_SYMBOL(max_mapnr);
84 EXPORT_SYMBOL(mem_map);
85 #endif
86
87 /*
88 * A number of key systems in x86 including ioremap() rely on the assumption
89 * that high_memory defines the upper bound on direct map memory, then end
90 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
91 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
92 * and ZONE_HIGHMEM.
93 */
94 void * high_memory;
95
96 EXPORT_SYMBOL(high_memory);
97
98 /*
99 * Randomize the address space (stacks, mmaps, brk, etc.).
100 *
101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102 * as ancient (libc5 based) binaries can segfault. )
103 */
104 int randomize_va_space __read_mostly =
105 #ifdef CONFIG_COMPAT_BRK
106 1;
107 #else
108 2;
109 #endif
110
111 static int __init disable_randmaps(char *s)
112 {
113 randomize_va_space = 0;
114 return 1;
115 }
116 __setup("norandmaps", disable_randmaps);
117
118 unsigned long zero_pfn __read_mostly;
119 unsigned long highest_memmap_pfn __read_mostly;
120
121 EXPORT_SYMBOL(zero_pfn);
122
123 /*
124 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
125 */
126 static int __init init_zero_pfn(void)
127 {
128 zero_pfn = page_to_pfn(ZERO_PAGE(0));
129 return 0;
130 }
131 core_initcall(init_zero_pfn);
132
133
134 #if defined(SPLIT_RSS_COUNTING)
135
136 void sync_mm_rss(struct mm_struct *mm)
137 {
138 int i;
139
140 for (i = 0; i < NR_MM_COUNTERS; i++) {
141 if (current->rss_stat.count[i]) {
142 add_mm_counter(mm, i, current->rss_stat.count[i]);
143 current->rss_stat.count[i] = 0;
144 }
145 }
146 current->rss_stat.events = 0;
147 }
148
149 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
150 {
151 struct task_struct *task = current;
152
153 if (likely(task->mm == mm))
154 task->rss_stat.count[member] += val;
155 else
156 add_mm_counter(mm, member, val);
157 }
158 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
159 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
160
161 /* sync counter once per 64 page faults */
162 #define TASK_RSS_EVENTS_THRESH (64)
163 static void check_sync_rss_stat(struct task_struct *task)
164 {
165 if (unlikely(task != current))
166 return;
167 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
168 sync_mm_rss(task->mm);
169 }
170 #else /* SPLIT_RSS_COUNTING */
171
172 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
173 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
174
175 static void check_sync_rss_stat(struct task_struct *task)
176 {
177 }
178
179 #endif /* SPLIT_RSS_COUNTING */
180
181 #ifdef HAVE_GENERIC_MMU_GATHER
182
183 static int tlb_next_batch(struct mmu_gather *tlb)
184 {
185 struct mmu_gather_batch *batch;
186
187 batch = tlb->active;
188 if (batch->next) {
189 tlb->active = batch->next;
190 return 1;
191 }
192
193 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
194 return 0;
195
196 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
197 if (!batch)
198 return 0;
199
200 tlb->batch_count++;
201 batch->next = NULL;
202 batch->nr = 0;
203 batch->max = MAX_GATHER_BATCH;
204
205 tlb->active->next = batch;
206 tlb->active = batch;
207
208 return 1;
209 }
210
211 /* tlb_gather_mmu
212 * Called to initialize an (on-stack) mmu_gather structure for page-table
213 * tear-down from @mm. The @fullmm argument is used when @mm is without
214 * users and we're going to destroy the full address space (exit/execve).
215 */
216 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
217 {
218 tlb->mm = mm;
219
220 /* Is it from 0 to ~0? */
221 tlb->fullmm = !(start | (end+1));
222 tlb->need_flush_all = 0;
223 tlb->local.next = NULL;
224 tlb->local.nr = 0;
225 tlb->local.max = ARRAY_SIZE(tlb->__pages);
226 tlb->active = &tlb->local;
227 tlb->batch_count = 0;
228
229 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
230 tlb->batch = NULL;
231 #endif
232
233 __tlb_reset_range(tlb);
234 }
235
236 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
237 {
238 if (!tlb->end)
239 return;
240
241 tlb_flush(tlb);
242 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
243 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
244 tlb_table_flush(tlb);
245 #endif
246 __tlb_reset_range(tlb);
247 }
248
249 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
250 {
251 struct mmu_gather_batch *batch;
252
253 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
254 free_pages_and_swap_cache(batch->pages, batch->nr);
255 batch->nr = 0;
256 }
257 tlb->active = &tlb->local;
258 }
259
260 void tlb_flush_mmu(struct mmu_gather *tlb)
261 {
262 tlb_flush_mmu_tlbonly(tlb);
263 tlb_flush_mmu_free(tlb);
264 }
265
266 /* tlb_finish_mmu
267 * Called at the end of the shootdown operation to free up any resources
268 * that were required.
269 */
270 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
271 {
272 struct mmu_gather_batch *batch, *next;
273
274 tlb_flush_mmu(tlb);
275
276 /* keep the page table cache within bounds */
277 check_pgt_cache();
278
279 for (batch = tlb->local.next; batch; batch = next) {
280 next = batch->next;
281 free_pages((unsigned long)batch, 0);
282 }
283 tlb->local.next = NULL;
284 }
285
286 /* __tlb_remove_page
287 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
288 * handling the additional races in SMP caused by other CPUs caching valid
289 * mappings in their TLBs. Returns the number of free page slots left.
290 * When out of page slots we must call tlb_flush_mmu().
291 */
292 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
293 {
294 struct mmu_gather_batch *batch;
295
296 VM_BUG_ON(!tlb->end);
297
298 batch = tlb->active;
299 batch->pages[batch->nr++] = page;
300 if (batch->nr == batch->max) {
301 if (!tlb_next_batch(tlb))
302 return 0;
303 batch = tlb->active;
304 }
305 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
306
307 return batch->max - batch->nr;
308 }
309
310 #endif /* HAVE_GENERIC_MMU_GATHER */
311
312 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
313
314 /*
315 * See the comment near struct mmu_table_batch.
316 */
317
318 static void tlb_remove_table_smp_sync(void *arg)
319 {
320 /* Simply deliver the interrupt */
321 }
322
323 static void tlb_remove_table_one(void *table)
324 {
325 /*
326 * This isn't an RCU grace period and hence the page-tables cannot be
327 * assumed to be actually RCU-freed.
328 *
329 * It is however sufficient for software page-table walkers that rely on
330 * IRQ disabling. See the comment near struct mmu_table_batch.
331 */
332 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
333 __tlb_remove_table(table);
334 }
335
336 static void tlb_remove_table_rcu(struct rcu_head *head)
337 {
338 struct mmu_table_batch *batch;
339 int i;
340
341 batch = container_of(head, struct mmu_table_batch, rcu);
342
343 for (i = 0; i < batch->nr; i++)
344 __tlb_remove_table(batch->tables[i]);
345
346 free_page((unsigned long)batch);
347 }
348
349 void tlb_table_flush(struct mmu_gather *tlb)
350 {
351 struct mmu_table_batch **batch = &tlb->batch;
352
353 if (*batch) {
354 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
355 *batch = NULL;
356 }
357 }
358
359 void tlb_remove_table(struct mmu_gather *tlb, void *table)
360 {
361 struct mmu_table_batch **batch = &tlb->batch;
362
363 /*
364 * When there's less then two users of this mm there cannot be a
365 * concurrent page-table walk.
366 */
367 if (atomic_read(&tlb->mm->mm_users) < 2) {
368 __tlb_remove_table(table);
369 return;
370 }
371
372 if (*batch == NULL) {
373 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
374 if (*batch == NULL) {
375 tlb_remove_table_one(table);
376 return;
377 }
378 (*batch)->nr = 0;
379 }
380 (*batch)->tables[(*batch)->nr++] = table;
381 if ((*batch)->nr == MAX_TABLE_BATCH)
382 tlb_table_flush(tlb);
383 }
384
385 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
386
387 /*
388 * Note: this doesn't free the actual pages themselves. That
389 * has been handled earlier when unmapping all the memory regions.
390 */
391 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
392 unsigned long addr)
393 {
394 pgtable_t token = pmd_pgtable(*pmd);
395 pmd_clear(pmd);
396 pte_free_tlb(tlb, token, addr);
397 atomic_long_dec(&tlb->mm->nr_ptes);
398 }
399
400 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
401 unsigned long addr, unsigned long end,
402 unsigned long floor, unsigned long ceiling)
403 {
404 pmd_t *pmd;
405 unsigned long next;
406 unsigned long start;
407
408 start = addr;
409 pmd = pmd_offset(pud, addr);
410 do {
411 next = pmd_addr_end(addr, end);
412 if (pmd_none_or_clear_bad(pmd))
413 continue;
414 free_pte_range(tlb, pmd, addr);
415 } while (pmd++, addr = next, addr != end);
416
417 start &= PUD_MASK;
418 if (start < floor)
419 return;
420 if (ceiling) {
421 ceiling &= PUD_MASK;
422 if (!ceiling)
423 return;
424 }
425 if (end - 1 > ceiling - 1)
426 return;
427
428 pmd = pmd_offset(pud, start);
429 pud_clear(pud);
430 pmd_free_tlb(tlb, pmd, start);
431 }
432
433 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
434 unsigned long addr, unsigned long end,
435 unsigned long floor, unsigned long ceiling)
436 {
437 pud_t *pud;
438 unsigned long next;
439 unsigned long start;
440
441 start = addr;
442 pud = pud_offset(pgd, addr);
443 do {
444 next = pud_addr_end(addr, end);
445 if (pud_none_or_clear_bad(pud))
446 continue;
447 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
448 } while (pud++, addr = next, addr != end);
449
450 start &= PGDIR_MASK;
451 if (start < floor)
452 return;
453 if (ceiling) {
454 ceiling &= PGDIR_MASK;
455 if (!ceiling)
456 return;
457 }
458 if (end - 1 > ceiling - 1)
459 return;
460
461 pud = pud_offset(pgd, start);
462 pgd_clear(pgd);
463 pud_free_tlb(tlb, pud, start);
464 }
465
466 /*
467 * This function frees user-level page tables of a process.
468 */
469 void free_pgd_range(struct mmu_gather *tlb,
470 unsigned long addr, unsigned long end,
471 unsigned long floor, unsigned long ceiling)
472 {
473 pgd_t *pgd;
474 unsigned long next;
475
476 /*
477 * The next few lines have given us lots of grief...
478 *
479 * Why are we testing PMD* at this top level? Because often
480 * there will be no work to do at all, and we'd prefer not to
481 * go all the way down to the bottom just to discover that.
482 *
483 * Why all these "- 1"s? Because 0 represents both the bottom
484 * of the address space and the top of it (using -1 for the
485 * top wouldn't help much: the masks would do the wrong thing).
486 * The rule is that addr 0 and floor 0 refer to the bottom of
487 * the address space, but end 0 and ceiling 0 refer to the top
488 * Comparisons need to use "end - 1" and "ceiling - 1" (though
489 * that end 0 case should be mythical).
490 *
491 * Wherever addr is brought up or ceiling brought down, we must
492 * be careful to reject "the opposite 0" before it confuses the
493 * subsequent tests. But what about where end is brought down
494 * by PMD_SIZE below? no, end can't go down to 0 there.
495 *
496 * Whereas we round start (addr) and ceiling down, by different
497 * masks at different levels, in order to test whether a table
498 * now has no other vmas using it, so can be freed, we don't
499 * bother to round floor or end up - the tests don't need that.
500 */
501
502 addr &= PMD_MASK;
503 if (addr < floor) {
504 addr += PMD_SIZE;
505 if (!addr)
506 return;
507 }
508 if (ceiling) {
509 ceiling &= PMD_MASK;
510 if (!ceiling)
511 return;
512 }
513 if (end - 1 > ceiling - 1)
514 end -= PMD_SIZE;
515 if (addr > end - 1)
516 return;
517
518 pgd = pgd_offset(tlb->mm, addr);
519 do {
520 next = pgd_addr_end(addr, end);
521 if (pgd_none_or_clear_bad(pgd))
522 continue;
523 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
524 } while (pgd++, addr = next, addr != end);
525 }
526
527 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
528 unsigned long floor, unsigned long ceiling)
529 {
530 while (vma) {
531 struct vm_area_struct *next = vma->vm_next;
532 unsigned long addr = vma->vm_start;
533
534 /*
535 * Hide vma from rmap and truncate_pagecache before freeing
536 * pgtables
537 */
538 unlink_anon_vmas(vma);
539 unlink_file_vma(vma);
540
541 if (is_vm_hugetlb_page(vma)) {
542 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
543 floor, next? next->vm_start: ceiling);
544 } else {
545 /*
546 * Optimization: gather nearby vmas into one call down
547 */
548 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
549 && !is_vm_hugetlb_page(next)) {
550 vma = next;
551 next = vma->vm_next;
552 unlink_anon_vmas(vma);
553 unlink_file_vma(vma);
554 }
555 free_pgd_range(tlb, addr, vma->vm_end,
556 floor, next? next->vm_start: ceiling);
557 }
558 vma = next;
559 }
560 }
561
562 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
563 pmd_t *pmd, unsigned long address)
564 {
565 spinlock_t *ptl;
566 pgtable_t new = pte_alloc_one(mm, address);
567 int wait_split_huge_page;
568 if (!new)
569 return -ENOMEM;
570
571 /*
572 * Ensure all pte setup (eg. pte page lock and page clearing) are
573 * visible before the pte is made visible to other CPUs by being
574 * put into page tables.
575 *
576 * The other side of the story is the pointer chasing in the page
577 * table walking code (when walking the page table without locking;
578 * ie. most of the time). Fortunately, these data accesses consist
579 * of a chain of data-dependent loads, meaning most CPUs (alpha
580 * being the notable exception) will already guarantee loads are
581 * seen in-order. See the alpha page table accessors for the
582 * smp_read_barrier_depends() barriers in page table walking code.
583 */
584 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
585
586 ptl = pmd_lock(mm, pmd);
587 wait_split_huge_page = 0;
588 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
589 atomic_long_inc(&mm->nr_ptes);
590 pmd_populate(mm, pmd, new);
591 new = NULL;
592 } else if (unlikely(pmd_trans_splitting(*pmd)))
593 wait_split_huge_page = 1;
594 spin_unlock(ptl);
595 if (new)
596 pte_free(mm, new);
597 if (wait_split_huge_page)
598 wait_split_huge_page(vma->anon_vma, pmd);
599 return 0;
600 }
601
602 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
603 {
604 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
605 if (!new)
606 return -ENOMEM;
607
608 smp_wmb(); /* See comment in __pte_alloc */
609
610 spin_lock(&init_mm.page_table_lock);
611 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
612 pmd_populate_kernel(&init_mm, pmd, new);
613 new = NULL;
614 } else
615 VM_BUG_ON(pmd_trans_splitting(*pmd));
616 spin_unlock(&init_mm.page_table_lock);
617 if (new)
618 pte_free_kernel(&init_mm, new);
619 return 0;
620 }
621
622 static inline void init_rss_vec(int *rss)
623 {
624 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
625 }
626
627 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
628 {
629 int i;
630
631 if (current->mm == mm)
632 sync_mm_rss(mm);
633 for (i = 0; i < NR_MM_COUNTERS; i++)
634 if (rss[i])
635 add_mm_counter(mm, i, rss[i]);
636 }
637
638 /*
639 * This function is called to print an error when a bad pte
640 * is found. For example, we might have a PFN-mapped pte in
641 * a region that doesn't allow it.
642 *
643 * The calling function must still handle the error.
644 */
645 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
646 pte_t pte, struct page *page)
647 {
648 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
649 pud_t *pud = pud_offset(pgd, addr);
650 pmd_t *pmd = pmd_offset(pud, addr);
651 struct address_space *mapping;
652 pgoff_t index;
653 static unsigned long resume;
654 static unsigned long nr_shown;
655 static unsigned long nr_unshown;
656
657 /*
658 * Allow a burst of 60 reports, then keep quiet for that minute;
659 * or allow a steady drip of one report per second.
660 */
661 if (nr_shown == 60) {
662 if (time_before(jiffies, resume)) {
663 nr_unshown++;
664 return;
665 }
666 if (nr_unshown) {
667 printk(KERN_ALERT
668 "BUG: Bad page map: %lu messages suppressed\n",
669 nr_unshown);
670 nr_unshown = 0;
671 }
672 nr_shown = 0;
673 }
674 if (nr_shown++ == 0)
675 resume = jiffies + 60 * HZ;
676
677 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
678 index = linear_page_index(vma, addr);
679
680 printk(KERN_ALERT
681 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
682 current->comm,
683 (long long)pte_val(pte), (long long)pmd_val(*pmd));
684 if (page)
685 dump_page(page, "bad pte");
686 printk(KERN_ALERT
687 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
688 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
689 /*
690 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
691 */
692 if (vma->vm_ops)
693 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
694 vma->vm_ops->fault);
695 if (vma->vm_file)
696 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
697 vma->vm_file->f_op->mmap);
698 dump_stack();
699 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
700 }
701
702 /*
703 * vm_normal_page -- This function gets the "struct page" associated with a pte.
704 *
705 * "Special" mappings do not wish to be associated with a "struct page" (either
706 * it doesn't exist, or it exists but they don't want to touch it). In this
707 * case, NULL is returned here. "Normal" mappings do have a struct page.
708 *
709 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
710 * pte bit, in which case this function is trivial. Secondly, an architecture
711 * may not have a spare pte bit, which requires a more complicated scheme,
712 * described below.
713 *
714 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
715 * special mapping (even if there are underlying and valid "struct pages").
716 * COWed pages of a VM_PFNMAP are always normal.
717 *
718 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
719 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
720 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
721 * mapping will always honor the rule
722 *
723 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
724 *
725 * And for normal mappings this is false.
726 *
727 * This restricts such mappings to be a linear translation from virtual address
728 * to pfn. To get around this restriction, we allow arbitrary mappings so long
729 * as the vma is not a COW mapping; in that case, we know that all ptes are
730 * special (because none can have been COWed).
731 *
732 *
733 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
734 *
735 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
736 * page" backing, however the difference is that _all_ pages with a struct
737 * page (that is, those where pfn_valid is true) are refcounted and considered
738 * normal pages by the VM. The disadvantage is that pages are refcounted
739 * (which can be slower and simply not an option for some PFNMAP users). The
740 * advantage is that we don't have to follow the strict linearity rule of
741 * PFNMAP mappings in order to support COWable mappings.
742 *
743 */
744 #ifdef __HAVE_ARCH_PTE_SPECIAL
745 # define HAVE_PTE_SPECIAL 1
746 #else
747 # define HAVE_PTE_SPECIAL 0
748 #endif
749 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
750 pte_t pte)
751 {
752 unsigned long pfn = pte_pfn(pte);
753
754 if (HAVE_PTE_SPECIAL) {
755 if (likely(!pte_special(pte)))
756 goto check_pfn;
757 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
758 return NULL;
759 if (!is_zero_pfn(pfn))
760 print_bad_pte(vma, addr, pte, NULL);
761 return NULL;
762 }
763
764 /* !HAVE_PTE_SPECIAL case follows: */
765
766 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
767 if (vma->vm_flags & VM_MIXEDMAP) {
768 if (!pfn_valid(pfn))
769 return NULL;
770 goto out;
771 } else {
772 unsigned long off;
773 off = (addr - vma->vm_start) >> PAGE_SHIFT;
774 if (pfn == vma->vm_pgoff + off)
775 return NULL;
776 if (!is_cow_mapping(vma->vm_flags))
777 return NULL;
778 }
779 }
780
781 if (is_zero_pfn(pfn))
782 return NULL;
783 check_pfn:
784 if (unlikely(pfn > highest_memmap_pfn)) {
785 print_bad_pte(vma, addr, pte, NULL);
786 return NULL;
787 }
788
789 /*
790 * NOTE! We still have PageReserved() pages in the page tables.
791 * eg. VDSO mappings can cause them to exist.
792 */
793 out:
794 return pfn_to_page(pfn);
795 }
796
797 /*
798 * copy one vm_area from one task to the other. Assumes the page tables
799 * already present in the new task to be cleared in the whole range
800 * covered by this vma.
801 */
802
803 static inline unsigned long
804 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
805 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
806 unsigned long addr, int *rss)
807 {
808 unsigned long vm_flags = vma->vm_flags;
809 pte_t pte = *src_pte;
810 struct page *page;
811
812 /* pte contains position in swap or file, so copy. */
813 if (unlikely(!pte_present(pte))) {
814 if (!pte_file(pte)) {
815 swp_entry_t entry = pte_to_swp_entry(pte);
816
817 if (likely(!non_swap_entry(entry))) {
818 if (swap_duplicate(entry) < 0)
819 return entry.val;
820
821 /* make sure dst_mm is on swapoff's mmlist. */
822 if (unlikely(list_empty(&dst_mm->mmlist))) {
823 spin_lock(&mmlist_lock);
824 if (list_empty(&dst_mm->mmlist))
825 list_add(&dst_mm->mmlist,
826 &src_mm->mmlist);
827 spin_unlock(&mmlist_lock);
828 }
829 rss[MM_SWAPENTS]++;
830 } else if (is_migration_entry(entry)) {
831 page = migration_entry_to_page(entry);
832
833 if (PageAnon(page))
834 rss[MM_ANONPAGES]++;
835 else
836 rss[MM_FILEPAGES]++;
837
838 if (is_write_migration_entry(entry) &&
839 is_cow_mapping(vm_flags)) {
840 /*
841 * COW mappings require pages in both
842 * parent and child to be set to read.
843 */
844 make_migration_entry_read(&entry);
845 pte = swp_entry_to_pte(entry);
846 if (pte_swp_soft_dirty(*src_pte))
847 pte = pte_swp_mksoft_dirty(pte);
848 set_pte_at(src_mm, addr, src_pte, pte);
849 }
850 }
851 }
852 goto out_set_pte;
853 }
854
855 /*
856 * If it's a COW mapping, write protect it both
857 * in the parent and the child
858 */
859 if (is_cow_mapping(vm_flags)) {
860 ptep_set_wrprotect(src_mm, addr, src_pte);
861 pte = pte_wrprotect(pte);
862 }
863
864 /*
865 * If it's a shared mapping, mark it clean in
866 * the child
867 */
868 if (vm_flags & VM_SHARED)
869 pte = pte_mkclean(pte);
870 pte = pte_mkold(pte);
871
872 page = vm_normal_page(vma, addr, pte);
873 if (page) {
874 get_page(page);
875 page_dup_rmap(page);
876 if (PageAnon(page))
877 rss[MM_ANONPAGES]++;
878 else
879 rss[MM_FILEPAGES]++;
880 }
881
882 out_set_pte:
883 set_pte_at(dst_mm, addr, dst_pte, pte);
884 return 0;
885 }
886
887 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
888 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
889 unsigned long addr, unsigned long end)
890 {
891 pte_t *orig_src_pte, *orig_dst_pte;
892 pte_t *src_pte, *dst_pte;
893 spinlock_t *src_ptl, *dst_ptl;
894 int progress = 0;
895 int rss[NR_MM_COUNTERS];
896 swp_entry_t entry = (swp_entry_t){0};
897
898 again:
899 init_rss_vec(rss);
900
901 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
902 if (!dst_pte)
903 return -ENOMEM;
904 src_pte = pte_offset_map(src_pmd, addr);
905 src_ptl = pte_lockptr(src_mm, src_pmd);
906 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
907 orig_src_pte = src_pte;
908 orig_dst_pte = dst_pte;
909 arch_enter_lazy_mmu_mode();
910
911 do {
912 /*
913 * We are holding two locks at this point - either of them
914 * could generate latencies in another task on another CPU.
915 */
916 if (progress >= 32) {
917 progress = 0;
918 if (need_resched() ||
919 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
920 break;
921 }
922 if (pte_none(*src_pte)) {
923 progress++;
924 continue;
925 }
926 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
927 vma, addr, rss);
928 if (entry.val)
929 break;
930 progress += 8;
931 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
932
933 arch_leave_lazy_mmu_mode();
934 spin_unlock(src_ptl);
935 pte_unmap(orig_src_pte);
936 add_mm_rss_vec(dst_mm, rss);
937 pte_unmap_unlock(orig_dst_pte, dst_ptl);
938 cond_resched();
939
940 if (entry.val) {
941 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
942 return -ENOMEM;
943 progress = 0;
944 }
945 if (addr != end)
946 goto again;
947 return 0;
948 }
949
950 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
951 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
952 unsigned long addr, unsigned long end)
953 {
954 pmd_t *src_pmd, *dst_pmd;
955 unsigned long next;
956
957 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
958 if (!dst_pmd)
959 return -ENOMEM;
960 src_pmd = pmd_offset(src_pud, addr);
961 do {
962 next = pmd_addr_end(addr, end);
963 if (pmd_trans_huge(*src_pmd)) {
964 int err;
965 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
966 err = copy_huge_pmd(dst_mm, src_mm,
967 dst_pmd, src_pmd, addr, vma);
968 if (err == -ENOMEM)
969 return -ENOMEM;
970 if (!err)
971 continue;
972 /* fall through */
973 }
974 if (pmd_none_or_clear_bad(src_pmd))
975 continue;
976 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
977 vma, addr, next))
978 return -ENOMEM;
979 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
980 return 0;
981 }
982
983 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
984 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
985 unsigned long addr, unsigned long end)
986 {
987 pud_t *src_pud, *dst_pud;
988 unsigned long next;
989
990 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
991 if (!dst_pud)
992 return -ENOMEM;
993 src_pud = pud_offset(src_pgd, addr);
994 do {
995 next = pud_addr_end(addr, end);
996 if (pud_none_or_clear_bad(src_pud))
997 continue;
998 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
999 vma, addr, next))
1000 return -ENOMEM;
1001 } while (dst_pud++, src_pud++, addr = next, addr != end);
1002 return 0;
1003 }
1004
1005 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1006 struct vm_area_struct *vma)
1007 {
1008 pgd_t *src_pgd, *dst_pgd;
1009 unsigned long next;
1010 unsigned long addr = vma->vm_start;
1011 unsigned long end = vma->vm_end;
1012 unsigned long mmun_start; /* For mmu_notifiers */
1013 unsigned long mmun_end; /* For mmu_notifiers */
1014 bool is_cow;
1015 int ret;
1016
1017 /*
1018 * Don't copy ptes where a page fault will fill them correctly.
1019 * Fork becomes much lighter when there are big shared or private
1020 * readonly mappings. The tradeoff is that copy_page_range is more
1021 * efficient than faulting.
1022 */
1023 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1024 VM_PFNMAP | VM_MIXEDMAP))) {
1025 if (!vma->anon_vma)
1026 return 0;
1027 }
1028
1029 if (is_vm_hugetlb_page(vma))
1030 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1031
1032 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1033 /*
1034 * We do not free on error cases below as remove_vma
1035 * gets called on error from higher level routine
1036 */
1037 ret = track_pfn_copy(vma);
1038 if (ret)
1039 return ret;
1040 }
1041
1042 /*
1043 * We need to invalidate the secondary MMU mappings only when
1044 * there could be a permission downgrade on the ptes of the
1045 * parent mm. And a permission downgrade will only happen if
1046 * is_cow_mapping() returns true.
1047 */
1048 is_cow = is_cow_mapping(vma->vm_flags);
1049 mmun_start = addr;
1050 mmun_end = end;
1051 if (is_cow)
1052 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1053 mmun_end);
1054
1055 ret = 0;
1056 dst_pgd = pgd_offset(dst_mm, addr);
1057 src_pgd = pgd_offset(src_mm, addr);
1058 do {
1059 next = pgd_addr_end(addr, end);
1060 if (pgd_none_or_clear_bad(src_pgd))
1061 continue;
1062 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1063 vma, addr, next))) {
1064 ret = -ENOMEM;
1065 break;
1066 }
1067 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1068
1069 if (is_cow)
1070 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1071 return ret;
1072 }
1073
1074 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1075 struct vm_area_struct *vma, pmd_t *pmd,
1076 unsigned long addr, unsigned long end,
1077 struct zap_details *details)
1078 {
1079 struct mm_struct *mm = tlb->mm;
1080 int force_flush = 0;
1081 int rss[NR_MM_COUNTERS];
1082 spinlock_t *ptl;
1083 pte_t *start_pte;
1084 pte_t *pte;
1085 swp_entry_t entry;
1086
1087 again:
1088 init_rss_vec(rss);
1089 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1090 pte = start_pte;
1091 arch_enter_lazy_mmu_mode();
1092 do {
1093 pte_t ptent = *pte;
1094 if (pte_none(ptent)) {
1095 continue;
1096 }
1097
1098 if (pte_present(ptent)) {
1099 struct page *page;
1100
1101 page = vm_normal_page(vma, addr, ptent);
1102 if (unlikely(details) && page) {
1103 /*
1104 * unmap_shared_mapping_pages() wants to
1105 * invalidate cache without truncating:
1106 * unmap shared but keep private pages.
1107 */
1108 if (details->check_mapping &&
1109 details->check_mapping != page->mapping)
1110 continue;
1111 }
1112 ptent = ptep_get_and_clear_full(mm, addr, pte,
1113 tlb->fullmm);
1114 tlb_remove_tlb_entry(tlb, pte, addr);
1115 if (unlikely(!page))
1116 continue;
1117 if (PageAnon(page))
1118 rss[MM_ANONPAGES]--;
1119 else {
1120 if (pte_dirty(ptent)) {
1121 force_flush = 1;
1122 set_page_dirty(page);
1123 }
1124 if (pte_young(ptent) &&
1125 likely(!(vma->vm_flags & VM_SEQ_READ)))
1126 mark_page_accessed(page);
1127 rss[MM_FILEPAGES]--;
1128 }
1129 page_remove_rmap(page);
1130 if (unlikely(page_mapcount(page) < 0))
1131 print_bad_pte(vma, addr, ptent, page);
1132 if (unlikely(!__tlb_remove_page(tlb, page))) {
1133 force_flush = 1;
1134 addr += PAGE_SIZE;
1135 break;
1136 }
1137 continue;
1138 }
1139 /* If details->check_mapping, we leave swap entries. */
1140 if (unlikely(details))
1141 continue;
1142
1143 entry = pte_to_swp_entry(ptent);
1144 if (!non_swap_entry(entry))
1145 rss[MM_SWAPENTS]--;
1146 else if (is_migration_entry(entry)) {
1147 struct page *page;
1148
1149 page = migration_entry_to_page(entry);
1150
1151 if (PageAnon(page))
1152 rss[MM_ANONPAGES]--;
1153 else
1154 rss[MM_FILEPAGES]--;
1155 }
1156 if (unlikely(!free_swap_and_cache(entry)))
1157 print_bad_pte(vma, addr, ptent, NULL);
1158 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1159 } while (pte++, addr += PAGE_SIZE, addr != end);
1160
1161 add_mm_rss_vec(mm, rss);
1162 arch_leave_lazy_mmu_mode();
1163
1164 /* Do the actual TLB flush before dropping ptl */
1165 if (force_flush)
1166 tlb_flush_mmu_tlbonly(tlb);
1167 pte_unmap_unlock(start_pte, ptl);
1168
1169 /*
1170 * If we forced a TLB flush (either due to running out of
1171 * batch buffers or because we needed to flush dirty TLB
1172 * entries before releasing the ptl), free the batched
1173 * memory too. Restart if we didn't do everything.
1174 */
1175 if (force_flush) {
1176 force_flush = 0;
1177 tlb_flush_mmu_free(tlb);
1178
1179 if (addr != end)
1180 goto again;
1181 }
1182
1183 return addr;
1184 }
1185
1186 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1187 struct vm_area_struct *vma, pud_t *pud,
1188 unsigned long addr, unsigned long end,
1189 struct zap_details *details)
1190 {
1191 pmd_t *pmd;
1192 unsigned long next;
1193
1194 pmd = pmd_offset(pud, addr);
1195 do {
1196 next = pmd_addr_end(addr, end);
1197 if (pmd_trans_huge(*pmd)) {
1198 if (next - addr != HPAGE_PMD_SIZE) {
1199 #ifdef CONFIG_DEBUG_VM
1200 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1201 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1202 __func__, addr, end,
1203 vma->vm_start,
1204 vma->vm_end);
1205 BUG();
1206 }
1207 #endif
1208 split_huge_page_pmd(vma, addr, pmd);
1209 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1210 goto next;
1211 /* fall through */
1212 }
1213 /*
1214 * Here there can be other concurrent MADV_DONTNEED or
1215 * trans huge page faults running, and if the pmd is
1216 * none or trans huge it can change under us. This is
1217 * because MADV_DONTNEED holds the mmap_sem in read
1218 * mode.
1219 */
1220 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1221 goto next;
1222 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1223 next:
1224 cond_resched();
1225 } while (pmd++, addr = next, addr != end);
1226
1227 return addr;
1228 }
1229
1230 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1231 struct vm_area_struct *vma, pgd_t *pgd,
1232 unsigned long addr, unsigned long end,
1233 struct zap_details *details)
1234 {
1235 pud_t *pud;
1236 unsigned long next;
1237
1238 pud = pud_offset(pgd, addr);
1239 do {
1240 next = pud_addr_end(addr, end);
1241 if (pud_none_or_clear_bad(pud))
1242 continue;
1243 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1244 } while (pud++, addr = next, addr != end);
1245
1246 return addr;
1247 }
1248
1249 static void unmap_page_range(struct mmu_gather *tlb,
1250 struct vm_area_struct *vma,
1251 unsigned long addr, unsigned long end,
1252 struct zap_details *details)
1253 {
1254 pgd_t *pgd;
1255 unsigned long next;
1256
1257 if (details && !details->check_mapping)
1258 details = NULL;
1259
1260 BUG_ON(addr >= end);
1261 tlb_start_vma(tlb, vma);
1262 pgd = pgd_offset(vma->vm_mm, addr);
1263 do {
1264 next = pgd_addr_end(addr, end);
1265 if (pgd_none_or_clear_bad(pgd))
1266 continue;
1267 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1268 } while (pgd++, addr = next, addr != end);
1269 tlb_end_vma(tlb, vma);
1270 }
1271
1272
1273 static void unmap_single_vma(struct mmu_gather *tlb,
1274 struct vm_area_struct *vma, unsigned long start_addr,
1275 unsigned long end_addr,
1276 struct zap_details *details)
1277 {
1278 unsigned long start = max(vma->vm_start, start_addr);
1279 unsigned long end;
1280
1281 if (start >= vma->vm_end)
1282 return;
1283 end = min(vma->vm_end, end_addr);
1284 if (end <= vma->vm_start)
1285 return;
1286
1287 if (vma->vm_file)
1288 uprobe_munmap(vma, start, end);
1289
1290 if (unlikely(vma->vm_flags & VM_PFNMAP))
1291 untrack_pfn(vma, 0, 0);
1292
1293 if (start != end) {
1294 if (unlikely(is_vm_hugetlb_page(vma))) {
1295 /*
1296 * It is undesirable to test vma->vm_file as it
1297 * should be non-null for valid hugetlb area.
1298 * However, vm_file will be NULL in the error
1299 * cleanup path of mmap_region. When
1300 * hugetlbfs ->mmap method fails,
1301 * mmap_region() nullifies vma->vm_file
1302 * before calling this function to clean up.
1303 * Since no pte has actually been setup, it is
1304 * safe to do nothing in this case.
1305 */
1306 if (vma->vm_file) {
1307 i_mmap_lock_write(vma->vm_file->f_mapping);
1308 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1309 i_mmap_unlock_write(vma->vm_file->f_mapping);
1310 }
1311 } else
1312 unmap_page_range(tlb, vma, start, end, details);
1313 }
1314 }
1315
1316 /**
1317 * unmap_vmas - unmap a range of memory covered by a list of vma's
1318 * @tlb: address of the caller's struct mmu_gather
1319 * @vma: the starting vma
1320 * @start_addr: virtual address at which to start unmapping
1321 * @end_addr: virtual address at which to end unmapping
1322 *
1323 * Unmap all pages in the vma list.
1324 *
1325 * Only addresses between `start' and `end' will be unmapped.
1326 *
1327 * The VMA list must be sorted in ascending virtual address order.
1328 *
1329 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1330 * range after unmap_vmas() returns. So the only responsibility here is to
1331 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1332 * drops the lock and schedules.
1333 */
1334 void unmap_vmas(struct mmu_gather *tlb,
1335 struct vm_area_struct *vma, unsigned long start_addr,
1336 unsigned long end_addr)
1337 {
1338 struct mm_struct *mm = vma->vm_mm;
1339
1340 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1341 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1342 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1343 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1344 }
1345
1346 /**
1347 * zap_page_range - remove user pages in a given range
1348 * @vma: vm_area_struct holding the applicable pages
1349 * @start: starting address of pages to zap
1350 * @size: number of bytes to zap
1351 * @details: details of shared cache invalidation
1352 *
1353 * Caller must protect the VMA list
1354 */
1355 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1356 unsigned long size, struct zap_details *details)
1357 {
1358 struct mm_struct *mm = vma->vm_mm;
1359 struct mmu_gather tlb;
1360 unsigned long end = start + size;
1361
1362 lru_add_drain();
1363 tlb_gather_mmu(&tlb, mm, start, end);
1364 update_hiwater_rss(mm);
1365 mmu_notifier_invalidate_range_start(mm, start, end);
1366 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1367 unmap_single_vma(&tlb, vma, start, end, details);
1368 mmu_notifier_invalidate_range_end(mm, start, end);
1369 tlb_finish_mmu(&tlb, start, end);
1370 }
1371
1372 /**
1373 * zap_page_range_single - remove user pages in a given range
1374 * @vma: vm_area_struct holding the applicable pages
1375 * @address: starting address of pages to zap
1376 * @size: number of bytes to zap
1377 * @details: details of shared cache invalidation
1378 *
1379 * The range must fit into one VMA.
1380 */
1381 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1382 unsigned long size, struct zap_details *details)
1383 {
1384 struct mm_struct *mm = vma->vm_mm;
1385 struct mmu_gather tlb;
1386 unsigned long end = address + size;
1387
1388 lru_add_drain();
1389 tlb_gather_mmu(&tlb, mm, address, end);
1390 update_hiwater_rss(mm);
1391 mmu_notifier_invalidate_range_start(mm, address, end);
1392 unmap_single_vma(&tlb, vma, address, end, details);
1393 mmu_notifier_invalidate_range_end(mm, address, end);
1394 tlb_finish_mmu(&tlb, address, end);
1395 }
1396
1397 /**
1398 * zap_vma_ptes - remove ptes mapping the vma
1399 * @vma: vm_area_struct holding ptes to be zapped
1400 * @address: starting address of pages to zap
1401 * @size: number of bytes to zap
1402 *
1403 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1404 *
1405 * The entire address range must be fully contained within the vma.
1406 *
1407 * Returns 0 if successful.
1408 */
1409 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1410 unsigned long size)
1411 {
1412 if (address < vma->vm_start || address + size > vma->vm_end ||
1413 !(vma->vm_flags & VM_PFNMAP))
1414 return -1;
1415 zap_page_range_single(vma, address, size, NULL);
1416 return 0;
1417 }
1418 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1419
1420 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1421 spinlock_t **ptl)
1422 {
1423 pgd_t * pgd = pgd_offset(mm, addr);
1424 pud_t * pud = pud_alloc(mm, pgd, addr);
1425 if (pud) {
1426 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1427 if (pmd) {
1428 VM_BUG_ON(pmd_trans_huge(*pmd));
1429 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1430 }
1431 }
1432 return NULL;
1433 }
1434
1435 /*
1436 * This is the old fallback for page remapping.
1437 *
1438 * For historical reasons, it only allows reserved pages. Only
1439 * old drivers should use this, and they needed to mark their
1440 * pages reserved for the old functions anyway.
1441 */
1442 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1443 struct page *page, pgprot_t prot)
1444 {
1445 struct mm_struct *mm = vma->vm_mm;
1446 int retval;
1447 pte_t *pte;
1448 spinlock_t *ptl;
1449
1450 retval = -EINVAL;
1451 if (PageAnon(page))
1452 goto out;
1453 retval = -ENOMEM;
1454 flush_dcache_page(page);
1455 pte = get_locked_pte(mm, addr, &ptl);
1456 if (!pte)
1457 goto out;
1458 retval = -EBUSY;
1459 if (!pte_none(*pte))
1460 goto out_unlock;
1461
1462 /* Ok, finally just insert the thing.. */
1463 get_page(page);
1464 inc_mm_counter_fast(mm, MM_FILEPAGES);
1465 page_add_file_rmap(page);
1466 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1467
1468 retval = 0;
1469 pte_unmap_unlock(pte, ptl);
1470 return retval;
1471 out_unlock:
1472 pte_unmap_unlock(pte, ptl);
1473 out:
1474 return retval;
1475 }
1476
1477 /**
1478 * vm_insert_page - insert single page into user vma
1479 * @vma: user vma to map to
1480 * @addr: target user address of this page
1481 * @page: source kernel page
1482 *
1483 * This allows drivers to insert individual pages they've allocated
1484 * into a user vma.
1485 *
1486 * The page has to be a nice clean _individual_ kernel allocation.
1487 * If you allocate a compound page, you need to have marked it as
1488 * such (__GFP_COMP), or manually just split the page up yourself
1489 * (see split_page()).
1490 *
1491 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1492 * took an arbitrary page protection parameter. This doesn't allow
1493 * that. Your vma protection will have to be set up correctly, which
1494 * means that if you want a shared writable mapping, you'd better
1495 * ask for a shared writable mapping!
1496 *
1497 * The page does not need to be reserved.
1498 *
1499 * Usually this function is called from f_op->mmap() handler
1500 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1501 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1502 * function from other places, for example from page-fault handler.
1503 */
1504 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1505 struct page *page)
1506 {
1507 if (addr < vma->vm_start || addr >= vma->vm_end)
1508 return -EFAULT;
1509 if (!page_count(page))
1510 return -EINVAL;
1511 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1512 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1513 BUG_ON(vma->vm_flags & VM_PFNMAP);
1514 vma->vm_flags |= VM_MIXEDMAP;
1515 }
1516 return insert_page(vma, addr, page, vma->vm_page_prot);
1517 }
1518 EXPORT_SYMBOL(vm_insert_page);
1519
1520 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1521 unsigned long pfn, pgprot_t prot)
1522 {
1523 struct mm_struct *mm = vma->vm_mm;
1524 int retval;
1525 pte_t *pte, entry;
1526 spinlock_t *ptl;
1527
1528 retval = -ENOMEM;
1529 pte = get_locked_pte(mm, addr, &ptl);
1530 if (!pte)
1531 goto out;
1532 retval = -EBUSY;
1533 if (!pte_none(*pte))
1534 goto out_unlock;
1535
1536 /* Ok, finally just insert the thing.. */
1537 entry = pte_mkspecial(pfn_pte(pfn, prot));
1538 set_pte_at(mm, addr, pte, entry);
1539 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1540
1541 retval = 0;
1542 out_unlock:
1543 pte_unmap_unlock(pte, ptl);
1544 out:
1545 return retval;
1546 }
1547
1548 /**
1549 * vm_insert_pfn - insert single pfn into user vma
1550 * @vma: user vma to map to
1551 * @addr: target user address of this page
1552 * @pfn: source kernel pfn
1553 *
1554 * Similar to vm_insert_page, this allows drivers to insert individual pages
1555 * they've allocated into a user vma. Same comments apply.
1556 *
1557 * This function should only be called from a vm_ops->fault handler, and
1558 * in that case the handler should return NULL.
1559 *
1560 * vma cannot be a COW mapping.
1561 *
1562 * As this is called only for pages that do not currently exist, we
1563 * do not need to flush old virtual caches or the TLB.
1564 */
1565 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1566 unsigned long pfn)
1567 {
1568 int ret;
1569 pgprot_t pgprot = vma->vm_page_prot;
1570 /*
1571 * Technically, architectures with pte_special can avoid all these
1572 * restrictions (same for remap_pfn_range). However we would like
1573 * consistency in testing and feature parity among all, so we should
1574 * try to keep these invariants in place for everybody.
1575 */
1576 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1577 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1578 (VM_PFNMAP|VM_MIXEDMAP));
1579 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1580 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1581
1582 if (addr < vma->vm_start || addr >= vma->vm_end)
1583 return -EFAULT;
1584 if (track_pfn_insert(vma, &pgprot, pfn))
1585 return -EINVAL;
1586
1587 ret = insert_pfn(vma, addr, pfn, pgprot);
1588
1589 return ret;
1590 }
1591 EXPORT_SYMBOL(vm_insert_pfn);
1592
1593 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1594 unsigned long pfn)
1595 {
1596 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1597
1598 if (addr < vma->vm_start || addr >= vma->vm_end)
1599 return -EFAULT;
1600
1601 /*
1602 * If we don't have pte special, then we have to use the pfn_valid()
1603 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1604 * refcount the page if pfn_valid is true (hence insert_page rather
1605 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1606 * without pte special, it would there be refcounted as a normal page.
1607 */
1608 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1609 struct page *page;
1610
1611 page = pfn_to_page(pfn);
1612 return insert_page(vma, addr, page, vma->vm_page_prot);
1613 }
1614 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1615 }
1616 EXPORT_SYMBOL(vm_insert_mixed);
1617
1618 /*
1619 * maps a range of physical memory into the requested pages. the old
1620 * mappings are removed. any references to nonexistent pages results
1621 * in null mappings (currently treated as "copy-on-access")
1622 */
1623 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1624 unsigned long addr, unsigned long end,
1625 unsigned long pfn, pgprot_t prot)
1626 {
1627 pte_t *pte;
1628 spinlock_t *ptl;
1629
1630 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1631 if (!pte)
1632 return -ENOMEM;
1633 arch_enter_lazy_mmu_mode();
1634 do {
1635 BUG_ON(!pte_none(*pte));
1636 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1637 pfn++;
1638 } while (pte++, addr += PAGE_SIZE, addr != end);
1639 arch_leave_lazy_mmu_mode();
1640 pte_unmap_unlock(pte - 1, ptl);
1641 return 0;
1642 }
1643
1644 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1645 unsigned long addr, unsigned long end,
1646 unsigned long pfn, pgprot_t prot)
1647 {
1648 pmd_t *pmd;
1649 unsigned long next;
1650
1651 pfn -= addr >> PAGE_SHIFT;
1652 pmd = pmd_alloc(mm, pud, addr);
1653 if (!pmd)
1654 return -ENOMEM;
1655 VM_BUG_ON(pmd_trans_huge(*pmd));
1656 do {
1657 next = pmd_addr_end(addr, end);
1658 if (remap_pte_range(mm, pmd, addr, next,
1659 pfn + (addr >> PAGE_SHIFT), prot))
1660 return -ENOMEM;
1661 } while (pmd++, addr = next, addr != end);
1662 return 0;
1663 }
1664
1665 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1666 unsigned long addr, unsigned long end,
1667 unsigned long pfn, pgprot_t prot)
1668 {
1669 pud_t *pud;
1670 unsigned long next;
1671
1672 pfn -= addr >> PAGE_SHIFT;
1673 pud = pud_alloc(mm, pgd, addr);
1674 if (!pud)
1675 return -ENOMEM;
1676 do {
1677 next = pud_addr_end(addr, end);
1678 if (remap_pmd_range(mm, pud, addr, next,
1679 pfn + (addr >> PAGE_SHIFT), prot))
1680 return -ENOMEM;
1681 } while (pud++, addr = next, addr != end);
1682 return 0;
1683 }
1684
1685 /**
1686 * remap_pfn_range - remap kernel memory to userspace
1687 * @vma: user vma to map to
1688 * @addr: target user address to start at
1689 * @pfn: physical address of kernel memory
1690 * @size: size of map area
1691 * @prot: page protection flags for this mapping
1692 *
1693 * Note: this is only safe if the mm semaphore is held when called.
1694 */
1695 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1696 unsigned long pfn, unsigned long size, pgprot_t prot)
1697 {
1698 pgd_t *pgd;
1699 unsigned long next;
1700 unsigned long end = addr + PAGE_ALIGN(size);
1701 struct mm_struct *mm = vma->vm_mm;
1702 int err;
1703
1704 /*
1705 * Physically remapped pages are special. Tell the
1706 * rest of the world about it:
1707 * VM_IO tells people not to look at these pages
1708 * (accesses can have side effects).
1709 * VM_PFNMAP tells the core MM that the base pages are just
1710 * raw PFN mappings, and do not have a "struct page" associated
1711 * with them.
1712 * VM_DONTEXPAND
1713 * Disable vma merging and expanding with mremap().
1714 * VM_DONTDUMP
1715 * Omit vma from core dump, even when VM_IO turned off.
1716 *
1717 * There's a horrible special case to handle copy-on-write
1718 * behaviour that some programs depend on. We mark the "original"
1719 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1720 * See vm_normal_page() for details.
1721 */
1722 if (is_cow_mapping(vma->vm_flags)) {
1723 if (addr != vma->vm_start || end != vma->vm_end)
1724 return -EINVAL;
1725 vma->vm_pgoff = pfn;
1726 }
1727
1728 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1729 if (err)
1730 return -EINVAL;
1731
1732 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1733
1734 BUG_ON(addr >= end);
1735 pfn -= addr >> PAGE_SHIFT;
1736 pgd = pgd_offset(mm, addr);
1737 flush_cache_range(vma, addr, end);
1738 do {
1739 next = pgd_addr_end(addr, end);
1740 err = remap_pud_range(mm, pgd, addr, next,
1741 pfn + (addr >> PAGE_SHIFT), prot);
1742 if (err)
1743 break;
1744 } while (pgd++, addr = next, addr != end);
1745
1746 if (err)
1747 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1748
1749 return err;
1750 }
1751 EXPORT_SYMBOL(remap_pfn_range);
1752
1753 /**
1754 * vm_iomap_memory - remap memory to userspace
1755 * @vma: user vma to map to
1756 * @start: start of area
1757 * @len: size of area
1758 *
1759 * This is a simplified io_remap_pfn_range() for common driver use. The
1760 * driver just needs to give us the physical memory range to be mapped,
1761 * we'll figure out the rest from the vma information.
1762 *
1763 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1764 * whatever write-combining details or similar.
1765 */
1766 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1767 {
1768 unsigned long vm_len, pfn, pages;
1769
1770 /* Check that the physical memory area passed in looks valid */
1771 if (start + len < start)
1772 return -EINVAL;
1773 /*
1774 * You *really* shouldn't map things that aren't page-aligned,
1775 * but we've historically allowed it because IO memory might
1776 * just have smaller alignment.
1777 */
1778 len += start & ~PAGE_MASK;
1779 pfn = start >> PAGE_SHIFT;
1780 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1781 if (pfn + pages < pfn)
1782 return -EINVAL;
1783
1784 /* We start the mapping 'vm_pgoff' pages into the area */
1785 if (vma->vm_pgoff > pages)
1786 return -EINVAL;
1787 pfn += vma->vm_pgoff;
1788 pages -= vma->vm_pgoff;
1789
1790 /* Can we fit all of the mapping? */
1791 vm_len = vma->vm_end - vma->vm_start;
1792 if (vm_len >> PAGE_SHIFT > pages)
1793 return -EINVAL;
1794
1795 /* Ok, let it rip */
1796 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1797 }
1798 EXPORT_SYMBOL(vm_iomap_memory);
1799
1800 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1801 unsigned long addr, unsigned long end,
1802 pte_fn_t fn, void *data)
1803 {
1804 pte_t *pte;
1805 int err;
1806 pgtable_t token;
1807 spinlock_t *uninitialized_var(ptl);
1808
1809 pte = (mm == &init_mm) ?
1810 pte_alloc_kernel(pmd, addr) :
1811 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1812 if (!pte)
1813 return -ENOMEM;
1814
1815 BUG_ON(pmd_huge(*pmd));
1816
1817 arch_enter_lazy_mmu_mode();
1818
1819 token = pmd_pgtable(*pmd);
1820
1821 do {
1822 err = fn(pte++, token, addr, data);
1823 if (err)
1824 break;
1825 } while (addr += PAGE_SIZE, addr != end);
1826
1827 arch_leave_lazy_mmu_mode();
1828
1829 if (mm != &init_mm)
1830 pte_unmap_unlock(pte-1, ptl);
1831 return err;
1832 }
1833
1834 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1835 unsigned long addr, unsigned long end,
1836 pte_fn_t fn, void *data)
1837 {
1838 pmd_t *pmd;
1839 unsigned long next;
1840 int err;
1841
1842 BUG_ON(pud_huge(*pud));
1843
1844 pmd = pmd_alloc(mm, pud, addr);
1845 if (!pmd)
1846 return -ENOMEM;
1847 do {
1848 next = pmd_addr_end(addr, end);
1849 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1850 if (err)
1851 break;
1852 } while (pmd++, addr = next, addr != end);
1853 return err;
1854 }
1855
1856 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1857 unsigned long addr, unsigned long end,
1858 pte_fn_t fn, void *data)
1859 {
1860 pud_t *pud;
1861 unsigned long next;
1862 int err;
1863
1864 pud = pud_alloc(mm, pgd, addr);
1865 if (!pud)
1866 return -ENOMEM;
1867 do {
1868 next = pud_addr_end(addr, end);
1869 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1870 if (err)
1871 break;
1872 } while (pud++, addr = next, addr != end);
1873 return err;
1874 }
1875
1876 /*
1877 * Scan a region of virtual memory, filling in page tables as necessary
1878 * and calling a provided function on each leaf page table.
1879 */
1880 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1881 unsigned long size, pte_fn_t fn, void *data)
1882 {
1883 pgd_t *pgd;
1884 unsigned long next;
1885 unsigned long end = addr + size;
1886 int err;
1887
1888 BUG_ON(addr >= end);
1889 pgd = pgd_offset(mm, addr);
1890 do {
1891 next = pgd_addr_end(addr, end);
1892 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1893 if (err)
1894 break;
1895 } while (pgd++, addr = next, addr != end);
1896
1897 return err;
1898 }
1899 EXPORT_SYMBOL_GPL(apply_to_page_range);
1900
1901 /*
1902 * handle_pte_fault chooses page fault handler according to an entry which was
1903 * read non-atomically. Before making any commitment, on those architectures
1904 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1905 * parts, do_swap_page must check under lock before unmapping the pte and
1906 * proceeding (but do_wp_page is only called after already making such a check;
1907 * and do_anonymous_page can safely check later on).
1908 */
1909 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1910 pte_t *page_table, pte_t orig_pte)
1911 {
1912 int same = 1;
1913 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1914 if (sizeof(pte_t) > sizeof(unsigned long)) {
1915 spinlock_t *ptl = pte_lockptr(mm, pmd);
1916 spin_lock(ptl);
1917 same = pte_same(*page_table, orig_pte);
1918 spin_unlock(ptl);
1919 }
1920 #endif
1921 pte_unmap(page_table);
1922 return same;
1923 }
1924
1925 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1926 {
1927 debug_dma_assert_idle(src);
1928
1929 /*
1930 * If the source page was a PFN mapping, we don't have
1931 * a "struct page" for it. We do a best-effort copy by
1932 * just copying from the original user address. If that
1933 * fails, we just zero-fill it. Live with it.
1934 */
1935 if (unlikely(!src)) {
1936 void *kaddr = kmap_atomic(dst);
1937 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1938
1939 /*
1940 * This really shouldn't fail, because the page is there
1941 * in the page tables. But it might just be unreadable,
1942 * in which case we just give up and fill the result with
1943 * zeroes.
1944 */
1945 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1946 clear_page(kaddr);
1947 kunmap_atomic(kaddr);
1948 flush_dcache_page(dst);
1949 } else
1950 copy_user_highpage(dst, src, va, vma);
1951 }
1952
1953 /*
1954 * Notify the address space that the page is about to become writable so that
1955 * it can prohibit this or wait for the page to get into an appropriate state.
1956 *
1957 * We do this without the lock held, so that it can sleep if it needs to.
1958 */
1959 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1960 unsigned long address)
1961 {
1962 struct vm_fault vmf;
1963 int ret;
1964
1965 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
1966 vmf.pgoff = page->index;
1967 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1968 vmf.page = page;
1969
1970 ret = vma->vm_ops->page_mkwrite(vma, &vmf);
1971 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
1972 return ret;
1973 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
1974 lock_page(page);
1975 if (!page->mapping) {
1976 unlock_page(page);
1977 return 0; /* retry */
1978 }
1979 ret |= VM_FAULT_LOCKED;
1980 } else
1981 VM_BUG_ON_PAGE(!PageLocked(page), page);
1982 return ret;
1983 }
1984
1985 /*
1986 * This routine handles present pages, when users try to write
1987 * to a shared page. It is done by copying the page to a new address
1988 * and decrementing the shared-page counter for the old page.
1989 *
1990 * Note that this routine assumes that the protection checks have been
1991 * done by the caller (the low-level page fault routine in most cases).
1992 * Thus we can safely just mark it writable once we've done any necessary
1993 * COW.
1994 *
1995 * We also mark the page dirty at this point even though the page will
1996 * change only once the write actually happens. This avoids a few races,
1997 * and potentially makes it more efficient.
1998 *
1999 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2000 * but allow concurrent faults), with pte both mapped and locked.
2001 * We return with mmap_sem still held, but pte unmapped and unlocked.
2002 */
2003 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2004 unsigned long address, pte_t *page_table, pmd_t *pmd,
2005 spinlock_t *ptl, pte_t orig_pte)
2006 __releases(ptl)
2007 {
2008 struct page *old_page, *new_page = NULL;
2009 pte_t entry;
2010 int ret = 0;
2011 int page_mkwrite = 0;
2012 struct page *dirty_page = NULL;
2013 unsigned long mmun_start = 0; /* For mmu_notifiers */
2014 unsigned long mmun_end = 0; /* For mmu_notifiers */
2015 struct mem_cgroup *memcg;
2016
2017 old_page = vm_normal_page(vma, address, orig_pte);
2018 if (!old_page) {
2019 /*
2020 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2021 * VM_PFNMAP VMA.
2022 *
2023 * We should not cow pages in a shared writeable mapping.
2024 * Just mark the pages writable as we can't do any dirty
2025 * accounting on raw pfn maps.
2026 */
2027 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2028 (VM_WRITE|VM_SHARED))
2029 goto reuse;
2030 goto gotten;
2031 }
2032
2033 /*
2034 * Take out anonymous pages first, anonymous shared vmas are
2035 * not dirty accountable.
2036 */
2037 if (PageAnon(old_page) && !PageKsm(old_page)) {
2038 if (!trylock_page(old_page)) {
2039 page_cache_get(old_page);
2040 pte_unmap_unlock(page_table, ptl);
2041 lock_page(old_page);
2042 page_table = pte_offset_map_lock(mm, pmd, address,
2043 &ptl);
2044 if (!pte_same(*page_table, orig_pte)) {
2045 unlock_page(old_page);
2046 goto unlock;
2047 }
2048 page_cache_release(old_page);
2049 }
2050 if (reuse_swap_page(old_page)) {
2051 /*
2052 * The page is all ours. Move it to our anon_vma so
2053 * the rmap code will not search our parent or siblings.
2054 * Protected against the rmap code by the page lock.
2055 */
2056 page_move_anon_rmap(old_page, vma, address);
2057 unlock_page(old_page);
2058 goto reuse;
2059 }
2060 unlock_page(old_page);
2061 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2062 (VM_WRITE|VM_SHARED))) {
2063 /*
2064 * Only catch write-faults on shared writable pages,
2065 * read-only shared pages can get COWed by
2066 * get_user_pages(.write=1, .force=1).
2067 */
2068 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2069 int tmp;
2070 page_cache_get(old_page);
2071 pte_unmap_unlock(page_table, ptl);
2072 tmp = do_page_mkwrite(vma, old_page, address);
2073 if (unlikely(!tmp || (tmp &
2074 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2075 page_cache_release(old_page);
2076 return tmp;
2077 }
2078 /*
2079 * Since we dropped the lock we need to revalidate
2080 * the PTE as someone else may have changed it. If
2081 * they did, we just return, as we can count on the
2082 * MMU to tell us if they didn't also make it writable.
2083 */
2084 page_table = pte_offset_map_lock(mm, pmd, address,
2085 &ptl);
2086 if (!pte_same(*page_table, orig_pte)) {
2087 unlock_page(old_page);
2088 goto unlock;
2089 }
2090
2091 page_mkwrite = 1;
2092 }
2093 dirty_page = old_page;
2094 get_page(dirty_page);
2095
2096 reuse:
2097 /*
2098 * Clear the pages cpupid information as the existing
2099 * information potentially belongs to a now completely
2100 * unrelated process.
2101 */
2102 if (old_page)
2103 page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
2104
2105 flush_cache_page(vma, address, pte_pfn(orig_pte));
2106 entry = pte_mkyoung(orig_pte);
2107 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2108 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2109 update_mmu_cache(vma, address, page_table);
2110 pte_unmap_unlock(page_table, ptl);
2111 ret |= VM_FAULT_WRITE;
2112
2113 if (!dirty_page)
2114 return ret;
2115
2116 if (!page_mkwrite) {
2117 struct address_space *mapping;
2118 int dirtied;
2119
2120 lock_page(dirty_page);
2121 dirtied = set_page_dirty(dirty_page);
2122 VM_BUG_ON_PAGE(PageAnon(dirty_page), dirty_page);
2123 mapping = dirty_page->mapping;
2124 unlock_page(dirty_page);
2125
2126 if (dirtied && mapping) {
2127 /*
2128 * Some device drivers do not set page.mapping
2129 * but still dirty their pages
2130 */
2131 balance_dirty_pages_ratelimited(mapping);
2132 }
2133
2134 /* file_update_time outside page_lock */
2135 if (vma->vm_file)
2136 file_update_time(vma->vm_file);
2137 }
2138 put_page(dirty_page);
2139 if (page_mkwrite) {
2140 struct address_space *mapping = dirty_page->mapping;
2141
2142 set_page_dirty(dirty_page);
2143 unlock_page(dirty_page);
2144 page_cache_release(dirty_page);
2145 if (mapping) {
2146 /*
2147 * Some device drivers do not set page.mapping
2148 * but still dirty their pages
2149 */
2150 balance_dirty_pages_ratelimited(mapping);
2151 }
2152 }
2153
2154 return ret;
2155 }
2156
2157 /*
2158 * Ok, we need to copy. Oh, well..
2159 */
2160 page_cache_get(old_page);
2161 gotten:
2162 pte_unmap_unlock(page_table, ptl);
2163
2164 if (unlikely(anon_vma_prepare(vma)))
2165 goto oom;
2166
2167 if (is_zero_pfn(pte_pfn(orig_pte))) {
2168 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2169 if (!new_page)
2170 goto oom;
2171 } else {
2172 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2173 if (!new_page)
2174 goto oom;
2175 cow_user_page(new_page, old_page, address, vma);
2176 }
2177 __SetPageUptodate(new_page);
2178
2179 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
2180 goto oom_free_new;
2181
2182 mmun_start = address & PAGE_MASK;
2183 mmun_end = mmun_start + PAGE_SIZE;
2184 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2185
2186 /*
2187 * Re-check the pte - we dropped the lock
2188 */
2189 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2190 if (likely(pte_same(*page_table, orig_pte))) {
2191 if (old_page) {
2192 if (!PageAnon(old_page)) {
2193 dec_mm_counter_fast(mm, MM_FILEPAGES);
2194 inc_mm_counter_fast(mm, MM_ANONPAGES);
2195 }
2196 } else
2197 inc_mm_counter_fast(mm, MM_ANONPAGES);
2198 flush_cache_page(vma, address, pte_pfn(orig_pte));
2199 entry = mk_pte(new_page, vma->vm_page_prot);
2200 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2201 /*
2202 * Clear the pte entry and flush it first, before updating the
2203 * pte with the new entry. This will avoid a race condition
2204 * seen in the presence of one thread doing SMC and another
2205 * thread doing COW.
2206 */
2207 ptep_clear_flush_notify(vma, address, page_table);
2208 page_add_new_anon_rmap(new_page, vma, address);
2209 mem_cgroup_commit_charge(new_page, memcg, false);
2210 lru_cache_add_active_or_unevictable(new_page, vma);
2211 /*
2212 * We call the notify macro here because, when using secondary
2213 * mmu page tables (such as kvm shadow page tables), we want the
2214 * new page to be mapped directly into the secondary page table.
2215 */
2216 set_pte_at_notify(mm, address, page_table, entry);
2217 update_mmu_cache(vma, address, page_table);
2218 if (old_page) {
2219 /*
2220 * Only after switching the pte to the new page may
2221 * we remove the mapcount here. Otherwise another
2222 * process may come and find the rmap count decremented
2223 * before the pte is switched to the new page, and
2224 * "reuse" the old page writing into it while our pte
2225 * here still points into it and can be read by other
2226 * threads.
2227 *
2228 * The critical issue is to order this
2229 * page_remove_rmap with the ptp_clear_flush above.
2230 * Those stores are ordered by (if nothing else,)
2231 * the barrier present in the atomic_add_negative
2232 * in page_remove_rmap.
2233 *
2234 * Then the TLB flush in ptep_clear_flush ensures that
2235 * no process can access the old page before the
2236 * decremented mapcount is visible. And the old page
2237 * cannot be reused until after the decremented
2238 * mapcount is visible. So transitively, TLBs to
2239 * old page will be flushed before it can be reused.
2240 */
2241 page_remove_rmap(old_page);
2242 }
2243
2244 /* Free the old page.. */
2245 new_page = old_page;
2246 ret |= VM_FAULT_WRITE;
2247 } else
2248 mem_cgroup_cancel_charge(new_page, memcg);
2249
2250 if (new_page)
2251 page_cache_release(new_page);
2252 unlock:
2253 pte_unmap_unlock(page_table, ptl);
2254 if (mmun_end > mmun_start)
2255 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2256 if (old_page) {
2257 /*
2258 * Don't let another task, with possibly unlocked vma,
2259 * keep the mlocked page.
2260 */
2261 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2262 lock_page(old_page); /* LRU manipulation */
2263 munlock_vma_page(old_page);
2264 unlock_page(old_page);
2265 }
2266 page_cache_release(old_page);
2267 }
2268 return ret;
2269 oom_free_new:
2270 page_cache_release(new_page);
2271 oom:
2272 if (old_page)
2273 page_cache_release(old_page);
2274 return VM_FAULT_OOM;
2275 }
2276
2277 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2278 unsigned long start_addr, unsigned long end_addr,
2279 struct zap_details *details)
2280 {
2281 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2282 }
2283
2284 static inline void unmap_mapping_range_tree(struct rb_root *root,
2285 struct zap_details *details)
2286 {
2287 struct vm_area_struct *vma;
2288 pgoff_t vba, vea, zba, zea;
2289
2290 vma_interval_tree_foreach(vma, root,
2291 details->first_index, details->last_index) {
2292
2293 vba = vma->vm_pgoff;
2294 vea = vba + vma_pages(vma) - 1;
2295 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2296 zba = details->first_index;
2297 if (zba < vba)
2298 zba = vba;
2299 zea = details->last_index;
2300 if (zea > vea)
2301 zea = vea;
2302
2303 unmap_mapping_range_vma(vma,
2304 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2305 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2306 details);
2307 }
2308 }
2309
2310 /**
2311 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2312 * address_space corresponding to the specified page range in the underlying
2313 * file.
2314 *
2315 * @mapping: the address space containing mmaps to be unmapped.
2316 * @holebegin: byte in first page to unmap, relative to the start of
2317 * the underlying file. This will be rounded down to a PAGE_SIZE
2318 * boundary. Note that this is different from truncate_pagecache(), which
2319 * must keep the partial page. In contrast, we must get rid of
2320 * partial pages.
2321 * @holelen: size of prospective hole in bytes. This will be rounded
2322 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2323 * end of the file.
2324 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2325 * but 0 when invalidating pagecache, don't throw away private data.
2326 */
2327 void unmap_mapping_range(struct address_space *mapping,
2328 loff_t const holebegin, loff_t const holelen, int even_cows)
2329 {
2330 struct zap_details details;
2331 pgoff_t hba = holebegin >> PAGE_SHIFT;
2332 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2333
2334 /* Check for overflow. */
2335 if (sizeof(holelen) > sizeof(hlen)) {
2336 long long holeend =
2337 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2338 if (holeend & ~(long long)ULONG_MAX)
2339 hlen = ULONG_MAX - hba + 1;
2340 }
2341
2342 details.check_mapping = even_cows? NULL: mapping;
2343 details.first_index = hba;
2344 details.last_index = hba + hlen - 1;
2345 if (details.last_index < details.first_index)
2346 details.last_index = ULONG_MAX;
2347
2348
2349 i_mmap_lock_write(mapping);
2350 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2351 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2352 i_mmap_unlock_write(mapping);
2353 }
2354 EXPORT_SYMBOL(unmap_mapping_range);
2355
2356 /*
2357 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2358 * but allow concurrent faults), and pte mapped but not yet locked.
2359 * We return with pte unmapped and unlocked.
2360 *
2361 * We return with the mmap_sem locked or unlocked in the same cases
2362 * as does filemap_fault().
2363 */
2364 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2365 unsigned long address, pte_t *page_table, pmd_t *pmd,
2366 unsigned int flags, pte_t orig_pte)
2367 {
2368 spinlock_t *ptl;
2369 struct page *page, *swapcache;
2370 struct mem_cgroup *memcg;
2371 swp_entry_t entry;
2372 pte_t pte;
2373 int locked;
2374 int exclusive = 0;
2375 int ret = 0;
2376
2377 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2378 goto out;
2379
2380 entry = pte_to_swp_entry(orig_pte);
2381 if (unlikely(non_swap_entry(entry))) {
2382 if (is_migration_entry(entry)) {
2383 migration_entry_wait(mm, pmd, address);
2384 } else if (is_hwpoison_entry(entry)) {
2385 ret = VM_FAULT_HWPOISON;
2386 } else {
2387 print_bad_pte(vma, address, orig_pte, NULL);
2388 ret = VM_FAULT_SIGBUS;
2389 }
2390 goto out;
2391 }
2392 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2393 page = lookup_swap_cache(entry);
2394 if (!page) {
2395 page = swapin_readahead(entry,
2396 GFP_HIGHUSER_MOVABLE, vma, address);
2397 if (!page) {
2398 /*
2399 * Back out if somebody else faulted in this pte
2400 * while we released the pte lock.
2401 */
2402 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2403 if (likely(pte_same(*page_table, orig_pte)))
2404 ret = VM_FAULT_OOM;
2405 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2406 goto unlock;
2407 }
2408
2409 /* Had to read the page from swap area: Major fault */
2410 ret = VM_FAULT_MAJOR;
2411 count_vm_event(PGMAJFAULT);
2412 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2413 } else if (PageHWPoison(page)) {
2414 /*
2415 * hwpoisoned dirty swapcache pages are kept for killing
2416 * owner processes (which may be unknown at hwpoison time)
2417 */
2418 ret = VM_FAULT_HWPOISON;
2419 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2420 swapcache = page;
2421 goto out_release;
2422 }
2423
2424 swapcache = page;
2425 locked = lock_page_or_retry(page, mm, flags);
2426
2427 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2428 if (!locked) {
2429 ret |= VM_FAULT_RETRY;
2430 goto out_release;
2431 }
2432
2433 /*
2434 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2435 * release the swapcache from under us. The page pin, and pte_same
2436 * test below, are not enough to exclude that. Even if it is still
2437 * swapcache, we need to check that the page's swap has not changed.
2438 */
2439 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2440 goto out_page;
2441
2442 page = ksm_might_need_to_copy(page, vma, address);
2443 if (unlikely(!page)) {
2444 ret = VM_FAULT_OOM;
2445 page = swapcache;
2446 goto out_page;
2447 }
2448
2449 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
2450 ret = VM_FAULT_OOM;
2451 goto out_page;
2452 }
2453
2454 /*
2455 * Back out if somebody else already faulted in this pte.
2456 */
2457 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2458 if (unlikely(!pte_same(*page_table, orig_pte)))
2459 goto out_nomap;
2460
2461 if (unlikely(!PageUptodate(page))) {
2462 ret = VM_FAULT_SIGBUS;
2463 goto out_nomap;
2464 }
2465
2466 /*
2467 * The page isn't present yet, go ahead with the fault.
2468 *
2469 * Be careful about the sequence of operations here.
2470 * To get its accounting right, reuse_swap_page() must be called
2471 * while the page is counted on swap but not yet in mapcount i.e.
2472 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2473 * must be called after the swap_free(), or it will never succeed.
2474 */
2475
2476 inc_mm_counter_fast(mm, MM_ANONPAGES);
2477 dec_mm_counter_fast(mm, MM_SWAPENTS);
2478 pte = mk_pte(page, vma->vm_page_prot);
2479 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2480 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2481 flags &= ~FAULT_FLAG_WRITE;
2482 ret |= VM_FAULT_WRITE;
2483 exclusive = 1;
2484 }
2485 flush_icache_page(vma, page);
2486 if (pte_swp_soft_dirty(orig_pte))
2487 pte = pte_mksoft_dirty(pte);
2488 set_pte_at(mm, address, page_table, pte);
2489 if (page == swapcache) {
2490 do_page_add_anon_rmap(page, vma, address, exclusive);
2491 mem_cgroup_commit_charge(page, memcg, true);
2492 } else { /* ksm created a completely new copy */
2493 page_add_new_anon_rmap(page, vma, address);
2494 mem_cgroup_commit_charge(page, memcg, false);
2495 lru_cache_add_active_or_unevictable(page, vma);
2496 }
2497
2498 swap_free(entry);
2499 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2500 try_to_free_swap(page);
2501 unlock_page(page);
2502 if (page != swapcache) {
2503 /*
2504 * Hold the lock to avoid the swap entry to be reused
2505 * until we take the PT lock for the pte_same() check
2506 * (to avoid false positives from pte_same). For
2507 * further safety release the lock after the swap_free
2508 * so that the swap count won't change under a
2509 * parallel locked swapcache.
2510 */
2511 unlock_page(swapcache);
2512 page_cache_release(swapcache);
2513 }
2514
2515 if (flags & FAULT_FLAG_WRITE) {
2516 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2517 if (ret & VM_FAULT_ERROR)
2518 ret &= VM_FAULT_ERROR;
2519 goto out;
2520 }
2521
2522 /* No need to invalidate - it was non-present before */
2523 update_mmu_cache(vma, address, page_table);
2524 unlock:
2525 pte_unmap_unlock(page_table, ptl);
2526 out:
2527 return ret;
2528 out_nomap:
2529 mem_cgroup_cancel_charge(page, memcg);
2530 pte_unmap_unlock(page_table, ptl);
2531 out_page:
2532 unlock_page(page);
2533 out_release:
2534 page_cache_release(page);
2535 if (page != swapcache) {
2536 unlock_page(swapcache);
2537 page_cache_release(swapcache);
2538 }
2539 return ret;
2540 }
2541
2542 /*
2543 * This is like a special single-page "expand_{down|up}wards()",
2544 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2545 * doesn't hit another vma.
2546 */
2547 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2548 {
2549 address &= PAGE_MASK;
2550 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2551 struct vm_area_struct *prev = vma->vm_prev;
2552
2553 /*
2554 * Is there a mapping abutting this one below?
2555 *
2556 * That's only ok if it's the same stack mapping
2557 * that has gotten split..
2558 */
2559 if (prev && prev->vm_end == address)
2560 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2561
2562 return expand_downwards(vma, address - PAGE_SIZE);
2563 }
2564 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2565 struct vm_area_struct *next = vma->vm_next;
2566
2567 /* As VM_GROWSDOWN but s/below/above/ */
2568 if (next && next->vm_start == address + PAGE_SIZE)
2569 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2570
2571 return expand_upwards(vma, address + PAGE_SIZE);
2572 }
2573 return 0;
2574 }
2575
2576 /*
2577 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2578 * but allow concurrent faults), and pte mapped but not yet locked.
2579 * We return with mmap_sem still held, but pte unmapped and unlocked.
2580 */
2581 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2582 unsigned long address, pte_t *page_table, pmd_t *pmd,
2583 unsigned int flags)
2584 {
2585 struct mem_cgroup *memcg;
2586 struct page *page;
2587 spinlock_t *ptl;
2588 pte_t entry;
2589
2590 pte_unmap(page_table);
2591
2592 /* Check if we need to add a guard page to the stack */
2593 if (check_stack_guard_page(vma, address) < 0)
2594 return VM_FAULT_SIGSEGV;
2595
2596 /* Use the zero-page for reads */
2597 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2598 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2599 vma->vm_page_prot));
2600 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2601 if (!pte_none(*page_table))
2602 goto unlock;
2603 goto setpte;
2604 }
2605
2606 /* Allocate our own private page. */
2607 if (unlikely(anon_vma_prepare(vma)))
2608 goto oom;
2609 page = alloc_zeroed_user_highpage_movable(vma, address);
2610 if (!page)
2611 goto oom;
2612 /*
2613 * The memory barrier inside __SetPageUptodate makes sure that
2614 * preceeding stores to the page contents become visible before
2615 * the set_pte_at() write.
2616 */
2617 __SetPageUptodate(page);
2618
2619 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
2620 goto oom_free_page;
2621
2622 entry = mk_pte(page, vma->vm_page_prot);
2623 if (vma->vm_flags & VM_WRITE)
2624 entry = pte_mkwrite(pte_mkdirty(entry));
2625
2626 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2627 if (!pte_none(*page_table))
2628 goto release;
2629
2630 inc_mm_counter_fast(mm, MM_ANONPAGES);
2631 page_add_new_anon_rmap(page, vma, address);
2632 mem_cgroup_commit_charge(page, memcg, false);
2633 lru_cache_add_active_or_unevictable(page, vma);
2634 setpte:
2635 set_pte_at(mm, address, page_table, entry);
2636
2637 /* No need to invalidate - it was non-present before */
2638 update_mmu_cache(vma, address, page_table);
2639 unlock:
2640 pte_unmap_unlock(page_table, ptl);
2641 return 0;
2642 release:
2643 mem_cgroup_cancel_charge(page, memcg);
2644 page_cache_release(page);
2645 goto unlock;
2646 oom_free_page:
2647 page_cache_release(page);
2648 oom:
2649 return VM_FAULT_OOM;
2650 }
2651
2652 /*
2653 * The mmap_sem must have been held on entry, and may have been
2654 * released depending on flags and vma->vm_ops->fault() return value.
2655 * See filemap_fault() and __lock_page_retry().
2656 */
2657 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2658 pgoff_t pgoff, unsigned int flags, struct page **page)
2659 {
2660 struct vm_fault vmf;
2661 int ret;
2662
2663 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2664 vmf.pgoff = pgoff;
2665 vmf.flags = flags;
2666 vmf.page = NULL;
2667
2668 ret = vma->vm_ops->fault(vma, &vmf);
2669 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2670 return ret;
2671
2672 if (unlikely(PageHWPoison(vmf.page))) {
2673 if (ret & VM_FAULT_LOCKED)
2674 unlock_page(vmf.page);
2675 page_cache_release(vmf.page);
2676 return VM_FAULT_HWPOISON;
2677 }
2678
2679 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2680 lock_page(vmf.page);
2681 else
2682 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2683
2684 *page = vmf.page;
2685 return ret;
2686 }
2687
2688 /**
2689 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2690 *
2691 * @vma: virtual memory area
2692 * @address: user virtual address
2693 * @page: page to map
2694 * @pte: pointer to target page table entry
2695 * @write: true, if new entry is writable
2696 * @anon: true, if it's anonymous page
2697 *
2698 * Caller must hold page table lock relevant for @pte.
2699 *
2700 * Target users are page handler itself and implementations of
2701 * vm_ops->map_pages.
2702 */
2703 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2704 struct page *page, pte_t *pte, bool write, bool anon)
2705 {
2706 pte_t entry;
2707
2708 flush_icache_page(vma, page);
2709 entry = mk_pte(page, vma->vm_page_prot);
2710 if (write)
2711 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2712 if (anon) {
2713 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2714 page_add_new_anon_rmap(page, vma, address);
2715 } else {
2716 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
2717 page_add_file_rmap(page);
2718 }
2719 set_pte_at(vma->vm_mm, address, pte, entry);
2720
2721 /* no need to invalidate: a not-present page won't be cached */
2722 update_mmu_cache(vma, address, pte);
2723 }
2724
2725 static unsigned long fault_around_bytes __read_mostly =
2726 rounddown_pow_of_two(65536);
2727
2728 #ifdef CONFIG_DEBUG_FS
2729 static int fault_around_bytes_get(void *data, u64 *val)
2730 {
2731 *val = fault_around_bytes;
2732 return 0;
2733 }
2734
2735 /*
2736 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2737 * rounded down to nearest page order. It's what do_fault_around() expects to
2738 * see.
2739 */
2740 static int fault_around_bytes_set(void *data, u64 val)
2741 {
2742 if (val / PAGE_SIZE > PTRS_PER_PTE)
2743 return -EINVAL;
2744 if (val > PAGE_SIZE)
2745 fault_around_bytes = rounddown_pow_of_two(val);
2746 else
2747 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2748 return 0;
2749 }
2750 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2751 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2752
2753 static int __init fault_around_debugfs(void)
2754 {
2755 void *ret;
2756
2757 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2758 &fault_around_bytes_fops);
2759 if (!ret)
2760 pr_warn("Failed to create fault_around_bytes in debugfs");
2761 return 0;
2762 }
2763 late_initcall(fault_around_debugfs);
2764 #endif
2765
2766 /*
2767 * do_fault_around() tries to map few pages around the fault address. The hope
2768 * is that the pages will be needed soon and this will lower the number of
2769 * faults to handle.
2770 *
2771 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2772 * not ready to be mapped: not up-to-date, locked, etc.
2773 *
2774 * This function is called with the page table lock taken. In the split ptlock
2775 * case the page table lock only protects only those entries which belong to
2776 * the page table corresponding to the fault address.
2777 *
2778 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2779 * only once.
2780 *
2781 * fault_around_pages() defines how many pages we'll try to map.
2782 * do_fault_around() expects it to return a power of two less than or equal to
2783 * PTRS_PER_PTE.
2784 *
2785 * The virtual address of the area that we map is naturally aligned to the
2786 * fault_around_pages() value (and therefore to page order). This way it's
2787 * easier to guarantee that we don't cross page table boundaries.
2788 */
2789 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2790 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2791 {
2792 unsigned long start_addr, nr_pages, mask;
2793 pgoff_t max_pgoff;
2794 struct vm_fault vmf;
2795 int off;
2796
2797 nr_pages = ACCESS_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2798 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2799
2800 start_addr = max(address & mask, vma->vm_start);
2801 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2802 pte -= off;
2803 pgoff -= off;
2804
2805 /*
2806 * max_pgoff is either end of page table or end of vma
2807 * or fault_around_pages() from pgoff, depending what is nearest.
2808 */
2809 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2810 PTRS_PER_PTE - 1;
2811 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2812 pgoff + nr_pages - 1);
2813
2814 /* Check if it makes any sense to call ->map_pages */
2815 while (!pte_none(*pte)) {
2816 if (++pgoff > max_pgoff)
2817 return;
2818 start_addr += PAGE_SIZE;
2819 if (start_addr >= vma->vm_end)
2820 return;
2821 pte++;
2822 }
2823
2824 vmf.virtual_address = (void __user *) start_addr;
2825 vmf.pte = pte;
2826 vmf.pgoff = pgoff;
2827 vmf.max_pgoff = max_pgoff;
2828 vmf.flags = flags;
2829 vma->vm_ops->map_pages(vma, &vmf);
2830 }
2831
2832 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2833 unsigned long address, pmd_t *pmd,
2834 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2835 {
2836 struct page *fault_page;
2837 spinlock_t *ptl;
2838 pte_t *pte;
2839 int ret = 0;
2840
2841 /*
2842 * Let's call ->map_pages() first and use ->fault() as fallback
2843 * if page by the offset is not ready to be mapped (cold cache or
2844 * something).
2845 */
2846 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
2847 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2848 do_fault_around(vma, address, pte, pgoff, flags);
2849 if (!pte_same(*pte, orig_pte))
2850 goto unlock_out;
2851 pte_unmap_unlock(pte, ptl);
2852 }
2853
2854 ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2855 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2856 return ret;
2857
2858 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2859 if (unlikely(!pte_same(*pte, orig_pte))) {
2860 pte_unmap_unlock(pte, ptl);
2861 unlock_page(fault_page);
2862 page_cache_release(fault_page);
2863 return ret;
2864 }
2865 do_set_pte(vma, address, fault_page, pte, false, false);
2866 unlock_page(fault_page);
2867 unlock_out:
2868 pte_unmap_unlock(pte, ptl);
2869 return ret;
2870 }
2871
2872 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2873 unsigned long address, pmd_t *pmd,
2874 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2875 {
2876 struct page *fault_page, *new_page;
2877 struct mem_cgroup *memcg;
2878 spinlock_t *ptl;
2879 pte_t *pte;
2880 int ret;
2881
2882 if (unlikely(anon_vma_prepare(vma)))
2883 return VM_FAULT_OOM;
2884
2885 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2886 if (!new_page)
2887 return VM_FAULT_OOM;
2888
2889 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
2890 page_cache_release(new_page);
2891 return VM_FAULT_OOM;
2892 }
2893
2894 ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2895 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2896 goto uncharge_out;
2897
2898 copy_user_highpage(new_page, fault_page, address, vma);
2899 __SetPageUptodate(new_page);
2900
2901 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2902 if (unlikely(!pte_same(*pte, orig_pte))) {
2903 pte_unmap_unlock(pte, ptl);
2904 unlock_page(fault_page);
2905 page_cache_release(fault_page);
2906 goto uncharge_out;
2907 }
2908 do_set_pte(vma, address, new_page, pte, true, true);
2909 mem_cgroup_commit_charge(new_page, memcg, false);
2910 lru_cache_add_active_or_unevictable(new_page, vma);
2911 pte_unmap_unlock(pte, ptl);
2912 unlock_page(fault_page);
2913 page_cache_release(fault_page);
2914 return ret;
2915 uncharge_out:
2916 mem_cgroup_cancel_charge(new_page, memcg);
2917 page_cache_release(new_page);
2918 return ret;
2919 }
2920
2921 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2922 unsigned long address, pmd_t *pmd,
2923 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2924 {
2925 struct page *fault_page;
2926 struct address_space *mapping;
2927 spinlock_t *ptl;
2928 pte_t *pte;
2929 int dirtied = 0;
2930 int ret, tmp;
2931
2932 ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2933 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2934 return ret;
2935
2936 /*
2937 * Check if the backing address space wants to know that the page is
2938 * about to become writable
2939 */
2940 if (vma->vm_ops->page_mkwrite) {
2941 unlock_page(fault_page);
2942 tmp = do_page_mkwrite(vma, fault_page, address);
2943 if (unlikely(!tmp ||
2944 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2945 page_cache_release(fault_page);
2946 return tmp;
2947 }
2948 }
2949
2950 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2951 if (unlikely(!pte_same(*pte, orig_pte))) {
2952 pte_unmap_unlock(pte, ptl);
2953 unlock_page(fault_page);
2954 page_cache_release(fault_page);
2955 return ret;
2956 }
2957 do_set_pte(vma, address, fault_page, pte, true, false);
2958 pte_unmap_unlock(pte, ptl);
2959
2960 if (set_page_dirty(fault_page))
2961 dirtied = 1;
2962 /*
2963 * Take a local copy of the address_space - page.mapping may be zeroed
2964 * by truncate after unlock_page(). The address_space itself remains
2965 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2966 * release semantics to prevent the compiler from undoing this copying.
2967 */
2968 mapping = fault_page->mapping;
2969 unlock_page(fault_page);
2970 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
2971 /*
2972 * Some device drivers do not set page.mapping but still
2973 * dirty their pages
2974 */
2975 balance_dirty_pages_ratelimited(mapping);
2976 }
2977
2978 /* file_update_time outside page_lock */
2979 if (vma->vm_file && !vma->vm_ops->page_mkwrite)
2980 file_update_time(vma->vm_file);
2981
2982 return ret;
2983 }
2984
2985 /*
2986 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2987 * but allow concurrent faults).
2988 * The mmap_sem may have been released depending on flags and our
2989 * return value. See filemap_fault() and __lock_page_or_retry().
2990 */
2991 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2992 unsigned long address, pte_t *page_table, pmd_t *pmd,
2993 unsigned int flags, pte_t orig_pte)
2994 {
2995 pgoff_t pgoff = (((address & PAGE_MASK)
2996 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2997
2998 pte_unmap(page_table);
2999 if (!(flags & FAULT_FLAG_WRITE))
3000 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3001 orig_pte);
3002 if (!(vma->vm_flags & VM_SHARED))
3003 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3004 orig_pte);
3005 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3006 }
3007
3008 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3009 unsigned long addr, int page_nid,
3010 int *flags)
3011 {
3012 get_page(page);
3013
3014 count_vm_numa_event(NUMA_HINT_FAULTS);
3015 if (page_nid == numa_node_id()) {
3016 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3017 *flags |= TNF_FAULT_LOCAL;
3018 }
3019
3020 return mpol_misplaced(page, vma, addr);
3021 }
3022
3023 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3024 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3025 {
3026 struct page *page = NULL;
3027 spinlock_t *ptl;
3028 int page_nid = -1;
3029 int last_cpupid;
3030 int target_nid;
3031 bool migrated = false;
3032 int flags = 0;
3033
3034 /*
3035 * The "pte" at this point cannot be used safely without
3036 * validation through pte_unmap_same(). It's of NUMA type but
3037 * the pfn may be screwed if the read is non atomic.
3038 *
3039 * ptep_modify_prot_start is not called as this is clearing
3040 * the _PAGE_NUMA bit and it is not really expected that there
3041 * would be concurrent hardware modifications to the PTE.
3042 */
3043 ptl = pte_lockptr(mm, pmd);
3044 spin_lock(ptl);
3045 if (unlikely(!pte_same(*ptep, pte))) {
3046 pte_unmap_unlock(ptep, ptl);
3047 goto out;
3048 }
3049
3050 pte = pte_mknonnuma(pte);
3051 set_pte_at(mm, addr, ptep, pte);
3052 update_mmu_cache(vma, addr, ptep);
3053
3054 page = vm_normal_page(vma, addr, pte);
3055 if (!page) {
3056 pte_unmap_unlock(ptep, ptl);
3057 return 0;
3058 }
3059 BUG_ON(is_zero_pfn(page_to_pfn(page)));
3060
3061 /*
3062 * Avoid grouping on DSO/COW pages in specific and RO pages
3063 * in general, RO pages shouldn't hurt as much anyway since
3064 * they can be in shared cache state.
3065 */
3066 if (!pte_write(pte))
3067 flags |= TNF_NO_GROUP;
3068
3069 /*
3070 * Flag if the page is shared between multiple address spaces. This
3071 * is later used when determining whether to group tasks together
3072 */
3073 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3074 flags |= TNF_SHARED;
3075
3076 last_cpupid = page_cpupid_last(page);
3077 page_nid = page_to_nid(page);
3078 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3079 pte_unmap_unlock(ptep, ptl);
3080 if (target_nid == -1) {
3081 put_page(page);
3082 goto out;
3083 }
3084
3085 /* Migrate to the requested node */
3086 migrated = migrate_misplaced_page(page, vma, target_nid);
3087 if (migrated) {
3088 page_nid = target_nid;
3089 flags |= TNF_MIGRATED;
3090 }
3091
3092 out:
3093 if (page_nid != -1)
3094 task_numa_fault(last_cpupid, page_nid, 1, flags);
3095 return 0;
3096 }
3097
3098 /*
3099 * These routines also need to handle stuff like marking pages dirty
3100 * and/or accessed for architectures that don't do it in hardware (most
3101 * RISC architectures). The early dirtying is also good on the i386.
3102 *
3103 * There is also a hook called "update_mmu_cache()" that architectures
3104 * with external mmu caches can use to update those (ie the Sparc or
3105 * PowerPC hashed page tables that act as extended TLBs).
3106 *
3107 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3108 * but allow concurrent faults), and pte mapped but not yet locked.
3109 * We return with pte unmapped and unlocked.
3110 *
3111 * The mmap_sem may have been released depending on flags and our
3112 * return value. See filemap_fault() and __lock_page_or_retry().
3113 */
3114 static int handle_pte_fault(struct mm_struct *mm,
3115 struct vm_area_struct *vma, unsigned long address,
3116 pte_t *pte, pmd_t *pmd, unsigned int flags)
3117 {
3118 pte_t entry;
3119 spinlock_t *ptl;
3120
3121 /*
3122 * some architectures can have larger ptes than wordsize,
3123 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3124 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3125 * The code below just needs a consistent view for the ifs and
3126 * we later double check anyway with the ptl lock held. So here
3127 * a barrier will do.
3128 */
3129 entry = *pte;
3130 barrier();
3131 if (!pte_present(entry)) {
3132 if (pte_none(entry)) {
3133 if (vma->vm_ops) {
3134 if (likely(vma->vm_ops->fault))
3135 return do_fault(mm, vma, address, pte,
3136 pmd, flags, entry);
3137 }
3138 return do_anonymous_page(mm, vma, address,
3139 pte, pmd, flags);
3140 }
3141 return do_swap_page(mm, vma, address,
3142 pte, pmd, flags, entry);
3143 }
3144
3145 if (pte_numa(entry))
3146 return do_numa_page(mm, vma, address, entry, pte, pmd);
3147
3148 ptl = pte_lockptr(mm, pmd);
3149 spin_lock(ptl);
3150 if (unlikely(!pte_same(*pte, entry)))
3151 goto unlock;
3152 if (flags & FAULT_FLAG_WRITE) {
3153 if (!pte_write(entry))
3154 return do_wp_page(mm, vma, address,
3155 pte, pmd, ptl, entry);
3156 entry = pte_mkdirty(entry);
3157 }
3158 entry = pte_mkyoung(entry);
3159 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3160 update_mmu_cache(vma, address, pte);
3161 } else {
3162 /*
3163 * This is needed only for protection faults but the arch code
3164 * is not yet telling us if this is a protection fault or not.
3165 * This still avoids useless tlb flushes for .text page faults
3166 * with threads.
3167 */
3168 if (flags & FAULT_FLAG_WRITE)
3169 flush_tlb_fix_spurious_fault(vma, address);
3170 }
3171 unlock:
3172 pte_unmap_unlock(pte, ptl);
3173 return 0;
3174 }
3175
3176 /*
3177 * By the time we get here, we already hold the mm semaphore
3178 *
3179 * The mmap_sem may have been released depending on flags and our
3180 * return value. See filemap_fault() and __lock_page_or_retry().
3181 */
3182 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3183 unsigned long address, unsigned int flags)
3184 {
3185 pgd_t *pgd;
3186 pud_t *pud;
3187 pmd_t *pmd;
3188 pte_t *pte;
3189
3190 if (unlikely(is_vm_hugetlb_page(vma)))
3191 return hugetlb_fault(mm, vma, address, flags);
3192
3193 pgd = pgd_offset(mm, address);
3194 pud = pud_alloc(mm, pgd, address);
3195 if (!pud)
3196 return VM_FAULT_OOM;
3197 pmd = pmd_alloc(mm, pud, address);
3198 if (!pmd)
3199 return VM_FAULT_OOM;
3200 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3201 int ret = VM_FAULT_FALLBACK;
3202 if (!vma->vm_ops)
3203 ret = do_huge_pmd_anonymous_page(mm, vma, address,
3204 pmd, flags);
3205 if (!(ret & VM_FAULT_FALLBACK))
3206 return ret;
3207 } else {
3208 pmd_t orig_pmd = *pmd;
3209 int ret;
3210
3211 barrier();
3212 if (pmd_trans_huge(orig_pmd)) {
3213 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3214
3215 /*
3216 * If the pmd is splitting, return and retry the
3217 * the fault. Alternative: wait until the split
3218 * is done, and goto retry.
3219 */
3220 if (pmd_trans_splitting(orig_pmd))
3221 return 0;
3222
3223 if (pmd_numa(orig_pmd))
3224 return do_huge_pmd_numa_page(mm, vma, address,
3225 orig_pmd, pmd);
3226
3227 if (dirty && !pmd_write(orig_pmd)) {
3228 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3229 orig_pmd);
3230 if (!(ret & VM_FAULT_FALLBACK))
3231 return ret;
3232 } else {
3233 huge_pmd_set_accessed(mm, vma, address, pmd,
3234 orig_pmd, dirty);
3235 return 0;
3236 }
3237 }
3238 }
3239
3240 /*
3241 * Use __pte_alloc instead of pte_alloc_map, because we can't
3242 * run pte_offset_map on the pmd, if an huge pmd could
3243 * materialize from under us from a different thread.
3244 */
3245 if (unlikely(pmd_none(*pmd)) &&
3246 unlikely(__pte_alloc(mm, vma, pmd, address)))
3247 return VM_FAULT_OOM;
3248 /* if an huge pmd materialized from under us just retry later */
3249 if (unlikely(pmd_trans_huge(*pmd)))
3250 return 0;
3251 /*
3252 * A regular pmd is established and it can't morph into a huge pmd
3253 * from under us anymore at this point because we hold the mmap_sem
3254 * read mode and khugepaged takes it in write mode. So now it's
3255 * safe to run pte_offset_map().
3256 */
3257 pte = pte_offset_map(pmd, address);
3258
3259 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3260 }
3261
3262 /*
3263 * By the time we get here, we already hold the mm semaphore
3264 *
3265 * The mmap_sem may have been released depending on flags and our
3266 * return value. See filemap_fault() and __lock_page_or_retry().
3267 */
3268 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3269 unsigned long address, unsigned int flags)
3270 {
3271 int ret;
3272
3273 __set_current_state(TASK_RUNNING);
3274
3275 count_vm_event(PGFAULT);
3276 mem_cgroup_count_vm_event(mm, PGFAULT);
3277
3278 /* do counter updates before entering really critical section. */
3279 check_sync_rss_stat(current);
3280
3281 /*
3282 * Enable the memcg OOM handling for faults triggered in user
3283 * space. Kernel faults are handled more gracefully.
3284 */
3285 if (flags & FAULT_FLAG_USER)
3286 mem_cgroup_oom_enable();
3287
3288 ret = __handle_mm_fault(mm, vma, address, flags);
3289
3290 if (flags & FAULT_FLAG_USER) {
3291 mem_cgroup_oom_disable();
3292 /*
3293 * The task may have entered a memcg OOM situation but
3294 * if the allocation error was handled gracefully (no
3295 * VM_FAULT_OOM), there is no need to kill anything.
3296 * Just clean up the OOM state peacefully.
3297 */
3298 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3299 mem_cgroup_oom_synchronize(false);
3300 }
3301
3302 return ret;
3303 }
3304 EXPORT_SYMBOL_GPL(handle_mm_fault);
3305
3306 #ifndef __PAGETABLE_PUD_FOLDED
3307 /*
3308 * Allocate page upper directory.
3309 * We've already handled the fast-path in-line.
3310 */
3311 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3312 {
3313 pud_t *new = pud_alloc_one(mm, address);
3314 if (!new)
3315 return -ENOMEM;
3316
3317 smp_wmb(); /* See comment in __pte_alloc */
3318
3319 spin_lock(&mm->page_table_lock);
3320 if (pgd_present(*pgd)) /* Another has populated it */
3321 pud_free(mm, new);
3322 else
3323 pgd_populate(mm, pgd, new);
3324 spin_unlock(&mm->page_table_lock);
3325 return 0;
3326 }
3327 #endif /* __PAGETABLE_PUD_FOLDED */
3328
3329 #ifndef __PAGETABLE_PMD_FOLDED
3330 /*
3331 * Allocate page middle directory.
3332 * We've already handled the fast-path in-line.
3333 */
3334 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3335 {
3336 pmd_t *new = pmd_alloc_one(mm, address);
3337 if (!new)
3338 return -ENOMEM;
3339
3340 smp_wmb(); /* See comment in __pte_alloc */
3341
3342 spin_lock(&mm->page_table_lock);
3343 #ifndef __ARCH_HAS_4LEVEL_HACK
3344 if (pud_present(*pud)) /* Another has populated it */
3345 pmd_free(mm, new);
3346 else
3347 pud_populate(mm, pud, new);
3348 #else
3349 if (pgd_present(*pud)) /* Another has populated it */
3350 pmd_free(mm, new);
3351 else
3352 pgd_populate(mm, pud, new);
3353 #endif /* __ARCH_HAS_4LEVEL_HACK */
3354 spin_unlock(&mm->page_table_lock);
3355 return 0;
3356 }
3357 #endif /* __PAGETABLE_PMD_FOLDED */
3358
3359 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3360 pte_t **ptepp, spinlock_t **ptlp)
3361 {
3362 pgd_t *pgd;
3363 pud_t *pud;
3364 pmd_t *pmd;
3365 pte_t *ptep;
3366
3367 pgd = pgd_offset(mm, address);
3368 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3369 goto out;
3370
3371 pud = pud_offset(pgd, address);
3372 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3373 goto out;
3374
3375 pmd = pmd_offset(pud, address);
3376 VM_BUG_ON(pmd_trans_huge(*pmd));
3377 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3378 goto out;
3379
3380 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3381 if (pmd_huge(*pmd))
3382 goto out;
3383
3384 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3385 if (!ptep)
3386 goto out;
3387 if (!pte_present(*ptep))
3388 goto unlock;
3389 *ptepp = ptep;
3390 return 0;
3391 unlock:
3392 pte_unmap_unlock(ptep, *ptlp);
3393 out:
3394 return -EINVAL;
3395 }
3396
3397 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3398 pte_t **ptepp, spinlock_t **ptlp)
3399 {
3400 int res;
3401
3402 /* (void) is needed to make gcc happy */
3403 (void) __cond_lock(*ptlp,
3404 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3405 return res;
3406 }
3407
3408 /**
3409 * follow_pfn - look up PFN at a user virtual address
3410 * @vma: memory mapping
3411 * @address: user virtual address
3412 * @pfn: location to store found PFN
3413 *
3414 * Only IO mappings and raw PFN mappings are allowed.
3415 *
3416 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3417 */
3418 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3419 unsigned long *pfn)
3420 {
3421 int ret = -EINVAL;
3422 spinlock_t *ptl;
3423 pte_t *ptep;
3424
3425 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3426 return ret;
3427
3428 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3429 if (ret)
3430 return ret;
3431 *pfn = pte_pfn(*ptep);
3432 pte_unmap_unlock(ptep, ptl);
3433 return 0;
3434 }
3435 EXPORT_SYMBOL(follow_pfn);
3436
3437 #ifdef CONFIG_HAVE_IOREMAP_PROT
3438 int follow_phys(struct vm_area_struct *vma,
3439 unsigned long address, unsigned int flags,
3440 unsigned long *prot, resource_size_t *phys)
3441 {
3442 int ret = -EINVAL;
3443 pte_t *ptep, pte;
3444 spinlock_t *ptl;
3445
3446 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3447 goto out;
3448
3449 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3450 goto out;
3451 pte = *ptep;
3452
3453 if ((flags & FOLL_WRITE) && !pte_write(pte))
3454 goto unlock;
3455
3456 *prot = pgprot_val(pte_pgprot(pte));
3457 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3458
3459 ret = 0;
3460 unlock:
3461 pte_unmap_unlock(ptep, ptl);
3462 out:
3463 return ret;
3464 }
3465
3466 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3467 void *buf, int len, int write)
3468 {
3469 resource_size_t phys_addr;
3470 unsigned long prot = 0;
3471 void __iomem *maddr;
3472 int offset = addr & (PAGE_SIZE-1);
3473
3474 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3475 return -EINVAL;
3476
3477 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3478 if (write)
3479 memcpy_toio(maddr + offset, buf, len);
3480 else
3481 memcpy_fromio(buf, maddr + offset, len);
3482 iounmap(maddr);
3483
3484 return len;
3485 }
3486 EXPORT_SYMBOL_GPL(generic_access_phys);
3487 #endif
3488
3489 /*
3490 * Access another process' address space as given in mm. If non-NULL, use the
3491 * given task for page fault accounting.
3492 */
3493 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3494 unsigned long addr, void *buf, int len, int write)
3495 {
3496 struct vm_area_struct *vma;
3497 void *old_buf = buf;
3498
3499 down_read(&mm->mmap_sem);
3500 /* ignore errors, just check how much was successfully transferred */
3501 while (len) {
3502 int bytes, ret, offset;
3503 void *maddr;
3504 struct page *page = NULL;
3505
3506 ret = get_user_pages(tsk, mm, addr, 1,
3507 write, 1, &page, &vma);
3508 if (ret <= 0) {
3509 #ifndef CONFIG_HAVE_IOREMAP_PROT
3510 break;
3511 #else
3512 /*
3513 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3514 * we can access using slightly different code.
3515 */
3516 vma = find_vma(mm, addr);
3517 if (!vma || vma->vm_start > addr)
3518 break;
3519 if (vma->vm_ops && vma->vm_ops->access)
3520 ret = vma->vm_ops->access(vma, addr, buf,
3521 len, write);
3522 if (ret <= 0)
3523 break;
3524 bytes = ret;
3525 #endif
3526 } else {
3527 bytes = len;
3528 offset = addr & (PAGE_SIZE-1);
3529 if (bytes > PAGE_SIZE-offset)
3530 bytes = PAGE_SIZE-offset;
3531
3532 maddr = kmap(page);
3533 if (write) {
3534 copy_to_user_page(vma, page, addr,
3535 maddr + offset, buf, bytes);
3536 set_page_dirty_lock(page);
3537 } else {
3538 copy_from_user_page(vma, page, addr,
3539 buf, maddr + offset, bytes);
3540 }
3541 kunmap(page);
3542 page_cache_release(page);
3543 }
3544 len -= bytes;
3545 buf += bytes;
3546 addr += bytes;
3547 }
3548 up_read(&mm->mmap_sem);
3549
3550 return buf - old_buf;
3551 }
3552
3553 /**
3554 * access_remote_vm - access another process' address space
3555 * @mm: the mm_struct of the target address space
3556 * @addr: start address to access
3557 * @buf: source or destination buffer
3558 * @len: number of bytes to transfer
3559 * @write: whether the access is a write
3560 *
3561 * The caller must hold a reference on @mm.
3562 */
3563 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3564 void *buf, int len, int write)
3565 {
3566 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3567 }
3568
3569 /*
3570 * Access another process' address space.
3571 * Source/target buffer must be kernel space,
3572 * Do not walk the page table directly, use get_user_pages
3573 */
3574 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3575 void *buf, int len, int write)
3576 {
3577 struct mm_struct *mm;
3578 int ret;
3579
3580 mm = get_task_mm(tsk);
3581 if (!mm)
3582 return 0;
3583
3584 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3585 mmput(mm);
3586
3587 return ret;
3588 }
3589
3590 /*
3591 * Print the name of a VMA.
3592 */
3593 void print_vma_addr(char *prefix, unsigned long ip)
3594 {
3595 struct mm_struct *mm = current->mm;
3596 struct vm_area_struct *vma;
3597
3598 /*
3599 * Do not print if we are in atomic
3600 * contexts (in exception stacks, etc.):
3601 */
3602 if (preempt_count())
3603 return;
3604
3605 down_read(&mm->mmap_sem);
3606 vma = find_vma(mm, ip);
3607 if (vma && vma->vm_file) {
3608 struct file *f = vma->vm_file;
3609 char *buf = (char *)__get_free_page(GFP_KERNEL);
3610 if (buf) {
3611 char *p;
3612
3613 p = d_path(&f->f_path, buf, PAGE_SIZE);
3614 if (IS_ERR(p))
3615 p = "?";
3616 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3617 vma->vm_start,
3618 vma->vm_end - vma->vm_start);
3619 free_page((unsigned long)buf);
3620 }
3621 }
3622 up_read(&mm->mmap_sem);
3623 }
3624
3625 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3626 void might_fault(void)
3627 {
3628 /*
3629 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3630 * holding the mmap_sem, this is safe because kernel memory doesn't
3631 * get paged out, therefore we'll never actually fault, and the
3632 * below annotations will generate false positives.
3633 */
3634 if (segment_eq(get_fs(), KERNEL_DS))
3635 return;
3636
3637 /*
3638 * it would be nicer only to annotate paths which are not under
3639 * pagefault_disable, however that requires a larger audit and
3640 * providing helpers like get_user_atomic.
3641 */
3642 if (in_atomic())
3643 return;
3644
3645 __might_sleep(__FILE__, __LINE__, 0);
3646
3647 if (current->mm)
3648 might_lock_read(&current->mm->mmap_sem);
3649 }
3650 EXPORT_SYMBOL(might_fault);
3651 #endif
3652
3653 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3654 static void clear_gigantic_page(struct page *page,
3655 unsigned long addr,
3656 unsigned int pages_per_huge_page)
3657 {
3658 int i;
3659 struct page *p = page;
3660
3661 might_sleep();
3662 for (i = 0; i < pages_per_huge_page;
3663 i++, p = mem_map_next(p, page, i)) {
3664 cond_resched();
3665 clear_user_highpage(p, addr + i * PAGE_SIZE);
3666 }
3667 }
3668 void clear_huge_page(struct page *page,
3669 unsigned long addr, unsigned int pages_per_huge_page)
3670 {
3671 int i;
3672
3673 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3674 clear_gigantic_page(page, addr, pages_per_huge_page);
3675 return;
3676 }
3677
3678 might_sleep();
3679 for (i = 0; i < pages_per_huge_page; i++) {
3680 cond_resched();
3681 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3682 }
3683 }
3684
3685 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3686 unsigned long addr,
3687 struct vm_area_struct *vma,
3688 unsigned int pages_per_huge_page)
3689 {
3690 int i;
3691 struct page *dst_base = dst;
3692 struct page *src_base = src;
3693
3694 for (i = 0; i < pages_per_huge_page; ) {
3695 cond_resched();
3696 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3697
3698 i++;
3699 dst = mem_map_next(dst, dst_base, i);
3700 src = mem_map_next(src, src_base, i);
3701 }
3702 }
3703
3704 void copy_user_huge_page(struct page *dst, struct page *src,
3705 unsigned long addr, struct vm_area_struct *vma,
3706 unsigned int pages_per_huge_page)
3707 {
3708 int i;
3709
3710 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3711 copy_user_gigantic_page(dst, src, addr, vma,
3712 pages_per_huge_page);
3713 return;
3714 }
3715
3716 might_sleep();
3717 for (i = 0; i < pages_per_huge_page; i++) {
3718 cond_resched();
3719 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3720 }
3721 }
3722 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3723
3724 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3725
3726 static struct kmem_cache *page_ptl_cachep;
3727
3728 void __init ptlock_cache_init(void)
3729 {
3730 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3731 SLAB_PANIC, NULL);
3732 }
3733
3734 bool ptlock_alloc(struct page *page)
3735 {
3736 spinlock_t *ptl;
3737
3738 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3739 if (!ptl)
3740 return false;
3741 page->ptl = ptl;
3742 return true;
3743 }
3744
3745 void ptlock_free(struct page *page)
3746 {
3747 kmem_cache_free(page_ptl_cachep, page->ptl);
3748 }
3749 #endif
This page took 0.107497 seconds and 5 git commands to generate.